WO2021204246A1 - 提高车辆道路兼容性的安全系统、车辆安全系统、装置、方法及介质 - Google Patents

提高车辆道路兼容性的安全系统、车辆安全系统、装置、方法及介质 Download PDF

Info

Publication number
WO2021204246A1
WO2021204246A1 PCT/CN2021/086164 CN2021086164W WO2021204246A1 WO 2021204246 A1 WO2021204246 A1 WO 2021204246A1 CN 2021086164 W CN2021086164 W CN 2021086164W WO 2021204246 A1 WO2021204246 A1 WO 2021204246A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
collision
vulnerable road
data
airbag
Prior art date
Application number
PCT/CN2021/086164
Other languages
English (en)
French (fr)
Inventor
王海
陈婷
杨慧
王振飞
徐紫红
成元祎
Original Assignee
采埃孚汽车科技(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010277905.9A external-priority patent/CN113511167B/zh
Priority claimed from CN202010278445.1A external-priority patent/CN113511160B/zh
Application filed by 采埃孚汽车科技(上海)有限公司 filed Critical 采埃孚汽车科技(上海)有限公司
Priority to EP21784498.4A priority Critical patent/EP4134282A1/en
Priority to JP2023504692A priority patent/JP2023522131A/ja
Priority to US17/917,089 priority patent/US20230150450A1/en
Publication of WO2021204246A1 publication Critical patent/WO2021204246A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/34Protecting non-occupants of a vehicle, e.g. pedestrians
    • B60R21/36Protecting non-occupants of a vehicle, e.g. pedestrians using airbags
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q9/00Arrangement or adaptation of signal devices not provided for in one of main groups B60Q1/00 - B60Q7/00, e.g. haptic signalling
    • B60Q9/008Arrangement or adaptation of signal devices not provided for in one of main groups B60Q1/00 - B60Q7/00, e.g. haptic signalling for anti-collision purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R21/0132Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to vehicle motion parameters, e.g. to vehicle longitudinal or transversal deceleration or speed value
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/015Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting the presence or position of passengers, passenger seats or child seats, and the related safety parameters therefor, e.g. speed or timing of airbag inflation in relation to occupant position or seat belt use
    • B60R21/01512Passenger detection systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R2021/01204Actuation parameters of safety arrangents
    • B60R2021/01211Expansion of air bags
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R2021/01306Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over monitoring vehicle inclination
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R21/0136Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to actual contact with an obstacle, e.g. to vehicle deformation, bumper displacement or bumper velocity relative to the vehicle

