WO2021203492A1 - 一种巷道或隧道围岩屏蔽防护结构及方法 - Google Patents

一种巷道或隧道围岩屏蔽防护结构及方法 Download PDF

Info

Publication number
WO2021203492A1
WO2021203492A1 PCT/CN2020/086433 CN2020086433W WO2021203492A1 WO 2021203492 A1 WO2021203492 A1 WO 2021203492A1 CN 2020086433 W CN2020086433 W CN 2020086433W WO 2021203492 A1 WO2021203492 A1 WO 2021203492A1
Authority
WO
WIPO (PCT)
Prior art keywords
tunnel
shielding
surrounding rock
roadway
layer
Prior art date
Application number
PCT/CN2020/086433
Other languages
English (en)
French (fr)
Inventor
吕祥锋
Original Assignee
北京科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010268308.XA external-priority patent/CN111472807B/zh
Priority claimed from CN202010279726.9A external-priority patent/CN111577343A/zh
Application filed by 北京科技大学 filed Critical 北京科技大学
Publication of WO2021203492A1 publication Critical patent/WO2021203492A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/04Lining with building materials
    • E21D11/10Lining with building materials with concrete cast in situ; Shuttering also lost shutterings, e.g. made of blocks, of metal plates or other equipment adapted therefor

Definitions

  • the invention belongs to the technical field of mine protection, and specifically relates to a tunnel or tunnel surrounding rock shielding protection structure and method.
  • the main protective measures in the construction of the broken section of the surrounding rock of the existing shallow-buried and unsymmetrical pressure tunnel include: increasing the thickness of the lining, adding bolts and pipe sheds, and increasing the rigidity of the steel arch to reduce the deformation of the lining and the cavity during the excavation process.
  • the invention discloses a tunnel or tunnel surrounding rock shielding protection structure and method to solve any of the above-mentioned prior art and other potential problems.
  • a shielding protection structure for surrounding rock of a roadway or tunnel the protection structure being located between the surrounding rock and the roadway or the surrounding rock and the tunnel.
  • the special shielding layer is composed of special shielding materials for shielding and dispersing stress wave impact;
  • the thin bamboo concrete layer supports and protects the special shielding layer, and uses the characteristic of toughness and energy absorption to further absorb the impact energy generated by the ground pressure shock wave;
  • the energy-absorbing control layer is composed of an energy-absorbing controller, and is used to further absorb the remaining energy after the special shielding layer and the thin bamboo concrete layer disperse and absorb the impact energy;
  • the "sub” type bracket is located in the roadway or tunnel for supporting the surrounding rock, the special shielding layer, the bamboo concrete layer and the energy absorption control layer, and is the skeleton for maintaining the space of the roadway or tunnel.
  • the special shielding layer is formed by spraying a special shielding material onto the surrounding rock and solidifying, and the special shielding material is a ceramic matrix composite material.
  • the characteristic shielding material includes the following components in parts by weight: 8-10 parts by weight of silicon carbide, 3-6 parts by graphite, 2-3 parts by titanium powder, 4-5 parts by aluminum powder, 40-50 parts by steel slag, 30-35 parts of fly ash, 1-2 parts of calcium carbonate and 2-3 parts of methyl cellulose.
  • the thin bamboo concrete layer is a thin bamboo woven main reinforcement concrete structure, including a main reinforcement structure and a concrete layer.
  • the energy absorption control layer is composed of an energy absorption controller composed of a porous steel tube with a thickness to diameter ratio of less than 2, ribs on the outer wall and a porous steel tube containing pores.
  • the "sub" type stent layer is composed of a longitudinal main stent and a lateral side stent.
  • the main rib is composed of multiple layers of fine bamboo weaving, and the main fine bamboo weaving main rib is a grid-like fine bamboo main rib woven from fine bamboo, which is divided into a horizontal thin bamboo layer and a longitudinal thin bamboo layer.
  • the porous steel cylinder has an independent hole shape, the diameter of the hole is between about 5um and 0.5mm, and the volume of the hole accounts for 15%-20% of the total volume of the steel.
  • the longitudinal main supports are symmetrically arranged and supported along the roadway or tunnel, and the upper and lower portions are respectively supported on the bamboo concrete layer by energy-absorbing controllers.
  • the direction focus is fixed and supported on the main longitudinal support, and it is supported on the thin bamboo concrete layer by the energy absorbing controller toward the outside of the roadway or tunnel.
  • the diameter of the thin bamboo is less than 1 cm
  • the layer distance between adjacent horizontal thin bamboo layers is 4-8 cm
  • the layer distance between adjacent vertical thin bamboo layers is 4-8 cm.
  • a method for protecting a tunnel or tunnel surrounding rock shielding and protecting structure specifically includes the following steps:
  • the preparation steps and use methods of the special shielding paste in S2) are:
  • step S2.4 heating the mixed powder after ball milling in step S2.2) to 800-1200°C to melt to form a melt;
  • step S2.5 Put the mixed powder after ball milling in step S2.3) into the melt described in step S2.4) and stir for 10-12 minutes until uniform;
  • the present invention provides a tunnel or tunnel surrounding rock shielding protection structure and method, in particular a special shielding layer composed of a new type of special shielding material, and a new type of bamboo concrete layer constructed by a new type of energy-absorbing bamboo concrete, and A new type of roadway or tunnel surrounding rock shielding protection structure and method combined with an energy absorbing controller and a "sub-" type support.
  • the structure through the combined application of multi-layer protection structures can well realize the occurrence of ground pressure disasters in deep mining Timely protection of roadways or tunnels to ensure the safety of life and property.
  • the four-layer shielding protection structure combination of the present invention in which the special shielding layer and the thin bamboo concrete layer can be constructed by spraying and pouring, the resulting special shielding layer and The bamboo concrete layer has a high degree of integration, and the shielding and protective structure is more stable.
  • the connection part can effectively block the transmission of shock stress waves. It is often used in actual use.
  • the shielding effect of the layer structure is better than that of the single layer structure, and it can effectively ensure the safety of the roadway or tunnel.
  • the present invention discloses a method for preparing a special shielding material for a special shielding layer.
