WO2021205051A1 - Dispositivo de monitorización de sustancias tóxicas en agua y sistema que lo comprende - Google Patents

Dispositivo de monitorización de sustancias tóxicas en agua y sistema que lo comprende Download PDF

Info

Publication number
WO2021205051A1
WO2021205051A1 PCT/ES2021/070231 ES2021070231W WO2021205051A1 WO 2021205051 A1 WO2021205051 A1 WO 2021205051A1 ES 2021070231 W ES2021070231 W ES 2021070231W WO 2021205051 A1 WO2021205051 A1 WO 2021205051A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
chamber
biofilm
monitoring
filter
Prior art date
Application number
PCT/ES2021/070231
Other languages
English (en)
French (fr)
Inventor
Roberta Carafa
Lluís E. Vázquez Vilamajó
Jordi Sierra Llopart
Tom Gallé
Original Assignee
Universitat Rovira I Virgili
Luxembourg Institute Of Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitat Rovira I Virgili, Luxembourg Institute Of Science And Technology filed Critical Universitat Rovira I Virgili
Publication of WO2021205051A1 publication Critical patent/WO2021205051A1/es

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/06Aerobic processes using submerged filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/186Water using one or more living organisms, e.g. a fish
    • G01N33/1866Water using one or more living organisms, e.g. a fish using microorganisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N2021/0106General arrangement of respective parts
    • G01N2021/0118Apparatus with remote processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N2021/635Photosynthetic material analysis, e.g. chrorophyll
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/02Mechanical
    • G01N2201/021Special mounting in general
    • G01N2201/0218Submersible, submarine

