WO2021203447A1 - 车辆控制装置、方法、计算机可读存储介质及编队行驶系统 - Google Patents

车辆控制装置、方法、计算机可读存储介质及编队行驶系统 Download PDF

Info

Publication number
WO2021203447A1
WO2021203447A1 PCT/CN2020/084354 CN2020084354W WO2021203447A1 WO 2021203447 A1 WO2021203447 A1 WO 2021203447A1 CN 2020084354 W CN2020084354 W CN 2020084354W WO 2021203447 A1 WO2021203447 A1 WO 2021203447A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
vehicles
information
environment information
fleet
Prior art date
Application number
PCT/CN2020/084354
Other languages
English (en)
French (fr)
Inventor
李添泽
郑益红
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20930353.6A priority Critical patent/EP4123619A4/en
Priority to CN202080004390.3A priority patent/CN112543958B/zh
Priority to PCT/CN2020/084354 priority patent/WO2021203447A1/zh
Publication of WO2021203447A1 publication Critical patent/WO2021203447A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096708Systems involving transmission of highway information, e.g. weather, speed limits where the received information might be used to generate an automatic action on the vehicle control
    • G08G1/096725Systems involving transmission of highway information, e.g. weather, speed limits where the received information might be used to generate an automatic action on the vehicle control where the received information generates an automatic action on the vehicle control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • B60W30/165Automatically following the path of a preceding lead vehicle, e.g. "electronic tow-bar"
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096766Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission
    • G08G1/096791Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission where the origin of the information is another vehicle
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/22Platooning, i.e. convoy of communicating vehicles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/65Data transmitted between vehicles

Definitions

  • the embodiments of the present application relate to the field of intelligent networked vehicles, and in particular to a vehicle control device, a vehicle control method, a computer-readable storage medium, and a formation driving system for controlling a fleet of multiple member vehicles.
  • Formation driving is to connect multiple vehicles traveling in the same direction through wireless technology to form a fleet.
  • the leading vehicle in the fleet is a manned or self-driving vehicle, and the following vehicles are self-driving vehicles based on real-time information interaction and maintaining a stable inter-vehicle distance at a certain speed.
  • the following vehicle can react in the shortest time according to the acceleration and braking information of the preceding vehicle, and follow the preceding vehicle.
  • Formation driving can reduce the demand for drivers of transportation companies, reduce the labor intensity of drivers, reduce the wind resistance in the driving of the fleet and reduce the fuel consumption of vehicles.
  • the following vehicles can instantly follow the instructions of the leading vehicle, reducing vehicle safety accidents.
  • formation driving can free up more lanes for other vehicles to pass, significantly improve traffic congestion and improve transportation efficiency, and further alleviate traffic pressure.
  • Formation driving is of great positive significance for improving the economic and social benefits of vehicles and reducing environmental pollution caused by emissions.
  • the prior art discloses a fleet formation driving system and method.
  • Each vehicle is equipped with a positioning unit, a communication unit, an adjacent lane detection unit, and an automatic driving control unit.
  • the automatic driving control unit controls the vehicle according to specific conditions. Automatically follow the vehicles in front of and adjacent to the convoy to drive, so that each of the at least two vehicles can follow the leading vehicle and drive automatically except for the first vehicle being driven manually.
  • the pilot vehicle makes driving decisions based on the local driving environment around itself. Therefore, certain decisions made by the pilot vehicle may cause some of the following vehicles to be unable to continue to follow the vehicle fleet, and may also affect the surrounding area of the vehicle fleet.
  • the driving of the vehicle caused a certain impact. Specifically, take a lane change as an example.
  • the pilot vehicle detects its surrounding driving environment through its own camera and other sensing units or receives broadcast information from surrounding vehicles, and determines that it has changed. The lane behavior will not cause safety problems between it and surrounding vehicles, so the lane change will be executed. After that, the following vehicle that follows the lead vehicle also changes lanes by following driving (tracking driving).
  • the following vehicle cannot perform the lane change behavior, and thus cannot follow the convoy to drive, resulting in a lagging.
  • the surrounding vehicles driving side by side with the following vehicles cannot accelerate past the side-by-side following vehicles because of the obstruction of the pilot vehicle that completed the lane change. Therefore, it can be said that the lane change behavior of the pilot vehicle is harmful to the driving of the vehicles around the convoy. Impact.
  • the embodiments of the present application are completed in consideration of the above-mentioned technical problems, and aim to provide a vehicle control device, a vehicle control method, a computer-readable storage medium, and a formation traveling system that can perform formation traveling control more appropriately.
  • the first aspect of the embodiments of the present application provides a vehicle control device, which is used to control a fleet of multiple member vehicles, including a local environment information acquisition module, a global environment information generation module, and a decision making module;
  • the local environment information acquisition module is used to acquire local environment information representing the driving environment of each member vehicle among the plurality of member vehicles;
  • the global environment information generation module is used to generate global environment information representing the driving environment of the fleet ;
  • the decision making module is used to make a control decision for the fleet according to the global environment information.
  • the vehicle that is driving in the most forward position among the multiple member vehicles is referred to as the pilot vehicle, and the member vehicle that follows the pilot vehicle is referred to as the follower vehicle.
  • the object of the control decision it can be the leading vehicle driving in the front of the member vehicles, or the follower vehicle driving behind the leading vehicle.
  • control decision made by the decision-making module includes not only the decision of acceleration, braking, lane change and other sports behaviors, but also processing decisions such as transmission of driving control information and warning information described later. In addition, you can also imagine To make decisions about behaviors such as honking the whistle.
  • the vehicle control device with the above structure makes the decision for the fleet based on the global environment information. Therefore, the judgment is made on the basis of the overall driving environment of the fleet. Compared with the decision-making situation of environmental information, a more appropriate decision can be made from the perspective of the fleet as a whole. For example, it can reduce the situation of leaving the fleet caused by the failure of the following car to drive, or restrain the influence of the fleet behavior on other vehicles outside the fleet. In turn, the safety of driving can be improved.
  • the vehicle control device is set on a member vehicle i, which is any member vehicle among a plurality of member vehicles;
  • the local environment information acquisition module includes a local environment information acquisition unit of the vehicle The local environment information acquisition unit of the other vehicle; the local environment information acquisition unit of the own vehicle is used to acquire the local environment information representing the driving environment of the member vehicle i; the local environment information acquisition unit of the other vehicle is used to pass the communication unit of the member vehicle i to remove The member vehicles other than the member vehicle i obtain local environment information indicating the driving environment of the other member vehicle.
  • member vehicle i obtains the local environment information of other member vehicles, generates global environment information based on its own local environment information and the local environment information of other member vehicles, and makes control decisions based on the global environment information, such as with member vehicle i Compared with making decisions based only on their own environmental information, they can make more appropriate decisions from the perspective of the fleet as a whole, and improve the safety and stability of the fleet.
  • the aforementioned vehicle control device when the aforementioned vehicle control device is installed in a pilot vehicle, that is, the pilot vehicle at the forefront of the vehicle fleet makes a control decision about the vehicle fleet, and the decision vehicle is consistent with the pilot vehicle, so that the vehicle fleet can be immediately guided to execute the decision made.
  • the local environment information includes at least the location information of member vehicles and other vehicles located outside the fleet; the global environment information generation module takes all the local environment information acquired by the local environment information acquisition module The location information is aggregated to generate global environmental information.
  • the environmental information may also include vehicle speed information.
  • the decision-making module includes a pilot navigation as a formulation unit, and the pilot navigation as a formulation unit formulates the movement behavior of the pilot vehicle according to the global environmental information.
  • the vehicle control device may notify the follower vehicle of the formulated movement behavior of the pilot vehicle.
  • the lead navigation setting unit formulates the behavior of the lead vehicle based on the global environment information, especially the information representing the driving environment of the following vehicle, which can prevent the following vehicle from being unable to follow the driving and causing the situation to leave the fleet.
  • the following vehicles are notified of the prescribed behavior of the pilot vehicle, and the following vehicle can follow the pilot vehicle smoothly on the basis of knowing the behavior of the pilot vehicle, thereby ensuring the smoothness of the formation.
  • the decision making module includes an independent behavior making unit that makes an independent behavior of the following vehicle, which is different from the behavior of following the pilot vehicle.
  • independent behavior for example, when the pilot vehicle cannot change lanes, formulate any of the following independent behaviors: 1 the last lane change in the following vehicle; 2 the middle distance of the following vehicle The most recent lane change of the leading vehicle; 3All the following vehicles change lanes at the same time.
  • the lane can be occupied by following the last lane change among the vehicles to prepare for the overall lane change of the convoy.
  • the one closest to the pilot vehicle leads the following vehicle to change lanes.
  • the pilot vehicle changing lanes while waiting for the road conditions to allow the team to change lanes, it can avoid the change of road conditions during the waiting period causing the following vehicles to change lanes.
  • the following vehicle cannot change lanes.
  • all following vehicles change lanes at the same time, which can shorten the time required for the fleet to change lanes.
  • the vehicle control device may include a driving control information generating module, and the driving control information generating module may The independent behavior formulated by the independent behavior formulation unit generates driving control information for instructing the following vehicle to perform the independent behavior, and the vehicle control device controls the driving through the communication unit of the pilot vehicle The information is sent to the following vehicle.
  • the decision-making module includes an alarm plan formulation unit, and the alarm plan formulation unit formulates a plan for sending alarm information to other vehicles outside the fleet in any of the following ways, wherein the alarm information Used to provide the fleet of other vehicles:
  • the alarm plan formulation unit selects more than one member vehicle from a plurality of member vehicles as the sending node for sending alarm information to other vehicles outside the fleet according to the global environmental information.
  • the warning information is used to provide other vehicles with the situation of the fleet.
  • the member vehicle that issued the warning message is selected based on the global environmental information. Therefore, for example, when it is judged that it can receive information from multiple member vehicles based on the location information of the vehicle outside the fleet, all members may not be required.
  • vehicles send warning information only a part of the member vehicles need to send warning information. Therefore, on the one hand, the communication burden of the fleet can be reduced, and on the other hand, the frequent receipt of warning information by vehicles outside the fleet can be burdened with its processing.
  • the local environment information includes first communication link status information indicating the status of the direct communication link between the member vehicle and other vehicles
  • the global environment information generation module converts the local environment
  • the first communication link status information in all the local environment information acquired by the information acquisition module is summarized to generate global environment information
  • the alarm plan formulation unit selects more than one member vehicle from multiple member vehicles as the sending node according to the global environment information .
  • the global environment information includes the first communication link status information indicating the status of the communication link between the member vehicles and the vehicles outside the fleet
  • the first communication link status information is selected to send alarm information to the vehicles outside the fleet. Therefore, the member vehicle that sends the warning information is selected on the basis of the communication link condition between the member vehicle and the vehicles outside the fleet, so as to ensure that the vehicles outside the fleet can reliably receive the alarm information without having to All member vehicles send warning messages, suppress signal interference, and reduce the communication burden.
  • the alarm plan formulation unit takes the leading vehicle in the convoy as the first selected sending node, and performs other node selection processing, and selects processing at the other node
  • the following vehicles in the convoy that are driving behind the pilot vehicle can communicate directly with the previously selected sending node, and the alarm information sent by it can cover the difference between it and the previously selected sending node. All other vehicles in the room are selected as conditions.
  • the selected other sending node may be one or multiple.
  • the appropriate sending node can be quickly and effectively selected to ensure that the sent alarm information is received by vehicles outside the fleet.
  • the following vehicles that are farther from the previously selected sending node can be selected preferentially.
  • the warning plan formulation unit starts to judge from the follower vehicle that is far away from the pilot vehicle, that is, from the follower vehicle that is more likely to cover more vehicles outside the convoy, it can reduce the computational burden and quickly Select the sending node of the alarm information.
  • the local environment information acquired by the local environment information acquisition module includes second communication link status information indicating the status of the direct communication link between the member vehicle and other member vehicles;
  • the global environment information generation module aggregates the second communication link status information in all the local environment information acquired by the local environment information acquisition module to generate global environment information;
  • the decision-making module includes a communication path planning unit, and the communication path planning unit is based on the global environment The second communication link status information in the information plans a workshop communication path, and the workshop communication path is used for workshop communication between multiple member vehicles.
  • the global environment information includes the second communication link status information indicating the status of the direct communication link between multiple member vehicles
  • the communication path between the member vehicles is planned based on the second communication link status information Therefore, reliable communication between member vehicles can be ensured, and the reliability and stability of fleet control can be improved.
  • the communication path planning unit determines whether any two member vehicles of the multiple member vehicles can communicate directly with each other according to the second communication link status information in the global environment information. ; When it is judged that the direct-connected workshop communication is not possible, the communication path planning unit performs the relay node selection process of selecting the relay node from the member vehicles located between the two member vehicles, thereby planning the communication path of the workshop.
  • the relay node is selected for relay, so that the information is reliably transmitted, and the reliability and stability of the formation driving are improved.
  • the communication path planning unit preferentially selects the member vehicle located in the middle of the two member vehicles as the relay node.
  • the following vehicle that is closer to the leading vehicle may be selected as the relay node.
  • the decision making module may include an independent behavior making unit, and the independent behavior making unit can make decisions based on global environmental information.
  • the vehicle control device includes a driving control information generating unit.
  • the driving control information generating unit is independent according to the independent behavior formulation unit. Behavior, generating driving control information for instructing the follower vehicle to perform independent behaviors, and the communication path planning unit plans a workshop communication path for the pilot vehicle to send driving control information to the follower vehicle according to the second path link status information in the global environment information.
  • the driving control information can be reliably sent to the following vehicles, thereby improving the reliability of the fleet control.
  • the second aspect of the embodiments of the present application relates to a vehicle control method, which is used to control a fleet of multiple member vehicles.
  • the vehicle control method includes a step of acquiring local environment information and global environment information. Generation step and decision-making step; in the local environment information acquisition step, the local environment information representing the driving environment of each member vehicle among the multiple member vehicles is acquired; in the global environment information generation step, the vehicle fleet is generated based on the local environment information Global environmental information of the driving environment; in the decision-making step, a control decision for the fleet is made based on the global environmental information.
  • the decision for the member vehicle is made based on the global environment information, the judgment is made on the basis of considering the driving environment of the fleet, so that it is possible to make a decision from the entire fleet. More appropriate decision-making, for example, can reduce the situation that the following vehicles cannot follow the driving and leave the team, or suppress the impact of the team's behavior on the vehicles outside the team, thereby improving the safety of driving.
  • the vehicle control method is executed by the vehicle control device set on the member vehicle i.
  • the member vehicle i is any member vehicle among multiple member vehicles, and the local environment information acquisition step includes this The steps for obtaining local environment information of the vehicle and the steps for obtaining local environment information of other vehicles;
  • local environment information acquisition step of the own vehicle local environment information representing the driving environment of the member vehicle i is acquired;
  • the vehicle obtains local environment information indicating the driving environment of the other member vehicle.
  • the member vehicle i may be the leading vehicle driving in the forefront of the convoy.
  • the local environment information includes at least the position information of member vehicles and other vehicles located outside the fleet; in the global environment information generation step, all the local environment information obtained in the local environment information acquisition step is used The location information in is aggregated to generate global environmental information.
  • the decision-making step includes the leading navigation as a formulation step, and in the leading navigation as the formulation step, the leading vehicle in the fleet is determined based on global environmental information. Sports behavior.
  • the decision making step includes an independent behavior formulating step.
  • an independent behavior of following the vehicle is formulated based on global environmental information, which is different from the behavior of following the pilot vehicle. .
  • the independent behavior determining step when the pilot vehicle cannot change lanes, formulate any of the following independent behaviors:
  • the vehicle control method is executed by a vehicle control device installed on the pilot vehicle, and includes a driving control information generation step.
  • the driving control information generation step the method is formulated according to the independent behavior formulation step
  • the independent behavior generates driving control information for instructing the follower vehicle to perform the independent behavior; the vehicle control method further includes the step of sending the driving control information to the follower vehicle through the communication unit of the pilot vehicle.
  • the decision-making step includes an alarm plan formulation step.
  • a plan for sending alarm information to other vehicles outside the fleet is formulated according to any of the following methods, where the alarm information Used to provide a fleet of vehicles to other vehicles: 1All the member vehicles send the warning information; 2The pilot vehicle sends the warning information, with the number of the pilot vehicle being 0, and the following vehicles are sequentially numbered by natural numbers, The following vehicles whose vehicle serial number can be divisible by N will send the alarm information, where the N ⁇ 2; 3The lead vehicle sends the alarm information, among multiple following vehicles, calculated according to the distance from the lead vehicle, and the distance increases by a specified distance each time The following vehicle sends the alarm information; 4The leading vehicle sends the alarm information, each following vehicle in the fleet generates a random value, the range of the random value is [0,1], and a threshold value, random value and threshold value is determined By comparison, the following vehicle with a random value greater than the threshold value sends the warning information.
  • the decision-making step includes an alert plan formulation step.
  • the alert plan formulation step more than one member vehicle is selected from a plurality of member vehicles based on the global environmental information as the direction to be located outside the fleet.
  • the sending node of other vehicles sending alarm information, which is used to provide other vehicles with the situation of the fleet.
  • the local environment information includes first communication link status information indicating the status of the direct communication link between the member vehicle and other vehicles.
  • the global environment information generation step the local environment information The first communication link status information in all the local environment information acquired in the environmental information acquisition step is summarized to generate global environmental information.
  • the alarm plan formulation step more than one member is selected from multiple member vehicles based on the global environmental information The vehicle serves as the sending node.
  • the leading vehicle in the convoy is the first selected sending node, and other node selection processing is performed.
  • the selection process from the following vehicles in the fleet that are driving behind the pilot vehicle, they can communicate directly with the previously selected sending node, and the alarm information sent by it can cover the previous selected sending node. All other vehicles between the sending nodes are selected as conditions.
  • the local environment information acquired by the local environment information acquiring step includes second communication link status information indicating the status of the direct communication link between the member vehicle and other member vehicles;
  • the second communication link status information in all the local environmental information acquired in the local environmental information acquisition step is aggregated to generate global environmental information;
  • the decision making step includes a communication path planning step, in the communication path planning step , Plan the workshop communication path according to the second communication link status information in the global environment information, and the workshop communication path is used for workshop communication among multiple member vehicles.
  • the communication path planning step according to the second communication link status information in the global environment information, it is determined whether direct communication between any two member vehicles among the plurality of member vehicles is possible.
  • Inter-vehicle communication When it is determined that direct inter-vehicle communication is not possible, a relay node selection process is performed to select a relay node from the member vehicles located between the two member vehicles, thereby planning the communication path of the inter-vehicle.
  • the member vehicle located in the middle of the two member vehicles is preferentially selected as the relay node.
  • the following vehicle that is closer to the leading vehicle is preferentially selected as the relay node.
  • the decision making step includes an independent behavior making step, and in the independent behavior making step According to the global environmental information, the independent behavior of the following vehicles in the fleet that is driving behind the pilot vehicle is formulated. This independent behavior is different from the behavior of following the pilot vehicle.
  • the vehicle control method includes a driving control information generation step.
  • the driving control information generation step According to the independent behavior formulated in the independent behavior formulation step, generate driving control information used to instruct the following vehicles to perform independent behaviors.
  • the communication path planning step plan the leading vehicle direction based on the second path link status information in the global environment information follow the inter-vehicle communication path used by the vehicle to send driving control information.
  • the third aspect of the embodiments of the present application provides a computer-readable storage medium, which stores a program for causing a computer to execute any of the foregoing vehicle control methods.
  • a fourth aspect of the embodiments of the present application provides a computing device, including a processor and a memory, and a program is stored in the memory, and any of the foregoing vehicle control methods is executed by running the program by the processor.
  • the fifth aspect of the embodiments of the present application relates to a vehicle, which includes a vehicle control device having any of the foregoing structures.
  • the sixth aspect of the embodiments of the present application relates to a formation driving system, which includes a fleet of multiple member vehicles.
  • the formation driving system has a main control device, and the main control device includes a local environment information acquisition module.
  • the global environment information generation module and the decision-making module; the local environment information acquisition module is used to obtain local environment information representing the driving environment of each member vehicle among multiple member vehicles; the global environment information generation module is used to generate a fleet of vehicles based on the local environment information The global environment information of the driving environment; the decision-making module is used to make control decisions for the fleet based on the global environment information.
  • control decision As the target of the control decision, it can be the leading vehicle driving in the front of the member vehicles, or the follower vehicle driving behind the leading vehicle.
  • control decision made by the decision-making module includes not only the decision of acceleration, braking, lane change and other sports behaviors, but also processing decisions such as transmission of driving control information and warning information described later. In addition, you can also imagine To make decisions about behaviors such as honking the whistle.
  • Adopting the formation driving system with the above structure since the decision for the member vehicles is made based on the global environment information, the judgment is made on the basis of the driving environment of the fleet, so that it can make the overall view of the fleet. Looking at more appropriate decision-making, for example, it can reduce the situation that the following vehicles cannot follow the driving and leave the team, or suppress the impact of the team's behavior on the vehicles outside the team, thereby improving the safety of driving.
  • multiple member vehicles include a main control vehicle provided with a main control device and other member vehicles, the main control device generates first local environment information representing the driving environment of the main control vehicle, and others
  • the vehicle control device of the member vehicle generates second local environment information indicating the driving environment of other member vehicles, and sends the generated second local environment information to the main control device.
  • the global environment information generation module of the main control device is based on the first The local environment information and the second local environment information generate global environment information.
  • the main control vehicle is the leading vehicle driving in the forefront of the convoy, and the other member vehicles are follow vehicles that follow the leading vehicle.
  • the local environment information includes at least the position information of the member vehicles and other vehicles located outside the fleet; the global environment information generation module takes all of the local environment information acquired by the local environment information acquisition module The location information is aggregated to generate global environmental information.
  • the decision-making module includes the navigation as a formulation unit, and the navigation as the formulation unit formulates the movement behavior of the leading vehicle in the fleet based on the global environment information.
  • multiple member vehicles include the pilot vehicle driving in the front of the convoy and the follower vehicle that follows the pilot vehicle in the convoy; the decision-making module includes an independent behavior formulating unit and independent behavior formulating.
  • the unit formulates the independent behavior of following the vehicle according to the global environmental information, which is different from the behavior of following the pilot vehicle.
  • the independent behavior formulation unit formulates any of the following independent behaviors when the pilot vehicle cannot change lanes: 1Follow the last lane change in the vehicle; 2Follow the vehicle that is closest to the pilot vehicle The lane change; 3All following vehicles change lanes at the same time.
