WO2021203781A1 - 一种利用回收处理医疗废物制备的土工格栅及其制备方法与地基补强应用 - Google Patents

一种利用回收处理医疗废物制备的土工格栅及其制备方法与地基补强应用 Download PDF

Info

Publication number
WO2021203781A1
WO2021203781A1 PCT/CN2021/070155 CN2021070155W WO2021203781A1 WO 2021203781 A1 WO2021203781 A1 WO 2021203781A1 CN 2021070155 W CN2021070155 W CN 2021070155W WO 2021203781 A1 WO2021203781 A1 WO 2021203781A1
Authority
WO
WIPO (PCT)
Prior art keywords
medical waste
parts
geogrid
medical
prepared
Prior art date
Application number
PCT/CN2021/070155
Other languages
English (en)
French (fr)
Inventor
李晋
狄恩州
于淼章
左珅
姜鹏
崔新壮
Original Assignee
山东交通学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东交通学院 filed Critical 山东交通学院
Priority to US17/916,946 priority Critical patent/US20230149988A1/en
Publication of WO2021203781A1 publication Critical patent/WO2021203781A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/30Destroying solid waste or transforming solid waste into something useful or harmless involving mechanical treatment
    • B09B3/35Shredding, crushing or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/40Destroying solid waste or transforming solid waste into something useful or harmless involving thermal treatment, e.g. evaporation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/06Pretreated ingredients and ingredients covered by the main groups C08K3/00 - C08K7/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/10Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/005Soil-conditioning by mixing with fibrous materials, filaments, open mesh or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B2101/00Type of solid waste
    • B09B2101/65Medical waste
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B2101/00Type of solid waste
    • B09B2101/75Plastic waste
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/04Thermoplastic elastomer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/062HDPE
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/20Recycled plastic
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D2300/00Materials
    • E02D2300/0084Geogrids

