WO2021203678A1 - 一种基于炉内分区控制的燃用高碱煤结渣沾污防控方法 - Google Patents

一种基于炉内分区控制的燃用高碱煤结渣沾污防控方法 Download PDF

Info

Publication number
WO2021203678A1
WO2021203678A1 PCT/CN2020/123766 CN2020123766W WO2021203678A1 WO 2021203678 A1 WO2021203678 A1 WO 2021203678A1 CN 2020123766 W CN2020123766 W CN 2020123766W WO 2021203678 A1 WO2021203678 A1 WO 2021203678A1
Authority
WO
WIPO (PCT)
Prior art keywords
zone
contamination
slagging
area
furnace
Prior art date
Application number
PCT/CN2020/123766
Other languages
English (en)
French (fr)
Inventor
姚伟
张喜来
王志超
赵勇纲
白杨
刘家利
Original Assignee
西安热工研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安热工研究院有限公司 filed Critical 西安热工研究院有限公司
Publication of WO2021203678A1 publication Critical patent/WO2021203678A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C3/00Combustion apparatus characterised by the shape of the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C5/00Disposition of burners with respect to the combustion chamber or to one another; Mounting of burners in combustion apparatus
    • F23C5/08Disposition of burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J1/00Removing ash, clinker, or slag from combustion chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/06Arrangements of devices for treating smoke or fumes of coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J3/00Removing solid residues from passages or chambers beyond the fire, e.g. from flues by soot blowers
    • F23J3/02Cleaning furnace tubes; Cleaning flues or chimneys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M5/00Casings; Linings; Walls
    • F23M5/08Cooling thereof; Tube walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion

