WO2021203568A1 - 可视化检测肿瘤外泌体的新型纳米杂化物探针的制备方法 - Google Patents

可视化检测肿瘤外泌体的新型纳米杂化物探针的制备方法 Download PDF

Info

Publication number
WO2021203568A1
WO2021203568A1 PCT/CN2020/100534 CN2020100534W WO2021203568A1 WO 2021203568 A1 WO2021203568 A1 WO 2021203568A1 CN 2020100534 W CN2020100534 W CN 2020100534W WO 2021203568 A1 WO2021203568 A1 WO 2021203568A1
Authority
WO
WIPO (PCT)
Prior art keywords
add
exosomes
probe
stir
complex
Prior art date
Application number
PCT/CN2020/100534
Other languages
English (en)
French (fr)
Inventor
金辉
姜晓文
桂日军
Original Assignee
青岛大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛大学 filed Critical 青岛大学
Publication of WO2021203568A1 publication Critical patent/WO2021203568A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57415Specifically defined cancers of breast
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56966Animal cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6439Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks

Definitions

  • the invention belongs to the technical field of preparation of multifunctional nano-hybrid and tumor exosome detection probes, and specifically relates to the preparation of a novel dual-emission nano-hybrid carrier probe based on copper ion coordination black phosphorous quantum dots and organic fluorescent dyes Method, the prepared probe can be used for the visual semi-quantitative detection of breast cancer exosomes.
  • tumor exosomes are a new type of biomarker, which can be widely used in early screening and clinical diagnosis of different cancers.
  • the effective detection of tumor exosomes can to a certain extent avoid the invasive screening that exists in the routine cancer detection process, and overcome the problems of high detection cost and low detection sensitivity.
  • Exosomes are extracellular vesicles with a diameter of 50-100nm, which are released from multivesicles through endolysate pathways.
  • exosomes carry biological macromolecules, such as mRNA, DNA, transmembrane and cytoplasmic proteins, from their parental cells, exosomes can be used as messengers to mediate information between cells in disease diagnosis, especially in cancer-related physiology The detection of state changes plays an important role.
  • Jin Fangfang et al. disclosed a method for detecting exosomes by flow cytometry (Jin Fangfang; Wang Yanbo; Xu Xuebo; Chen Zhangpeng; Xue Jiangfei. A method for detecting exosomes by flow cytometry. National Invention Patent. Publication No. CN110702589A) . He Nongyue et al.
  • exosome fluorescence (FL) detection sensor based on branched rolling circle amplification He Nongyue; Huang Rongrong; Li Zhiyang. An exosome FL detection sensor based on branched rolling circle amplification .
  • National Invention Patent. Publication No. CN110396536A Zhang et al. reported on Ti 3 C 2 MXenes nanosheets catalyzed electrochemiluminescence biosensor to detect exosomes (Huixin Zhang, Zonghua Wang, Qiuxia Zhang, Feng Wang, Yang Liu. Ti 3 C 2 MXenes nanosheets catalyzed highly efficient electrogenerated chemiluminescence biosensor for the detection of exosomes.
  • Doldán et al. reported an electrochemical sandwich immunosensor based on surface marker-mediated signal amplification for the detection of exosomes (Ximena Doldán, Pablo Fag ⁇ ndez, Alfonso Cayota, Justo La ⁇ z, Juan Pablo Tosar, Electrochemical sandwich immunosensor for determination of exosomes based on surface marker-mediated signal amplification, Analytical Chemistry, 2016, 88, 10466-10473).
  • the present invention discloses a method for preparing a novel green/red dual emission FL nano-hybrid carrier probe based on copper ion-coordinated black phosphorous quantum dots (Cu-BPQDs) and five methyl cyanine FL dye Cy5. Nanoprobes can be used for semi-quantitative detection of the ratio FL of breast cancer exosomes.
  • Cu-BPQDs/Cy5-based nanohybrid carrier probes there are no domestic and foreign literature and patent reports on the preparation of Cu-BPQDs/Cy5-based nanohybrid carrier probes and the visual detection of tumor exosomes based on nanohybrid carrier probes.
  • the purpose of the present invention is to overcome the shortcomings of the above-mentioned prior art and design a new method with high selectivity, high sensitivity, visual analysis and semi-quantitative detection of breast cancer exosomes.
  • the present invention relates to a method for preparing a novel nano hybrid probe for visually detecting tumor exosomes.
  • the preparation method includes the following steps:
  • a method for preparing a novel nano hybrid probe for visually detecting tumor exosomes characterized in that the method specifically includes the following steps:
  • Cu-BPQDs copper ion-coordinated black phosphorous quantum dots
  • the reaction product was cooled to room temperature, centrifuged at 5000 rpm for 10 minutes, and the supernatant was centrifuged at 14000 rpm for 15 minutes.
  • the precipitate after centrifugation was washed three times with ethanol and double-distilled water, and dried in vacuum to obtain carboxyl functionalized Cu-BPQDs.
  • Cy5-SiO 2 (2) Preparation of Cy5 encapsulated silica nanospheres (Cy5-SiO 2 ): dissolve polyethylene glycol amino PEG-NH 2 functionalized Cy5 in absolute ethanol, and add (3-aminopropyl) triethoxy Base silane (APTS), stir evenly, and place in a dark place. Add ammonia and ethanol, stir evenly, add TEOS and continue to stir, then add TEOS for reaction. The reaction product was centrifuged, washed with ethanol and dried to prepare Cy5 encapsulated SiO 2 nanospheres. Disperse it in a mixture of APTS and acetic acid, and perform a stirring reaction at room temperature. The product is centrifuged, washed and dried to obtain surface amino functionalized Cy5-SiO 2 nanospheres.
  • APTS 3-aminopropyl triethoxy Base silane
  • the product was centrifuged, washed and dried to prepare Cy5-SiO 2 /Cu-BPQDs hybrid. Dissolve this hybrid in absolute ethanol, add dodecyltrimethylammonium bromide (DTAB) and APTS, stir the reaction, and place it in a dark place. After adding ammonia and ethanol, stir evenly, add TEOS and stir, then add TEOS to continue the reaction.
  • DTAB dodecyltrimethylammonium bromide
  • the template DTAB was eluted by adding NH 4 NO 3 , and the product was centrifuged, washed with ethanol and dried to prepare an amino functionalized complex.