Definitions

  • the invention belongs to the field of civil engineering, and in particular relates to a geogrid prepared by recycling and processing medical waste, a preparation method thereof, and foundation reinforcement application.
  • the existing medical waste disposal technology is mainly based on incineration, some of which are landfilled after high-temperature steam sterilization and dry chemical sterilization. Failure to meet the disposal technical standards of each link will have a bad impact on environmental protection. At present, there are relatively few units with relevant qualifications and limited disposal capacity. Many medical institutions generate a large amount of medical waste every day, and the distribution is extremely scattered. Disposal units have a long way to collect, take a long time, cost high, and have many hidden dangers. Many medical wastes are collected. It may not be able to be dealt with in time, causing huge hidden dangers to the healthy life of the public.
  • the invention aims to solve the problem of difficult medical waste treatment, realize part of the medical waste reuse through disinfection treatment and reprocessing, and provide a method for recycling and processing medical waste to prepare a geogrid.
  • the first aspect of the present invention provides a geogrid prepared by recycling medical waste, which is prepared from the following raw materials: 70-90 parts of medical plastic waste, 3.5-5 parts of modified fillers, and 6.5 parts of processing aids. -15 parts, 1-2 bundles of high-strength fiber bundles.
  • the method of the present application improves the product performance of the geosynthetic material and reduces the manufacturing cost, so that the geogrid prepared by recycling medical waste has many market competitive advantages.
  • this application adds modified fillers such as silicon carbide whiskers and kaolin to improve the light and heat stability of the product when the masterbatch is manufactured by melting in a certain proportion. Performance; adding modified carbon black, paraffin wax, calcium stearate and other processing aids to improve the anti-aging and oxidation properties of the manufactured products and solve the problems of acid, alkali, and salt erosion, so that the elongation and tensile strength of the material Be improved.
  • the second aspect of the present invention provides a method for preparing a geogrid prepared by recycling medical waste, including:
  • the masterbatch is melted and compounded with the high-strength fiber bundle, rolled into a plate, punched, and stretched to obtain a geogrid.
  • the third aspect of the present invention provides any one of the aforementioned geogrids prepared by recycling and processing medical waste in dam and roadbed reinforcement, side slope protection, cave wall reinforcement, large airports, parking lots, and terminal cargo yards.
  • the application of permanent bearing foundation reinforcement is any one of the aforementioned geogrids prepared by recycling and processing medical waste in dam and roadbed reinforcement, side slope protection, cave wall reinforcement, large airports, parking lots, and terminal cargo yards.
  • the present invention adopts the above technical scheme for preparing geogrid, recycling and processing medical plastic waste to prepare matrix materials, and according to different commercial uses, choose to add different fiber materials to prepare reinforcement materials.
  • the present invention innovatively solves some of the medical waste treatment problems, and actively responds to the national policy on "promoting the centralized and harmless treatment of medical waste and encouraging the research and development of relevant medical waste safe disposal technologies".
  • the geogrid adopting the technical scheme has a simple preparation process, low cost, excellent comprehensive performance, strong market competitiveness, and creates more economic and social benefits while reducing waste pollution and protecting the environment.
  • a method for preparing geogrid by recycling medical waste including: recycling part of medical waste, processing and then processing into broken materials, then adding modified fillers, processing aids, selecting high-strength fibers and compounding with them, melting, pressing, and stretching.
  • the part of the medical waste is one or any combination of used medical plastic products and medical plastic products that have expired and have not been used.
  • the high-strength fiber bundle is a fiber material commonly used in the manufacture of geogrid on the market.
  • the modified filler is a stabilizer to improve the stability of the component materials to heat and light.
  • the processing aids are enhancers to improve the properties of the component materials.
  • the part of the medical waste contains polypropylene (PP), polyethylene (PE), polyvinyl chloride (PVC), high-density polyethylene (HDPE), polyolefin thermoplastic elastomer
  • PP polypropylene
  • PE polyethylene
  • PVC polyvinyl chloride
  • HDPE high-density polyethylene
  • TPE polyethylene
  • TPE polyethylene
  • HDPE high-density polyethylene
  • the high-strength fiber bundle is more than one bundle of carbon fiber, glass fiber, steel-plastic fiber, polyester fiber, PBO fiber and other fiber materials commonly used in the manufacture of geogrid. Grid reinforcement material.
  • the modified filler is calcium carbonate or calcium sulfate, sodium polyacrylate thickener, zinc oxide whisker or silicon carbide whisker, short carbon fiber, silica, kaolin or montmorillonite, talc One or a combination of powder or mica powder.
  • the processing aid is modified carbon black, paraffin wax, stearic acid, barium or calcium stearate, bis(2-ethylhexyl) phthalate (commercial name DOP) one or a combination of several of them. Incorporation of quantitative modified carbon black, paraffin wax and bis(2-ethylhexyl) phthalate in proportion will greatly improve the flexibility and anti-aging properties of the material, and incorporation of appropriate amounts of stearic acid and calcium stearate in proportion Greatly improve the thermal stability of the material, and eliminate the influence of the melted PVC reinforcement on the stability of the material. These processing aids (processing aid combinations) will enhance the strength of the product, make it have anti-aging and oxidation properties, and can resist corrosion in harsh environments such as acids, alkalis, and salts.
  • DOP bis(2-ethylhexyl) phthalate
  • the geogrid prepared by recycling medical waste choose different high-strength fiber materials (carbon fiber, glass fiber, polyester fiber, steel-plastic fiber, PBO fiber, etc.) as the reinforcement material, made of some plastic medical waste, Fillers and additives are used as matrix materials to be melted and extruded by an extruder to prepare a wrapping layer; the wrapping layer is wrapped with continuous high-strength fiber bundles and then calendered to prepare grid ribs, which are then processed by geogrid ribs Staggered and connected to form different grid structures.
  • high-strength fiber materials carbon fiber, glass fiber, polyester fiber, steel-plastic fiber, PBO fiber, etc.
  • the part of the plastic medical waste is: polypropylene (PP), polyethylene (PE), polyvinyl chloride (PVC), high-density polyethylene (HDPE), polyolefin thermal Plastic elastomer (TPE) type used medical plastic products and expired unused medical plastic products or any combination of several.
  • PP polypropylene
  • PE polyethylene
  • PVC polyvinyl chloride
  • HDPE high-density polyethylene
  • TPE polyolefin thermal Plastic elastomer
  • the high-strength fiber bundle is more than one carbon fiber, glass fiber, steel-plastic fiber, polyester fiber, PBO fiber and other fiber materials commonly used in the manufacture of geogrid in the market.