Definitions

  • the invention belongs to the technical field of slagging and contamination prevention and control of pulverized coal boilers in power stations, and in particular relates to a method for preventing and controlling slagging and contamination of burning high-alkali coal based on zone control in the furnace.
  • High alkali coal has the characteristics of high alkali/alkaline earth metal content.
  • As a power coal there are serious slagging and contamination problems that are difficult to solve at home and abroad in the combustion process, which directly threatens the safety of boiler equipment and even endangers personal safety. World-class problems.
  • the purpose of the present invention is to provide a method for preventing and controlling slagging and contamination of burning high-alkali coal based on zone control in the furnace.
  • the method takes temperature and time as the core to prevent slagging and synergistically inhibit the contamination of heated surface. It can provide technical support for the design and safe operation of the newly-built full-burning high-alkali coal unit boiler.
  • a method for preventing and controlling slagging and contamination of burning high-alkali coal based on zone control in the furnace includes the following steps:
  • the slagging area is controlled from the burner to the height of the overfire air, reducing the range of the slagging area and reducing the temperature window for the release of alkali metals;
  • the severely contaminated area is controlled from the overfire air to the furnace outlet, and a large amount of alkali metal compounds are deposited in the severely contaminated area;
  • the highly contaminated area is controlled in the horizontal flue area to reduce the probability of contamination on the heating surface of the horizontal flue;
  • the further improvement of the present invention is that the temperature in the slagging zone is greater than 1250°C, the temperature in the severely contaminated zone is greater than 950°C and less than or equal to 1250°C, the temperature in the strongly contaminated zone is greater than 750°C and less than or equal to 950°C, and the temperature in the contaminated zone is generally less than or equal to 750°C. .
  • step 2) is as follows:
  • the residence time of the ash in the alkali metal release area can inhibit the release rate of alkali metal; in the slagging area, the hydraulic soot blower is fully covered, and the hydraulic soot blower is used to remove the slagging in the burner and water wall area.
  • step 3 A further improvement of the present invention is that the specific implementation method of step 3) is as follows:
  • step 4 A further improvement of the present invention is that the specific implementation method of step 4) is as follows:
  • the concentration of alkali/alkaline earth metals in the strong contamination area of the horizontal flue is controlled; the number of steam soot blowers and the frequency of soot blowing are increased in the horizontal flue area to reduce the contamination and sintering time and reduce the accumulation of soot Block strength.
  • step 5 A further improvement of the present invention is that the specific implementation method of step 5) is as follows:
  • steps 1) to 4 the temperature of the flue gas in the tail flue is reduced, and the sintering time and the sintering ratio are reduced by increasing the pipe row spacing, increasing the number of steam soot blowers and the frequency of soot blowing.
  • the present invention has the following beneficial effects:
  • the prevention and control method proposed by the present invention is: the boiler performs temperature and time control according to the slagging zone, the severely contaminated zone, the strongly contaminated zone, and the general contaminated zone, so as to realize the maximum capture of Na in the furnace, and a small amount of Na passes through the active Removal to achieve the purpose of controlling slagging and contamination.
  • the key parameters for the prevention and control of high-alkali coal slagging and contamination proposed by the present invention are shown in Fig. 1.
  • temperature and time are the key to the volatilization rate of alkali metals, the concentration in the flue gas and the sintering strength.
  • the theoretical limit of controlling slagging and contamination lays the foundation of the prevention and control method of the present invention.