  • the main control device is set on the pilot vehicle and includes a driving control information generating module.
  • the driving control information generating module generates instructions for following the vehicle according to the independent behavior formulated by the independent behavior formulating unit.
  • the driving control information that performs independent behavior; the main control device sends the driving control information to the following vehicle through the communication unit of the pilot vehicle.
  • the decision-making module includes an alert plan formulation unit, and the alert plan formulation unit formulates a plan for sending alert information to other vehicles outside the fleet in any of the following ways, where the alert information is used for The situation of providing the fleet to other vehicles: 1Multiple member vehicles all send alarm information; 2The leading vehicle driving in the front of the fleet among multiple member vehicles sends alarm information, and the number of the leading vehicle is 0, and the fleet follows The multiple following vehicles running behind the pilot vehicle are numbered in sequence with a natural number, and the vehicle whose serial number can divide N, where N ⁇ 2; 3The pilot vehicle sends alarm information. Among the multiple following vehicles, follow the same order as the pilot vehicle.
  • the following vehicle sends an alert message every time the distance increases by a specified distance; 4The pilot vehicle sends an alert message, and each following vehicle generates a random value, the range of random value is [0,1], and a threshold value, random value is determined Compared with the threshold value, the following vehicles with a random value greater than the threshold value will send an alarm message.
  • the decision-making module includes an alarm plan formulation unit, which selects more than one member vehicle from multiple member vehicles according to global environmental information as sending alarm information to other vehicles outside the fleet The sending node of the alarm information is used to provide other vehicles with the situation of the fleet.
  • the local environment information includes first communication link status information indicating the status of the direct communication link between the member vehicle and other vehicles
  • the global environment information generation module obtains the local environment information
  • the first communication link status information in all the local environment information acquired by the module is summarized to generate global environment information
  • the alarm plan formulation unit selects more than one member vehicle from a plurality of member vehicles as the sending node according to the global environment information.
  • the alarm plan formulation unit takes the leading vehicle driving in the convoy as the first selected sending node, and performs other node selection processing, and selects processing at this other node
  • the following vehicles in the convoy that are driving behind the pilot vehicle can communicate directly with the previously selected sending node, and the alarm information sent by it can cover the difference between it and the previously selected sending node. All other vehicles in the room are selected as conditions.
  • the following vehicles that are farther from the previously selected sending node are preferentially selected.
  • the local environment information acquired by the local environment information acquisition module includes second communication link status information indicating the status of the direct communication link between member vehicles and other member vehicles; global environment The information generation module summarizes the second communication link status information in all the local environment information acquired by the local environment information acquisition module to generate global environment information; the decision-making module includes a communication path planning unit, which is based on the global environment information The second communication link status information plans the workshop communication path, and the workshop communication path is used for workshop communication among multiple member vehicles.
  • the communication path planning unit judges whether any two member vehicles of the plurality of member vehicles can communicate directly with each other according to the second communication link status information in the global environment information. ; When it is judged that the direct-connected workshop communication is not possible, the communication path planning unit performs the relay node selection process of selecting the relay node from the member vehicles located between the two member vehicles, thereby planning the communication path of the workshop.
  • the communication path planning unit preferentially selects the member vehicle located in the middle of the two member vehicles as the relay node.
  • multiple member vehicles include the leading vehicle driving in the front of the convoy and the follower vehicle following the leading vehicle in the convoy.
  • the following vehicle is located in the middle of the two member vehicles When it is two, the following vehicle that is closer to the leading vehicle is selected first as the relay node.
  • the main control device is set on the leading vehicle driving in the forefront of the convoy.
  • the decision-making module includes an independent behavior formulating unit.
  • the independent behavior of the following vehicle driving behind the pilot vehicle is different from the behavior of following the pilot vehicle.
  • the main control device includes a driving control information generating unit.
  • the driving control information generating unit generates an independent behavior based on the independent behavior formulated by the independent behavior formulation unit.
  • the communication path planning unit plans the inter-vehicle communication path for the pilot vehicle to send the travel control information to the follower vehicle according to the second path link status information in the global environment information.
  • the decision for the member vehicle is made based on the global environment information
  • the judgment is made on the basis of considering the driving environment of the fleet, so that it is possible to make a better decision from the overall view of the fleet.
  • Appropriate decision-making can reduce the situation that the following vehicles can not follow the driving and leave the team, or suppress the impact of the team's behavior on the vehicles outside the team, thereby improving the safety of driving.
  • Fig. 1 is a schematic diagram of a formation driving system provided by an embodiment of the application.
  • Fig. 2 is a block diagram of the structure of each member vehicle provided by an embodiment of the application.
  • FIG. 3 is a structural block diagram of a vehicle control device provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of a driving scene of the formation driving system provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of the content of a local topology information provided by an embodiment of this application.
  • FIG. 6 is a schematic diagram of the content of a global topology information provided by an embodiment of this application.
  • FIG. 7 is a schematic diagram of a topology of global topology information provided by an embodiment of this application.
  • Fig. 8 is a flowchart of a process executed in a formation driving system provided by an embodiment of the application.
  • Fig. 9 is a structural block diagram of another vehicle control device provided by an embodiment of the application.
  • FIG. 10 is a schematic diagram of the content of driving control information provided by an embodiment of the application.
  • FIG. 11 is a schematic diagram of the content of an alarm information provided by an embodiment of the application.
  • FIG. 12 is a schematic diagram of various information transmission mechanisms provided by an embodiment of the application.
  • FIG. 13 is a flowchart of another processing executed in the formation traveling system provided by an embodiment of the application.
  • FIG. 14 is a schematic diagram of an application scenario provided by an embodiment of the application.
  • FIG. 15 is a structural block diagram of another vehicle control device provided by an embodiment of the application.
  • FIG. 16 is a flowchart of yet another processing executed in the formation driving system provided by an embodiment of the application.
  • FIG. 18 is a flowchart of an alarm processing provided by an embodiment of the application.
  • FIG. 19 is a schematic diagram of a vehicle fleet driving scene provided by an embodiment of the application for explaining a specific example of control processing and alarm processing of following vehicles.
  • ADAS Abbreviated as ADAS, it uses a variety of sensors installed on the car to collect environmental data inside and outside the car at the first time, and perform technical processing such as identification, detection and tracking of static and dynamic objects, so as to enable driving
  • the user can detect possible dangers in the fastest time to attract attention and improve the safety of active safety technology; the sensors used are mainly cameras, radar, laser and ultrasonic, etc., which can detect light, heat, pressure or other used
  • the variables that monitor the state of the car are usually located on the front and rear bumpers, side-view mirrors, cab interior or windshield of the vehicle; they usually include adaptive cruise control (ACC), lane departure warning system LDWS (Lane departure warning) system), lane keeping system LKA (Lane keep assistance), collision suppression or pre-collision system CAS (Collision avoidance system or Precrash system), night vision system NV (Night Vision system), adaptive light control ALC (Adaptive light control) , Pedestrian protection system PPS (Pedestrian protection system), automatic
  • V2X Vehicle to Everything
  • V stands for Vehicle
  • X stands for any object that interacts with the vehicle.
  • X mainly includes vehicles, people, Traffic roadside infrastructure and network.
  • the wireless communication technology for vehicles includes LTE-V2X (LTE-V for short) and 5G-V2X, including PC5 interface and Uu interface.
  • the short-distance direct communication interface between OBU (On Board Unit) and RSU (Road Side Unit) and between OBU and OBU supports the exchange of fast-changing dynamic information (such as location, Speed, driving direction, traffic conditions, etc.), as well as future more advanced autonomous driving applications including vehicle formation and sensor sharing.
  • the communication interface between RSU and base station and between OBU and base station can realize long-distance and larger-range high-speed data communication, support high-definition map download, and obtain various entertainment services from the cloud.
  • the first embodiment of this application relates to a formation driving system, in which two or more vehicles traveling in the same direction communicate through the V2X wireless communication technology represented by c-V2X (Cellular Vehicle to Everything) to form a fleet for driving.
  • the constituted system may also include a server or unmanned aerial vehicle that communicates with vehicles in the fleet.
  • vehicles belonging to members of the fleet are referred to as member vehicles, and vehicles outside the fleet are referred to as vehicles outside the fleet.
  • the member vehicle at the frontmost position in the fleet is called the pilot vehicle, and the member vehicle that follows the pilot vehicle is called the follower vehicle.
  • front, rear, left, and right are directions based on the direction of the vehicle fleet.
  • FIG. 1 is a schematic diagram of the entire formation traveling system 10 provided by the first embodiment.
  • the formation driving system 10 includes, for example, five member vehicles A traveling in the same direction forming a fleet.
  • the member vehicles A maintain a certain inter-vehicle distance and travel at a certain speed.
  • Each member vehicle A is equipped with an ADAS system and a V2X communication interface.
  • the member vehicle A is, for example, a transportation vehicle of a logistics company, but it is not limited to this, and may also be a passenger vehicle.
  • FIG. 1 is only an example, and the number of member vehicles A in the fleet is not limited to this, as long as at least two vehicles form a fleet.
  • Each member vehicle A in the fleet has an identification code (id) that can identify its fleet member, and also has a number corresponding to its position in the fleet.
  • the five member vehicles A are the pilot vehicle A0 and the following vehicles A1, A2, A3, and A4 (A1 ⁇ A4).
  • the pilot vehicle A0 is an autonomous vehicle that can independently formulate driving behavior
  • the follower vehicles A1 ⁇ A4 It is an autonomous vehicle based on real-time information interaction.
  • each member vehicle A generates local environment information representing its surrounding driving environment in real time, and the following vehicles A1 to A4 periodically report the local environment information generated by itself to the main control vehicle The pilot vehicle A0.
  • the pilot vehicle A0 aggregates the local environment information of all member vehicles A in the fleet including itself, and generates global environment information representing the driving environment around the fleet.
  • the pilot vehicle A0 formulates the driving behavior of the fleet such as acceleration, braking, lane change, turning, and maintaining the status quo according to the global topology information.
  • the pilot vehicle A0 formulates and executes its own driving behavior, and then the following vehicles A1 to A4 recognize the driving behavior of the member vehicle A located in front of the vehicle, and follow the driving.
  • Such "following driving”, for example, can adopt the method in the prior art, which will not be repeated here.
  • Fig. 2 is a structural block diagram of each member vehicle A provided in the first embodiment. As shown in FIG. 2, each member vehicle A has a positioning unit 100, a sensing unit 200, a communication unit 300 and a vehicle control device 400.
  • the positioning unit 100 has, for example, a global navigation satellite system (GNSS) receiver for receiving satellite signals and sending the received satellite signals to the vehicle control device 400, and the vehicle control device 400 can obtain the information of the vehicle (owner vehicle) based on this location information.
  • GNSS global navigation satellite system
  • the GNSS receiver may be a global positioning system (GPS) receiver, a Beidou system receiver or other satellite positioning system receivers.
  • the sensing unit 200 has, for example, various sensors such as a camera, millimeter wave radar, lidar, and ultrasonic radar, and can detect the driving environment of the vehicle, obtain detection data, and send the detected data to the vehicle control device 400, the vehicle control device 400 uses the detection data to generate driving environment information (local environment information) of the vehicle.
  • various sensors such as a camera, millimeter wave radar, lidar, and ultrasonic radar, and can detect the driving environment of the vehicle, obtain detection data, and send the detected data to the vehicle control device 400, the vehicle control device 400 uses the detection data to generate driving environment information (local environment information) of the vehicle.
  • the communication unit 300 is constituted by a vehicle-TBOX, and can perform short-distance direct communication based on, for example, a PC5 interface, and can perform long-distance and larger-range high-speed data communication based on, for example, a Uu interface.
  • the communication unit 300 broadcasts information through V2X based on the PC5 interface, and receives broadcast information from other vehicles, and sends the received broadcast information to the vehicle control device 400.
  • a workshop communication interface there may also be a DSRC (Dedicated Short Range Communication) interface.
  • the vehicle control device 400 is composed of an ECU (computer, computing device), and has an input/output device, an arithmetic device, and a storage device (computer-readable storage medium).
  • the input and output device is composed of A/D conversion circuit, communication interface, driver and so on.
  • the arithmetic device is composed of, for example, a processor having a CPU or the like.
  • the vehicle control device 400 functions as each functional unit described below by executing a program stored in a storage device by an arithmetic device.
  • FIG. 3 is a structural block diagram of a vehicle control device 400 provided by the first embodiment.
  • the vehicle control device 400 has a local environment information acquisition module 440, a global environment information generation module 406, a preceding vehicle behavior recognition module 410, a decision making module 450 and a control execution module 414.
  • the local environment information acquisition module 440 includes a local environment information acquisition unit 402 of the vehicle and a local environment information acquisition unit 404 of another vehicle.
  • the decision making module 450 includes a lead navigation formulation unit 408 and a follow-up behavior formulation unit 412.
  • the vehicle control device 400 may also have various functional units (for example, a navigation function) in the related art other than this, and the description of the well-known structure is omitted here.
  • the local environment information acquisition unit 402 of the own vehicle when used as the pilot vehicle A0, among these functional units, the local environment information acquisition unit 402 of the own vehicle, the local environment information acquisition unit 404 of other vehicles, the global environment information generation module 406, the navigation setting unit 408, and the control execution module are among these functional units. 414 functioned.
  • the host vehicle is the follower vehicles A1 to A4
  • the host vehicle local environment information acquisition unit 402 the preceding vehicle behavior recognition module 410, the follow behavior formulation unit 412, and the control execution module 414 of these functional units function.
  • the own-vehicle local environment information acquisition unit 402 acquires local environment information indicating the driving environment of the own vehicle.
  • the local environment information includes local topology information, which represents the position and speed information of the vehicle B existing around the vehicle (or perceivable by the vehicle).
  • the location information of the own vehicle can be generated based on data (such as GPS signals) from the positioning unit 100; the speed information of the own vehicle can be generated based on detection data from a vehicle speed sensor (not shown); location information of vehicles around the own vehicle
  • the speed and speed information can be generated not only based on the detection data of the sensors of the sensing unit 200 on the own vehicle, but also based on data received from the outside by the communication unit 300 (for example, received broadcast data of the vehicle B outside the vehicle fleet, etc.).
  • the vehicle local environment information acquisition unit 402 performs information fusion processing on the obtained data to generate local topology information. In the fusion process, for example, a certain surrounding vehicle detected by the sensing unit 200 and a certain surrounding vehicle detected by the communication unit 300 receiving a broadcast are regarded as the same vehicle if the location is the same (or the location and speed are the same).
  • the local topology information generated by the local environment information acquisition unit 402 of the own vehicle includes the position and speed information of the own vehicle, as well as the vehicles (including member vehicles and/or member vehicles and/or member vehicles) whose broadcast information is received by the own vehicle (or recognized by the sensing unit 200).
  • the position and speed information of vehicles outside the convoy includes the position and speed information of the own vehicle, as well as the vehicles (including member vehicles and/or member vehicles and/or member vehicles) whose broadcast information is received by the own vehicle (or recognized by the sensing unit 200).
  • FIG. 4 is a schematic diagram of a driving scene of the formation driving system 10 provided by the first embodiment.
  • FIG. 5 shows the content of the local topology information generated by the local environment information acquisition unit 402 of the following vehicle A4 in the scene of FIG. 4.
  • the circle in FIG. 4 schematically represents a one-hop reachable communication range centered on the following vehicle A4, and the following vehicle A4 can send and receive broadcast information with vehicles within this range, but this is only an example and is not limited to this.
  • the following vehicle A4 can receive the information broadcast by the vehicles B4, B5, B6, and B7 outside the fleet (or can be identified by the sensing unit 200 Information on these vehicles).
  • the following vehicle A4 can also receive the information broadcast by the following vehicle A3 as the member vehicle A in the fleet (or the information of the following vehicle A3 can be recognized by the sensing unit 200). Therefore, the local topology information generated by the following vehicle A4 shown in FIG. 5 includes the position and speed information of the following vehicles A3 and A4, and the position and speed information of the vehicles B4, B5, B6, and B7 outside the fleet. What FIG. 5 provides is only an example of local topology information, and is not limited to this.
  • the local topology information may not include the information of member vehicles other than the member vehicle of the own vehicle.
  • the position and speed information of B4, B5, B6, and B7 does not include the position and speed information of the following vehicle A3.
  • the following vehicle can also send its own information (position and speed information) and the information of other vehicles it perceives to the pilot vehicle, and it is not necessary to send these The information is sent together.
  • the other vehicle local environment information acquisition unit 404 acquires through the communication unit 300 the local environment information reported by the following vehicles A1 to A4 that represents the driving environment of each of the following vehicles A1 to A4.
  • the information reported by each of the following vehicles A1 to A4 is
  • the local environment information is local topology information representing the information of the vehicles in the preset range of each following vehicle A1 to A4 and its surroundings.
  • the preset range refers to the range that can be sensed by the sensing unit 200 and that the communication unit 300 can receive broadcasts.
  • the range formed by the range (the range that can be perceived through the form of communication).
  • the global environment information generation module 406 combines the local environment information (local topology information in this embodiment) generated by the vehicle and representing the driving environment of the other vehicle and the information representing the driving environment of the other vehicle acquired by the local environment information acquisition unit 404 of the other vehicle.
  • the local environment information (local topology information in this embodiment) is aggregated to generate global environment information (global topology information in this embodiment) that represents the driving environment of the entire fleet.
  • global topology information there may be duplicates of vehicles detected among member vehicles. For example, the vehicle B outside the convoy detected by the pilot vehicle A0 and the vehicle B outside the convoy detected by the following vehicles A1 to A4 may be duplicated. Therefore, When the global environment information generating module 406 generates the global environment information according to the local topology information, it can perform fusion processing according to the position of the vehicle and so on to remove duplicates.
  • the global topology information includes the position and speed information of all member vehicles A, as well as the information recognized by each member vehicle A (including those recognized by the sensing unit and those recognized by receiving communication information such as broadcast information). ) The position and speed information of all vehicles B outside the convoy. According to the global topology information, the distance relationship and relative speed information between the vehicles can be obtained.
  • FIG. 6 shows the content of the global topology information generated by the global environment information generating module 406 in the pilot vehicle A0 in the scenario of FIG. 4.
  • the global topology information includes all member vehicles A, namely the leading vehicle A0, the position and speed information of the following vehicles A1 to A4, and the vehicles B0, B1, B2, B3, B3, B3, B3, B3, B1, B2, B3, B3, B3, B3, B3, B3, B3, B3, B3, B3, B3, B3, B3, B3, B3, B3, B3, B3, B3, B3, B3, B3, B3, B3, B3, B3, B3, B3, B3, B3, B3, B3, B3, B3, B3, B3, B3, B3, B3, B3, B3, B3, B3, B3, B3, B3, B3, B3, B3, B3, B3, B3, B3, B3, B3, B3, B3, B3, B3, B3, B3, B2, B3, B3, B1, B2, B3, B3 Position and speed information of B4, B5, B6, B7 (B0 ⁇ B7).
  • Fig. 7 is a global topology diagram schematically showing the global topology information in the scenario of Fig. 4.
  • the node shown by the solid circle represents the member vehicle A
  • the node shown by the dotted circle represents the vehicle B (B0 ⁇ B7) outside the fleet. If the two nodes pass through the link and do not pass through other nodes, Direct connection means that one hop can be reached directly when communicating with each other, and the two nodes are adjacent to each other.
  • the vehicle may be referred to as a node below.
  • the decision-making module 450 of the vehicle control device 400 when the host vehicle is the lead vehicle A0, makes a decision for the lead vehicle A0 and/or the following vehicle A1 according to the global topology information generated by the global environment information generating module 406 representing the driving environment around the fleet. A4 decision.
  • the leading navigation of the decision making module 450 is the formulation unit 408, according to the global topology information, to make the driving behavior of the own vehicle as the leading vehicle A0, such as acceleration, braking, lane change, and maintaining the status quo.
  • the preceding vehicle behavior recognition module 410 recognizes the acceleration, braking, turning, lane change and other driving behaviors of the member vehicle A located in front of the vehicle based on the information obtained by the sensing unit 200.
  • the following behavior formulating unit 412 formulates the driving behavior of the own vehicle as the following vehicle based on the driving behavior of the member vehicle A located in front of the own vehicle identified by the preceding vehicle behavior recognition module 410.
  • the control execution module 414 controls the driving behavior of the own vehicle according to the behavior formulated by the pilot setting unit 408 when the own vehicle is the pilot vehicle A0, and according to the driving behavior defined by the following behavior formulation unit 412 when the own vehicle is the following vehicle A1 ⁇ A4 Behavior to control the driving behavior of the vehicle.
  • FIG. 8 is a flowchart of the processing executed in the formation traveling system 10 provided by the first embodiment.
  • the processing shown in FIG. 8 is executed in a prescribed cycle.
  • step S100 the vehicle control device 400 on each member vehicle A periodically broadcasts basic safety information (Basic Safety Message) through the communication unit 300, and then proceeds to step S200.
  • basic safety information is broadcast through the PC5 interface, for example, including its own position and speed information.
  • step S200 the vehicle control device 400 receives basic safety information broadcast by other vehicles through the communication unit 300, and then proceeds to step S300.
  • step S300 the own vehicle local environment information acquisition unit 402 generates local topology information centered on the own vehicle, and then proceeds to step S400.
  • step S400 the vehicle control device 400 determines whether the own vehicle is the pilot vehicle A0. If the host vehicle is the pilot vehicle A0 (S400: Yes), the processes of steps S500 to S520 are executed, and if the host vehicle is not the pilot vehicle A0 (S400: No), the processes of steps S600 to S640 are executed. Therefore, in actual situations, the processing of steps S500 to S520 is executed by the vehicle control device 400 on the pilot vehicle A0, and the processing of steps S600 to S640 is executed by the vehicle control device 400 on the following vehicles A1 to A4.
  • step S500 since it is determined in step S400 that the host vehicle is the lead vehicle A0, the other vehicle local environment information acquisition unit 404 acquires information representing the driving environment of each follower vehicle from each follower vehicle A1 to A4 through the communication unit 300.
  • the global environment information generating module 406 For local topology information, the global environment information generating module 406 generates global environment information (in this embodiment, global topology information) representing the overall driving environment of the fleet, and then proceeds to step S510.
  • step S510 the navigation setting unit 408 formulates the acceleration, braking, lane change, and maintaining the status quo of the own vehicle based on the global topology information, and transmits to the following vehicles A1 to A4 through the communication unit 300 indicating that the own vehicle is about to travel. Behavior information (pilot vehicle behavior information), and then go to step S520.