Definitions

  • the invention belongs to the field of water quality and safety monitoring. More specifically, it relates to systems and methods for the early detection of micropollutants in surface waters.
  • In situ probes are currently available for aquatic ecosystems capable of transmitting signals and alerts although they only measure hydraulic parameters (eg water level, flow) and inorganic chemical components (eg oxygen, pH, suspended solids, etc.).
  • these probes have several disadvantages: they are for specific substances and / or they are intended for laboratory use and / or they are expensive and / or they are demanding maintenance and / or the interpretation of the results is difficult.
  • biofilms also called bacterial mat or microbial mat
  • biofilm a film formed by microalgae, diatoms and bacteria.
  • these analysis techniques have to be done on site and provide unreliable results. They have high variability and are subject to interpretation, which is often impractical.
  • biofilm-based indicators are influenced by a multitude of variables not necessarily related to water pollution, such as light intensity, suspended solids, nutrients, nitrates, nitrites, phosphorus, temperature, flow rate of water, etc. that affect the validity of the results.
  • the biofilm can adapt to the conditions of the water and develop specific resistances that affect its sensitivity. Consequently, the results of indicators based on biofilm can be biased.
  • a device for the monitoring of toxic substances in water that includes a first reference chamber with a purifying filter and a second monitoring chamber with an inert filter. Both chambers are submersible and each have: an inlet and an outlet for the water flow, a housing module to house at least one biofilm, and a fluorimeter to measure the fluorescence in the biofilm. In use, the housing module must receive outside light for the biofilm.
  • the device also incorporates a data acquisition unit to collect the fluorescence measurement of the biofilm in each chamber.
  • the device can be designed in a versatile way depending on the work environment.
  • the filter material can be chosen according to the type of pollutants to be retained.
  • the device can optionally integrate passive collectors for organic pollutants and metals. Through the extraction of the sample contained in the passive collector and analysis, which can be subsequently analyzed in the laboratory, the use of these passive collectors in the device provides supplementary information. Such supplemental information serves as confirmation that changes in the biofilm are actually due to contaminants. Likewise, it additionally serves to recognize if the filters are functioning correctly.
  • the device can optionally have a data transmission system.
  • the data transmission system can communicate with other remote systems in charge of reviewing the information and acting accordingly. For example, you can take actions such as generating alarms for the type of contamination, maintenance notices, etc. It is also compatible with other tools and accessories that can be incorporated to suit specific requirements.
  • the invention also proposes a system that incorporates one or more monitoring devices for toxic substances in water and also a remote computer in communication with each monitoring device.
  • the computer is programmed to compare the measurements acquired in both cameras of each device and also to send an alarm to one or more surveillance terminals depending on the result of the comparison.
  • These terminals are electronic devices such as mobile phones, tablets, computers, etc.
  • FIG. 1. Schematic block diagram according to an embodiment of the device.
  • FIG. 2. Diagram of the cameras according to an embodiment of the device.
  • FIG. 3. Schematic exploded view of one of the chambers according to an embodiment of the device.
  • FIG. 4. Schematic diagram according to an embodiment of the device with a hydraulic pump.
  • the monitoring device 30 allows, in a continuous manner, an early detection of the presence of contamination in the water.
  • Device 30 uses biofilm 5.
  • Biofilm 5 is a very sensitive living community and serves as the primary detection element.
  • Device 30 has a configuration that avoids interpretation errors generated by external factors unrelated to the presence of contaminants to be detected.
  • the device 30 detects changes by means of fluorescence measurements of biofilm 5 carried out in two different spaces, submerged in the aquatic environment, through its corresponding fluorimeter 6.
  • a first space serves as a local reference with which to have the conditions in the environment without toxic substances.
  • On a second space changes in the environment due to the presence of toxic substances are monitored.
  • chambers 1, 2 are designed. Among other specific properties, both chambers 1, 2 must allow development of the biofilm 5 under conditions. In case of contamination, one of them, the reference chamber 1 must keep the biofilm 5 in pollutant purified water, in order to identify the change suffered by in the other biofilm 5 that is in the monitoring chamber 2 exposed to contaminants. that exist in the middle.
  • the incoming water is purified of contaminants, but maintains other characteristics (temperature, pH, nutrients, etc.).
  • the measurements of the biofilm 5 of each chamber 1, 2 are compared. Based on this comparison, if there is a significant difference, the monitoring device 30 is able to generate a warning signal. With this warning signal an alert can be issued.
  • the warning signal can be easily transmitted using wireless technology such as WiFi.
  • the monitoring device 30 thus makes it possible to verify the quality of the water continuously.
  • the design also admits the use of passive sensors to detect contamination by pharmaceutical compounds and heavy metals, among others. For this, it can integrate, in addition to a biofilm 5, a passive collector for inorganic pollutants 4 (DGT) and a passive collector for organic pollutants 3 (POCIS). These passive sensors 3, 4 can be used as a backup for chemical analysis and identification of contaminants.
  • DTT inorganic pollutants 4
  • POCIS passive collector for organic pollutants 3
  • the type of fluorimeter 6 employed is preferably amplitude modulated pulses for rapid evaluation of changes in structural and functional indicators.
  • fluorimeter 6 in reference chamber 1 and fluorimeter 6 in monitoring chamber 2 are calibrated in the field and in the laboratory.
  • biofilm 5 is usually grown in clean water conditions. Biofilm 5 reacts to exposure to contaminants with changes in functional parameters (eg, photosynthesis efficiency, basal fluorescence, etc.). These changes are detectable by the fluorimeter 6.
  • functional parameters eg, photosynthesis efficiency, basal fluorescence, etc.
  • these changes are detectable by the fluorimeter 6.
  • the presence of a local reference prevents false positives.
  • external factors unrelated to toxicity can affect the values measured in the biofilm. For example, these parameters are influenced by temperature, turbidity, or nutrients.
  • a suitable calibration is carried out in the laboratory. With the measurements, various parameters can be obtained, among which we can mainly mention:
  • NPQ non-photochemical fluorescence quenching
  • the monitoring device 30 can be coupled with a data acquisition unit 18 (which can be submersible) wired to surface equipment 19, located out of the water and powered by an energy production system 26, for example, energy renewable for greater autonomy.
  • a communication unit allows the possibility of sending the information acquired for processing, for example, to a remote computer 21 which, among other actions, is responsible for issuing an alert based on the data received. Different types of alerts can be established depending on the estimated degree of toxicity.
  • FIG. 2 depicts various details of the use and configuration of one embodiment of the monitoring device 30.
  • the monitoring chamber 1 and the reference chamber 2 are installed in the direction of the water flow so that the current carries the possible contaminants to the sensors.
  • Both chambers can be manufactured with a cylindrical shape in methacrylate (PMMA), sometimes commonly referred to as Plexiglas (brand under which it is marketed) with about 3 mm thick with a capacity of several liters.
  • PMMA methacrylate
  • Plexiglas brand under which it is marketed
  • the water passes through a through membrane 7 and reaches a purifying filter 8 made of activated carbon.
  • the purifying filter 8 includes elements, for example, a housing also made of PMMA material, or another inert material (or another material with similar characteristics), with a perforated base to allow the water to escape. But not coal, this perforated base has regular holes 1-2 mm in diameter.
  • an additional 5 mm thick layer of glass wool or some other inert semi-permeable membrane can also be added to the filter base. In this way, the water reaches the biofilm 5 clean and without material from the filter itself.
  • the water passes through a through membrane 7 to the inert glass wool filter 9 where it reaches the non-purified biofilm 5.
  • the inert filter 9 includes the same elements of the purifying filter 8 with the difference that it is filled with glass wool instead of activated carbon.
  • the chambers 1, 2 are specially designed to ensure that the biofilm 5 has a flow of water, light and specific nutrients to survive. Among other considerations, it must allow the passage of light, be sufficiently resistant to withstand the working conditions, and be inert with respect to the substances to be analyzed.
  • PET is not suitable because it can adsorb contaminants.
  • it should be a low cost material, resistant to acids and dilute solvents so that it is easy to clean.
  • other components of each chamber 1, 2, such as screws or rivets must also be made of inert materials. For these parts, stainless steel or polytetrafluoroethylene (PTFE) also known as Teflon are suitable materials.
  • an inert and semi-permeable membrane 7 is placed at the inlet and outlet of the reference chamber 1, which allows the preferential passage of certain substances over others.