  • the prepared special shielding material has a good effect of dispersing stress wave impact, and the shielding layer can be constructed by spraying method, and the use mode is more flexible;
  • the fine bamboo concrete layer uses grid-like fine bamboo woven fabric as the main reinforcement, which has the characteristics of light weight and high toughness.
  • the natural closed cavity in the fine bamboo helps to achieve better energy absorption. In addition, it also has low price and preparation technology. Simplified and suitable for promotion;
  • both the special shielding layer and the thin bamboo concrete layer can be used by spray filling or pouring, so that the shielding and protection structure is more integrated, the supporting and protecting ability is stronger, and the effect of dispersing and shielding stress waves is better;
  • the present invention discloses a tunnel or tunnel surrounding rock shielding protection structure and method.
  • the shielding protection structure is set from the surrounding rock to the direction of the roadway or tunnel in accordance with the special shielding layer, thin bamboo concrete layer, energy absorption control layer and "sub"
  • the type support layer first disperses the stress wave impact through the special shielding layer to reduce the local impact damage to the bamboo concrete structure, and further reduces the stress wave impact through the toughness of the bamboo concrete structure. Reduce the stress wave shock wave, and finally use the "sub" type support to completely offset the impact of the stress wave on the roadway or tunnel, which can achieve a better roadway or tunnel safety guarantee effect;
  • the combined application of the multi-layer shielding structure and multiple shielding materials of the present invention achieves a more optimized protection effect. It also has a certain prompt and reference function for exploring the application of multiple shielding materials and multiple shielding structure combinations in the field of shielding protection.
  • Fig. 1 is a schematic structural diagram of a shielding and protecting structure for surrounding rock of a roadway or tunnel according to the present invention
  • Fig. 2 is a schematic diagram of the protection method of the shielding and protecting structure of the surrounding rock of a roadway or tunnel according to the present invention.
  • the raw material of the special shielding material includes the following components by weight: 8 parts of silicon carbide, 4.5 parts of graphite, 2 parts of titanium powder, 4.5 parts of aluminum powder, 42 parts of steel slag, 35 parts of fly ash, 1.5 parts of calcium carbonate and methyl fiber 2.5 servings of vegetarian;
  • step S2.4 heating the mixed powder after ball milling in step S2.2) to 1000°C to melt to form a melt;
  • step S2.5 Put the mixed powder after ball milling in step S2.3) into the melt described in step S2.4) and stir for 10-12 minutes until uniform;
  • thin bamboo stalks are used to weave into grid-like main ribs of corresponding sizes.
  • the layer distance between adjacent horizontal thin bamboo layers is 4cm, and the layer distance between adjacent longitudinal thin bamboo layers is 4cm;
  • Equipment needed pressure sensor (measuring the peak pressure of the shielding material under the impact of the shock stress wave), support (supporting a fixed test sample), shock stress wave blocking device (detecting the impact of local stress waves), explosives (select spherical TNT) ), explosive suspension support and other related equipment.
  • test sample uses 20cm thick thin bamboo concrete board, 10cm thick special shielding material board, length and width are 100cm, 600gB explosive, test distance 1 meter, special shielding material board is directly in front
  • a barrier baffle is set at 1cm, and a circular hole with a radius of 5cm is left at the center of the barrier.
  • the barrier baffle and the bamboo concrete slab are fixed by the support body, and the special shielding material board is attached to the bamboo concrete slab.
  • pressure sensors on the front of the shielding material plate facing the small hole of the blocking partition and between the special shielding material plate and the bamboo concrete plate. Among them, the pressure sensor No.
  • the impact pressure dispersion effect is significant, with a dispersion rate of 85.24%;
  • Dispersion rate (pressure peak at position 1-pressure peak at position 2)/1 pressure peak at position;
  • the test shows that the special shielding material plate has a good ability to disperse the impact of local stress waves, and can effectively avoid the local impact of the stress wave on the roadway or tunnel surrounding rock shielding protection structure and cause serious consequences.
  • test method is the same as in Example 2;
  • the two components of titanium and aluminum in the raw material have a significant impact on the stress wave shock dispersion effect of the special shielding material, and when the weight ratio is close to 5:9, the total content is close to 7 ⁇ 3%.
  • the dispersion effect is the best, can reach more than 85%, which is at least more than 5% higher than other optimized ratio combinations.
  • the titanium powder and aluminum powder in the raw material of the special shielding material should be composed of the following parts by weight: titanium powder 2-3 Parts, 4-5 parts of aluminum powder, and other components according to the following parts by weight: 8-10 parts of silicon carbide, 3-6 parts of graphite, 40-50 parts of steel slag, 30-35 parts of fly ash, carbonic acid Add 1-2 parts of calcium and 2-3 parts of methyl cellulose.
  • the experimental sample is the thin bamboo concrete slab A in the present invention.
  • the thin bamboo in the present invention is broken by thick bamboos to form bamboo strips of similar size instead of the grid-like main ribs made of thin bamboos to make concrete slab B.
  • the thin bamboo in the present invention The thin bamboo grid-like main ribs in the bamboo concrete slab are removed and replaced with sand and gravel cement slurry to make a conventional concrete slab C without thin bamboo components.
  • Concrete slab energy absorption test The thickness of the concrete slabs of test samples A, B and C are all 10cm thick and 100cm ⁇ 100cm in size, 600gB explosive, and the test distance is 1 meter.
  • the concrete slab is fixed on the support and close to the concrete slab.
  • a backing board is fixed on the back of the explosive direction through a support body.
  • the peak pressure at No. 1 position is 0.62 ⁇ 0.03MPa, and No. 2 is 0.28 ⁇ 0.04MPa;
  • the peak pressure at No. 1 position is 0.62 ⁇ 0.02MPa, and No. 2 is 0.36 ⁇ 0.05MPa;
  • the peak pressure at No. 1 position is 0.61 ⁇ 0.03MPa
  • No. 2 is 0.40 ⁇ 0.03MPa