  • Figure 1 shows the key factors for the prevention and control of slagging and contamination of high-alkali coal.
  • the Na release rate in the coal increases significantly with temperature.
  • Figure 2 is a schematic diagram of zone control in the furnace
  • Figure 3 is a schematic diagram of the prevention and control of slagging and contamination of burning high-alkali coal based on zone control in the furnace.
  • a layer/element when referred to as being "on" another layer/element, the layer/element may be directly on the other layer/element, or there may be an intermediate layer/element between them. element.
  • the layer/element may be located "under” the other layer/element when the orientation is reversed.
  • Na2O condensed on the heated surface reacts with SO3 in the flue gas to form Na2SO4. Due to the low melting point of Na2SO4 (884°C), it is easy to bond the fine ash in the flue gas to form a contaminated layer, and the contaminated layer Alkaline earth metals (CaO/MgO/Fe2O3) and SO3 in the flue gas further form dense sulfates, thereby forming contamination.
  • Temperature and time are the main control factors for the contamination and slagging of high alkali/alkaline earth metal coal, reducing wall temperature, flue gas temperature and high alkali/alkaline earth metal coal Ash sintering time is the most important measure to slow down the problem of slagging and contamination; by dividing the furnace into a slagging zone (greater than 1250°C), a severely contaminated zone (950 ⁇ 1250°C), and a strongly contaminated zone (750 ⁇ 950°C), general contaminated area (less than 750°C), through reasonable heating surface layout and boiler temperature zone control, a local alkali metal enrichment area in the furnace is formed, so that countermeasures can be taken in different areas; high-alkali coal slagging
  • the strategy of pollution prevention and control is to inhibit the release of alkali metals, control the formation of coal ash low-temperature eutectic and sintered ash, and organize timely and effective sl
  • the active capture and active removal of slagging and contamination measures proposed by the present invention include: reducing the average furnace temperature level, reducing the alkali metal release temperature window, and reducing coal The residence time of the ash in the alkali metal release zone; by reducing the maximum flame temperature level, the alkali metal release rate is inhibited.
  • the heating intensity of the ash deposited on the water wall is reduced; by increasing the distance between the fire ball and the water wall, the heating intensity of the ash deposited on the water wall is reduced; by controlling the probability of the primary air flow adhering to the wall, reducing the ash of the water wall The amount of slag accumulation, and the adhesion atmosphere.
  • the concentration of alkali/alkaline earth metals is controlled; by reducing the ash accumulation and sintering time, the strength of ash accumulation is reduced; the generation of SO3 in the flue gas is suppressed by low-oxygen combustion, and the generation of sodium sulfate is reduced. Sintering ratio.
  • the prevention and control method proposed by the present invention is: the boiler performs temperature and time control according to the slagging area, the severely contaminated area, the strongly contaminated area, and the general contaminated area, so as to achieve the maximum capture of Na in the furnace, and a small amount of Na can be captured in the furnace. Through active removal of Na, effective prevention and control of slagging and contamination can be realized;
  • the present invention proposes a two-dimensional prevention and control strategy for slagging and contamination of high-alkali coal to reduce furnace temperature and residence time;
  • the present invention proposes a zone control technology for controlling slagging and contamination by temperature zones.
  • the slagging and contamination are divided into slagging areas (greater than 1250°C), severely contaminated areas (950-1250°C), and strong contamination areas. (750 ⁇ 950°C), the general contaminated area (less than 750°C), through reasonable heating surface layout and boiler temperature zone control, a local alkali metal enrichment area in the furnace is formed, so that countermeasures can be taken in different zones.