  • the membrane can, for example, be made of polyester sulfuron (PES) material.
  • PES polyester sulfuron
  • the water entering the reference chamber 1 is purified.
  • Polar organic pollutants are retained, generally with octanol-water partition coefficient, KOW £ 3, and heavy metals.
  • the octanol-water partition coefficient of a substance is the quotient or ratio between the concentrations of that substance in a biphasic mixture formed by two immiscible solvents in equilibrium: n-octanol and water. This coefficient therefore measures the differential solubility of a solute in these two solvents.
  • N-octanol has been chosen because it is an organic compound that simulates well the lipid material of biota, or in organic particles and sediments. This coefficient gives an idea of the hydrophobicity of a substance or the affinity for lipids of a substance dissolved in water.
  • the purifying filter 8 does not contain substances harmful to the biofilm, for example, a biological filter with bacteria would be inappropriate since it could alter the biofilm. It must allow the flow of water, for example, with ultrafiltration membranes it would be necessary to put a pump to allow the flow of water. Preferably, it is inexpensive, easily replaceable, reusable. For all the above, activated carbon is a good choice, it is reactivatable with heat and reusable.
  • One possibility is that it is granular because it has less opposition to the flow of water.
  • the water after passing through the through membrane 7 reaches an inert filter 9 made of glass wool or of similar characteristics.
  • the inert filter 9 must not react with organic or polar pollutants (KOW £ 3) or with heavy metals, but it must meet the rest of the characteristics mentioned above for the purifying filter 8.
  • the hydrodynamic design of the two chambers 1, 2 must ensure adequate retention of contaminants.
  • a cylindrical shape ensures a uniform distribution of the flow of water that passes through the filters. Since biofilm 5 is a living microbial community with regenerative capacity, requires little maintenance.
  • biofilm 5 is grown in a clean spot and then transferred to the device. In this way, it is facilitated that the most sensitive species are present.
  • the design of the device 30 must allow a relative isolation of the biofilm within the reference chamber 1 and the monitoring chamber 2, which minimizes the colonization of resistant species by passage 7 membranes at the entrance and exit of both chambers. A balance is sought that slows down colonization by resistant species without completely isolating the biofilm 5 to maintain water flow.
  • the extracts from the passive collectors 3, 4 can be analyzed for a better determination of the quality and characteristics of the water. In this way, it is also possible to ensure not only a better identification of contaminants but also the proper functioning of the filters 8, 9.
  • the properties of the filters 8, 9 can be chosen to specifically suit the local conditions of the water to be analyzed. Typically, the life of a filter varies from two weeks to several months, depending on the quality of the water.
  • FIG. 3 is an example of an exploded view of a possible monitoring camera 2 that is coupled to electronic means to acquire, transmit and process the information from said monitoring camera. Although not shown in this figure, the reference camera would still be coupled with said electronic means.
  • the monitoring chamber 2 it can be seen how several biofilms 5 are housed in a housing module 10 that is inside the chamber and is manufactured in PMMA.
  • the filter 9 is associated with a tubular (containment) structure that defines a smaller interior chamber made of PMMA or another material with similar characteristics.
  • the housing module 10 is easily removable at one end of the chamber 1, 2, and is made of PMMA.
  • the PTFE screws 27 (rivets or similar) are used on a closure 17.
  • the housing module 10 has the capacity to house up to five biofilms 5.
  • the construction guarantees lighting, essential for the growth of the biofilm 5. All Materials used in the assembly of the device (PMMA, PTFE and stainless steel) are resistant and inert. Thanks to the inert filter 9, nutrients and eventually micro-pollutants penetrate.
  • an orientation of the housing module 10 towards the surface must be maintained.
  • the mass distribution is carried out in chamber 2, or an additional structure such as a ballast, a counterweight, tie-downs, etc. can be used. that guarantees this orientation.
  • membranes of step 7 are placed, for example, that are semi-permeable and micro-porous of hydrophilic polyethersulfone (PES). , with porosity 0.1-0.2 pm, in PMMA 17 supports with stainless steel screws 27 at the inlet and outlet of chambers 1, 2.
  • PES hydrophilic polyethersulfone
  • the placement of passive sensors 3, 4 should maximize the exposure of the sorbent surface.
  • the biofilm 5 and the fluorimeter 6 are placed immediately after the filters 8, 9 ensuring the contact of the biofilm 5 with possible micro-contaminants present in the aquatic environment. Furthermore, the biofilm 5, which is exposed to light, is placed approximately 2-3 mm from the fluorimeter 6 ensuring a correct reading of the fluorescence signals.
  • the tube-like chamber design offers good hydrodynamics and good filter efficiency.
  • both chambers 1, 2 are very resistant, it may be advisable in certain environments to place both chambers 1, 2 inside a protective stainless steel cage.
  • the cage can be used to maintain the proper orientation so that the light reaches the biofilm 5. Also to avoid theft or impact of stones that the current brings.
  • electronic media there are multiple solutions to collect and process data from measurements.
  • One possibility to transmit data from the two passive sensors 4, 5 is to do so through an underwater cable 16 (RS-485 / S) that exits the device through a small outlet hole 14 in each chamber 1, 2 up to a data acquisition unit 18 with waterproof coating.
  • Data can be recorded in storage memory, for example in an internal ring buffer and on a non-removable microSD card.
  • the data acquisition unit 18 is connected via a waterproof cable 16 (RS-485 / S) to the surface equipment 19, located out of the water and powered by an energy production system 26, preferably renewable, composed of one or two solar panels or, in places with low exposure to sunlight, a submerged hydraulic turbine that converts the energy from the water into mechanical energy plus a hydroelectric generator that converts this mechanical energy into electricity.
  • an energy production system 26 preferably renewable, composed of one or two solar panels or, in places with low exposure to sunlight, a submerged hydraulic turbine that converts the energy from the water into mechanical energy plus a hydroelectric generator that converts this mechanical energy into electricity.
  • Each surface equipment 19 is responsible for transmitting data to a fixed destination, for example, virtually to a server in the cloud 20 by means of a transmission unit 23 that can be a telephone or satellite modem with Wi-Fi technology or the like.
  • the data stored in the cloud 20 can be accessed and analyzed in turn from a remote computer 21 with which, in the event of a significant difference in measurements between the two cameras 1, 2, you can program the automatic sending of a warning signal 24 to a number of recipients.
  • the alert can be transmitted to surveillance personnel through one or more surveillance terminals 22.
  • surveillance terminal 22 can, for example, be a smartphone with a mobile app or a computer, tablet, etc.
  • control software can be installed to perform pulse saturation analysis and calculation of standard fluorescence parameters. You can define the execution of easily programmable custom experimental procedures using batch files. Data export in CSV (Comma Separated Values) format can also be implemented to record original fluorescence traces, saturated pulse data, and light response curve parameter estimates.
  • Integrated passive sensors 3, 4 that are capable of accumulating organic compounds such as pesticides, pharmaceuticals and heavy metals can be recovered and the extracts analyzed in the laboratory, with chromatography and mass spectrophotometry techniques, in the event of a significant change detected in the biofilm 5. This would be the mode of action against an episode of contamination.
  • the adsorbents can be extracted and analyzed, providing valuable information for example to identify those possibly responsible for the toxic effects recorded in the biofilm.
  • FIG. 4 illustrates one embodiment of device 30 out of water (not immersed).
  • the device 30 is associated with a hydraulic pump 31, preferably of the adjustable type.
  • the hydraulic pump 30 is connected by means of a conduit 33 with the device 30 located on the surface, to circulate the water through the reference chamber 1 and through the monitoring chamber 2.
  • the hydraulic pump 31 can establish the desired flow and independently of the direction of the flow of the water body (for example, a river, a canal, a ditch, a reservoir etc.) to be analyzed.
  • a semi-permeable membrane 32 can be installed to prevent substances in suspension in the water from obstructing the inlet of the device 30 and / or reaching the interior of the device 30. It is important to avoid turbidity that is caused by substances in suspension and can affect the measurements made with the biofilm.
  • the conduit 33 can be made by means of a stainless steel pipe or other inert material that does not react with the possible contaminants.
  • device 30 can be out of the water which facilitates operator access, safety and maintenance.
  • the device 30 can be placed outside the water and inside a protection box 34 (which can be manufactured as a house) with a light source 35 to ensure photosynthesis in chambers 1, 2.
  • a system is provided to cut off the water flow by means of a tap 36 that actuates a valve 37 during maintenance operations.
  • common operations include changing the biofilm, checking the sensor, cleaning the filters.
  • the pump should be adapted in pressure so that it can withstand the semi-permeable membrane 32, usually a pressure of 1 to 3 bars is valid.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