  • nano-hybrid carrier probe (Complex-5Fu-DNA1/DNA2): Add coupling agent NHS and EDC hydrochloride to PBS buffer, add amino functionalized Complex, stir reaction, add one end to- The other end of COOH is -SH single-stranded DNA1, HS-DNA1-COOH, and the reaction is stirred at room temperature. The reaction product was dialyzed, solvent removed, centrifuged, washed and dried to obtain the hybrid Complex-DNA1. Using water bath incubation, electron acceptor molecules such as 5-fluorouracil (5Fu) or dopamine (DA) enter the mSiO 2 pores to complete the loading of electron acceptor molecules, such as the formation of Complex-5Fu-DNA1.
  • 5Fu 5-fluorouracil
  • DA dopamine
  • the electron acceptor molecule is encapsulated in the mSiO 2 channel to prepare Complex-5Fu-DNA1/DNA2.
  • the concentration range for visual detection of tumor exosomes is 2 ⁇ 10 1 ⁇ 5 ⁇ 10 6 particles mL -1 , and the detection limit is 20-100 particles mL -1 .
  • the effect of the present invention is: a method for preparing a novel dual-emission nano-hybrid carrier probe (Complex-5Fu-DNA1/DNA2) based on Cu-BPQDs and organic fluorescent dye Cy5 is disclosed, which can be used in breast cancer Visual semi-quantitative detection of exosomes.
  • the biological fluid sample contains breast cancer exosomes
  • the sample is added to the aqueous dispersion of the carrier probe. Because exosomes and their single-stranded DNA2 aptamers specifically bind to form an exosome/DNA2 complex, DNA2 competitively breaks away from DNA1, causing the electron acceptor molecule 5Fu loaded in the mSiO 2 channel of the Complex to be released.
  • the FL color type of the probe-sample mixed dispersion gradually changes from red to blue, including transition colors between the two colors, such as deep red, scarlet, orange, orange, and yellow. Green, light green, dark green, blue-green, light blue, dark blue, etc. Based on the correlation between the concentration of tumor exosomes in the sample and the FL color type or color difference of the probe-sample mixed dispersion, a new method for visually detecting tumor exosomes is developed.
  • the probe-sample mixed dispersion can be placed in a glass cuvette to realize the visual detection of exosomes in the solution state (liquid phase); it can also be drip-coated on the flexible film to realize the visualization of the solid substrate (solid phase) Detect exosomes.
  • Figure 1 is a schematic diagram of the preparation of a novel nano-hybrid carrier probe Complex-5Fu-DNA1/DNA2;
  • Figure 2 is a schematic diagram of the basic principle and operation process of visually detecting tumor exosomes based on the novel nano-hybrid carrier probe.
  • This embodiment relates to a method for preparing a novel dual-emission nano-hybrid carrier probe based on copper ion coordinated black phosphorous quantum dots and organic fluorescent dyes.
  • the schematic diagram of the preparation of the nano-hybrid carrier probe is shown in Figure 1. The specific preparation steps are as follows:
  • the reaction product was cooled to room temperature, centrifuged at 5000 rpm for 10 minutes, and the supernatant was centrifuged at 14000 rpm for 15 minutes.
  • the precipitate after centrifugation was washed three times with ethanol and double-distilled water, and dried in vacuum to obtain carboxyl functionalized Cu-BPQDs.
  • Cy5-SiO 2 dissolve PEG-NH 2 functionalized Cy5 in absolute ethanol, add APTS, stir well and place in a dark place. Add ammonia and ethanol, stir evenly, add TEOS and continue to stir, then add TEOS for reaction. The reaction product was centrifuged, washed with ethanol and dried to prepare Cy5 encapsulated SiO 2 nanospheres. Disperse it in the mixture of APTS and acetic acid, stir and react at room temperature, and the product is centrifuged, washed and dried to obtain surface amino functionalized Cy5-SiO 2 nanospheres with an average diameter of ⁇ 50nm.
  • Disperse the nano hybrid carrier probe in PBS buffer add an aqueous dispersion containing breast cancer exosomes, and stir evenly with magnetic force.
  • the mixed dispersion formed by the carrier probe and the aqueous dispersion containing exosomes is transferred to a glass cuvette with a dropper, or is drip-coated on a polyimide flexible film.
  • 365nm wavelength ultraviolet light to excite and irradiate, the FL color of the mixed dispersion in the cuvette and on the flexible film was photographed with a smart phone.
  • the concentration range of visual detection of breast cancer exosomes is 1 ⁇ 10 2 ⁇ 1 ⁇ 10 6 particles mL -1 , and the detection limit is 100 particles mL -1 .
  • This embodiment relates to a method for preparing a novel dual-emission nano-hybrid carrier probe based on copper ion coordination black phosphorous quantum dots and organic fluorescent dyes.
  • the novel nano-hybrid carrier probe Complex-5Fu-DNA1/DNA2 The preparation is the same as in Example 1, and other specific preparation steps are as follows:
  • Disperse the nano-hybrid carrier probe in PBS buffer add human blood or plasma serum samples containing different concentrations of breast cancer exosomes, and stir evenly with magnetic force.
  • the mixed dispersion formed by the carrier probe and the human serum or plasma sample containing exosomes is transferred to a glass cuvette with a dropper, or is drip-coated on a polyimide flexible film.
  • 365nm wavelength ultraviolet light to excite and irradiate, the FL color of the mixed dispersion in the cuvette and on the flexible film was photographed with a smart phone.
  • the concentration range of visual detection of breast cancer exosomes is 5 ⁇ 10 1 ⁇ 2 ⁇ 10 6 particles mL -1
  • the detection limit is 50 particles mL -1 .
  • This embodiment relates to a method for preparing a novel dual-emission nano-hybrid carrier probe based on copper ion coordination black phosphorous quantum dots and organic fluorescent dyes.
  • the novel nano-hybrid carrier probe Complex-5Fu-DNA1/DNA2 The preparation is the same as in Example 1, and other specific preparation steps are as follows:
  • Disperse the nano-hybrid carrier probe in PBS buffer add human urine samples containing different breast cancer exosomes concentrations, and stir evenly with magnetic force.
  • the mixed dispersion formed by the carrier probe and the human urine sample containing exosomes is transferred to a glass cuvette with a dropper, or is drip-coated on a polyimide flexible film.
  • 365nm wavelength ultraviolet light to excite and irradiate, the FL color of the mixed dispersion in the cuvette and on the flexible film was photographed with a smart phone.
  • the concentration range of visual detection of breast cancer exosomes is 4 ⁇ 10 1 ⁇ 5 ⁇ 10 5 particles mL -1 , and the detection limit is 40 particles mL -1 .