  • the communication between the member vehicles A can adopt the communication method in the prior art, which will not be repeated here.
  • step S520 the control execution module 414 causes the pilot vehicle A0 to execute the driving behavior formulated in step S510, and then proceeds to step S700.
  • step S600 since it is determined in step S400 that the host vehicle is not the lead vehicle A0, that is, the host vehicle is the following vehicles A1 to A4 (any one), the vehicle control device 400 reports to the lead vehicle A0 through the communication unit 300 The local topology information centered on the own vehicle is then entered to step S610.
  • the pilot vehicle A0 is within the communication range of one-hop reachability (can be directly connected to the workshop communication without relay)
  • the following vehicles A1 to A4 directly send the generated local topology information to the pilot vehicle A0.
  • the pilot vehicle A0 In the case that the pilot vehicle A0 is not within the communication range of one hop, that is, the generated local topology information cannot be directly sent to the pilot vehicle A0, pass the member vehicle other than the own vehicle in the fleet as the follower vehicle A relays and reports the generated local topology information to the pilot vehicle A0.
  • step S610 the preceding vehicle behavior recognition module 410 recognizes the behavior of the member vehicle A in front of the vehicle through the sensing unit 200.
  • the vehicle control device 400 also receives the pilot vehicle behavior information from the pilot vehicle A0 through the communication unit 300, and then Go to step S620.
  • step S620 the following behavior formulation unit 412 determines whether following member vehicle A in front of the host vehicle does not affect driving safety (for example, determining whether there is an obstacle). If the driving safety is not affected (S620: Yes), the process proceeds to step S630. If driving safety is affected (S620: No), the process proceeds to step S640.
  • step S630 the following behavior formulating unit 412 formulates the driving behavior of the own vehicle according to the behavior of the member vehicle A located in front of the own vehicle identified in step S610, and controls the execution module 414 to make the own vehicle execute the following behavior formulating unit 412 This behavior is formulated so that the host vehicle follows the member vehicle A in front of the host vehicle, and then proceeds to step S700.
  • step S640 the following behavior formulating unit 412 formulates other behaviors that are different from the behavior determined in step S630, and the control execution module 414 causes the own vehicle to perform the other behaviors, that is, the own vehicle does not follow the member vehicle A in front of the own vehicle. Drive, but exit the convoy, and then end this process.
  • the member vehicle A exits the fleet when conditions are met in the future, it can rejoin the fleet according to the method in the prior art.
  • step S700 the vehicle control device 400 determines whether it has reached the destination. In the case of reaching the destination (S700: Yes), this flow ends. If the destination has not been reached (S700: No), the process returns to step S100 until the destination is reached.
  • the formation traveling system 10 in the first embodiment basically adopts the structure described above.
  • each member vehicle A uses the structure of the first embodiment, in the formation driving system 10, each member vehicle A generates local topology information representing its own driving environment, and the following vehicles A1 to A4 send the generated local topology information to the pilot vehicle A0, and the pilot vehicle A0
  • the local topology information generated by all member vehicles A is summarized to generate global topology information, and its driving behavior is formulated according to this global topology information.
  • the pilot vehicle A0 makes judgments on the basis of considering the driving environment of the fleet, so that it can make a more appropriate decision from the overall view of the fleet. For example, it can reduce the situation of leaving the fleet due to the failure of the following vehicle to follow the driving, and restrain the fleet. The impact of behavior on vehicles outside the fleet, which in turn can improve driving safety.
  • step S510 the vehicle control device 400 of the pilot vehicle A0 sends pilot vehicle behavior information to the following vehicles A1 to A4 on the basis of formulating the driving behavior of the own vehicle.
  • the vehicle control device 400 of the pilot vehicle A0 sends pilot vehicle behavior information to the following vehicles A1 to A4 on the basis of formulating the driving behavior of the own vehicle.
  • the difference from the first embodiment is that the pilot vehicle A0 also sends to the following vehicles A1 to A4 driving control information Mc for controlling them to perform prescribed processing to perform prescribed driving behaviors, and broadcasts It is used to inform the fleet to warn vehicles outside the fleet not to jump in the queue and other warning information Ma that affects the driving behavior of the fleet.
  • the rest is basically the same, and therefore, for those same structures, the same reference numerals are used and detailed descriptions thereof are omitted.
  • FIG. 9 is a structural block diagram of a vehicle control device 400 provided by the second embodiment.
  • the vehicle control device 400 in addition to the local environment information acquisition module 440, the global environment information generation module 406, the preceding vehicle behavior recognition module 410, the decision making module 450, and the control execution module 414, the vehicle control device 400 also has a driving control information generating module 416 and an alarm information generating module 418.
  • the decision making module 450 of the vehicle control device 400 includes an independent behavior making unit 409 and an alerting plan in addition to the lead navigation setting unit 408 and the following behavior setting unit 412.
  • the formulation unit 422, these newly added functional units function when the own vehicle is the lead vehicle A0, and do not function when the own vehicle is the follower vehicle A1 to A4.
  • the structure of the local environment information acquisition unit 402 of the own vehicle, the local environment information acquisition unit 404 of other vehicles, the global environment information generation module 406, the lead navigation setting unit 408, the preceding vehicle behavior recognition module 410, and the control execution module 414 are the same as those in the first embodiment. It is basically the same, and the description is omitted here.
  • the independent behavior formulating unit 409, the following behavior formulating unit 412, the driving control information generating module 416, and the warning information generating module 418 that are different from the first embodiment will be described below.
  • the pilot vehicle A0 can specify all or part of the following vehicles A1 to A4 to change lanes and other behaviors.
  • the independent behavior formulation unit 409 of the pilot vehicle A0 formulates specific ones of the following vehicles A1 to A4 according to the global topology information.
  • the following vehicle performs independent behavior, which is different from the behavior of following the pilot vehicle A0.
  • the following behavior formulation unit 412 when the following behavior formulation unit 412 receives the driving control information Mc described later, it also formulates the driving behavior of the vehicle based on the driving control information Mc. When driving in accordance with the driving control information Mc does not affect the driving safety, the following behavior formulation unit 412 prioritizes the driving behavior of the vehicle based on the driving control information Mc.
  • the driving control information generating module 416 generates driving control information Mc to be sent to the specific following vehicle (target vehicle) when the independent behavior formulation unit 409 specifies an independent behavior by a specific follower vehicle to instruct it to perform the independent behavior.
  • the driving behavior as the independent behavior may be, for example, a driving behavior such as acceleration, braking, turning, and lane change.
  • FIG. 10 is a schematic diagram of the content of the driving control information Mc provided by the second embodiment.
  • the driving control information Mc includes identification information such as fleet number, vehicle number, forwarding node id, target node id, etc., as well as lane change information, time to next turn, lane change information, etc., which can indicate specific driving behaviors. Content information.
  • the driving control information Mc also has routing table information as an option. The generated driving control information Mc is directly sent to the target vehicle when a hop is reachable, and is forwarded to the target vehicle through other following vehicles when a hop is unreachable.
  • the warning information generating module 418 generates warning information Ma for notifying the surrounding vehicles B of the vehicle fleet of the situation of the vehicle fleet by broadcasting, for example.
  • FIG. 11 is a schematic diagram of the content of the alarm information Ma provided by the second embodiment.
  • the warning information Ma includes information indicating the status of the vehicle fleet, such as the fleet number, vehicle model, and heading angle, as well as warning information for vehicles B outside the fleet, such as warning information and suggestions to maintain a rear distance.
  • the warning information Ma also has information such as the id of the vehicle outside the fleet and the location of the vehicle outside the fleet as optional items.
  • the alarm plan formulation unit 422 selects which member vehicles A in the fleet to broadcast (issue) the alarm information Ma generated by the alarm information generation module 418.
  • the warning plan formulation unit 422 selects the pilot vehicle A0 and all following vehicles A1 to A4 to broadcast (issue) the warning information Ma.
  • FIG. 12 is a schematic diagram of various information transmission mechanisms provided by the second embodiment.
  • the solid straight arrows indicate the broadcasting of basic safety information
  • the dashed straight arrows indicate the broadcasting of warning information Ma
  • the dashed curved arrows indicate the transmission of driving control information Mc
  • the solid curved arrows indicate the reporting of local topology information, but this is only an example. , Is not limited to this.
  • FIG. 13 is a flowchart of processing executed by the vehicle formation traveling system 10 according to the second embodiment.
  • step S10 the vehicle control device 400 determines whether or not the own vehicle id is included in the information broadcast vehicle id of the warning information Ma. If the vehicle id is included in the information broadcasting vehicle id (S10: Yes), the process proceeds to step S20. In a case where the vehicle id of the information broadcasting vehicle of the warning information Ma does not include the own vehicle id (S10: No), the process proceeds to step S100.
  • step S20 the vehicle control device 400 periodically broadcasts the warning information Ma through the communication unit 300, and then proceeds to step S200.
  • steps S100, S200, S300, S400, S500, S510, S520, S600, S610 is the same as that of the first embodiment, and the description is omitted here.
  • step S530 control processing of the following vehicle is performed, that is, the independent behavior formulating unit 409 formulates the independent behavior that needs to be executed by the following vehicle, and the driving control information generating module 416 generates driving control according to the independent behavior formulated.
  • Information Mc the vehicle control device 400 sends the driving control information Mc to the corresponding follower vehicle (target vehicle, target node) through the communication unit 300, and then proceeds to step S540.
  • the driving control information Mc for all following vehicles may be generated, or the driving control information Mc for only some of the following vehicles may be generated, and the specific determination is made by the pilot vehicle A0.
  • the independent behavior formulation unit 409 does not formulate independent behaviors that need to be performed by following vehicles A1 to A4, that is, when there is no need to follow vehicles A1 to A4 to perform independent behaviors other than the following driving behavior, then no targeting is generated.
  • step S540 alarm processing is performed, that is, the alarm plan formulation unit 422 selects all member vehicles A to broadcast the alarm information Ma, the alarm information generation module 418 generates the alarm information Ma, and the own vehicle, the pilot vehicle A0, broadcasts the alarm information Ma , And instruct the following vehicles A1 to A4 to issue the warning information Ma, and then proceed to step S700.
  • step S650 the follow-up behavior formulation unit 412 determines whether the driving control information Mc that instructs the own vehicle to act is received, specifically, whether the target node id is received for the driving control of the own vehicle id. Information Mc. In a case where the travel control information Mc of the target node id is received (S650: Yes), the process proceeds to step S660. If the travel control information Mc of the target node id is not received (S650: No), the process proceeds to step S620.
  • step S660 the following behavior formulation unit 412 determines whether driving in accordance with the driving control information Mc does not affect the driving safety, that is, whether the independent behavior indicated by the driving control information Mc does not affect the driving safety. If the driving safety is not affected (S660: Yes), the process proceeds to step S670. If driving safety is affected (S660: No), the process proceeds to step S620.
  • step S670 the control execution module 414 causes the vehicle to travel according to the received travel control information Mc, and then proceeds to step S700.
  • steps S620, S630, S640, and S700 is the same as that of the first embodiment, and the description is omitted here.
  • the formation traveling system 10 in the second embodiment basically adopts the structure described above.
  • the vehicle control device 400 of the lead vehicle A0 generates traveling control for sending to the specific following vehicle when the specific following vehicle performs the traveling behavior as an independent behavior.
  • Information Mc and the vehicle control device 400 of the pilot vehicle A0 also generates warning information Ma for broadcasting the fleet situation to the surrounding vehicles B outside the fleet.
  • the vehicle control device 400 of the following vehicles A1 to A4 receives the travel control information Mc instructing itself to perform an independent behavior, it preferentially travels in accordance with the travel control information Mc.
  • the pilot vehicle A0 can flexibly respond to different road conditions by sending the driving control information Mc to the following vehicles A1 to A4, and improve the flexibility of the formation driving.
  • the pilot vehicle A0 can flexibly respond to different road conditions by sending the driving control information Mc to the following vehicles A1 to A4, and improve the flexibility of the formation driving.
  • by broadcasting warning information Ma to vehicles B outside the convoy to inform the convoy of the conditions of the convoy, thereby forming a warning to vehicles B outside the convoy. Smoothness.
  • steps S520, S530, and S540 is not limited to the order in the above description, and can be interchanged or performed simultaneously.
  • step S610 is performed first and then step S650 is performed, that is, the behavior of the preceding vehicle is first identified, and then it is determined whether the driving control information Mc of the target node id is the vehicle id is received, but it is not limited to this. It is also possible to first determine whether to receive the driving control information Mc of the target node id as its own vehicle id. After receiving such driving control information Mc and driving according to the driving control information Mc does not affect driving safety, directly follow the driving control information. The information Mc travels without identifying the behavior of the preceding vehicle; the behavior of the preceding vehicle is recognized only when such driving control information Mc is not received or driving according to the driving control information Mc affects driving safety.
  • the warning plan formulation unit 422 selects all member vehicles A to send warning information Ma.
  • the embodiments of the present application are not limited to this.
  • the alarm plan formulation unit 422 may also formulate an alarm plan in the following manner:
  • Method 1 Leading vehicle A0 broadcasts warning information Ma, and numbering member vehicles A starting from leading vehicle A0.
  • the serial number of leading vehicle A0 is 0, indicating that the follower vehicle broadcasts warning information Ma whose serial number is divisible by N (N ⁇ 2).
  • Method 2 The pilot vehicle A0 broadcasts the warning information Ma. According to the distance from the pilot vehicle A0, a location point is set every distance L, and the following vehicle that is closest to the location point is selected for each location point to instruct it to broadcast the warning information Ma.
  • Fig. 14 provides an application scenario of a modification of the second embodiment.
  • the pilot vehicle A0 judges that it needs to lead the team to change lanes (for example, the front needs to turn right) based on the global topology information, but the pilot vehicle A0 is not suitable for the first lane change due to the presence of the vehicle B0 outside the team on the right. Lead the team.
  • the pilot vehicle A0 can command the following vehicle A4 at the end of the line to change lanes first by sending the driving control information Mc, and occupy the lane to facilitate the subsequent lane change of the entire convoy; it can also send the driving control information Mc to command the following vehicle A1 to change lanes first.
  • the following vehicles A1 lead the following vehicles A2, A3, and A4 to change lanes; it is also possible to direct the following vehicles A1 to A4 to change lanes at the same time by sending driving control information Mc.
  • the local topology information generated by the local environment information acquisition unit 402 of the own vehicle includes not only the position and speed information, but also the own vehicle and other vehicles (including member vehicles and vehicles outside the fleet) that can be reached within one hop. ) Communication link status information between.
  • the local topology information reported by the following vehicles A1 to A4 to the pilot vehicle A0 includes not only its own state information and the state information (position, speed) of all its neighboring nodes, but also the communication link with the neighboring nodes Status information.
  • the communication link status information is obtained based on the information from the communication unit 300.
  • the value indicating the reliability (stability) of the communication link is calibrated.
  • the reliability S is a value between 0 and 1, for example. The higher the value of reliability S, the better the communication quality.
  • FIG. 15 is a structural block diagram of a vehicle control device 400 provided by the third embodiment.
  • a communication path planning unit 420 that functions when the own vehicle is the lead vehicle A0 is added to the decision making module 450.
  • the control execution module 414, the driving control information generation module 416, and the alarm information generation module 418 are basically the same as those in the second embodiment, and the description is omitted here.
  • the newly added communication path planning unit 420 and the alarm plan formulation unit 422 that are different from the second embodiment will be described.
  • the communication path planning unit 420 plans a communication path between the pilot vehicle A0 and the following vehicles A1 to A4 according to the global topology information, especially according to the communication link status information between the member vehicles.
  • the communication path is used to transmit driving control information Mc.
  • the alarm plan formulation unit 422 formulates for sending to the vehicle B outside the fleet according to the global topology information, especially according to the communication link status information between the member vehicles and the vehicles outside the fleet.
  • the scheme of the warning information Ma is to specifically select which member vehicle or vehicle to transmit (broadcast in this embodiment) the warning information Ma.
  • FIG. 16 is a flowchart of the processing executed in the formation traveling system 10 provided by the third embodiment.
  • steps S10, S20, S100, S200, S300, S400, S500, S510, S520, S600, and S610 is the same as that of the second embodiment, and the description is omitted here.
  • step S540 the alarm processing is performed, that is, the alarm plan formulation unit 422 formulates an alarm information broadcasting plan that can cover all vehicles B associated with the fleet and has a small number of alarm information broadcasting vehicles, and the alarm information generation module 418
  • the warning information Ma is generated, and the vehicle control device 400 broadcasts the warning information Ma through the communication unit 300, and then proceeds to step S700.
  • the details of the "alarm processing" will be described later with reference to FIG. 18.
  • step S610 the process proceeds to step S611.
  • step S611 it is determined whether or not the driving control information Mc in the routing table (transmission path to the target node) of the vehicle id is received. In a case where the travel control information Mc with the vehicle id in the routing table is received (S611: Yes), the process proceeds to step S612. In a case where the driving control information Mc with the vehicle id in the routing table has not been received (S611: No), the process proceeds to step S650.
  • step S612 the vehicle control device 400 causes the vehicle to forward the received travel control information Mc, and then proceeds to step S650.
  • steps S650, S620, S630, S640, S660, S670, and S700 is the same as that of the second embodiment, and the description is omitted here.
  • Fig. 17 is the sub-flow of Fig. 16 and is a flowchart showing the details of the control process of the following vehicle executed in step S530 provided by the third embodiment.
  • the independent behavior formulation unit 409 formulates the independent behavior of one or some following vehicles (target vehicles, target nodes) according to the global environment information. For example, when it is determined that the pilot vehicle A0 is not suitable for lane change, the following vehicle can be made to perform lane change first.
  • step S532 the communication path planning unit 420 determines whether the pilot vehicle A0 and the target vehicle are reachable by one hop (without relaying) and the link reliability S is above the reliability threshold S0.
  • the reliability threshold S0 is a preset threshold indicating that information can be reliably transmitted. If one hop is reachable and the link reliability S is greater than the reliability threshold S0 (S532: Yes), the process proceeds to step S534. In the case that a hop is unreachable or the link reliability S is less than the reliability threshold S0 (S532: No), step S533 is entered.
  • step S533 the communication path planning unit 420 selects a relay node among the intermediate vehicles (member vehicle A) existing between the pilot vehicle A0 and the target vehicle.
  • the specific selection method is to determine whether there is an intermediate vehicle that meets the following prescribed conditions . If there is an intermediate vehicle that meets the predetermined condition (S533: Yes), the process proceeds to step S535. If there is no intermediate vehicle that meets the predetermined conditions (S533: No), the process proceeds to step S535.
  • step S533 If there are two such intermediate vehicles, first select the vehicle close to the pilot vehicle A0 for judgment. After that, select the first vehicle selected for the first time, the next vehicle, the second vehicle in front, the second vehicle in the rear, and the third vehicle in front of the middle vehicle selected for the first time... to judge whether the prescribed conditions are met. When an intermediate vehicle that satisfies the prescribed condition is selected, the judgment in step S533 is ended.
  • step S534 the communication path planning unit 420 plans the direct communication link between the pilot vehicle and the target vehicle as a communication path to send the driving control information Mc.
  • step S535 the communication path planning unit 420 takes the intermediate vehicle that meets the prescribed conditions determined in step S533 as a relay node, and plans a communication path including the relay node (that is, the planned communication path is: pilot vehicle A. ⁇ Relay node ⁇ Target vehicle) to send driving control information Mc to the target vehicle.
  • step S536 the communication path planning unit 420 abandons sending the travel control information Mc to the target vehicle.
  • step S537 the travel control information Mc is generated by the travel control information generation module 416, and is sent to the target vehicle by the vehicle control device 400 through the communication unit 300. After that, return to end this sub-process.
  • Fig. 18 is a sub-flow of Fig. 16 and is a flowchart showing the details of the alarm processing executed in step S540 provided by the third embodiment.
  • step S541 of FIG. 18 the alarm plan formulation unit 422 selects the pilot vehicle A0 as the warning information broadcast vehicle, and sets the pilot vehicle A0 as the starting point, and removes the starting point from the set of vehicle nodes outside the fleet in the global topology information. Connect directly to the node of the workshop communication, and then go to step S532.
  • “can be directly connected to workshop communication” means that one hop is reachable and the link reliability is greater than the reliability threshold S0.
  • step S542 the alarm plan formulation unit 422 determines the set of member vehicle nodes that can communicate directly with the starting point, and then proceeds to step S543.
  • step S543 the alarm plan formulation unit 422 sets the member vehicle node that is farthest from the start point in the set of member vehicle nodes that can communicate directly with the start point as the judgment point, and then proceeds to step S544.
  • step S544 the alarm plan formulation unit 422 determines all the vehicle nodes outside the vehicle fleet whose positions in the set of vehicle nodes outside the vehicle fleet are between the judgment point and the starting point (using the vehicle travel direction as the standard), and judge whether the judgment point is similar to these Nodes can communicate directly with the workshop, that is, when the vehicle broadcasts warning information, whether it can cover all the nodes of the vehicles outside the vehicle fleet whose positions are between the judgment point and the starting point in the set of vehicles outside the vehicle fleet.
  • step S544: No the process proceeds to step S545.
  • step S544: Yes the process proceeds to step S546.
  • step S545 the alarm plan formulation unit 422 removes the judgment point from the set of member vehicle nodes described above, and returns to step S543.
  • step S546 the alarm plan formulation unit 422 selects the judgment point as the alarm information broadcasting vehicle, removes the vehicle nodes outside the fleet that can communicate with the judgment point directly to the workshop from the set of vehicle nodes outside the fleet, and proceeds to step S547.
  • step S547 it is judged whether the set of the above-mentioned vehicle nodes outside the fleet is empty, that is, when the selected alarm information broadcast vehicle broadcasts the alarm information, any vehicle in the fleet is adjacent to the vehicle outside the fleet (and the vehicle fleet). Whether all associated vehicles outside the convoy can receive the warning message Ma. If the collection of vehicles outside the fleet is not empty (step S547: No), that is, if not all vehicles outside the fleet associated with the fleet can receive the warning information Ma, the process proceeds to step S548. If the set of vehicles outside the fleet is empty (step S547: Yes), that is, if all vehicles outside the fleet associated with the fleet can receive the warning information Ma, step S549 is entered.
  • step S548 the warning plan formulation unit 422 sets the newly selected warning information broadcasting vehicle as the starting point, and then returns to step S542.
  • the formation traveling system 10 in the third embodiment basically adopts the structure described above.