Definitions

  • the present invention relates to the field of vehicle safety, and in particular to a safety system, device, method, and readable storage medium for improving vehicle road compatibility, as well as a vehicle safety system, vehicle safety device, method for enhancing vehicle safety, and readable storage medium.
  • the technical solution to improve the road compatibility of vehicles is mainly achieved through structural design improvements of the vehicle body, such as reducing the rigidity of the front part of the vehicle.
  • structural design improvements of the vehicle body such as reducing the rigidity of the front part of the vehicle.
  • CNCAP China-New Car Assessment Program
  • VRU Very Road User
  • the technical solution for protecting the VRU is to provide a front airbag in the front of the vehicle body, and deploy the front airbag when the front of the vehicle body collides with the VRU, so as to protect the VRU.
  • An object of the present invention is to provide a safety system that improves the road compatibility of vehicles.
  • Another object of the present invention is to provide a vehicle safety device to improve vehicle road compatibility.
  • Another object of the present invention is to provide a method for improving the road compatibility of vehicles.
  • Another object of the present invention is to provide a computer-readable storage medium, which can improve the road compatibility of vehicles.
  • a safety system for improving the road compatibility of a vehicle is used to improve the road compatibility of the vehicle.
  • the safety system can control an external airbag of the vehicle.
  • the safety system includes: a monitoring system, including: a vehicle The external information monitoring module is used to monitor the obstacles around the body; the body attitude monitoring module is used to monitor the body movement and the body attitude; the integrated security domain control unit is used to monitor the module and the body attitude monitoring module according to the external information of the vehicle
  • the collected data is used to calculate the collision form between the vehicle and the obstacle, including the relative collision speed and the collision overlap rate, and determine whether to deploy the external airbag according to the collision relative speed and the collision overlap rate; wherein the control triggers deployment
  • the judgment condition of the external airbag includes whether the relative collision speed is less than a first speed threshold and/or whether the collision overlap rate is less than a first overlap rate threshold.
  • the judgment condition for controlling the triggering of deployment of the external airbag further includes whether deploying the external airbag in the collision configuration reduces the damage of the vehicle; if not, the integrated safety domain control unit The external airbag is controlled to keep folded.
  • the monitoring system further includes an in-vehicle monitoring module for collecting mental state data of the driver in the vehicle; the integrated security domain control unit is based on the mental state data and the vehicle exterior
  • the data collected by the information monitoring module and the body attitude monitoring module calculates the possibility that the driver notices the collision with the obstacle, and calculates the collision form according to the possibility.
  • the integrated safety domain control unit is also used for warning prompts, and if the possibility is lower than the alarm threshold, the integrated safety domain control unit outputs an alarm signal to increase the driver's attention To the possibility of collision with the obstacle.
  • the in-vehicle monitoring module includes a camera and/or an in-vehicle radar.
  • the mental state data includes one or a combination of health state data and facial data of the driver in the vehicle.
  • the monitoring system further includes an Internet of Vehicles module, and the Internet of Vehicles module and the vehicle external information monitoring module jointly provide information about obstacles around the vehicle.
  • the vehicle external information monitoring module includes one or a combination of millimeter wave radar, ultrasonic radar, laser radar, and external camera.
  • the vehicle body attitude monitoring module includes a speed sensor, a yaw speed sensor, and a steering wheel angle sensor; wherein the speed sensor is used to monitor the movement of the vehicle body, the yaw speed sensor and the steering wheel The steering wheel angle sensor is used to monitor the attitude of the vehicle body.
  • the integrated safety domain control unit calculates a monitoring area based on data collected by the body attitude monitoring module, and the vehicle external information monitoring module only monitors obstacles in the monitoring area.
  • the integrated safety domain control unit is further configured to model obstacles according to the monitoring information of the vehicle external information monitoring module, and to perform monitoring of the vehicle body based on the monitoring information of the vehicle body attitude monitoring module. Modeling is performed and the collision form is calculated according to the modeling information.
  • the safety system further includes a cloud database and a simulation database.
  • the cloud database is used to provide historical data of collisions between obstacles and vehicles, and the simulation database is used to provide obstacles based on modeling information. Simulation data of a collision with a vehicle; the integrated safety domain control unit calculates the collision form according to the historical data and the simulation data.
  • a vehicle safety device includes an external airbag and the safety system as described in any one of the above.
  • a method for improving road compatibility of a vehicle including:
  • Monitor body movement and body posture collect body posture data and body movement data
  • the body motion data, and the body attitude data calculate the collision form between the vehicle and the obstacle, including the relative collision speed and the collision overlap rate;
  • the judgment condition for controlling to trigger the deployment of the external airbag includes, if the relative collision speed is less than a first speed threshold and/or the If the collision overlap rate is less than the first overlap rate threshold, the external airbag is controlled to remain folded, and the external airbag is not triggered to deploy.
  • the judgment condition for controlling the triggering of deployment of the external airbag further includes whether deploying the external airbag in the collision configuration reduces the damage value of the vehicle; if not, controlling the external airbag to keep retracted combine.
  • monitoring the obstacles around the vehicle includes monitoring whether there are obstacles around the vehicle, identifying the type of the obstacle, and predicting the movement of the obstacle.
  • the method further includes: monitoring the mental state of the driver in the vehicle, and collecting mental state data of the driver in the vehicle; The motion data and the body posture data calculate the possibility that the driver notices the collision with the obstacle, and calculate the collision form according to the possibility.
  • the method further includes: uploading the collision morphology record to a cloud database.
  • a computer-readable storage medium has a computer program stored thereon, and the program is executed by a processor to implement the following steps:
  • the judgment conditions include, if the collision relative speed is less than a first speed threshold and/or the collision overlap rate is less than the first overlap rate threshold, Then, the external airbag is controlled to remain closed, and the deployment of the external airbag is not triggered.
  • the setting can improve road compatibility more targeted and avoid the danger caused by accidental triggering of external airbags;
  • the vehicle external information monitoring module Through the settings of the vehicle external information monitoring module, the vehicle interior monitoring module and the body attitude monitoring module, the three information of the driver's mental state, the vehicle exterior, and the body attitude are fused to calculate the collision form, so that the triggering and deployment timing of the external airbag is more To be accurate
  • An object of the present invention is to provide a vehicle safety system to reduce the collision damage between vulnerable road users and the front of the vehicle body.
  • Another object of the present invention is to provide a vehicle safety device to reduce the collision injury between vulnerable road users and the front of the vehicle body.
  • Another object of the present invention is to provide a method for enhancing the safety of a vehicle, so as to reduce the collision injury between vulnerable road users and the front of the vehicle body.
  • Another object of the present invention is to provide a computer-readable storage medium, which can reduce the collision damage between vulnerable road users and the front of the vehicle body.
  • a vehicle safety system is used to reduce the collision injury between vulnerable road users and the front of the vehicle body, the vehicle safety system can control the front airbag of the vehicle, and the vehicle safety system includes: monitoring The system includes: a vulnerable road user information monitoring module, used to monitor the vulnerable road users around the vehicle; a body attitude monitoring module, used to monitor the body movement and the front posture of the body; an integrated security domain control unit, used to monitor The data collected by the vulnerable road user information monitoring module and the vehicle body attitude monitoring module calculate the collision form between the vehicle and the vulnerable road user, including the collision probability, the time of the collision, the relative speed at the time of the collision, and the time of the collision According to the collision position between the head of the vulnerable road user and the front of the vehicle body, the first injury value and the second injury value of the vulnerable road user in the collision form are calculated according to the collision form to determine the moment of the collision Whether to deploy the front airbag before; wherein the first injury value is the injury value of the front airbag collapsed to the vulnerable road user in the
  • the first injury value includes the third injury caused by the first collision position between the head of the vulnerable road user and the front of the vehicle body in the collapsed state of the front airbag during the collision Value;
  • the second injury value includes the fourth injury value caused by the second collision position between the head of the vulnerable road user and the front of the vehicle body when the front airbag is deployed in the state of the front airbag and the triggering of the front airbag
  • the monitoring system further includes an in-vehicle monitoring module for collecting mental state data of the driver in the vehicle; the integrated safety domain control unit is based on the mental state data and the vulnerable road The data collected by the user information monitoring module and the body posture monitoring module calculates the possibility that the driver notices the collision with the vulnerable road user, and calculates the collision form according to the possibility.
  • the integrated safety domain control unit is also used for warning prompts, and if the possibility is lower than the alarm threshold, the integrated safety domain control unit outputs an alarm signal to increase the driver's attention To the possibility of a collision with the vulnerable road user.
  • the in-vehicle monitoring module includes a camera and/or an in-vehicle radar.
  • the mental state data includes one or a combination of health state data and facial data of the driver in the vehicle.
  • the monitoring system further includes an Internet of Vehicles module, and the Internet of Vehicles module and the vulnerable road user information monitoring module jointly provide information about vulnerable road users around the vehicle.
  • the vulnerable road user information monitoring module includes one or a combination of millimeter wave radar, ultrasonic radar, laser radar, and external camera.
  • the vehicle body attitude monitoring module includes a speed sensor, a yaw speed sensor, and a steering wheel angle sensor; wherein the speed sensor is used to monitor the movement of the vehicle body, the yaw speed sensor and the steering wheel The steering wheel angle sensor is used to monitor the attitude of the front part of the vehicle body.
  • the integrated safety domain control unit calculates the monitoring area based on the data collected by the body attitude monitoring module, and the vulnerable road user information monitoring module only monitors all areas in the monitoring area. Describes vulnerable road users.
  • the integrated security domain control unit is further configured to model the vulnerable road users according to the monitoring information of the vulnerable road user information monitoring module, and to model the vulnerable road users according to the monitoring information of the vehicle body posture monitoring module.
  • the monitoring information models the vehicle body, and calculates the collision form according to the modeling information.
  • it further includes a cloud database and a simulation database.
  • the cloud database is used to provide historical data on the collision between vulnerable road users and the front of the vehicle body.
  • the simulation database is used to provide vulnerable roads based on the modeling information. Simulation data of the collision between the user and the front part of the vehicle body; the integrated safety domain control unit calculates the collision form according to the historical data and the simulation data.
  • a vehicle safety device includes a front airbag and the vehicle safety system as described in any one of the above.
  • a method for enhancing the safety of a vehicle is used to reduce the collision injury between a vulnerable road user and the front of a vehicle body, the vehicle includes a front airbag, and the method includes:
  • the collision form between the vehicle and the vulnerable road user based on the vulnerable road users around the monitored vehicle, the body movement, and the front posture of the vehicle body, including the collision probability, the time of the collision, and the relative speed at the time of the collision And the collision position between the head of the vulnerable road user and the front of the vehicle body at the time of the collision; calculate the first injury value and the second injury value to the vulnerable road user in the collision form, and determine at the time of the collision Whether to deploy the front airbag before; wherein the first injury value is the injury value of the front airbag collapsed to the vulnerable road user in the collision configuration, and the second injury value is the injury value in the collision In the configuration, the front airbag deploys the injury value of the vulnerable road user; when the first injury value is greater than the second injury value, the front airbag deploys; when the first injury value is less than the first injury value The second damage value controls the front airbag to keep folded.
  • the first injury value includes the third injury caused by the first collision position between the head of the vulnerable road user and the front of the vehicle body in the collapsed state of the front airbag during the collision Value;
  • the second injury value includes the fourth injury value caused by the second collision position between the head of the vulnerable road user and the front of the vehicle body when the front airbag is deployed in the state of the front airbag and the triggering of the front airbag
  • monitoring the vulnerable road users around the vehicle includes monitoring whether the vulnerable road users exist around the vehicle, identifying the type of the vulnerable road users, and tracking the vulnerable road users The trajectory predicts the movement path of the disadvantaged road user.
  • the method further includes uploading the collision pattern record to a cloud database.
  • a computer-readable storage medium has a computer program stored thereon, and the program is executed by a processor to implement the following steps:
  • the first damage value is the damage caused by the front airbag folding the vulnerable road user in the collision configuration Value
  • the second injury value is the injury value of the vulnerable road user when the front airbag deploys in the collision configuration
  • the beneficial effects of the vehicle safety systems, devices, methods for enhancing vehicle safety, and media described above include, but are not limited to, the optimization of the deployment strategy of the front airbag is realized by comparing the magnitude of the first injury value and the second injury value ,
  • the front airbag can be deployed adaptively or keep the front airbag folded according to the specific collision shape, so as to reduce the collision damage between vulnerable road users and the front of the vehicle body.
  • Figure 1 is a schematic diagram of a security system according to one or more embodiments.
  • Fig. 2 is a flowchart of a method for improving road compatibility of a vehicle according to an embodiment.
  • 3A and 3B are flowcharts of a method for improving road compatibility of a vehicle according to another embodiment.
  • Fig. 4 is a schematic diagram of a vehicle safety system according to one or more embodiments.
  • Fig. 5 is a flowchart of a method for enhancing vehicle safety according to an embodiment.
  • 6A and 6B are flowcharts of a method for enhancing vehicle safety according to another embodiment.
  • this application uses specific words to describe the embodiments of the application.
  • the terminology “inner and outer” refers to the inner and outer parts relative to the outline of each component itself.
  • “one embodiment”, “an embodiment”, and/or “some embodiments” mean at least one implementation of this application.
  • some features, structures, or characteristics in one or more embodiments of the present application can be appropriately combined.
  • the security system 10 for improving the road compatibility of vehicles includes a monitoring system 1 and an integrated security domain control unit 2, and the security system 10 can be controlled
  • the folding or unfolding of the external airbag 20 of the vehicle that is, the safety system 10 and the external airbag 20 can constitute the vehicle safety device 100.
  • the safety system 10 and the external airbag 20 may be installed in the vehicle together, or may be separate.
  • the safety system 10 is located outside the vehicle and controls the deployment or folding of the external airbag 20 through wireless communication.
  • the specific form of the external airbag 20 may include a front airbag installed at the front of the vehicle body, that is, the front part of the vehicle, or it may further include a rear airbag installed at the rear of the vehicle body to improve road compatibility in a high-speed rear-end collision event. It further includes side airbags located on both sides of the vehicle body. The front airbags, the rear airbags and the side airbags together form an external airbag that surrounds the vehicle body as a whole, so as to improve road compatibility when collisions occur in all directions.
  • the monitoring system 1 may include a vehicle external information monitoring module 11 and a vehicle body attitude monitoring module 12.
  • the vehicle external information monitoring module 11 is used to monitor obstacles around the vehicle body.
  • the obstacles here refer to obstacles in a broad sense, that is, roads.
  • the colliding objects that may collide in.
  • the body attitude monitoring module 12 is used to monitor body movement and body attitude.
  • the integrated safety domain control unit 2 is used to process the data collected from the monitoring system 1 and output control signals to the external airbag 20.
  • the integrated safety domain control unit 2 is used to calculate the collision form between the vehicle and the obstacle according to the data collected by the vehicle external information monitoring module 11 and the body attitude monitoring module 12.
  • the collision form includes at least the relative speed of the collision and the collision overlap rate, and It may include collision probability, collision time, and collision location, and determine whether to deploy the external airbag 20 according to the relative speed of the collision and the collision overlap rate.
  • the judgment conditions for controlling the triggering of deployment of the external airbag 20 include whether the relative collision speed is greater than the first speed threshold V1 and whether the collision overlap rate is greater than the first overlap rate threshold X1.
  • the integrated safety domain control unit 2 calculates that the relative collision speed is less than the first speed threshold V1, and/or the collision overlap rate is less than the first overlap threshold X1, then output a control signal to keep closed To the outer airbag 20 to keep it folded. If the relative speed of the collision is greater than the first speed threshold V1, and the collision overlap rate is greater than the first overlap threshold X1, it can be determined that the road compatibility can be improved by deploying the external airbag 20 in the collision mode.
  • the beneficial effect of adopting the safety system 10 and the vehicle safety device 100 of the above embodiment is that the relative collision speed and the collision overlap rate are used as the judgment conditions to determine whether to deploy the external airbag through the integrated safety domain unit 2, which is lower than the first speed threshold V1 and /Or is lower than the first overlap rate threshold X1, that is, there is no need to deploy the external airbag, so that the setting of the external airbag can improve road compatibility in a more targeted manner, and avoid the accidental triggering of the external airbag 20 to cause danger. There is also no need to perform the judgment and calculation of whether to deploy the external airbag 20 in a mid-to-low-speed collision, which increases the computing speed of the integrated safety domain unit 2 and improves road compatibility.
  • the conditions for the integrated safety domain control unit 2 to trigger the deployment of the external airbag 20 may also include whether deploying the external airbag 20 in a collision mode reduces the damage of the vehicle; if If not, the integrated safety domain control unit 2 controls the external airbag 20 to keep folded.
  • the collision location is not the protected area covered by the external airbag 20, and for example, the vehicle external information monitoring module 11 monitors and recognizes that the quality of the obstacle in the collision is much greater than that of the own vehicle, such as large trucks, buses, etc., Even if the external airbag 20 is deployed, the injury cannot be reduced, and the integrated safety zone control unit 2 controls the external airbag 20 to remain folded.
  • the monitoring system 1 may also include an in-vehicle monitoring module 13 for collecting mental state data of the driver in the vehicle, for example, including one or a combination of the health state data of the in-vehicle driver and the facial data of the in-vehicle driver.
  • the above data can be realized by the hardware of the camera and/or the in-car radar.
  • the health status data monitored by the camera may include, for example, heartbeat information
  • the facial data information may include facial emotional state information (such as excitement, anger), facial fatigue state information (such as blinking frequency, hitting breath), and facial sight information.
  • the in-vehicle radar can be used for in-vehicle live detection and heartbeat detection.
  • the integrated safety domain control unit 2 can combine the above-mentioned mental state data of the driver in the vehicle and the data collected by the vehicle external information monitoring module 11 and the body attitude monitoring module 12 to calculate the possibility that the driver in the vehicle notices a collision with an obstacle , And calculate the collision form based on the possibility. For example, the integrated safety domain control unit 2 calculates that the possibility that the driver in the vehicle notices a collision with an obstacle is low, then the relative speed of the collision in the calculation result of the collision form will increase, the collision time will be advanced, and the collision probability will increase, and so on.
  • the integrated safety domain control unit 2 can integrate the information of the driver's mental state, the exterior of the vehicle, and the body posture to calculate the collision shape, so that the calculation result is more accurate and the closest The actual road conditions and the result of own vehicle conditions.
  • the integrated safety domain control unit 2 uses the big data of the body posture corresponding to the driver's mental state to match. The above-mentioned possible data is obtained directly from the data collected by the vehicle body attitude monitoring module 12, so that the calculation amount is reduced, and the hardware and software costs are low, but the calculation accuracy is also lower than that of the in-vehicle monitoring module 13.
  • the integrated safety domain control unit 2 may include an alarm prompt function. If the driver in the vehicle notices that the possibility of collision with an obstacle is lower than the alarm threshold, the integrated safety domain control unit 2 Output an alarm signal to make a sharp warning sound in the car, or light up on the dashboard, center console screen, or vibrate the steering wheel to remind the driver to increase the driver’s attention to the occurrence of the obstacle The possibility of collision.
  • the specific monitoring and judging step may be that the in-vehicle monitoring module 13 collects the driver’s heartbeat data as the first value, and the blink frequency as the second value. According to the database information, it is judged that the driver is in the first mental state at this time and noticed that the collision occurred.
  • the in-vehicle monitoring module 13 collects the driver’s heartbeat data as the third value, blinking frequency as the fourth value, and the facial sight has left the road for more than the first time. It is judged based on the database information.
  • the driver When the driver is in the second mental state, the driver notices that the possibility of collision with the obstacle is lower than the alarm threshold, and sends an alarm to remind the driver. In this way, collision accidents can be avoided as much as possible. Even if the collision cannot be completely avoided, the driver can react in time to reduce the relative speed of the collision, thereby avoiding a high-speed collision.
  • the integrated safety domain control unit 2 repeats the above possibility calculation process until the possibility is greater than the alarm threshold, and then cancels the output of the alarm signal. At the same time, the integrated safety domain control unit 2 calculates the changed collision form based on the changed possibility value after the alarm in real time.
  • the monitoring system 1 may also include a car networking module 14.
  • the communication between the car networking and other moving vehicles and/or obstacles and/or network systems can provide communication between the vehicle and the obstacle.
  • the vehicle networking module 14 can provide information about obstacles around the vehicle together with the vehicle external information monitoring module 11 to further improve the calculation accuracy of the integrated security domain control unit 2.
  • the vehicle external information monitoring module 11 includes one or a combination of millimeter wave radar, lidar, and external camera.
  • millimeter wave radar and lidar are used to locate obstacles and collect obstacles' speed, angle, distance and other data.
  • the millimeter wave radar is not susceptible to weather interference and has a long detection distance, which can monitor long-distance obstacles.
  • Lidar has higher accuracy and simple data processing. It can complement the information collected by millimeter wave radar in data content and accuracy, so that the monitoring results are more accurate.
  • the external camera is used to collect the image information of the obstacle, and is used to distinguish and identify the obstacle.
  • the vehicle body attitude monitoring module 12 includes a speed sensor, a yaw speed sensor, and a steering wheel angle sensor.
  • the speed sensor is used to monitor the body movement
  • the yaw speed sensor and the steering wheel angle sensor are used to monitor the body attitude. It can be understood that the sensors included in the vehicle body attitude monitoring module 12 are not limited to those described above, and may also be other sensors that come with the vehicle body.
  • the integrated safety domain control unit 2 can calculate the monitoring area according to the data collected by the body attitude monitoring module 12, that is, the body attitude and the area where the obstacle may collide corresponding to the body motion.
  • the vehicle external information monitoring module 11 only monitors the Obstacles in the monitoring area, this can reduce the amount of data collection and data processing of the vehicle external information monitoring module 11, and also reduce the amount of data processing of the integrated security domain control unit 2, making the security system 10 run faster, the software and Hardware requirements are reduced, thereby reducing costs.
  • the integrated security domain control unit 2 may have a modeling function and perform calculations based on modeling information.
  • the integrated safety domain control unit 2 models obstacles and vehicles respectively.
  • the integrated safety domain control unit 2 performs fusion processing on the data collected by millimeter wave radar, lidar, and external cameras to continuously model obstacles in real time.
  • the integrated safety domain control unit 2 According to the vehicle body motion information monitored by the speed sensor, the vehicle yaw rate information monitored by the yaw speed sensor, and the vehicle steering wheel angle information monitored by the steering wheel angle sensor, real-time modeling of the driving vehicle is continuously carried out.