Abstract

一种基于炉内分区控制的燃用高碱煤结渣沾污防控方法,包括步骤:1)将锅炉炉内按温度分为结渣区、严重沾污区、强沾污区以及一般沾污区;2)通过降低炉膛截面热负荷和燃烧器区域壁面热负荷参数,将结渣区控制在从燃烧器至燃尽风高度的区域,减少结渣区范围,缩小碱金属释放的温度窗口;3)通过降低炉膛容积热负荷参数,将严重沾污区控制在从燃尽风至炉膛出口的区域,在严重沾污区进行碱金属化合物的大量沉积;4)通过合理的受热面布置,将强沾污区控制在水平烟道区域,减少水平烟道受热面沾污概率;5)通过合理的受热面布置,将一般沾污区控制在尾部烟道区域。该方法为新建全燃高碱煤机组锅炉的设计以及安全运行提供技术支撑。

Description

一种基于炉内分区控制的燃用高碱煤结渣沾污防控方法 【技术领域】
本发明属于电站煤粉锅炉结渣沾污防控技术领域,尤其涉及一种基于炉内分区控制的燃用高碱煤结渣沾污防控方法。
【背景技术】
新疆地区煤炭资源预测储量2.19万亿吨,约占全国的40%,其中,准东、哈密地区以高碱煤为主,占新疆地区储量的45%,是“疆电外送”的国家级能源基地。高碱煤具有着火温度低、燃尽率高,燃烧经济性高,且污染物排放低,是优良的动力用煤,符合我国节能减排的目标。但是,与国内其它严重结渣煤种相比,高碱煤具有灰中Na 2O和CaO含量高、SiO 2和Al 2O 3含量低、灰熔点温度较高等特点。实际燃用情况表明,高碱煤带来严重的沾污、结渣问题,影响机组连续安全稳定运行,现有技术难以解决上述问题。
新疆苇湖梁、玛纳斯、红雁池一二厂、乌石化自备电厂、天业集团电厂、信发铝业电厂、乌鲁木齐热电、甘肃酒钢电厂等燃用高碱煤,均出现了影响机组运行的结渣和沾污现象,其中部分电厂锅炉受热面还出现高温腐蚀。而防结渣性能较好的神华米东电厂300MW循环流化床锅炉在温度较低的对流受热面也出现严重沾污积灰问题,表明高碱煤对机组设备安全运行有重大危害。燃用高碱煤的现役锅炉,从炉膛至空预器区域的所有受热面均发生了不同程度的结渣、沾污。
高碱煤具有高碱/碱土金属含量的特点,作为动力用煤在燃烧过程中存在着至今国内外尚难以解决的严重结渣和沾污问题,直接威胁锅炉设备安全,甚至危及人身安全,属于世界级难题。
【发明内容】
本发明的目的在于提供了一种基于炉内分区控制的燃用高碱煤结渣沾污防控方法,该方法以温度和时间为核心的防结渣协同抑制受热面沾污的控制理论,可为新建全燃高碱煤机组锅炉的设计以及安全运行提供技术支撑。
为达到上述目的,本发明采用以下技术方案予以实现:
一种基于炉内分区控制的燃用高碱煤结渣沾污防控方法,包括以下步骤:
1)将锅炉炉内按温度分为结渣区、严重沾污区、强沾污区以及一般沾污区;
2)通过降低炉膛截面热负荷和燃烧器区域壁面热负荷参数,将结渣区控制在从燃烧器至燃尽风高度的区域,减少结渣区范围,缩小碱金属释放的温度窗口;
3)通过降低炉膛容积热负荷参数,将严重沾污区控制在从燃尽风至炉膛出口的区域,在严重沾污区进行碱金属化合物的大量沉积;
4)通过合理的受热面布置,将强沾污区控制在水平烟道区域,减少水平烟道受热面沾污概率;
5)通过合理的受热面布置,将一般沾污区控制在尾部烟道区域。
本发明进一步的改进在于,结渣区温度大于1250℃,严重沾污区温度大于950℃小于等于1250℃,强沾污区温度大于750℃小于等于950℃,一般沾污区温度小于等于750℃。
本发明进一步的改进在于,步骤2)的具体实现方法如下:
增大锅炉炉膛截面积、增大燃烧器间距,以降低炉膛截面热负荷和燃烧器区域壁面热负荷参数,从而实现降低炉膛平均温度水平和最高火焰温度水平,缩小碱金属释放温度窗口,减少煤灰在碱金属释放区的停留时间、抑制碱金属释放速度;在结渣区实现水力吹灰器全覆盖,利用水力吹灰器清除燃烧器、水冷壁区域 的结渣。
本发明进一步的改进在于,步骤3)的具体实现方法如下:
增加炉膛高度和容积,以降低炉膛容积热负荷参数,从而降低炉膛出口烟气温度水平,将严重沾污区控制在炉膛内,避免扩展至水平烟道区域;在严重沾污区实现水力吹灰器全覆盖,利用水力吹灰器清除水冷壁、高温受热面区域的沾污。
本发明进一步的改进在于,步骤4)的具体实现方法如下,
通过降低烟气温度和管壁温度,控制水平烟道强沾污区的碱/碱土金属富集;在水平烟道区域增加蒸汽吹灰器数量和吹灰频次降低沾污烧结时间,降低积灰成块强度。
本发明进一步的改进在于,步骤5)的具体实现方法如下,
通过1)~4)步骤,降低尾部烟道中的烟气温度,通过增加管排间距、增加蒸汽吹灰器数量和吹灰频次降低沾污烧结时间,降低烧结比例。
与现有技术相比,本发明具有以下有益效果:
本发明提出的防控方法为:锅炉按照结渣区、严重沾污区、强沾污区、一般沾污区进行温度和时间控制,实现Na最大化的在炉膛内捕捉,少量的Na通过主动清除,达到控制结渣、沾污的目的。本发明提出的高碱煤结渣沾污防控关键参数如图1所示,首次提出了温度和时间是影响碱金属挥发速率、烟气中浓度和烧结强度的关键,突破了常规以单一温度控制结渣沾污的理论界限,奠定了本发明防控方法的基础。