  • the vehicle control device 400 of the lead vehicle A0 is configured to transmit traveling control information Mc to the following vehicles A1 to A4 according to the communication link between adjacent nodes.
  • the global topology information of the road condition information is used to plan the transmission path of the driving control information Mc.
  • a transmission path with high link reliability can be planned, so that the driving control information Mc can be transmitted with high reliability within the fleet.
  • the member vehicle A that broadcasts the warning information Ma is selected based on the global topology information that also includes the communication link status information between neighboring nodes. In this way, it is possible not only to reliably broadcast the warning information Ma to all associated vehicles B outside the fleet, but also to broadcast the warning information Ma by the minimum number of member vehicles A, so as to reduce signal interference and save energy.
  • FIG. 19 is a schematic diagram of a vehicle fleet driving scene for explaining a specific example of the control processing and alarm processing of the following vehicle provided by the third embodiment.
  • the fleet is composed of the pilot vehicle A0 and the following vehicles A1 to A4, and there are out-of-convoy vehicles B0 to B7 associated with the fleet around the fleet.
  • the ranges R1 and R2 in FIG. 19 represent the one-hop reachability between member vehicles A.
  • the vehicles in the convoy within the one-hop reachable communication range with A0 are the following vehicles A1 and A2
  • the vehicles in the convoy within the one-hop reachable communication range with A4 are the following vehicles A1 and A2.
  • A3 That is, when the pilot vehicle A0 communicates with the follower vehicle A4, it is unreachable for one hop and needs to be relayed.
  • the following vehicle A2 and the pilot vehicle A0 are in the same range R1, and the link reliability between the two is S1.
  • the following vehicle A2 and the following vehicle A4 are in the same range R2, and the link reliability between the two is S2.
  • the prescribed conditions are met, that is, S1*S2 ⁇ S0
  • the following vehicle A2 is selected as the relay vehicle, and the leading vehicle A0 sends the driving control information Mc to the following vehicle A4 via the following vehicle A2.
  • S1*S2 ⁇ S0 is not satisfied, then it is determined whether the preceding vehicle A2 that follows the following vehicle A1 meets the specified conditions. When the following vehicle A1 meets the specified conditions, the leading vehicle A0 sends the driving control to the following vehicle A4 via the following vehicle A1.
  • Information Mc is determined whether the preceding vehicle A2 that follows the following vehicle A1 meets the specified conditions.
  • FIG. 19 the vehicles outside the fleet that have connections with the pilot vehicle A0 and the following vehicles A1 to A4, that is, the vehicles outside the fleet B0 to B6 that can communicate with the fleet are shown.
  • the pilot vehicle A0 and the vehicle B0 outside the fleet which means that the two can receive the information broadcast by the other party.
  • they are adjacent nodes.
  • the reliability of the link between adjacent nodes is above the reliability threshold S0 (direct communication between the workshops is possible).
  • the connection between the member vehicles A is omitted.
  • the one-hop reachability between member vehicles A is represented by ranges R1 and R2, and it is assumed that the link reliability between adjacent nodes in the same range is above the reliability threshold S0.
  • the pilot vehicle A0 is selected as the warning information broadcast vehicle, and then the pilot vehicle A0 is set as the starting point, from the collection of vehicles outside the fleet ⁇ B0, B1, B2, B3, B4, B5, B6 ⁇ Excluding B0 and B1 that can communicate directly with the starting point in the workshop, the set of vehicles outside the fleet becomes ⁇ B2, B3, B4, B5, B6 ⁇ . Then, it is determined that the set of member vehicles A that can communicate directly with the starting point is ⁇ A1, A2 ⁇ , and the member vehicle A that is farthest from the starting point behind the starting point is the following vehicle A2.
  • the vehicles outside the convoy located between the following vehicle A2 and the leading vehicle A0 in the direction of the convoy are B2, B3.
  • a vehicle outside the convoy is located between the front of the leading vehicle A0 and the rear of the following vehicle A2, it is determined to be located between the two.
  • other judgment methods can also be used. For example, when a part of a vehicle outside a certain fleet is located between the front of the leading vehicle A0 and the rear of the following vehicle A2, it is judged to be located between the two.
  • the following vehicle A2 is selected as the warning information broadcast vehicle, from the collection of vehicles outside the fleet ⁇ B2, B3, B4, B5 , B6 ⁇ remove B2, B3, and B4 that can communicate with the following vehicle A2 directly to the workshop, so that the set of vehicles outside the fleet becomes ⁇ B5,B6 ⁇ .
  • the following vehicle A2 is set as the starting point, and the set of member vehicles that can communicate directly with the starting point is ⁇ A1, A3, A4 ⁇ , and the member vehicle A that is the farthest from the starting point behind the starting point is the following vehicle A4 .
  • the set of vehicles outside the convoy ⁇ B5, B6 ⁇
  • the following vehicle A4 is selected as the warning information broadcast vehicle, and B5, B6 that can communicate with the following vehicle A4 directly to the workshop are removed from the set of vehicles outside the fleet ⁇ B5, B6 ⁇ , so that the set of vehicles outside the fleet becomes Empty set.
  • the member vehicles that broadcast the warning message Ma are finally selected as the pilot vehicle A0 and the following vehicles A2, A4. Therefore, it is not necessary for all member vehicles A to broadcast the warning information Ma, and the vehicles B0 to B6 outside the convoy associated with the convoy can also reliably receive the warning information Ma.
  • step S533 in the flowchart of the control process for the following vehicle shown in FIG. 17, the determination of step S533 is ended when an intermediate vehicle that satisfies the prescribed conditions is selected, but the embodiment of the present application does not Limited to this. From the viewpoint of selecting the optimal transmission route, it is also possible to judge whether all intermediate vehicles meet the prescribed conditions.
  • the intermediate vehicle with the largest value of S1*S2 is selected as the relay vehicle, and the driving control information Mc is sent to the target vehicle via the relay vehicle.
  • two different relay vehicles can also be selected to generate two different routes to send the driving control information Mc to the target vehicle. This can more guarantee the reliability of information transmission.
  • the transmission path (communication path) determined (planned) by the communication path planning unit 420 is used for the pilot vehicle A0 to send the driving control information Mc to the target vehicle, but the embodiment of the present application is not limited to this.
  • the following vehicles A1 to A4 when there is no instruction on the reporting route from the pilot vehicle A0, the reporting route is selected by itself, and when there is an instruction on the reporting route, the local topology information is reported according to the instructed route.
  • the pilot vehicle A0 is an autonomously driving vehicle
  • the pilot vehicle A0 may also be a manually driven vehicle equipped with an ADAS system.
  • the vehicle control device 400 can provide driving assistance to the driver by, for example, displaying prompt information on a display device provided in the vehicle, assisting the driver to better understand the surrounding conditions of the vehicle fleet and ensuring smooth driving of the vehicle fleet.
  • each member vehicle A has the same structure (same program is stored), and the vehicle control device 400 selects to activate the corresponding functional unit according to whether the vehicle is the lead vehicle A0 or the follower vehicle A1 to A4 ( Play a role) or not activate.
  • the embodiment of the present application is not limited to this, and a manner in which the pilot vehicle A0 and the following vehicles A1 to A4 have different structures may also be used.
  • the vehicle control device 400 of the pilot vehicle A0 has the own vehicle local environment information acquisition unit 402, the other vehicle local environment information acquisition unit 404, the global environment information generation module 406, the pilot vehicle formulation unit 408, and the independent behavior formulation unit 409, a control execution module 414, a driving control information generation module 416, an alarm information generation module 418, a communication path planning unit 420, and an alarm plan formulation unit 422.
  • the following vehicles A1 to A4 have an own vehicle local environment information acquisition unit 402, a preceding vehicle behavior recognition module 410, a following behavior formulation unit 412, and a control execution module 414.
  • the formation driving system 10 composed of multiple member vehicles A driving in formation is driving on an expressway
  • the formation driving system 10 of the present application may also be suitable for driving scenes on ordinary roads, docks, and the like.
  • pedestrians, non-motorized vehicles and other objects that may affect the driving of the fleet can also be identified.
  • the pilot vehicle A0 driving at the front of the fleet is used as the main control vehicle
  • the vehicle control device 400 has the other vehicle local environment information acquisition unit 404, the global environment information generation module 406, and the pilot vehicle is
  • the formulation unit 408, the independent behavior formulation unit 409, the driving control information generation module 416, the alarm information generation module 418, the communication path planning unit 420, and the alarm plan formulation unit 422 function to enable the vehicle control device 400 of the pilot vehicle A0 to travel as a formation
  • the main control device of the system plays a role.
  • the embodiment of the present application is not limited to this, for example, a vehicle driving in the middle of a fleet may also be used as the main control vehicle.
  • the above-mentioned other vehicle local environment information acquisition unit 404, global environment information generation module 406, navigation setting unit 408, independent behavior preparation unit 409, and driving control information generation module that make the vehicle control device 400 function as the main control device 416.
  • the processing of the alarm information generation module 418, the communication path planning unit 420, and the alarm plan formulation unit 422 may also be executed by the vehicle control device 400 of the following vehicle.
  • the formation traveling system 10 of the first embodiment includes a plurality of member vehicles A0 to A4 that make up a fleet.
  • the formation driving system 10 has a vehicle control device 400 as a main control device arranged on the pilot vehicle A0.
  • the vehicle control device 400 includes a local environment information acquisition module 440, a global environment information generation module 406, and a decision making module 450.
  • the local environment information acquisition module 440 is used to acquire local environment information representing the driving environment of each member vehicle among multiple member vehicles;
  • the global environment information generation module 406 is used to generate global environment information representing the driving environment of the fleet according to the local environment information;
  • the formulating module 450 is used to formulate control decisions for the fleet according to the global environmental information.
  • control decision As the target of the control decision, it can be the pilot vehicle A0 or the following vehicles A1 to A4.
  • the "control decision” made by the decision-making module 450 it includes not only decision-making for motion behavior such as acceleration, braking, lane change, etc., but also processing decisions such as sending driving control information Mc, warning information Ma, etc., in addition, you can also imagine To make decisions about behaviors such as honking the whistle.
  • the navigational setting unit 408, the independent behavior making unit 409, the communication path planning unit 420, and the alarm plan making unit 422 are described.
  • the main control device can be installed not only on the pilot vehicle A0, but also on the following vehicles A1 to A4, or on a server or drone capable of communicating with member vehicles.
  • the global environment information includes the position, or the position and speed information of the member vehicle A and the vehicle B outside the convoy located around the convoy.
  • the plurality of member vehicles includes the main control vehicle (for example, the pilot vehicle A0) provided with the above main control device and other member vehicles (for example, the following vehicles A1 to A4), the main control device (for example, the vehicle control device 400 on the pilot vehicle A0) obtains first local environment information representing the driving environment of the main control vehicle as the host vehicle (for example, the driving environment generated in the pilot vehicle A0 Local environment information), the vehicle control device of other member vehicles (for example, the vehicle control device 400 on the following vehicles A1 to A4) acquires the second local environment information (for example, The local environment information representing the surrounding driving environment generated in the above-mentioned following vehicles A1 to A4), and the second local environment information is sent to the main control device.
  • the global environment information generating module of the main control device generates global environment information according to the first local environment information and the second local environment information.
  • each member vehicle obtains local environment information representing its own driving environment, and other member vehicles send the local environment information generated by themselves to the main control vehicle, and the main control vehicle compares its own local environment information with the local environment of other member vehicles.
  • the information generates global environmental information, and the main control vehicle makes control decisions based on the global environmental information. For example, compared with the main control vehicle only making decisions based on its own driving environment information, it can make more appropriate decisions from the perspective of the entire fleet and improve the fleet. Safety and stability of driving.
  • the main control vehicle is the pilot vehicle A0 traveling in the forefront, and the other member vehicles follow the follower vehicles A1 to A4 traveling behind the pilot vehicle A0.
  • the leading vehicle at the forefront of the fleet makes the control decision about the fleet, and the decision-making vehicle is consistent with the leading vehicle, which can immediately lead the fleet to execute the decision made.
  • the local environment information includes at least the position information of member vehicles and other vehicles outside the fleet (vehicles outside the fleet); the global environment information generation module obtains the information from the local environment information acquisition module. The location information in all the local environment information is aggregated to generate the global environment information. In addition to location information, in the first to third embodiments described above, the local environment information also includes vehicle speed information.
  • the decision making module 450 includes a leading navigation setting unit 408, and the leading navigation setting unit 408 makes the movement behavior of the leading leading vehicle A0 among the plurality of member vehicles based on global environmental information.
  • the main control device may notify the follower vehicles A1 to A4 of the plurality of member vehicles that follow the leader vehicle A1 of the prescribed motion behavior of the pilot vehicle A0.
  • the behavior of the pilot vehicle A0 is formulated according to the global environment information, especially the information representing the driving environment of the following vehicle, so that the situation that the following vehicle cannot follow the driving and leave the fleet can be suppressed.
  • the following vehicles A1 to A4 can follow the pilot vehicle A0 smoothly on the basis of knowing the behavior of the pilot vehicle A0, thereby ensuring the smoothness of the formation. .
  • the decision making module 450 includes an independent behavior making unit 409, which makes an independent behavior of following the vehicle according to global environmental information, which is different from the behavior of following the pilot vehicle A0.
  • the independent behavior of the following vehicle which is different from the following behavior, is formulated according to the global environmental information, so as to be able to cope with different road conditions and improve the flexibility of formation driving.
  • the independent behavior formulation unit 409 may enable the following vehicle to perform any of the following independent behaviors when the lead navigation formulation unit 408 determines that the pilot vehicle A0 cannot change lanes:
  • the main control device is composed of the vehicle control device 400 installed on the pilot vehicle A0, and includes a driving control information generating module 416, which is based on the independent behavior formulated by the independent behavior formulating unit 409, The driving control information for instructing the following vehicle to perform independent behavior is generated, and the vehicle control device 400 on the pilot vehicle A0 as the main control device sends the driving control information to the following vehicle through the communication unit 300 of the pilot vehicle A0.
  • the decision-making module 450 includes an alarm plan formulation unit 422, and the alarm plan formulation unit 422 selects a vehicle (sending node) that sends alarm information to vehicles outside the fleet in any of the following ways:
  • the leading vehicle A0 that is driving in the front among multiple member vehicles A sends the warning message Ma, and the number of the leading vehicle is 0, and the following vehicles A1 to A4 are numbered in sequence with natural numbers, and the vehicle serial number can be divided evenly.
  • N s following vehicles send warning information Ma, where N ⁇ 2;
  • Leading vehicle A0 sends warning information Ma.
  • the following vehicles send warning information Ma for each increase in the distance by a specified distance;
  • the pilot vehicle A0 sends an alarm message Ma, and each following vehicle in the fleet generates a random value, the range of the random value is [0,1], and a threshold value is determined, and the random value is compared with the threshold value to make the random value greater than The following vehicles with the threshold value send warning information Ma.
  • the method 1 above it can effectively ensure that the surrounding vehicles outside the convoy receive the warning information Ma and improve driving safety.
  • the signal interference can be suppressed on the premise that as many vehicles outside the convoy receive the warning information Ma.
  • the decision making module 450 includes an alarm plan making unit 422, which selects the sending node of the alarm information Ma to the vehicle B outside the fleet from among a plurality of member vehicles A according to the global environment information.
  • the information Ma is used to provide the vehicle B outside the vehicle fleet with the situation of the vehicle fleet and form a safety warning for the vehicle B outside the vehicle fleet.
  • the member vehicle that issues the warning message Ma is selected based on the global environmental information. Therefore, for example, when it is judged that it can receive the information sent by multiple member vehicles A based on the location information of the vehicle B outside the fleet, all of the information sent by the member vehicle A may not be required.
  • the member vehicle A sends the warning message Ma, only a part of the member vehicles need to send the warning message Ma, thus, on the one hand, it can reduce the communication burden of the team, and on the other hand, it can restrain the vehicles outside the team from receiving the warning information frequently and cause the burden on its processing. .
  • the generated global environment information includes communication link status information (denoted as the first communication link status Information), the alarm plan formulation unit 422 selects the vehicle (sending node) that sends the alarm information Ma to the vehicle B outside the fleet from among the plurality of member vehicles A according to the first communication link status information.
  • the alarm plan formulation unit 422 selects the vehicle (sending node) that sends the alarm information Ma to the vehicle B outside the fleet from among the plurality of member vehicles A according to the first communication link status information.
  • the member vehicle A that sends the warning information Ma is selected based on the communication link status information between the member vehicle A and the vehicle B outside the fleet, so that not only the communication burden can be reduced as described above, but also because the communication is taken into consideration.
  • the link status can therefore reliably ensure that vehicles outside the convoy receive the warning information Ma.
  • the alarm plan formulation unit 422 selects the leading vehicle A0 driving in the forefront among the multiple member vehicles as the first selected sending node, and selects other sending nodes in sequence from the following vehicles A1 to A4, In the selection of other sending nodes, the condition is that it can communicate with the previously selected sending node directly connected to the workshop and the alarm information sent by it can cover all the vehicles outside the fleet between it and the previous sending node. Selected.
  • the selected other sending node may be one or multiple.
  • the vehicle that sends the warning information Ma can be quickly and effectively selected, and a reasonable release node can be selected to cover all vehicles outside the fleet.
  • the following vehicles that are farther away from the previously selected sending node can be selected preferentially, for example, it can start from the following vehicles that are farther away from the previously selected sending node. After judging that it can be used as a sending node, it is selected as a sending node, and no other nodes are selected.
  • the judgment is started from the following vehicle that is far away from the previously selected sending node, that is, the judgment is started from the following vehicle with a higher probability of covering more vehicles outside the convoy, so the calculation can be reduced.
  • the burden is to quickly select the sending node of the alarm information Ma.
  • the generated global environment information includes communication link status information (denoted as the second communication link status information) indicating the status of the direct communication link between a plurality of member vehicles.
  • the decision making module 450 includes a communication path planning unit 420, and the communication path planning unit 420 plans a workshop communication path for workshop communication between multiple member vehicles according to the second communication link status information.
  • the workshop communication path for the communication between the member vehicles is planned based on the above-mentioned second channel link status information, communication can be carried out through a reliable communication path, ensuring the reliability and stability of information transmission, and improving the formation driving. Reliability and stability.
  • the communication path planning unit 420 determines whether any two member vehicles of the plurality of member vehicles can communicate directly with each other according to the second communication link status information, and when it is judged that it is not possible to communicate between any two member vehicles.
  • the communication path planning unit 420 selects a relay node from the member vehicles located between the two member vehicles, so as to plan the communication path of the workshop.
  • the relay node is selected for relay, so that the information is reliably transmitted, and the reliability and stability of the formation driving are improved.
  • the communication path planning unit 420 may start the judgment from the member vehicle located in the middle of the two member vehicles.
  • the judgment is started from the one in the middle of the two vehicles that is closer to the pilot vehicle A0, so that it can be used as a relay node first when it meets the conditions, so that the relay node can be more reliable from the pilot vehicle A0 receives, for example, the above-mentioned driving control information Mc, etc., and then realizes reliable relay transmission.
  • the main control device is composed of the vehicle control device 400 installed on the pilot vehicle A0.
  • the decision making module 450 includes an independent behavior making unit 409, and the independent behavior making unit 409 makes a follower vehicle based on global environmental information. This independent behavior is different from the behavior of following the pilot vehicle.
  • the driving control information generation module 416 of the vehicle control device generates driving control information for instructing the following vehicle to perform the independent behavior according to the independent behavior formulated by the independent behavior formulation unit 409 Mc.
  • the vehicle control device 400 on the pilot vehicle as the main control device uses the communication path between the pilot vehicle and the following vehicle planned by the communication path planning unit 420 to transmit the travel control information Mc.
  • the driving control information Mc can be reliably sent to the following vehicle, thereby improving the reliability and stability of the fleet control.
  • the second embodiment of the present application relates to a vehicle control device that functions as a main control device for controlling the fleet, and has the same structure as the vehicle control device 400 of the pilot vehicle A0 in the first embodiment ,Function. Therefore, in the second embodiment, the drawings of the first embodiment are borrowed and the reference numerals thereof are used to briefly describe the vehicle control device related to this embodiment. In addition, for more specific content, please refer to the above-mentioned first embodiment.
  • the vehicle control device 400 of this embodiment is used as a main control device to control a fleet of multiple member vehicles A.
  • the multiple member vehicles A include the leading vehicle A0 driving in the forefront and the follower vehicle driving behind the leading vehicle A0.
  • the vehicle control device 400 includes: a local environment information acquisition module 440 for acquiring local environment information representing the respective driving environments of a plurality of member vehicles; a global environment information generation module 406, which is based on the acquired local environment information Generate global environmental information representing the driving environment of the fleet; a decision making module 450, which makes control decisions for the fleet based on the global environmental information.
  • control decision made by the decision-making module 450, it includes not only the decision of acceleration, braking, lane change and other sports behaviors, but also processing decisions such as sending driving control information Mc and warning information Ma. In addition, you can also imagine Decision-making for flute and other behaviors.
  • the global environment information may include the position, or position and speed information of the member vehicles and the vehicles outside the convoy located around the convoy.
  • the vehicle control device 400 in this embodiment can be set on the member vehicle A, such as the pilot vehicle A0 or the follower vehicles A1 to A4. In addition, as other embodiments, it may not be set on the member vehicle A, for example, set on a server that can communicate with the member vehicle A, or set on an unmanned aerial vehicle that follows the fleet.
  • the local environment information acquisition module 440 includes the local environment information acquisition of the vehicle Unit 402 and other vehicle local environment information acquisition unit 404; own vehicle local environment information acquisition unit 402 is used to acquire local environment information representing the driving environment of member vehicle i; other vehicle local environment information acquisition unit 404 is used to pass member vehicle i
  • the communication unit acquires local environment information representing the driving environment of the other member vehicle from member vehicles other than the member vehicle i.
  • the vehicle control device 400 includes the above-mentioned global environment information generating module 406 and the piloting-as-setting unit 408 (decision-making module 450).
  • the basic information used to generate global environmental information in addition to the local environmental information that the server or drone obtains from each member vehicle A, which represents its own surrounding driving environment, it is also possible to use the drone through its own
  • the information detected by the sensing unit such as the camera and radar of the vehicle, or the information obtained from the vehicle B outside the vehicle B driving around the vehicle fleet, such as broadcasts received through the communication unit;
  • the server can also be used to pass the cameras and radars installed on both sides of the road. Wait for the information obtained.
  • the local environment information generated by the member vehicles includes the location information of the member vehicles and other vehicles outside the fleet; the global environment information generation module 406 aggregates the location information in all the local environment information acquired by the local environment information acquisition module 440 to generate a global Environmental information.