  • the integrated safety domain control unit 2 compares the real-time updated obstacle modeling information and vehicle body modeling information to calculate the collision form. At the same time, the integrated safety domain control unit 2 will update the calculation results in real time during the calculation, and compare the calculation results with the real-time calculation results. The observation results are continuously compared, the accuracy of the calculation is corrected, and the error is reduced.
  • the security system 10 further includes a cloud database 3 and a simulation database 4.
  • the cloud database 3 is used to provide historical data of collisions between obstacles and vehicles
  • the simulation database 4 is used to provide obstacles based on modeling information. Simulation data of collision between objects and vehicles.
  • An example of calculating the collision probability may be that the cloud database 3 provides historical data of the collision between the obstacle and the vehicle as the first collision model, and the simulation database 4 is used to provide the simulation data of the collision between the obstacle and the vehicle as the second collision model according to the modeling information.
  • the integrated safety domain control unit 2 fuses the data information of the first collision model and the second collision model to calculate the collision form between the obstacle and the vehicle.
  • the integrated security domain control unit 2 in the previous embodiment may include one or more hardware processors, such as a system on a chip (SOC), a microcontroller, and a microprocessor (for example, an MCU chip or a 51 single-chip microcomputer).
  • RISC Reduced instruction set computer
  • ASIC application specific integrated circuit
  • ASIP application specific instruction integrated processor
  • CPU central processing unit
  • GPU graphics processing unit
  • PPU physical processing unit
  • microcontroller Unit microcontroller Unit
  • DSP digital signal processor
  • FPGA field programmable gate array
  • ARM programmable logic device
  • PLD programmable logic device
  • the method for improving the road compatibility of the vehicle may include the following steps:
  • Step A Monitor obstacles around the vehicle and collect obstacle data around the vehicle
  • Step B Monitor body movement and body posture, and collect body posture data and body movement data
  • the vehicle body data is collected by vehicle sensors to monitor vehicle body data, including vehicle body movement and body posture data, and the monitored area is calculated to obtain the body posture and body movement.
  • vehicle body data including vehicle body movement and body posture data
  • the monitored area is calculated to obtain the body posture and body movement.
  • radar and camera monitor the obstacle information around the vehicle, and the Internet of Vehicles can also be added to provide the obstacle information around the vehicle.
  • Step C Calculate the collision form between the vehicle and the obstacle according to the obstacle data around the vehicle, the body motion data, and the body attitude data, including the relative collision speed and the collision overlap rate;
  • Step D Determine whether to deploy the external airbag according to the relative collision speed and the collision overlap rate; wherein the judgment condition for controlling the triggering of the deployment of the external airbag includes, if the collision relative speed is less than the first speed threshold V1 and/or the collision overlap rate is less than The first overlap rate threshold X1 controls the external airbag to remain folded, and does not trigger the deployment of the external airbag.
  • the type of the obstacle is identified as a static obstacle.
  • dynamic obstacles such as moving vehicles, static obstacles can be roadblocks, stopped vehicles, and so on.
  • model the obstacles predict the movement of the obstacles, including the direction and speed of the movement, and calculate the collision shape of each obstacle.
  • the collision shape includes at least the relative speed of the collision and the collision overlap rate, and can also include the collision probability, collision time, Collision location. Calculate the probability of collision with each obstacle, and select the obstacle with the largest collision probability to deploy the external airbag to improve the road compatibility of the vehicle.
  • the first judgment can be whether the relative collision speed is less than the first speed threshold V1 and the collision overlap rate X1. If any of the two is yes, the external airbag is controlled to keep folded, so that it can be quickly and accurately judged whether it needs to be deployed. The external airbag enables the external airbag to be deployed in time, thereby improving the road compatibility of the vehicle. Then it is determined whether the predicted collision time is before the first time T1.
  • the mental state data of the driver in the vehicle can also be collected by monitoring the mental state of the driver in the vehicle;
  • the body attitude data calculates the possibility that the driver notices the collision with the obstacle, and calculates the collision form based on the possibility. If the possibility is lower than the alarm threshold, the driver is warned to increase the possibility of noticing the collision, and the collision time is corrected according to the above-mentioned possibility calculation result, and it is judged whether the predicted collision time is before the second time T2. If not, it can be To avoid a collision or even if a collision occurs, there is no need to trigger the deployment of the external airbag.
  • the historical data of the collision between the vehicle and the obstacle can also be obtained through the cloud database, and the simulation result of the collision between the vehicle and the obstacle can be obtained through the simulation database.
  • the calculation of the control unit 2 provides comparison and reference, so that the calculation of the collision shape is more accurate.
  • the method for improving the road compatibility of the vehicle may further include calculating and determining whether deploying the external airbag in the collision mode reduces the damage of the vehicle; if not, controlling the external airbag to keep folded and not triggering the deployment of the external airbag.
  • the obstacle data around the vehicle recognizes that the quality of the obstacle in collision is much greater than that of the own vehicle, such as large trucks, buses, etc. Even if the own vehicle deploys the external airbag, the damage cannot be reduced. The external airbag is controlled not to trigger the deployment, and keep collapsed .
  • the collision form can also be recorded to the cloud database, including parameters such as collision probability, collision time, collision location, collision relative speed, and collision overlap rate.
  • parameters such as collision probability, collision time, collision location, collision relative speed, and collision overlap rate.
  • step A and step B described above can be performed at the same time.
  • this case also provides a computer-readable storage medium.
  • the aforementioned computer-readable storage medium provided in this case has computer instructions stored thereon.
  • the program can be executed by the processor to realize the following steps:
  • the determination conditions include, if the collision relative speed is less than the first speed threshold V1 and/or the collision overlap rate is less than the first overlap rate threshold X1, control the external The airbag 20 remains folded and does not trigger the deployment of the external airbag 20.
  • the program can also be executed with additional steps, such as the steps that can be executed by the program in the above method for improving vehicle road compatibility.
  • VRU Vulnerable Road User
  • the two-wheeled vehicle does not refer to the vehicle itself, but Users who use the aforementioned vehicles.
  • the vehicle safety system 101 for reducing the collision injury between vulnerable road users and the front of the vehicle body includes a monitoring system 110 and an integrated safety domain control unit 200.
  • the safety system 101 can control the folding or unfolding of the front airbag 201 of the vehicle, that is, the vehicle safety system 101 and the front airbag 201 can constitute the vehicle safety device 1000.
  • the vehicle safety system 101 and the front airbag 201 may be installed in the vehicle together or separately.
  • the vehicle safety system 101 is located outside the vehicle, and the deployment of the front airbag 201 is controlled through wireless communication. Or collapse.
  • the monitoring system 110 may include a vulnerable road user information monitoring module 111 and a body attitude monitoring module 121.
  • the vulnerable road user information monitoring module 111 is used to monitor vulnerable road users around the vehicle, and the body attitude monitoring module 121 is used to monitor the body. Sports and front posture of the body.
  • the integrated safety domain control unit 200 is used to process the data collected from the monitoring system 110 and output control signals to the front airbag 201.
  • the integrated safety domain control unit 200 is used to calculate the collision form between the vehicle and the vulnerable road user based on the data collected by the vulnerable road user information monitoring module 111 and the body attitude monitoring module 121, including collision probability, collision time, and collision time The relative speed and the collision position between the head of the vulnerable road user and the front of the vehicle body during the collision; and calculate the damage value to the vulnerable road user according to the collision form, and output the control front airbag 201 to trigger the deployment signal or the front airbag 201 to maintain The signal to close.
  • the integrated safety domain control unit 200 calculates the first injury value H1 of the front airbag 201 collapsed by the vulnerable road user in a collision configuration, and the second injury value H1 of the vulnerable road user deployed by the front airbag 201 in the collision configuration Value H2, compare the size of H1 and H2, if H1 is greater than H2, output the control signal for triggering deployment to the front airbag 201 to trigger deployment; if H1 is less than H2, output the control signal for keeping the collapsed airbag to the front airbag 201, keep it closed.
  • the beneficial effect of using the vehicle safety system 101 and the vehicle safety device 1000 of the above embodiments is that by the calculation and comparison of the injury value of the integrated safety domain unit 3, the disadvantaged road user and the front part of the vehicle body are maximized when a collision occurs.
  • the protection of the front airbag avoids the problem that the deployment of the front airbag in the prior art may lead to increased injuries to vulnerable road users. For example, it can prevent the impact force of the front airbag 201 from being instantly deployed when a pedestrian collides at a very low speed.
  • the source of injury similarly, it can also avoid other false trigger systems that simply use speed as the judging factor.
  • vulnerable road users with low collision speed and high altitude, such as road bikes they did not deploy the front airbag 201 in time to cause their heads. After the collision, the high envelope value area of the front part of the vehicle body, such as the windshield, is seriously injured.
  • H1 may include the third injury value H3, H2 caused by the first collision position between the head of the vulnerable road user and the front of the vehicle body in the collapsed state of the front airbag 201 during the collision. It may include the fourth injury value H4 caused by the second collision position between the head of the vulnerable road user and the front of the vehicle body when the front airbag 201 is deployed during the collision, plus the impact on the vulnerable road user at the moment the front airbag 201 is triggered and deployed. The fifth injury value H5 caused by energy is subtracted from the impact energy absorbed by the deployment of the front airbag 201 to reduce the injury reduction value H6 of vulnerable road users. That is, the integrated safety domain unit 3 will compare the magnitude of H3 with H4+H5-H6.
  • H4 is generally smaller than H3, because the deployment of the front airbag 201 generally makes the envelope value of the second collision position relative to the first collision position lower.
  • the deployment impact force of the front airbag 201 will cause the pedestrian's legs, including thighs and calves, to be injured by the impact force of the airbag under certain low-speed collisions, or the pedestrian will be hit to the end and cause secondary injury, so compare H3 and H4 +H5-H6 can more accurately compare the damage value of the front airbag 201 to the vulnerable road users in the collision state with the deployed state and the collapsed state.
  • the monitoring system 110 may also include an in-vehicle monitoring module 131 for collecting the mental state data of the driver in the vehicle, for example, including the health state data of the in-vehicle driver and the vehicle One of or a combination of the internal driver's facial data, the collection of the above data can be achieved through the hardware of the camera and/or the in-vehicle radar.
  • the health status data monitored by the camera may include, for example, heartbeat information
  • the facial data information may include facial emotional state information (such as excitement, anger), facial fatigue state information (such as blinking frequency, hitting breath), and facial sight information.
  • the in-vehicle radar can do in-vehicle live body detection and heartbeat detection functions.
  • the integrated safety domain control unit 200 can combine the above-mentioned mental state data of the driver in the vehicle and the data collected by the vulnerable road user information monitoring module 111 and the body attitude monitoring module 121 to calculate the occurrence of the driver’s attention and the vulnerable road user.
  • the probability of collision, and the collision form is calculated based on the probability. For example, the integrated safety domain control unit 200 calculates that the driver in the vehicle is less likely to notice a collision with a vulnerable road user, then the relative speed of the collision in the calculation result of the collision form will increase, the time of collision will be advanced, and the probability of collision will occur Increase and so on. It can be seen that the provision of the in-vehicle monitoring module 131 can make the calculation result of the integrated security domain control unit 200 more accurate.
  • the integrated safety zone control unit 200 may include an alarm prompt function. If the driver in the car notices that the possibility of a collision with a vulnerable road user is lower than the alarm threshold, the integrated safety zone The control unit 200 outputs an alarm signal to make a sharp warning sound in the car, or lights up on the dashboard, center console screen, or vibrates on the steering wheel to remind the driver to increase the driver’s attention to the weakness. The likelihood of a road user collision.
  • the specific monitoring and judging step may be that the in-vehicle monitoring module 131 collects the driver’s heartbeat data as the first value, and the blink frequency as the second value.
  • the in-vehicle monitoring module 131 collects the driver’s heartbeat data as the third value, blinking frequency as the fourth value, and the facial sight has left the road for more than the first time. It is judged based on the database information.
  • the driver When the driver is in the second mental state, the driver notices that the possibility of a collision with a vulnerable road user is lower than the alarm threshold, and sends an alarm to remind the driver.
  • the integrated safety domain control unit 200 repeats the above possibility calculation process until the possibility is greater than the alarm threshold and cancels the output of the alarm signal. At the same time, the integrated safety domain control unit 200 calculates the changed collision form according to the changed possibility value after the alarm in real time.
  • the monitoring system 110 may also include an Internet of Vehicles module 141, through the Internet of Vehicles and other moving vehicles and/or vulnerable road users and/or network system communication can provide vehicles and vulnerable Information between road users, wherein the vehicle networking module 141 and the vulnerable road user information monitoring module 111 can jointly provide information about vulnerable road users around the vehicle, so as to further improve the calculation accuracy of the integrated security domain control unit 200.
  • an Internet of Vehicles module 141 through the Internet of Vehicles and other moving vehicles and/or vulnerable road users and/or network system communication can provide vehicles and vulnerable Information between road users, wherein the vehicle networking module 141 and the vulnerable road user information monitoring module 111 can jointly provide information about vulnerable road users around the vehicle, so as to further improve the calculation accuracy of the integrated security domain control unit 200.
  • the vulnerable road user information monitoring module 111 includes one or a combination of millimeter wave radar, lidar, and external camera.
  • millimeter-wave radar and lidar are used to locate vulnerable road users and collect the speed, angle, distance and other data of vulnerable road users.
  • the millimeter wave radar is not susceptible to weather interference and has a long detection distance, which can monitor vulnerable road users at long distances.
  • Lidar has higher accuracy and simple data processing. It can complement the information collected by millimeter wave radar in data content and accuracy, so that the monitoring results are more accurate.
  • the external camera is used to collect image information of disadvantaged road users, and is used to distinguish and identify disadvantaged road users.
  • the vehicle body attitude monitoring module 121 includes a speed sensor, a yaw speed sensor, and a steering wheel angle sensor.
  • the speed sensor is used to monitor body motion
  • the yaw speed sensor and steering wheel angle sensor are used to monitor the body attitude. It can be understood that the sensors included in the vehicle body attitude monitoring module 121 are not limited to those described above, and may also be other sensors built in the vehicle body.
  • the integrated safety domain control unit 200 can calculate the monitoring area according to the data collected by the body attitude monitoring module 121, that is, the body attitude and the area corresponding to the body motion where a vulnerable road user collision may occur, and the vulnerable road user information monitoring module 111 Only monitoring vulnerable road users in the monitoring area can reduce the data collection and data processing volume of the vulnerable road user information monitoring module 111, and also reduce the data processing volume of the integrated security domain control unit 200, so that the vehicle safety system 101 runs faster, software and hardware requirements are reduced, thereby reducing costs.
  • the integrated security domain control unit 200 may have a modeling function and perform calculations based on modeling information.
  • the integrated security domain control unit 200 models vulnerable road users and vehicles respectively.
  • the integrated security domain control unit 200 integrates data collected by millimeter wave radar, lidar, and external cameras, and continuously performs real-time modeling of vulnerable road users.
  • it integrates security domain control.
  • the unit 200 continuously performs real-time modeling of the driving vehicle based on the body motion information monitored by the speed sensor, the body yaw rate information monitored by the yaw speed sensor, and the vehicle steering wheel angle information monitored by the steering wheel angle sensor.
  • the integrated safety domain control unit 200 compares and calculates the collision morphology of the vulnerable road user modeling information and vehicle body modeling information updated in real time. At the same time, the integrated safety domain control unit 200 will update the calculation results in real time during the calculation, and the calculation results will be updated in real time. Constantly compare with real-time observation results to correct the accuracy of calculation and reduce errors.
  • the vehicle safety system 101 further includes a cloud database 300 and a simulation database 400.
  • the cloud database 300 is used to provide historical data on the collision between vulnerable road users and the front of the vehicle body
  • the simulation database is used according to the construction Model information provides simulation data of the collision between vulnerable road users and the front of the vehicle body.
  • An example of calculating the collision probability may be that the cloud database 300 provides historical data of the collision between the vulnerable road user and the front of the vehicle body as the first collision model, and the simulation database 400 is used to provide information about the collision between the vulnerable road user and the front of the vehicle body according to the modeling information.
  • the simulation data is the second collision model, and the integrated safety domain control unit 200 fuses the data information of the first collision model and the second collision model to calculate the collision form between the vulnerable road user and the front of the vehicle body.
  • the integrated security domain control unit 200 in the previous embodiment may include one or more hardware processors, such as a system on a chip (SOC), a microcontroller, and a microprocessor (for example, an MCU chip or a 51 single-chip microcomputer).
  • RISC Reduced instruction set computer
  • ASIC application specific integrated circuit
  • ASIP application specific instruction integrated processor
  • CPU central processing unit
  • GPU graphics processing unit
  • PPU physical processing unit
  • microcontroller Unit microcontroller Unit
  • DSP digital signal processor
  • FPGA field programmable gate array
  • ARM programmable logic device
  • PLD programmable logic device
  • the method for reducing the collision injury between vulnerable road users and the front of the vehicle body to enhance vehicle safety may include the following steps:
  • Step A Monitor vulnerable road users around the vehicle
  • Step B Monitor the body movement and the front posture of the body
  • the vehicle body data is collected by vehicle sensors to monitor vehicle body data, including vehicle body movement and front body posture data, and the monitored area is calculated to obtain the body posture and
  • the body motion corresponds to the area where vulnerable road users may collide, while radar and cameras monitor the information of vulnerable road users around the vehicle, and the Internet of Vehicles can also provide information about vulnerable road users around the vehicle.
  • Step C Calculate the collision form between the vehicle and the vulnerable road user based on the vulnerable road users around the monitored vehicle, the body movement and the front posture of the vehicle, including the collision probability, the time of the collision, the relative speed at the time of the collision, and the time of the collision The collision position between the head of the vulnerable road user and the front part of the vehicle body.
  • the collision is determined relative to Whether the speed is greater than the first speed, if it is, track the trajectory of the vulnerable road user, predict its moving path, determine whether the vulnerable road user will intersect the path of the vehicle, if it is, predict the collision location and time of the vehicle and the vulnerable road user , To determine whether the predicted collision time is before the first time.
  • the status information of the driver can also be monitored through the in-vehicle monitoring module, and the possibility that the driver notices a collision with the vulnerable road user can be calculated. If the value is lower than the alarm threshold, the driver is warned to increase the possibility of him noticing the collision, and the collision time is corrected according to the above-mentioned probability calculation result, and it is judged whether the predicted collision time is before the second time.
  • the historical data of the collision between the vulnerable road users and the front of the vehicle body can also be obtained through the cloud database, and the collision between the vulnerable road users and the front of the vehicle body can be obtained through the simulation database.
  • the simulation results of, provide a comparison and reference for the calculation of the collision system, so that the calculation of the collision form is more accurate.
  • Step D Calculate the first injury value and the second injury value to the vulnerable road users in the collision form, and determine whether to deploy the front airbag before the collision moment; wherein, the first injury value In order to collapse the front airbag in the collision configuration to the injury value of the vulnerable road user, the second injury value is the injury value of the vulnerable road user when the front airbag is deployed in the collision configuration;
  • the front airbag When the first injury value is greater than the second injury value, the front airbag is deployed; when the first injury value is less than the second injury value, the front airbag is controlled to remain folded.
  • the front airbag under the collision shape is compared.
  • the first injury value of the vulnerable road user is folded and the second injury value of the vulnerable road user deployed by the front airbag; if the second injury value is higher than the first injury value, it is determined that there is no need to deploy the front airbag.
  • the first damage value is greater than the second damage value, then it can be judged whether the predicted collision time is before the third time, if so, it can be checked whether the communication and components are functioning normally, and if it is normal, the front airbag can be deployed.
  • the first injury value includes a third injury value caused by a first collision position between the head of the vulnerable road user and the front of the vehicle body when the front airbag is in a collapsed state during a collision;
  • the second The injury value includes the fourth injury value caused by the second collision position between the head of the vulnerable road user and the front of the vehicle body under the front airbag deployment state at the time of the collision, and the immediate impact of the front airbag deployment on the vulnerable road user.
  • the sum of the fifth injury value caused by the impact energy of the road user minus the impact energy absorbed by the deployment of the front airbag results in the injury reduction value of the vulnerable road user.
  • the collision form may also be recorded to the cloud database, including the collision probability, the time of the collision, the relative speed at the time of the collision, and the head of the vulnerable road user at the time of the collision. Data such as the collision position between the vehicle body and the front part of the vehicle body.
  • FIG. 6B show that recording is performed after deploying the front airbag, it is not limited to this, for example, if the first injury value is less than the second injury value.
  • the front airbag is folded during a collision, and the collision shape of this collision can also be recorded in the cloud database.
  • step A and step B described above can be performed at the same time.
  • this case also provides a computer-readable storage medium.
  • the above-mentioned computer-readable storage medium provided by the present disclosure has computer instructions stored thereon.
  • the program can be executed by the processor to realize the following steps:
  • the injury value of the second injury value is the injury value of the vulnerable road user caused by the deployment of the front airbag in the collision configuration
  • the program can also be executed with additional steps, such as the steps that can be executed by the program as described in the above method for enhancing vehicle safety.
  • the steps of the method or algorithm described in conjunction with the embodiments disclosed herein may be directly embodied in hardware, in a software module executed by a processor, or in a combination of the two.
  • the software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from and write information to the storage medium.
  • the storage medium may be integrated into the processor.
  • the processor and the storage medium may reside in the ASIC.
  • the ASIC may reside in the user terminal.
  • the processor and the storage medium may reside as discrete components in the user terminal.
  • the described functions may be implemented in hardware, software, firmware, or any combination thereof. If implemented as a computer program product in software, each function can be stored as one or more instructions or codes on a computer-readable medium or transmitted through it.
  • Computer-readable media includes both computer storage media and communication media, including any medium that facilitates the transfer of a computer program from one place to another.
  • the storage medium may be any available medium that can be accessed by a computer.
  • such computer-readable media may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or can be used to carry or store instructions or data in the form of a structure Any other medium that agrees with the program code and can be accessed by a computer.
  • any connection is also properly called a computer-readable medium.
  • the software is transmitted from a web site, server, or other remote source using coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave .
  • coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of the medium.
  • Disks and discs as used in this article include compact discs (CD), laser discs, optical discs, digital versatile discs (DVD), floppy disks and Blu-ray discs, in which disks are often reproduced in a magnetic manner Data, and a disc (disc) optically reproduces the data with a laser. Combinations of the above should also be included in the scope of computer-readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Traffic Control Systems (AREA)
  • Air Bags (AREA)