  • Test sample Simulation of the shielding protection structure of the present invention: a special shielding material board with a length of 1m and a thickness of 10cm is fixed on the support, and a thin bamboo concrete board with a length of 1m and a thickness of 20cm is also fixed on the support, and is combined with the special shielding material
  • the boards are attached to each other, and the 20cm diameter and 10cm thickness energy absorbing controller is attached to the flexible energy absorbing layer material plate, and the horizontal side support round steel cylinder with a diameter of 10cm is connected and supported to the longitudinal main body of the "sub" type framework layer.
  • the longitudinal main support steel tube with a diameter of 15 cm is fixed by the support body.
  • Pressure sensor setting set up sensor 1 in front of the special shielding material board of the explosion point, set up sensor 2 between the special shielding material board and bamboo concrete board corresponding to the location, and set up between the bamboo concrete board and the energy-absorbing controller No. 3 sensor, No. 4 sensor is set up between the horizontal side support and the longitudinal main support steel tube of the "sub" type frame layer.
  • the simulation experiment of the shielding protection structure shows that the shielding protection structure composed of four layers of the present invention can effectively reduce the stress wave pressure in each layer.
  • the special shielding layer can shield the stress wave and absorb part of the energy, and can effectively disperse the stress wave. Reduce local damage to the shielding structure; the thin bamboo concrete layer, due to its own structural characteristics, can further absorb energy and again reduce the stress wave impact; the energy absorption control layer is further buffered by the energy-absorbing material porous steel to achieve the third absorption Therefore, after continuous shielding, dispersion and energy absorption buffering, when the stress wave reaches the "sub" type frame, the impact on the "sub" type frame layer is already very weak, not enough to cause damage to the roadway or tunnel, and can effectively protect Roadway or tunnel and personnel safety.
  • Each raw material of the characteristic shielding material includes the following components by weight: 8 parts of silicon carbide, 3 parts of graphite, 2 parts of titanium powder, 4 parts of aluminum powder, 50 parts of steel slag, 30 parts of fly ash, 1 part of calcium carbonate and methyl 2 parts of cellulose;
  • step S2.4 heating the mixed powder after ball milling in step S2.2) to 800°C to melt to form a melt;
  • step S2.5 Put the mixed powder after ball milling in step S2.3) into the melt described in step S2.4) and stir for 10-12 minutes until uniform;
  • thin bamboo stalks are used to weave into grid-like main ribs of corresponding size.
  • the layer distance between adjacent horizontal thin bamboo layers is 6cm, and the layer distance between adjacent longitudinal thin bamboo layers is 6cm;
  • Energy-absorbing controller commercially available porous steel, cut into a circular block with a diameter of 50cm and a thickness of 30cm, or cut into the required size and thickness according to actual needs, as an energy-absorbing controller.
  • Sub type support material commercially available steel pipes with a diameter of 30cm are used as horizontal and vertical support materials, which are cut to the required length according to actual needs, or steel pipes of suitable thickness can be selected as the support material according to the actual conditions of the roadway or tunnel.
  • the construction process of the shielding and protective structure of the surrounding rock of the roadway or tunnel first roughen the surface of the inner wall of the surrounding rock of the roadway or tunnel. If the thickness is less than 10cm, spray the special shielding material on the surrounding rock for 6-8 times continuously to make the thickness of the special shielding layer 8-10cm, and then set up the support mold groove according to the thickness of the required thin bamboo concrete layer, according to the size of the grinding tool groove.
  • the advance setting of the "sub" type bracket will effectively support and protect the thin bamboo concrete layer to be poured, which is conducive to the smooth construction of the shielding and protective structure.
  • the above construction process can also be as follows: According to the thickness of the special shielding layer, reserve the thickness space, first erect the support mold grooves for the thin bamboo concrete layer, erect the "sub" type support layer, and wait for the thin bamboo concrete layer after pouring the thin bamboo concrete layer. The concrete is solidified and subjected to stress, the mold is removed, and the "sub" type bracket and energy-absorbing controller are retained, and then special shielding materials are sprayed between the surrounding rock and the bamboo concrete layer. After natural cooling and solidification, a special shielding layer is formed. Other corresponding processes and methods are the same as above.
  • a special shielding layer of suitable thickness can be sprayed, and a thin bamboo concrete layer of suitable thickness can be poured.
  • the thickness and diameter of the energy absorbing controller can also be adjusted according to the actual situation.
  • the thickness and thickness of the steel tube used in the "type frame layer are also adjusted according to actual needs to achieve effective protection.
  • the isolation and support molds can be erected according to actual needs.
  • Each raw material preparation of the characteristic shielding material includes the following components by weight: 10 parts of silicon carbide, 6 parts of graphite, 3 parts of titanium powder, 5 parts of aluminum powder, 40 parts of steel slag, 32 parts of fly ash, 2 parts of calcium carbonate and A 2 parts of base cellulose;
  • step S2.4 heating the mixed powder after ball milling in step S2.2) to 1200°C to melt and form a melt;
  • step S2.5 Put the mixed powder after ball milling in step S2.3) into the melt described in step S2.4) and stir for 10-12 minutes until uniform;
  • thin bamboo stalks are used to weave into grid-like main ribs of corresponding sizes.
  • the layer distance between adjacent horizontal thin bamboo layers is 8cm, and the layer distance between adjacent longitudinal thin bamboo layers is 8cm;
  • Energy-absorbing controller commercially available porous steel, cut into a circular block with a diameter of 50cm and a thickness of 30cm, or cut into the required size and thickness according to actual needs, as an energy-absorbing controller.
  • Sub type support material commercially available steel pipes with a diameter of 30cm are used as horizontal and vertical support materials, cut to the required length according to actual needs, or choose suitable thickness steel pipes as the support material according to the actual conditions of the roadway or tunnel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Lining And Supports For Tunnels (AREA)