  • vehicle speed information can also be included.
  • the decision-making module 450 may include a piloting behavior formulating unit 408, which formulates the acceleration, braking, lane change, or remaining unchanged movement behavior of the pilot vehicle A0 based on global environmental information.
  • the vehicle control device 400 may notify the following vehicles A1 to A4 of the formulated movement behavior of the pilot vehicle A0.
  • an independent behavior making unit 409 may also be included.
  • the independent behavior making unit 409 makes one or some independent behaviors of the following vehicles A1 to A4 according to the global environmental information. The independent behaviors are different. In the act of following the pilot vehicle A0.
  • the independent behavior formulating unit 409 may formulate any of the following independent behaviors when the piloting vehicle A0 is determined to be unable to change lanes by the piloting vehicle formulating unit 408:
  • the vehicle control device 400 when the vehicle control device 400 is set on the pilot vehicle A0, it may further include a driving control information generating module 416.
  • the driving control information generating module 416 generates instructions for following the vehicle according to the independent behavior formulated by the independent behavior formulating unit 409.
  • the corresponding vehicles in A1 to A4 execute driving control information Mc of independent behavior, and the vehicle control device 400 sends the driving control information Mc to the corresponding target member vehicle through the communication unit 300 of the pilot vehicle A0.
  • the decision making module 450 may also include an alarm plan making unit 422, which selects more than one member vehicle from the multiple member vehicles A as the sending node for sending the alarm information Ma to the vehicle B outside the fleet.
  • the warning information Ma is used to provide the vehicle B outside the vehicle fleet with the situation of the vehicle fleet and form a safety warning for the vehicle B outside the vehicle fleet.
  • the alarm information Ma for example, broadcasting can be adopted.
  • the alarm plan formulation unit 422 can select the member vehicle A that sends the alarm information Ma to the vehicle B outside the fleet in any of the following ways:
  • 2Leader vehicle A0 sends an alarm message Ma.
  • Set the number of lead vehicle A0 to 0, and follow vehicles A1 to A4 are numbered in sequence with natural numbers.
  • Followers whose vehicle serial number can be divisible by N will send alarm messages, where N ⁇ 2;
  • Leading vehicle A0 sends warning information Ma.
  • the following vehicles send warning information Ma for each increase in the distance by a specified distance;
  • the pilot vehicle A0 sends an alarm message Ma
  • each member vehicle in the fleet generates a random value
  • the range of the random value is [0,1]
  • a threshold value is determined
  • the random value is compared with the threshold value to make the random value greater than the threshold.
  • the following vehicles with the limit send warning information Ma.
  • the local environment information includes first communication link status information indicating the status of the direct communication link between the member vehicle and other vehicles; the global environment information generation module 406 will The first communication link status information in all the local environment information acquired by the local environment information acquisition module 440 is summarized to generate global environment information; The member vehicle serves as the sending node (the vehicle sending the warning message Ma).
  • the alarm plan formulation unit 422 selects the vehicle that sends the alarm information Ma to the vehicle B outside the fleet from among the plurality of member vehicles A according to the first communication link status information, it can reliably send the alarm information Ma to the vehicle B outside the fleet. In addition, sometimes a part of member vehicles A can send warning information Ma to fully cover all vehicles B outside the fleet, and it is not necessary for all member vehicles A to send warning information Ma to suppress signal interference and other problems.
  • the alarm plan formulation unit 422 may select the pilot vehicle A0 as a sending node to send the alarm information Ma, and select vehicles from the following vehicles A1 to A4 as other sending nodes to send the alarm information Ma.
  • the selection method may be It is as follows: The first other sending node is selected on the condition that it can communicate with the pilot vehicle A0 directly connected to the workshop and the alarm information Ma sent by it can cover all vehicles B outside the fleet between the pilot vehicle and the pilot vehicle. After that, according to the situation (whether all vehicles outside the fleet are covered), select the second other sending node. The selection method is from the following vehicles located behind the first sending node to be able to communicate with the first sending node.
  • the alert plan formulation unit 422 takes the pilot vehicle A0 driving in the forefront of the fleet as the first selected sending node, and performs other node selection processing.
  • the vehicle fleet The following vehicles A1 to A4, which are driving behind the pilot vehicle, can communicate directly with the previously selected sending node, and the alarm information Ma sent by it can cover the difference between it and the previously selected sending node. All other vehicles in the room are selected as conditions.
  • the following vehicles that are farther from the previously selected sending node are preferentially selected. For example, when the first other sending node is selected, there are multiple following vehicles that can directly communicate with the pilot vehicle A0. At this time, start from the one that is farther from the pilot vehicle A0 to determine whether it can meet the requirements of full coverage and piloting. This condition is for vehicles outside the convoy between vehicle A0.
  • the local environment information acquired by the local environment information acquisition module 440 includes second communication link status information indicating the status of the direct communication link between the member vehicle and other member vehicles;
  • the environmental information generation module 406 aggregates the second communication link status information in all the local environmental information acquired by the local environmental information acquisition module 440 to generate global environmental information;
  • the decision making module 450 includes a communication path planning unit 420, a communication path planning unit 420 Plan the workshop communication path according to the second communication link status information in the global environment information.
  • the workshop communication path is used for workshop communication between multiple member vehicles (for example, between the pilot vehicle A0 and any following vehicle).
  • the communication path planning unit 420 plans a workshop communication path for workshop communication between multiple member vehicles according to the second communication link status information, a reliable communication path can be planned to ensure accurate information transmission and improve the stability of the formation.
  • the communication path planning unit 420 starts to judge from the member vehicle in the middle of the two member vehicles.
  • the decision making module 450 may also include an independent behavior formulating unit 409, and the independent behavior formulating unit 409 formulates independent behaviors of the following vehicles A1 to A4. , This independent behavior is different from the behavior of following the pilot vehicle A0.
  • the vehicle control device 400 may further include a driving control information generating module 416, which generates driving control information Mc for instructing the following vehicle to perform an independent behavior according to the independent behavior formulated by the independent behavior formulating unit 409.
  • the vehicle communication path planned by the communication path planning unit 420 is used to transmit the travel control information Mc.
  • the vehicle control device of this embodiment since the decision for the pilot vehicle A0 and/or the following vehicles A1 to A4 is made based on the above-mentioned global environment information, the judgment is made on the basis of considering the driving environment of the fleet, thus, It can make more appropriate decisions from the perspective of the fleet as a whole. For example, it can reduce the situation that the following vehicles can not follow the driving and leave the fleet, or suppress the impact of the behavior of the fleet on the vehicles outside the fleet, thereby improving the safety of driving.
  • control decision made by the decision-making module 450, it includes not only the decision of acceleration, braking, lane change and other sports behaviors, but also processing decisions such as sending driving control information Mc and warning information Ma. In addition, you can also imagine Decision-making for flute and other behaviors.
  • the specific content contained in the global environment information may include the position, or position and speed information of the member vehicle A and the vehicle B located outside the vehicle fleet.
  • position, or position and speed information of the member vehicle A and the vehicle B located outside the vehicle fleet For example, in S300 and S500 in FIG. 8, local topology information including vehicle position and speed information is acquired, and in S500 in FIG. 8, global topology information including vehicle position and speed information is generated.
  • local environment information and global environment information may also include pedestrian, animal information, or static environment information (such as obstacle information).
  • the vehicle control method in this embodiment can be executed by any member vehicle A (leader vehicle A0 or any follower vehicle A1 to A4). In addition, as other embodiments, it can also be executed by a server or a drone.
  • the above-mentioned local environment information acquisition step may include the following steps: acquiring the local environment of the vehicle representing the driving environment around member vehicle A as the vehicle
  • the local environment information acquisition step of the own vehicle for example, S300 in FIG. 8
  • the local environment information acquisition step of the other vehicle through the communication unit 300 of the member vehicle A as the own vehicle for example, FIG. 8 "Acquire the local topology information of the following vehicle” in S500.
  • the local environment information of other vehicles indicates the driving environment around other member vehicles except the own vehicle.
  • global environment information generating step global environment information is generated according to the local environment information of the vehicle and the local environment information of other vehicles (for example, "generate global topology information" in S500 of FIG. 8).
  • the vehicle control method includes the above-mentioned global environment information generation step and the navigation as the formulation step.
  • the basic information used to generate global environment information for example, it can be the local environment information that the server or drone obtains from each member vehicle A and represents its own driving environment, or it can be the drone through its own Information detected by sensing units such as cameras and radars, or information acquired from vehicles B outside the vehicle fleet driving around the vehicle fleet such as broadcasts received through the communication unit; it can also be acquired by the server through cameras, radars, etc. installed on both sides of the road Information.
  • the decision-making step includes the lead navigation setting step (for example, "formulate the behavior of the own vehicle or the lead vehicle” in S510 of Figure 8).
  • the lead navigation setting step the movement of the lead vehicle A0 is formulated according to the global environmental information.
  • the vehicle control method may further include the step of notifying the following vehicles A1 to A4 of the formulated movement behavior of the pilot vehicle A0 (for example, "send pilot vehicle behavior information to the following vehicle” in S510 of FIG. 8).
  • the decision-making step also includes an independent behavior formulation step (for example, S530 in Figure 13 and Figure 16).
  • the independent behavior formulation step the independent behavior of the following vehicles A1 to A4 is formulated, which is different from following the pilot.
  • any of the following independent behaviors can be formulated:
  • the vehicle (sending node) that sends the warning information Ma to the vehicle B outside the fleet can be selected in any of the following ways:
  • the pilot vehicle A0 sends an alarm message Ma.
  • the number of the pilot vehicle A0 is 0, and the following vehicles A1 to A4 are numbered in sequence with natural numbers.
  • the following vehicles whose serial number can be divisible by N will send warning information Ma, where N ⁇ 2;
  • the pilot vehicle A0 sends an alarm message Ma, and each following vehicle in the fleet generates a random value, the random value range is [0,1], and a threshold value is determined at the same time. The random value is compared with the threshold value to make the random value greater than the threshold.
  • the following vehicles with the limit send warning information Ma.
  • the global environment information includes the first communication link status information
  • the first communication link status information indicates the status of the direct communication link between the member vehicle A and the vehicle B outside the fleet.
  • the vehicle that sends the warning information Ma to the vehicle B outside the fleet is selected from among the plurality of member vehicles A according to the first communication link status information (for example, S540).
  • the pilot vehicle A0 is selected to send the alert information Ma
  • the vehicle that is the sending node for sending the alert information Ma is selected from the following vehicles A1 to A4.
  • the selection method is as follows: The vehicle A0 communicates directly with the workshop and the warning message Ma can cover all vehicles B outside the fleet between the vehicle A0 and the pilot vehicle A0. As a condition, the first other sending node is selected. After that, according to the situation (whether it covers all vehicles outside the convoy around the convoy), select the second other sending node.
  • the selection method is from the following vehicles located behind the first sending node to be able to communicate with the first sending node.
  • the alert plan formulation unit 422 selects the pilot vehicle A0 as the first selected sending node and performs other sending node selection processing.
  • the other sending node selection processing from the following vehicles A1 to A4, The selection is made on the condition that it can communicate with the previously selected sending node directly connected to the workshop and the alarm information Ma sent by it can cover all the vehicles B outside the fleet between it and the previous sending node.
  • the following vehicles that are farther away from the previously selected sending node are selected first as the above Other sending nodes.
  • the first other sending node there are multiple following vehicles that can directly communicate with the pilot vehicle A0. At this time, start from the one that is farther from the pilot vehicle A0 to determine whether it can meet the requirements of full coverage and piloting. This condition is for vehicles outside the convoy between vehicle A0.
  • the global environment information includes second communication link status information
  • the second communication link status information indicates the status of the direct communication link between multiple member vehicles A.
  • the decision making step Including the communication path planning step, in the communication path planning step, according to the second communication link status information to plan a plurality of member vehicles (such as the pilot vehicle A0 and any following vehicles) for workshop communication between the workshop communication path (for example, Figure 17 S532 to S537 in).
  • the communication path planning step it is determined whether any two member vehicles (for example, the pilot vehicle A0 and the follower vehicle as the communication target, namely the target vehicle) can be directly connected
  • workshop communication for example, S532 in Figure 17
  • a relay node is selected from the member vehicles between the two to plan the communication path of the workshop (For example, S533 and S535 in Fig. 17).
  • the judgment can be started from the following vehicle located in the middle of the two.
  • the one that is closer to the pilot vehicle A0 can be selected from the two Start to judge.
  • the decision making step may further include an independent behavior formulation step (for example, S530).
  • the independent behavior formulation step the following vehicle is formulated This independent behavior is different from the behavior of following the pilot vehicle A0.
  • the vehicle control method may further include a driving control information generating step.
  • driving control information Mc for instructing the following vehicle to perform the independent behavior is generated,
  • the vehicle communication path is used to transmit driving control information Mc.
  • the decision for the pilot vehicle A0 and/or the following vehicles A1 to A4 is made based on the global environment information, it is based on considering the driving environment around the fleet Make judgments so that more appropriate decisions can be made from the perspective of the fleet as a whole. For example, it can reduce the situation that the following vehicles cannot follow the driving and leave the fleet, or suppress the impact of the team behavior on the vehicles outside the fleet, thereby improving the driving performance. safety.
  • the fourth embodiment of the present application relates to a vehicle.
  • This vehicle has the vehicle control device 400 in the second embodiment.
  • the vehicle may also have a positioning unit 100, a sensing unit 200, and a communication unit 300, and may be an autonomous vehicle, which can form a fleet of vehicles with other vehicles through the communication unit 300 to drive in formation.
  • the vehicle plays the role of the main control vehicle, and the vehicle may be the leading vehicle A0 running in the front of the convoy, or the follower vehicles A1 to A4 running behind the leading vehicle A0.
  • the decision for the member vehicle is made based on the global environment information, the judgment is made on the basis of the driving environment of the fleet, so that the overall view of the fleet can be made. More appropriate decision-making, for example, can reduce the situation that the following vehicles can not follow the driving and leave the team, or suppress the impact of the team's behavior on the vehicles outside the team, thereby improving the safety of driving.
  • the fifth embodiment of the present application provides a computer-readable storage medium storing a program that can be read by a computer, and the computer can function as the vehicle control device 400 in the second embodiment by running the program Function, or execute the vehicle control method in the third embodiment.
  • Using the computer-readable storage medium of this embodiment can make a computer function as the vehicle control device 400 in the second embodiment or execute the vehicle control method in the third embodiment. In this case, it is based on the global environment.
  • the information is formulated for the decision-making of the pilot vehicle A0 and/or the following vehicles A1 to A4. Therefore, the judgment is made based on the driving environment of the fleet, so that a more appropriate decision can be made from the overall view of the fleet. Decision-making, for example, can reduce the situation that the following vehicles can not follow the driving and leave the team, or suppress the impact of the team's behavior on the vehicles outside the team, thereby improving the safety of driving.
  • the sixth embodiment of the present application provides a computer program by which a computer can function as the vehicle control device 400 in the second embodiment or execute the vehicle control method in the third embodiment by running the program.
  • the computer program of this embodiment it is possible to make the computer function as the vehicle control device 400 in the second embodiment or execute the vehicle control method in the third embodiment.
  • the decision of the pilot vehicle A0 and/or the following vehicles A1 to A4 is therefore made on the basis of considering the driving environment of the fleet, so that a more appropriate decision can be made from the overall view of the fleet, for example, Reducing the situation that the following vehicles cannot follow the driving and leaving the team, or restraining the impact of the team's behavior on the vehicles outside the team, thereby improving the safety of driving.
  • the seventh embodiment of the present application provides a computing device.
  • the computing device typically has a processor, a memory, and an input-output device.
  • a computer program is stored in the memory.
  • the computer program is run by the processor to enable the computing device to serve as a second
  • the vehicle control device 400 in the embodiment functions or executes the vehicle control method in the third embodiment.