  • the modified filler is calcium carbonate or calcium sulfate, sodium polyacrylate thickener, zinc oxide whisker or silicon carbide whisker, short carbon fiber, silica, kaolin or montmorillonite, talc One or a combination of powder or mica powder.
  • the processing aid is modified carbon black, paraffin, stearic acid, barium or calcium stearate, bis(2-ethylhexyl) phthalate (commercial name DOP) One or a combination of several.
  • the method for preparing a geogrid by recycling medical waste includes the following steps:
  • the step 1) medical waste reprocessing is to sterilize the recovered medical plastic waste, and then process the medical plastic waste crushed material.
  • the manufacturing masterbatch of the step 2) is to fully blend 75-90 parts of waste crushed material, 3.5-5 parts of modified filler, and 6.5-9 parts of processing aids to obtain a uniform mixture. Then the mixture is melted and extruded through a parallel twin-screw extruder at 160°C to 200°C to form master batches;
  • the modified filler is composed of 10 parts of calcium carbonate, 35 parts of sodium polyacrylate, 10 parts of silicon carbide whiskers, 15 parts of kaolin and 25 parts of talc powder after being uniformly ground and thoroughly mixed.
  • the processing aid is composed of 25 parts of modified carbon black, 15 parts of paraffin wax, 10 parts of calcium stearate, and 50 parts of DOP, respectively, after being uniformly ground and thoroughly mixed.
  • the masterbatch and the high-strength fiber are melted and compounded.
  • the masterbatch made in the step 2) is melted and compounded with a certain content of high-strength fiber through the die of the extruder, and then the compound is dipped and wrapped.
  • the sheet forming in step 4) is to roll the composite melt prepared in step 3) into a sheet by using a three-roll press.
  • the punching in step 5) is to punch the plate made in step 4) with a punch to make a perforated plate;
  • the stretching in step 6) is to heat the orifice plate prepared in step 5) to 80°C to 100°C and then stretch to obtain a finished product.
  • Example 1 PBO fiber geogrid for mine
  • Mine geogrids are also called false roofs of underground plastic nets in mine production operations, or false roofs for short. Mine geogrids are commonly used as protection for false roof support in underground mining face, and can also be used as soil and rock anchoring and reinforced supporting materials for other mine roadway engineering, slope protection engineering, underground civil engineering and traffic road engineering . Because of the special working environment, mining geogrids are required to have the characteristics of light weight, high strength, antistatic, non-corrosive, and flame retardant. The strength of PBO fiber products is the highest among the existing chemical fibers; the heat-resistant temperature reaches 600°C, the limiting oxygen index is 68, it does not burn or shrink in the flame, and its heat resistance and flame resistance are higher than any other organic fiber. .
  • the prepared PBO fiber geogrid is not easy to generate static electricity due to friction, is light in weight, and is convenient for underground transportation, carrying and construction.
  • the elongation at break is 4.5%
  • the tensile strength is 600MPa
  • it has a strong load-bearing capacity which can effectively prevent the falling of the broken coal and protect the safety of workers in the mine and the safety of the operation of the mine cart.
  • the flame retardant performance is good, and it can reach the flame retardant performance specified in the coal industry standards MT141-2005 and MT113-1995 respectively.
  • Example 2 Carbon fiber roadbed geogrid
  • Carbon fiber is a new material with excellent mechanical properties. Its specific gravity is less than 1/4 of steel.
  • the tensile strength of carbon fiber resin composite material is more than 3500Mpa, which is 7-9 times that of steel.
  • the tensile modulus of elasticity is higher than that of steel. It is 230-430Gpa. High strength, low creep, adapt to various environmental soils, suitable for various dams and roadbed reinforcement, slope protection, and cave wall reinforcement. Large airports, parking lots, docks, cargo yards and other permanent foundation reinforcements or tall retaining walls in high-grade highways.
  • HDPE high-density polyethylene
  • modified filler (1 part of silicon carbide whisker, 2 parts of short carbon fiber
  • Processing aids 5 parts modified carbon black, 2 parts calcium stearate
  • the geogrid ribs are prepared by pulling the two-way stretching and cooling device; after cutting, they are welded into the geogrid.
  • the prepared carbon fiber roadbed geogrid has good corrosion resistance, aging resistance and creep resistance, and is suitable for long-term use in permanent projects.
  • the tensile strength is 110MPa, and the elongation at break is 5%, which can effectively increase the
  • the interlocking and occlusal function of the bearing surface of the reinforcement greatly enhance the bearing capacity of the foundation, effectively restrain the lateral displacement of the soil, and enhance the stability of the foundation.
  • Example 3 Glass fiber deep-sea operation grid
  • Glass fiber is prepared from waste glass through a series of processes. Each fiber bundle is composed of hundreds or even thousands of monofilaments.
  • the physical and chemical properties of glass fiber are extremely stable, high strength, high modulus, high wear resistance and excellent cold resistance, no long-term creep; good thermal stability, is an inorganic non-metallic material with excellent performance .
  • the addition of glass fiber when preparing the geogrid can greatly improve the abrasion resistance and shearing ability of the geogrid, and has the advantages of good insulation, strong heat resistance, good corrosion resistance, and high mechanical strength.
  • PE polyvinyl chloride
  • modified filler 4 parts of silica, 1 part of silicon carbide whiskers
  • processing aids 10 parts of modified carbon black, 3 parts of paraffin, 2 parts of bis(2-ethylhexyl) phthalate
  • the prepared glass fiber deep-sea operation grid has a tensile strength of 100 MPa and a breaking elongation of 3%.
  • the fiberglass geogrid can resist all kinds of physical abrasion and chemical erosion, it can also resist biological erosion and climate change, and ensure that its performance is not affected. It is more suitable for deep-sea operations and embankment reinforcement, which fundamentally solves the problem of using other materials as stone.
  • the cage has technical problems such as low strength, poor corrosion resistance, and short service life caused by long-term erosion of seawater.
  • Polyester fiber warp-knitted geogrid selects high-strength polyester fiber as raw material.
  • TPE polyolefin thermoplastic elastomer
  • the prepared polyester warp-knitted polyester grid has extremely high tensile strength, low elongation, corrosion resistance, aging resistance, strong bite force with base material, light weight, and drainage effect.
  • the tensile strength is 95MPa, and the elongation at break is 3.5%. It is not only used for various high-grade roads, railway soft roadbed reinforcement, embankment side slope reinforcement, retaining wall reinforcement, to enhance the overall strength, but also used for the reinforcement, isolation, and reinforcement of dams and river courses in water conservancy projects.
  • the soil foundation can also enhance its protective ability and improve the bearing capacity and stability of the foundation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Structural Engineering (AREA)
  • Agronomy & Crop Science (AREA)
  • Soil Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processing Of Solid Wastes (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