Dispositivo (30) de monitorización de sustancias tóxicas en agua y sistema que lo comprende. El dispositivo incorpora una cámara de referencia (1) con un filtro depurativo (8) y una cámara de monitorización (2) con un filtro inerte (9). Ambas cámaras (1,2) incorporan además cada una entrada y una salida para el flujo de agua y albergan un biofilm (5) y un fluorímetro (6) para medir la fluorescencia. Una unidad de adquisición de datos (18) adquiere mediciones del fluorímetro (6) de cada cámara (1,2) que puede ser comparada para identificar cambios en el medio acuático. En las dos cámaras se pueden incorporar captadores pasivos para contaminantes orgánicos (3) e inorgánicos (4), que una vez analizados en laboratorio, permiten complementar los resultados obtenidos a partir del biofilm. El sistema incluye un computador remoto (21) para transmitir alarmas a terminales (22).

Description

DESCRIPCIÓN
DISPOSITIVO DE MONITORIZACIÓN DE SUSTANCIAS TÓXICAS EN AGUA Y
SISTEMA QUE LO COMPRENDE
Campo técnico de la invención
La invención pertenece al campo de la monitorización de la calidad y seguridad del agua. Más concretamente se relaciona con sistemas y métodos de pronta detección de microcontaminantes en aguas superficiales.
Estado de la Técnica
Tradicionalmente, la evaluación de los tóxicos en el agua depende del muestreo de agua y de la extracción y análisis de contaminantes por cromatografía y espectrometría de masas, pero el análisis químico es costoso y requiere mucho tiempo. Se requieren técnicos especializados para muestreo y análisis. Solo se pueden detectar compuestos en instrumentos detectores previamente calibrados. Debido a la escasa información sobre los efectos tóxicos de las mezclas, existen dificultades en la evaluación del impacto.
Hay disponibles actualmente sondas in situ para ecosistemas acuáticos capaces de transmitir señales y alertas aunque únicamente miden parámetros hidráulicos (por ejemplo, nivel de agua, flujo) y componentes químicos inorgánicos (por ejemplo, oxígeno, pH, sólidos en suspensión, etc.). En general, estas sondas tienen varias desventajas: son para sustancias específicas y/o están pensadas para un uso en laboratorio y/o son costosas y/o tienen mantenimiento exigente y/o la interpretación de los resultados es difícil.
Algunas técnicas de análisis utilizan biofilms (también denominado tapiz bacteriano o tapete microbiano) como bio-indicador de la calidad y seguridad del agua. Por biofilm se entiende una película formada por microalgas, diatomeas y bacterias. En general, estas técnicas de análisis tienen que hacerse in situ y proporcionan resultados poco fiables. Tienen una alta variabilidad y están sujetas a interpretación con lo que resultan a menudo poco prácticos. Por una parte, los indicadores basados en biofilm están influenciados por multitud de variables no necesariamente relacionadas con la contaminación del agua, como la intensidad de la luz, los sólidos en suspensión, los nutrientes nitratos, nitritos, fósforo, temperatura, velocidad del flujo de agua, etc. que afecten a la validez de los resultados.
Por otra parte, el biofilm puede adaptarse a las condiciones del agua y desarrollar resistencias específicas que afecten a su sensibilidad. En consecuencia, los resultados de indicadores basados en biofilm pueden ser sesgados.
Breve descripción de la invención
A la vista de las limitaciones observadas en el estado de la técnica, se ha visto la necesidad de mejorar el diagnóstico de las aguas.
Adicionalmente, sería deseable una detección rápida, especialmente en lugares de interés. Por ejemplo, a la salida de estaciones de tratamientos de aguas residuales (EDAR) o en puntos para suministro de agua potable.
La presente invención se concibe para afrontar estos y otros problemas. Se plantea un dispositivo con las características técnicas de la reivindicación independiente. Realizaciones particulares y ventajosas se definen en las reivindicaciones dependientes.
De forma general, se plantea un dispositivo para la monitorización de sustancias tóxicas en agua que incluye una primera cámara de referencia con un filtro depurativo y una segunda cámara de monitorización con un filtro inerte. Ambas cámaras son sumergibles y disponen, cada una, de: una entrada y una salida para el flujo de agua, un módulo de alojamiento para albergar por lo menos un biofilm, y un fluorímetro para medir la fluorescencia en el biofilm. En uso, el módulo de alojamiento debe recibir luz exterior para el biofilm. El dispositivo incorpora además una unidad de adquisición de datos para recoger la medición de fluorescencia del biofilm en cada cámara. Así, se puede establecer una comparación local entre un biofilm con agua depurada de sustancias tóxicas y otro biofilm con agua sin depurar y, con ello, discriminar cambios debidos a contaminantes. Esta especificidad permite descartar cambios en el biofilm ocasionados por otros factores. Por ejemplo, existen variaciones en las condiciones climáticas que son ajenas a la contaminación pero que provocan cambios en el biofilm y que, por tanto, podrían generar falsos positivos de contaminación.
Otra ventaja del dispositivo es que puede ser diseñado de manera versátil en función del entorno de trabajo. Por ejemplo, el material del filtro se puede elegir según el tipo de contaminantes que se quiere retener.
El dispositivo puede opcionalmente integrar captadores pasivos para contaminantes orgánicos y metales. Mediante la extracción de la muestra contenida en el captador pasivo y análisis, que puede ser analizada a posteriori en laboratorio, el uso de estos captadores pasivos en el dispositivo proporciona información suplementaria. Dicha información suplementaria sirve como confirmación de que los cambios en el biofilm se deben realmente a contaminantes. Asimismo, sirve adicionalmente para reconocer si el funcionamiento de los filtros es correcto.
El dispositivo puede contar opcionalmente con un sistema de transmisión de datos. El sistema de transmisión de datos puede comunicar con otros sistemas remotos encargados de revisar la información y actuar en consecuencia. Por ejemplo, puede tomar acciones como generar alarmas por el tipo de contaminación, avisos de mantenimiento, etc. También es compatible con otras herramientas y accesorios que pueden incorporarse para adaptarse a requisitos específicos.
La invención también plantea un sistema que incorpore uno o varios dispositivos de monitorización de sustancias tóxicas en agua y además un computador remoto en comunicación con cada dispositivo de monitorización. El computador está programado para comparar las mediciones adquiridas en ambas cámaras de cada dispositivo y además para enviar una alarma a uno o más terminales de vigilancia en función del resultado de la comparación. Estos terminales son dispositivos electrónicos como teléfonos móviles, tabletas, ordenadores, etc.
Breve descripción de las figuras
Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de la invención, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente:
FIG. 1.- Diagrama esquemático de bloques según una realización del dispositivo. FIG. 2.- Esquema de las cámaras según una realización del dispositivo.
FIG. 3.- Despiece esquemático de una de las cámaras según una realización del dispositivo.
FIG. 4.- Diagrama esquemático según una realización del dispositivo con bomba hidráulica.
Referencias numéricas
1 Cámara de referencia.