  • the computing device of this embodiment since the decision for the pilot vehicle A0 and/or the following vehicles A1 to A4 is made according to the global environment information, the judgment is made on the basis of considering the driving environment of the fleet Therefore, it is possible to make a more appropriate decision from the overall perspective of the fleet, for example, it can reduce the situation that the following vehicles cannot follow the driving and leave the fleet, or suppress the influence of the fleet behavior on the vehicles outside the fleet, thereby improving the safety of driving.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种车辆控制装置、车辆控制方法、计算机可读存储介质以及编队行驶系统,用于控制由多个成员车辆组成的车队,其中,各成员车辆生成表示自身周围行驶环境的局部环境信息,跟随车辆将自身的局部环境信息上报给领航车辆,领航车辆根据自身的局部环境信息与收到的跟随车辆的局部环境信息生成全局环境信息,并根据全局环境信息制定车队的控制决策。上述装置、方法应用在智能汽车、网联汽车、新能汽车、V2X汽车上,在考虑了车队周围行驶环境的基础上做出判断,从而,能够做出从车队整体来看更加适当的决策,例如可以减少后车不能跟随行驶造成脱离车队的情况,或者抑制车队行为对车队外车辆造成的影响,进而能够提高行驶的安全性。

Description

车辆控制装置、方法、计算机可读存储介质及编队行驶系统 技术领域
本申请实施例涉及智能网联车领域,尤其涉及一种用于控制由多个成员车辆组成的车队的车辆控制装置、车辆控制方法、计算机可读存储介质及编队行驶系统。
背景技术
编队行驶就是通过无线技术将同向行驶的多台车辆连接起来,形成一个车队。通常车队中的领航车辆是有人驾驶或自动驾驶车辆,后面的跟随车辆是基于实时信息交互并以一定速度保持稳定的车间距离的自动驾驶车辆。跟随车辆可根据前面车辆的加速、刹车等信息,在最短的时间内做出反应,跟随前面车辆行驶。
编队行驶能减少运输企业对于司机的需求,降低驾驶员的劳动强度,减小车队行驶中的风阻而降低车辆油耗。在编队行驶状态下,后车能瞬间跟随领航车辆指令,降低车辆安全事故。此外,编队行驶可以释放更多车道给其他车辆通行,显著改善交通拥堵并提升运输效率,进一步缓解交通压力。编队行驶对于提高车辆的经济效益和社会效益,减少由于排放造成的环境污染均具有巨大的积极意义。
例如,现有技术中公开了一种车队编队驾驶系统及方法,每辆车上均设置定位部、通信部、相邻车道检测部和自动驾驶控制部,自动驾驶控制部根据具体情况控制本车自动跟随车队中位于其前方且与之相邻的车辆行驶,使得至少两辆车中除首车由人工驾驶外,每辆跟随车辆都能跟随领航车辆自动行驶。
但是,上述现有技术中,领航车辆是根据自身周围的局部行驶环境作出驾驶决策,因此,领航车辆作出的某些决策可能会造成部分跟随车辆无法继续跟随车队行驶,同时还可能会对车队周围的车辆的行驶造成一定的影响。具体而言,以变道为例进行说明,在变道时,领航车辆通过自身带有的摄像头等感知单元或者通过接收周围车辆的广播信息对其周围的行驶环境进行检测,并判断为其变道行为不会造成其与周围车辆间产生安全问题,从而执行变道。之后,跟随在领航车辆后行驶的跟随车辆通过跟随行驶(跟踪行驶)也进行变道。然而,当作为变道目标的车道上存在与跟随车辆并行行驶的周围车辆时,跟随车辆无法进行变道行为,从而无法跟随车队进行行驶,造成掉队。另一方面,与跟随车辆并排行驶的周围车辆因完成变道的领航车辆的阻挡而不能加速超过与其并排的跟随车辆,因此,可以说领航车辆的变道行为对车队周围的车辆行驶造成了不利的影响。
发明内容
本申请实施例考虑上述的技术问题而完成的,目的在于提供一种能够更加适当地进行编队行驶控制的车辆控制装置、车辆控制方法、计算机可读存储介质及编队行驶系统。
为达到上述目的,本申请实施例的第一方面提供一种车辆控制装置,其用 于控制由多个成员车辆组成的车队,包括局部环境信息获取模块、全局环境信息生成模块和决策制定模块;所述局部环境信息获取模块用于获取表示所述多个成员车辆中各个成员车辆的行驶环境的局部环境信息;所述全局环境信息生成模块用于生成表示所述车队的行驶环境的全局环境信息;所述决策制定模块用于根据所述全局环境信息制定针对所述车队的控制决策。
在本申请实施例中,将多个成员车辆中行驶在最前方的车辆称为领航车辆,将跟随在领航车辆后方行驶的成员车辆称为跟随车辆。而作为控制决策的对象,可以是成员车辆中行驶在最前方的领航车辆,也可以是跟随在领航车辆后方行驶的跟随车辆。
另外,作为决策制定模块所制定的“控制决策”,不仅包括加速、制动、变道等运动行为的决策,还包括例如后述的发送行驶控制信息、警报信息等处理决策,此外还可以想象到鸣笛等行为的决策。
采用具有如上结构的车辆控制装置,由于是根据所述全局环境信息制定针对所述车队的决策,因而,是在考虑了车队整体行驶环境的基础上做出判断,例如与领航车辆仅仅根据自身周围环境信息制定决策的情况相比,能够做出从车队整体来看更加适当的决策,例如可以减少后车不能跟随行驶造成脱离车队的情况,或者抑制车队行为对车队外的其他车辆造成的影响,进而能够提高行驶的安全性。
作为第一方面的一种可能的实现方式,车辆控制装置设置在成员车辆i上,成员车辆i为多个成员车辆中的任一成员车辆;局部环境信息获取模块包括本车局部环境信息获取单元和他车局部环境信息获取单元;本车局部环境信息获取单元用于获取表示成员车辆i的行驶环境的局部环境信息;他车局部环境信息获取单元用于通过成员车辆i的通信单元,从除成员车辆i以外的其他成员车辆获取表示该其他成员车辆的行驶环境的局部环境信息。
采用如上结构,成员车辆i获取其他成员车辆的局部环境信息,根据自身的局部环境信息与其他成员车辆的局部环境信息生成全局环境信息,并根据该全局环境信息制定控制决策,例如与成员车辆i仅根据自身的环境信息制定决策相比,能够做出从车队整体来看更加适当的决策,提高车队行驶的安全性与稳定性。
另外,在上述车辆控制装置设置在领航车辆的情况下,即由在车队最前方的领航车辆作出关于车队的控制决策,决策车辆与领航车辆一致,从而能够立即引领车队执行所作出的决策。
作为第一方面的一种可能的实现方式,局部环境信息至少包括成员车辆和位于车队外的其他车辆的位置信息;全局环境信息生成模块将局部环境信息获取模块获取到的全部局部环境信息中的位置信息汇总而生成全局环境信息。另外,环境信息中除了车辆的位置信息外,还可以包括车速信息。
采用如上结构,根据上述信息,可以准确地判断车队外车辆对车队行为的影响或者成员车辆的行为对车队外车辆的影响,从而制定出从车队整体来看更加适当的决策。根据速度信息,可以预测车辆接下来的位置或行为,从而能够制定更加适当的控制决策。
作为第一方面的一种可能的实现方式,所述决策制定模块包括领航行为 制定单元,所述领航行为制定单元根据所述全局环境信息制定所述领航车辆的运动行为。此时,所述车辆控制装置可以将所制定的所述领航车辆的运动行为通知所述跟随车辆。
采用如上结构,领航行为制定单元根据全局环境信息特别是其中的表示跟随车辆的行驶环境的信息制定领航车辆的行为,能够抑制跟随车辆不能进行跟随行驶造成脱离车队的情况发生。另外,将所制定的领航车辆的行为通知跟随车辆,跟随车辆能够在知晓领航车辆的行为的基础上顺利地跟随领航车辆行驶,从而能够保证编队行驶的顺畅性。
作为一种可能的实现方式,所述决策制定模块包括独立行为制定单元,所述独立行为制定单元制定跟随车辆的独立行为,该独立行为不同于跟随领航车辆行驶的行为。
采用如上结构,通过向跟随车辆发送行驶控制信息,主动地使其执行不同于跟随行驶的独立行为,从而能够灵活地应对不同的道路状况,提高编队行驶的灵活性。
作为独立行为的具体例子,例如,在所述领航车辆无法变道时,制定下述任一所述独立行为:①所述跟随车辆中的最后一个变道;②所述跟随车辆中距离所述领航车辆最近的那一个变道;③全部的所述跟随车辆同时变道。
采用上述①的方式,例如在整个车队应该变道但所述领航车辆暂时不能变道时,可以由跟随车辆中的最后一个变道而占领车道,为车队整体变道做好准备。采用上述②的方式,由距离领航车辆最近的那一个引领后面的跟随车辆变道,与领航车辆等待路况允许时再变道以引领车队变道相比,能够避免等待期间路况的变化导致后面的跟随车辆无法实现变道。采用上述③的方式,全部的跟随车辆同时变道,能够缩短车队变道所需的时间。
作为第一方面的一种可能的实现方式,在所述车辆控制装置设置在所述领航车辆上的情况下,车辆控制装置可以包括行驶控制信息生成模块,所述行驶控制信息生成模块根据所述独立行为制定单元所制定的所述独立行为,生成用于指示所述跟随车辆执行所述独立行为的行驶控制信息,所述车辆控制装置通过所述领航车辆所具有的通信单元将所述行驶控制信息向所述跟随车辆发送。
作为第一方面的一种可能的实现方式,所述决策制定模块包括警报方案制定单元,警报方案制定单元按照如下任一方式制定向位于车队外的其他车辆发送警报信息的方案,其中,警报信息用于向其他车辆提供车队的情况:
①所述多个成员车辆全部发送所述警报信息;②所述多个成员车辆中行驶在所述车队最前方的领航车辆发送所述警报信息,并且,以所述领航车辆的编号为0,所述车队中跟随在所述领航车辆后方行驶的多个跟随车辆以自然数依次编号,车辆序号能整除N的跟随车辆发送所述警报信息,其中,所述N≥2;③领航车辆发送警报信息,多个跟随车辆中,按照与所述领航车辆的距离计算,距离每增加规定距离的跟随车辆发送所述警报信息;④领航车辆发送警报信息,每个跟随车辆生成随机值,随机值范围为[0,1],同时确定一个门限值,随机值与门限值比较,使随机值大于门限值的跟随车辆发送所述警报信息。
采用上述方式①的情况下,能够可靠地保证车队外车辆接收到警报信息,提高编队行驶的安全性。采用上述方式②-④的情况下,不但能够使尽量多的车队外车辆能够收到警报信息,而且,与全部车辆都发送警报信息相比还能够抑制无线信号之间的干扰。
另外,作为第一方面的一种可能的实现方式,警报方案制定单元其根据全局环境信息从多个成员车辆中选定一个以上的成员车辆作为向位于车队外的其他车辆发送警报信息的发送节点,警报信息用于向其他车辆提供车队的情况。
采用如上结构,通过向车队外车辆发送警报信息,以告知车队情况,从而对车队外车辆形成警示,例如能够提醒想要插队的车队外车辆不要插入车队中,提高编队行驶的安全性与顺畅性。
而且,采用如上结构,根据全局环境信息选定发出警报信息的成员车辆,因而,例如根据车队外车辆的位置信息判断其可接收到多个成员车辆发送来的信息时,可以不需全部的成员车辆发送警报信息,仅需一部分成员车辆发送警报信息即可,从而,一方面能够减小车队的通信负担,另一方面抑制车队外车辆频繁的收到警告信息对其处理造成负担。
另外,作为第一方面的一种可能的实现方式,局部环境信息包括,表示成员车辆和其他车辆间的直连通信链路状况的第一通信链路状况信息,全局环境信息生成模块将局部环境信息获取模块获取到的全部局部环境信息中的第一通信链路状况信息汇总而生成全局环境信息,警报方案制定单元根据全局环境信息从多个成员车辆中选定一个以上的成员车辆作为发送节点。
采用如上结构,由于全局环境信息中包含表示成员车辆与车队外车辆间的通信链路状况的第一通信链路状况信息,根据该第一通信链路状况信息选定向车队外车辆发送警报信息的成员车辆,因而,在考虑了成员车辆与车队外车辆间的通信链路状况的基础上选定发送警报信息的成员车辆,从而能够既保证车队外车辆可靠地接收到警报信息,又可以不必使全部的成员车辆发送警报信息,抑制信号干扰,还减小了通信负担。
作为第一方面的一种可能的实现方式,警报方案制定单元将车队中行驶在最前方的领航车辆作为首个选定的发送节点,并进行其他节点选定处理,在该其他节点选定处理中,从车队中的跟随在领航车辆后方行驶的跟随车辆中,以能够与前一个选定的发送节点进行直连车间通信且由其发送警报信息能够覆盖其与前一个选定的发送节点之间的全部其他车辆为条件,进行选定。
其中,根据情况(是否覆盖全部的车队外车辆),选定出的其他发送节点可以是1个,也可以有多个。
采用如上结构,能够迅速有效地选择出适当的发送节点,保证发送出的警报信息被车队外车辆收到。
另外,在其他节点选定处理中,可以优先选定距离前一个选定的发送节点较远的跟随车辆。
采用如上结构,由于警报方案制定单元从距离领航车辆较远的所述跟随车辆开始判断,即,从覆盖更多的车队外车辆的可能性高的跟随车辆开始判断,因而能 够降低运算负担,迅速地选定出警报信息的发送节点。
另外,作为第一方面的一种可能的实现方式,局部环境信息获取模块获取的局部环境信息包括,表示成员车辆与其他成员车辆间的直连通信链路状况的第二通信链路状况信息;全局环境信息生成模块将局部环境信息获取模块获取到的全部局部环境信息中的第二通信链路状况信息汇总而生成全局环境信息;决策制定模块包括通信路径规划单元,通信路径规划单元根据全局环境信息中的第二通信链路状况信息规划车间通信路径,车间通信路径用于多个成员车辆间进行车间通信。
采用如上结构,由于全局环境信息中包含表示多个成员车辆间的直连通信链路状况的第二通信链路状况信息,根据此第二通信链路状况信息来规划成员车辆间的车间通信路径,从而,能够保证成员车辆间可靠地进行通信,提高了车队控制的可靠性、稳定性。
作为第一方面的一种可能的实现方式,通信路径规划单元根据全局环境信息中的第二通信链路状况信息,判断多个成员车辆中任意的两个成员车辆间是否能够进行直连车间通信;在判断为不能进行直连车间通信时,通信路径规划单元进行从位于两个成员车辆间的成员车辆中选定中继节点的中继节点选定处理,从而规划车间通信路径。
采用如上结构,在不能直连通信或者直连通信不可靠时,选择中继节点进行中继,从而使信息可靠地被传输,提高了编队行驶的可靠性、稳定性。
另外,作为第一方面的一种可能的实现方式,在中继节点选定处理中,通信路径规划单元优先选定位于两个成员车辆正中间的成员车辆作为中继节点。
采用如上结构,由于有限选定位于领航车辆与目标车辆正中间的跟随车辆,即优先选定作为中继节点的可能性高的节点,因此,能够比较迅速地选定适当的跟随车辆(中继节点)。
作为第一方面的一种可能的实现方式,当位于两个成员车辆正中间的跟随车辆为两个时,可以优先选定距离领航车辆较近的跟随车辆作为中继节点。
采用如上结构,能够优先将距离领航车辆较近的跟随车辆作为中继节点,以使中继节点更可靠地从领航车辆接收例如上述行驶控制信息等继而实现可靠的中继发送。
另外,作为第一方面的一种可能的实现方式,在所述车辆控制装置设置在所述领航车辆上的情况下,决策制定模块可以包括独立行为制定单元,独立行为制定单元根据全局环境信息制定车队中跟随在领航车辆后方行驶的跟随车辆的独立行为,该独立行为不同于跟随领航车辆行驶的行为,车辆控制装置包括行驶控制信息生成单元,行驶控制信息生成单元根据独立行为制定单元制定的独立行为,生成用于指示跟随车辆执行独立行为的行驶控制信息,通信路径规划单元根据全局环境信息中的第二通路链路状况信息规划领航车辆向跟随车辆发送行驶控制信息用的车间通信路径。
采用如上结构,能够可靠地向跟随车辆发送行驶控制信息,从而提高了车队控制的可靠性。
另外,为达到上述目的,本申请实施例的第二方面涉及一种车辆控制方法,其用于控制由多个成员车辆组成的车队,所述车辆控制方法包括局部环境信息获取步 骤、全局环境信息生成步骤和决策制定步骤;在局部环境信息获取步骤中,获取表示多个成员车辆中各个成员车辆的自身行驶环境的局部环境信息;在全局环境信息生成步骤中,根据局部环境信息生成表示车队的行驶环境的全局环境信息;在决策制定步骤中,根据全局环境信息制定针对车队的控制决策。
采用具有如上的车辆控制方法,由于是根据所述全局环境信息制定针对所述成员车辆的决策,因而,是在考虑了车队行驶环境的基础上做出判断,从而,能够做出从车队整体来看更加适当的决策,例如可以减少后车不能跟随行驶造成脱离车队的情况,或者抑制车队行为对车队外车辆造成的影响,进而能够提高行驶的安全性。
作为第二方面的一种可能的实现方式,车辆控制方法由设置在成员车辆i上的车辆控制装置执行,成员车辆i为多个成员车辆中的任一成员车辆,局部环境信息获取步骤包括本车局部环境信息获取步骤和他车局部环境信息获取步骤;
在本车局部环境信息获取步骤中,获取表示成员车辆i的行驶环境的局部环境信息;在他车局部环境信息获取步骤中,通过成员车辆i的通信单元,从除成员车辆i以外的其他成员车辆获取表示该其他成员车辆的行驶环境的局部环境信息。
成员车辆i可以为车队中行驶在最前方的领航车辆。
作为第二方面的一种可能的实现方式,局部环境信息至少包括成员车辆和位于车队外的其他车辆的位置信息;在全局环境信息生成步骤中将局部环境信息获取步骤获取到的全部局部环境信息中的位置信息汇总而生成全局环境信息。
在所述车辆控制方法中,作为第二方面的一种可能的实现方式,决策制定步骤包括领航行为制定步骤,在领航行为制定步骤中,根据全局环境信息制定车队中行驶在最前方的领航车辆的运动行为。
作为第二方面的一种可能的实现方式,决策制定步骤包括独立行为制定步骤,在独立行为制定步骤中,根据全局环境信息制定跟随车辆的独立行为,该独立行为不同于跟随领航车辆行驶的行为。
作为第二方面的一种可能的实现方式,在所述独立行为确定步骤中,在所述领航车辆无法变道时,制定下述任一所述独立行为:
①所述跟随车辆中的最后一个变道;②所述跟随车辆中距离所述领航车辆最近的那一个变道;③全部的所述跟随车辆同时变道。
作为第二方面的一种可能的实现方式,车辆控制方法由设置在领航车辆上的车辆控制装置执行,且包括行驶控制信息生成步骤,在行驶控制信息生成步骤中,根据独立行为制定步骤制定的独立行为,生成用于指示跟随车辆执行独立行为的行驶控制信息;车辆控制方法还包括通过领航车辆的通信单元将行驶控制信息向跟随车辆发送的步骤。
作为第二方面的一种可能的实现方式,决策制定步骤包括警报方案制定步骤,在警报方案制定步骤中按照如下任一方式制定向位于车队外的其他车辆发送警报信息的方案,其中,警报信息用于向其他车辆提供车队的情况:①全部的所述成员车辆发送所述警报信息;②领航车辆发送所述警报信息,以领航车辆的编号为0,其后的跟随车辆以自然数依次编号,车辆序号能整除N的跟随车辆发送所述警报信息,其中,所述N≥2;③领航车辆发送警报信息,多个跟随车辆中,按照与所述领航车 辆的距离计算,距离每增加规定距离的跟随车辆发送所述警报信息;④领航车辆发送警报信息,车队中的每个跟随车辆生成随机值,随机值范围为[0,1],并且确定一个门限值,随机值与门限值比较,使随机值大于门限值的跟随车辆发送所述警报信息。
作为第二方面的一种可能的实现方式,决策制定步骤包括警报方案制定步骤,在警报方案制定步骤中,根据全局环境信息从多个成员车辆中选定一个以上的成员车辆作为向位于车队外的其他车辆发送警报信息的发送节点,警报信息用于向其他车辆提供车队的情况。
作为第二方面的一种可能的实现方式,局部环境信息包括,表示成员车辆和其他车辆间的直连通信链路状况的第一通信链路状况信息,在全局环境信息生成步骤中,将局部环境信息获取步骤获取到的全部局部环境信息中的第一通信链路状况信息汇总而生成全局环境信息,在警报方案制定步骤中,根据全局环境信息从多个成员车辆中选定一个以上的成员车辆作为发送节点。
作为第二方面的一种可能的实现方式,在警报方案制定步骤中,将车队中行驶在最前方的领航车辆作为首个选定的发送节点,并进行其他节点选定处理,在该其他节点选定处理中,从车队中的跟随在领航车辆后方行驶的跟随车辆中,以能够与前一个选定的发送节点进行直连车间通信且由其发送警报信息能够覆盖其与前一个选定的发送节点之间的全部其他车辆为条件,进行选定。
作为第二方面的一种可能的实现方式,在其他节点选定处理中,优先选定距离前一个选定的发送节点较远的跟随车辆。
作为第二方面的一种可能的实现方式,局部环境信息获取步骤获取的局部环境信息包括,表示成员车辆与其他成员车辆间的直连通信链路状况的第二通信链路状况信息;在全局环境信息生成步骤中,将局部环境信息获取步骤获取到的全部局部环境信息中的第二通信链路状况信息汇总而生成全局环境信息;决策制定步骤包括通信路径规划步骤,在通信路径规划步骤中,根据全局环境信息中的第二通信链路状况信息规划车间通信路径,车间通信路径用于多个成员车辆间进行车间通信。
作为第二方面的一种可能的实现方式,在通信路径规划步骤中,根据全局环境信息中的第二通信链路状况信息,判断多个成员车辆中任意的两个成员车辆间是否能够进行直连车间通信;在判断为不能进行直连车间通信时,进行从位于两个成员车辆间的成员车辆中选定中继节点的中继节点选定处理,从而规划车间通信路径。
作为第二方面的一种可能的实现方式,在中继节点选定处理中,优先选定位于两个成员车辆正中间的成员车辆作为中继节点。
作为第二方面的一种可能的实现方式,当位于两个成员车辆正中间的跟随车辆为两个时,优先选定距离领航车辆较近的跟随车辆作为中继节点。
作为第二方面的一种可能的实现方式,在所述车辆控制方法由设置在所述领航车辆上的车辆控制装置执行的情况下,决策制定步骤包括独立行为制定步骤,在独立行为制定步骤中,根据全局环境信息制定车队中跟随在领航车辆后方行驶的跟随车辆的独立行为,该独立行为不同于跟随领航车辆行驶的行为,车辆控制方法包括行驶控制信息生成步骤,在行驶控制信息生成步骤中,根据独立行为制定步骤中制定的独立行为,生成用于指示跟随车辆执行独立行为的行驶控制信息,在通信路径规划 步骤中,根据全局环境信息中的第二通路链路状况信息规划领航车辆向跟随车辆发送行驶控制信息用的车间通信路径。
另外,为达到上述目的,本申请实施例的第三方面提供一种计算机可读存储介质,其存储有使计算机执行上述任一车辆控制方法的程序。
另外,为达到上述目的,本申请实施例的第四方面提供一种计算设备,包括处理器与存储器,存储器中存储有程序,通过由处理器运行该程序而执行上述任一车辆控制方法。
另外,为达到上述目的,本申请实施例的第五方面涉及一种车辆,其包括具有上述任一结构的车辆控制装置。
另外,为达到上述目的,本申请实施例的第六方面涉及一种编队行驶系统,其包括由多个成员车辆组成的车队,编队行驶系统具有主控制装置,主控制装置包括局部环境信息获取模块、全局环境信息生成模块和决策制定模块;局部环境信息获取模块用于获取表示多个成员车辆中各个成员车辆的行驶环境的局部环境信息;全局环境信息生成模块用于根据局部环境信息生成表示车队的行驶环境的全局环境信息;决策制定模块用于根据全局环境信息制定针对车队的控制决策。
作为控制决策所针对的对象,可以是成员车辆中行驶在最前方的领航车辆,也可以是跟随在领航车辆后方行驶的跟随车辆。另外,作为决策制定模块所制定的“控制决策”,不仅包括加速、制动、变道等运动行为的决策,还包括例如后述的发送行驶控制信息、警报信息等处理决策,此外还可以想象到鸣笛等行为的决策。