本发明属于土木工程领域,涉及一种利用回收处理医疗废物制备的土工格栅及其制备方法与地基补强应用,包括回收部分医疗废物进行处理再加工成破碎料,然后加入改性填料,加工助剂,选择高强纤维与之复合熔融压制后拉伸制成土工格栅。所述的部分医疗废物为已使用的医疗塑料制品和已过期未使用的医疗塑料制品中的一种或几种的任意组合。所述的高强纤维束为1束以上市面常见用于土工格栅制造的纤维材料。所述的改性填料为稳定剂以提高组分材料对热和光的稳定性。所述的加工助剂为增强剂以提高组分材料性能。本发明创新性地解决部分医疗废物处理难的问题,在减少了废物污染,保护环境的同时,创造了更多的经济效益和社会效益。

Description

一种利用回收处理医疗废物制备的土工格栅及其制备方法与地基补强应用 技术领域
本发明属于土木工程领域,尤其涉及一种利用回收处理医疗废物制备的土工格栅及其制备方法与地基补强应用。
背景技术
公开该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不必然被视为承认或以任何形式暗示该信息构成已经成为本领域一般技术人员所公知的现有技术。
随着医疗保健事业的长足发展与就诊人次数目的日益增加,每天社会医疗卫生机构会产生大量的医疗废物,尤其当一场大范围的疫情发生时,严峻的医疗废物处理问题亟待合理解决。医疗废物是引起疾病传播或相关公共卫生问题的重要危险性因素,已引起广泛关注。
现有的医疗废物的处置工艺主要以焚烧为主,部分施以高温蒸汽灭菌法和干化学消毒法后填埋处理,每个环节的处置技术标准不达标会对环境保护产生恶劣影响。目前取得相关资质的单位相对来说较少,处置能力有限,众多医疗机构每天产生大量的医疗废物,分布又极度分散,处置单位收集起来路途远、耗时长、成本高、隐患多,很多医疗废物有可能无法及时处置,给公众健康生活造成了巨大的隐患。
多个国家推行医疗废物集中无害化处置,鼓励有关医疗废物安全处置技术的研究与开发。目前通过研究发现,回收部分医疗废物塑料制品中的高分子材料,经过消毒处理和施行再加工工艺后可用于土工格栅制造。但发明人发现:目前医 疗废物塑料制造的土工格栅在产品性能和制造成本上仍有待提高。
发明内容
本发明旨在解决医疗废物处理难的问题,通过消毒处理再加工实现部分医疗废物再利用,提供回收处理医疗废物制备土工格栅的方法。
为实现上述技术目的,本发明采用如下技术方案:
本发明的第一个方面,提供了一种利用回收处理医疗废物制备的土工格栅,由以下原料制备而成:医疗塑料废物70-90份、改性填料3.5-5份,加工助剂6.5-15份、高强纤维束1-2束。
本申请的方法提高了土工合成材料的产品性能、降低了制造成本,使这种通过回收医疗废物制备的土工格栅具有许多市场竞争优势。
本申请与现有“高强度纤维材料来增强废旧塑料”的方法相比,在按一定比例熔融制造母粒时,加入像碳化硅晶须、高岭土等改性填料以来提高制造物的光热稳定性;加入改性炭黑、石蜡、硬脂酸钙等加工助剂以来提升制造物的抗老化、氧化性并能解决酸、碱、盐侵蚀的问题,使得材料的伸长率、拉伸强度得到提高。
本发明的第二个方面,提供了一种利用回收处理医疗废物制备的土工格栅的制备方法,包括:
将医疗废物消毒、破碎,形成医疗废物破碎料;
将所述医疗废物破碎料与一定比例的改性填料、加工助剂熔融造粒,形成母粒;
将母粒与高强度纤维束熔融复合,辊压成板材、冲孔、拉伸,即得土工格栅。
本发明的第三个方面,提供了任一项上述的利用回收处理医疗废物制备的土工格栅在堤坝和路基补强、边坡防护、洞壁补强,大型机场、停车场、码头货场 的永久性承载的地基补强中的应用。
本发明的有益效果在于:
(1)本发明由于采用了以上制备土工格栅的技术方案,回收处理医疗塑料废物制备基体材料,根据不同的商业用途,选择添加不同的纤维材料制备增强体材料。本发明创新性地解决了部分医疗废物处理难题,积极响应了国家关于“推行医疗废物集中无害化处置,鼓励有关医疗废物安全处置技术的研究与开发”的相关政策。采用本技术方案的土工格栅制备工艺简单,成本低廉,综合性能优异,具有较强的市场竞争力,在减少了废物污染,保护环境的同时,创造了更多的经济效益和社会效益。
(2)本申请的操作方法简单、成本低、具有普适性,易于规模化生产。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本申请使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
一种利用回收处理医疗废物制备土工格栅的方法,包括:回收部分医疗废物进行处理再加工成破碎料,然后加入改性填料,加工助剂,选择高强纤维与之复合熔融压制后拉伸制成土工格栅。所述的部分医疗废物为已使用的医疗塑料制品 和已过期未使用的医疗塑料制品中的一种或几种的任意组合。所述的高强纤维束为1束以上市面常见用于土工格栅制造的纤维材料。所述的改性填料为稳定剂以提高组分材料对热和光的稳定性。所述的加工助剂为增强剂以提高组分材料性能。