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Pathology (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Biophysics (AREA)
  • Hospice & Palliative Care (AREA)
  • Plant Pathology (AREA)
  • Plasma & Fusion (AREA)
  • Virology (AREA)
  • Oncology (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明公开了可视化检测肿瘤外泌体的新型纳米杂化物探针的制备方法,基于铜离子配位黑磷量子点(Cu-BPQDs)和有机荧光染料(Cy5)制备了新型双发射纳米杂化物载体探针,该探针可用于乳腺癌外泌体的可视化半定量检测。在探针的水分散液中加入含有外泌体的样品,引起探针表面DNA分子阀门开启,负载的电子受体分子释放,Cu-BPQDs蓝色荧光从淬灭转为荧光恢复,此过程对Cy5红色荧光影响甚微。随着样品中外泌体浓度的增大,探针-样品混合分散液的荧光颜色逐渐从红色转为蓝色,包括多种中间过渡色。建立样品中外泌体浓度与探针-样品混合分散液的荧光颜色类型之间的关联,发展可视化检测肿瘤外泌体的新方法。

Description

可视化检测肿瘤外泌体的新型纳米杂化物探针的制备方法 技术领域:
本发明属于多功能纳米杂化物和肿瘤外泌体检测探针的制备技术领域,具体涉及一种基于铜离子配位黑磷量子点和有机荧光染料的新型双发射纳米杂化物载体探针的制备方法,其制备的探针可用于乳腺癌外泌体的可视化半定量检测。
背景技术:
近年来的科学研究表明,肿瘤外泌体是一种新型的生物标志物,可广泛用于不同癌症的早期筛查和临床诊断。对肿瘤外泌体的有效检测,在一定程度上可避免癌症常规检测过程中存在的侵入式筛选,克服检测成本高、检测敏感度低等问题。外泌体是一种直径为50~100nm的细胞外囊泡,是经过內溶体途径从多囊体中释放出来的。由于外泌体从亲本细胞中携带了生物大分子,如mRNA、DNA、跨膜和胞质蛋白等,外泌体可作为介导细胞间信息的信使,在疾病诊断,尤其是在癌症相关生理状态改变的检测方面发挥了重要作用。
现有的肿瘤外泌体检测技术主要包括纳米颗粒追踪分析、流式细胞术、表面等离子共振法、比色分析法、发光分析法、电化学分析法等。金芳芳等公开了一种流式细胞仪检测外泌体的方法(金芳芳;王延博;徐学博;陈张朋;薛姜飞.一种流式细胞仪检测外泌体的方法.国家发明专利.公开号CN110702589A)。何农跃等公开了一种基于分支滚环扩增的外泌体荧光(FL)检测传感器(何农跃;黄蓉蓉;李智洋.一种基于分支滚环扩增的外泌体FL检测传感器.国家发明专利.公开号CN110396536A)。Zhang等报导了Ti 3C 2MXenes纳米片催化的电致化学发光生物传感器检测外泌体(Huixin Zhang,Zonghua Wang,Qiuxia Zhang,Feng Wang,Yang Liu.Ti 3C 2 MXenes nanosheets catalyzed highly efficient electrogenerated chemiluminescence biosensor for the detection of exosomes.Biosensors and Bioelectronics,2019,124–125,184–190)。Doldán等报导了基于表面标志物介导信号放大的电化学三明治免疫传感器用于检测外泌体(Ximena Doldán,Pablo Fagúndez,Alfonso Cayota,Justo Laíz,Juan Pablo Tosar,Electrochemical sandwich immunosensor for determination of exosomes based on  surface marker-mediated signal amplification,Analytical Chemistry,2016,88,10466-10473)。
尽管有关外泌体检测的技术已有文献资料报导,但现有的外泌体检测技术仍然存在瓶颈,急需在纳米级肿瘤外泌体的选择性、灵敏性、可视化分析、定量检测等领域取得进展。基于此,本发明公开了一种基于铜离子配位黑磷量子点(Cu-BPQDs)和五甲川菁类FL染料Cy5的新型绿/红双发射FL纳米杂化物载体探针的制备方法,该纳米探针可用于乳腺癌外泌体的比率FL可视化半定量检测。截止目前,尚未检索到有关基于Cu-BPQDs/Cy5的纳米杂化物载体探针的制备,以及基于纳米杂化物载体探针可视化检测肿瘤外泌体的国内外文献和专利报道。
发明内容:
本发明的目的在于克服上述现有技术存在的不足,设计一种高选择性、高灵敏性、可视化分析和半定量检测乳腺癌外泌体的新方法。
为实现上述目的,本发明涉及的可视化检测肿瘤外泌体的新型纳米杂化物探针的制备方法,其制备方法包括以下步骤:
1.可视化检测肿瘤外泌体的新型纳米杂化物探针的制备方法,其特征在于,该方法具体包括以下步骤:
(1)铜离子配位黑磷量子点(Cu-BPQDs)的制备:将25mg黑磷晶体加入30mL氮甲基吡咯烷酮中,加入1mol/L硝酸铜水溶液5mL,加入溶解了5mg巯基丙酸的水溶液5mL,磁力搅拌形成均质混合液。将混合液用超声波细胞粉碎仪处理2h,再用超声波清洗器水浴处理6h。将处理后的分散液转入微型磁力高压反应釜中,在N 2保护下加热至120℃,连续搅拌反应12h。反应产物冷却至室温,在5000rpm转速下离心10min,取上层清液在14000rpm转速下离心15min。离心后的沉淀物用乙醇和二次蒸馏水冲洗3次,真空干燥得到羧基功能化Cu-BPQDs。
(2)Cy5内包封二氧化硅纳米球(Cy5-SiO 2)的制备:将聚乙二醇氨基PEG-NH 2功能化Cy5溶于无水乙醇,加入(3-氨丙基)三乙氧基硅烷(APTS),搅拌均匀,放置避光处。加入氨水与乙醇,搅拌均匀,加入正硅酸乙酯(TEOS)继续搅拌,再加入TEOS进行反应。反应产物经离心、乙醇洗涤和干燥后制得Cy5 内包封SiO 2纳米球。将其分散在APTS与醋酸的混合液中,在室温下执行搅拌反应,产物经离心、洗涤和干燥,得到表面氨基功能化Cy5-SiO 2纳米球。
(3)Cy5-SiO 2/Cu-BPQDs/mSiO 2复合物(Complex)的制备:将N-羟基硫代琥珀酸亚胺(NHS)和1-乙基-(3-二甲基氨基丙基)碳二亚胺(EDC)盐酸盐分散在磷酸盐水(PBS)缓冲液中,加入氨基功能化Cy5-SiO 2纳米球,搅拌均匀,放置避光处。磁力搅拌下将羧基功能化Cu-BPQDs水分散液加入混合液中,搅拌反应。产物经离心、洗涤和干燥后制得Cy5-SiO 2/Cu-BPQDs杂化物。将此杂化物溶于无水乙醇,加入十二烷基三甲基溴化铵(DTAB)和APTS,搅拌反应,放置避光处。加入氨水与乙醇后搅拌均匀,加入TEOS搅拌,再加入TEOS继续反应。加入NH 4NO 3洗脱模板DTAB,产物经离心、乙醇洗涤和干燥后制得氨基功能化Complex。
(4)纳米杂化物载体探针(Complex-5Fu-DNA1/DNA2)的制备:向PBS缓冲液中加入偶联剂NHS和EDC盐酸盐,加入氨基功能化Complex,搅拌反应,添加一端为-COOH另一端为-SH的单链DNA1即HS-DNA1-COOH,在室温下搅拌反应。反应产物经透析、除溶剂、离心、洗涤和干燥制得杂化物Complex-DNA1。采用水浴孵化,电子受体分子如5-氟尿嘧啶(5Fu)或多巴胺(DA)进入mSiO 2孔道内,完成电子受体分子的负载,如形成Complex-5Fu-DNA1。添加DNA1的互补链DNA2,由于两条DNA单链的碱基互补配对形成双螺旋结构,将电子受体分子封装在mSiO 2孔道内,制得Complex-5Fu-DNA1/DNA2。
(5)将此纳米杂化物载体探针分散于PBS缓冲液中,加入含有肿瘤外泌体的水分散液或生物流体样品,磁力搅拌均匀。将此载体探针与含有外泌体的样品形成的混合分散液,用滴管转移至玻璃比色皿中,或滴涂在聚酰亚胺柔性薄膜上。采用365nm波长紫外光激发照射,用智能手机拍摄比色皿中和柔性薄膜上混合分散液的FL颜色。建立混合分散液的FL颜色类型与混合分散液中肿瘤外泌体浓度的关联,构建样品的FL颜色类型变化与样品中肿瘤外泌体浓度的对应关系,进而发展基于新型纳米杂化物探针的可视化检测肿瘤外泌体的新方法。肿瘤外泌体可视化检测的浓度范围为2×10 1~5×10 6particles mL –1,检测限为20~100particles mL –1
本发明的效果是:公开了一种基于Cu-BPQDs和有机荧光染料Cy5的新型双发射纳米杂化物载体探针(Complex-5Fu-DNA1/DNA2)的制备方法,该探针可 用于乳腺癌外泌体的可视化半定量检测。当生物流体样品中含有乳腺癌外泌体时,将该样品加入载体探针的水分散液中。因外泌体与其单链DNA2适体特异性结合形成外泌体/DNA2复合物,使DNA2竞争性挣脱开DNA1,引起Complex的mSiO 2孔道内被负载的电子受体分子5Fu被释放出来。因5Fu释放而远离Cu-BPQDs,5Fu引发的光诱导电子转移(PIET)效应被抑制,Cu-BPQDs的蓝色FL从淬灭逐渐转为FL恢复增强。Cy5被实心SiO 2包覆形成Cy5-SiO 2纳米球,故Cy5的红色FL在样品的添加过程中基本保持不变。因此,Cy5红色FL作为参比,Cu-BPQDs蓝色FL在含有外泌体样品的添加过程中从FL淬灭转为FL恢复。随着样品中外泌体浓度的增大,探针-样品混合分散液的FL颜色类型逐渐从红色转为蓝色,包括两种颜色之间的过渡色如深红、大红、橘红、橙黄、黄绿、浅绿、深绿、蓝绿、浅蓝、深蓝等。基于样品中肿瘤外泌体的浓度与探针-样品混合分散液的FL颜色类型或色差之间的关联,发展可视化检测肿瘤外泌体的新方法。此外,该探针-样品混合分散液可放置在玻璃比色皿中,实现溶液态(液相)可视化检测外泌体;也可滴涂在柔性薄膜上,实现固态基底(固相)的可视化检测外泌体。
附图说明:
图1为新型纳米杂化物载体探针Complex-5Fu-DNA1/DNA2的制备示意图;
图2为基于该新型纳米杂化物载体探针可视化检测肿瘤外泌体的基本原理和操作过程示意图。
具体实施方式:
下面结合附图并通过具体实施例对本发明进行详细说明。
实施例1:
本实施例涉及的一种基于铜离子配位黑磷量子点和有机荧光染料的新型双发射纳米杂化物载体探针的制备方法,该纳米杂化物载体探针的制备示意图如图1所示,具体制备步骤如下:
将25mg黑磷晶体加入30mL氮甲基吡咯烷酮中,加入1mol/L硝酸铜水溶液5mL,加入溶解了5mg巯基丙酸的水溶液5mL,磁力搅拌形成均质混合液。将混合液用超声波细胞粉碎仪处理2h,再用超声波清洗器水浴处理6h。将处 理后的分散液转入微型磁力高压反应釜中,在N 2保护下加热至120℃,连续搅拌反应12h。反应产物冷却至室温,在5000rpm转速下离心10min,取上层清液在14000rpm转速下离心15min。离心后的沉淀物用乙醇和二次蒸馏水冲洗3次,真空干燥得到羧基功能化Cu-BPQDs。
依据
Figure PCTCN2020100534-appb-000001
方法制备Cy5-SiO 2,将PEG-NH 2功能化Cy5溶于无水乙醇,加入APTS,搅拌均匀后放置避光处。加入氨水与乙醇,搅拌均匀后加入TEOS继续搅拌,再加入TEOS进行反应。反应产物经离心、乙醇洗涤和干燥后制得Cy5内包封SiO 2纳米球。将其分散在APTS与醋酸的混合液中,在室温下搅拌反应,产物经离心、洗涤和干燥,得到表面氨基功能化Cy5-SiO 2纳米球,平均直径~50nm。
将偶联剂NHS和EDC盐酸盐分散在PBS缓冲液中,加入氨基功能化Cy5-SiO 2纳米球,搅拌均匀后放置避光处。磁力搅拌下将羧基功能化Cu-BPQDs水分散液加入混合液中,搅拌反应。产物经离心、洗涤和干燥制得Cy5-SiO 2/Cu-BPQDs杂化物。将此杂化物溶于无水乙醇,加入DTAB和APTS,搅拌反应,放置避光处保存。加入氨水与乙醇并搅拌均匀,加入TEOS继续搅拌,再加入TEOS反应。加入NH 4NO 3洗脱模板DTAB,产物经离心、乙醇洗涤和干燥处理,制得氨基功能化Cy5-SiO 2/Cu-BPQDs/mSiO 2复合物Complex,平均直径~100nm。
向PBS缓冲液中加入偶联剂NHS和EDC盐酸盐,加入氨基功能化Complex,搅拌反应,添加HS-DNA1-COOH,在室温下搅拌反应。反应产物经透析、旋蒸、除溶剂、萃取、离心、洗涤和干燥处理制得杂化物Complex-DNA1。通过水浴孵化方式,5Fu进入mSiO 2孔道内形成Complex-5Fu-DNA1。添加DNA1互补链DNA2,两条DNA单链碱基互补配对形成双螺旋结构,将5Fu封装在孔道内,制得纳米杂化物载体探针Complex-5Fu-DNA1/DNA2。
将此纳米杂化物载体探针分散于PBS缓冲液中,加入含有乳腺癌外泌体的水分散液,磁力搅拌均匀。将此载体探针与含有外泌体的水分散液形成的混合分散液,用滴管转移至玻璃比色皿中,或滴涂在聚酰亚胺柔性薄膜上。采用365nm波长紫外光激发照射,用智能手机拍摄比色皿中和柔性薄膜上混合分散液的FL颜色。建立混合分散液的FL颜色类型与混合分散液中外泌体浓度的关联,构建样品的FL颜色类型变化与样品中外泌体浓度的对应关系,发展基于该纳米 杂化物探针的可视化检测乳腺癌外泌体的新方法。如图2所示,乳腺癌外泌体可视化检测的浓度范围为1×10 2~1×10 6particles mL –1,检测限为100particles mL –1
实施例2:
本实施例涉及的一种基于铜离子配位黑磷量子点和有机荧光染料的新型双发射纳米杂化物载体探针的制备方法,该新型纳米杂化物载体探针Complex-5Fu-DNA1/DNA2的制备同实施例1,其它具体制备步骤如下:
将此纳米杂化物载体探针分散于PBS缓冲液中,分别加入含有不同乳腺癌外泌体浓度的人血或血浆清样品,磁力搅拌均匀。将此载体探针与含有外泌体的人血清或血浆样品形成的混合分散液,用滴管转移至玻璃比色皿中,或滴涂在聚酰亚胺柔性薄膜上。采用365nm波长紫外光激发照射,用智能手机拍摄比色皿中和柔性薄膜上混合分散液的FL颜色。建立混合分散液的FL颜色类型与混合分散液中外泌体浓度的关联,构建人血清或血浆样品的FL颜色类型变化与人血清或血浆样品中外泌体浓度的对应关系,发展基于该纳米杂化物探针的可视化检测乳腺癌外泌体的新方法。其中,乳腺癌外泌体可视化检测的浓度范围为5×10 1~2×10 6particles mL –1,检测限为50particles mL –1
实施例3:
本实施例涉及的一种基于铜离子配位黑磷量子点和有机荧光染料的新型双发射纳米杂化物载体探针的制备方法,该新型纳米杂化物载体探针Complex-5Fu-DNA1/DNA2的制备同实施例1,其它具体制备步骤如下:
将此纳米杂化物载体探针分散于PBS缓冲液中,分别加入含有不同乳腺癌外泌体浓度的人尿液样品,磁力搅拌均匀。将此载体探针与含有外泌体的人尿液样品形成的混合分散液,用滴管转移至玻璃比色皿中,或滴涂在聚酰亚胺柔性薄膜上。采用365nm波长紫外光激发照射,用智能手机拍摄比色皿中和柔性薄膜上混合分散液的FL颜色。建立混合分散液的FL颜色类型与混合分散液中外泌体浓度的关联,构建人尿液样品的FL颜色类型变化与人尿液样品中外泌体浓度的对应关系,发展基于该纳米杂化物探针的可视化检测乳腺癌外泌体的新方法。其中,乳腺癌外泌体可视化检测的浓度范围为4×10 1~5×10 5particles mL –1,检测限为40particles mL –1
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通 技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (1)