Abstract

本发明公开了一种巷道或隧道围岩屏蔽防护结构及方法。在地压作用下,巷道或隧道掘进成型后形成裸露围岩,本发明提供了一种多层组合的屏蔽防护结构和方法,通过喷射特质屏蔽材料构建特质屏蔽层,灌注细竹混凝土构建细竹混凝土层,设置吸能控制器构建吸能控制层和架设钢管支架构建的"亚"型支架,多层防护结构共同组建成的一种巷道或隧道围岩屏蔽防护结构,对裸露巷道或隧道围岩有很好的支撑保护作用,能有效屏蔽冲击应力波的破坏,对冲击能量具有显著韧性吸能作用,吸能控制器和"亚"型支架,能进一步吸收剩余能,避免巷道或隧道被冲击破坏,能有效保护巷道或隧道安全。

Description

一种巷道或隧道围岩屏蔽防护结构及方法 技术领域
本发明属于矿上防护技术领域,具体涉及一种巷道或隧道围岩屏蔽防护结构及方法。
背景技术
随着我国经济建设的高速发展,交通基础设施投入不断加大,特别是高速公路、高速铁路进入山区后,隧道工程大量修建。而我国又是处于多地震的国家,而隧道大部分沿河、傍山布线,沿线往往存在围岩破碎、地形偏压等不利工况,甚至存在滑坡的可能。尤其是在上覆围岩受开挖震动、以及一些应力波的影响后极易造成滑坡、坍塌等地质灾害的发生,从而导致隧道开挖掘进困难,影响隧道正常施工和运营,威胁人民生命财产安全。如何利用较为有效的防护结构确保隧道施工运营安全,是浅埋偏压隧道围岩破碎段施工经常面临的问题。
现有的浅埋偏压隧道围岩破碎段施工中的防护措施主要有:增加衬砌厚度、增设锚杆与管棚、加大钢拱架刚度来减小开挖过程中衬砌的变形和洞体的滑移;在浅埋侧增设重力式挡墙或者在浅埋侧回填反压土,通过重力式挡墙或反压土体平衡部分偏压力。这些方法虽然工艺简单,但对于破碎松散岩土体的支护强度偏低,未涉及对隧道周边岩土体的补强加固,没有从根本上加固不稳定山体,只是增加了隧道结构本身的刚度或局部加固了山体来抵抗偏压力,难以满足偏压、围岩破碎等极不利工况下的浅埋隧道施工运营要求。
发明内容
本发明公开了一种巷道或隧道围岩屏蔽防护结构及方法,以解决上述现有技术以及其他潜在问题中任一问题。
为了解决上述问题,本发明采用的技术方案是:
一种巷道或隧道围岩屏蔽防护结构,所述防护结构位于围岩与巷道或围 岩与隧道之间,其特征在于,该屏蔽防护结构自围岩向巷道或隧道方向依此包括特质屏蔽层、细竹混凝土层、吸能控制层及“亚”型支架层;
所述特质屏蔽层,是由特质屏蔽材料构成,用于屏蔽和分散应力波冲击;
所述细竹混凝土层,对所述特质屏蔽层起着支撑保护作用,并利用韧性吸能特点进一步吸收地压冲击波产生的冲击能;
所述吸能控制层,是由吸能控制器构成,用于所述特质屏蔽层和细竹混凝土层分散吸收冲击能后,进一步吸收剩余能量;
所述“亚”型支架,位于巷道或隧道内用于支撑围岩、特质屏蔽层、细竹混凝土层和吸能控制层,是维持巷道或隧道空间的骨架。
优选的,所述特质屏蔽层是由特质屏蔽材料喷射到围岩上固化形成,所述特质屏蔽材料是一种陶瓷基复合材料。
优选的,所述特质屏蔽材料包括下述重量份的组分:碳化硅8-10份、石墨3-6份、钛粉2-3份、铝粉4-5份、钢渣40-50份、粉煤灰30-35份、碳酸钙1-2份和甲基纤维素2-3份。
优选的,所述细竹混凝土层是一种细竹编织主筋混凝土结构,包含主筋结构和混凝土层。
优选的,所述吸能控制层是由厚度与直径比小于2、外壁肋纹、内含孔隙的多孔钢筒构成的吸能控制器组成。
优选的,所述“亚”型支架层由纵向主支架和横向侧支架组成。
优选的,所述主筋由多层细竹编织构成,所述细竹编织主筋是由细竹编织成的格栅状细竹主筋,分为横向细竹层和纵向细竹层。
优选的,所述多孔钢筒,其孔洞形态为独立孔洞型,孔洞的直径约5um~0.5mm之间,孔洞体积占钢材总体积的15%-20%。
优选的,所述纵向主支架沿着巷道或隧道左右对称排列支撑,其上下部分别通过吸能控制器支撑在细竹混凝土层上,所述横向侧支架左右各两根, 向巷道或隧道内侧方向着力固定支撑在纵向主支架上,向巷道或隧道外侧方向通过吸能控制器支撑在细竹混凝土层上。
优选的,所述细竹直径小于1cm,所述相邻横向细竹层之间层距为4-8cm,相邻纵向细竹层之间层距为4-8cm。
优选的,一种巷道或隧道围岩屏蔽防护结构的防护方法,该方法具体包括以下步骤:
S1)对巷道或隧道围岩内壁的表面进行预处理;
S2)将特质屏蔽浆料喷射在巷道或隧道围岩内壁上,自然冷却固化形成特质屏蔽层;
S3)根据细竹混凝土层厚度搭建支撑灌浆模具槽,在模具内放置细竹编织主筋;
S4)架设“亚”型支架,并在模具相应支撑位点设置吸能控制器;
S5)向灌浆模具槽内灌注水泥砂石浆料,固化形成细竹混凝土层;
S6)拆除支撑模具,保留“亚”型支架及吸能控制器,屏蔽防护结构构建完成。
优选的,上述S1)的具体步骤为:
S1.1)对巷道或隧道围岩内壁的表面进行粗糙处理;
S1.2)将经过S1.1)处理后的表面上每隔25-40cm设置锥形孔,锥形孔的深度不小于10cm。
优选的,S2)所述特质屏蔽浆料的制备步骤和使用方法为:
S2.1)按照上述特质屏蔽材料组分配比分别称取各个物料;
S2.2)将碳化硅、铝粉、钢渣、粉煤灰投入球磨机中球磨10-12h,得到混合粉末;
S2.3)将石墨、钛粉投入球磨机中球磨6-8h,得到混合粉末;
S2.4)将步骤S2.2)球磨后的混合粉末加热至800-1200℃熔化,形成熔体;
S2.5)将步骤S2.3)球磨后的混合粉末投入步骤S2.4)所述熔体中搅拌10-12min至均匀;
S2.6)继续加入甲基纤维素和研磨后的碳酸钙,搅拌20-25min;
S2.7)维持温度900-950℃范围内,保持熔体状态30-40min;
S2.8)将上述步骤处理后的熔体直接喷填在需要屏蔽部位,自然冷却后,形成特质屏蔽层。
本发明提供了一种巷道或隧道围岩屏蔽防护结构及方法,特别采用了一种由新型特质屏蔽材料组成的特质屏蔽层,以及一种新型吸能细竹混凝土构建的细竹混凝土层,并结合吸能控制器和“亚”型支架共同构成的一种新型巷道或隧道围岩屏蔽防护结构及方法,该结构通过多层防护结构的组合应用,很好的实现了深部开采地压灾害发生时对巷道或隧道的保护,确保生命财产的安全。
与同样厚度由单层吸能材料构成的屏蔽层相比,本发明四层屏蔽防护结构组合,其中特质屏蔽层和细竹混凝土层都可以通过喷射和灌注的方法构建,得到的特质屏蔽层和细竹混凝土层一体化程度高,屏蔽防护结构更稳定,此外,通过不同保护层之间不同结构和材质的衔接,衔接部更能有效的实现对冲击应力波传输的阻断,实际使用中多层结构屏蔽保护效果较单层结构更好,更能有效保障巷道或隧道安全。
本发明的有益效果主要有:
①本发明公开了一种制备特质屏蔽层所用的特质屏蔽材料的方法,制备的特质屏蔽材料具有很好的分散应力波冲击作用,可通过喷射方法构建屏蔽层,使用方式更灵活;