Abstract

一种提高车辆道路兼容性的安全系统(10),包括监测系统(1)以及集成安全域控制单元(2),监测系统包括车辆外部信息监测模块(11)以及车身姿态监测模块(12);集成安全域控制单元(2),用于根据车辆外部信息监测模块(11)、车身姿态监测模块(12)采集到的数据,计算车辆与障碍物之间的碰撞形态,包括碰撞相对速度以及碰撞重叠率,根据碰撞相对速度以及碰撞重叠率判断是否展开外部气囊;其中,控制触发展开外部气囊的判断条件包括,碰撞相对速度是否小于第一速度阈值和/或碰撞重叠率是否小于第一重叠率阈值。该系统可减小弱势道路使用者与车身前部的碰撞伤害。还涉及一种提高车辆道路兼容性的安全装置、方法以及介质,以及一种车辆安全系统、车辆安全装置、增强车辆安全性的方法以及可读存储介质。

Description

提高车辆道路兼容性的安全系统、车辆安全系统、装置、方法及介质 技术领域
本发明涉及车辆安全领域,尤其涉及一种提高车辆道路兼容性的安全系统、装置、方法以及可读存储介质,以及一种车辆安全系统、车辆安全装置、增强车辆安全性的方法以及可读存储介质。
背景技术
对于车辆的碰撞事故,由于道路上各种车辆的车身高度、重量、车身结构甚至保险杠高度和形状的不同,导致了车辆在碰撞事故中必定有一方占据主动优势,一方占据劣势。如何在碰撞中既能保护自身的安全,也能减少对方的伤害,这就是车辆道路兼容性的理念。
现有技术中,提高车辆道路兼容性的技术方案主要是通过车身的结构设计改进实现,例如将车头部分的刚性降低,除了在碰撞中减少对自身车辆的驾驶舱的冲击之外,在两车碰撞中,也可以可能地吸收双方对撞产生的冲击力,减少对碰撞的另一方造成的伤害。
然而,对于车辆道路兼容性的要求越来越高,例如中国新车评价规程(China-New Car Assessment Program,CNCAP)2021版中新加入了关于道路兼容性的罚分要求。
因此,本领域需要一种提高车辆道路兼容性的安全系统、装置、方法以及可读存储介质,以进一步提高车辆道路兼容性,满足越来越严格的车辆道路兼容性要求。
在汽车安全领域,保护弱势道路使用者(Vulnerable Road User,VRU)近来已成为了一项热点议题。例如有报道显示,在欧洲,行人、自行车和摩托车等弱势道路使用者几乎占据了交通死亡总人数的一半,而自行车交通事故死亡人数在很多国家正在不断上升,对于VRU的测试,成为了欧盟新车安全评价(The European New Car Assessment Programme,Euro NCAP)的测试内容之一。
现有技术中,保护VRU的技术方案有在车身前部设置前部气囊,在车身前部与VRU发生碰撞时展开前部气囊,从而保护VRU。
然而,发明人发现,在一些碰撞情况下,展开前部气囊反而会加剧对VRU的 伤害。因此本领域需要一种车辆安全系统、车辆安全装置、增强车辆安全性的方法以及可读存储介质,以减小弱势道路使用者与车身前部的碰撞伤害。
发明内容
本发明的一个目的在于提供一种提高车辆道路兼容性的安全系统。
本发明的另一个目的在于提供一种车辆安全装置,以提高车辆道路兼容性。
本发明的再一个目的在于提供一种提高车辆道路兼容性的方法。
本发明的又一个目的在于提供一种计算机可读存储介质,其可以实现提高车辆道路兼容性。
根据本发明的一个方面的一种提高车辆道路兼容性的安全系统,用于提高车辆的道路兼容性,所述安全系统可控制车辆的外部气囊,所述安全系统包括:监测系统,包括:车辆外部信息监测模块,用于监测车身周围障碍物;车身姿态监测模块,用于监测车身运动以及车身姿态;集成安全域控制单元,用于根据所述车辆外部信息监测模块、所述车身姿态监测模块采集到的数据,计算车辆与障碍物之间的碰撞形态,包括碰撞相对速度以及碰撞重叠率,根据所述碰撞相对速度以及所述碰撞重叠率判断是否展开所述外部气囊;其中,控制触发展开所述外部气囊的判断条件包括,所述碰撞相对速度是否小于第一速度阈值和/或所述碰撞重叠率是否小于第一重叠率阈值。
在一个或多个实施例中,控制触发展开所述外部气囊的判断条件还包括,在所述碰撞形态下展开所述外部气囊是否降低车辆的伤害;若否,则所述集成安全域控制单元控制所述外部气囊保持收合。
在一个或多个实施例中,所述监测系统还包括车内监测模块,用于采集车内驾驶员的精神状态数据;所述集成安全域控制单元根据所述精神状态数据以及所述车辆外部信息监测模块、所述车身姿态监测模块采集到的数据计算驾驶员注意到与所述障碍物发生碰撞的可能性,并根据所述可能性计算所述碰撞形态。
在一个或多个实施例中,所述集成安全域控制单元还用于报警提示,若所述可能性低于报警阈值,则所述集成安全域控制单元输出报警信号,以增大驾驶员注意到与所述障碍物发生碰撞的可能性。
在一个或多个实施例中,所述车内监测模块包括摄像头和/或车内雷达。
在一个或多个实施例中,所述精神状态数据包括所述车内驾驶员的健康状态 数据以及面部数据的其中之一或其组合。
在一个或多个实施例中,所述监测系统还包括车联网模块,所述车联网模块与所述车辆外部信息监测模块共同提供车辆周围障碍物的信息。
在一个或多个实施例中,所述车辆外部信息监测模块包括毫米波雷达、超声波雷达、激光雷达以及外部摄像头的其中之一或其组合。
在一个或多个实施例中,所述车身姿态监测模块包括速度传感器、横摆速度传感器以及方向盘转角传感器;其中,所述速度传感器用于监测所述车身运动,所述横摆速度传感器以及所述方向盘转角传感器用于监测所述车身姿态。
在一个或多个实施例中,所述集成安全域控制单元根据所述车身姿态监测模块采集到的数据计算得到监测区域,所述车辆外部信息监测模块仅监测所述监测区域内的障碍物。
在一个或多个实施例中,所述集成安全域控制单元还用于根据所述车辆外部信息监测模块的监测信息对障碍物进行建模,以及根据所述车身姿态监测模块的监测信息对车身进行建模并且根据建模信息计算所述碰撞形态。
在一个或多个实施例中,所述安全系统还包括云端数据库以及仿真数据库,所述云端数据库用于提供障碍物与车辆碰撞的历史数据,所述仿真数据库用于根据建模信息提供障碍物与车辆碰撞的仿真数据;所述集成安全域控制单元根据所述历史数据以及所述仿真数据计算所述碰撞形态。
根据本发明的另一个方面的一种车辆安全装置,包括外部气囊以及如以上任意一项所述的安全系统。
根据本发明的再一个方面的一种提高车辆道路兼容性的方法,所述车辆包括外部气囊,所述方法包括:
监测车辆周围的障碍物,采集车辆周围障碍物数据;
监测车身运动以及车身姿态,采集车身姿态数据以及车身运动数据;
根据所述车辆周围障碍物数据、所述车身运动数据以及所述车身姿态数据,计算车辆与障碍物之间的碰撞形态,包括碰撞相对速度以及碰撞重叠率;
根据所述碰撞相对速度以及所述碰撞重叠率判断是否展开所述外部气囊;其中,控制触发展开所述外部气囊的判断条件包括,若所述碰撞相对速度小于第一速度阈值和/或所述碰撞重叠率小于第一重叠率阈值,则控制所述外部气囊保持收 合,不触发展开所述外部气囊。
在一个或多个实施例中,控制触发展开所述外部气囊的判断条件还包括,在所述碰撞形态下展开所述外部气囊是否降低车辆的伤害值;若否,控制所述外部气囊保持收合。
在一个或多个实施例中,监测的车辆周围的障碍物包括监测车辆周围是否存在障碍物,识别所述障碍物的类型,预测所述障碍物的运动。
在一个或多个实施例中,所述方法还包括:监测车内驾驶员精神状态,采集车内驾驶员的精神状态数据;根据所述状态数据以及所述车辆周围障碍物数据、所述车身运动数据以及所述车身姿态数据计算驾驶员注意到与所述障碍物发生碰撞的可能性,并根据所述可能性计算所述碰撞形态。
在一个或多个实施例中,所述方法还包括:将所述碰撞形态记录上传至云端数据库。
根据本发明又一个方面的一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行实现以下步骤:
根据输入的车辆周围障碍物数据、车身运动数据以及车身姿态数据计算车辆与障碍物之间的碰撞形态,包括碰撞相对速度以及碰撞重叠率;
根据所述碰撞相对速度以及所述碰撞重叠率进行判断是否触发展开外部气囊,判断条件包括,若所述碰撞相对速度小于第一速度阈值和/或所述碰撞重叠率小于第一重叠率阈值,则控制所述外部气囊保持收合,不触发展开所述外部气囊。
以上记载的提高车辆道路兼容性的安全系统、车辆安全系统、装置、方法及介质的有益效果包括但不限于:
1.通过将碰撞相对速度以及碰撞重叠率作为判断条件判断是否展开外部气囊,而低于第一速度阈值以及低于第一重叠率阈值两者任意一项即无需展开外部气囊,使得外部气囊的设置能够更有针对性地提升道路兼容性,避免出现误触发外部气囊而引发危险;
2.通过车辆外部信息监测模块、车内监测模块以及车身姿态监测模块的设置,将驾驶员精神状态、车辆外部、车身姿态三者信息融合进行碰撞形态的计算,使得外部气囊的触发展开时机更为准确;
3.利用仿真数据库和云端历史碰撞数据库,更准确地计算碰撞形态,并且通 过碰撞数据上传,数据库自身具有学习能力,能不断提高计算的准确度。
本发明的一个目的在于提供一种车辆安全系统,以减小弱势道路使用者与车身前部的碰撞伤害。
本发明的另一个目的在于提供一种车辆安全装置,以减小弱势道路使用者与车身前部的碰撞伤害。
本发明的再一个目的在于提供一种增强车辆安全性的方法,以减小弱势道路使用者与车身前部的碰撞伤害。
本发明的又一个目的在于提供一种计算机可读存储介质,其可以实现减小弱势道路使用者与车身前部的碰撞伤害。
根据本发明的一个方面的一种车辆安全系统,用于减小弱势道路使用者与车身前部的碰撞伤害,所述车辆安全系统可控制车辆的前部气囊,所述车辆安全系统包括:监测系统,包括:弱势道路使用者信息监测模块,用于监测车辆周围的所述弱势道路使用者;车身姿态监测模块,用于监测车身运动以及车身前部姿态;集成安全域控制单元,用于根据所述弱势道路使用者信息监测模块、所述车身姿态监测模块采集到的数据,计算车辆与所述弱势道路使用者之间的碰撞形态,包括碰撞概率、碰撞时刻、碰撞时相对速度以及碰撞时所述弱势道路使用者的头部与车身前部的碰撞位置,根据所述碰撞形态计算所述碰撞形态下弱势道路使用者的第一伤害值以及第二伤害值,以判断在所述碰撞时刻之前是否展开所述前部气囊;其中,所述第一伤害值为在所述碰撞形态下前部气囊收合所述弱势道路使用者的伤害值,所述第二伤害值为在所述碰撞形态下前部气囊展开所述弱势道路使用者的伤害值;当所述第一伤害值大于所述第二伤害值,控制所述前部气囊触发展开;当所述第一伤害值小于所述第二伤害值,控制所述前部气囊保持收合。
在一个或多个实施例中,所述第一伤害值包括碰撞时所述前部气囊收合状态下所述弱势道路使用者的头部与车身前部的第一碰撞位置导致的第三伤害值;所述第二伤害值包括碰撞时所述前部气囊展开状态下所述弱势道路使用者的头部与车身前部的第二碰撞位置导致的第四伤害值与所述前部气囊触发展开瞬间对所述弱势道路使用者的冲击能量导致的第五伤害值之和减去所述前部气囊展开吸收的碰撞能量导致所述弱势道路使用者的伤害减少值。
在一个或多个实施例中,所述监测系统还包括车内监测模块,用于采集车内 驾驶员的精神状态数据;所述集成安全域控制单元根据所述精神状态数据以及所述弱势道路使用者信息监测模块、所述车身姿态监测模块采集到的数据计算驾驶员注意到与所述弱势道路使用者发生碰撞的可能性,并根据所述可能性计算所述碰撞形态。
在一个或多个实施例中,所述集成安全域控制单元还用于报警提示,若所述可能性低于报警阈值,则所述集成安全域控制单元输出报警信号,以增大驾驶员注意到与所述弱势道路使用者发生碰撞的可能性。
在一个或多个实施例中,所述车内监测模块包括摄像头和/或车内雷达。
在一个或多个实施例中,所述精神状态数据包括所述车内驾驶员的健康状态数据以及面部数据的其中之一或其组合。
在一个或多个实施例中,所述监测系统还包括车联网模块,所述车联网模块与所述弱势道路使用者信息监测模块共同提供车辆周围的弱势道路使用者信息。
在一个或多个实施例中,所述弱势道路使用者信息监测模块包括毫米波雷达、超声波雷达、激光雷达以及外部摄像头的其中之一或其组合。
在一个或多个实施例中,所述车身姿态监测模块包括速度传感器、横摆速度传感器以及方向盘转角传感器;其中,所述速度传感器用于监测所述车身运动,所述横摆速度传感器以及所述方向盘转角传感器用于监测所述车身前部姿态。
在一个或多个实施例中,所述集成安全域控制单元根据所述车身姿态监测模块采集到的数据计算得到监测区域,所述弱势道路使用者信息监测模块仅监测所述监测区域内的所述弱势道路使用者。
在一个或多个实施例中,所述集成安全域控制单元还用于根据所述弱势道路使用者信息监测模块的监测信息对弱势道路使用者进行建模,以及根据所述车身姿态监测模块的监测信息对车身进行建模,并且根据建模信息计算所述碰撞形态。
在一个或多个实施例中,还包括云端数据库以及仿真数据库,所述云端数据库用于提供弱势道路使用者与车身前部碰撞的历史数据,所述仿真数据库用于根据建模信息提供弱势道路使用者与车身前部碰撞的仿真数据;所述集成安全域控制单元根据所述历史数据以及所述仿真数据计算所述碰撞形态。
根据本发明的另一个方面的一种车辆安全装置,包括前部气囊以及如以上任意一项所述的车辆安全系统。
根据本发明的再一个方面的一种增强车辆安全性的方法,用于减小弱势道路使用者与车身前部的碰撞伤害,所述车辆包括前部气囊,所述方法包括:
监测车辆周围的所述弱势道路使用者;
监测车身运动以及车身前部姿态;
根据监测的车辆周围的所述弱势道路使用者、所述车身运动以及所述车身前部姿态计算车辆与所述弱势道路使用者之间的碰撞形态,包括碰撞概率、碰撞时刻、碰撞时相对速度以及碰撞时所述弱势道路使用者的头部与车身前部的碰撞位置;计算所述碰撞形态下对所述弱势道路使用者的第一伤害值以及第二伤害值,判断在所述碰撞时刻之前是否展开所述前部气囊;其中,所述第一伤害值为在所述碰撞形态下前部气囊收合所述弱势道路使用者的伤害值,所述第二伤害值为在所述碰撞形态下前部气囊展开所述弱势道路使用者的伤害值;当所述第一伤害值大于所述第二伤害值时,所述前部气囊展开;当所述第一伤害值小于所述第二伤害值,控制所述前部气囊保持收合。
在一个或多个实施例中,所述第一伤害值包括碰撞时所述前部气囊收合状态下所述弱势道路使用者的头部与车身前部的第一碰撞位置导致的第三伤害值;所述第二伤害值包括碰撞时所述前部气囊展开状态下所述弱势道路使用者的头部与车身前部的第二碰撞位置导致的第四伤害值与所述前部气囊触发展开瞬间对所述弱势道路使用者的冲击能量导致的第五伤害值之和减去所述前部气囊展开吸收的碰撞能量导致所述弱势道路使用者的伤害减少值。
在一个或多个实施例中,监测的车辆周围的所述弱势道路使用者包括监测车辆周围是否存在所述弱势道路使用者,识别所述弱势道路使用者的类型,跟踪所述弱势道路使用者的轨迹,预测所述弱势道路使用者的移动路径。
在一个或多个实施例中,所述方法还包括将所述碰撞形态记录上传至云端数据库。
根据本发明又一个方面的一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行实现以下步骤:
根据输入的车辆周围的弱势道路使用者数据、车身运动数据以及车身前部姿态数据计算车辆与弱势道路使用者之间的碰撞形态,包括碰撞概率、碰撞时刻、碰撞时相对速度以及碰撞时弱势道路使用者的头部与车身前部的碰撞位置;
计算所述碰撞形态下对弱势道路使用者的第一伤害值以及第二伤害值,其中,所述第一伤害值为在所述碰撞形态下前部气囊收合所述弱势道路使用者的伤害值,所述第二伤害值为在所述碰撞形态下前部气囊展开所述弱势道路使用者的伤害值;
判断在所述碰撞时刻之前是否展开所述前部气囊,当所述第一伤害值大于所述第二伤害值时,控制前部气囊展开;当所述第一伤害值小于所述第二伤害值,控制前部气囊保持收合。
以上记载的车辆安全系统、装置、增强车辆安全性的方法以及介质的有益效果包括但不限于,通过比较第一伤害值与第二伤害值的大小,实现了对于前部气囊的展开策略的优化,针对具体的碰撞形态适应性地展开前部气囊或使得前部气囊保持收合,以减小弱势道路使用者与车身前部的碰撞伤害。
附图概述
本发明的具体特征、性能由以下的实施例及其附图进一步给出。
图1是根据一个或多个实施例的安全系统的示意图。
图2是根据一实施例的提高车辆道路兼容性的方法的流程图。
图3A以及图3B是根据另一实施例的提高车辆道路兼容性的方法的流程图。
图4是根据一个或多个实施例的车辆安全系统的示意图。
图5是根据一实施例的增强车辆安全性的方法的流程图。
图6A以及图6B是根据另一实施例的增强车辆安全性的方法的流程图。
本发明的最佳实施方式
下面结合具体实施例和附图对本发明作进一步说明,在以下的描述中阐述了更多的细节以便于充分理解本发明,但是本发明显然能够以多种不同于此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下根据实际应用情况作类似推广、演绎,因此不应以此具体实施例的内容限制本发明的保护范围。