  1. 可视化检测肿瘤外泌体的新型纳米杂化物探针的制备方法,其特征在于,该方法具体包括以下步骤:
    (1)铜离子配位黑磷量子点(Cu-BPQDs)的制备:将25mg黑磷晶体加入30mL氮甲基吡咯烷酮中,加入1mol/L硝酸铜水溶液5mL,加入溶解了5mg巯基丙酸的水溶液5mL,磁力搅拌形成均质混合液;将混合液用超声波细胞粉碎仪处理2h,再用超声波清洗器水浴处理6h;将处理后的分散液转入微型磁力高压反应釜中,在N 2保护下加热至120℃,连续搅拌反应12h;反应产物冷却至室温,在5000rpm转速下离心10min,取上层清液在14000rpm转速下离心15min;离心后的沉淀物用乙醇和二次蒸馏水冲洗3次,真空干燥得到羧基功能化Cu-BPQDs;
    (2)Cy5内包封二氧化硅纳米球(Cy5-SiO 2)的制备:将聚乙二醇氨基PEG-NH 2功能化Cy5溶于无水乙醇,加入(3-氨丙基)三乙氧基硅烷(APTS),搅拌均匀,放置避光处;加入氨水与乙醇,搅拌均匀,加入正硅酸乙酯(TEOS)继续搅拌,再加入TEOS进行反应;反应产物经离心、乙醇洗涤和干燥后制得Cy5内包封SiO 2纳米球;将其分散在APTS与醋酸的混合液中,在室温下执行搅拌反应,产物经离心、洗涤和干燥,得到表面氨基功能化Cy5-SiO 2纳米球;
    (3)Cy5-SiO 2/Cu-BPQDs/mSiO 2复合物(Complex)的制备:将N-羟基硫代琥珀酸亚胺(NHS)和1-乙基-(3-二甲基氨基丙基)碳二亚胺(EDC)盐酸盐分散在磷酸盐水(PBS)缓冲液中,加入氨基功能化Cy5-SiO 2纳米球,搅拌均匀,放置避光处;磁力搅拌下将羧基功能化Cu-BPQDs水分散液加入混合液中,搅拌反应;产物经离心、洗涤和干燥后制得Cy5-SiO 2/Cu-BPQDs杂化物;将此杂化物溶于无水乙醇,加入十二烷基三甲基溴化铵(DTAB)和APTS,搅拌反应,放置避光处;加入氨水与乙醇后搅拌均匀,加入TEOS搅拌,再加入TEOS继续反应;加入NH 4NO 3洗脱模板DTAB,产物经离心、乙醇洗涤和干燥后制得氨基功能化Complex;
    (4)纳米杂化物载体探针(Complex-5Fu-DNA1/DNA2)的制备:向PBS缓冲液中加入偶联剂NHS和EDC盐酸盐,加入氨基功能化Complex,搅拌反应,添加一端为-COOH另一端为-SH的单链DNA1即HS-DNA1-COOH,在室温下搅拌反应;反应产物经透析、除溶剂、离心、洗涤和干燥制得杂化物Complex-DNA1;采用水浴孵化,电子受体分子如5-氟尿嘧啶(5Fu)或多巴胺(DA)进入 mSiO 2孔道内,完成电子受体分子的负载,如形成Complex-5Fu-DNA1;添加DNA1的互补链DNA2,由于两条DNA单链的碱基互补配对形成双螺旋结构,将电子受体分子封装在mSiO 2孔道内,制得Complex-5Fu-DNA1/DNA2;
    (5)将此纳米杂化物载体探针分散于PBS缓冲液中,加入含有肿瘤外泌体的水分散液或生物流体样品,磁力搅拌均匀;将此载体探针与含有外泌体的样品形成的混合分散液,用滴管转移至玻璃比色皿中,或滴涂在聚酰亚胺柔性薄膜上;采用365nm波长紫外光激发照射,用智能手机拍摄比色皿中和柔性薄膜上混合分散液的FL颜色;建立混合分散液的FL颜色类型与混合分散液中肿瘤外泌体浓度的关联,构建样品的FL颜色类型变化与样品中肿瘤外泌体浓度的对应关系,进而发展基于新型纳米杂化物探针的可视化检测肿瘤外泌体的新方法;肿瘤外泌体可视化检测的浓度范围为2×10 1~5×10 6particles mL –1,检测限为20~100particles mL –1
PCT/CN2020/100534 2020-04-07 2020-07-07 可视化检测肿瘤外泌体的新型纳米杂化物探针的制备方法 WO2021203568A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010263033.0 2020-04-07
CN202010263033.0A CN111426833B (zh) 2020-04-07 2020-04-07 可视化检测肿瘤外泌体的纳米杂化物探针的制备方法

