WO2021205050A1 - Robust quick-production artificial ventilator - Google Patents

Robust quick-production artificial ventilator Download PDF

Info

Publication number
WO2021205050A1
WO2021205050A1 PCT/ES2021/070230 ES2021070230W WO2021205050A1 WO 2021205050 A1 WO2021205050 A1 WO 2021205050A1 ES 2021070230 W ES2021070230 W ES 2021070230W WO 2021205050 A1 WO2021205050 A1 WO 2021205050A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
gas
solenoid valve
respirator
controller
Prior art date
Application number
PCT/ES2021/070230
Other languages
Spanish (es)
French (fr)
Inventor
Ignacio Díaz de Tuesta Revilla
Víctor Fernando MUÑOZ MARTÍNEZ
Carlos Jesús Pérez del Pulgar Mancebo
Antonio Ángel SANTIAGO MORALES
Original Assignee
Servicio Andaluz De Salud
Universidad De Málaga
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Servicio Andaluz De Salud, Universidad De Málaga filed Critical Servicio Andaluz De Salud
Publication of WO2021205050A1 publication Critical patent/WO2021205050A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H31/00Artificial respiration or heart stimulation, e.g. heart massage
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes

Definitions

  • the invention generally belongs to the field of applying invasive respiratory therapy to a patient.
  • the object of the present invention is an artificial respirator specially designed to allow rapid manufacture and with readily available components that, at the same time, maintains a robustness of operation compatible with the treatment of patients with severe respiratory failure.
  • the CoVid-19 disease stands out due to severe pulmonary involvement in a percentage of 20%, in patients with a confirmed diagnosis of the virus. Within this group of patients, between 5% -15% require admission to the different Intensive Care Units. In 80% of those admitted to them, invasive mechanical ventilation is the only treatment support measure for the developed pathology, known as Acute Respiratory Distress Syndrome (ARDS).
  • ARDS Acute Respiratory Distress Syndrome
  • the present invention attempts to solve the above problems by means of the respirator of the present invention.
  • This respirator can be manufactured using conventional parts available on the market easily even in the emergency situation created by CoVid-19.
  • it can be assembled in a very short time by personnel with an average qualification (approximately two hours), which allows its mass manufacture in a relatively simple way.
  • the ventilator proposed in this document is indicated to provide invasive mechanical ventilation to patients requiring full ventilation support. Its programming allows to reach positive pressure values at the end of expiration (PEEP) between 10 and 20 cmH20, VT> 100 ml / kg and plateau pressures lower than 40 cmH20, as well as values of inspiration / expiration ratio (l / E) 1 : 1, 1: 2, 1: 3, 2: 1, 2: 2 and 2: 3, and respiratory rate parameters from 10 to 40 breaths per minute.
  • PEEP positive pressure values at the end of expiration
  • VT> 100 ml / kg and plateau pressures lower than 40 cmH20 as well as values of inspiration / expiration ratio (l / E) 1 : 1, 1: 2, 1: 3, 2: 1, 2: 2 and 2: 3, and respiratory rate parameters from 10 to 40 breaths per minute.
  • This respirator therefore, constitutes a reasonable alternative to the therapy needed for this group of patients if a conventional commercial respirator is not available.
  • the respirator of the present invention comprises an inlet port for the inlet of a pressurized gas, a feed port for the supply of gas to a patient, and a return port for the return of the gas exhaled by the patient, being formed by means without moving parts configured to supply through the supply port: during an inspiration phase, an increasing pressure from a minimum value to a maximum value; during a plateau phase, a constant pressure equal to said maximum value; and during an exhalation phase, a decreasing pressure until it returns to said minimum value.
  • the gas referred to can be air or oxygen, in both cases coming from a pressurized supply.
  • the mentioned means without moving parts refer to means of pneumatic type such as solenoid valves and different types of pressure / flow sensors.
  • respirator of the present invention lacks mechanisms of a mechanical type intended for the alternative compression of a gas reservoir with the purpose of generating the supply and return flow of gas to the patient.
  • the absence of mechanical elements is advantageous because it reduces maintenance needs and the probability of breakdowns.
  • the means for supplying gas to the patient comprise the following: a) A pressure reducer connected to the pressure gas inlet port.
  • This pressure reducer allows you to manually adjust the maximum pressure delivered by the respirator, which will correspond to the plateau pressure.
  • This may be an industrial pressure reducer suitable for the typical pressure range of a respirator.
  • An inlet solenoid valve connected to the pressure reducer to periodically stop the gas flow. This solenoid valve allows or completely stops the passage of gas on a periodic basis based on the respirator setting parameters supplied by the user.
  • the inlet solenoid valve is connected to a controller that thus manages its opening / closing sequence.
  • a feeding conduit connected between the outlet of the inlet solenoid valve and the port for supplying gas to the patient.
  • This conduit as well as the rest of the conduits that connect the different elements that make up this respirator, is a flexible hose or hose made of a normally plastic material. These types of lines can be easily obtained from any supplier of industrial pneumatic products.
  • a flow meter arranged in the feeding conduit to determine the flow rate of gas delivered to the patient through the feeding port. For example, it can be a flowmeter with a capacity of 0 to 25 l / min which, as described later in this document, is electrically connected to the controller.
  • a ventometer connected to the feeding conduit downstream of the flow sensor to visually determine the pressure of the gas fed to the patient.
  • a pressure probe connected to the supply conduit downstream of the flowmeter.
  • it can be a barometric sensor up to 100 mbar which, as described below, is connected to the controller.
  • An overpressure valve connected upstream of the flow meter between the supply conduit and a first outlet port to allow gas to escape in the event that the pressure in the supply conduit is excessive. This overpressure valve, which can be set to 80 millibars, ensures relief of the pressure supplied to the patient in the event of a failure in the relief solenoid valve described below.
  • a relief solenoid valve connected between the inlet solenoid valve outlet and a second gas outlet port to expel excess gas supplied through the inlet solenoid valve.
  • the controller is electrically connected to the inlet solenoid valve to manage its operation.
  • An outlet solenoid valve connected between the return port and the second gas outlet port to stop gas flow during patient inspiration. Thus, it is ensured that the patient inspires the entire flow of gas supplied to the patient gas supply port.
  • This outlet solenoid valve is also electrically connected to the controller, which determines its closing / opening sequence.
  • a controller equipped with a human-machine interface to control the operation of the respirator. As described, the controller is electrically connected to the flowmeter and the pressure probe to receive the same flow and pressure values. The controller is also electrically connected to the inlet, relief and outlet solenoid valves to control their opening-closing based on the data received from the flow sensor and the pressure probe, as well as the parameters indicated through the Interface.
  • the controller can be a low-end industrial programmable controller. Multiple options can be found on the market.
  • the respirator of the invention is very simple and is made up of common industrial components that can be found very easily even in the emergency situation created by the CoVid-19 pandemic. A moderately skilled person can make it in about two hours. Through the interface with the controller or the manual controls, it is possible to act directly on at least the following parameters of the respirator:
  • the controller is programmed to act on the inlet solenoid valve, increasing or reducing its actuation frequency according to the indications provided by the healthcare personnel through the interface.
  • Inspiration / expiration ratio Again, the controller acts on the relationship between the closing time and the opening time of the inlet solenoid valve based on the indications provided by the healthcare personnel through the interface.
  • Plateau The value of the plateau pressure can be selected manually by proper adjustment of the pressure provided through the pressure reducer.
  • PEEP pressure The PEEP pressure is regulated by the controller through the closing of the outlet solenoid valve when the minimum required pressure is reached.
  • the respirator comprises also a voltage converter connected to the controller to adapt the characteristics of the mains voltage to the controller's needs. For example, it may be necessary to convert the mains voltage from 220 VAC to 24 VDC.
  • the respirator further comprises an alarm indicator light connected to the controller.
  • the alarm indicator light can be a red LED connected to the controller, and it turns on when it is necessary to indicate to the healthcare personnel the existence of a fault or error that requires human intervention.
  • the respirator may also have a buzzer connected to the controller to produce an emergency sound in the event of equipment failure.
  • the respirator further comprises an emergency stop pushbutton connected to the controller.
  • This push button can take the typical “mushroom” shape commonly used in industry, and allows the respirator to be stopped quickly in an emergency.