同时,本申请使用了特定词语来描述本申请的实施例。方位词“内、外”是指相对于各部件本身的轮廓的内外,另外,如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本申请至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实 施例”并不一定是指同一实施例。此外,本申请的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
请结合参见图1以及图3A、图3B来理解本案的安全系统的一实施例,用于提高车辆道路兼容性的安全系统10包括监测系统1以及集成安全域控制单元2,安全系统10可控制车辆的外部气囊20的收合或展开,即安全系统10与外部气囊20可构成车辆安全装置100。本领域技术人员可以理解到,安全系统10与外部气囊20可以共同设置于车辆,也可以是分离的,例如安全系统10处于车辆外部,通过无线通讯的方式控制外部气囊20的展开或者收合。外部气囊20的具体形式可以包括设置于车身前部,即车头部分的前部气囊,也可以进一步包括设置于车身后部的后部气囊,以提高发生高速追尾碰撞事件的道路兼容性,甚至可以再进一步地包括位于车身两侧的侧部气囊,前部气囊、后部气囊与侧部气囊一起构成了一个整体围绕车身的外部气囊,以便提高在各个方向发生碰撞的道路兼容性。
监测系统1可以包括车辆外部信息监测模块11以及车身姿态监测模块12,车辆外部信息监测模块11用于监测车身周围障碍物,此处的障碍物指的是广义的障碍物,即指的是道路中可能发生碰撞的碰撞对象。车身姿态监测模块12用于监测车身运动以及车身姿态。集成安全域控制单元2,用于处理从监测系统1采集的数据,并输出控制信号至外部气囊20。
集成安全域控制单元2用于根据车辆外部信息监测模块11、车身姿态监测模块12采集到的数据,计算车辆与障碍物之间的碰撞形态,碰撞形态至少包括碰撞相对速度以及碰撞重叠率,还可以包括碰撞概率、碰撞时刻、碰撞位置,根据碰撞相对速度以及碰撞重叠率判断是否展开外部气囊20。其中,控制触发展开外部气囊20的判断条件包括,碰撞相对速度是否大于第一速度阈值V1以及碰撞重叠率是否大于第一重叠率阈值X1。具体而言,在某一碰撞形态下,若集成安全域控制单元2计算碰撞相对速度小于第一速度阈值V1,和/或碰撞重叠率小于第一重叠阈值X1,则输出保持收合的控制信号至外部气囊20,使其保持收合。而若碰撞相对速度大于第一速度阈值V1,和碰撞重叠率大于第一重叠阈值X1,则可以判定该碰撞形态下通过展开外部气囊20可以提高道路兼容性。
采用以上实施例的安全系统10以及车辆安全装置100的有益效果在于,通过集成安全域单元2将碰撞相对速度以及碰撞重叠率作为判断条件判断是否展开外部 气囊,而低于第一速度阈值V1和/或低于第一重叠率阈值X1即无需展开外部气囊,使得外部气囊的设置能够更有针对性地提升道路兼容性,避免出现误触发外部气囊20而引发危险。也无需进行在中低速碰撞下进行是否展开外部气囊20的判断与计算,如此提高了集成安全域单元2的运算速度,提高道路兼容性。
继续参考图1以及图3A、图3B,在一些实施例中,集成安全域控制单元2控制触发展开外部气囊20的条件还可以包括,在碰撞形态下展开外部气囊20是否降低车辆的伤害;若否,则集成安全域控制单元2控制外部气囊20保持收合。具体而言,例如碰撞位置并非外部气囊20覆盖的保护区域,又例如车辆外部信息监测模块11监测识别发生碰撞的障碍物的质量远大于本方车辆,如大卡车、大客车等,本方车辆即使展开外部气囊20也无法降低伤害,集成安全域控制单元2控制外部气囊20保持收合。
监测系统1还可以包括车内监测模块13,用于采集车辆内部的驾驶员的精神状态数据,例如包括车内驾驶员健康状态数据以及车内驾驶员面部数据的其中之一或其组合,采集以上数据可以通过摄像头和/或车内雷达的硬件实现。具体来说,通过摄像头监测的健康状态数据可以包括如心跳信息等,面部数据信息可以包括面部情绪状态信息(比如激动,暴怒)、面部疲劳状态信息(如眨眼频率、打哈气)、面部视线信息(如摄像头对人的视线进行追踪来判定驾驶员是否注意到障碍物)、面部朝向信息(如根据面部朝向判断司乘人员的头部转向进行分析来判定人是否将注意力集中在前方),车内雷达可做车内活体检测,以及心跳检测功能。
集成安全域控制单元2可以结合上述车内驾驶员的精神状态数据以及车辆外部信息监测模块11、车身姿态监测模块12采集到的数据,计算车内驾驶员注意到与障碍物发生碰撞的可能性,并根据该可能性计算碰撞形态。例如集成安全域控制单元2计算得到车内驾驶员注意到与障碍物发生碰撞的可能性较低,那么碰撞形态的计算结果中碰撞相对速度会提高,碰撞时刻提前,碰撞概率增大等等。可以看出,设置车内监测模块13,集成安全域控制单元2可以将驾驶员精神状态、车辆外部、车身姿态三者信息融合进行碰撞形态的计算,从而使得计算结果更为准确,得到最接近实际情况的路面情况以及自身车辆情况的结果。但本领域技术人员可以理解到,也可以通过其它方式得到车内驾驶员注意到与障碍物发生碰撞的可能 性,例如集成安全域控制单元2通过车身姿态对应驾驶员精神状态的大数据进行匹配,直接通过车身姿态监测模块12采集到的数据得到上述可能性的数据,如此减小计算量,硬件以及软件成本低,但与设置车内监测模块13相比其计算的准确度也较低。
继续参考图1,在一实施例中,集成安全域控制单元2可以包括报警提示的功能,若车内驾驶员注意到与障碍物发生碰撞的可能性低于报警阈值,则集成安全域控制单元2输出报警信号,使得车内发出尖锐的警示声响,或者在仪表板、中控台屏幕亮灯,或者在方向盘振动等等方式提示驾驶员,以增大驾驶员注意到与所述障碍物发生碰撞的可能性。具体的监测判断步骤可以是,车内监测模块13采集到驾驶员的心跳数据为第一值,眨眼频率为第二值,根据数据库信息判断此时驾驶员处于第一精神状态,注意到碰撞发生的可能性高于报警阈值,因此不作提醒;车内监测模块13采集到驾驶员的心跳数据为第三值,眨眼频率为第四值,面部视线离开路面超过第一时间,根据数据库信息判断此时驾驶员处于第二精神状态,驾驶员注意到与障碍物发生碰撞的可能性低于报警阈值,进行报警提醒驾驶员。如此可以尽可能地避免碰撞事故的发生,即使无法完全避免碰撞,也可以使得驾驶员及时反应而降低碰撞相对速度,从而避免发生高速碰撞。集成安全域控制单元2重复进行以上可能性的计算过程,直至可能性大于报警阈值则取消输出报警信号,同时集成安全域控制单元2实时根据报警后变化的可能性值计算变化后的碰撞形态。
继续参考图1,在一些实施例中,监测系统1还可以包括车联网模块14,通过车联网与其它行驶中的车辆和/或障碍物和/或网络系统的通信能够提供车辆与障碍物之间的信息,其中,车联网模块14可以与车辆外部信息监测模块11共同提供车辆周围的障碍物信息,以进一步提高集成安全域控制单元2的计算准确度。
在一个或多个实施例中,车辆外部信息监测模块11包括毫米波雷达、激光雷达以及外部摄像头的其中之一或其组合。其中,毫米波雷达和激光雷达用于对障碍物进行定位,采集障碍物的速度、角度、距离等数据。其中毫米波雷达不易受天气干扰且探测距离远,能够对远距离的障碍物进行监测。激光雷达精度更高,数据处理简单,能够与毫米波雷达所采集的信息在数据内容以及精度上进行互补,以使得监测结果更加准确。外部摄像头用于采集障碍物的图像信息,用于对障碍 物的分辨与识别。
车身姿态监测模块12包括速度传感器、横摆速度传感器以及方向盘转角传感器,速度传感器用于监测车身运动,横摆速度传感器以及方向盘转角传感器用于监测车身姿态。可以理解到,车身姿态监测模块12包括的传感器不限于以上介绍,也还可以是其它车身自带的传感器。
集成安全域控制单元2可以根据车身姿态监测模块12采集到的数据计算得到监测区域,即得到车身姿态以及车身运动对应的可能发生障碍物碰撞的区域,而车辆外部信息监测模块11仅监测所述监测区域内的障碍物,如此可以降低车辆外部信息监测模块11的数据采集量以及数据处理量,也降低集成安全域控制单元2的数据处理量,使得安全系统10的运行速度更快,软件以及硬件要求降低,从而降低成本。
继续参考图1,在一些实施例中,集成安全域控制单元2可以具有建模功能以及根据建模信息进行计算。其中,集成安全域控制单元2分别对障碍物以及车辆进行建模。具体地,一方面,集成安全域控制单元2将毫米波雷达、激光雷达以及外部摄像头所采集到的数据进行融合处理,不断对障碍物进行实时建模,另一方面,集成安全域控制单元2根据速度传感器所监测到的车身运动信息、横摆速度传感器所监测到的车身横摆角速度信息以及方向盘转角传感器所监测到的车辆方向盘角度信息,不断对行驶中的车辆进行实时建模。集成安全域控制单元2对实时更新的障碍物建模信息以及车身建模信息对比计算碰撞形态,与此同时,集成安全域控制单元2在计算时将实时更新计算结果,并将计算结果与实时观测结果不断的进行对比,修正计算的精确度,减少误差。
继续参考图1,在一些实施例中,安全系统10还包括云端数据库3以及仿真数据库4,云端数据库3用于提供障碍物与车辆碰撞的历史数据,仿真数据库4用于根据建模信息提供障碍物与车辆碰撞的仿真数据。集成安全域控制单元2根据历史数据以及仿真数据计算障碍物与车辆碰撞时两者之间的碰撞形态。具体来说,一方面,一定时间内车辆行驶的距离S=VT,速度V=V 0+aT,如果在对应的时间和距离内减速度无法使速度降到0,那么可以认为碰撞概率高。另一方面,使车辆转过一定的角度也需要时间,如果在对应的时间和距离内无法转过足够的角度,那么碰撞也无法避免。可以通过算出在有限的时间内能转过的角度,计算出发生碰撞时 的障碍物的碰撞位置。
计算碰撞概率的例子可以是,云端数据库3提供障碍物与车辆碰撞的历史数据为第一碰撞模型,仿真数据库4用于根据建模信息提供障碍物与车辆碰撞的仿真数据为第二碰撞模型,集成安全域控制单元2融合第一碰撞模型以及第二碰撞模型的数据信息计算出障碍物与车辆之间的碰撞形态。
可以理解的是,如前的实施方式中的集成安全域控制单元2可以包括一个或多个硬件处理器,诸如片上系统(SOC)、微控制器、微处理器(例如MCU芯片或51单片机)、精简指令集计算机(RISC)、专用集成电路(ASIC)、应用特定指令集成处理器(ASIP)、中央处理单元(CPU)、图形处理单元(GPU)、物理处理单元(PPU)、微控制器单元、数字信号处理器(DSP)、现场可编程门阵列(FPGA)、高级RISC机(ARM)、可编程逻辑器件(PLD)、能够执行一个或多个功能的任何电路或处理器等中的一种或多种的组合。
参考图2、图3A以及图3B,承上介绍可知,对于包括外部气囊的车辆,用于提高车辆道路兼容性的方法,可以包括如下步骤:
步骤A.监测车辆周围的障碍物,采集车辆周围障碍物数据;
步骤B.监测车身运动以及车身姿态,采集车身姿态数据以及车身运动数据;
具体地,可以是图3A所示的,在一个或多个实施例中,通过车载传感器收集车身数据监测车身数据,包括车身运动以及车身姿态数据,计算得到监测区域,即得到车身姿态以及车身运动对应的可能发生碰撞的区域,而雷达,摄像头监测车辆周围的障碍物信息,还可以加上车联网提供车辆周围的障碍物信息。
步骤C.根据车辆周围障碍物数据、所述车身运动数据以及所述车身姿态数据计算车辆与所述障碍物之间的碰撞形态,包括碰撞相对速度以及碰撞重叠率;
步骤D.根据碰撞相对速度以及碰撞重叠率判断是否展开外部气囊;其中,控制触发展开外部气囊的判断条件包括,若所述碰撞相对速度小于第一速度阈值V1和/或所述碰撞重叠率小于第一重叠率阈值X1,则控制外部气囊保持收合,不触发展开外部气囊。
具体地,可以参考图3A所示的,在一些实施例中,根据监测的车辆周围的障碍物、车身运动以及车身运动姿态,判断监测区域内是否存在障碍物,识别障碍物的类型为静态障碍或者是动态障碍,例如行驶的车辆,静态障碍可以是路障、 停止的车辆等等。接着对于障碍物进行建模,预测障碍物的运动,包括运动方向以及速度,计算每个障碍物的碰撞形态,碰撞形态至少包括碰撞相对速度以及碰撞重叠率,还可以包括碰撞概率、碰撞时刻、碰撞位置。计算与每个障碍物发生碰撞的概率,选择碰撞概率最大的障碍物进行展开外部气囊提高车辆道路兼容性的判断。最先进行的判断可以是相对碰撞速度是否小于第一速度阈值V1以及碰撞重叠率X1,若两项中任意一项为是,则控制外部气囊保持收合,如此可以快速准确地判断是否需要展开外部气囊,使得外部气囊可以及时展开,从而提高车辆的道路兼容性。接着判断预测碰撞时刻是否在第一时刻T1之前。
优选地,如图3A所示,在一些实施例中,还可以通过监测车内驾驶员精神状态,采集车内驾驶员的精神状态数据;根据状态数据以及车辆周围障碍物数据、车身运动数据以及车身姿态数据计算驾驶员注意到与所述障碍物发生碰撞的可能性,并根据该可能性计算碰撞形态。若可能性低于报警阈值,则警告驾驶员,增加其注意到发生碰撞的可能性,根据上述可能性计算结果修正碰撞时间,判断预测碰撞时刻是否在第二时刻T2之前,若否,则可以避免碰撞或者即使发生碰撞,也无需触发展开外部气囊。
优选地,如图3B所示,在一个或多个实施例中,还可以通过云端数据库得到车辆与障碍物碰撞的历史数据,通过仿真数据库得到车辆与障碍物碰撞的仿真结果,对集成安全域控制单元2的计算提供对比以及参照,使得碰撞形态的计算更为准确。
优选地,如图3B所示,提高车辆道路兼容性的方法还可以包括计算判断碰撞形态下展开外部气囊是否降低车辆的伤害;若否,则控制外部气囊保持收合,不触发外部气囊展开。例如车辆周围障碍物数据识别发生碰撞的障碍物的质量远大于本方车辆,如大卡车、大客车等,本方车辆即使展开外部气囊也无法降低伤害,控制外部气囊不触发展开,保持收合。
继续参考图3B,判断展开外部气囊可以降低伤害,则可以接着判断预测碰撞时刻是否在第三时刻T3之前,若是则可以在检查通讯和部件是否功能正常,若正常则展开外部气囊。
优选地,继续参考图3B,碰撞结束后,还可以将碰撞形态记录至云端数据库,包括碰撞概率、碰撞时刻、碰撞位置、碰撞相对速度以及碰撞重叠率等参数。本 领域技术人员可以理解到,虽然图3B所示的一些实施例中示出了展开外部气囊后再进行记录,但不以此为限,例如若由于判断外部气囊展开无法降低伤害而没有展开外部气囊,此次碰撞的数据也可以记录云端数据库中,如此可以增加数据库的样本,通过数据库自身的学习能力,不断增强预测的准确度。
尽管为使解释简单化将上述方法图示并描述为一系列动作,但是应理解并领会,这些步骤不受动作的次序所限,因为根据一个或多个实施例,一些动作可按不同次序发生和/或与来自本文中图示和描述或本文中未图示和描述但本领域技术人员可以理解的其他动作并发地发生,例如以上介绍的步骤A以及步骤B可以同时进行。
根据本案的另一方面,本案还提供了一种计算机可读存储介质。
本案提供的上述计算机可读存储介质,其上存储有计算机指令。该计算机指令由处理器执行时,可以实施该程序被处理器执行实现以下步骤:
根据输入的车辆周围障碍物数据、车身运动数据以及车身姿态数据计算车辆与障碍物之间的碰撞形态,包括碰撞概率、碰撞时刻、碰撞位置、碰撞相对速度以及碰撞重叠率;
根据该碰撞相对速度以及该碰撞重叠率进行判断是否触发展开外部气囊20,判断条件包括,若碰撞相对速度小于第一速度阈值V1和/或碰撞重叠率小于第一重叠率阈值X1,则控制外部气囊20保持收合,不触发展开外部气囊20。
本领域技术人员可以理解到,该程序还可以被执行附加的步骤,如以上提高车辆道路兼容性的方法中可以由程序执行的步骤。
以下介绍车辆安全系统、装置、增强车辆安全性的方法以及介质的实施例。
需要解释的是,下述实施例中介绍的弱势道路使用者(Vulnerable Road User,VRU)包括行人以及自行车、摩托车、电瓶车等二轮车,二轮车指的并非指交通工具本身,而是使用上述交通工具的使用者。
请结合参见图4来理解本案的车辆安全系统的一实施例,用于减小弱势道路使用者与车身前部的碰撞伤害的车辆安全系统101包括监测系统110以及集成安全域控制单元200,车辆安全系统101可控制车辆的前部气囊201的收合或展开,即车辆安全系统101与前部气囊201可构成车辆安全装置1000。本领域技术人员可以理解到,车辆安全系统101与前部气囊201可以共同设置于车辆,也可以是分离的, 例如车辆安全系统101处于车辆外部,通过无线通讯的方式控制前部气囊201的展开或者收合。其中,监测系统110可以包括弱势道路使用者信息监测模块111以及车身姿态监测模块121,弱势道路使用者信息监测模块111用于监测车辆周围的弱势道路使用者,车身姿态监测模块121用于监测车身运动以及车身前部姿态。集成安全域控制单元200,用于处理从监测系统110采集的数据,并输出控制信号至前部气囊201。