【附图说明】
图1为高碱煤结渣沾污防控关键因素,其中图1(a)中煤中Na释放率随温度升高明显增加,图1(b)中时间越长、温度越高,煤灰的烧结越强;
图2为炉内分区控制原理图;
图3为基于炉内分区控制的燃用高碱煤结渣沾污防控原理图。
【具体实施方式】
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,不是全部的实施例,而并非要限制本发明公开的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要的混淆本发明公开的概念。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
在附图中示出了根据本发明公开实施例的各种结构示意图。这些图并非是按比例绘制的,其中为了清楚表达的目的,放大了某些细节,并且可能省略了某些细节。图中所示出的各种区域、层的形状及它们之间的相对大小、位置关系仅是示例性的,实际中可能由于制造公差或技术限制而有所偏差,并且本领域技术人员根据实际所需可以另外设计具有不同形状、大小、相对位置的区域/层。
本发明公开的上下文中,当将一层/元件称作位于另一层/元件“上”时,该层/元件可以直接位于该另一层/元件上,或者它们之间可以存在居中层/元件。另外,如果在一种朝向中一层/元件位于另一层/元件“上”,那么当调转朝向时,该层/元件可以位于该另一层/元件“下”。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能 够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
下面结合附图对本发明做进一步详细描述:
煤粉燃烧过程中Na、NaOH、NaCl、Na2O等从煤中释放并凝结在管壁上,在900~1200℃下与沉积在管壁上的灰中主要元素硅、铝化合物发生反应形成硅铝酸钠(钠长石)等,并在1300℃下全部熔融。钠长石本身熔点较低(1100℃),还可溶解石英、莫来石等高熔点物质,将在炉膛形成大面积熔融结渣区,从而形成结渣。煤粉燃烧过程中,受热面上凝结的Na2O与烟气中SO3反应生成Na2SO4,由于Na2SO4熔点低(884℃),极易粘接烟气中细灰形成沾污层,而沾污层中的碱土金属(CaO/MgO/Fe2O3)与烟气中SO3进一步形成致密的硫酸盐,从而形成沾污。
结合锅炉实际燃用高碱/碱土金属煤效果,本发明提出的炉内分区控制原理如图2所示,按温度将结渣沾污分为:
(1)结渣区(大于1250℃);
(2)严重沾污区(950~1250℃);
(3)强沾污区(750~950℃);
(4)一般沾污区(小于750℃)。
本发明提出的防控方法原理图如图3所示,温度和时间是高碱/碱土金属煤沾污和结渣问题的主要控制因素,降低壁面温度、烟气温度以及高碱/碱土金属煤 灰烧结时间是减缓结渣、沾污问题的最主要措施;通过将炉内按温度分为结渣区(大于1250℃)、严重沾污区(950~1250℃)、强沾污区(750~950℃)、一般沾污区(小于750℃),通过合理的受热面布置和锅炉温度区域控制,形成炉内局部碱金属富集区,以便于分区采取应对措施;高碱煤结渣沾污防控的策略是抑制碱金属释放、控制煤灰低温共熔和烧结灰形成和组织及时有效的结渣、沾污清除。基于温度和时间双维度控制参数和炉内分区控制的控制措施,本发明提出的主动捕集和主动清除结渣沾污措施包括:通过降低炉膛平均温度水平,缩小碱金属释放温度窗口,减少煤灰在碱金属释放区的停留时间;通过降低最高火焰温度水平,抑制碱金属释放速度。通过降低最高火焰温度,实现降低水冷壁沉积灰渣受热强度;通过增加火球与水冷壁的距离,实现降低水冷壁沉积灰渣受热强度;通过控制一次风气流贴壁的几率,实现降低水冷壁灰渣附积量,以及贴壁气氛。通过降低烟气温度和管壁温度,控制碱/碱土金属富集;通过降低积灰烧结时间,降低积灰成块强度;通过低氧燃烧抑制烟气中SO3生成,减少硫酸钠的生成,降低烧结比例。
1、专利保护的范围
(1)本发明提出的防控方法为:锅炉按照结渣区、严重沾污区、强沾污区、一般沾污区进行温度和时间控制,实现Na最大化的在炉膛内捕捉,少量的Na通过主动清除,实现结渣沾污的有效防控;
(2)本发明提出了降低炉膛温度和停留时间的双维度防控高碱煤结渣沾污策略;
本发明提出了以温度分区控制结渣沾污的分区控制技术,按温度将结渣沾污分为结渣区(大于1250℃)、严重沾污区(950~1250℃)、强沾污区(750~950℃)、 一般沾污区(小于750℃),通过合理的受热面布置和锅炉温度区域控制,形成炉内局部碱金属富集区,以便于分区采取应对措施。
以上内容仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明权利要求书的保护范围之内。