  • the invention refers to a computer program comprising instructions adapted to supply through a supply port (PA): during an inspiration phase (a), an increasing pressure from a minimum value to a maximum value; during a plateau phase (b), a constant pressure equal to said maximum value; and during an expiration phase (c), a decreasing pressure until it returns to said minimum value; when said program is executed on a computer, a digital signal processor, an application-specific integrated circuit, a microprocessor, a microcontroller or any other form of programmable hardware included in a respirator such as that which is the subject of the present invention.
  • PA supply port
  • Fig. 1 shows a simplified diagram of the respirator of the present invention.
  • Fig. 2 shows a graph showing the pressure delivered to the patient as a function of time using the respirator of the present invention.
  • FIG. 1 shows a respirator (R) comprising:
  • MR pressure regulator
  • PE pressure gas inlet port
  • An inlet solenoid valve (EE) connected to the pressure reducer (MR) to periodically stop the gas flow.
  • This solenoid valve (EE) is electrically connected to the controller (C), which manages the opening / closing sequence to supply an oscillating gas flow between a minimum value of zero and a maximum pressure value that is manually adjusted through the pressure reducer (MR ).
  • the respirator l / E frequency and sequence are also adjusted by proper control of the inlet solenoid valve (EE) opening / closing sequence by the controller (C).
  • a supply conduit (CA) connected between the outlet of the inlet solenoid valve (EE) and the supply port (PA) of gas to the patient (P).
  • a flow meter (CD) arranged in the supply conduit (CA) to determine the flow rate of gas supplied to the patient (P) through the supply port (PA).
  • the flowmeter is electrically connected to the controller (C), which thereby knows the feed gas flow rate.
  • a ventometer arranged on the outside of a respirator casing (R) and connected to the supply conduit (CA) downstream of the flowmeter (CD) to visually determine the pressure of the gas supplied to the patient (P).
  • the ventometer (V) can be equipped with a needle indicator that can be easily interpreted by healthcare personnel.
  • a pressure probe connected to the supply line (CA) downstream of the flowmeter (CD).
  • the pressure probe (SP) is electrically connected to the controller (C).
  • a relief solenoid valve (EA) connected between the inlet solenoid valve outlet (EE) and a second gas outlet port (PS2) to expel excess gas supplied through the inlet solenoid valve (EE).
  • the relief solenoid valve (EA) is also electrically connected to the controller (C), which thereby manages its operation to open it when the pressure sensor (SP) detects excessive pressure in the supply line (CA).
  • An overpressure valve (VS) connected upstream of the flow meter (CD) between the supply conduit (CA) and a first outlet port (PS1) to allow gas to escape in the event that the pressure in the supply conduit (CA) is excessive.
  • the overpressure valve (VS) opens when the pressure exceeds 70 mbar if the relief solenoid valve (EA) has not been opened before.
  • An outlet solenoid valve (ES) connected between the return port (PR) and the second gas outlet port (PS2) to stop the gas flow during patient inspiration (P).
  • the controller (C) is electrically connected to the outlet solenoid valve (ES) to manage its operation.
  • the interface can be a touch screen, or a screen fitted with a series of input buttons.
  • the flow meter (CD) and the pressure probe (SP) are connected to respective inputs of the controller (C) to supply flow and pressure readings in the feed line.
  • the inlet (EE), relief (EA) and outlet (ES) solenoid valves are connected to respective outputs of the controller (C), which in this way orders their opening-closing based on the data received from the sensors (CD, SP), as well as the parameters indicated through the interface (IF) by the healthcare personnel.
  • the artificial respirator (R) of the invention is capable of continuously supplying an oscillating pressure similar to that shown in the graph of Fig. 2.
  • the user first carries out the adjustment. of the pressures by means of the manual actuation of the user on the pressure reducer (MR) arranged at the inlet of the respirator (1).
  • the user also adjusts the parameters of respiratory cycles per minute and the inspiration / expiration ratio (I / E) through the interface (IF).
  • This information is used by the controller (C) to determine the sequence of opening and closing of the solenoid valves (EE, EA, ES) necessary to comply with the received command.
  • the controller (C) opens the inlet valve (EE), closes the relief valve (EA), and closes the outlet valve (ES). At this time it also takes a reading of the pressure sensor signal (SP). The value of this reading is used to detect overpressure and monitor the minimum PEEP pressure. Therefore, during the inspiration phase (a), the pressure of the gas (normally oxygen or air) rises until it reaches the maximum pressure set, as shown in Fig. 2. The controller (C) then commands the closes the inlet solenoid valve (EE) and keeps the relief solenoid valve (EA) and the outlet solenoid valve (ES) closed to perform the plateau phase (b). As can be seen in Fig.
  • a relief duct fitted with an overpressure valve (VS) allows the pressure supplied to the patient (P) to be relieved in the event of failure of the relief solenoid valve (EA).
  • the overpressure valve (VS) opens when the pressure exceeds 70 mbar.
  • the controller (C) keeps the inlet solenoid valve (EE) closed, keeps the relief solenoid valve (EA) closed unless an overpressure occurs, which would be detected by the pressure sensor (SP), and opens the outlet solenoid valve (ES).
  • the outlet solenoid valve (ES) remains open until the minimum PEEP pressure is reached.
  • the respirator of the invention has already been successfully tested on people. Previously, it was tested on both artificial lungs and animals. The tests carried out and the results obtained are described in detail below. Artificial lung tests
  • the prototype Prior to the measurements, the prototype was kept in uninterrupted operation for 1 hour connected to an ambient air compressor.
  • the test lung consisted of the AMBU with retainer of the test lung device itself, with characteristics of: ⁇ Compliance 25 ml / mbar
  • the parameters of pressure, respiratory rate and I have been modified, maintaining a fixed plateau pressure of 40% of the inspiratory cycle and without using an anti-PEEP valve in tests on artificial lungs.
  • a relief valve has not been used to be able to measure eventual overpressures.
  • the measurements have been carried out after 5 minutes of maintaining the modified parameters.
  • the oxygen concentration of the circuit has been 100%.
  • the inlet pressure has been measured in millibars (mBar) as it is the unit displayed on the device's (mechanical) pressure gauge.
  • the measurement pressure is centimeters of water (cmH20) because it is the usual unit of average for respirators, along with that of mm of mercury (Hg).
  • the conversion factor between both units is:
  • Pr mb Gauge pressure measured on the dial gauge, in millibars
  • Min Volume Min Volume total volume of gas delivered per minute, in liters per minute.
  • the device has not presented any malfunction or loss of cycles during the four hours that the tests have lasted. It has not suffered resets, disconnections, or depressurization. It was not necessary to disconnect it.
  • the maximum tidal level was 570 ml at Pr 50 and RR 10, reaching a minute volume of 5.7 lit / min with a maximum airway pressure of 57cm H20, plateau of 56 cmH20 1 cmH20 autoPEEP.
  • the maximum volume reached at 1: 1 was 7.2 liters / minute at Pr 50 and FR 40, with a tidal volume of 190 ml, at a peak airway pressure of 47 cmH20, a plateau of 44 cmH20 and an autoPEEP of 2.9 cmH20.
  • the animal selected for the test was a Large White breed pig of 3 months and 28 kg.
  • Anesthetic induction was performed with propofol, maintaining sedoanalgeia with propofol and pancuronium in continuous perfusion, with supplementary pancuronium boluses when required to deepen relaxation. The following parameters were monitored:
  • Heart rate was obtained using a 5-lead electrocardiograph included in Mindray (standard and V2). Transcutaneous probe saturation on the animal's tongue. Non-invasive pressure (PA ⁇ I) by cuff in upper extremity.
  • PA ⁇ I Non-invasive pressure
  • the pressure and volume parameters in the respiratory circuit were obtained from a tube interposed before the orotracheal tube. Online gas measurement was obtained using a catheter connected to the mouthpiece of the orotracheal tube adapter.
  • the animal After induction, the animal was connected to a commercial Surgivet Braun volumetric respirator, keeping it ventilated in volume-control mode for half an hour to stabilize the parameters and start from a reference situation with a standard respirator.
  • the Malaga-Respira 1 prototype located in the engineering laboratory was turned off, which accumulated 24 hours of uninterrupted operation.
  • the turned off device was transferred to the experimental operating room.
  • the shutdown period between the two phases was approximately half an hour.
  • the anti-PEEP valve and two bacterial filters were installed, one in each of the prototype intakes, that is, between the respirator and the patient's disposable tubing.
  • the ventilator was connected to a 50-liter hospital medicinal oxygen bullet, and started, programming it with initial parameters of PR 20mHg, FR 15, I: E 1: 2.
  • the transition between the two respirators was made by simply disconnecting the tubing from the commercial respirator, followed by connecting the tubing from the prototype.
  • the ventilator parameters were modified approximately every 5 minutes, recording at the end of each period the hemodynamic and ventilatory parameters of the animal.
  • the prototype was permanently adjusted to FR 16 PR 32 l: E of 1: 2 and PEEP of 7.5 (differential pressure approx. 20) for the long-term test, keeping the animal sedated, relaxed, permanently ventilated with the prototype.
  • the following table shows the results according to programming (columns on the left), analyzing ventilatory parameters (central columns) and hemodynamics.
  • the most deviated hemodynamic parameter during the tests was a heart rate of 128 bpm at 19:10, and a heart rate of 125 bpm at 18:31, associated with an elevated PEEP of 20cmH2O.