2 Cámara de monitorización. 3 Captador pasivo para contaminantes orgánicos.
4 Captador pasivo para contaminantes inorgánicos.
5 Biofilm.
6 Fluorímetro.
7 Membrana de paso. 8 Filtro depurativo.
9 Filtro inerte.
10 Módulo de alojamiento.
14 Orificio de salida para cableado.
16 Cable subacuático. 17 Cierre.
18 Unidad de adquisición de datos.
20 Servidor en la nube.
21 Computador remoto.
22 Terminal de vigilancia 23 Unidad de comunicación de datos.
24 Señal de aviso.
26 Sistema de producción de energía renovable.
27 Tornillos. 30 Dispositivo de monitorización de sustancias tóxicas.
31 Bomba hidráulica.
32 Membrana semipermeable.
33 Conducción.
34 Caja protección.
35 Fuente de iluminación.
36 Grifo.
37 Válvula.
Descripción detallada de la invención
En la FIG. 1 se muestra esquemáticamente un diagrama de bloques de acuerdo con una realización, el dispositivo de monitorización 30 permite, de manera continua, una pronta detección de la presencia de contaminación en el agua. El dispositivo 30 utiliza biofilm 5. El biofilm 5 es una comunidad viva muy sensible y sirve como elemento de detección principal. El dispositivo 30 cuenta con una configuración que evita errores de interpretación generados por factores externos no relacionados con la presencia de contaminantes que se quieren detectar.
En funcionamiento, el dispositivo 30 detecta cambios mediante mediciones de fluorescencia de biofilm 5 realizadas en dos espacios distintos, sumergidos en el medio acuático, a través de su fluorímetro 6 correspondiente. Un primer espacio sirve de referencia local con la que disponer de las condiciones en el entorno sin sustancias tóxicas. Sobre un segundo espacio se monitorizan los cambios del entorno debidos la presencia de sustancias tóxicas. Para crear estos dos espacios en contacto con el medio acuático se diseñan unas cámaras 1, 2. Entre otras propiedades concretas, ambas cámaras 1, 2 deben permitir desarrollo del biofilm 5 en condiciones. En caso de contaminación, una de ellas, la cámara de referencia 1 debe mantener al biofilm 5 en agua depurada de contaminantes, para así poder identificar el cambio sufrido por en el otro biofilm 5 que se encuentra en la cámara de monitorización 2 expuesto a contaminantes que existan en el medio. En la cámara de referencia 1, el agua entrante se purifica de contaminantes, pero mantiene otras características (temperatura, pH, nutrientes, etc.). Las medidas del biofilm 5 de cada cámara 1, 2 se comparan. En función de esta comparación, si hay una diferencia significativa, el dispositivo de monitorización 30 es capaz de generar una señal de aviso. Con esta señal de aviso se puede emitir una alerta. Por ejemplo, la señal de aviso puede transmitirse fácilmente empleando tecnología inalámbrica como WiFi.
El dispositivo de monitorización 30 permite verificar así la calidad del agua de forma continuada. El diseño admite además emplear captadores pasivos para detectar la contaminación por compuestos farmacéuticos y metales pesados entre otros. Para ello puede integrar, además de un biofilm 5, un captador pasivo para contaminantes inorgánicos 4 (DGT, por sus siglas en inglés) y un captador pasivo para contaminantes orgánicos 3 (POCIS, por sus siglas en inglés). Estos captadores pasivos 3, 4 se pueden utilizar como respaldo para el análisis químico y la identificación de contaminantes.
El tipo de fluorímetro 6 empleado es preferentemente de pulsos de amplitud modulada para una evaluación rápida de cambios en indicadores estructurales y funcionales.
Para establecer si las diferencias en medición del fluorímetro 6 de la cámara de referencia 1 y del fluorímetro 6 de la cámara de monitorización 2 son significativas, se calibran en campo y en laboratorio.
Hay que considerar que el biofilm 5 se suele cultivar en condiciones de agua limpia. El biofilm 5 reacciona a la exposición a contaminantes con cambios en los parámetros funcionales (por ejemplo, eficiencia de la fotosíntesis, fluorescencia basal, etc.). Estos cambios son detectables por el fluorímetro 6. Ventajosamente, la presencia de una referencia local evita falsos positivos. A menudo factores externos no relacionados con toxicidad pueden afectar los valores medidos en el biofilm. Por ejemplo, estos parámetros se ven influenciados por la temperatura, la turbidez o los nutrientes. Previamente, se realiza una calibración adecuada en laboratorio. Con las mediciones se pueden obtener diversos parámetros, entre los que se pueden mencionar principalmente:
- Yll, eficiencia fotosintética ( photosynthetic yield, en inglés) con rango de 0 a 100% teóricamente, y con valores normales para un biofilm en buenas condiciones entre 60% y 70%; - Fluorescencia basal: representa una medida indirecta de biomasa y puede subir o crecer o permanecer constante durante la exposición, (el rango depende de la calibración del sensor que se hace previamente a la instalación);
- Y(NPQ), atenuación no fotoquímica regulada (en inglés: yield of regulated non- photochemical fluorescence quenching) que representa la energía que las células emiten en forma de calor, es un mecanismo de protección y es un indicador de estrés;
- Y(NO), atenuación no fotoquímica no regulada (en inglés: yield of non regulated non- photochemical fluorescence quenching) este parámetro indica una disfunción de los mecanismos de fotosíntesis y/o de protección.
De hecho: YII+Y(NPQ)+Y(NO)=100%, si las células bajan su energía por la fotosíntesis, crecerá la energía gastada en calor o usada, por ejemplo, para detoxificación. Pruebas de laboratorio indican la relación entre efecto y mezcla tóxica. La referencia local permite apreciar también variaciones pequeñas que serían confundidas con efectos por factores no tóxicos.
Al dispositivo de monitorización 30 se le puede acoplar una unidad de adquisición de datos 18 (que puede ser sumergible) cableada hasta un equipo de superficie 19, ubicado fuera del agua y alimentado por un sistema de producción de energía 26, por ejemplo, de energía renovable para mayor autonomía. En dicho equipo de superficie 19, una unidad de comunicación permite la posibilidad de enviar la información adquirida para su procesamiento, por ejemplo, hasta un computador remoto 21 que, entre otras acciones, encargarse de emitir una alerta en función de los datos recibidos. Pueden establecerse diferentes tipos de alertas según el grado estimado de toxicidad.
Con referencia a las FIG. 2 y 3, se explica el funcionamiento y más detalles constructivos de realizaciones particulares del dispositivo de monitorización de sustancias tóxicas 30 para un entendimiento más completo.
En la FIG. 2 se representan varios detalles del empleo y la configuración de una realización del dispositivo de monitorización 30.
La cámara de monitorización 1 y la cámara de referencia 2 se instalan en la dirección del flujo de agua para que la corriente transporte hasta los sensores los posibles contaminantes. Ambas cámaras se pueden fabricar con forma cilindrica en metacrilato (PMMA), a veces denominado comúnmente como Plexiglás (marca bajo la que se comercializa) con unos 3 mm de espesor con capacidad de varios litros.