Claims (6)

  1. 一种基于炉内分区控制的燃用高碱煤结渣沾污防控方法,其特征在于,包括以下步骤:
    1)将锅炉炉内按温度分为结渣区、严重沾污区、强沾污区以及一般沾污区;
    2)通过降低炉膛截面热负荷和燃烧器区域壁面热负荷参数,将结渣区控制在从燃烧器至燃尽风高度的区域,减少结渣区范围,缩小碱金属释放的温度窗口;
    3)通过降低炉膛容积热负荷参数,将严重沾污区控制在从燃尽风至炉膛出口的区域,在严重沾污区进行碱金属化合物的大量沉积;
    4)通过合理的受热面布置,将强沾污区控制在水平烟道区域,减少水平烟道受热面沾污概率;
    5)通过合理的受热面布置,将一般沾污区控制在尾部烟道区域。
  2. 根据权利要求1所述的一种基于炉内分区控制的燃用高碱煤结渣沾污防控方法,其特征在于,结渣区温度大于1250℃,严重沾污区温度大于950℃小于等于1250℃,强沾污区温度大于750℃小于等于950℃,一般沾污区温度小于等于750℃。
  3. 根据权利要求1所述的一种基于炉内分区控制的燃用高碱煤结渣沾污防控方法,其特征在于,步骤2)的具体实现方法如下:
    增大锅炉炉膛截面积、增大燃烧器间距,以降低炉膛截面热负荷和燃烧器区域壁面热负荷参数,从而实现降低炉膛平均温度水平和最高火焰温度水平,缩小碱金属释放温度窗口,减少煤灰在碱金属释放区的停留时间、抑制碱金属释放速度;在结渣区实现水力吹灰器全覆盖,利用水力吹灰器清除燃烧器、水冷壁区域的结渣。
  4. 根据权利要求1所述的一种基于炉内分区控制的燃用高碱煤结渣沾污防 控方法,其特征在于,步骤3)的具体实现方法如下:
    增加炉膛高度和容积,以降低炉膛容积热负荷参数,从而降低炉膛出口烟气温度水平,将严重沾污区控制在炉膛内,避免扩展至水平烟道区域;在严重沾污区实现水力吹灰器全覆盖,利用水力吹灰器清除水冷壁、高温受热面区域的沾污。
  5. 根据权利要求1所述的一种基于炉内分区控制的燃用高碱煤结渣沾污防控方法,其特征在于,步骤4)的具体实现方法如下,
    通过降低烟气温度和管壁温度,控制水平烟道强沾污区的碱/碱土金属富集;在水平烟道区域增加蒸汽吹灰器数量和吹灰频次降低沾污烧结时间,降低积灰成块强度。
  6. 根据权利要求1所述的一种基于炉内分区控制的燃用高碱煤结渣沾污防控方法,其特征在于,步骤5)的具体实现方法如下,
    通过1)~4)步骤,降低尾部烟道中的烟气温度,通过增加管排间距、增加蒸汽吹灰器数量和吹灰频次降低沾污烧结时间,降低烧结比例。
PCT/CN2020/123766 2020-04-08 2020-10-26 一种基于炉内分区控制的燃用高碱煤结渣沾污防控方法 WO2021203678A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010269862.XA CN111442258A (zh) 2020-04-08 2020-04-08 一种基于炉内分区控制的燃用高碱煤结渣沾污防控方法
CN202010269862.X 2020-04-08

Publications (1)

Publication Number Publication Date
WO2021203678A1 true WO2021203678A1 (zh) 2021-10-14

Family

ID=71651268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/123766 WO2021203678A1 (zh) 2020-04-08 2020-10-26 一种基于炉内分区控制的燃用高碱煤结渣沾污防控方法

Country Status (2)

Country Link
CN (1) CN111442258A (zh)
WO (1) WO2021203678A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114564833A (zh) * 2022-02-28 2022-05-31 西安热工研究院有限公司 一种确定高碱煤锅炉炉膛热负荷参数的方法
CN117404678A (zh) * 2023-10-23 2024-01-16 国能长源荆门发电有限公司 一种用于缓解锅炉燃烧高碱煤结渣的在线配煤系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111442258A (zh) * 2020-04-08 2020-07-24 西安热工研究院有限公司 一种基于炉内分区控制的燃用高碱煤结渣沾污防控方法
CN114015489B (zh) * 2021-11-16 2024-04-09 西安热工研究院有限公司 一种利用改性草本生物质焦缓解煤燃烧沾污问题的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102425787A (zh) * 2011-12-02 2012-04-25 沈阳汇丰生物能源发展有限公司 一种液态排渣生物质燃烧装置及方法
CN102635871A (zh) * 2012-04-18 2012-08-15 东方电气集团东方锅炉股份有限公司 用于解决锅炉对流受热面沾污的方法及装置
CN202769693U (zh) * 2012-09-07 2013-03-06 中国东方电气集团有限公司 一种防止沾污结焦的锅炉
CN202769682U (zh) * 2012-09-07 2013-03-06 中国东方电气集团有限公司 一种减轻锅炉对流受热面结渣的系统
JP2015096790A (ja) * 2013-11-15 2015-05-21 三菱日立パワーシステムズ株式会社 ボイラ及び燃焼バーナ
CN108592015A (zh) * 2018-06-15 2018-09-28 清华大学 一种锅炉烟气再循环系统及其方法
CN109210557A (zh) * 2017-07-07 2019-01-15 清华大学 一种燃用高碱煤的锅炉系统及方法
CN111442258A (zh) * 2020-04-08 2020-07-24 西安热工研究院有限公司 一种基于炉内分区控制的燃用高碱煤结渣沾污防控方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207975627U (zh) * 2017-11-16 2018-10-16 东方电气集团东方锅炉股份有限公司 适合于燃用高碱性煤的660mw级超超临界锅炉