Abstract

Disclosed is an artificial ventilator especially designed to allow quick production and with readily available components which, at the same time, maintains robust operation compatible with the treatment of patients with acute respiratory failure.

Description

RESPIRADOR ARTIFICIAL ROBUSTO DE FABRICACIÓN RÁPIDA ROBUST ARTIFICIAL RESPIRATOR RAPIDLY MANUFACTURING
DESCRIPCIÓN DESCRIPTION
OBJETO DE LA INVENCIÓN OBJECT OF THE INVENTION
La invención pertenece en general al campo de la aplicación de terapia respiratoria invasiva a un paciente. The invention generally belongs to the field of applying invasive respiratory therapy to a patient.
El objeto de la presente invención es un respirador artificial diseñado especialmente para permitir una fabricación rápida y con componentes fácilmente disponibles que, al mismo tiempo, mantiene una robustez de funcionamiento compatible con el tratamiento a pacientes con insuficiencia respiratoria grave. The object of the present invention is an artificial respirator specially designed to allow rapid manufacture and with readily available components that, at the same time, maintains a robustness of operation compatible with the treatment of patients with severe respiratory failure.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
La enfermedad CoVid-19 destaca por afectación pulmonar severa en un porcentaje del 20%, en pacientes con diagnóstico confirmado del virus. Dentro de este grupo de pacientes, entre un 5%-15% precisan su ingreso en las distintas Unidades de Cuidados Intensivos. En el 80% de ingresados en ellas, la ventilación mecánica invasiva es la única medida de soporte de tratamiento para la patología desarrollada, conocida como Síndrome de Dificultad Respiratoria Aguda (SDRA). The CoVid-19 disease stands out due to severe pulmonary involvement in a percentage of 20%, in patients with a confirmed diagnosis of the virus. Within this group of patients, between 5% -15% require admission to the different Intensive Care Units. In 80% of those admitted to them, invasive mechanical ventilation is the only treatment support measure for the developed pathology, known as Acute Respiratory Distress Syndrome (ARDS).
La masiva penetración del CoVid-19 en la población ha provocado que la demanda de respiradores para la realización de ventilación mecánica se dispare exponencialmente a nivel mundial. El crecimiento ha sido tan rápido y repentino que los proveedores son incapaces de cubrir la demanda, y como consecuencia existe un déficit de ventiladores para el tratamiento de los pacientes en los países que sufren esta pandemia. En muchos países, la ausencia de respiradores para tratar a los pacientes afectados por el SDRA está provocando un incremento en la mortalidad, así como en la frecuencia de aparición de lesiones secundarias graves. The massive penetration of CoVid-19 in the population has caused the demand for respirators to perform mechanical ventilation to skyrocket worldwide. Growth has been so rapid and sudden that providers are unable to meet demand, and as a consequence there is a shortage of ventilators for treating patients in countries suffering from this pandemic. In many countries, the absence of respirators to treat patients affected by ARDS is causing an increase in mortality, as well as in the frequency of the appearance of serious secondary injuries.
Los respiradores comerciales conocidos actualmente son dispositivos complejos cuya fabricación exige personal cualificado y maquinaria altamente especializada. A modo de ejemplo, se puede mencionar el respirador de la empresa Event Medical Ltd. descrito en el documento US2005000519A1. Currently known commercial respirators are complex devices whose manufacture requires qualified personnel and highly specialized machinery. By way of example, mention may be made of the respirator from Event Medical Ltd. described in document US2005000519A1.
En vista de esta situación, existe actualmente en este campo de la técnica una necesidad de respiradores que puedan fabricarse de manera rápida empleando componentes sencillos y que, al mismo tiempo, sean suficientemente robustos como para emplearse en el tratamiento de pacientes con SDRA. In view of this situation, there is currently in this field of art a need for respirators that can be manufactured quickly using simple components and that, at the same time, are robust enough to be used in the treatment of patients with ARDS.
DESCRIPCIÓN DE LA INVENCIÓN DESCRIPTION OF THE INVENTION
La presente invención trata de resolver los problemas anteriores mediante el respirador de la presente invención. Este respirador puede fabricarse empleando piezas convencionales disponibles en el mercado fácilmente aún en la situación de emergencia creada por el CoVid-19. Además, puede montarse en muy poco tiempo por personal con una cualificación media (aproximadamente dos horas), lo que permite su fabricación masiva de manera relativamente sencilla. The present invention attempts to solve the above problems by means of the respirator of the present invention. This respirator can be manufactured using conventional parts available on the market easily even in the emergency situation created by CoVid-19. In addition, it can be assembled in a very short time by personnel with an average qualification (approximately two hours), which allows its mass manufacture in a relatively simple way.
El respirador propuesto en este documento está indicado para proporcionar ventilación mecánica invasiva a pacientes que precisan soporte de ventilación completa. Su programación permite alcanzar valores de presión positiva al final de la espiración (PEEP) entre 10 y 20 cmH20, VT>100 ml/kg y presiones plateau menores de 40 cmH20, así como valores de relación inspiración/espiración (l/E) 1:1, 1:2, 1:3, 2:1, 2:2 y 2:3, y parámetros de frecuencia respiratoria desde 10 a 40 respiraciones por minuto. Este respirador, por tanto, constituye una alternativa razonable a la terapia necesaria para este grupo de pacientes si no hay disponible un respirador comercial convencional. The ventilator proposed in this document is indicated to provide invasive mechanical ventilation to patients requiring full ventilation support. Its programming allows to reach positive pressure values at the end of expiration (PEEP) between 10 and 20 cmH20, VT> 100 ml / kg and plateau pressures lower than 40 cmH20, as well as values of inspiration / expiration ratio (l / E) 1 : 1, 1: 2, 1: 3, 2: 1, 2: 2 and 2: 3, and respiratory rate parameters from 10 to 40 breaths per minute. This respirator, therefore, constitutes a reasonable alternative to the therapy needed for this group of patients if a conventional commercial respirator is not available.
El respirador de la presente invención comprende un puerto de entrada para la entrada de un gas a presión, un puerto de alimentación para el suministro de gas a un paciente, y un puerto de retorno para el retorno del gas espirado por el paciente, estando formado por medios sin partes móviles configurados para suministrar a través del puerto de alimentación: durante una fase de inspiración, una presión creciente desde un valor mínimo hasta a un valor máximo; durante una fase de plateau, una presión constante igual a dicho valor máximo; y durante una fase de espiración, una presión decreciente hasta retornar a dicho valor mínimo. El gas referido puede ser aire u oxígeno, en ambos casos procedentes de un suministro a presión. Por otra parte, los mencionados medios sin partes móviles se refieren a medios de tipo neumático tales como electroválvulas y distintos tipos de sensores de presión/caudal. Es importante señalar que el respirador de la presente invención carece de mecanismos de tipo mecánico destinados a la compresión alternativa de un depósito de gas con el propósito de generar el flujo de alimentación y retorno de gas al paciente. La ausencia de elementos mecánicos es ventajosa porque reduce las necesidades de mantenimiento y la probabilidad de averías. The respirator of the present invention comprises an inlet port for the inlet of a pressurized gas, a feed port for the supply of gas to a patient, and a return port for the return of the gas exhaled by the patient, being formed by means without moving parts configured to supply through the supply port: during an inspiration phase, an increasing pressure from a minimum value to a maximum value; during a plateau phase, a constant pressure equal to said maximum value; and during an exhalation phase, a decreasing pressure until it returns to said minimum value. The gas referred to can be air or oxygen, in both cases coming from a pressurized supply. On the other hand, the mentioned means without moving parts refer to means of pneumatic type such as solenoid valves and different types of pressure / flow sensors. It is important to point out that the respirator of the present invention lacks mechanisms of a mechanical type intended for the alternative compression of a gas reservoir with the purpose of generating the supply and return flow of gas to the patient. The absence of mechanical elements is advantageous because it reduces maintenance needs and the probability of breakdowns.
De acuerdo con una realización particularmente preferida de la invención, los medios destinados a suministrar gas al paciente comprenden los siguientes: a) Un manorreductor conectado al puerto de entrada de gas a presión. Este manorreductor permite ajustar manualmente la presión máxima suministrada por el respirador, que corresponderá a la presión de plateau. Puede tratarse de un manorreductor industrial adecuado para el rango de presiones típicas de un respirador. b) Una electroválvula de entrada conectada al manorreductor para detener periódicamente el paso del gas. Esta electroválvula permite o detiene completamente el paso de gas de una manera periódica en función de los parámetros de ajuste del respirador suministrados por el usuario. La electroválvula de entrada está conectada a un controlador que, de ese modo, gestiona su secuencia de apertura/cierre. c) Un conducto de alimentación conectado entre la salida de la electroválvula de entrada y el puerto de alimentación de gas al paciente. Este conducto, así como el resto de conductos que conectan los diferentes elementos que componen este respirador, es un manguito o latiguillo flexible hecho de un material normalmente plástico. Este tipo de conductos pueden obtenerse fácilmente de cualquier proveedor de productos neumáticos industriales. d) Un caudalímetro dispuesto en el conducto de alimentación para determinar el caudal de gas suministrado al paciente a través del puerto de alimentación. Por ejemplo, puede tratarse de un caudalímetro con capacidad de 0 a 25 l/min que, como se describe más adelante en este documento, está conectado eléctricamente al controlador. e) Un ventómetro conectado al conducto de alimentación aguas abajo del sensor de flujo para determinar visualmente la presión del gas alimentado al paciente. Por ejemplo, puede tratarse de un ventómetro de aguja de fácil interpretación visual dispuesto en el exterior de la carcasa del respirador. f) Una sonda de presión conectada al conducto de alimentación aguas abajo del caudalímetro. Por ejemplo, puede tratarse de un sensor barométrico de hasta 100 mbar que, como se describe más adelante, está conectado al controlador. g) Una válvula de sobrepresión conectada aguas arriba del caudalímetro entre el conducto de alimentación y un primer puerto de salida para permitir la salida de gas en caso de que la presión en el conducto de alimentación sea excesiva. Esta válvula de sobrepresión, que