在一些实施例中,所述的部分医疗废物为含聚丙烯(PP)类,聚乙烯(PE)类,聚氯乙烯(PVC)类,高密度聚乙烯(HDPE)类,聚烯烃热塑弹性体(TPE)类的已使用的医疗塑料制品和已过期未使用的医疗塑料制品,其作用为充当土工格栅基体材料。
在一些实施例中,所述的高强纤维束为1束以上的碳纤维,玻璃纤维,钢塑纤维,聚酯纤维、PBO纤维等市面常见用于土工格栅制造的纤维材料,其作用为充当土工格栅增强体材料。
在一些实施例中,所述的改性填料为碳酸钙或硫酸钙、聚丙烯酸钠增稠剂、氧化锌晶须或碳化硅晶须、短碳纤维、二氧化硅、高岭土或蒙脱土、滑石粉或云母粉中的一种或几种的组合。掺入一定比例的碳化硅晶须和短碳纤维,不单单提升材料耐高温的性能,更大幅度提升材料的抗磨性和耐腐蚀性,增加材料的寿命;掺入定比例的高岭土、二氧化硅和聚丙烯酸钠增稠剂将使材料的耐高温性能和延展性能提高;定量的短碳纤维、碳酸钙和云母粉掺混和增强体熔融后,所得材料的耐高温、耐腐蚀能力增强的同时材料的韧性、抗老化能力也显著提升,材料寿命得到延长。这些改性填料(改性填料组合)将提高产品的光热稳定性和抗老化性能。
在一些实施例中,所述的加工助剂为改性炭黑、石蜡、硬脂酸、硬脂酸钡或硬脂酸钙、邻苯二甲酸二(2-乙基己基)酯(商业名称DOP)其中的一种或几种的组合。按比例掺入定量改性炭黑、石蜡和邻苯二甲酸二(2-乙基己基)酯将大幅提升 材料的柔韧性和抗老化性能、按比例掺入适量硬脂酸和硬脂酸钙大大提升材料的热稳定性,消除聚氯乙烯增强体熔融后对材料稳定性的影响。这些加工助剂(加工助剂组合)将提升产品强度,使其具有抗老化、氧化性能,可耐酸、碱、盐等恶劣环境的腐蚀。
在一些实施例中,包括以下几个步骤:
1)医疗废物消毒再加工处理成破碎料。
2)按照重量份数计算,是将相应比例的混合物熔融制造母粒。
3)母粒和高强度纤维熔融复合。
4)辊压板材成型。
5)冲孔制得孔板。
6)拉伸制得成品。
回收处理医疗废物制备的土工格栅,根据不同的用途,选择不同的高强纤维材料(碳纤维,玻璃纤维,聚酯纤维、钢塑纤维,PBO纤维等)作为增强体材料,由部分塑料医疗废物、填料、及添加剂作为基体材料,经挤出机熔融挤出制备而成包裹层;将包裹层包裹连续的高强纤维束压延后制备而成格栅筋条,再由土工格栅筋条进行加工处理交错排列连接成不同的网格结构。
通过下列重量份数计算的基体组份原料加工而得:
包括70-90份医疗塑料废物,3.5-5份改性填料,6.5-15份加工助剂。
在一些实施例中,所述的部分塑料医疗废物为:含聚丙烯(PP)类,聚乙烯(PE)类,聚氯乙烯(PVC)类,高密度聚乙烯(HDPE)类,聚烯烃热塑弹性体(TPE)类的已使用的医疗塑料制品和已过期未使用的医疗塑料制品中的一种或几种的任意组合。
在一些实施例中,所述的高强纤维束为1束以上的碳纤维,玻璃纤维,钢塑纤维,聚酯纤维、PBO纤维等市面常见用于土工格栅制造的纤维材料。
在一些实施例中,所述的改性填料为碳酸钙或硫酸钙、聚丙烯酸钠增稠剂、氧化锌晶须或碳化硅晶须、短碳纤维、二氧化硅、高岭土或蒙脱土、滑石粉或云母粉中的一种或几种的组合。优选地,所述的加工助剂为改性炭黑、石蜡、硬脂酸、硬脂酸钡或硬脂酸钙、邻苯二甲酸二(2-乙基己基基)酯(商业名称DOP)其中的一种或几种的组合。
对所述的一种回收处理医疗废物制备土工格栅方法,包括以下几个步骤:
1)医疗废物再加工处理2)制造母粒;3)母粒和高强度纤维熔融复合;4)板材成型;5)冲孔;6)拉伸。
所述步骤1)医疗废物再加工处理,是将回收来的医疗塑料废物进行消毒处理,然后加工得到医疗塑料废物破碎料。
所述步骤2)的制造母粒,按照重量份数计算,是将75-90份废物破碎料,3.5-5份改性填料,6.5-9份加工助剂充分共混,得到均匀的混合物,再将混合物通过平行双螺杆挤出机经160℃~200℃熔融挤出制成母粒;
在一些实施例中,按照重量份数计算,改性填料是由10份碳酸钙、35份聚丙烯酸钠、10份碳化硅晶须、15份高岭土和25份滑石粉各自研磨均匀后充分混合。
在一些实施例中,按照重量份数计算,加工助剂是由25份改性炭黑、15份石蜡、10份硬脂酸钙、50份DOP各自研磨均匀后充分混合。
所述步骤3)母粒和高强度纤维熔融复合,是将所述步骤2)制成的母粒通过挤出机模头与一定含量的高强度纤维进行熔融复合,然后进行复合浸胶包裹。
所述步骤4)的板材成型,是将步骤3)制得的复合熔体通过三辊压机辊压制成板材。
所述步骤5)的冲孔,是将步骤4)制成的板材由冲压机冲孔制得孔板;
所述步骤6)的拉伸,是将步骤5)制得的孔板升温至80℃~100℃后拉伸制得成品。
下面结合具体的实施例,对本发明做进一步的详细说明,应该指出,所述具体实施例是对本发明的解释而不是限定。
以下实施例中原料来源如下:
实施例1:PBO纤维矿用土工格栅
矿用土工格栅在矿山生产作业中也称作矿井下塑料网假顶,简称假顶网。矿井下回采工作面假顶支护中常用矿用土工格栅作为护帮,亦可用作其它矿山巷道工程、边坡防护工程、地下土建工程和交通道路工程的土石锚固、加强的支护材料。因为工作环境特殊,需要矿用土工格栅具有轻质高强,抗静电,无腐蚀,阻燃的特性。PBO纤维产品的强度在现有的化学纤维中最高;耐热温度达到600℃,极限氧指数68,在火焰中不燃烧、不收缩,耐热性和难燃性高于其它任何一种有机纤维。