En la cámara de referencia 1, el agua atraviesa una membrana de paso 7 y llega a un filtro purificador 8 de carbón activado. Cuando el carbón activado está en forma de granos, el filtro purificador 8 incluye elementos, por ejemplo, un alojamiento también de material PMMA, u otro material inerte (u otro material con características similares), con una base agujereada para permitir la salida del agua, pero no del carbón, esta base agujereada presenta orificios regulares de 1-2 mm de diámetro. Para evitar la salida accidental del carbón activado granular, se puede además añadir en la base del filtro una capa adicional de 5 mm de espesor de lana de vidrio o una otra membrana semipermeable inerte. De esta forma, el agua llega limpia y sin material del propio filtro al biofilm 5.
En la cámara de monitorización 2, el agua atraviesa una membrana de paso 7 hasta el filtro inerte 9 de lana de vidrio donde llega al biofilm 5 no depurada. El filtro inerte 9 incluye los mismos elementos del filtro purificador 8 con la diferencia que se rellena con lana de vidrio en vez de carbón activado.
Las cámaras 1, 2 se diseñan especialmente para garantizar que el biofilm 5 disponga de flujo de agua, luz y nutrientes específicos para sobrevivir. Entre otras consideraciones, debe permitir el paso de luz, ser suficientemente resistente para soportar las condiciones de trabajo, y ser inerte respecto a las substancias que se quieren analizar. Por ejemplo, no es adecuado el PET porque puede adsorber contaminantes. Preferiblemente, debe ser un material de bajo coste, resistente a ácidos y solventes diluidos para que sea fácil de limpiar. Debe tenerse en cuenta que, otros componentes de cada cámara 1, 2, como por ejemplo tornillos o remaches, también deben estar realizados en materiales inertes. Para estas piezas, el acero inoxidable o el politetrafluoroetileno (PTFE) conocido también como teflón son materiales adecuados.
Como se ha mencionado, a la entrada y salida de la cámara de referencia 1 se coloca una membrana de paso 7 inerte y semipermeable que permite el paso preferencial de ciertas sustancias frente a otras. La membrana puede, por ejemplo, estar fabricada en material de poliéster de sulfurona (PES). La membrana 7 tiene diversas funciones:
- Retener el exceso de sólidos suspendidos (pueden interferir con el fluorímetro).
- Estabilizar el flujo de agua para que sea el mismo en las dos cámaras. - Evitar la colonización rápida del biofilm con especies resistentes para mantener un biofilm sensible durante más tiempo.
- Asegurar un bajo flujo de agua a través del filtro purificador 8 para asegurar la eficiencia en la eliminación de contaminantes.
Con carbón activado o un material de características similares se purifica el agua que entra en la cámara de referencia 1. Se retienen contaminantes orgánicos polares, generalmente con coeficiente de reparto octanol-agua, KOW£3, y metales pesados.
El coeficiente de reparto octanol-agua de una sustancia, también llamado coeficiente de partición (POW), es el cociente o razón entre las concentraciones de esa sustancia en una mezcla bifásica formada por dos disolventes inmiscibles en equilibrio: n-octanol y agua. Ese coeficiente mide, pues, la solubilidad diferencial de un soluto en esos dos disolventes. Se ha elegido el n-octanol por ser un compuesto orgánico que simula bien el material lipídico de la biota, o en partículas y sedimentos orgánicos. Este coeficiente da idea del carácter hidrófobo de una sustancia o la afinidad hacia los lípidos de una sustancia disuelta en agua.
Ha de tenerse en cuenta que el filtro purificador 8 no contenga substancias nocivas para el biofilm, por ejemplo, sería inadecuado un filtro biológico con bacterias puesto que podría alterar el biofilm. Debe permitir el flujo de agua, por ejemplo, con membranas de ultrafiltración sería necesario poner una bomba para permitir el flujo de agua. Preferiblemente, que sea económico, remplazable fácilmente, reusable. Por todo lo anterior, el carbón activado es una buena elección, es reactivable con calor y reusable.
Adicionalmente, es deseable que sea un material homogéneo para evitar acumulaciones de agua en una zona del filtro, y llegue homogéneamente a todo el volumen del filtro. Una posibilidad es que sea granular porque tiene menor oposición al flujo de agua.
En cambio, en la cámara de monitorización 2 el agua tras atravesar la membrana de paso 7 llega a un filtro inerte 9 de lana de vidrio o de características similares. En este caso, el filtro inerte 9 no debe reaccionar con contaminantes orgánicos ni polares (KOW £ 3) ni con metales pesados pero debe reunir el resto de características apuntadas antes para el filtro purificador 8.
El diseño hidrodinámico de las dos cámaras 1, 2 debe asegurar la retención adecuada de contaminantes. Por ejemplo, una forma cilindrica asegura una distribución uniforme del flujo de agua que pasa a través de los filtros. Dado que el biofilm 5 es una comunidad microbiana viva con capacidad de regeneración, requiere poco mantenimiento.
Es recomendable para mejorar la eficiencia del dispositivo, que el biofilm 5 se cultive en un punto limpio y luego se transfiera al dispositivo. De esta manera, se facilita que las especies más sensibles están presentes.
El diseño del dispositivo 30 debe permitir un aislamiento relativo del biofilm dentro de la cámara de referencia 1 y de la cámara de monitorización 2, que minimice la colonización de especies resistentes mediante membranas de paso 7 a la entrada y a la salida de ambas cámaras. Se busca un equilibrio que ralentice la colonización por especies resistentes sin aislar completamente el biofilm 5 para mantener el flujo de agua. Los extractos de los captadores pasivos 3, 4 pueden ser analizados para una mejor determinación de la calidad y características del agua. De esta forma también es posible asegurar no solo una mejor identificación de contaminantes sino además el buen funcionamiento de los filtros 8, 9.
Versátilmente, las propiedades de los filtros 8, 9 se pueden escoger para adaptase específicamente a las condiciones locales del agua a analizar. Habitualmente, la vida útil de un filtro varía de dos semanas a varios meses, dependiendo de la calidad del agua.
La FIG. 3 es un ejemplo de un despiece de una posible cámara de monitorización 2 que se acopla a unos medios electrónicos para adquirir, transmitir y procesar la información procedente de dicha cámara de monitorización. Aunque no se muestra en esta figura, la cámara de referencia estaría igualmente acoplada con dichos medios electrónicos. En la cámara de monitorización 2 se aprecia cómo varios biofilms 5 se alojan en un módulo de alojamiento 10 que está dentro del interior de la cámara y se fabrica en PMMA.
En esta realización, el filtro 9 tiene asociada una estructura tubular (de contención) que define una cámara menor interior fabricada en PMMA u otro material con características similares.
El módulo de alojamiento 10 se puede extraer fácilmente por un extremo de la cámara 1, 2, y está fabricado en PMMA. Para sujetar los elementos se usan los tornillos 27 (remaches o similar) de PTFE sobre un cierre 17. En este ejemplo, el módulo de alojamiento 10 tiene capacidad para albergar hasta cinco biofilms 5. La construcción garantiza la iluminación, esencial para el crecimiento del biofilm 5. Todos los materiales utilizados en el ensamblaje del dispositivo (PMMA, PTFE y acero inoxidable) son resistentes e inertes. Gracias al filtro inerte 9, penetran nutrientes y eventualmente micro-contaminantes.
Para asegurar la correcta iluminación del biofilm 5, se debe mantener una orientación del módulo de alojamiento 10 hacia la superficie. Para ello, se realiza la distribución de masas en la cámara 2, o se puede usar una estructura adicional como un lastre, un contrapeso, unos amarres, etc. que garantice esta orientación.