puede estar tarada a 80 milibares, asegura el alivio de la presión que se suministra al paciente en caso de que se produzca un fallo en la electroválvula de alivio que se describe a continuación. h) Una electroválvula de alivio conectada entre la salida de la electroválvula de entrada y un segundo puerto de salida de gas para expulsar un exceso de gas suministrado a través de la electroválvula de entrada. El controlador está conectado eléctricamente a la electroválvula de entrada para gestionar su funcionamiento. i) Una electroválvula de salida conectada entre el puerto de retorno y el segundo puerto de salida de gas para detener el flujo de gas durante la inspiración del paciente. De ese modo, se asegura que el paciente inspira la totalidad del flujo de gas suministrado hacia el puerto de alimentación de gas al paciente. Esta electroválvula de salida está también conectada eléctricamente al controlador, que determina su secuencia de cierre/apertura. j) Un controlador dotado de una interfaz persona-máquina para controlar el funcionamiento del respirador. Como se ha descrito, el controlador está conectado eléctricamente al caudalímetro y a la sonda de presión para recibir de los mismos valores de flujo y presión. El controlador está también conectado eléctricamente a las electroválvulas de entrada, de alivio y de salida para controlar su apertura-cierre en función de los datos recibidos del sensor de flujo y de la sonda de presión, así como de los parámetros indicados a través de la interfaz. According to a particularly preferred embodiment of the invention, the means for supplying gas to the patient comprise the following: a) A pressure reducer connected to the pressure gas inlet port. This pressure reducer allows you to manually adjust the maximum pressure delivered by the respirator, which will correspond to the plateau pressure. This may be an industrial pressure reducer suitable for the typical pressure range of a respirator. b) An inlet solenoid valve connected to the pressure reducer to periodically stop the gas flow. This solenoid valve allows or completely stops the passage of gas on a periodic basis based on the respirator setting parameters supplied by the user. The inlet solenoid valve is connected to a controller that thus manages its opening / closing sequence. c) A feeding conduit connected between the outlet of the inlet solenoid valve and the port for supplying gas to the patient. This conduit, as well as the rest of the conduits that connect the different elements that make up this respirator, is a flexible hose or hose made of a normally plastic material. These types of lines can be easily obtained from any supplier of industrial pneumatic products. d) A flow meter arranged in the feeding conduit to determine the flow rate of gas delivered to the patient through the feeding port. For example, it can be a flowmeter with a capacity of 0 to 25 l / min which, as described later in this document, is electrically connected to the controller. e) A ventometer connected to the feeding conduit downstream of the flow sensor to visually determine the pressure of the gas fed to the patient. For example, it may be a visually easy to read needle ventometer located on the outside of the respirator housing. f) A pressure probe connected to the supply conduit downstream of the flowmeter. For example, it can be a barometric sensor up to 100 mbar which, as described below, is connected to the controller. g) An overpressure valve connected upstream of the flow meter between the supply conduit and a first outlet port to allow gas to escape in the event that the pressure in the supply conduit is excessive. This overpressure valve, which can be set to 80 millibars, ensures relief of the pressure supplied to the patient in the event of a failure in the relief solenoid valve described below. h) A relief solenoid valve connected between the inlet solenoid valve outlet and a second gas outlet port to expel excess gas supplied through the inlet solenoid valve. The controller is electrically connected to the inlet solenoid valve to manage its operation. i) An outlet solenoid valve connected between the return port and the second gas outlet port to stop gas flow during patient inspiration. Thus, it is ensured that the patient inspires the entire flow of gas supplied to the patient gas supply port. This outlet solenoid valve is also electrically connected to the controller, which determines its closing / opening sequence. j) A controller equipped with a human-machine interface to control the operation of the respirator. As described, the controller is electrically connected to the flowmeter and the pressure probe to receive the same flow and pressure values. The controller is also electrically connected to the inlet, relief and outlet solenoid valves to control their opening-closing based on the data received from the flow sensor and the pressure probe, as well as the parameters indicated through the Interface.
El controlador puede ser un autómata programable industrial de gama baja. En el mercado se pueden encontrar múltiples opciones. The controller can be a low-end industrial programmable controller. Multiple options can be found on the market.
Como se puede apreciar, el respirador de la invención es muy sencillo y está formado por componentes industriales comunes que pueden encontrarse muy fácilmente aún en la situación de emergencia creada por la pandemia de CoVid-19. Una persona medianamente cualificada puede fabricarlo en aproximadamente dos horas. A través de la interfaz con el controlador o de los mandos manuales, es posible actuar directamente al menos sobre los siguientes parámetros del respirador: As can be seen, the respirator of the invention is very simple and is made up of common industrial components that can be found very easily even in the emergency situation created by the CoVid-19 pandemic. A moderately skilled person can make it in about two hours. Through the interface with the controller or the manual controls, it is possible to act directly on at least the following parameters of the respirator:
Frecuencia: El controlador está programado para actuar sobre la electroválvula de entrada, incrementando o reduciendo su frecuencia de actuación en función de las indicaciones proporcionadas por el personal sanitario a través de la interfaz. Frequency: The controller is programmed to act on the inlet solenoid valve, increasing or reducing its actuation frequency according to the indications provided by the healthcare personnel through the interface.
Relación inspiración/espiración: De nuevo, el controlador actúa sobre la relación entre el tiempo de cierre y tiempo de apertura de la electroválvula de entrada en función de las indicaciones proporcionadas por el personal sanitario a través de la interfaz. Inspiration / expiration ratio: Again, the controller acts on the relationship between the closing time and the opening time of the inlet solenoid valve based on the indications provided by the healthcare personnel through the interface.
Plateau: El valor de la presión de plateau se puede seleccionar manualmente mediante un ajuste adecuado de la presión proporcionada a través del manorreductor. Plateau: The value of the plateau pressure can be selected manually by proper adjustment of the pressure provided through the pressure reducer.
Presión PEEP: La presión PEEP es regulada por el controlador a través del cierre de la electroválvula de salida cuando se alcanza la presión mínima requerida. PEEP pressure: The PEEP pressure is regulated by the controller through the closing of the outlet solenoid valve when the minimum required pressure is reached.
De acuerdo con una realización preferida de la invención, el respirador comprende además un conversor de tensión conectado al controlador para adaptar las características de la tensión de red a las necesidades del controlador. Por ejemplo, puede ser necesario convertir la tensión de red de 220 VAC en 24 VDC. According to a preferred embodiment of the invention, the respirator comprises also a voltage converter connected to the controller to adapt the characteristics of the mains voltage to the controller's needs. For example, it may be necessary to convert the mains voltage from 220 VAC to 24 VDC.
En aún otra realización preferida, el respirador comprende además un indicador luminoso de alarma conectado al controlador. El indicador luminoso de alarma puede ser un LED rojo conectado al controlador, y se enciende cuando es necesario indicar al personal sanitario la existencia de un fallo o error que requiere intervención humana. El respirador puede tener también un zumbador conectado al controlador para producir un sonido de emergencia en el caso de fallo del equipo. In yet another preferred embodiment, the respirator further comprises an alarm indicator light connected to the controller. The alarm indicator light can be a red LED connected to the controller, and it turns on when it is necessary to indicate to the healthcare personnel the existence of a fault or error that requires human intervention. The respirator may also have a buzzer connected to the controller to produce an emergency sound in the event of equipment failure.
En otra realización preferida más, el respirador comprende además un pulsador de parada de emergencia conectado al controlador. Este pulsador puede adoptar la forma típica de “seta” utilizada habitualmente en la industria, y permite detener rápidamente el funcionamiento del respirador en caso de emergencia. In yet another preferred embodiment, the respirator further comprises an emergency stop pushbutton connected to the controller. This push button can take the typical “mushroom” shape commonly used in industry, and allows the respirator to be stopped quickly in an emergency.
Asimismo, la invención refiere un programa de ordenador que comprende instrucciones adaptadas para suministrar a través de un puerto de alimentación (PA): durante una fase de inspiración (a), una presión creciente desde un valor mínimo hasta a un valor máximo; durante una fase de plateau (b), una presión constante igual a dicho valor máximo; y durante una fase de espiración (c), una presión decreciente hasta retornar a dicho valor mínimo; cuando dicho programa se ejecuta en un ordenador, un procesador digital de la señal, un circuito integrado específico de la aplicación, un microprocesador, un microcontrolador o cualquier otra forma de hardware programable comprendido en un respirador como el que es objeto de la presente invención. Likewise, the invention refers to a computer program comprising instructions adapted to supply through a supply port (PA): during an inspiration phase (a), an increasing pressure from a minimum value to a maximum value; during a plateau phase (b), a constant pressure equal to said maximum value; and during an expiration phase (c), a decreasing pressure until it returns to said minimum value; when said program is executed on a computer, a digital signal processor, an application-specific integrated circuit, a microprocessor, a microcontroller or any other form of programmable hardware included in a respirator such as that which is the subject of the present invention.
BREVE DESCRIPCIÓN DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
La Fig. 1 muestra un esquema simplificado del respirador de la presente invención. Fig. 1 shows a simplified diagram of the respirator of the present invention.