按重量份数计算,将85份聚丙烯(PP类)医疗塑料废物破碎料(选用一次性输血袋)、4份改性填料(1份聚丙烯酸钠增稠剂、2份高岭土、1份氧化锌晶须)、11份加工助剂(7份硬脂酸钙、4份硬脂酸)在双螺杆挤出机上熔融造粒,再将母粒通过挤出机模头与200D的PBO纤维(聚对苯撑苯并二噁唑纤维)100根4束进行熔融复合,经复合浸胶包裹,通过牵引双向拉伸、冷却装置制备成土工格栅筋条;经裁剪后,焊接成土工格栅。
所制得的PBO纤维土工格栅磨擦不易产生静电,质量轻,便于井下运输、携带和施工。断裂延伸率为4.5%,拉伸强度为600MPa,有较强的承载能力,能有效防止碎煤块的掉落,保护矿井下工人的安全和矿车运行的安全。阻燃性能良好,可分别达到煤炭行业标准MT141-2005、MT113-1995规定的阻燃性能。
实施例2:碳纤维路基土工格栅
碳纤维是一种力学性能优异的新材料,它的比重不到钢的1/4,碳纤维树脂复合材料抗拉强度达3500Mpa以上,是钢的7-9倍,抗拉弹性模量高于钢,为230-430Gpa。强度大、蠕变小、适应各类环境土壤,适用于各种堤坝和路基补强、边坡防护、洞壁补强。大型机场、停车场、码头货场等永久性承载的地基补强或高等级公路中的高大挡墙使用。
按重量份数计算,将90份高密度聚乙烯(HDPE)类医疗塑料废物破碎料(选用医用透析纸)、3份改性填料(1份碳化硅晶须、2份短碳纤维)、7份加工助剂(5份改性炭黑、2份硬脂酸钙)在双螺杆挤出机上熔融造粒,再将母粒通过挤出机模头与10D的碳纤维100根2束进行熔融复合,经复合浸胶包裹,通过牵引双向拉伸、冷却装置制备成土工格栅筋条;经裁剪后,焊接成土工格栅。
所制得的碳纤维路基土工格栅具有较好的耐腐蚀、抗老化抗蠕变等性能,适合永久性工程的长期使用,抗拉强度为110MPa,断裂延伸率为5%,能有效的提高加筋承载面的嵌锁、咬合作用、极大程度的增强地基的承载力、有效的约束土体的侧向位移,增强地基稳固性能。
实施例3:玻璃纤维深海作业格栅
玻璃纤维是以废旧玻璃为原料,经过一系列工艺制备而得。每根纤维束都是 由数百根甚至上千根单纤维丝组成。玻璃纤维理化性能极具稳定,强度大、模量高,并且具有很高的耐磨性和优异的对寒性,无长期蠕变;热稳定性好,是一种性能优异的无机非金属材料。制备土工格栅时加入玻璃纤维能极大地提高了土工格栅的耐磨性及剪切能力,具有绝缘性好、耐热性强、抗腐蚀性好,机械强度高等优点。
按重量份数计算,将80份聚氯乙烯(PE)类医疗塑料废物破碎料(选用一次性塑料输液器)、5份改性填料(4份二氧化硅、1份碳化硅晶须)、15份加工助剂(10份改性炭黑、3份石蜡、2份邻苯二甲酸二(2-乙基己基)酯)在双螺杆挤出机上熔融造粒,再将母粒通过挤出机模头与玻璃纤维进行熔融复合,经复合浸胶包裹,通过牵引单向拉伸、冷却装置制备成土工格栅筋条;经裁剪后,焊接成土工格栅。
所制得的玻璃纤维深海作业格栅抗拉强度为100MPa,断裂延伸率为3%。适应各类环境土壤,承载力强、抗腐蚀、抗老化、使用寿命长,能有效的避免在施工过程中被机具碾压破坏而造成的施工损伤。因为玻纤土工格栅能够抵抗各类物理磨损和化学侵蚀,还能抵御生物侵蚀和气候变化,保证其性能不受影响,更适应于深海作业、堤岸加固,从根本上解决了其他材料做石笼因长期受海水冲蚀而造成的强度低、耐腐蚀性能差、使用寿命短等技术难题。
实施例4:聚酯经编涤纶格栅
聚酯纤维经编土工格栅选取用高强聚酯纤维为原料。抗拉强度高,延伸力小,抗撕力强度大,纵横强度差异小,耐紫外线老化、耐磨损、耐腐蚀、质轻、与土或碎石嵌锁力强,对增强土体抗剪及补强提高土体的整体性与荷载力,具有显著作用。
按重量份数计算,将85份聚烯烃热塑弹性体(TPE)类医疗塑料废物破碎料(选用一次性无菌输液器)、4份改性填料(1份碳酸钙、1份云母粉、2份短碳纤维)、11份加工助剂(6份改性炭黑、3份硬脂酸钙、2份石蜡)在双螺杆挤出机上熔融造粒,再将母粒通过挤出机模头与高强聚酯纤维进行熔融复合,经复合浸胶包裹,通过牵引拉伸冷却采用经编定向结构,织物中的经纬向纱线相互间无弯曲状态,交叉点用高强纤维长丝捆绑结合起来,形成牢固的结合点,制备成土工格栅。
所制得的聚酯经编涤纶格栅具有极高的抗拉强度、延伸率小、耐腐蚀、耐老化、与基料有较强的咬合力、质量轻、有排水作用等多种特性,抗拉强度为,95MPa,断裂延伸率为3.5%。不仅用于各种高等级道路,铁路的软路基增强,路堤边坡加筋、挡土墙加筋,增强整体强度,还能用于水利工程中的堤坝、河道的加筋、隔离、加固软土基础,也能增强其防护能力,提高基础的承载力和稳定性。
最后应该说明的是,以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。上述虽然对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