Publications (1)

Publication Number Publication Date
WO2021203568A1 true WO2021203568A1 (zh) 2021-10-14

Family

ID=71555812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/100534 WO2021203568A1 (zh) 2020-04-07 2020-07-07 可视化检测肿瘤外泌体的新型纳米杂化物探针的制备方法

Country Status (2)

Country Link
CN (1) CN111426833B (zh)
WO (1) WO2021203568A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114539545A (zh) * 2022-01-13 2022-05-27 中国科学院宁波材料技术与工程研究所 一种双金属-有机框架材料及其制备方法和应用
CN114886523A (zh) * 2022-05-18 2022-08-12 福州大学 腹腔穿刺针套管装置
CN115156548A (zh) * 2022-05-19 2022-10-11 青岛大学 纳米带状Cu3P/Cu材料及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112782138B (zh) * 2020-12-24 2021-10-29 生物岛实验室 用于检测细胞外囊泡的试剂盒及其应用
CN114479985A (zh) * 2022-01-27 2022-05-13 西安建筑科技大学 一种包覆黑磷量子点的复合材料及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108641708A (zh) * 2018-06-13 2018-10-12 青岛大学 基于银纳米簇复合物的三聚氰胺比率荧光探针的制备方法
CN109724949A (zh) * 2019-03-25 2019-05-07 青岛大学 一种用于肿瘤标志物可视化检测的上转换发光柔性杂化膜的制备方法
CN110320260A (zh) * 2019-07-27 2019-10-11 福建师范大学 基于MXenes和黑磷量子点增强的外泌体电致化学发光传感器
CN110846026A (zh) * 2019-12-02 2020-02-28 青岛大学 基于锌掺杂黑磷量子点的谷胱甘肽荧光纳米探针制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10648959B2 (en) * 2016-05-05 2020-05-12 University Of Southern California Black phosphorus gas sensor
CN109870438A (zh) * 2019-03-22 2019-06-11 青岛大学 潜指纹荧光可视化检测可卡因的表面分子印迹纳米探针的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108641708A (zh) * 2018-06-13 2018-10-12 青岛大学 基于银纳米簇复合物的三聚氰胺比率荧光探针的制备方法
CN109724949A (zh) * 2019-03-25 2019-05-07 青岛大学 一种用于肿瘤标志物可视化检测的上转换发光柔性杂化膜的制备方法
CN110320260A (zh) * 2019-07-27 2019-10-11 福建师范大学 基于MXenes和黑磷量子点增强的外泌体电致化学发光传感器
CN110846026A (zh) * 2019-12-02 2020-02-28 青岛大学 基于锌掺杂黑磷量子点的谷胱甘肽荧光纳米探针制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GUI RIJUN, JIN HUI, WANG ZONGHUA, LI JINGHONG: "Black phosphorus quantum dots: synthesis, properties, functionalized modification and applications", CHEMICAL SOCIETY REVIEWS, ROYAL SOCIETY OF CHEMISTRY, UK, vol. 47, no. 17, 17 July 2018 (2018-07-17), UK, pages 6795 - 6823, XP055817691, ISSN: 0306-0012, DOI: 10.1039/C8CS00387D *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114539545A (zh) * 2022-01-13 2022-05-27 中国科学院宁波材料技术与工程研究所 一种双金属-有机框架材料及其制备方法和应用
CN114886523A (zh) * 2022-05-18 2022-08-12 福州大学 腹腔穿刺针套管装置
CN115156548A (zh) * 2022-05-19 2022-10-11 青岛大学 纳米带状Cu3P/Cu材料及其制备方法
CN115156548B (zh) * 2022-05-19 2023-06-06 青岛大学 纳米带状Cu3P/Cu材料及其制备方法