La Fig. 2 muestra una gráfica que muestra la presión suministrada al paciente en función del tiempo utilizando el respirador de la presente invención. Fig. 2 shows a graph showing the pressure delivered to the patient as a function of time using the respirator of the present invention.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN Se describe a continuación un ejemplo particular de respirador (R) de acuerdo con la presente invención haciendo referencia a las figuras adjuntas. La Fig. 1 muestra un respirador (R) que comprende: PREFERRED EMBODIMENT OF THE INVENTION A particular example of a respirator (R) according to the present invention is described below with reference to the attached figures. Fig. 1 shows a respirator (R) comprising:
- Un manorreductor (MR) conectado al puerto de entrada (PE) de gas a presión. La presión máxima proporcionada por el respirador (R), es decir, la presión de plateau, es controlada actuando manualmente sobre este manorreductor (MR). - A pressure regulator (MR) connected to the pressure gas inlet port (PE). The maximum pressure provided by the respirator (R), that is, the plateau pressure, is controlled by manually acting on this pressure reducer (MR).
- Una electroválvula de entrada (EE) conectada al manorreductor (MR) para detener periódicamente el paso del gas. Esta electroválvula (EE) está conectada eléctricamente al controlador (C), que gestiona la secuencia de apertura/cierre para suministrar un flujo de gas oscilante entre un valor mínimo de cero un valor máximo de presión que se ajusta manualmente a través del manorreductor (MR). La frecuencia y la secuencia l/E del respirador también se ajustan mediante un adecuado control de la secuencia de apertura/cierre de la electroválvula de entrada (EE) por parte del controlador (C). - Un conducto de alimentación (CA) conectado entre la salida de la electroválvula de entrada (EE) y el puerto de alimentación (PA) de gas al paciente (P). - An inlet solenoid valve (EE) connected to the pressure reducer (MR) to periodically stop the gas flow. This solenoid valve (EE) is electrically connected to the controller (C), which manages the opening / closing sequence to supply an oscillating gas flow between a minimum value of zero and a maximum pressure value that is manually adjusted through the pressure reducer (MR ). The respirator l / E frequency and sequence are also adjusted by proper control of the inlet solenoid valve (EE) opening / closing sequence by the controller (C). - A supply conduit (CA) connected between the outlet of the inlet solenoid valve (EE) and the supply port (PA) of gas to the patient (P).
- Un caudalímetro (CD) dispuesto en el conducto de alimentación (CA) para determinar el caudal de gas suministrado al paciente (P) a través del puerto de alimentación (PA). El caudalímetro está conectado eléctricamente al controlador (C), que de ese modo conoce el caudal de gas de alimentación. - A flow meter (CD) arranged in the supply conduit (CA) to determine the flow rate of gas supplied to the patient (P) through the supply port (PA). The flowmeter is electrically connected to the controller (C), which thereby knows the feed gas flow rate.
- Un ventómetro (V) dispuesto en el exterior de una carcasa del respirador (R) y conectado al conducto de alimentación (CA) aguas abajo del caudalímetro (CD) para determinar visualmente la presión del gas alimentado al paciente (P). El ventómetro (V) puede estar dotado de un indicador de aguja fácilmente interpretable por el personal sanitario. - Una sonda de presión (SP) conectada al conducto de alimentación (CA) aguas abajo del caudalímetro (CD). La sonda de presión (SP) está eléctricamente conectada al controlador (C). - A ventometer (V) arranged on the outside of a respirator casing (R) and connected to the supply conduit (CA) downstream of the flowmeter (CD) to visually determine the pressure of the gas supplied to the patient (P). The ventometer (V) can be equipped with a needle indicator that can be easily interpreted by healthcare personnel. - A pressure probe (SP) connected to the supply line (CA) downstream of the flowmeter (CD). The pressure probe (SP) is electrically connected to the controller (C).
- Una electroválvula de alivio (EA) conectada entre la salida de la electroválvula de entrada (EE) y un segundo puerto de salida (PS2) de gas para expulsar un exceso de gas suministrado a través de la electroválvula de entrada (EE). La electroválvula de alivio (EA) está también conectada eléctricamente al controlador (C), que de ese modo gestiona su funcionamiento para abrirla cuando el sensor de presión (SP) detecta una presión excesiva en el conducto de alimentación (CA). - A relief solenoid valve (EA) connected between the inlet solenoid valve outlet (EE) and a second gas outlet port (PS2) to expel excess gas supplied through the inlet solenoid valve (EE). The relief solenoid valve (EA) is also electrically connected to the controller (C), which thereby manages its operation to open it when the pressure sensor (SP) detects excessive pressure in the supply line (CA).
- Una válvula de sobrepresión (VS) conectada aguas arriba del caudalímetro (CD) entre el conducto de alimentación (CA) y un primer puerto de salida (PS1) para permitir la salida de gas en caso de que la presión en el conducto de alimentación (CA) sea excesiva. La válvula de sobrepresión (VS) se abre cuando la presión supera los 70 mbar si la electroválvula de alivio (EA) no se ha abierto antes. - An overpressure valve (VS) connected upstream of the flow meter (CD) between the supply conduit (CA) and a first outlet port (PS1) to allow gas to escape in the event that the pressure in the supply conduit (CA) is excessive. The overpressure valve (VS) opens when the pressure exceeds 70 mbar if the relief solenoid valve (EA) has not been opened before.
- Una electroválvula de salida (ES) conectada entre el puerto de retorno (PR) y el segundo puerto de salida (PS2) de gas para detener el flujo de gas durante la inspiración del paciente (P). El controlador (C) está conectado eléctricamente a la electroválvula de salida (ES) para gestionar su funcionamiento. - An outlet solenoid valve (ES) connected between the return port (PR) and the second gas outlet port (PS2) to stop the gas flow during patient inspiration (P). The controller (C) is electrically connected to the outlet solenoid valve (ES) to manage its operation.
- Un controlador (C) dotado de una interfaz (IF) persona-máquina para controlar el funcionamiento del respirador (1). La interfaz puede ser una pantalla táctil, o bien una pantalla dotada de una serie de botones de entrada. Como se ha mencionado anteriormente, el caudalímetro (CD) y la sonda de presión (SP) están conectados a respectivas entradas del controlador (C) para suministrar lecturas de flujo y presión en el conducto de alimentación. A su vez, las electroválvulas de entrada (EE), de alivio (EA) y de salida (ES) están conectadas a respectivas salidas del controlador (C), que de ese modo ordena su apertura-cierre en función de los datos recibidos de los sensores (CD, SP), así como de los parámetros indicados a través de la interfaz (IF) por parte del personal sanitario. Gracias a esta configuración, el respirador artificial (R) de la invención es capaz de suministrar de manera continuada una presión oscilante similar a la mostrada en el gráfico de la Fig. 2. Para ello, en primer lugar el usuario lleva a cabo el ajuste de las presiones mediante la actuación manual del usuario sobre el manorreductor (MR) dispuesto a la entrada del respirador (1). El usuario ajusta también los parámetros de ciclos respiratorios por minuto y la relación inspiración/espiración (l/E) a través de la interfaz (IF). Esta información es utilizada por el controlador (C) para determinar la secuencia de apertura y cierre de las electroválvulas (EE, EA, ES) necesaria para cumplir con la consigna recibida. - A controller (C) equipped with a human-machine interface (IF) to control the operation of the respirator (1). The interface can be a touch screen, or a screen fitted with a series of input buttons. As mentioned above, the flow meter (CD) and the pressure probe (SP) are connected to respective inputs of the controller (C) to supply flow and pressure readings in the feed line. In turn, the inlet (EE), relief (EA) and outlet (ES) solenoid valves are connected to respective outputs of the controller (C), which in this way orders their opening-closing based on the data received from the sensors (CD, SP), as well as the parameters indicated through the interface (IF) by the healthcare personnel. Thanks to this configuration, the artificial respirator (R) of the invention is capable of continuously supplying an oscillating pressure similar to that shown in the graph of Fig. 2. To do this, the user first carries out the adjustment. of the pressures by means of the manual actuation of the user on the pressure reducer (MR) arranged at the inlet of the respirator (1). The user also adjusts the parameters of respiratory cycles per minute and the inspiration / expiration ratio (I / E) through the interface (IF). This information is used by the controller (C) to determine the sequence of opening and closing of the solenoid valves (EE, EA, ES) necessary to comply with the received command.
Al inicio de un ciclo respiratorio, el controlador (C) abre la válvula de entrada (EE), cierra la válvula de alivio (EA) y cierra la válvula de salida (ES). En este momento también realiza una lectura de la señal del sensor de presión (SP). El valor de esta lectura se emplea para detectar sobrepresión y controlar la presión mínima PEEP. Por tanto, durante la fase de inspiración (a), la presión del gas (normalmente oxígeno o aire) asciende hasta llegar a la presión máxima establecida, como se aprecia en la Fig. 2. A continuación, el controlador (C) ordena el cierre de la electroválvula de entrada (EE) y mantiene cerradas la electroválvula de alivio (EA) y la electroválvula de salida (ES) para realizar la fase de plateau (b). Como se aprecia en la Fig. 2, durante la fase de plateau la presión suministrada al paciente (P) se mantiene constante en el valor máximo ajustado mediante el manorreductor (MR). El caudalímetro (CD) mide el volumen tidal durante las fases de inspiración y plateau, y lo muestra en pantalla para que los profesionales sanitarios puedan consultar esta información. Un conducto de alivio dotado de una válvula de sobrepresión (VS) permite aliviar la presión que se suministra al paciente (P) en caso de fallo de la electroválvula de alivio (EA). En este ejemplo, la válvula de sobrepresión (VS) se abre cuando la presión supera los 70 mbar. Finalmente, al comienzo de la fase de espiración (c), el controlador (C) mantiene cerrada la electroválvula de entrada (EE), mantiene cerrada la electroválvula de alivio (EA) a no ser que se produzca una sobrepresión, que sería detectada por el sensor de presión (SP), y abre la electroválvula de salida (ES). La electroválvula de salida (ES) permanece abierta hasta que se alcanza la presión mínima PEEP. At the start of a respiratory cycle, the controller (C) opens the inlet valve (EE), closes the relief valve (EA), and closes the outlet valve (ES). At this time it also takes a reading of the pressure sensor signal (SP). The value of this reading is used to detect overpressure and monitor the minimum PEEP pressure. Therefore, during the inspiration phase (a), the pressure of the gas (normally oxygen or air) rises until it reaches the maximum pressure set, as shown in Fig. 2. The controller (C) then commands the closes the inlet solenoid valve (EE) and keeps the relief solenoid valve (EA) and the outlet solenoid valve (ES) closed to perform the plateau phase (b). As can be seen in Fig. 2, during the plateau phase the pressure supplied to the patient (P) remains constant at the maximum value set by the pressure reducer (MR). The flowmeter (CD) measures the tidal volume during the inspiration and plateau phases, and displays it on the screen so that healthcare professionals can consult this information. A relief duct fitted with an overpressure valve (VS) allows the pressure supplied to the patient (P) to be relieved in the event of failure of the relief solenoid valve (EA). In this example, the overpressure valve (VS) opens when the pressure exceeds 70 mbar. Finally, at the beginning of the expiration phase (c), the controller (C) keeps the inlet solenoid valve (EE) closed, keeps the relief solenoid valve (EA) closed unless an overpressure occurs, which would be detected by the pressure sensor (SP), and opens the outlet solenoid valve (ES). The outlet solenoid valve (ES) remains open until the minimum PEEP pressure is reached.