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102425787A (zh) * 2011-12-02 2012-04-25 沈阳汇丰生物能源发展有限公司 一种液态排渣生物质燃烧装置及方法
CN102635871A (zh) * 2012-04-18 2012-08-15 东方电气集团东方锅炉股份有限公司 用于解决锅炉对流受热面沾污的方法及装置
CN202769693U (zh) * 2012-09-07 2013-03-06 中国东方电气集团有限公司 一种防止沾污结焦的锅炉
CN202769682U (zh) * 2012-09-07 2013-03-06 中国东方电气集团有限公司 一种减轻锅炉对流受热面结渣的系统
JP2015096790A (ja) * 2013-11-15 2015-05-21 三菱日立パワーシステムズ株式会社 ボイラ及び燃焼バーナ
CN109210557A (zh) * 2017-07-07 2019-01-15 清华大学 一种燃用高碱煤的锅炉系统及方法
CN108592015A (zh) * 2018-06-15 2018-09-28 清华大学 一种锅炉烟气再循环系统及其方法
CN111442258A (zh) * 2020-04-08 2020-07-24 西安热工研究院有限公司 一种基于炉内分区控制的燃用高碱煤结渣沾污防控方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114564833A (zh) * 2022-02-28 2022-05-31 西安热工研究院有限公司 一种确定高碱煤锅炉炉膛热负荷参数的方法
CN114564833B (zh) * 2022-02-28 2024-03-01 西安热工研究院有限公司 一种确定高碱煤锅炉炉膛热负荷参数的方法
CN117404678A (zh) * 2023-10-23 2024-01-16 国能长源荆门发电有限公司 一种用于缓解锅炉燃烧高碱煤结渣的在线配煤系统

Also Published As

Publication number Publication date
CN111442258A (zh) 2020-07-24

Similar Documents

Publication Publication Date Title
WO2021203678A1 (zh) 一种基于炉内分区控制的燃用高碱煤结渣沾污防控方法
CN102563624B (zh) 切圆锅炉燃烧装置及超低氮燃烧方法
JPS5942202B2 (ja) 微粉炭燃焼炉
CN105202535B (zh) 一种适用于高碱金属含量燃料的燃烧装置
CN206449681U (zh) 一种空气分级/局部富氧燃烧电站锅炉NOx控制系统
CN104764025B (zh) 一种再循环烟气贴壁保护的废液焚烧锅炉
CN207455621U (zh) 一种燃烧低热值煤气获得高风温的高效烟气炉装置
WO2015014233A1 (zh) 一种带二次再热的循环流化床锅炉
CN102840592A (zh) 一种低温烟气再循环系统
CN207122904U (zh) 一种低氮燃烧的垃圾焚烧炉
CN2919045Y (zh) 丙烯腈生产废液和废气焚烧炉
CN204534605U (zh) 一种再循环烟气贴壁保护的废液焚烧锅炉
CN104180385A (zh) 一种防止锅炉沾污的煤粉炉半焦热载体系统及方法
CN214370351U (zh) 一种防止锅炉水冷壁高温腐蚀的贴壁风系统
CN115164187A (zh) 用于减少准东煤对锅炉沾污的分布式炉膛液态排渣装置
CN210373405U (zh) 立式煤粉锅炉
CN2273374Y (zh) 浓淡风煤粉燃烧器
CN205137435U (zh) 一种适用于高碱金属含量燃料的燃烧装置
CN204006068U (zh) 一种防止锅炉沾污的煤粉炉半焦热载体系统
CN208670987U (zh) 适用于燃用新疆准东煤的中压锅炉
CN208998047U (zh) 一种燃用新疆准东煤660mw切圆燃烧超超临界锅炉
CN208475298U (zh) 燃用新疆准东煤660mw切圆燃烧超临界锅炉
CN1182184A (zh) 一种浓淡风煤粉燃烧方式及装置
CN214619500U (zh) 一种液态排渣的四角切圆燃煤锅炉
CN109028049B (zh) 一种纯燃高钠煤的并联循环流化床锅炉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20930039

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20930039

Country of ref document: EP

Kind code of ref document: A1