Also Published As

Publication number Publication date
CN111426833B (zh) 2021-04-23
CN111426833A (zh) 2020-07-17

Similar Documents

Publication Publication Date Title
WO2021203568A1 (zh) 可视化检测肿瘤外泌体的新型纳米杂化物探针的制备方法
Wang et al. DNase I enzyme-aided fluorescence signal amplification based on graphene oxide-DNA aptamer interactions for colorectal cancer exosome detection
Liu et al. Core–shell Fe3O4–Au magnetic nanoparticles based nonenzymatic ultrasensitive electrochemiluminescence immunosensor using quantum dots functionalized graphene sheet as labels
Zhu et al. A light-up fluorescence resonance energy transfer magnetic aptamer-sensor for ultra-sensitive lung cancer exosome detection
CN108414758B (zh) 用于检测肿瘤标志物miRNA-141的SERS生物传感器的制备方法及其应用
CN107893101A (zh) 一种用于肿瘤疾病早期诊断的试剂盒、方法及应用
CN102661941B (zh) 基于拉曼活性纳米颗粒混合组装的循环肿瘤细胞的耦合增强sers高通量生物传感方法
Gong et al. A sensitive fluorescence “turn on” nanosensor for glutathione detection based on Ce-MOF and gold nanoparticles
Zhu et al. Colorimetric detection of immunomagnetically captured rare number CTCs using mDNA-wrapped single-walled carbon nanotubes
Feng et al. Dual selective sensor for exosomes in serum using magnetic imprinted polymer isolation sandwiched with aptamer/graphene oxide based FRET fluorescent ignition
Gao et al. A DNA hybridization detection based on fluorescence resonance energy transfer between dye-doped core-shell silica nanoparticles and gold nanoparticles
Zhang et al. Magnetic-plasmonic yolk-shell nanostructure-based plasmon-enhanced electrochemiluminescence sensor
Wang et al. The exploration of quantum dot-molecular beacon based MoS2 fluorescence probing for myeloma-related Mirnas detection
Bai et al. Semiconducting polymer dots as fluorescent probes for in vitro biosensing
Zhou et al. A plasmonic nanoparticle-embedded polydopamine substrate for fluorescence detection of extracellular vesicle biomarkers in serum and urine from patients with systemic lupus erythematosus
Liao et al. Sensitive fluorescent sensor for the fuzzy exosomes in serum based on the exosome imprinted polymer sandwiched with aggregation induced emission
Ma et al. Progress in nanomaterials-based optical and electrochemical methods for the assays of exosomes
Yan et al. Carbon dots modified/prepared by supramolecular host molecules and their potential applications: A review
Zhong et al. High electrochemical active Au-NP/2D zinc-metal organic frameworks heterostructure-based ECL sensor for the miRNA-522 detection in triple negative breast cancer
Chen et al. Phosphorus-doped carbon dots for sensing both Au (III) and L-methionine
Luo et al. Disposable biosensor based on novel ternary Ru-PEI@ PCN-333 (Al) self-enhanced electrochemiluminescence system for on-site determination of caspase-3 activity
Ding et al. A strand-elongation initiated DNAzyme walker for terminal deoxynucleotidyl transferase activity detection
Zhao et al. Conjugated polymer-based luminescent probes for ratiometric detection of biomolecules
Yang et al. Surface plasmon-enhanced electrochemiluminescence of P, N-doped carbon dots for ultrasensitive detection of BRAF gene
He et al. Ultrasensitive fluorescence detection of microRNA through DNA-induced assembly of carbon dots on gold nanoparticles with no signal amplification strategy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20930472

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20930472

Country of ref document: EP

Kind code of ref document: A1