②细竹混凝土层使用格栅状细竹编织物作为主筋,具有轻质、韧性高等特点,细竹中天然的封闭空腔,有助于更好的实现吸能,此外,还具有价格低廉、制备工艺简化,适于推广的特点;
③本发明中特质屏蔽层和细竹混凝土层都可以采用喷填或灌注的方法使用,使得屏蔽保护结构一体化程度更高,支撑保护能力更强,分散和屏蔽应力波效果也更好;
④本发明公开了一种巷道或隧道围岩屏蔽防护结构及方法,该屏蔽防护结构自围岩向巷道或隧道方向依此设置特质屏蔽层、细竹混凝土层、吸能控制层及“亚”型支架层,先通过特质屏蔽层将应力波冲击分散,减少对细竹混凝土结构的局部冲击破坏,通过细竹混凝土韧性吸能,进一步降低应力波冲击,再次通过吸能控制器吸能,进一步降低应力波冲击波,最后通过“亚”型支架彻底抵消应力波对巷道或隧道的冲击,可以实现较好的巷道或隧道安全保障效果;
⑤本发明多层屏蔽结构、多种屏蔽材料的组合应用,实现更优化的防护效果,对于探索多种屏蔽材料、多种屏蔽结构组合应用于屏蔽防护领域也有一定的提示和参考作用。
附图说明
图1为本发明一种巷道或隧道围岩屏蔽防护结构的结构示意图;
图2为本发明一种巷道或隧道围岩屏蔽防护结构的防护方法流程示意图。
具体实施方式:
下面结合附图和具体实施例对本发明的技术方案做进一步说明。
实施例1
特质屏蔽材料原料包括下述重量份的组分:碳化硅8份、石墨4.5份、钛粉2份、铝粉4.5份、钢渣42份、粉煤灰35份、碳酸钙1.5份和甲基纤维素2.5份;
特质屏蔽材料制备步骤:
S2.1)按照上述特质屏蔽材料组分配比分别称取各个物料;
S2.2)将碳化硅、铝粉、钢渣、粉煤灰投入球磨机中球磨11h,得到混合 粉末;
S2.3)将石墨、钛粉投入球磨机中球磨7h,得到混合粉末;
S2.4)将步骤S2.2)球磨后的混合粉末加热至1000℃熔化,形成熔体;
S2.5)将步骤S2.3)球磨后的混合粉末投入步骤S2.4)所述熔体中搅拌10-12min至均匀;
S2.6)继续加入甲基纤维素和研磨后的碳酸钙,搅拌23min;
S2.7)维持温度900-950℃范围内,保持熔体状态35min;
S2.8)将上述步骤处理后的熔体直接喷射到经处理后的光滑表面上,可制备不同厚度的特质屏蔽层板。
细竹混凝土制备:
(1)选用直径小于1cm,长径比大于5的青竹,去除叶片,留茎秆;
(2)根具实际需要,利用细竹茎秆编织成相应大小格栅状主筋,相邻横向细竹层之间层距为4cm,相邻纵向细竹层之间层距为4cm;
(3)根据需要搭建相应大小的灌浆槽;
(4)将细竹编织的格栅状主筋放置在灌浆槽中;
(5)按照重量份的组分比例:碎砂石:水:建筑胶水=15:4:1,搅拌均匀成砂石水泥浆料,向步骤(4)灌浆槽内灌注浆料;
(6)直至砂石水泥浆料将格栅状主筋完全包裹,固化后形成细竹混凝土板;
实施例2
冲击波实验:
所需器材:压力传感器(测量屏蔽保护材料在冲击应力波作用时的峰值压力)、支撑体(支撑固定试验样本)、冲击应力波阻隔装置(检测局部应力波冲击影响)、炸药(选用球形TNT)、炸药悬空支架以及其他相关器材。
特质屏蔽材料板对局部应力波冲击分散试验:试验样本选用20cm厚度细 竹混凝土板,10cm厚度的特质屏蔽材料板,长宽都为100cm,600gB炸药,试验距离1米,特质屏蔽材料板正前方1cm处设置阻隔挡板,在阻隔挡板中心位置留有半径5cm圆形小孔,阻隔挡板和细竹混凝土板通过支撑体固定,特质屏蔽材料板贴靠在细竹混凝土板上,在特质屏蔽材料板正面正对阻隔板小孔位置以及特质屏蔽材料板和细竹混凝土板之间设有压力传感器,其中,正对小孔特质屏蔽材料板正面设有压力传感器1号,1号传感器正对的特质屏蔽材料板背面设有压力传感器2号,在2号位置周围正三角方向辐射距离10cm设置3、4、5号压力传感器、20cm设置6、7、8号压力传感器、30cm设置9、10、11号压力传感器,实验重复四次。
检测结果:1号位置压力峰值为0.61±0.05MPa,2号为0.09±0.02MPa,3号为0.08±0.01MPa,4号为0.07±0.02MPa,5号为0.08±0.01MPa,6号为0.06±0.02MPa,7号为0.07±0.01MPa,8号为0.06±0.00MPa,9号为0.05±0.01MPa,10号为0.05±0.00MPa,11号为0.04±0.01MPa。
对应应力波冲击点的冲击压力,冲击压力分散效果显著,分散率达到85.24%;
分散率=(1号位置压力峰值-2号位置压力峰值)/1号位置压力峰值;
该试验表明特质屏蔽材料板,具有很好分散局部应力波冲击的能力,能有效避免冲击地压灾害发生点应力波对巷道或隧道围岩屏蔽防护结构局部冲击造成破坏并引发严重后果。
实施例3
特质屏蔽材料板对应力波冲击压力分散效果和原料组成关系实验:
试验方法同实施例2;
通过原料组成及配比正交试验,原料中钛、铝两种组分对特质屏蔽材料的应力波冲击分散效果影响显著,且重量比例接近5:9时,总含量结近7±3%时,分散效果达到最佳,能达到85%以上,高于其他优化配比组合至少5% 以上,因而特质屏蔽材料原料中钛粉和铝粉按照下述重量份的组分:钛粉2-3份、铝粉4-5份添加,其他组分按照下述重量份的组分:碳化硅8-10份、石墨3-6份、钢渣40-50份、粉煤灰30-35份、碳酸钙1-2份和甲基纤维素2-3份添加。
实施例4
细竹混凝土吸能试验:
实验样本,本发明中细竹混凝土板A,本发明中的细竹用粗竹破碎后形成大小相近的竹条代替细竹编制成的格栅状主筋,制成混凝土板B,本发明中细竹混凝土板中的细竹格栅状主筋去除,用砂石水泥浆代替,制成常规无细竹成分混凝土板C。
混凝土板吸能试验:试验样本A、B和C混凝土板的厚度皆为10cm厚大小均为100cm×100cm,600gB炸药,试验距离1米,混凝土板固定在支撑体上,紧贴着混凝土板,炸药方向的背面通过支撑体固定一块靠板,在混凝土板正面,混凝土板背面与靠板之间,分别设有1号和2号压力传感器,重复试验4次。
实验结果:
混凝土板A,1号位置压力峰值为0.62±0.03MPa,2号为0.28±0.04MPa;
混凝土板B,1号位置压力峰值为0.62±0.02MPa,2号为0.36±0.05MPa;
混凝土板C,1号位置压力峰值为0.61±0.03MPa,2号为0.40±0.03MPa。
该试验表明本发明采用完整细竹制成的混凝土板,同样条件下,其吸能效果要好很多,吸能效果好的原因可能和细竹小段中含有一定的密闭空腔有关。
实施例5
巷道或隧道围岩屏蔽防护结构模拟试验:
试验样本:本发明屏蔽防护结构模拟:将长宽1m,厚度10cm特质屏蔽材 料板固定在支撑体上,将长宽1m,厚度20cm细竹混凝土板也固定在支撑体上,并与特质屏蔽材料板贴靠在一起,将直径20cm,厚度为10cm吸能控制器贴靠在韧性吸能层材料板上,通过10cm直径的横向侧支架圆钢筒连接支撑到“亚”型骨架层的纵向主支架钢筒上,直径15cm纵向主支架钢筒通过支撑体固定。