Respecto de la eliminación de la perturbación del sedimento suspendido mayor de 0.1- 0.2 pm y para limitar colonización de biofilm 5 con especies resistentes se colocan unas membranas de paso 7, por ejemplo, que sean semipermeables y micro-porosas de polietersulfona (PES) hidrófila, con porosidad 0.1-0.2 pm, en soportes de PMMA 17 con tornillos 27 de acero inoxidable a la entrada y salida de las cámaras 1, 2.
La colocación de los captadores pasivos 3, 4 debe maximizar la exposición de la superficie del sorbente. El biofilm 5 y el fluorímetro 6 se colocan inmediatamente después de los filtros 8, 9 asegurando el contacto del biofilm 5 con posibles microcontaminantes presentes en el medio acuático. Además, el biofilm 5, que está expuesto a la luz, se coloca a 2-3 mm aproximadamente del fluorímetro 6 asegurando una lectura correcta de las señales de fluorescencia. El diseño de la cámara como tubo ofrece buena hidrodinámica y una buena eficiencia de los filtros.
Ver valores obtenidos experimentalmente:
2.8-7.4 mL / min / cm2 @ 0.7 bar, 10 ps con una membrana de paso 7 semipermeable de PES de 0.1 pm;
19.3-34.6 mL / min / cm2 @ 0.7 bar, 10 ps con membrana de paso 7 semipermeable de PES de 0.2 pm.
Se ha comprobado que estos valores permiten el crecimiento, así como la acumulación de micro-contaminantes en el biofilm 5, la acumulación de contaminantes también en los captadores pasivos 4, 5.
Aunque el material de fabricación es muy resistente, puede ser aconsejable en ciertos entornos colocar ambas cámaras 1, 2 dentro de una jaula protectora en acero inoxidable. La jaula puede servir para mantener la orientación adecuada para que llegue la luz al biofilm 5. También para evitar robos o impacto de piedras que traiga la corriente. Respecto de los medios electrónicos, hay múltiples soluciones para recoger y procesar los datos procedentes de las mediciones. Una posibilidad para transmitir datos de los dos captadores pasivos 4, 5 es hacerlo a través de un cable subacuático 16 (RS-485 / S) que sale del dispositivo a través de un pequeño orificio de salida 14 en cada cámara 1, 2 hasta una unidad de adquisición de datos 18 con revestimiento impermeable. Los datos se pueden registrar en una memoria de almacenamiento, por ejemplo en un búfer de anillo interno y en una tarjeta microSD no extraíble. La unidad de adquisición de datos 18 se conecta a través de un cable 16 resistente al agua (RS- 485 / S) hasta el equipo de superficie 19, ubicado fuera del agua y alimentado por un sistema de producción de energía 26, preferiblemente renovable, compuesto por uno o dos paneles solares o, en sitios con baja exposición a la luz solar, por una turbina hidráulica sumergida que convierte la energía del agua en energía mecánica más un generador hidroeléctrico que convierte esta energía mecánica en electricidad.
Es posible definir un sistema de monitorización que incluya uno o más dispositivos 30 para una gestión integral de la monitorización del agua en diferentes localizaciones. Cada equipo de superficie 19 se encarga de transmitir datos a un destino fijado, por ejemplo, virtualmente a un servidor en la nube 20 por medio de una unidad de transmisión 23 que puede ser un módem de teléfono o satélite con tecnología wifi o similar. Los datos almacenados en la nube 20 pueden ser accesibles y analizados a su vez desde un computador remoto 21 con que, en caso de una diferencia significativa de medidas entre las dos cámaras 1, 2, puede programar el envío automático de una señal de aviso 24 a una serie de destinatarios. Por ejemplo, la alerta puede ser transmitida al personal de vigilancia a través de uno o más terminales de vigilancia 22. El terminal de vigilancia 22 puede, por ejemplo, ser un teléfono inteligente con una app móvil o bien un ordenador, tableta, etc.
Se pueden añadir diversas funcionalidades de utilidad, por ejemplo el control de sensores, o la lectura registrada por los mismos. Por ejemplo, en el caso del fluorímetro 6 se puede instalar un software de control para realizar un análisis de saturación por pulsos y un cálculo de parámetros de fluorescencia estándar. Es posible definir la ejecución de procedimientos experimentales personalizados fácilmente programables utilizando archivos por lotes. También se puede implementar la exportación de datos en formato CSV (valores separados por comas) para registrar trazas de fluorescencia originales, datos de pulso saturado y estimaciones de parámetros de curvas de respuesta a la luz. Los captadores pasivos integrados 3, 4 que son capaces de acumular compuestos orgánicos como pesticidas, productos farmacéuticos y metales pesados se pueden recuperar y los extractos ser analizados en el laboratorio, con técnicas de cromatografía y espectrofotometría de masa, ante un cambio significativo detectado en el biofilm 5. Este sería el modo de actuación frente a un episodio de contaminación. Los adsorbentes pueden extraerse y analizarse, proporcionando información valiosa por ejemplo para identificar a los posibles responsables de los efectos tóxicos registrados en el biofilm.
La FIG. 4 ilustra una realización del dispositivo 30 fuera del agua (no inmerso). El dispositivo 30 tiene asociado a una bomba hidráulica 31 preferiblemente de tipo regulable. La bomba hidráulica 30 está conectada mediante una conducción 33 con el dispositivo 30 situado en superficie, para hacer circular el agua por la cámara de referencia 1 y por la cámara de monitorización 2. La bomba hidráulica 31 puede establecer el flujo deseado e independientemente de la dirección de la corriente de la masa de agua (por ejemplo, un río, un canal, una acequia, un embalse etc.) que se desea analizar.
En los extremos de la conducción 33 puede instalarse una membrana de semipermeable 32 para evitar que sustancias en suspensión en el agua obstruyan la entrada del dispositivo 30 y/o lleguen hasta el interior del dispositivo 30. Es importante evitar la turbidez que es ocasionada por sustancias en suspensión y puede afectar a las medidas realizadas con el biofilm. La conducción 33 puede realizarse mediante una tubería de acero inoxidable u otro material inerte que no reaccione con los posibles contaminantes.
Es deseable que la distancia al lugar que se quiere analizar sea la menor posible para evitar perder contaminantes. Ventajosamente, el dispositivo 30 puede estar fuera del agua lo que facilita el acceso del operador, la seguridad y el mantenimiento. El dispositivo 30 se puede colocar en el fuera del agua y en el interior de una caja de protección 34 (que puede fabricarse como una caseta) con una fuente de iluminación 35 para asegurar la fotosíntesis en las cámaras 1, 2.
Se prevé un sistema para cortar el flujo de agua mediante un grifo 36 que accione una válvula 37 durante las operaciones de mantenimiento. Por ejemplo, las operaciones habituales incluyen el cambio del biofilm, revisión del sensor, limpieza de los filtros.
El flujo típico a través de una membrana semipermeable 32 de 0.2 pm: mL/min/cm2 a 0.7 bar (70 kPa, 10 psi), 0.2 pm: 26 Punto mínimo de burbuja - agua:
0.2 pm: 3.5 bar (350 kPa, 51 psi)
Generalmente, la bomba se debería adaptar la presión para que pueda soportarla la membrana semipermeable 32, habitualmente una presión de 1 a 3 bares es válida.