El respirador de la invención ha sido ya probado con éxito en personas. Previamente, se probó tanto en pulmón artificial como en animales. A continuación, se describen con detalle las pruebas realizadas y los resultados obtenidos. Pruebas en pulmón artificial The respirator of the invention has already been successfully tested on people. Previously, it was tested on both artificial lungs and animals. The tests carried out and the results obtained are described in detail below. Artificial lung tests
Previo a las mediciones, se mantuvo el prototipo en funcionamiento ininterrumpido durante 1 hora conectado a un compresor de aire ambiente. Prior to the measurements, the prototype was kept in uninterrupted operation for 1 hour connected to an ambient air compressor.
Para las pruebas finales se ha empleado oxígeno al 100% obtenido de una botella de transporte de oxígeno medicinal con toma convencional. Para la conexión entre el respirador y el paciente se ha empleado un doble tubo extensible convencional de calibre 22mm. For the final tests, 100% oxygen obtained from a medical oxygen transport bottle with conventional intake was used. For the connection between the ventilator and the patient, a conventional 22mm caliber double extensible tube has been used.
Las pruebas se han realizado con un Pulmón de Ensayo de Precisión modelo Accu Lung II de Fluke Biomedical, con sonda de presión y volumen conectado en serie entre el tubo orotraqueal y la tubuladura convencional de respiradores. El punto más estrecho del circuito entre el manómetro y el pulmón es la propia sonda del analizador, que podría haber artefactado a la baja los flujos administrados. The tests were performed with a Fluke Biomedical Accu Lung II Precision Test Lung, with a pressure and volume probe connected in series between the orotracheal tube and the conventional respirator tubing. The narrowest point in the circuit between the pressure gauge and the lung is the analyzer's own probe, which could have caused the administered flows downward.
El pulmón de ensayo ha consistido en el AMBU con retenedor del propio dispositivo de pulmón de ensayo, con unas características de: · Complianza 25 ml/mbar The test lung consisted of the AMBU with retainer of the test lung device itself, with characteristics of: · Compliance 25 ml / mbar
• Volumen tidal 500ml REER 0 • Tidal volume 500ml REER 0
• Resistencia 20 mBar/L/s • Resistance 20 mBar / L / s
• Volumen Máximo 1000 mi • Maximum Volume 1000 mi
Para obtener los diferentes resultados, se ha modificado los parámetros de presión, frecuencia respiratoria y relación I : E, manteniendo fijo una presión plateau de 40% del ciclo inspiratorio y sin emplear válvula anti-PEEP en las pruebas sobre pulmón artificial. No se ha empleado válvula de alivio para poder medir eventuales sobrepresiones. Las mediciones se han realizado tras 5 minutos de mantenimiento de los parámetros modificados. La concentración de oxígeno del circuito ha sido 100%. To obtain the different results, the parameters of pressure, respiratory rate and I: E ratio have been modified, maintaining a fixed plateau pressure of 40% of the inspiratory cycle and without using an anti-PEEP valve in tests on artificial lungs. A relief valve has not been used to be able to measure eventual overpressures. The measurements have been carried out after 5 minutes of maintaining the modified parameters. The oxygen concentration of the circuit has been 100%.
La presión de entrada se ha medido en milibares (mBar) por tratarse de la unidad visualizada en el manómetro (mecánico) del dispositivo. La presión de medida son centímetros de agua (cmH20) por tratarse de la unidad de media habitual de los respiradores, junto con la de mm de mercurio (Hg). El factor de conversión entre ambas unidades es: The inlet pressure has been measured in millibars (mBar) as it is the unit displayed on the device's (mechanical) pressure gauge. The measurement pressure is centimeters of water (cmH20) because it is the usual unit of average for respirators, along with that of mm of mercury (Hg). The conversion factor between both units is:
1 mBar = 1 ,0197 cm de agua 1 mbar = 0'75 mm Hg 1 mBar = 1.0197 cm of water 1 mbar = 0.75 mm Hg
1 mm de agua (Kg/m2) = 0Ό7355 mm Hg 1 mm of water (Kg / m2) = 0Ό7355 mm Hg
En la tabla siguiente se muestra en las tres columnas de la izquierda los parámetros programados, y en las seis siguientes los resultados obtenidos: The following table shows the programmed parameters in the three columns on the left, and the results obtained in the following six:
Figure imgf000014_0001
donde los símbolos empleados en la tabla corresponden a las siguientes variables:
Figure imgf000014_0001
where the symbols used in the table correspond to the following variables:
Pr mb Presión de manorreductor, medido en el manómetro de esfera, en milibares Pr mb Gauge pressure, measured on the dial gauge, in millibars
Freo Frecuencia programada en respiraciones por minuto l:E Relación Inspiración - Espiración Freo Frequency programmed in breaths per minute l: E Inspiration - Expiration Ratio
Tidal Volumen Tidal, volumen inspiratorio en mi Tidal Volume Tidal, inspiratory volume in my
Vol min Volumen Minuto, volumen total de gas administrado por minuto, en litros por minuto. Min Volume Min Volume, total volume of gas delivered per minute, in liters per minute.
Pr Max Presión máxima medida previo al tubo orotraqueal, en centímetros de agua Pr Max Maximum pressure measured prior to the orotracheal tube, in centimeters of water
Pr Med Presión media en centímetros de agua Pr Med Mean pressure in centimeters of water
AutoPEEP Presión residual, medida al final del ciclo espiratorio, en centímetros de agua. AutoPEEP Residual pressure, measured at the end of the expiratory cycle, in centimeters of water.
Plateau Presión plateau o presión en la fase final de ciclo inspiratorio, tras el cierre de la válvula de inspiración y antes de la apertura de la válvula de espiración. Plateau Plateau pressure or pressure in the final phase of the inspiratory cycle, after the closure of the inspiration valve and before the opening of the expiration valve.
Como se puede apreciar, el dispositivo no ha presentado ningún fallo de funcionamiento ni pérdidas de ciclos durante las cuatro horas que han durado las pruebas. No ha sufrido reseteos, desconexiones, ni despresurizaciones. No ha sido preciso desconectarlo. As can be seen, the device has not presented any malfunction or loss of cycles during the four hours that the tests have lasted. It has not suffered resets, disconnections, or depressurization. It was not necessary to disconnect it.
Como único evento, externo al dispositivo, cabe reseñar el agotamiento de la botella de transporte de oxígeno a las tres horas. Se aprovechó la incidencia, anticipada, para comprobar el desempeño del dispositivo, que siguió ciclando sin impulsión de gas. Con equipo funcionando se procedió a cambiar la toma de la botella a la toma del compresor. No hubo atascos de electroválvulas ni interrupciones mecánicas o eléctricas, pasando a ventilar correctamente una vez obtenida presión de entrada. The only event, external to the device, is the exhaustion of the oxygen transport bottle at three hours. The anticipated incident was used to check the performance of the device, which continued to cycle without gas impulsion. With the equipment working, the bottle intake was changed to the compressor intake. There were no blockages of solenoid valves or mechanical or electrical interruptions, going to ventilate correctly once inlet pressure was obtained.
Con relación Inspiración/Espiración de 1:2 se ha obtenido un volumen tidal máximo (volumen corriente) de 600 mi con Pr 50 y FR 10, alcanzando un volumen minuto de 6 litros y una presión máxima en vía aérea de 40 cmH20 y un plateau de 40 cmH20. No se ha producido autoPEEP. El volumen máximo alcanzado a 1:2 ha sido de 7'9 litros/minuto a Pr 60 y FR 30, con una presión pico en vía aérea de 35 cmH20, un plateau de 19 cm H20 y una autoPEEP de 1 cmH20. With an Inspiration / Expiration ratio of 1: 2, a maximum tidal volume (tidal volume) of 600 ml was obtained with Pr 50 and FR 10, reaching a minute volume of 6 liters and a maximum airway pressure of 40 cmH20 and a plateau 40 cmH20. AutoPEEP has not occurred. The maximum volume reached at 1: 2 was 7.9 liters / minute at Pr 60 and RR 30, with a peak airway pressure of 35 cmH20, a plateau of 19 cm H20 and an autoPEEP of 1 cmH20.
En cuanto a los resultados con relación 1:1, el tidal máximo ha sido de 570 mi a Pr 50 y FR 10, alcanzando un volumen minuto de 5'7 lit/min con una presión máxima de vía aérea de 57cm H20, plateau de 56 cmH20 autoPEEP de 1 cmH20. Regarding the results with a 1: 1 ratio, the maximum tidal level was 570 ml at Pr 50 and RR 10, reaching a minute volume of 5.7 lit / min with a maximum airway pressure of 57cm H20, plateau of 56 cmH20 1 cmH20 autoPEEP.
El volumen máximo alcanzado a 1:1 ha sido de 7'2 litros/minuto a Pr 50 y FR 40, con un volumen corriente de 190 mi, a presión pico en vía aérea de 47 cmH20, un plateau de 44 cmH20 y una autoPEEP de 2'9 cmH20. The maximum volume reached at 1: 1 was 7.2 liters / minute at Pr 50 and FR 40, with a tidal volume of 190 ml, at a peak airway pressure of 47 cmH20, a plateau of 44 cmH20 and an autoPEEP of 2.9 cmH20.
Una vez concluido el análisis, se mantuvo el respirador conectado de forma ininterrumpida para evaluar fallos mecánicos o eléctricos a largo plazo. After the analysis was completed, the ventilator was kept on continuously to assess long-term mechanical or electrical failures.
Pruebas en animal Animal testing
El presente informe se redacta tras 20 horas de animal anestesiado en mesa de quirófano, y 19 horas de funcionamiento ininterrumpido del prototipo MálagaRespira-1, permaneciendo en el momento actual en curso la prueba de supervivencia a largo plazo del animal con el dispositivo, sin medicación ni actuación de ningún tipo salvo anestesia y en su caso, sueroterapia convencional de mantenimiento. This report is written after 20 hours of anesthetized animal on the operating room table, and 19 hours of uninterrupted operation of the MálagaRespira-1 prototype, with the long-term survival test of the animal with the device, without medication, remaining at the present time. nor action of any kind except anesthesia and, where appropriate, conventional maintenance fluid therapy.