试验选用炸药及固定设置方法同实施例4:
压力传感器设定,正对爆炸点特质屏蔽材料板前面设置1号传感器,对应位置特质屏蔽材料板和细竹混凝土板之间设立2号传感器,对应细竹混凝土板和吸能控制器之间设立3号传感器,横向侧支架和“亚”型骨架层的纵向主支架钢筒之间设立4号传感器。
实验结果:1号位置压力峰值为0.63±0.02MPa,2号为0.45±0.05MPa,3号为0.12±0.03MPa,4号为0.02±0.01MPa
屏蔽防护结构模拟实验表明,本发明通过四层结构组成的屏蔽防护结构,每层都能有效的降低应力波压力,特质屏蔽层具有屏蔽应力波和吸收部分能量的同时,可以有效分散应力波,减少对屏蔽结构局部的破坏;细竹混凝土层,由于自身的结构特点,能进一步吸能,再次降低应力波冲击;吸能控制层通过吸能材料多孔钢进一步缓冲吸能,实现第三次吸能;因此,经过连续的屏蔽分散和吸能缓冲,应力波到达“亚”型骨架时,对“亚”型骨架层的冲击已经非常微弱,不足以对巷道或隧道造成破坏,能有效的保护巷道或隧道及人员安全。
实施例6
特质屏蔽材料制备:
特质屏蔽材料各个原料包括下述重量份的组分:碳化硅8份、石墨3份、钛粉2份、铝粉4份、钢渣50份、粉煤灰30份、碳酸钙1份和甲基纤维素2份;
制备步骤:
S2.1)按照上述特质屏蔽材料组分配比分别称取各个物料;
S2.2)将碳化硅、铝粉、钢渣、粉煤灰投入球磨机中球磨10h,得到混合粉末;
S2.3)将石墨、钛粉投入球磨机中球磨6h,得到混合粉末;
S2.4)将步骤S2.2)球磨后的混合粉末加热至800℃熔化,形成熔体;
S2.5)将步骤S2.3)球磨后的混合粉末投入步骤S2.4)所述熔体中搅拌10-12min至均匀;
S2.6)继续加入甲基纤维素和研磨后的碳酸钙,搅拌20min;
S2.7)维持温度900-950℃范围内,保持熔体状态30min;
S2.8)将上述步骤处理后的熔体直接喷填在需要屏蔽部位,自然冷却后,形成特质屏蔽层。
细竹混凝土制备:
(1)选用直径小于1cm,长径比大于5的青竹,去除叶片,留茎秆;
(2)根具实际需要,利用细竹茎秆编织成相应大小格栅状主筋,相邻横向细竹层之间层距为6cm,相邻纵向细竹层之间层距为6cm;
(3)根据需要搭建相应大小的灌浆槽;
(4)将细竹编织的格栅状主筋放置在灌浆槽中;
(5)按照重量份的组分比例:碎砂石:水:建筑胶水=15:4:1,搅拌均匀成砂石水泥浆料,向步骤(4)灌浆槽内灌注浆料;
(6)直至砂石水泥浆料将格栅状主筋完全包裹,固化后形成细竹混凝土层。
吸能控制器:市购多孔钢,裁剪成直径50cm,厚度30cm的圆形块,或按照实际需要裁剪成需要的大小和厚度,作为吸能控制器。
“亚”型支架材料:市购直径30cm钢管作为横向和纵向支架材料,按照实际需求裁剪成需要的长度,或按照巷道或隧道实际情况选购适宜粗细的钢 管作为支架材料。
巷道或隧道围岩屏蔽防护结构构建过程:先对巷道或隧道围岩内壁的表面进行粗糙处理,经粗糙处理后的围岩表面上每隔25-40cm设置锥形孔,锥形孔的深度不小于10cm,将特质屏蔽材料喷射在围岩上,连续喷射6-8次,使得特质屏蔽层厚度为8-10cm,然后根据所需细竹混凝土层的厚度架设支撑模具槽,根据磨具槽大小用细竹编织适宜大小的格栅状主筋,将细竹编织的主筋放置在模具槽中,并在细竹混凝土层模具槽相应位置架设“亚”型支架层,安置吸能控制器在相应位置,“亚”型支架的提前设置对将要灌注的细竹混凝土层起到有效的支撑和保护作用,有利于屏蔽防护结构的顺利构建。搭建好“亚”型支架后,在支撑模具槽和特质屏蔽层之间灌注混凝土浆料,待混凝土固化受力后,移除模具,保留“亚”型支架及吸能控制器等结构,形成四层结构的巷道或隧道围岩屏蔽防护结构。
上述构建过程也可为:根据特质屏蔽层厚度,预留该厚度空间,先架设细竹混凝土层的支撑模具槽,架设“亚”型支架层,在灌注好细竹混凝土层后,待细竹混凝土固化受力,移除模具,保留“亚”型支架及吸能控制器等结构,再在围岩和细竹混凝土层之间喷填特质屏蔽材料,自然冷却固化后,形成特质屏蔽层。其他相应过程及方法同上。
实际操作时,可根据实际巷道或隧道围岩情况,选择喷射适宜厚度的特质屏蔽层,灌注适宜厚度的细竹混凝土层,吸能控制器的厚度及直径也可根据实际情况进行调节,“亚”型骨架层所用钢筒粗细、厚度亦是根据实际需要进行调整,以实现有效的防护作用。巷道或隧道围岩屏蔽防护结构构建过程中,可根据实际需要架设隔离和支撑模具。
实施例7
特质屏蔽材料制备:
特质屏蔽材料各个原料准备包括下述重量份的组分:碳化硅10份、石墨 6份、钛粉3份、铝粉5份、钢渣40份、粉煤灰32份、碳酸钙2份和甲基纤维素2份;
制备步骤:
S2.1)按照上述特质屏蔽材料组分配比分别称取各个物料;
S2.2)将碳化硅、铝粉、钢渣、粉煤灰投入球磨机中球磨12h,得到混合粉末;
S2.3)将石墨、钛粉投入球磨机中球磨8h,得到混合粉末;
S2.4)将步骤S2.2)球磨后的混合粉末加热至1200℃熔化,形成熔体;
S2.5)将步骤S2.3)球磨后的混合粉末投入步骤S2.4)所述熔体中搅拌10-12min至均匀;
S2.6)继续加入甲基纤维素和研磨后的碳酸钙,搅拌25min;
S2.7)维持温度900-950℃范围内,保持熔体状态40min;
S2.8)将上述步骤处理后的熔体直接喷填在需要屏蔽部位,自然冷却后,形成特质屏蔽层。
细竹混凝土制备步骤:
(1)选用直径小于1cm,长径比大于5的青竹,去除叶片,留茎秆;
(2)根具实际需要,利用细竹茎秆编织成相应大小格栅状主筋,相邻横向细竹层之间层距为8cm,相邻纵向细竹层之间层距为8cm;
(3)根据需要搭建相应大小的灌浆槽;
(4)将细竹编织的格栅状主筋放置在灌浆槽中;
(5)按照重量份的组分比例:碎砂石:水:建筑胶水=15:4:1,搅拌均匀成砂石水泥浆料,向步骤(4)灌浆槽内灌注浆料;
(6)直至砂石水泥浆料将格栅状主筋完全包裹,固化后形成细竹混凝土层。
吸能控制器:市购多孔钢,裁剪成直径50cm,厚度30cm的圆形块,或按 照实际需要裁剪成需要的大小和厚度,作为吸能控制器。
“亚”型支架材料:市购直径30cm钢管作为横向和纵向支架材料,按照实际需求裁剪成需要的长度,或按照巷道或隧道实际情况选购适宜粗细的钢管作为支架材料。
巷道或隧道围岩屏蔽防护结构构建过程:同实施例6。
以上实施例对本发明所提供的巷道或隧道围岩屏蔽防护结构及方法,进行了详细介绍,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,本说明书内容不应理解为对本申请的限制。