集成安全域控制单元200用于根据弱势道路使用者信息监测模块111、车身姿态监测模块121采集到的数据,计算车辆与弱势道路使用者之间的碰撞形态,包括碰撞概率、碰撞时刻、碰撞时相对速度以及碰撞时弱势道路使用者的头部与车身前部的碰撞位置;并根据碰撞形态计算对弱势道路使用者的伤害值,输出控制前部气囊201触发展开信号或是前部气囊201保持收合的信号。具体而言,集成安全域控制单元200计算在碰撞形态下前部气囊201收合弱势道路使用者的第一伤害值H1,以及在碰撞形态下前部气囊201展开弱势道路使用者的第二伤害值H2,比较H1与H2的大小,若H1大于H2,则输出触发展开的控制信号至前部气囊201,使其触发展开;若H1小于H2,则输出保持收合的控制信号至前部气囊201,使其保持收合。
采用以上实施例的车辆安全系统101以及车辆安全装置1000的有益效果在于,通过集成安全域单元3对伤害值的计算以及比较,使得弱势道路使用者与车辆的车身前部发生碰撞时得到最大程度的保护,避免了现有技术中前部气囊展开可能导致弱势道路使用者伤害加大的问题,例如可以避免在行人在极低速碰撞下,前部气囊201瞬间展开的冲击力成为碰撞事故的主要伤害来源;同样地,也可以避免另一些简单地采用速度为判断因素的误触发系统中,对于碰撞速度低而高度较高的弱势道路使用者例如公路自行车没有及时展开前部气囊201导致其头部在碰撞后与车身前部的高包络线值区域,例如挡风玻璃发生碰撞而严重受伤。
具体地,在一个或多个实施例中,H1可以包括碰撞时前部气囊201收合状态下弱势道路使用者的头部与车身前部的第一碰撞位置导致的第三伤害值H3,H2可以包括碰撞时前部气囊201展开状态下弱势道路使用者的头部与车身前部的第二碰撞位置导致的第四伤害值H4加上前部气囊201触发展开瞬间对弱势道路使用者的冲击能量导致的第五伤害值H5,减去前部气囊201展开吸收的碰撞能量导致弱势 道路使用者的伤害减少值H6,即集成安全域单元3将比较H3与H4+H5-H6的大小。H4一般小于H3,因为前部气囊201的展开一般使得第二碰撞位置相对与第一碰撞位置的包络线值更低。但前部气囊201的展开冲击力在某些低速碰撞情况下会导致行人的腿部包括大腿以及小腿因气囊的冲击力受到伤害,或行人因为受到冲击到底造成二次伤害,因此比较H3与H4+H5-H6可以较为准确地比较前部气囊201的展开状态与收合状态在碰撞形态下对弱势道路使用者的伤害值。
继续参考图4,在一个或多个实施例中,监测系统110还可以包括车内监测模块131,用于采集车辆内部的驾驶员的精神状态数据,例如包括车内驾驶员健康状态数据以及车内驾驶员面部数据的其中之一或其组合,采集以上数据可以通过摄像头和/或车内雷达的硬件实现。具体来说,通过摄像头监测的健康状态数据可以包括如心跳信息等,面部数据信息可以包括面部情绪状态信息(比如激动,暴怒)、面部疲劳状态信息(如眨眼频率、打哈气)、面部视线信息(如摄像头对人的视线进行追踪来判定驾驶员是否注意到弱势道路使用者)、面部朝向信息(如根据面部朝向判断司乘人员的头部转向进行分析来判定人是否将注意力集中在前方),车内雷达可做车内活体检测,以及心跳检测功能。
集成安全域控制单元200可以结合上述车内驾驶员的精神状态数据以及弱势道路使用者信息监测模块111、车身姿态监测模块121采集到的数据,计算车内驾驶员注意到与弱势道路使用者发生碰撞的可能性,并根据该可能性计算碰撞形态。例如集成安全域控制单元200计算得到车内驾驶员注意到与弱势道路使用者发生碰撞的可能性较低,那么碰撞形态的计算结果中碰撞的相对速度会提高,碰撞时刻提前,发生碰撞的概率增大等等。可以看出,设置车内监测模块131可以使得集成安全域控制单元200的计算结果更为精确。但本领域技术人员可以理解到,也可以通过其它方式得到车内驾驶员注意到与弱势道路使用者发生碰撞的可能性,例如集成安全域控制单元200通过车身姿态对应驾驶员状态的大数据进行匹配,直接通过车身姿态监测模块121采集到的数据得到上述可能性的数据,如此减小计算量,硬件以及软件成本低,但与设置车内监测模块131相比其计算的准确度也较低。
继续参考图4,在一实施例中,集成安全域控制单元200可以包括报警提示的功能,若车内驾驶员注意到与弱势道路使用者发生碰撞的可能性低于报警阈值,则集成安全域控制单元200输出报警信号,使得车内发出尖锐的警示声响,或者在 仪表板、中控台屏幕亮灯,或者在方向盘振动等等方式提示驾驶员,以增大驾驶员注意到与所述弱势道路使用者发生碰撞的可能性。具体的监测判断步骤可以是,车内监测模块131采集到驾驶员的心跳数据为第一值,眨眼频率为第二值,根据数据库信息判断此时驾驶员处于第一精神状态,注意到碰撞发生的可能性高于报警阈值,因此不作提醒;车内监测模块131采集到驾驶员的心跳数据为第三值,眨眼频率为第四值,面部视线离开路面超过第一时间,根据数据库信息判断此时驾驶员处于第二精神状态,驾驶员注意到与弱势道路使用者发生碰撞的可能性低于报警阈值,进行报警提醒驾驶员。集成安全域控制单元200重复进行以上可能性的计算过程,直至可能性大于报警阈值则取消输出报警信号,同时集成安全域控制单元200实时根据报警后变化的可能性值计算变化后的碰撞形态。
继续参考图4,在一些实施例中,监测系统110还可以包括车联网模块141,通过车联网与其它行驶中的车辆和/或弱势道路使用者和/或网络系统的通信能够提供车辆与弱势道路使用者之间的信息,其中,车联网模块141可以与弱势道路使用者信息监测模块111共同提供车辆周围的弱势道路使用者信息,以进一步提高集成安全域控制单元200的计算准确度。
在一个或多个实施例中,弱势道路使用者信息监测模块111包括毫米波雷达、激光雷达以及外部摄像头的其中之一或其组合。其中,毫米波雷达和激光雷达用于对弱势道路使用者进行定位,采集弱势道路使用者的速度、角度、距离等数据。其中毫米波雷达不易受天气干扰且探测距离远,能够对远距离的弱势道路使用者进行监测。激光雷达精度更高,数据处理简单,能够与毫米波雷达所采集的信息在数据内容以及精度上进行互补,以使得监测结果更加准确。外部摄像头用于采集弱势道路使用者的图像信息,用于对弱势道路使用者的分辨与识别。
车身姿态监测模块121包括速度传感器、横摆速度传感器以及方向盘转角传感器,速度传感器用于监测车身运动,横摆速度传感器以及方向盘转角传感器用于监测车身姿态。可以理解到,车身姿态监测模块121包括的传感器不限于以上介绍,也还可以是其它车身自带的传感器。
集成安全域控制单元200可以根据车身姿态监测模块121采集到的数据计算得到监测区域,即得到车身姿态以及车身运动对应的可能发生弱势道路使用者碰撞的区域,而弱势道路使用者信息监测模块111仅监测所述监测区域内的弱势道路使 用者,如此可以降低弱势道路使用者信息监测模块111的数据采集量以及数据处理量,也降低集成安全域控制单元200的数据处理量,使得车辆安全系统101的运行速度更快,软件以及硬件要求降低,从而降低成本。
继续参考图4,在一些实施例中,集成安全域控制单元200可以具有建模功能以及根据建模信息进行计算。集成安全域控制单元200分别对弱势道路使用者以及车辆进行建模。具体地,一方面,集成安全域控制单元200将毫米波雷达、激光雷达以及外部摄像头所采集到的数据进行融合处理,不断对弱势道路使用者进行实时建模,另一方面,集成安全域控制单元200根据速度传感器所监测到的车身运动信息、横摆速度传感器所监测到的车身横摆角速度信息以及方向盘转角传感器所监测到的车辆方向盘角度信息,不断对行驶中的车辆进行实时建模。集成安全域控制单元200对实时更新的弱势道路使用者建模信息以及车身建模信息对比计算碰撞形态,与此同时,集成安全域控制单元200在计算时将实时更新计算结果,并将计算结果与实时观测结果不断的进行对比,修正计算的精确度,减少误差。
继续参考图4,在一些实施例中,车辆安全系统101还包括云端数据库300以及仿真数据库400,云端数据库300用于提供弱势道路使用者与车身前部碰撞的历史数据,仿真数据库用于根据建模信息提供弱势道路使用者与车身前部碰撞的仿真数据。集成安全域控制单元200根据历史数据以及仿真数据计算弱势道路使用者与车身前部碰撞时两者之间的碰撞形态。具体来说,一方面,一定时间内车辆行驶的距离S=VT,速度V=aT,如果在对应的时间和距离内减速度无法使速度降到0,那么可以认为碰撞概率高。另一方面,使车辆转过一定的角度也需要时间,如果在对应的时间和距离内无法转过足够的角度,那么碰撞也无法避免。可以通过算出在有限的时间内能转过的角度,计算出发生碰撞时的弱势道路使用者的头部与车身前部的碰撞位置。
计算碰撞概率的例子可以是,云端数据库300提供弱势道路使用者与车身前部碰撞的历史数据为第一碰撞模型,仿真数据库400用于根据建模信息提供弱势道路使用者与车身前部碰撞的仿真数据为第二碰撞模型,集成安全域控制单元200融合第一碰撞模型以及第二碰撞模型的数据信息计算出弱势道路使用者与车身前部之间的碰撞形态。
可以理解的是,如前的实施方式中的集成安全域控制单元200可以包括一个 或多个硬件处理器,诸如片上系统(SOC)、微控制器、微处理器(例如MCU芯片或51单片机)、精简指令集计算机(RISC)、专用集成电路(ASIC)、应用特定指令集成处理器(ASIP)、中央处理单元(CPU)、图形处理单元(GPU)、物理处理单元(PPU)、微控制器单元、数字信号处理器(DSP)、现场可编程门阵列(FPGA)、高级RISC机(ARM)、可编程逻辑器件(PLD)、能够执行一个或多个功能的任何电路或处理器等中的一种或多种的组合。
参考图5,承上介绍可知,对于包括前部气囊的车辆,用于减小弱势道路使用者与车身前部的碰撞伤害以增强车辆安全性的方法,可以包括如下步骤:
步骤A.监测车辆周围的弱势道路使用者;
步骤B.监测车身运动以及车身前部姿态;
具体地,可以是图6A所示的,在一个或多个实施例中,通过车载传感器收集车身数据监测车身数据,包括车身运动以及车身前部姿态数据,计算得到监测区域,即得到车身姿态以及车身运动对应的可能发生弱势道路使用者碰撞的区域,而雷达,摄像头监测车辆周围的弱势道路使用者信息,还可以加上车联网提供车辆周围的弱势道路使用者信息。
步骤C.根据监测的车辆周围的弱势道路使用者、车身运动以及车身前部姿态计算车辆与所述弱势道路使用者之间的碰撞形态,包括碰撞概率、碰撞时刻、碰撞时相对速度以及碰撞时所述弱势道路使用者的头部与车身前部的碰撞位置。
具体地,可以参考图6A所示的,在一些实施例中,根据监测的车辆周围的弱势道路使用者、车身运动以及车身前部姿态,判断监测区域内是否存在弱势道路使用者,判断碰撞相对速度是否大于第一速度,若是则跟踪弱势道路使用者的轨迹,预测其移动路径,判断弱势道路使用者是否会与车辆的路径相交,若是则预测车辆与弱势道路使用者的碰撞位置、碰撞时间,判断预测碰撞时刻是否在第一时刻之前。
优选地,如图6A所示,在一些实施例中,还可以通过车内监测模块监测驾驶员状态信息,计算计算驾驶员注意到与所述弱势道路使用者发生碰撞的可能性,若可能性低于报警阈值,则警告驾驶员,增加其注意到发生碰撞的可能性,根据上述可能性计算结果修正碰撞时间,判断预测碰撞时刻是否在第二时刻之前。
优选地,如图6B所示,在一个或多个实施例中,还可以通过云端数据库得到 弱势道路使用者与车身前部碰撞的历史数据,通过仿真数据库得到弱势道路使用者与车身前部碰撞的仿真结果,对碰撞系统的计算提供对比以及参照,使得碰撞形态的计算更为准确。
步骤D.计算所述碰撞形态下对所述弱势道路使用者的第一伤害值以及第二伤害值,判断在所述碰撞时刻之前是否展开所述前部气囊;其中,所述第一伤害值为在所述碰撞形态下前部气囊收合所述弱势道路使用者的伤害值,所述第二伤害值为在所述碰撞形态下前部气囊展开所述弱势道路使用者的伤害值;
当所述第一伤害值大于所述第二伤害值时,所述前部气囊展开;当所述第一伤害值小于所述第二伤害值,控制所述前部气囊保持收合。
具体地,继续参考图6B,在一些实施例中,计算碰撞形态后,接着判断发生弱势道路使用者与车身前部的碰撞概率是否高于阈值,若是,则接着比较该碰撞形态下前部气囊收合所述弱势道路使用者的第一伤害值与前部气囊展开所述弱势道路使用者的第二伤害值;若第二伤害值高于第一伤害值,则判断无需展开前部气囊。
若第一伤害值大于第二伤害值,则可以接着判断预测碰撞时刻是否在第三时刻之前,若是则可以在检查通讯和部件是否功能正常,若正常则展开前部气囊。
具体地,所述第一伤害值包括碰撞时所述前部气囊收合状态下所述弱势道路使用者的头部与车身前部的第一碰撞位置导致的第三伤害值;所述第二伤害值包括碰撞时所述前部气囊展开状态下所述弱势道路使用者的头部与车身前部的第二碰撞位置导致的第四伤害值与所述前部气囊触发展开瞬间对所述弱势道路使用者的冲击能量导致的第五伤害值之和减去所述前部气囊展开吸收的碰撞能量导致所述弱势道路使用者的伤害减少值。
优选地,继续参考图6B,还可以包括步骤E,碰撞结束后,还可以将碰撞形态记录至云端数据库,包括碰撞概率、碰撞时刻、碰撞时相对速度以及碰撞时所述弱势道路使用者的头部与车身前部的碰撞位置等数据。本领域技术人员可以理解到,虽然图6B所示的一些实施例中示出了展开前部气囊后再进行记录,但不以此为限,例如若由于第一伤害值小于第二伤害值导致碰撞时前部气囊收合,此次碰撞的碰撞形态也可以记录云端数据库中。
尽管为使解释简单化将上述方法图示并描述为一系列动作,但是应理解并领 会,这些步骤不受动作的次序所限,因为根据一个或多个实施例,一些动作可按不同次序发生和/或与来自本文中图示和描述或本文中未图示和描述但本领域技术人员可以理解的其他动作并发地发生,例如以上介绍的步骤A以及步骤B可以同时进行。
根据本案的另一方面,本案还提供了一种计算机可读存储介质。
本公开提供的上述计算机可读存储介质,其上存储有计算机指令。该计算机指令由处理器执行时,可以实施该程序被处理器执行实现以下步骤:
根据输入的车辆周围的弱势道路使用者数据、车身运动数据以及车身前部姿态数据计算车辆与弱势道路使用者之间的碰撞形态,包括碰撞概率、碰撞时刻、碰撞时相对速度以及碰撞时弱势道路使用者的头部与车身前部的碰撞位置;
计算所述碰撞形态下对弱势道路使用者的第一伤害值以及第二伤害值,其中,所述第一伤害值为在所述碰撞形态下前部气囊收合造成的所述弱势道路使用者的伤害值,所述第二伤害值为在所述碰撞形态下前部气囊展开造成的所述弱势道路使用者的伤害值;
判断在所述碰撞时刻之前是否展开所述前部气囊,当所述第一伤害值大于所述第二伤害值时,控制前部气囊展开;当所述第一伤害值小于所述第二伤害值,控制前部气囊保持收合。
本领域技术人员可以理解到,该程序还可以被执行附加的步骤,如以上增强车辆安全性方法中所述可以由程序执行的步骤。
结合本文中公开的实施例描述的方法或算法的步骤可直接在硬件中、在由处理器执行的软件模块中、或在这两者的组合中体现。软件模块可驻留在RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动盘、CD-ROM、或本领域中所知的任何其他形式的存储介质中。示例性存储介质耦合到处理器以使得该处理器能从/向该存储介质读取和写入信息。在替换方案中,存储介质可以被整合到处理器。处理器和存储介质可驻留在ASIC中。ASIC可驻留在用户终端中。在替换方案中,处理器和存储介质可作为分立组件驻留在用户终端中。
在一个或多个示例性实施例中,所描述的功能可在硬件、软件、固件或其任何组合中实现。如果在软件中实现为计算机程序产品,则各功能可以作为一条或 更多条指令或代码存储在计算机可读介质上或藉其进行传送。计算机可读介质包括计算机存储介质和通讯介质两者,其包括促成计算机程序从一地向另一地转移的任何介质。存储介质可以是能被计算机访问的任何可用介质。作为示例而非限定,这样的计算机可读介质可包括RAM、ROM、EEPROM、CD-ROM或其它光盘存储、磁盘存储或其它磁存储设备、或能被用来携带或存储指令或数据结构形式的合意程序代码且能被计算机访问的任何其它介质。任何连接也被正当地称为计算机可读介质。例如,如果软件是使用同轴电缆、光纤电缆、双绞线、数字订户线(DSL)、或诸如红外、无线电、以及微波之类的无线技术从web网站、服务器、或其它远程源传送而来,则该同轴电缆、光纤电缆、双绞线、DSL、或诸如红外、无线电、以及微波之类的无线技术就被包括在介质的定义之中。如本文中所使用的盘(disk)和碟(disc)包括压缩碟(CD)、激光碟、光碟、数字多用碟(DVD)、软盘和蓝光碟,其中盘(disk)往往以磁的方式再现数据,而碟(disc)用激光以光学方式再现数据。上述的组合也应被包括在计算机可读介质的范围内。
本发明虽然以较佳实施例公开如上,但其并不是用来限定本发明,任何本领域技术人员在不脱离本发明的精神和范围内,都可以做出可能的变动和修改。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何修改、等同变化及修饰,均落入本发明权利要求所界定的保护范围之内。