Claims (10)

  1. 一种利用回收处理医疗废物制备的土工格栅,其特征在于,由以下原料制备而成:医疗塑料废物70-90份、改性填料3.5-5份,加工助剂6.5-15份、高强纤维束1-2束。
  2. 如权利要求1所述的利用回收处理医疗废物制备的土工格栅,其特征在于,由以下原料制备而成:医疗塑料废物70-80份、改性填料3.5-4份,加工助剂6.5-10份、高强纤维束1-2束。
  3. 如权利要求1所述的利用回收处理医疗废物制备的土工格栅,其特征在于,由以下原料制备而成:医疗塑料废物80-90份、改性填料4-5份,加工助剂10-15份、高强纤维束1-2束。
  4. 如权利要求1所述的利用回收处理医疗废物制备的土工格栅,其特征在于,所述医疗塑料废物为以聚丙烯PP类,聚乙烯PE类,聚氯乙烯PVC类,高密度聚乙烯HDPE类,聚烯烃热塑弹性体TPE类为原料制备的已使用的医疗塑料制品和已过期未使用的医疗塑料制品。
  5. 如权利要求1所述的利用回收处理医疗废物制备的土工格栅,其特征在于,所述高强纤维束为碳纤维,玻璃纤维,钢塑纤维,聚酯纤维或PBO纤维中的至少一种。
  6. 如权利要求1所述的利用回收处理医疗废物制备的土工格栅,其特征在于,所述改性填料为碳酸钙或硫酸钙、聚丙烯酸钠增稠剂、氧化锌晶须或碳化硅晶须、短碳纤维、二氧化硅、高岭土或蒙脱土、滑石粉或云母粉中的一种或几种的组合。
  7. 如权利要求1所述的利用回收处理医疗废物制备的土工格栅,其特征在于,所述加工助剂为改性炭黑、石蜡、硬脂酸、硬脂酸钡、硬脂酸钙或邻苯二甲酸二(2-乙基己基)酯中的一种或几种的组合。
  8. 一种利用回收处理医疗废物制备的土工格栅的制备方法,其特征在于,包括:
    将医疗废物消毒、破碎,形成医疗废物破碎料;
    将所述医疗废物破碎料与改性填料、加工助剂混合、熔融造粒,形成母粒;将母粒与高强度纤维束熔融复合,辊压成板材、冲孔、拉伸,即得土工格栅。
  9. 如权利要求8所述的利用回收处理医疗废物制备的土工格栅的制备方法,其特征在于,所述熔融温度为160℃~200℃。
  10. 权利要求1-7任一项所述的利用回收处理医疗废物制备的土工格栅在堤坝和路基补强、边坡防护、洞壁补强,大型机场、停车场、码头货场的永久性承载的地基补强中的应用。
PCT/CN2021/070155 2020-04-10 2021-01-04 一种利用回收处理医疗废物制备的土工格栅及其制备方法与地基补强应用 WO2021203781A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/916,946 US20230149988A1 (en) 2020-04-10 2021-01-04 Geogrid prepared by recycling medical waste and preparation method therefor, and use in foundation reinforcement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010281198.0A CN111363241A (zh) 2020-04-10 2020-04-10 一种利用回收处理医疗废物制备的土工格栅及其制备方法与地基补强应用
CN202010281198.0 2020-04-10

Publications (1)

Publication Number Publication Date
WO2021203781A1 true WO2021203781A1 (zh) 2021-10-14

Family

ID=71203198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/070155 WO2021203781A1 (zh) 2020-04-10 2021-01-04 一种利用回收处理医疗废物制备的土工格栅及其制备方法与地基补强应用

Country Status (3)