El animal seleccionado para la prueba fue un cerdo raza Large White de 3 meses y 28 kg. La inducción anestésica fue realizada con propofol, manteniendo sedoanalgeia con propofol y pancuronio en perfusión continua, con bolos suplementarios de pancuronio cuando se ha requerido para profundizar la relajación. Se monitorizaron los siguientes parámetros: The animal selected for the test was a Large White breed pig of 3 months and 28 kg. Anesthetic induction was performed with propofol, maintaining sedoanalgeia with propofol and pancuronium in continuous perfusion, with supplementary pancuronium boluses when required to deepen relaxation. The following parameters were monitored:
• Frecuencia cardiaca, saturación transcutánea de oxígeno, presión arterial no invasiva y temperatura con un monitor Mindray IMCE • Heart rate, transcutaneous oxygen saturation, non-invasive blood pressure and temperature with a Mindray IMCE monitor
• Oxígeno inspirado y espirado, C02 inspirado y espirado, frecuencia respiratoria con un monitor Datex Ohmeda Capnomat Última. • Inspired and expired oxygen, inspired and expired C02, respiratory rate with a Datex Ohmeda Capnomat Ultima monitor.
• Volumen Tidal, Volumen/minuto, Presión máxima, Presión media, PEEP, frecuencia respiratoria con el analizador de Ensayo de Precisión modelo Accu Lung II de Fluke Biomedical, el mismo dispositivo empleado para las pruebas en pulmón de prueba, sin el ambú. • Tidal Volume, Volume / minute, Peak Pressure, Mean Pressure, PEEP, Respiratory Rate with the Fluke Biomedical Accu Lung II Precision Assay Analyzer, the same device used for testing in test lung, without the ambu.
La frecuencia cardiaca se obtuvo mediante electrocardiógrafo incluido en Mindray, de 5 derivaciones (estándar y V2). La saturación por sonda trasncutáea en la lengua del animal. Presión no invasiva (PAÑI) por manguito en extremidad superior. Heart rate was obtained using a 5-lead electrocardiograph included in Mindray (standard and V2). Transcutaneous probe saturation on the animal's tongue. Non-invasive pressure (PAÑI) by cuff in upper extremity.
Los parámetros de presión y volumen en el circuito respiratorio se obtuvieron de sonda interpuesta antes del tubo orotraqueal. La medición de gases en línea se obtuvo mediante un catéter conectado a la boquilla del adaptador del tubo orotraqueal. The pressure and volume parameters in the respiratory circuit were obtained from a tube interposed before the orotracheal tube. Online gas measurement was obtained using a catheter connected to the mouthpiece of the orotracheal tube adapter.
Tras la inducción se conectó el animal a un respirador volumétrico comercial Surgivet Braun, manteniéndolo ventilado en modo volumen-control durante media hora para estabilizar los parámetros y partir de una situación referencial con un respirador estándar. After induction, the animal was connected to a commercial Surgivet Braun volumetric respirator, keeping it ventilated in volume-control mode for half an hour to stabilize the parameters and start from a reference situation with a standard respirator.
Con el animal sedado y en modo ventilatorio convencional, se procedió al apagado del prototipo Malaga-Respira 1 situado en el laboratorio de ingeniería, el cual acumulaba 24h de funcionamiento ininterrumpido. El dispositivo apagado fue trasladado al quirófano experimental. El periodo de apagado entre las dos fases fue de aproximadamente media hora. With the animal sedated and in conventional ventilatory mode, the Malaga-Respira 1 prototype located in the engineering laboratory was turned off, which accumulated 24 hours of uninterrupted operation. The turned off device was transferred to the experimental operating room. The shutdown period between the two phases was approximately half an hour.
Para la prueba animal se instaló la válvula anti-PEEP, y dos filtros bacterianos, uno en cada una de las tomas del prototipo, es decir, entre el respirador y la tubuladura desechable del paciente. For the animal test, the anti-PEEP valve and two bacterial filters were installed, one in each of the prototype intakes, that is, between the respirator and the patient's disposable tubing.
El respirador fue conectado a una bala de oxígeno medicinal hospitalario de 50 litros, y puesto en marcha, programándolo con parámetros iniciales de PR 20mHg, FR 15, I : E 1:2. La transición entre los dos respiradores se realizó por simple desconexión de la tubuladura procedente del respirador comercial, seguido de la conexión de la tubuladura procedente del prototipo. The ventilator was connected to a 50-liter hospital medicinal oxygen bullet, and started, programming it with initial parameters of PR 20mHg, FR 15, I: E 1: 2. The transition between the two respirators was made by simply disconnecting the tubing from the commercial respirator, followed by connecting the tubing from the prototype.
Durante el procedimiento de prueba, se modificaron los parámetros del respirador aproximadamente cada 5 minutos, registrando al final de cada periodo los parámetros hemodinámicos y ventilatorios del animal. Tras finalizar las mediciones con los parámetros expuestos en la tabla, se ajustó de forma permanente el prototipo a FR 16 PR 32 l:E de 1:2 y PEEP de 7'5 (presión diferencial aprox 20) para la prueba de largo plazo, manteniendo al animal sedado, relajado, ventilado de forma permanentemente con el prototipo. During the test procedure, the ventilator parameters were modified approximately every 5 minutes, recording at the end of each period the hemodynamic and ventilatory parameters of the animal. After completing the measurements with the parameters shown in the table, the prototype was permanently adjusted to FR 16 PR 32 l: E of 1: 2 and PEEP of 7.5 (differential pressure approx. 20) for the long-term test, keeping the animal sedated, relaxed, permanently ventilated with the prototype.
En la tabla siguiente se muestra los resultados según programación (columnas de la izquierda), analizando parámetros ventilatorios (columnas centrales) y hemodinámicosThe following table shows the results according to programming (columns on the left), analyzing ventilatory parameters (central columns) and hemodynamics.
(columnas de la derecha):
Figure imgf000018_0001
donde los símbolos empleados en la tabla corresponden a las siguientes variables:
(right columns):
Figure imgf000018_0001
where the symbols used in the table correspond to the following variables:
1a columna Hora de inicio de cada prueba Pr Presión programada en el respirador en mmHg 1 Start Time column of each test Pr programmed pressure on the respirator in mmHg
FR Frecuencia respiratoria programada en respiraciones/minuto l_E Relación Inspiración - espiración FR Respiratory rate programmed in breaths / minute l_E Inspiration - expiration ratio
PEEP Presión al final de la espiración, ajustada en la válvula de salida de gases, en cmH20 PEEP Pressure at the end of expiration, set on the breather valve, in cmH20
Tidal Volumen inspiratorio, en mi Tidal Inspiratory volume, in my
Vol Volumen minuto, en litros por minuto. PEEP Presión al final de la espiración, en cmH20 Volume Minute volume, in liters per minute. PEEP Pressure at the end of expiration, in cmH20
Pr Presión máxima medida en vía aérea, en cmH20 Pr Maximum pressure measured in the airway, in cmH20
FC Frecuencia cardiaca, en latidos por minuto HR Heart rate, in beats per minute
Sat Saturación de 02 por pulsioximetría Saturation of 02 by pulse oximetry
02 i Presión de oxígeno inspirado, en mmHg 02 i Inspired oxygen pressure, in mmHg
02e Presión de oxígeno espirado, en mmHg 02e Exhaled oxygen pressure, in mmHg
C02e Presión de C02 espirado, en mmHg C02e Exhaled C02 pressure, in mmHg
C02¡ Presión de C02 inspirado, en mmHg El dispositivo no ha presentado ningún fallo de funcionamiento ni pérdidas de ciclos durante todo el periodo de pruebas. Ausencia de fallos mecánicos, eléctricos o neumáticos. C02¡ Inspired C02 Pressure, in mmHg The device has not exhibited any malfunction or loss of cycles during the entire test period. Absence of mechanical, electrical or pneumatic failures.
En el momento de redactar este informe tampoco se ha producido ningún evento hemodinámico ni ventilatorio. Es de destacar que según nos informan los veterinarios, su experiencia con los cerdos empleados en su unidad de experimentación es que suelen presentar 6 horas iniciales de estabilidad, seguidos de una inestabilidad rápida en la hora siguiente. No se ha producido ninguna alteración relevante de parámetros hemodinámicos ni ventilatorios durante las pruebas. La saturación mínima fue de 95% a las 18:31, con un registro capnográfico no sugerente de desaturación (bajo C02). Este valor de saturación aumento a 100% tras cambiar el emplazamiento de la pinza pulsioximétrica, inicialmente puesta en la lengua del animal. Como observación, la pinza producía una marca llamativa por compresión en la lengua, que probablemente haya interferido con la circulación capilar. Es probable que todas las lecturas previas a esta hora infraestimaran la saturación. Una vez recolocado en el labio, pudimos observar que la saturación en todos los escenarios de programación era de 100%. El parámetro hemodinámico más desviado durante las pruebas fue una frecuencia cardiaca de 128 Ipm a las 19:10, y uno de 125 Ipm a las 18:31, asociado a una PEEP elevada de 20cmH2O. At the time of writing this report, neither hemodynamic nor ventilatory events have occurred. It is noteworthy that, according to veterinarians, their experience with the pigs used in their experimentation unit is that they usually present 6 initial hours of stability, followed by rapid instability in the following hour. There was no relevant alteration of hemodynamic or ventilatory parameters during the tests. The minimum saturation was 95% at 18:31, with a capnographic record not suggestive of desaturation (low C02). This saturation value increased to 100% after changing the location of the pulse oximeter clamp, initially placed on the animal's tongue. As an observation, the forceps produced a striking compression mark on the tongue, which probably interfered with capillary circulation. It is likely that all readings prior to this time underestimated saturation. Once repositioned on the lip, we could see that the saturation in all programming scenarios was 100%. The most deviated hemodynamic parameter during the tests was a heart rate of 128 bpm at 19:10, and a heart rate of 125 bpm at 18:31, associated with an elevated PEEP of 20cmH2O.
Los datos ventilatorios más relevantes obtenidos, en modelo animal de 30Kg (volumen pulmonar inferior al humano) fueron: - Volumen Tidal máximo de 373cc, a PR 30 mmHg FR 15 rpm, l/E 1 :1 , PEEP 0.The most relevant ventilatory data obtained in an animal model of 30Kg (lung volume less than human) were: - Maximum Tidal Volume of 373cc, at PR 30 mmHg FR 15 rpm, l / E 1: 1, PEEP 0.
- Volumen minuto máximo de 57 lit/min, a PR 30mmHg, FR 20 rpm, l/E 1 :2, PEEP 0 - PEEP de 20 cmH20 con mejor comportamiento, a PR 40, FR 16 rpm, l/E 1 :2 con tidal 214 mi y Vol Min 3'6 lit. - Maximum minute volume of 57 lit / min, at PR 30mmHg, FR 20 rpm, l / E 1: 2, PEEP 0 - PEEP of 20 cmH20 with better performance, at PR 40, FR 16 rpm, l / E 1: 2 with tidal 214 mi and Vol Min 3'6 lit.
El consumo de 02 de la botella de 50 litros tras 20 horas de uso ininterrumpido: próximo a la línea roja. Con dispositivo en funcionamiento continuado de 44 horas, 20 de ellas en el animal, éste se mantiene estable con FC de 91 , saturación de 100%, y capnografía con presión de C02 espirado de 39mmHg. Consumption of 02 from the 50-liter bottle after 20 hours of uninterrupted use: close to the red line. With the device in continuous operation for 44 hours, 20 of them in the animal, it remains stable with HR of 91, saturation of 100%, and capnography with expired C02 pressure of 39mmHg.