Claims (37)

  1. 一种提高车辆道路兼容性的安全系统,其特征在于,用于提高车辆的道路兼容性,所述安全系统可控制车辆的外部气囊,所述安全系统包括:
    监测系统,包括:
    车辆外部信息监测模块,用于监测车身周围障碍物;
    车身姿态监测模块,用于监测车身运动以及车身姿态;
    集成安全域控制单元,用于根据所述车辆外部信息监测模块、所述车身姿态监测模块采集到的数据,计算车辆与障碍物之间的碰撞形态,包括碰撞相对速度以及碰撞重叠率,根据所述碰撞相对速度以及所述碰撞重叠率判断是否展开所述外部气囊;其中,控制触发展开所述外部气囊的判断条件包括,所述碰撞相对速度是否小于第一速度阈值和/或所述碰撞重叠率是否小于第一重叠率阈值。
  2. 如权利要求1所述的安全系统,其特征在于,控制触发展开所述外部气囊的判断条件还包括,在所述碰撞形态下展开所述外部气囊是否降低车辆的伤害;若否,则所述集成安全域控制单元控制所述外部气囊保持收合。
  3. 如权利要求1所述的安全系统,其特征在于,所述监测系统还包括车内监测模块,用于采集车内驾驶员的精神状态数据;所述集成安全域控制单元根据所述精神状态数据以及所述车辆外部信息监测模块、所述车身姿态监测模块采集到的数据计算驾驶员注意到与所述障碍物发生碰撞的可能性,并根据所述可能性计算所述碰撞形态。
  4. 如权利要求3所述的安全系统,其特征在于,所述集成安全域控制单元还用于报警提示,若所述可能性低于报警阈值,则所述集成安全域控制单元输出报警信号,以增大驾驶员注意到与所述障碍物发生碰撞的可能性。
  5. 如权利要求3所述的安全系统,其特征在于,所述车内监测模块包括摄像头和/或车内雷达。
  6. 如权利要求5所述的安全系统,其特征在于,所述精神状态数据包括所述车内驾驶员的健康状态数据以及面部数据的其中之一或其组合。
  7. 如权利要求1所述的安全系统,其特征在于,所述监测系统还包括车联网模块,所述车联网模块与所述车辆外部信息监测模块共同提供车辆周围障碍物的信息。
  8. 如权利要求1所述的安全系统,其特征在于,所述车辆外部信息监测模块包括毫米波雷达、超声波雷达、激光雷达以及外部摄像头的其中之一或其组合。
  9. 如权利要求1所述的安全系统,其特征在于,所述车身姿态监测模块包括速度传感器、横摆速度传感器以及方向盘转角传感器;
    其中,所述速度传感器用于监测所述车身运动,所述横摆速度传感器以及所述方向盘转角传感器用于监测所述车身姿态。
  10. 如权利要求1所述的安全系统,其特征在于,所述集成安全域控制单元根据所述车身姿态监测模块采集到的数据计算得到监测区域,所述车辆外部信息监测模块仅监测所述监测区域内的障碍物。
  11. 如权利要求1所述的安全系统,其特征在于,所述集成安全域控制单元还用于根据所述车辆外部信息监测模块的监测信息对障碍物进行建模,以及根据所述车身姿态监测模块的监测信息对车身进行建模并且根据建模信息计算所述碰撞形态。
  12. 如权利要求11所述的安全系统,其特征在于,还包括云端数据库以及仿真数据库,所述云端数据库用于提供障碍物与车辆碰撞的历史数据,所述仿真数据库用于根据建模信息提供障碍物与车辆碰撞的仿真数据;所述集成安全域控制单元根据所述历史数据以及所述仿真数据计算所述碰撞形态。
  13. 一种车辆安全装置,其特征在于,包括外部气囊以及如权利要求1-12任意一项所述的安全系统。
  14. 一种提高车辆道路兼容性的方法,其特征在于,所述车辆包括外部气囊,所述方法包括:
    监测车辆周围的障碍物,采集车辆周围障碍物数据;
    监测车身运动以及车身姿态,采集车身姿态数据以及车身运动数据;
    根据所述车辆周围障碍物数据、所述车身运动数据以及所述车身姿态数据,计算车辆与障碍物之间的碰撞形态,包括碰撞相对速度以及碰撞重叠率;
    根据所述碰撞相对速度以及所述碰撞重叠率判断是否展开所述外部气囊;其中,控制触发展开所述外部气囊的判断条件包括,若所述碰撞相对速度小于第一速度阈值和/或所述碰撞重叠率小于第一重叠率阈值,则控制所述外部气囊保持收合,不触发展开所述外部气囊。
  15. 如权利要求14所述的提高车辆道路兼容性的方法,其特征在于,控制触发展开所述外部气囊的判断条件还包括,在所述碰撞形态下展开所述外部气囊是否降低车辆的伤害值;若否,控制所述外部气囊保持收合。
  16. 如权利要求14所述的提高车辆道路兼容性的方法,其特征在于,监测的车辆周围的障碍物包括监测车辆周围是否存在障碍物,识别所述障碍物的类型,预测所述障碍物的运动。
  17. 如权利要求14所述的提高车辆道路兼容性的方法,其特征在于,还包括:监测车内驾驶员精神状态,采集车内驾驶员的精神状态数据;根据所述状态数据以及所述车辆周围障碍物数据、所述车身运动数据以及所述车身姿态数据计算驾驶员注意到与所述障碍物发生碰撞的可能性,并根据所述可能性计算所述碰撞形态。
  18. 如权利要求14所述的提高车辆道路兼容性的方法,其特征在于,还包括: 将所述碰撞形态记录上传至云端数据库。
  19. 一种可读存储介质,其特征在于,其上存储有计算机程序,其特征在于,该程序被处理器执行实现以下步骤:
    根据输入的车辆周围障碍物数据、车身运动数据以及车身姿态数据计算车辆与障碍物之间的碰撞形态,包括碰撞相对速度以及碰撞重叠率;
    根据所述碰撞相对速度以及所述碰撞重叠率进行判断是否触发展开外部气囊,判断条件包括,若所述碰撞相对速度小于第一速度阈值和/或所述碰撞重叠率小于第一重叠率阈值,则控制所述外部气囊保持收合,不触发展开所述外部气囊。
  20. 一种车辆安全系统,用于减小弱势道路使用者与车身前部的碰撞伤害,其特征在于,所述车辆安全系统可控制车辆的前部气囊,所述车辆安全系统包括:
    监测系统,包括:
    弱势道路使用者信息监测模块,用于监测车辆周围的所述弱势道路使用者;
    车身姿态监测模块,用于监测车身运动以及车身前部姿态;
    集成安全域控制单元,用于根据所述弱势道路使用者信息监测模块、所述车身姿态监测模块采集到的数据,计算车辆与所述弱势道路使用者之间的碰撞形态,包括碰撞概率、碰撞时刻、碰撞时相对速度以及碰撞时所述弱势道路使用者的头部与车身前部的碰撞位置,根据所述碰撞形态计算所述碰撞形态下弱势道路使用者的第一伤害值以及第二伤害值,以判断在所述碰撞时刻之前是否展开所述前部气囊;其中,所述第一伤害值为在所述碰撞形态下前部气囊收合所述弱势道路使用者的伤害值,所述第二伤害值为在所述碰撞形态下前部气囊展开所述弱势道路使用者的伤害值;当所述第一伤害值大于所述第二伤害值,控制所述前部气囊触发展开;当所述第一伤害值小于所述第二伤害值,控制所述前部气囊保持收合。
  21. 如权利要求20所述的车辆安全系统,其特征在于,所述第一伤害值包括碰撞时所述前部气囊收合状态下所述弱势道路使用者的头部与车身前部的第一碰撞位置导致的第三伤害值;所述第二伤害值包括碰撞时所述前部气囊展开状态下所述弱势道路使用者的头部与车身前部的第二碰撞位置导致的第四伤害值与所述 前部气囊触发展开瞬间对所述弱势道路使用者的冲击能量导致的第五伤害值之和减去所述前部气囊展开吸收的碰撞能量导致所述弱势道路使用者的伤害减少值。
  22. 如权利要求20所述的车辆安全系统,其特征在于,所述监测系统还包括车内监测模块,用于采集车内驾驶员的精神状态数据;所述集成安全域控制单元根据所述精神状态数据以及所述弱势道路使用者信息监测模块、所述车身姿态监测模块采集到的数据计算驾驶员注意到与所述弱势道路使用者发生碰撞的可能性,并根据所述可能性计算所述碰撞形态。
  23. 如权利要求22所述的车辆安全系统,其特征在于,所述集成安全域控制单元还用于报警提示,若所述可能性低于报警阈值,则所述集成安全域控制单元输出报警信号,以增大驾驶员注意到与所述弱势道路使用者发生碰撞的可能性。
  24. 如权利要求22所述的车辆安全系统,其特征在于,所述车内监测模块包括摄像头和/或车内雷达。
  25. 如权利要求24所述的车辆安全系统,其特征在于,所述精神状态数据包括所述车内驾驶员的健康状态数据以及面部数据的其中之一或其组合。
  26. 如权利要求20所述的车辆安全系统,其特征在于,所述监测系统还包括车联网模块,所述车联网模块与所述弱势道路使用者信息监测模块共同提供车辆周围的弱势道路使用者信息。
  27. 如权利要求20所述的车辆安全系统,其特征在于,所述弱势道路使用者信息监测模块包括毫米波雷达、超声波雷达、激光雷达以及外部摄像头的其中之一或其组合。
  28. 如权利要求20所述的车辆安全系统,其特征在于,所述车身姿态监测模块包括速度传感器、横摆速度传感器以及方向盘转角传感器;
    其中,所述速度传感器用于监测所述车身运动,所述横摆速度传感器以及所述方向盘转角传感器用于监测所述车身前部姿态。
  29. 如权利要求20所述的车辆安全系统,其特征在于,所述集成安全域控制单元根据所述车身姿态监测模块采集到的数据计算得到监测区域,所述弱势道路使用者信息监测模块仅监测所述监测区域内的所述弱势道路使用者。
  30. 如权利要求20所述的车辆安全系统,其特征在于,所述集成安全域控制单元还用于根据所述弱势道路使用者信息监测模块的监测信息对弱势道路使用者进行建模,以及根据所述车身姿态监测模块的监测信息对车身进行建模,并且根据建模信息计算所述碰撞形态。
  31. 如权利要求30所述的车辆安全系统,其特征在于,还包括云端数据库以及仿真数据库,所述云端数据库用于提供弱势道路使用者与车身前部碰撞的历史数据,所述仿真数据库用于根据建模信息提供弱势道路使用者与车身前部碰撞的仿真数据;所述集成安全域控制单元根据所述历史数据以及所述仿真数据计算所述碰撞形态。
  32. 一种车辆安全装置,其特征在于,包括前部气囊以及如权利要求20-31任意一项所述的车辆安全系统。
  33. 一种增强车辆安全性的方法,用于减小弱势道路使用者与车身前部的碰撞伤害,所述车辆包括前部气囊,其特征在于,包括:
    监测车辆周围的所述弱势道路使用者;
    监测车身运动以及车身前部姿态;
    根据监测的车辆周围的所述弱势道路使用者、所述车身运动以及所述车身前部姿态计算车辆与所述弱势道路使用者之间的碰撞形态,包括碰撞概率、碰撞时刻、碰撞时相对速度以及碰撞时所述弱势道路使用者的头部与车身前部的碰撞位置;
    计算所述碰撞形态下对所述弱势道路使用者的第一伤害值以及第二伤害值,判断在所述碰撞时刻之前是否展开所述前部气囊;其中,所述第一伤害值为在所述碰撞形态下前部气囊收合所述弱势道路使用者的伤害值,所述第二伤害值为在所述碰撞形态下前部气囊展开所述弱势道路使用者的伤害值;
    当所述第一伤害值大于所述第二伤害值时,所述前部气囊展开;当所述第一伤害值小于所述第二伤害值,控制所述前部气囊保持收合。
  34. 如权利要求33所述的增强车辆安全性的方法,其特征在于,所述第一伤害值包括碰撞时所述前部气囊收合状态下所述弱势道路使用者的头部与车身前部的第一碰撞位置导致的第三伤害值;所述第二伤害值包括碰撞时所述前部气囊展开状态下所述弱势道路使用者的头部与车身前部的第二碰撞位置导致的第四伤害值与所述前部气囊触发展开瞬间对所述弱势道路使用者的冲击能量导致的第五伤害值之和减去所述前部气囊展开吸收的碰撞能量导致所述弱势道路使用者的伤害减少值。
  35. 如权利要求34所述的增强车辆安全性的方法,其特征在于,监测的车辆周围的所述弱势道路使用者包括监测车辆周围是否存在所述弱势道路使用者,识别所述弱势道路使用者的类型,跟踪所述弱势道路使用者的轨迹,预测所述弱势道路使用者的移动路径。
  36. 如权利要求33所述的增强车辆安全性的方法,其特征在于,还包括:将所述碰撞形态记录上传至云端数据库。
  37. 一种可读存储介质,其特征在于,其上存储有计算机程序,其特征在于,该程序被处理器执行实现以下步骤:
    根据输入的车辆周围的弱势道路使用者数据、车身运动数据以及车身前部姿态数据计算车辆与弱势道路使用者之间的碰撞形态,包括碰撞概率、碰撞时刻、碰撞时相对速度以及碰撞时弱势道路使用者的头部与车身前部的碰撞位置;
    计算所述碰撞形态下对弱势道路使用者的第一伤害值以及第二伤害值,其中, 所述第一伤害值为在所述碰撞形态下前部气囊收合所述弱势道路使用者的伤害值,所述第二伤害值为在所述碰撞形态下前部气囊展开所述弱势道路使用者的伤害值;
    判断在所述碰撞时刻之前是否展开所述前部气囊,当所述第一伤害值大于所述第二伤害值时,控制前部气囊展开;当所述第一伤害值小于所述第二伤害值,控制前部气囊保持收合。
PCT/CN2021/086164 2020-04-10 2021-04-09 提高车辆道路兼容性的安全系统、车辆安全系统、装置、方法及介质 WO2021204246A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21784498.4A EP4134282A1 (en) 2020-04-10 2021-04-09 Safety system for improving vehicle road compatibility, vehicle safety system, apparatus, and method, and medium
JP2023504692A JP2023522131A (ja) 2020-04-10 2021-04-09 車両の道路両立性を改善するための安全システム、車両安全システムおよび装置、方法、ならびに媒体
US17/917,089 US20230150450A1 (en) 2020-04-10 2021-04-09 Safety system for improving road compatibility of vehicle, vehicle safety system and apparatus, method, and medium