Country Link
US (1) US20230149988A1 (zh)
CN (1) CN111363241A (zh)
WO (1) WO2021203781A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111363241A (zh) * 2020-04-10 2020-07-03 山东交通学院 一种利用回收处理医疗废物制备的土工格栅及其制备方法与地基补强应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100080659A1 (en) * 2008-09-29 2010-04-01 Prs Mediterranean Ltd. Geocell for load support applications
CN104818704A (zh) * 2015-05-24 2015-08-05 贵州蓝图新材料股份有限公司 Pbo纤维高强土工格栅
CN104818703A (zh) * 2015-05-24 2015-08-05 贵州蓝图新材料股份有限公司 芳纶纤维高强土工格栅
CN104895040A (zh) * 2015-05-24 2015-09-09 贵州蓝图新材料股份有限公司 碳纤维高强土工格栅
CN105400159A (zh) * 2015-12-18 2016-03-16 上海自立塑料制品有限公司 一种再生pet/tpr合金土工格栅及其制备方法
CN105694228A (zh) * 2016-04-21 2016-06-22 山东大学 一种塑料土工格栅用聚丙烯改性三元复合材料及制备方法、应用
CN111363241A (zh) * 2020-04-10 2020-07-03 山东交通学院 一种利用回收处理医疗废物制备的土工格栅及其制备方法与地基补强应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7541084B2 (en) * 2007-03-01 2009-06-02 Prs Mediterranean Ltd. Geotechnical articles
CN104277298A (zh) * 2014-10-25 2015-01-14 安徽杰奥玛克合成材料科技有限公司 一种利用废弃交联聚乙烯电缆料加工改性土工格栅及其制备方法
CN107043523A (zh) * 2017-04-28 2017-08-15 上海自立塑料制品有限公司 Pet高聚物土工格室片材及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100080659A1 (en) * 2008-09-29 2010-04-01 Prs Mediterranean Ltd. Geocell for load support applications
CN104818704A (zh) * 2015-05-24 2015-08-05 贵州蓝图新材料股份有限公司 Pbo纤维高强土工格栅
CN104818703A (zh) * 2015-05-24 2015-08-05 贵州蓝图新材料股份有限公司 芳纶纤维高强土工格栅
CN104895040A (zh) * 2015-05-24 2015-09-09 贵州蓝图新材料股份有限公司 碳纤维高强土工格栅
CN105400159A (zh) * 2015-12-18 2016-03-16 上海自立塑料制品有限公司 一种再生pet/tpr合金土工格栅及其制备方法
CN105694228A (zh) * 2016-04-21 2016-06-22 山东大学 一种塑料土工格栅用聚丙烯改性三元复合材料及制备方法、应用
CN111363241A (zh) * 2020-04-10 2020-07-03 山东交通学院 一种利用回收处理医疗废物制备的土工格栅及其制备方法与地基补强应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG YONG-YAO: "Progress on Recovery and Utilization of Polyethylene and Polypropylene Plastics Waste", PETROCHEMICAL TECHNOLOGY, vol. 32, no. 8, 20 August 2003 (2003-08-20), pages 718 - 723, XP055856240, ISSN: 1000-8144 *

Also Published As

Publication number Publication date
CN111363241A (zh) 2020-07-03
US20230149988A1 (en) 2023-05-18

Similar Documents

Publication Publication Date Title
AU2020244527B2 (en) Self-supporting, synthetic polymer waterproof membrane with self-healing ability
US8025457B2 (en) Geocell for load support applications
EP3095920B1 (en) Geocell for load support applications
WO2021203781A1 (zh) 一种利用回收处理医疗废物制备的土工格栅及其制备方法与地基补强应用
CN104895040A (zh) 碳纤维高强土工格栅
CN107558464A (zh) 一种高强耐腐蚀多向土工格栅
CN105040669B (zh) 一种缝合加筋复合土工膜
Neppalli et al. Polystyrene/TiO2 composite electrospun fibers as fillers for poly (butylene succinate-co-adipate): Structure, morphology and properties
CN104277295A (zh) 玻璃纤维增强土工格栅的制备方法
CN101831101B (zh) 一种利用废旧塑料生产汽车雨篷专用料制备方法
CN104818703A (zh) 芳纶纤维高强土工格栅
CN107955344B (zh) 微孔轻量化聚酯(pet)塑料土工格栅及其制造方法
Kumaresan et al. Implementation of waste recycled fibers in concrete: A review
CN105400159B (zh) 一种再生pet/tpr合金土工格栅及其制备方法
CN109942956A (zh) 一种土工格栅用复合材料及其制备方法
KR20080053033A (ko) 복합형 지오그리드 및 그 제조방법
KR101487753B1 (ko) 폐고무와 폐합성수지를 이용하여 제조된 인장강도가 우수한 토목·건축건자재
CN111234555A (zh) 一种基于医疗废物的土工格室及制备方法与应用
Tawiah et al. Characterization of recycled plastics for structural applications
CN109486234A (zh) 一种废旧塑料再生直投式沥青混合料改性剂及其制备方法
CN104818704A (zh) Pbo纤维高强土工格栅
CN106592566B (zh) 一种蜂巢式塑料土木格栅及生产工艺
CN101812188A (zh) 一种适于吹膜的淀粉基生物树脂的制备方法
CN201924335U (zh) 高强复合纤维土工格栅
CN110317389A (zh) 一种复合阻燃隧道防水板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21784827

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21784827

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 14.06.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21784827

Country of ref document: EP

Kind code of ref document: A1