Claims

REIVINDICACIONES
1. Dispositivo (1) de monitorización de sustancias tóxicas en agua caracterizado por que comprende: una primera cámara de referencia (1) que comprende un filtro depurativo (8) y una segunda cámara de monitorización (2) que comprende un filtro inerte (9), donde ambas cámaras (1,2) son sumergibles y comprenden además cada una: una entrada y una salida para el flujo de agua; un módulo de alojamiento (10) configurado para albergar al menos un biofilm
(5); un fluorímetro (6) configurado para medir la fluorescencia del biofilm (5); donde ambas cámaras (1,2) están configuradas para permitir que, en uso, el módulo de alojamiento (10) reciba luz exterior; donde el dispositivo (1) comprende además una unidad de adquisición de datos (18) configurada para adquirir la medición de la fluorescencia del fluorímetro (6) de cada cámara (1,2).
2. Dispositivo (1) según reivindicación 1, que comprende además un captador pasivo para contaminantes orgánicos (3).
3. Dispositivo (1) según reivindicación 1 o 2, que comprende además un captador pasivo para contaminantes inorgánicos (4).
4. Dispositivo (1) según cualquiera de las reivindicaciones anteriores, que comprende comprenden una membrana de paso (7) a la entrada y la salida de la cámara (1,2) para el flujo de agua, donde la membrana de paso (7) es inerte y semipermeable.
5. Dispositivo (1) según reivindicación 4, donde la membrana de paso (7) comprende PES.
6. Dispositivo (1) según cualquiera de las reivindicaciones anteriores, donde el filtro depurativo (8) comprende carbón activado.
7. Dispositivo (1) según reivindicación 6, donde el carbón activado es granular.
8. Dispositivo (1) según cualquiera de las reivindicaciones anteriores, donde el filtro inerte (9) comprende lana de vidrio.
9. Dispositivo (1) según cualquiera de las reivindicaciones anteriores, donde medición de la fluorescencia comprende al menos uno de los siguientes parámetros:
- fluorescencia basal;
- eficiencia fotosintética, Yll;
- atenuación no fotoquímica regulada, Y(NPQ);
- atenuación no fotoquímica no regulada, Y(NO);
- o una combinación de los anteriores.
10. Dispositivo (1) según cualquiera de las reivindicaciones anteriores, donde el filtro depurativo (8) y/o el filtro inerte (9) se instalan dentro de una cámara menor interior.
11. Dispositivo (1) según cualquiera de las reivindicaciones anteriores, que comprende además un equipo de superficie (19) configurado para recoger y transmitir las mediciones adquiridas por la unidad de adquisición de datos (18).
12. Dispositivo (1) según cualquiera de las reivindicaciones anteriores, donde el equipo de superficie (19) comprende una unidad de comunicación inalámbrica (23).
13. Sistema de monitorización de sustancias tóxicas en agua caracterizado por que comprende: un dispositivo (30) según la reivindicación 11 o 12; un computador remoto (21) configurado para comunicarse con el dispositivo (30) y para comparar las mediciones adquiridas en ambas cámaras (1,2), donde el computador remoto (21) está configurado además para enviar una alarma a uno o más terminales de vigilancia (22) en función del resultado de la comparación.
14. Sistema según la reivindicación 13, donde dicho dispositivo (1) es situable en superficie.
15. Sistema según reivindicación 14 que comprende además una bomba hidráulica (31) que genera un flujo de agua regulable en la cámara de referencia (1) y en la cámara de monitorización (2) del dispositivo (1).
16. Sistema según reivindicación 15, donde la bomba hidráulica (31) se conecta con las cámaras (1 ,2) a través de una conducción (33) que comprende una membrana semipermeable (32)
17. Sistema según cualquiera de las reivindicaciones 14 a 16, que comprende una caja de protección (34) con una fuente de iluminación interior (35) que aloja el dispositivo (1).
PCT/ES2021/070231 2020-04-07 2021-04-07 Dispositivo de monitorización de sustancias tóxicas en agua y sistema que lo comprende WO2021205051A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES202030285A ES2772251B2 (es) 2020-04-07 2020-04-07 Dispositivo de monitorizacion de sustancias toxicas en agua y sistema que lo comprende
ESP202030285 2020-04-07

Publications (1)

Publication Number Publication Date
WO2021205051A1 true WO2021205051A1 (es) 2021-10-14

Family

ID=71401459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2021/070231 WO2021205051A1 (es) 2020-04-07 2021-04-07 Dispositivo de monitorización de sustancias tóxicas en agua y sistema que lo comprende

Country Status (3)

Country Link
ES (1) ES2772251B2 (es)
LU (1) LU500009B1 (es)
WO (1) WO2021205051A1 (es)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19521181A1 (de) * 1995-06-10 1996-12-12 Reimann Hans Achim Dr Automatisierter Analysator mit Leuchtbakterien zur kontinuierlichen Bestimmung der biologischen Toxizität in Wasser
DE102007059819A1 (de) * 2007-12-11 2009-06-18 Nägele, Martin, Dr. Verfahren und Vorrichtung zur Überwachung der Toxizität von Flüssigkeiten und wässrigen Lösungen

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010142004A2 (en) * 2009-06-10 2010-12-16 Katholieke Universifeit Leuven Controlled biosecure aquatic farming system in a confined environment
WO2011011520A1 (en) * 2009-07-21 2011-01-27 The Regents Of The University Of Michigan System and method for simultaneous biologically mediated removal of contaminants from contaminated water

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19521181A1 (de) * 1995-06-10 1996-12-12 Reimann Hans Achim Dr Automatisierter Analysator mit Leuchtbakterien zur kontinuierlichen Bestimmung der biologischen Toxizität in Wasser
DE102007059819A1 (de) * 2007-12-11 2009-06-18 Nägele, Martin, Dr. Verfahren und Vorrichtung zur Überwachung der Toxizität von Flüssigkeiten und wässrigen Lösungen

Also Published As

Publication number Publication date
ES2772251B2 (es) 2020-11-11
ES2772251A1 (es) 2020-07-07
LU500009B1 (fr) 2021-10-07

Similar Documents

Publication Publication Date Title
ES2924373T3 (es) Dispositivo de muestreo y monitorización multiplexado desplegable en campo y procedimiento de medición de la contaminación bacteriana
ES2575603T3 (es) Método de funcionamiento de planta de filtración con membrana de ósmosis inversa y planta de filtración con membrana de ósmosis inversa
US9945831B2 (en) Aquatic sample analysis system
EP0458900A4 (en) Reservoir fiber optic chemical sensors
US9970915B2 (en) Systems and methods for rapid measurement of carbon dioxide in water
JPH05505876A (ja) 貯留光ファイバ化学センサ
Myers Innovations in monitoring with water-quality sensors with case studies on floods, hurricanes, and harmful algal blooms
ES2772251B2 (es) Dispositivo de monitorizacion de sustancias toxicas en agua y sistema que lo comprende
CN201803975U (zh) 水质检测装置
CA3067495C (en) A sensor
US8993972B2 (en) Fluorescence based sensors utilizing a mirrored cavity
US10132935B2 (en) Environmental monitoring assembly and method
Bode et al. Advanced river quality monitoring in the Ruhr basin
Ribotti et al. New cost-effective, interoperable sensors tested on existing ocean observing platforms in application of European directives: The COMMON SENSE European project
Tercier-Waeber et al. Novel voltammetric probe for in-situ trace element monitoring
US20220162090A1 (en) Rapid inline differential water analyzer
Murphy et al. CISME: A self-contained diver portable metabolism and energetics system
David et al. A submersible battery-powered flow injection (FI) sensor for the determination of nitrate in estuarine and coastal waters
KR20190102632A (ko) 콜로이드 물질의 자외선 투과율에 대한 측정 장치
ES2568478T3 (es) Dispositivo y método para el control en línea respecto de la tolerancia humana de agua potable dentro de una red de abastecimiento de agua potable
ES2351313B1 (es) Dispositivo sumergible de muestreo de compuestos o sustancias presentes en un fluido y procedimiento de muestreo de dichos compuestos o sustancias.
SLUSE et al. AERATION EQUIPMENT FOR BUBBLELESS AERATION WITH PARTIAL AUTONOMOUS REGIME FOR SMALL DEPTHS OF WATER COLUMN.
Shanaa Modeling and plume tracking study of a Newfoundland coastal outfall
KR20190102630A (ko) 콜로이드 물질의 자외선 투과율에 대한 측정 장치
Tercier-Waeber et al. A novel probe and microsensors for in situ, continuous, automatic profiling of trace elements in natural waters

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21722518

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21722518

Country of ref document: EP

Kind code of ref document: A1