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010277905.9 2020-04-10
CN202010277905.9A CN113511167B (zh) 2020-04-10 2020-04-10 车辆安全系统、装置、增强车辆安全性的方法以及介质
CN202010278445.1A CN113511160B (zh) 2020-04-10 2020-04-10 提高车辆道路兼容性的安全系统、装置、方法以及介质
CN202010278445.1 2020-04-10

Publications (1)

Publication Number Publication Date
WO2021204246A1 true WO2021204246A1 (zh) 2021-10-14

Family

ID=78022818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/086164 WO2021204246A1 (zh) 2020-04-10 2021-04-09 提高车辆道路兼容性的安全系统、车辆安全系统、装置、方法及介质

Country Status (4)

Country Link
US (1) US20230150450A1 (zh)
EP (1) EP4134282A1 (zh)
JP (1) JP2023522131A (zh)
WO (1) WO2021204246A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114739451A (zh) * 2022-03-22 2022-07-12 国网山东省电力公司超高压公司 毫米波雷达监测下的输电导线安全预警方法
CN115064006A (zh) * 2022-06-10 2022-09-16 中国第一汽车股份有限公司 交通弱势参与者预警方法、装置、设备、存储介质和系统
CN115171387A (zh) * 2022-07-08 2022-10-11 国能(天津)大港发电厂有限公司 车辆安全监测系统、方法、电子设备及车辆

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101082112B1 (ko) * 2003-04-09 2011-11-10 오토리브 디벨로프먼트 에이비 보행자 검출 시스템
CN103863233A (zh) * 2012-12-10 2014-06-18 现代自动车株式会社 外部安全气囊展开方法和系统
CN109733317A (zh) * 2018-11-30 2019-05-10 温州大学 一种汽车多级智能防撞系统及控制方法
CN110816464A (zh) * 2018-08-07 2020-02-21 本田技研工业株式会社 车辆用保护装置及车辆

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101082112B1 (ko) * 2003-04-09 2011-11-10 오토리브 디벨로프먼트 에이비 보행자 검출 시스템
CN103863233A (zh) * 2012-12-10 2014-06-18 现代自动车株式会社 外部安全气囊展开方法和系统
CN110816464A (zh) * 2018-08-07 2020-02-21 本田技研工业株式会社 车辆用保护装置及车辆
CN109733317A (zh) * 2018-11-30 2019-05-10 温州大学 一种汽车多级智能防撞系统及控制方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114739451A (zh) * 2022-03-22 2022-07-12 国网山东省电力公司超高压公司 毫米波雷达监测下的输电导线安全预警方法
CN115064006A (zh) * 2022-06-10 2022-09-16 中国第一汽车股份有限公司 交通弱势参与者预警方法、装置、设备、存储介质和系统
CN115171387A (zh) * 2022-07-08 2022-10-11 国能(天津)大港发电厂有限公司 车辆安全监测系统、方法、电子设备及车辆

Also Published As

Publication number Publication date
JP2023522131A (ja) 2023-05-26
US20230150450A1 (en) 2023-05-18
EP4134282A1 (en) 2023-02-15

Similar Documents

Publication Publication Date Title
WO2021204246A1 (zh) 提高车辆道路兼容性的安全系统、车辆安全系统、装置、方法及介质
US20210031737A1 (en) Sensor integration based pedestrian detection and pedestrian collision prevention apparatus and method
US10821946B2 (en) Sensor integration based pedestrian detection and pedestrian collision prevention apparatus and method
JP4578795B2 (ja) 車両制御装置、車両制御方法および車両制御プログラム
EP3334631B1 (en) Vehicle to vehicle and vehicle to infrastructure response monitoring
CN102632887B (zh) 车载感知系统、防撞系统、车辆、物体状态改变评价方法
JP4760715B2 (ja) 車両運動制御装置
US8952799B2 (en) Method and system for warning a driver of a vehicle about potential obstacles behind the vehicle
EP2484573B1 (en) Method for reducing the risk of a collision between a vehicle and a first external object
JP2005056372A5 (zh)
US7095315B2 (en) Collision avoidance system for snowmobiles
CN106875746A (zh) 一种汽车安全驾驶预警系统与方法
CN109733317A (zh) 一种汽车多级智能防撞系统及控制方法
US20220153304A1 (en) Low impact detection for automated driving vehicles
CN113511167B (zh) 车辆安全系统、装置、增强车辆安全性的方法以及介质
CN113511160B (zh) 提高车辆道路兼容性的安全系统、装置、方法以及介质
US20230007914A1 (en) Safety device and method for avoidance of dooring injuries
KR102087705B1 (ko) 탑승자 신체 돌출 감지 장치 및 그 구동방법
Yue et al. An augmentation function for active pedestrian safety system based on crash risk evaluation
WO2021204245A1 (zh) 车辆安全组件、提升车辆安全性能的方法、介质
US20220169176A1 (en) Attention Assist for Dynamic Blind Zone with Driver State in the Loop
WO2020243735A1 (en) Close-in collision detection and vehicle driver behavior data collection and reporting
WO2021204244A1 (zh) 气囊模块、安全系统、提升车辆道路兼容性的方法、介质
TWI830126B (zh) 基於模糊邏輯車門控制系統
Chinthaguntla et al. A Smart Anti-Collision System for Car Doors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21784498

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023504692

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021784498

Country of ref document: EP

Effective date: 20221110

NENP Non-entry into the national phase

Ref country code: DE