Claims

REIVINDICACIONES
1. Respirador (R) artificial robusto de fabricación rápida que comprende un puerto de entrada (PE) para la entrada de un gas a presión, un puerto de alimentación (PA) para el suministro de gas a un paciente (P), y un puerto de retorno (PR) para el retorno del gas espirado por el paciente, caracterizado por que está formado por medios configurados para suministrar a través del puerto de alimentación (PA): durante una fase de inspiración (a), una presión creciente desde un valor mínimo hasta a un valor máximo; durante una fase de plateau (b), una presión constante igual a dicho valor máximo; y durante una fase de espiración (c), una presión decreciente hasta retornar a dicho valor mínimo, donde dichos medios comprenden: 1. Robust, rapidly manufactured artificial respirator (R) comprising an inlet port (PE) for the inlet of a pressurized gas, a feeding port (PA) for supplying gas to a patient (P), and a return port (PR) for the return of the gas exhaled by the patient, characterized in that it is formed by means configured to supply through the supply port (PA): during an inspiration phase (a), an increasing pressure from a minimum value up to a maximum value; during a plateau phase (b), a constant pressure equal to said maximum value; and during an expiration phase (c), a decreasing pressure until it returns to said minimum value, where said means comprise:
- un manorreductor (MR) conectado al puerto de entrada (PE) de gas a presión;- a pressure reducer (MR) connected to the pressure gas inlet port (PE);
- una electroválvula de entrada (EE) conectada al manorreductor (MR) para detener periódicamente el paso del gas; - un conducto de alimentación (CA) conectado entre la salida de la electroválvula de entrada (EE) y el puerto de alimentación (PA) de gas al paciente (P); - an inlet solenoid valve (EE) connected to the pressure reducer (MR) to periodically stop the gas flow; - a supply conduit (CA) connected between the outlet of the inlet solenoid valve (EE) and the supply port (PA) of gas to the patient (P);
- un caudalímetro (CD) dispuesto en el conducto de alimentación (CA) para determinar el caudal de gas suministrado al paciente (P) a través del puerto de alimentación (PA); - un ventómetro (V) conectado al conducto de alimentación (CA) aguas abajo del caudalímetro (CD) para determinar visualmente la presión del gas alimentado al paciente (P); - a flow meter (CD) arranged in the supply conduit (CA) to determine the flow rate of gas supplied to the patient (P) through the supply port (PA); - a ventometer (V) connected to the supply conduit (CA) downstream of the flow meter (CD) to visually determine the pressure of the gas supplied to the patient (P);
- una sonda de presión (SP) conectada al conducto de alimentación (CA) aguas abajo del caudalímetro (CD); - una válvula de sobrepresión (VS) conectada “aguas arriba” del caudalímetro- a pressure probe (SP) connected to the supply conduit (CA) downstream of the flow meter (CD); - an overpressure valve (VS) connected "upstream" of the flowmeter
(CD) entre el conducto de alimentación (CA) y un primer puerto de salida (PS1) para permitir la salida de gas en caso de que la presión en el conducto de alimentación (CA) sea excesiva; (CD) between the supply conduit (CA) and a first outlet port (PS1) to allow gas to escape in case the pressure in the supply conduit (CA) is excessive;
- una electroválvula de alivio (EA) conectada entre la salida de la electroválvula de entrada (EE) y un segundo puerto de salida (PS2) de gas para expulsar un exceso de gas suministrado a través de la electroválvula de entrada (EE); - a relief solenoid valve (EA) connected between the outlet of the inlet solenoid valve (EE) and a second gas outlet port (PS2) to expel an excess of gas supplied through the inlet solenoid valve (EE);
- una electroválvula de salida (ES) conectada entre el puerto de retorno (PR) y el segundo puerto de salida (PS2) de gas para detener el flujo de gas durante la inspiración del paciente (P); - un controlador (C) dotado de una interfaz (IF) persona-máquina para controlar el funcionamiento del respirador (1), donde el controlador (C) está conectado al caudalímetro (CD) y a la sonda de presión (SP) para recibir de los mismos valores de flujo y presión, y a las electroválvulas de entrada (EE), de alivio (EA) y de salida (ES) para controlar su apertura-cierre en función de los datos recibidos del sensor de flujo (SF) y de la sonda de presión (SP) y de los parámetros indicados a través de la interfaz (IF). - an outlet solenoid valve (ES) connected between the return port (PR) and the second gas outlet port (PS2) to stop the gas flow during inspiration of the patient (P); - a controller (C) equipped with a human-machine interface (IF) to control the operation of the respirator (1), where the controller (C) is connected to the flowmeter (CD) and to the pressure probe (SP) to receive the same flow and pressure values, and to the inlet solenoid valves (EE), of relief (EA) and outlet (ES) to control their opening-closing according to the data received from the flow sensor (SF) and the pressure probe (SP) and the parameters indicated through the interface (IF ).
2. Respirador (R) de acuerdo con la reivindicación 1 que, además, comprende un conversor de tensión conectado al controlador (C) para adaptar las características de la tensión de red a las necesidades del controlador (C). 2. Respirator (R) according to claim 1, further comprising a voltage converter connected to the controller (C) to adapt the characteristics of the mains voltage to the needs of the controller (C).
3. Respirador (R) de acuerdo con cualquiera de las reivindicaciones 1-2 que, además, comprende un indicador luminoso de alarma (IA) conectado al controlador (C). Respirator (R) according to any of claims 1-2, further comprising an alarm indicator light (IA) connected to the controller (C).
4. Respirador (R) de acuerdo con cualquiera de las reivindicaciones 1-3 que, además, comprende un zumbador (Z) de alarma conectado al controlador (C). Respirator (R) according to any of claims 1-3, further comprising an alarm buzzer (Z) connected to the controller (C).
5. Respirador (R) de acuerdo con cualquiera de las reivindicaciones 1-3 que, además, comprende un pulsador de parada de emergencia (PPE) conectado al controlador (C). 5. Respirator (R) according to any of claims 1-3, further comprising an emergency stop button (PPE) connected to the controller (C).
6. Programa de ordenador que comprende instrucciones adaptadas para: 6. Computer program comprising instructions adapted to:
- gestionar la electroválvula de entrada (EE), la electroválvula de alivio (EA) y la electroválvula de salida (ES) del respirador (R) artificial de cualquiera de las reivindicaciones 1 a 5 con el propósito de controlar su funcionamiento; cuando dicho programa se ejecuta en un ordenador, un procesador digital de la señal, un circuito integrado específico de la aplicación, un microprocesador, un microcontrolador o cualquier otra forma de hardware programable comprendido en dicho respirador (R) artificial robusto de fabricación rápida de acuerdo con cualquiera de las reivindicaciones 1 a 5. - manage the inlet solenoid valve (EE), the relief solenoid valve (EA) and the outlet solenoid valve (ES) of the artificial respirator (R) of any of claims 1 to 5 for the purpose of controlling their operation; when said program is run on a computer, a digital signal processor, an application-specific integrated circuit, a microprocessor, a microcontroller, or any other form of programmable hardware comprised in said rapid-build robust artificial respirator according to with any of claims 1 to 5.
PCT/ES2021/070230 2020-04-07 2021-04-06 Robust quick-production artificial ventilator WO2021205050A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESU202030613 2020-04-07
ES202030613U ES1253434Y (en) 2020-04-07 2020-04-07 Quick-build, robust artificial respirator

Publications (1)

Publication Number Publication Date
WO2021205050A1 true WO2021205050A1 (en) 2021-10-14

Family

ID=72670409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2021/070230 WO2021205050A1 (en) 2020-04-07 2021-04-06 Robust quick-production artificial ventilator

Country Status (2)

Country Link
ES (1) ES1253434Y (en)
WO (1) WO2021205050A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999045989A1 (en) * 1998-03-12 1999-09-16 Respironics, Inc. Method and apparatus for providing positive airway pressure to a patient
WO2000032261A1 (en) * 1998-12-04 2000-06-08 Bunnel, Incorporated Variable flow and pressure ventilation system
WO2010108552A1 (en) * 2009-03-27 2010-09-30 Maquet Critical Care Ab Peep regulation for a breathing apparatus
US9352115B1 (en) * 2011-11-18 2016-05-31 Capnia, Inc. Respiratory ventilation system with gas sparing valve having optional CPAP mode and mask for use with same
US20170266400A1 (en) * 2016-03-02 2017-09-21 Daniel A. McCarthy Artificial respiration system and method having automatic mask detection
CN109248360A (en) * 2017-07-13 2019-01-22 哈达 Spray float type oxygen supply

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999045989A1 (en) * 1998-03-12 1999-09-16 Respironics, Inc. Method and apparatus for providing positive airway pressure to a patient
WO2000032261A1 (en) * 1998-12-04 2000-06-08 Bunnel, Incorporated Variable flow and pressure ventilation system
WO2010108552A1 (en) * 2009-03-27 2010-09-30 Maquet Critical Care Ab Peep regulation for a breathing apparatus
US9352115B1 (en) * 2011-11-18 2016-05-31 Capnia, Inc. Respiratory ventilation system with gas sparing valve having optional CPAP mode and mask for use with same
US20170266400A1 (en) * 2016-03-02 2017-09-21 Daniel A. McCarthy Artificial respiration system and method having automatic mask detection
CN109248360A (en) * 2017-07-13 2019-01-22 哈达 Spray float type oxygen supply

Also Published As

Publication number Publication date
ES1253434Y (en) 2020-12-30
ES1253434U (en) 2020-10-07

Similar Documents

Publication Publication Date Title
US10946159B2 (en) System for providing flow-targeted ventilation synchronized to a patient's breathing cycle
US9295795B2 (en) System for providing flow-targeted ventilation synchronized to a patients breathing cycle
ES2397386T3 (en) Breathing control system
US10058667B2 (en) Portable manual ventilation device
JP2009527323A (en) Hardware configuration for pressure driver
CN105579102A (en) Flow triggered pulsed oxygen delivery for medical applications
CN109731200B (en) A suction-type anesthesia machine for general anesthesia
US20220040428A1 (en) Ventilation Devices and Systems and Methods of Using Same
ES2941519T3 (en) Monitoring or ventilation device for cardiopulmonary resuscitation with determination of an index of airway opening
CN112263761A (en) Department of anesthesia is with multi-functional suction-type general anesthesia device
KR101856869B1 (en) Electronic Manual Resucitator equipped with air flow controller functions
WO2016063168A1 (en) System and method for controlling leak
JP6104513B2 (en) Ventilator
WO2021205050A1 (en) Robust quick-production artificial ventilator
WO2015168377A1 (en) System for providing flow-targeted ventilation synchronized to a patient's breathing cycle
US20240050675A1 (en) Intelligent distribution module for ventilators
BR102021013231A2 (en) PNEUMATIC MECHANICAL LUNG VENTILATOR
US20210338953A1 (en) System and Method For Ventilating a Person
Phinizy et al. Invasive ventilation: a discussion of equipment and troubleshooting
WO2023026219A1 (en) Method and system of monitoring oxygen
Lewarski et al. Administering medical gases
BR202020013388U2 (en) CONFIGURABLE VALVE FOR USE IN NON-INVASIVE VENTILATION
CN116492553A (en) Respiration detection system
Masaki et al. C58 CRITICAL CARE CASE REPORTS: NOTABLE CAUSES AND COMPLICATIONS IN ACUTE RESPIRATORY FAILURE: Intraoral Ulcer Due To Non-Invasive Positive Pressure Ventilation: An Overlooked Complication
Hawkins et al. Clinical Evaluation of pushover mechanical ventilation with the Ohmeda Universal Portable Anesthesia Complete vaporizer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21785578

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21785578

Country of ref document: EP

Kind code of ref document: A1