Claims (13)

  1. 一种巷道或隧道围岩屏蔽防护结构,所述防护结构位于围岩与巷道或围岩与隧道之间,其特征在于,该屏蔽防护结构自围岩向巷道或隧道方向依此包括特质屏蔽层、细竹混凝土层、吸能控制层及“亚”型支架层;
    所述特质屏蔽层,是由特质屏蔽材料构成,用于屏蔽和分散应力波冲击;
    所述细竹混凝土层,对所述特质屏蔽层起着支撑保护作用,并利用韧性吸能特点进一步吸收地压冲击波产生的冲击能;
    所述吸能控制层,是由吸能控制器构成,用于所述特质屏蔽层和细竹混凝土层分散吸收冲击能后,进一步吸收剩余能量;
    所述“亚”型支架,位于巷道或隧道内用于支撑围岩、特质屏蔽层、细竹混凝土层和吸能控制层,是维持巷道或隧道空间的骨架。
  2. 根据权利要求1所述的一种巷道或隧道围岩屏蔽防护结构,其特征在于,所述特质屏蔽层是由特质屏蔽材料喷射到围岩上固化形成,所述特质屏蔽材料是一种陶瓷基复合材料。
  3. 根据权利要求2所述的一种巷道或隧道围岩屏蔽防护结构,其特征在于,所述特质屏蔽材料包括下述重量份的组分:碳化硅8-10份、石墨3-6份、钛粉2-3份、铝粉4-5份、钢渣40-50份、粉煤灰30-35份、碳酸钙1-2份和甲基纤维素2-3份。
  4. 根据权利要求1所述的一种巷道或隧道围岩屏蔽防护结构,其特征在于,所述细竹混凝土层是一种细竹编织主筋混凝土结构,包含主筋结构和混凝土层。
  5. 根据权利要求1所述的一种巷道或隧道围岩屏蔽防护结构,其特征在于,所述吸能控制层是由厚度与直径比小于2、外壁肋纹、内含孔隙的多孔钢筒组成,所述多孔钢筒为吸能控制器。
  6. 根据权利要求1所述的一种巷道或隧道围岩屏蔽防护结构,其特征在于,所述“亚”型支架层由纵向主支架和横向侧支架组成。
  7. 根据权利要求4所述的一种巷道或隧道围岩屏蔽防护结构,其特征在于,所述主筋由多层细竹编织构成,所述细竹编织主筋是由细竹编织成的格栅状细竹主筋,分为横向细竹层和纵向细竹层。
  8. 根据权利要求5所述的一种巷道或隧道围岩屏蔽防护结构,其特征在于,所述多孔钢筒,其孔洞形态为独立孔洞型,孔洞的直径约5um~0.5mm之间,孔洞体积占钢材总体积的15%-20%。
  9. 根据权利要求6所述的一种巷道或隧道围岩屏蔽防护结构,其特征在于,所述纵向主支架沿着巷道或隧道左右对称排列支撑,其上下部分别通过吸能控制器支撑在细竹混凝土层上,所述横向侧支架左右各两根,向巷道或隧道内侧方向着力固定支撑在纵向主支架上,向巷道或隧道外侧方向通过吸能控制器支撑在细竹混凝土层上。
  10. 根据权利要求7所述的一种巷道或隧道围岩屏蔽防护结构,其特征在于,所述细竹直径小于1cm,所述相邻横向细竹层之间层距为4-8cm,相邻纵向细竹层之间层距为4-8cm。
  11. 一种采用如权利要求1-10任意一项所述一种巷道或隧道围岩屏蔽防护结构的防护方法,其特征在于,该方法具体包括以下步骤:
    S1)对巷道或隧道围岩内壁的表面进行预处理;
    S2)将特质屏蔽浆料喷射在巷道或隧道围岩内壁上,自然冷却固化形成特质屏蔽层;
    S3)根据细竹混凝土层厚度搭建支撑灌浆模具槽,在模具内放置细竹编织主筋;
    S4)架设“亚”型支架,在相应支撑位点设置吸能控制器;
    S5)向灌浆模具槽内灌注水泥砂石浆料,固化形成细竹混凝土层;
    S6)拆除支撑模具,保留“亚”型支架及吸能控制器,屏蔽防护结构构建完成。
  12. 根据权利要求11所述一种巷道或隧道围岩屏蔽防护结构的防护方法,其特征在于,所述S1)的具体步骤为:
    S1.1)对巷道或隧道围岩内壁的表面进行粗糙处理;
    S1.2)将经过S1.1)处理后的表面上每隔25-40cm设置锥形孔,锥形孔的深度不小于10cm。
  13. 根据权利要求11所述一种巷道或隧道围岩屏蔽防护结构的防护方法,其特征在于,S2)所述特质屏蔽浆料的制备步骤和使用方法为:
    S2.1)按照上述特质屏蔽材料组分配比分别称取各个物料;
    S2.2)将碳化硅、铝粉、钢渣、粉煤灰投入球磨机中球磨10-12h,得到混合粉末;
    S2.3)将石墨、钛粉投入球磨机中球磨6-8h,得到混合粉末;
    S2.4)将步骤S2.2)球磨后的混合粉末加热至800-1200℃熔化,形成熔体;
    S2.5)将步骤S2.3)球磨后的混合粉末投入步骤S2.4)所述熔体中搅拌10-12min至均匀;
    S2.6)继续加入甲基纤维素和研磨后的碳酸钙,搅拌20-25min;
    S2.7)维持温度900-950℃范围内,保持熔体状态30-40min;
    S2.8)将上述步骤处理后的熔体直接喷填在需要屏蔽部位,自然冷却后,形成特质屏蔽层。
PCT/CN2020/086433 2020-04-08 2020-04-23 一种巷道或隧道围岩屏蔽防护结构及方法 WO2021203492A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010268308.XA CN111472807B (zh) 2020-04-08 2020-04-08 一种巷道或隧道围岩屏蔽防护结构及方法
CN202010268308.X 2020-04-08
CN202010279726.9A CN111577343A (zh) 2020-04-10 2020-04-10 一种多功能用采动围岩冲击震动屏蔽结构和方法
CN202010279726.9 2020-04-10