采用具有如上结构的编队行驶系统,由于是根据所述全局环境信息制定针对所述成员车辆的决策,因而,是在考虑了车队行驶环境的基础上做出判断,从而,能够做出从车队整体来看更加适当的决策,例如可以减少后车不能跟随行驶造成脱离车队的情况,或者抑制车队行为对车队外车辆造成的影响,进而能够提高行驶的安全性。
作为第六方面的一种可能的实现方式,多个成员车辆包括设置有主控制装置的主控制车辆与其他成员车辆,主控制装置生成表示主控制车辆的行驶环境的第一局部环境信息,其他成员车辆所具有的车辆控制装置生成表示其他成员车辆的行驶环境的第二局部环境信息,并将生成的第二局部环境信息发送给主控制装置,主控制装置的全局环境信息生成模块根据第一局部环境信息与第二局部环境信息生成全局环境信息。
作为第六方面的一种可能的实现方式,主控制车辆为车队中行驶在最前方的领航车辆,其他成员车辆是跟随在领航车辆行驶的跟随车辆。
作为第六方面的一种可能的实现方式,局部环境信息至少包括成员车辆和位于车队外的其他车辆的位置信息;全局环境信息生成模块将局部环境信息获取模块获取到的全部局部环境信息中的位置信息汇总而生成全局环境信息。
作为第六方面的一种可能的实现方式,决策制定模块包括领航行为制定单元,领航行为制定单元根据全局环境信息制定车队中行驶在最前方的领航车辆的运动行为。
作为第六方面的一种可能的实现方式,多个成员车辆包括行驶在车队最前 方的领航车辆与车队中跟随在领航车辆后方行驶的跟随车辆;决策制定模块包括独立行为制定单元,独立行为制定单元根据全局环境信息制定跟随车辆的独立行为,该独立行为不同于跟随领航车辆行驶的行为。
作为第六方面的一种可能的实现方式,独立行为制定单元在领航车辆无法变道时,制定下述任一独立行为:①跟随车辆中的最后一个变道;②跟随车辆中距离领航车辆最近的那一个变道;③全部的跟随车辆同时变道。
作为第六方面的一种可能的实现方式,主控制装置设置在领航车辆上,且包括行驶控制信息生成模块,行驶控制信息生成模块根据独立行为制定单元制定的独立行为,生成用于指示跟随车辆执行独立行为的行驶控制信息;主控制装置通过领航车辆的通信单元将行驶控制信息向跟随车辆发送。
作为第六方面的一种可能的实现方式,决策制定模块包括警报方案制定单元,警报方案制定单元按照如下任一方式制定向位于车队外的其他车辆发送警报信息的方案,其中,警报信息用于向其他车辆提供车队的情况:①多个成员车辆全部发送警报信息;②多个成员车辆中行驶在车队最前方的领航车辆发送警报信息,并且,以领航车辆的编号为0,车队中跟随在领航车辆后方行驶的多个跟随车辆以自然数依次编号,车辆序号能整除N的跟随车辆发送警报信息,其中,N≥2;③领航车辆发送警报信息,多个跟随车辆中,按照与领航车辆的距离计算,距离每增加规定距离的跟随车辆发送警报信息;④领航车辆发送警报信息,每个跟随车辆生成随机值,随机值范围为[0,1],并且,确定一个门限值,随机值与门限值比较,使随机值大于门限值的跟随车辆发送警报信息。
作为第六方面的一种可能的实现方式,决策制定模块包括警报方案制定单元,其根据全局环境信息从多个成员车辆中选定一个以上的成员车辆作为向位于车队外的其他车辆发送警报信息的发送节点,警报信息用于向其他车辆提供车队的情况。
作为第六方面的一种可能的实现方式,局部环境信息包括,表示成员车辆和其他车辆间的直连通信链路状况的第一通信链路状况信息,全局环境信息生成模块将局部环境信息获取模块获取到的全部局部环境信息中的第一通信链路状况信息汇总而生成全局环境信息,警报方案制定单元根据全局环境信息从多个成员车辆中选定一个以上的成员车辆作为发送节点。
作为第六方面的一种可能的实现方式,警报方案制定单元将车队中行驶在最前方的领航车辆作为首个选定的发送节点,并进行其他节点选定处理,在该其他节点选定处理中,从车队中的跟随在领航车辆后方行驶的跟随车辆中,以能够与前一个选定的发送节点进行直连车间通信且由其发送警报信息能够覆盖其与前一个选定的发送节点之间的全部其他车辆为条件,进行选定。
作为第六方面的一种可能的实现方式,在其他节点选定处理中,优先选定距离前一个选定的发送节点较远的跟随车辆。
作为第六方面的一种可能的实现方式,局部环境信息获取模块获取的局部环境信息包括,表示成员车辆与其他成员车辆间的直连通信链路状况的第二通信链路状况信息;全局环境信息生成模块将局部环境信息获取模块获取到的全部局部环境信息中的第二通信链路状况信息汇总而生成全局环境信息;决策制定模块包括通信路径 规划单元,通信路径规划单元根据全局环境信息中的第二通信链路状况信息规划车间通信路径,车间通信路径用于多个成员车辆间进行车间通信。
作为第六方面的一种可能的实现方式,通信路径规划单元根据全局环境信息中的第二通信链路状况信息,判断多个成员车辆中任意的两个成员车辆间是否能够进行直连车间通信;在判断为不能进行直连车间通信时,通信路径规划单元进行从位于两个成员车辆间的成员车辆中选定中继节点的中继节点选定处理,从而规划车间通信路径。
作为第六方面的一种可能的实现方式,在中继节点选定处理中,通信路径规划单元优先选定位于两个成员车辆正中间的成员车辆作为中继节点。
作为第六方面的一种可能的实现方式,多个成员车辆包括车队中行驶在最前方的领航车辆与车队中跟随在领航车辆后方行驶的跟随车辆,当位于两个成员车辆正中间的跟随车辆为两个时,优先选定距离领航车辆较近的跟随车辆作为中继节点。
作为第六方面的一种可能的实现方式,主控制装置设置在车队中行驶在最前方的领航车辆上,决策制定模块包括独立行为制定单元,独立行为制定单元根据全局环境信息制定车队中跟随在领航车辆后方行驶的跟随车辆的独立行为,该独立行为不同于跟随领航车辆行驶的行为,主控制装置包括行驶控制信息生成单元,行驶控制信息生成单元根据独立行为制定单元制定的独立行为,生成用于指示跟随车辆执行独立行为的行驶控制信息,通信路径规划单元根据全局环境信息中的第二通路链路状况信息规划领航车辆向跟随车辆发送行驶控制信息用的车间通信路径。
采用本申请实施例,由于是根据所述全局环境信息制定针对所述成员车辆的决策,因而,是在考虑了车队行驶环境的基础上做出判断,从而,能够做出从车队整体来看更加适当的决策,例如可以减少后车不能跟随行驶造成脱离车队的情况,或者抑制车队行为对车队外车辆造成的影响,进而能够提高行驶的安全性。
附图说明
图1为本申请实施例提供的一种编队行驶系统的示意图。
图2为本申请实施例提供的一种各成员车辆结构的框图。
图3为本申请实施例提供的一种车辆控制装置的结构框图。
图4为本申请实施例提供的编队行驶系统的行驶场景示意图。
图5为本申请实施例提供的一种局部拓扑信息的内容示意图。
图6为本申请实施例提供的一种全局拓扑信息的内容示意图。
图7为本申请实施例提供的一种全局拓扑信息的拓扑示意图。
图8为本申请实施例提供的一种在编队行驶系统中所执行的处理的流程图。
图9为本申请实施例提供的另一种车辆控制装置的结构框图。
图10为本申请实施例提供的一种行驶控制信息的内容示意图。
图11为本申请实施例提供的一种警报信息的内容示意图。
图12为本申请实施例提供的各种信息的传递机制示意图。
图13为本申请实施例提供的另一种在编队行驶系统中所执行的处理的流程图。
图14为本申请实施例提供的一种应用场景的示意图。
图15为本申请实施例提供的又一种车辆控制装置的结构框图。
图16为本申请实施例提供的又一种在编队行驶系统中所执行的处理的流程图。
图17为本申请实施例提供的一种对跟随车辆的控制处理的流程图。
图18为本申请实施例提供的一种警报处理的流程图。
图19为本申请实施例提供的用于说明对跟随车辆的控制处理和警报处理的具体示例的车队行驶场景示意图。
具体实施方式
在对具体实施方式进行说明之前先对所使用的技术用语进行说明。
先进驾驶辅助系统(Advanced Driver Assistant System):
简称ADAS,是利用安装于车上的各式各样的传感器,在第一时间收集车内外的环境数据,进行静、动态物体的辨识、侦测与追踪等技术上的处理,从而能够让驾驶者在最快的时间察觉可能发生的危险,以引起注意和提高安全性的主动安全技术;其采用的传感器主要有摄像头、雷达、激光和超声波等,可以探测光、热、压力或其它用于监测汽车状态的变量,通常位于车辆的前后保险杠、侧视镜、驾驶室内部或者挡风玻璃上;其通常包括自适应巡航ACC(Adaptive cruise control)、车道偏移报警系统LDWS(Lane departure warning system)、车道保持系统LKA(Lane keep assistance),碰撞抑制或预碰撞系统CAS(Collision avoidance system或Pre crash system)、夜视系统NV(Night Vision system)、自适应灯光控制ALC(Adaptive light control)、行人保护系统PPS(Pedestrian protection system)、自动泊车系统AP(Automatic parking)、交通标志识别TSR(Traffic sign recognition)、盲点探测BSD(Blind spot detection),驾驶员疲劳探测DDD(Driver drowsiness detection)、下坡控制系统HDC(Hill descent control)和电动汽车报警EVWS(Electric vehicle warning sounds)系统等。
V2X(Vehicle to Everything):
作为一种车用无线通信技术,是将车辆与一切事物相连接的新一代信息通信技术,其中V代表车辆(Vehicle),X代表任何与车交互信息的对象,当前X主要包含车、人、交通路侧基础设施和网络。
C-V2X(蜂窝(Cellular)V2X):
基于3GPP全球统一标准的通信技术,基于4G/5G等蜂窝网通信技术演进形成的车用无线通信技术,包含LTE-V2X(简称LTE-V)和5G-V2X,包含PC5接口和Uu接口。
PC5接口:
OBU(On Board Unit;车载单元)与RSU(Road Side Unit;路标单元)之间、OBU与OBU之间的短距离直接通信接口,支持通过V2X广播信息,交换快速变化的动态信息(例如位置、速度、行驶方向、交通路况等),以及包括车辆编队行驶、传感器共享在内的未来更先进的自动驾驶应用。
Uu接口:
RSU与基站之间、OBU与基站之间的通信接口,可实现长距离和更大范围的高速数据通信,支持高清地图下载,以及从云上获取各种娱乐服务。
下面,参照附图对本申请的优选实施方式详细地进行说明。
1第一实施方式:编队行驶系统
本申请的第一实施方式涉及一种编队行驶系统,是同向行驶的2台以上的车辆通过以c-V2X(Cellular Vehicle to Everything)为代表的V2X无线通信技术进行通信以组成车队进行行驶从而构成的系统。可选地,编队行驶系统中还可以包括与车队内的车辆进行通信的服务器或者无人机等。
在本说明书中,将属于车队内的成员的车辆称为成员车辆,将车队外的车辆称为车队外车辆。而且,将车队中位于最前方的成员车辆称为领航车辆,将在领航车辆之后进行跟随行驶的成员车辆称为跟随车辆。此外,下面的说明中,前后左右是以车队行进方向为基准的方向。
1.1第一实施例
下面参照图1~8对编队行驶系统的第一实施例进行说明。
1.1.1结构
图1为第一实施例提供的编队行驶系统10整体的示意图。如图1所示,编队行驶系统10包括组成车队的例如五台同向行驶的成员车辆A,各成员车辆A之间保持一定的车间距离,并以一定的速度行驶。各成员车辆A上搭载有ADAS系统和V2X通信接口。该成员车辆A例如为物流公司的运输车辆,但不局限于此,也可以是乘用车。另外,图1仅仅是一个例子,车队中的成员车辆A的数量并不局限于此,只要是至少两台车辆组成车队即可。
车队中的各成员车辆A具有可识别其车队成员身份的识别码(id),还具有与其在车队中的位置相对应的编号等。在图1中,五台成员车辆A分别为领航车辆A0与跟随车辆A1、A2、A3、A4(A1~A4),领航车辆A0为可以自主制定行驶行为的自动驾驶车辆,跟随车辆A1~A4为基于实时信息交互的自动驾驶车辆。
另外,如图1所示,例如在车队行驶的车道的相邻车道上,存在多台在车队周围行驶的车队外车辆B0~B5(下面有时还将车队外车辆统称为车队外车辆B)。在本实施方式的编队行驶系统10中,每个成员车辆A实时地生成表示自身周围行驶环境的局部环境信息,跟随车辆A1~A4将自身生成的局部环境信息周期性地上报给作为主控制车辆的领航车辆A0。领航车辆A0将包含自身在内的车队中所有成员车辆A的局部环境信息汇总,生成表示车队周围行驶环境的全局环境信息。
并且,领航车辆A0根据全局拓扑信息,制定车队的加速、制动、变道、转弯、保持现状等行驶行为。通常情况下,为了控制车队的行驶行为,领航车辆A0制定自身的行驶行为并执行,其后的跟随车辆A1~A4识别位于本车前方的成员车辆A的行驶行为,进行跟随行驶。这样的“跟随行驶”,例如可采用现有技术中的方式,在此不再赘述。
另外,除了上述通常情况外,作为特定情况的一例,若跟随车辆A1~A4通过判断认为跟随前车行驶影响行车安全,则可以不进行跟随行驶,例如退出车队。
下面对本实施方式中的编队行驶系统10的构成予以详细说明。
图2为第一实施例提供的各成员车辆A的结构框图。如图2所示,每台成员车辆A均具有定位单元100、感知单元200、通信单元300和车辆控制装置400。
定位单元100例如具有全球导航卫星系统(GNSS)接收机,用于接收卫星信号,并将接收到的卫星信号发送给车辆控制装置400,车辆控制装置400基于此能够获取本车(所属车辆)的位置信息。其中,GNSS接收机可以是全球定位系统(GPS)接收机、北斗系统接收机或者其他卫星定位系统接收机。
感知单元200例如具有摄像头、毫米波雷达、激光雷达、超声波雷达等各种传感器,能够对本车的行驶环境进行探测,得到探测数据,并将该探出数据发送给车辆控制装置400,车辆控制装置400利用该探测数据生成本车的行驶环境信息(局部环境信息)。
在本实施方式中,通信单元300由汽车终端设备(Vehicle-TBOX)构成,能够基于例如PC5接口进行短距离直接通信,并且,能够基于例如Uu接口进行长距离和更大范围的高速数据通信。从而,通信单元300基于PC5接口,通过V2X广播信息,且从其他车辆接收广播信息,将接收到的广播信息发送给车辆控制装置400。另外,作为车间通信接口,还可以有DSRC(Dedicated Short Range Communication:专用短程通信)接口。
车辆控制装置400由ECU(计算机、计算设备)构成,具有输入输出装置、运算装置和存储装置(计算机可读存储介质)。输入输出装置由A/D转换电路、通信接口、驱动器等构成。运算装置例如由具有CPU等的处理器构成。车辆控制装置400通过由运算装置执行存储于存储装置的程序来作为下述的各功能单元发挥作用。
图3为第一实施例提供的车辆控制装置400的结构框图。如图3所示,车辆控制装置400具有局部环境信息获取模块440、全局环境信息生成模块406、前车行为识别模块410、决策制定模块450和控制执行模块414。其中,在本实施例中,局部环境信息获取模块440包括本车局部环境信息获取单元402和他车局部环境信息获取单元404,决策制定模块450包括领航行为制定单元408和跟随行为制定单元412。车辆控制装置400还可以具有除此以外的现有技术中的各种功能单元(例如导航功能),在此省略对公知的结构的说明。
另外,在本车作为领航车辆A0时,这些功能单元中的本车局部环境信息获取单元402、他车局部环境信息获取单元404、全局环境信息生成模块406、领航行为制定单元408和控制执行模块414发挥功能。在本车作为跟随车辆A1~A4时,这些功能单元中的本车局部环境信息获取单元402、前车行为识别模块410、跟随行为制定单元412和控制执行模块414发挥功能。
本车局部环境信息获取单元402获取表示本车的行驶环境的局部环境信息。在本实施方式中,局部环境信息中包括局部拓扑信息,该局部拓扑信息表示本车及本车周围存在的(或者说本车所所感知到的)车队外车辆B的位置与速度信息。这里,本车的位置信息可以根据来自定位单元100的数据(例如GPS信号)生成;本车的速度信息可以根据来自车速传感器(未图示)的检测数据生成;本车周围的车辆的位置信息及速度信息不但可以根据本车上的感知单元200的各传感器的探测数据生成,还可以根据通信单元300从外部接收到的数据(例如接收到的车队外车辆B的广播数据等)生成。本车局部环境信息获取单元402对得到的这些数据进行信息融合处理而生成局部拓扑信息。在融合处理中,例如,由感知单元200检测到的某一周围车 辆与通过通信单元300接收广播检测到的某一周围车辆如果位置相同(或者位置与速度相同)的话,则视为同一车辆。
由本车局部环境信息获取单元402生成的局部拓扑信息中包括本车的位置及速度信息、以及本车接收到其广播信息的(或者通过感知单元200识别到的)车辆(包括成员车辆和/或车队外车辆)的位置及速度信息。
图4为第一实施例提供的编队行驶系统10的行驶场景示意图。图5表示在图4的场景下跟随车辆A4中的本车局部环境信息获取单元402生成的局部拓扑信息的内容。图4中的圆圈示意性地表示以跟随车辆A4为中心的一跳可达通信范围,跟随车辆A4可与处于该范围内的车辆收发广播信息,但这仅仅是示例,并不局限于此。在该场景下,如图4中的直线双向箭头所示,关于车队外车辆B,跟随车辆A4可接收到车队外车辆B4、B5、B6、B7广播的信息(或者可通过感知单元200识别到这些车辆的信息)。另外,跟随车辆A4还可接收到作为车队内的成员车辆A的跟随车辆A3广播的信息(或者可通过感知单元200识别到跟随车辆A3的信息)。因此,图5所示的跟随车辆A4生成的局部拓扑信息中包括跟随车辆A3、A4的位置及速度信息、车队外车辆B4、B5、B6、B7的位置及速度信息。图5提供的仅仅是局部拓扑信息的一个例子,并不局限于此。例如,也可以使局部拓扑信息中不包括作为本车的成员车辆以外的成员车辆的信息,具体地,可以使图5中的局部拓扑信息中包括跟随车辆A4的位置及速度信息、车队外车辆B4、B5、B6、B7的位置及速度信息,而不包括跟随车辆A3的位置及速度信息。另外,从使领航车辆A0能够获取信息的角度来看,跟随车辆也可以将自身的信息(位置与速度信息)与感知到的其他车辆的信息分别发送给领航车辆,而没有必要一定是将这些信息一起发送。
他车局部环境信息获取单元404通过通信单元300获取各跟随车辆A1~A4上报的表示各跟随车辆A1~A4的行驶环境的局部环境信息,在本实施方式中,各跟随车辆A1~A4上报的局部环境信息是表示各跟随车辆A1~A4及其周围的预设范围内存在的车辆的信息的局部拓扑信息,该预设范围是指由感知单元200能感知的范围和通信单元300能接收广播的范围(通过通信的形式能够感知的范围)形成的范围。
全局环境信息生成模块406将本车生成的表示本车的行驶环境的局部环境信息(本实施方式中为局部拓扑信息)和由他车局部环境信息获取单元404获取到的表示他车行驶环境的局部环境信息(本实施方式中为局部拓扑信息)汇总,生成表示整个车队行驶环境的全局环境信息(本实施方式中为全局拓扑信息)。有时,成员车辆间检测到的车辆会存在重复,例如,领航车辆A0检测到的车队外车辆B与紧随其后行驶的跟随车辆A1~A4检测到的车队外车辆B可能存在重复,因此,全局环境信息生成模块406根据局部拓扑信息生成全局环境信息时,可以根据车辆的位置等进行融合处理而去重。
在本实施方式中,全局拓扑信息中包括所有成员车辆A的位置及速度信息、以及各成员车辆A所识别到的(包括通过感知单元识别到的以及通过接收广播信息等通信信息所识别到的)所有车队外车辆B的位置及速度信息。根据该全局拓扑信息,可获得各车辆之间的距离关系及相对速度信息。
图6表示在图4的场景下由领航车辆A0中的全局环境信息生成模块406 生成的全局拓扑信息的内容。如图6所示,全局拓扑信息中包括所有的成员车辆A、即领航车辆A0、跟随车辆A1~A4的位置及速度信息、位于成员车辆A周围的车队外车辆B0、B1、B2、B3、B4、B5、B6、B7(B0~B7)的位置及速度信息。
根据跟随车辆A1~A4实时上报的局部拓扑信息,领航车辆A0的全局环境信息生成模块406能够生成动态的全局拓扑图作为全局拓扑信息。图7是示意性地表示图4场景下的全局拓扑信息的全局拓扑图。在图7中,实线的圆圈所示的节点表示成员车辆A,虚线的圆圈所示的节点表示车队外车辆B(B0~B7),若两个节点之间通过链路不经由其他节点而直接连接,则表示在彼此进行通信时可一跳直达,这两个节点彼此为相邻节点。另外,为便于说明,下面有时会将车辆称为节点。
车辆控制装置400的决策制定模块450在本车为领航车辆A0时,根据由全局环境信息生成模块406生成的表示车队周围行驶环境的全局拓扑信息来制定针对领航车辆A0和/或跟随车辆A1~A4的决策。本实施例中,作为一个例子,决策制定模块450的领航行为制定单元408根据全局拓扑信息,制定作为领航车辆A0的本车的加速、制动、变更车道、保持现状等行驶行为。
前车行为识别模块410根据由感知单元200获得的信息来识别位于本车前方的成员车辆A的加速、制动、转弯、变道等行驶行为。
跟随行为制定单元412根据由前车行为识别模块410识别出的位于本车前方的成员车辆A的行驶行为,来制定作为跟随车辆的本车的行驶行为。
控制执行模块414在本车为领航车辆A0时根据领航行为制定单元408所制定的行为来控制本车的行驶行为,在本车为跟随车辆A1~A4时根据跟随行为制定单元412所制定的行驶行为来控制本车的行驶行为。
1.1.2动作流程
图8为第一实施例提供的在编队行驶系统10中所执行的处理的流程图。当两台以上的成员车辆A组成的车队在高速公路上行驶时,以规定周期执行图8所示的处理。
如图8所示,在步骤S100中,各成员车辆A上的车辆控制装置400通过通信单元300周期性地广播基本安全信息(Basic Safety Message),然后进入步骤S200。这里,基本安全信息通过PC5接口广播,例如包括自身的位置及速度信息。
在步骤S200中,车辆控制装置400通过通信单元300接收其他车辆广播的基本安全信息,然后进入步骤S300。
在步骤S300中,本车局部环境信息获取单元402生成以本车为中心的局部拓扑信息,然后进入步骤S400。
在步骤S400中,车辆控制装置400判定本车是否为领航车辆A0。在本车是领航车辆A0(S400:是)的情况下,执行步骤S500~S520的处理,在本车不是领航车辆A0(S400:否)的情况下,执行步骤S600~S640的处理。因而,实际情况下步骤S500~S520的处理是由领航车辆A0上的车辆控制装置400所执行的,步骤S600~S640的处理是由跟随车辆A1~A4上的车辆控制装置400所执行的。
在步骤S500中,由于在上述步骤S400中判定为本车是领航车辆A0,因此,他车局部环境信息获取单元404通过通信单元300从各跟随车辆A1~A4获取表 示各跟随车辆的行驶环境的局部拓扑信息,由全局环境信息生成模块406生成表示车队整体的行驶环境的全局环境信息(本实施方式中为全局拓扑信息),然后进入步骤S510。
在步骤S510中,领航行为制定单元408根据全局拓扑信息,制定本车的加速、制动、变更车道、保持现状等行为,通过通信单元300向跟随车辆A1~A4发送表示本车将要进行的行驶行为的信息(领航车辆行为信息),然后进入步骤S520。成员车辆A之间的通信可以采用现有技术中的通信方法,在此不再赘述。
在步骤S520中,控制执行模块414使领航车辆A0执行在步骤S510中制定的行驶行为,然后进入步骤S700。