Publications (1)

Publication Number Publication Date
WO2021203492A1 true WO2021203492A1 (zh) 2021-10-14

Family

ID=78022728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086433 WO2021203492A1 (zh) 2020-04-08 2020-04-23 一种巷道或隧道围岩屏蔽防护结构及方法

Country Status (2)

Country Link
LU (1) LU502696B1 (zh)
WO (1) WO2021203492A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114320414A (zh) * 2021-12-29 2022-04-12 山东科技大学 一种多级吸能式隧道支护结构及其施工方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102787849A (zh) * 2012-08-28 2012-11-21 江苏建筑职业技术学院 具有让压功能的深部煤矿巷道
CN205532618U (zh) * 2015-12-31 2016-08-31 四川达竹煤电(集团)有限责任公司小河嘴煤矿 近距离倾斜煤层沿空护巷的巷道安全结构
CN106988759A (zh) * 2017-06-02 2017-07-28 中南林业科技大学 泡沫混凝土初衬兼做减震层的隧道结构
CN206418618U (zh) * 2016-11-25 2017-08-18 中国人民解放军61489部队 一种具有软回填层的防护工程抗爆减震三层复合结构
CN110159314A (zh) * 2019-05-07 2019-08-23 山东大学 一种适用于穿越活动断裂带的隧道柔性环式支撑系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102787849A (zh) * 2012-08-28 2012-11-21 江苏建筑职业技术学院 具有让压功能的深部煤矿巷道
CN205532618U (zh) * 2015-12-31 2016-08-31 四川达竹煤电(集团)有限责任公司小河嘴煤矿 近距离倾斜煤层沿空护巷的巷道安全结构
CN206418618U (zh) * 2016-11-25 2017-08-18 中国人民解放军61489部队 一种具有软回填层的防护工程抗爆减震三层复合结构
CN106988759A (zh) * 2017-06-02 2017-07-28 中南林业科技大学 泡沫混凝土初衬兼做减震层的隧道结构
CN110159314A (zh) * 2019-05-07 2019-08-23 山东大学 一种适用于穿越活动断裂带的隧道柔性环式支撑系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114320414A (zh) * 2021-12-29 2022-04-12 山东科技大学 一种多级吸能式隧道支护结构及其施工方法

Also Published As

Publication number Publication date
LU502696B1 (en) 2022-10-14

Similar Documents

Publication Publication Date Title
CN111472807B (zh) 一种巷道或隧道围岩屏蔽防护结构及方法
CN108590683A (zh) 一种富水流塑地层盾构隧道下穿铁路框架桥施工方法
WO2021203492A1 (zh) 一种巷道或隧道围岩屏蔽防护结构及方法
CN108004912A (zh) 用于圆形墩柱抗爆抗冲击的防护装置
CN105781575B (zh) 富水地层管片组合结构及其施工方法
CN110080244A (zh) 一种超大深基坑换撑回填结构及施工方法
CN112627860A (zh) 一种富水泥岩地层隧道掌子面超前注浆方法
CN109989768A (zh) 一种适用于隧道穿越活断层的衬砌结构及其施工方法
CN106988759A (zh) 泡沫混凝土初衬兼做减震层的隧道结构
CN106050244A (zh) 富水砂卵石地层盾构进出洞加固体系及其构建方法
CN205876322U (zh) 一种富水砂卵石地层盾构进出洞加固体系
CN100425803C (zh) 一种适应围岩后期大变形的复合衬砌
CN109404007A (zh) 一种地下工程支护抗爆一体化复合结构
CN110030014A (zh) 一种软岩巷道底臌让压弧型壳治理方法
CN110512625B (zh) 临坡面岩体竖向裂隙注浆、锚杆双重加固方法
CN114635720A (zh) 大断面深埋软岩隧道联合支护体系及施工方法
CN109779370A (zh) 一种基于空心玻璃微珠的水下抗爆复合防护结构及其施工方法
CN110397091A (zh) 古建筑隔震屏障
CN209779646U (zh) 一种玄武岩纤维复合材料边坡防护装置
CN209244590U (zh) 洞室围岩预支护系统以及洞室结构
CN206844135U (zh) 一种围堰
CN109404019A (zh) 洞室围岩预支护系统以及洞室结构
CN109973122A (zh) 一种围岩松动或软岩大变形的隧道加固控制方法
CN112855168B (zh) 一种跨越特大型溶洞的悬索桥式隧道施工方法
CN106368710A (zh) 超浅埋隧道下穿既有道路的路面防护方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20929957

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20929957

Country of ref document: EP

Kind code of ref document: A1