在步骤S600中,由于在上述步骤S400中判定为本车不是领航车辆A0,即,本车是跟随车辆A1~A4(任一),因此,车辆控制装置400通过通信单元300向领航车辆A0上报以本车为中心的局部拓扑信息,然后进入步骤S610。在此,在领航车辆A0处于一跳可达(能够进行直连车间通信,无需中继)的通信范围内的情况下,跟随车辆A1~A4将生成的局部拓扑信息直接发送给领航车辆A0。在领航车辆A0不处于一跳可达的通信范围内的情况下,即,无法将生成的局部拓扑信息直接发送给领航车辆A0的情况下,通过车队中本车以外的作为跟随车辆的成员车辆A进行中继,而将生成的局部拓扑信息上报给领航车辆A0。
在步骤S610中,前车行为识别模块410通过感知单元200识别在本车前方的成员车辆A的行为,另外,车辆控制装置400还通过通信单元300接收来自领航车辆A0的领航车辆行为信息,然后进入步骤S620。
在步骤S620中,跟随行为制定单元412判定跟随本车前方的成员车辆A行驶是否不影响行车安全(例如判定是否存在障碍物)。在不影响行车安全(S620:是)的情况下,进入步骤S630。在影响行车安全(S620:否)的情况下,进入步骤S640。
在步骤S630中,跟随行为制定单元412根据在步骤S610中识别出的位于本车前方的成员车辆A的行为,来制定本车的行驶行为,控制执行模块414使本车执行跟随行为制定单元412制定的该行为,以使本车跟随本车前方的成员车辆A行驶,然后进入步骤S700。
在步骤S640中,跟随行为制定单元412制定与步骤S630中制定的行为不同的其他行为,控制执行模块414使本车执行该其他行为,即,使本车不跟随在本车前方的成员车辆A行驶,而是退出车队,然后结束本流程。另外,成员车辆A在退出车队后,在将来具备条件时,可以按照现有技术中的方法重新加入车队。
在步骤S700中,车辆控制装置400判定是否到达目的地。在到达目的地(S700:是)的情况下,结束本流程。在尚未到达目的地(S700:否)的情况下,返回步骤S100进行处理,直到到达目的地为止。
第一实施例中的编队行驶系统10基本上采用以上说明的结构。采用第一实施例的结构,编队行驶系统10中,各成员车辆A生成表示自身的行驶环境的局部拓扑信息,跟随车辆A1~A4将自身生成的局部拓扑信息发送给领航车辆A0,领航车辆A0将所有成员车辆A生成的局部拓扑信息汇总而生成全局拓扑信息,根据此全局 拓扑信息制定自身的行驶行为。如此,领航车辆A0在考虑了车队行驶环境的基础上做出判断,从而,能够做出从车队整体来看更加适当的决策,例如可以减少后车不能进行跟随行驶造成脱离车队的情况,抑制车队行为对车队外车辆造成的影响,进而能够提高行驶的安全性。
此外,在第一实施例中,在步骤S510中,领航车辆A0的车辆控制装置400在制定本车的行驶行为的基础上,向跟随车辆A1~A4发送领航车辆行为信息。但是,并不局限于此,在该步骤中,也可以仅制定本车的行驶行为,而不向跟随车辆A1~A4发送领航车辆行为信息。
1.2第二实施例
下面参照图9~14对编队行驶系统的第二实施例进行说明。
1.2.1结构
第二实施例中,与第一实施例的不同之处在于,领航车辆A0还向跟随车辆A1~A4发送用于控制其进行规定的处理以进行规定行驶行为的行驶控制信息Mc,并且,广播用于告知车队情况以警示车队外车辆不要做出插队等影响车队行驶行为的警报信息Ma。除此以外基本相同,因而,对于那些相同的结构,使用相同的附图标记并省略了对其的详细说明。
图9为第二实施例提供的车辆控制装置400的结构框图。如图9所示,第二实施例中,除了具有局部环境信息获取模块440、全局环境信息生成模块406、前车行为识别模块410、决策制定模块450和控制执行模块414之外,车辆控制装置400还具有行驶控制信息生成模块416和警报信息生成模块418,车辆控制装置400的决策制定模块450除了领航行为制定单元408和跟随行为制定单元412之外,还包括独立行为制定单元409与警报方案制定单元422,这些新增的功能单元在本车作为领航车辆A0时发挥功能,在本车作为跟随车辆A1~A4时不发挥功能。本车局部环境信息获取单元402、他车局部环境信息获取单元404、全局环境信息生成模块406、领航行为制定单元408、前车行为识别模块410和控制执行模块414的结构与第一实施例中基本相同,在此省略说明。
下面对与第一实施例不同的独立行为制定单元409、跟随行为制定单元412、行驶控制信息生成模块416和警报信息生成模块418进行说明。
在本实施例中,领航车辆A0可以指定跟随车辆A1~A4的全部或部分进行变道等行为,此时,领航车辆A0的独立行为制定单元409根据全局拓扑信息制定跟随车辆A1~A4中特定的跟随车辆进行独立行为,该独立行为不同于跟随领航车辆A0行驶的行为。
与第一实施例中不同,跟随行为制定单元412在接收到后述的行驶控制信息Mc时,还根据该行驶控制信息Mc来制定本车的行驶行为。在按照行驶控制信息Mc行驶不影响行车安全时,跟随行为制定单元412优先根据该行驶控制信息Mc来制定本车的行驶行为。
行驶控制信息生成模块416在独立行为制定单元409制定了由特定的跟随车辆进行独立行为时,生成用于发送给该特定的跟随车辆(目标车辆)的行驶控制信息Mc,以指示其进行该独立行为。作为该独立行为的行驶行为例如可以是加速、制 动、转弯、变道等行驶行为。
图10为第二实施例提供的行驶控制信息Mc的内容示意图。如图10所示,行驶控制信息Mc中包括车队编号、车辆编号、转发节点id、目标节点id等身份识别信息、以及变道信息、距离下次转弯时间、换道信息等能够表示具体行驶行为内容的信息。另外,行驶控制信息Mc中还具有作为可选项的路由表信息。生成的行驶控制信息Mc在一跳可达的情况下直接发送给目标车辆,在一跳不可达的情况下经由其他跟随车辆转发给目标车辆。
警报信息生成模块418生成用于通过例如广播将车队情况告知周围的车队外车辆B的警报信息Ma。图11为第二实施例提供的警报信息Ma的内容示意图。如图11所示,警报信息Ma中包括车队编号、车型、车头方向角等表示车队自身状况的信息、以及告警信息、建议保持尾部距离等对车队外车辆B的警示信息。警报信息Ma中还具有作为可选项的车队外车辆id、车队外车辆位置等信息。
警报方案制定单元422选定由车队中的哪些成员车辆A来广播(发布)由警报信息生成模块418生成的警报信息Ma。在本实施例中,作为一例,警报方案制定单元422选定由领航车辆A0及所有跟随车辆A1~A4广播(发布)警报信息Ma。
在第二实施例中,至少涉及基本安全信息、局部拓扑信息、行驶控制信息Mc、警报信息Ma这四种信息的传输。图12为第二实施例提供的各种信息的传递机制示意图。图12中,实直线箭头表示基本安全信息的广播、虚直线箭头表示警报信息Ma的广播、虚曲线箭头表示行驶控制信息Mc的发送、实曲线箭头表示局部拓扑信息的上报,但这仅仅是示例,并不局限于此。
1.2.2、动作流程
图13为第二实施例提供的在车辆编队行驶系统10所执行的处理的流程图。
首先,在步骤S10中,车辆控制装置400判定警报信息Ma的信息广播车辆id中是否包含本车id。在信息广播车辆id中包含本车id(S10:是)的情况下,进入步骤S20。在警报信息Ma的信息广播车辆id中不包含本车id(S10:否)的情况下,进入步骤S100。
在步骤S20中,车辆控制装置400通过通信单元300周期性地广播警报信息Ma,然后进入步骤S200。
步骤S100、S200、S300、S400、S500、S510、S520、S600、S610的处理与第一实施例相同,在此省略说明。
在步骤S520之后的步骤S530中,进行对跟随车辆的控制处理,即,由独立行为制定单元409制定需要跟随车辆执行的独立行为,行驶控制信息生成模块416根据所制定的该独立行为生成行驶控制信息Mc,车辆控制装置400通过通信单元300向相应的跟随车辆(目标车辆、目标节点)发送该行驶控制信息Mc,之后进入步骤S540。在此,可以生成针对所有跟随车辆的行驶控制信息Mc,也可以生成仅针对部分跟随车辆的行驶控制信息Mc,具体由领航车辆A0进行判断。或许需要说明的是,在独立行为制定单元409没有制定出需要跟随车辆A1~A4执行的独立行为时,即不需要跟随车辆A1~A4进行不同于跟随行驶行为的独立行为时,则不生成针对跟随车 辆A1~A4的行驶控制信息Mc。
在步骤S540中,进行警报处理,即,由警报方案制定单元422选定所有成员车辆A均广播警报信息Ma,由警报信息生成模块418生成警报信息Ma,由本车即领航车辆A0广播警报信息Ma,并且指示跟随车辆A1~A4发布该警报信息Ma,之后进入步骤S700。
在步骤S610之后进入步骤S650,在步骤S650中跟随行为制定单元412判定是否接收到指示本车进行动作的行驶控制信息Mc,具体而言是判断是否接收到目标节点id为本车id的行驶控制信息Mc。在接收到目标节点id为本车id的行驶控制信息Mc(S650:是)的情况下,进入步骤S660。在未接收到目标节点id为本车id的行驶控制信息Mc(S650:否)的情况下,进入步骤S620。
在步骤S660中,跟随行为制定单元412判定按照行驶控制信息Mc行驶是否不影响行车安全,即进行行驶控制信息Mc所指示的独立行为是否不影响行车安全。在不影响行车安全(S660:是)的情况下,进入步骤S670。在影响行车安全(S660:否)的情况下,进入步骤S620。
在步骤S670中,控制执行模块414使本车按照接收到的行驶控制信息Mc行驶,之后进入步骤S700。
步骤S620、S630、S640、S700的处理与第一实施例相同,在此省略说明。
第二实施例中的编队行驶系统10基本上采用以上说明的结构。采用第二实施例的结构,编队行驶系统10中,领航车辆A0的车辆控制装置400在制定了由特定的跟随车辆进行作为独立行为的行驶行为时生成用于发送给特定的跟随车辆的行驶控制信息Mc,并且,领航车辆A0的车辆控制装置400还生成用于向周围的车队外车辆B广播车队情况的警报信息Ma。另外,跟随车辆A1~A4的车辆控制装置400在接收到指示自身进行独立行为的行驶控制信息Mc时,优先按照该行驶控制信息Mc行驶。如此,领航车辆A0通过向跟随车辆A1~A4发送行驶控制信息Mc,能够灵活地应对不同的道路状况,提高编队行驶的灵活性。另外,通过向车队外车辆B广播警报信息Ma,以告知车队情况,从而对车队外车辆B形成警示,例如能够提醒想要插队的车队外车辆B不要插入车队中,提高编队行驶的安全性与顺畅性。
此外,本实施例中,步骤S520、S530、S540的顺序并不局限于上述说明中的顺序,可以相互调换,也可以同时进行。
1.2.3第二实施例的变形例
在第二实施例中,先进行步骤S610再进行步骤S650,即,先识别前车行为,再判断是否接收到目标节点id为本车id的行驶控制信息Mc,但不局限于此。也可以先判断是否接收到目标节点id为本车id的行驶控制信息Mc,在接收到这样的行驶控制信息Mc且按该行驶控制信息Mc行驶不影响行车安全的情况下,直接按照该行驶控制信息Mc行驶,而不识别前车行为;在未收到这样的行驶控制信息Mc或按该行驶控制信息Mc行驶影响行车安全的情况下,才识别前车行为。
另外,在第二实施例中,警报方案制定单元422选定全部的成员车辆A都发送警报信息Ma。但本申请实施例并不局限于此。例如,为了抑制无线信号之间的干扰,警报方案制定单元422也可以按照如下方式制定警报方案:
方式1:领航车辆A0广播警报信息Ma,对成员车辆A从领航车辆A0开始依次编号,领航车辆A0序号为0,指示序号能够整除N(N≥2)的跟随车辆广播警报信息Ma。
方式2:领航车辆A0广播警报信息Ma,按照距离领航车辆A0的距离,每隔距离L设定一个位置点,按每个位置点选择距离该位置点最近的跟随车辆指示其广播警报信息Ma。
方式3:领航车辆A0广播警报信息Ma,使跟随车辆A1~A4在0~1的范围内生成一个随机值,将各跟随车辆A1~A4生成的随机值分别与预先设定的规定值进行比较,指示随机值大于该规定值的跟随车辆广播警报信息Ma。
此外,在第二实施例中,领航车辆A0根据全局拓扑信息,制定本车的加速、制动、变更车道、保持现状等行驶行为,以引领车队进行规定的行驶行为,但本申请实施例并不局限于此。在领航车辆A0根据全局拓扑信息判断为本车暂时不适合引领车队进行规定行驶行为时,也可以指示合适的跟随车辆引领车队,或者指示相应的跟随车辆进行合适的行驶行为以为后续车队行驶行为做准备。
1.2.4第二实施例的变形例的具体应用例
图14提供一种第二实施例的变形例的应用场景。在图14的场景下,领航车辆A0根据全局拓扑信息,判断为需要引领车队变道(例如前方需要右转弯),但领航车辆A0由于右侧存在车队外车辆B0,因此不适合率先变道来引领车队。此时,领航车辆A0可以通过发送行驶控制信息Mc来指挥队尾的跟随车辆A4先变道,占领车道以便于接下来整个车队变道;也可以通过发送行驶控制信息Mc来指挥跟随车辆A1先变道,由该跟随车辆A1引领跟随车辆A2、A3、A4变道;还可以通过发送行驶控制信息Mc来指挥跟随车辆A1~A4同时变道。
1.3第三实施例
下面参照图15~19对编队行驶系统的第三实施例进行说明。
1.3.1结构
如上所述,第二实施例中,向车队内的成员车辆A发送行驶控制信息Mc,向车队外车辆B广播警报信息Ma。第三实施例中,在第二实施例的基础上,领航车辆A0的车辆控制装置400根据车队内各成员车辆A之间的通信链路状况,规划领航车辆A0向各跟随车辆A1~A4发送行驶控制信息Mc的较佳路径,并将该较佳路径通知车队中的各跟随车辆A1~A4。另外,领航车辆A0的车辆控制装置400根据全局拓扑信息中各车辆之间的通信链路状况,设计较佳的警报信息Ma广播方案用于向车队外车辆B广播警报信息Ma。下面对此进行详细的说明。
在第三实施例中,本车局部环境信息获取单元402生成的局部拓扑信息中不但包含位置与速度信息,还包含本车和与其一跳可达的其他各车辆(包括成员车辆与车队外车辆)间的通信链路状况信息。如此,跟随车辆A1~A4向领航车辆A0上报的局部拓扑信息中除了自身状态信息以及其所有相邻节点的状态信息(位置,速度)之外,还包括与相邻节点之间的通信链路状况信息。该通信链路状况信息根据来自通信单元300的信息得到。领航车辆A0汇总车队中所有成员车辆A的局部拓扑信息,生成车队及车队周围相关联车辆的动态拓扑图作为全局拓扑信息。根据第三实施例中 的全局拓扑信息,可获知在通信上属于相邻节点的两台车辆间的通信链路状况信息。
另外,在本实施例中,在全局拓扑信息中,根据该通信链路状况信息、例如SNR(信噪比)、RI(秩指示)等,标定表示该通信链路可靠性(稳定性)的可靠度S,可靠度S例如为0~1之间的数值。可靠度S的值越高,表示通信质量越好。
图15为第三实施例提供的车辆控制装置400的结构框图。如图15所示,在本实施例中,在决策制定模块450中增加了在本车作为领航车辆A0时发挥功能的通信路径规划单元420。本车局部环境信息获取单元402、他车局部环境信息获取单元404、全局环境信息生成模块406、领航行为制定单元408、独立行为制定单元409、前车行为识别模块410、跟随行为制定单元412、控制执行模块414、行驶控制信息生成模块416和警报信息生成模块418与第二实施例中基本相同,在此省略说明。下面仅对新增的通信路径规划单元420和与第二实施例中不同的警报方案制定单元422进行说明。
通信路径规划单元420根据全局拓扑信息,特别是根据成员车辆间的通信链路状况信息,规划领航车辆A0与跟随车辆A1~A4间的通信路径。在本实施例中,该通信路径用于发送行驶控制信息Mc。
在本实施例中,与第二实施例中不同,警报方案制定单元422根据全局拓扑信息,特别是根据成员车辆与车队外车辆间的通信链路状况信息,制定用于向车队外车辆B发送警报信息Ma的方案,具体而言是选定由哪一或者哪些成员车辆发送(本实施方式中为广播)该警报信息Ma。
1.3.2动作流程
图16为第三实施例提供的在编队行驶系统10中所执行的处理的流程图。
图16中,步骤S10、S20、S100、S200、S300、S400、S500、S510、S520、S600、S610的处理与第二实施例相同,在此省略说明。
在步骤S520之后,进入步骤S530。在步骤S530中,进行对跟随车辆的控制处理,即,由独立行为制定单元409根据全局环境信息制定需要跟随车辆执行的不同于跟随行为的独立行为,由通信路径规划单元420规划可靠性较高的用于发送行驶控制信息Mc的通信路径,由行驶控制信息生成模块416根据所制定的该独立行为生成行驶控制信息Mc,由车辆控制装置400通过通信单元300发送该行驶控制信息Mc,之后进入步骤S540。关于“对跟随车辆的控制处理”的细节,在后面参照图17进行说明。
在步骤S540中,进行警报处理,即,由警报方案制定单元422制定能够覆盖所有与车队相关联的车队外车辆B且警报信息广播车辆数量较少的警报信息广播方案,由警报信息生成模块418生成警报信息Ma,由车辆控制装置400通过通信单元300广播警报信息Ma,之后进入步骤S700。关于“警报处理”的细节,在后面参照图18进行说明。
在步骤S610之后进入步骤S611,在步骤S611中判定是否接收到本车id在路由表(至目标节点的传输路径)中的行驶控制信息Mc。在接收到本车id在路由表中的行驶控制信息Mc(S611:是)的情况下,进入步骤S612。在未接收本车id在路由表中的行驶控制信息Mc(S611:否)的情况下,进入步骤S650。
在步骤S612中,车辆控制装置400使本车转发接收到的行驶控制信息Mc,然后进入步骤S650。
步骤S650、S620、S630、S640、S660、S670、S700的处理与第二实施例相同,在此省略说明。
图17是图16的子流程,是表示第三实施例提供的在步骤S530中执行的对跟随车辆的控制处理的细节的流程图。
在图17的步骤S531中,由独立行为制定单元409根据全局环境信息制定某一或某些的跟随车辆(目标车辆、目标节点)的独立行为。具体例如,在判断为领航车辆A0不适合变道时,可以使跟随车辆先执行变道。
在步骤S532中,通信路径规划单元420判断领航车辆A0与目标车辆之间是否为一跳可达(无需中继)且链路可靠度S在可靠度阈值S0以上。在此,可靠度阈值S0是预先设定的表示能可靠地传输信息的阈值。在一跳可达且链路可靠度S在可靠度阈值S0以上(S532:是)的情况下,进入步骤S534。在一跳不可达或链路可靠度S小于可靠度阈值S0(S532:否)的情况下,进入步骤S533。
在步骤S533中,通信路径规划单元420在领航车辆A0与目标车辆之间存在的中间车辆(成员车辆A)中选择中继节点,具体的选择方式是判断是否存在符合下述规定条件的中间车辆。在存在符合规定条件的中间车辆(S533:是)的情况下,进入步骤S535。在不存在符合规定条件的中间车辆(S533:否)的情况下,进入步骤S535。
在此,规定条件是指,设领航车辆A0与该中间车辆的链路可靠度为S1,该中间车辆与目标车辆之间的链路可靠度为S2时,S1*S2≥S0。在领航车辆A0与目标车辆之间存在多台中间车辆时,首先选择与领航车辆A0之间的成员车辆数和与目标车辆之间的成员车辆数相同的中间车辆进行是否符合规定条件的判断。
如果这样的中间车辆有两辆,则首先选择距离领航车辆A0近的车辆进行判断。之后,依次选择首次选择的中间车辆的前一辆、后一辆、前方第二辆、后方第二辆、前方第三辆……进行是否符合规定条件的判断。在选择出一个满足该规定条件的中间车辆时,即结束步骤S533的判断。
在步骤S534中,通信路径规划单元420将领航车辆与目标车辆的直连通信链路规划为通信路径,以发送行驶控制信息Mc。
在步骤S535中,通信路径规划单元420以步骤S533中判断出的符合规定条件的中间车辆为中继节点,规划包含该中继节点的通信路径(即,规划出的通信路径为:领航车辆A0→中继节点→目标车辆),以向目标车辆发送行驶控制信息Mc。
在步骤S536中,通信路径规划单元420放弃向目标车辆发送行驶控制信息Mc。
另外,在步骤S537中,由行驶控制信息生成模块416生成行驶控制信息Mc,由车辆控制装置400通过通信单元300向目标车辆发送。之后,返回,结束本子流程。
图18是图16的子流程,是表示第三实施例提供的在步骤S540中执行的警报处理的细节的流程图。
在图18的步骤S541中,警报方案制定单元422将领航车辆A0选为警报信息广播车辆,且将领航车辆A0设为始点,从全局拓扑信息中的车队外车辆节点的集合中去除与始点可进行直连车间通信的节点,然后进入步骤S532。此处的“可进行直连车间通信”是指一跳可达且链路可靠度大于可靠度阈值S0。
在步骤S542中,警报方案制定单元422确定与始点可进行直连车间通信的成员车辆节点的集合,然后进入步骤S543。
在步骤S543中,警报方案制定单元422将与始点可进行直连车间通信的成员车辆节点的集合中,在后方距离始点最远的成员车辆节点设为判断点,然后进入步骤S544。
在步骤S544中,警报方案制定单元422确定上述车队外车辆节点的集合中位置在该判断点与始点之间(以车队行进方向为标准)的所有车队外车辆节点,判断该判断点是否与这些节点均可进行直连车间通信,即,通过该车辆广播警报信息时,是否能全部覆盖车队外车辆的集合中位置在该判断点与始点之间的所有车队外车辆节点。在该判断点不是与这些节点均可进行直连车间通信(步骤S544:否)的情况下,进入步骤S545。在该判断点与这些节点均可进行直连车间通信(步骤S544:是)的情况下,进入步骤S546。
在步骤S545中,警报方案制定单元422从上述成员车辆节点的集合中去除该判断点,返回步骤S543。
在步骤S546中,警报方案制定单元422将判断点选为警报信息广播车辆,从上述车队外车辆节点的集合中去除与判断点可进行直连车间通信的车队外车辆节点,进入步骤S547。
在步骤S547中,判断上述车队外车辆节点的集合是否为空,即通过由所选的警报信息广播车辆广播警报信息时,与车队中的任一车辆为相邻节点的车队外车辆(与车队相关联的所有车队外车辆)是否均能收到警报信息Ma。在车队外车辆的集合不为空(步骤S547:否),即不是与车队相关联的所有车队外车辆均能收到警报信息Ma的情况下,进入步骤S548。在车队外车辆的集合为空(步骤S547:是),即与车队相关联的所有车队外车辆均能收到警报信息Ma的情况下,进入步骤S549。
在步骤S548中,警报方案制定单元422将最新选定的警报信息广播车辆设为始点,然后返回步骤S542。
在步骤S549中,警报方案制定单元422制定由所选定的所有警报信息广播车辆广播警报信息的警报信息广播方案,进入步骤S550。
在步骤S550中,由警报信息生成模块418生成警报信息Ma,由车辆控制单元400通过通信单元300广播该警报信息Ma。如上所述,警报信息Ma中包含相应的警报信息广播车辆id,指示相应的跟随车辆广播警报信息Ma。
第三实施例中的编队行驶系统10基本上采用以上说明的结构。采用第三实施例的结构,编队行驶系统10中,领航车辆A0的车辆控制装置400构成为:在向跟随车辆A1~A4发送行驶控制信息Mc时,根据还包含相邻节点之间的通信链路状况信息的全局拓扑信息,规划行驶控制信息Mc的发送路径。如此,能够规划出链路可靠度较高的发送路径,从而能够在车队内部以较高的可靠性发送行驶控制信息Mc。 另外,在车队向车队外车辆B广播警报信息Ma时,根据还包含相邻节点之间的通信链路状况信息的全局拓扑信息,选定广播该警报信息Ma的成员车辆A。如此,能够既实现可靠地向所有相关联的车队外车辆B广播警报信息Ma,又能够实现由最少数量的成员车辆A来广播警报信息Ma,以减少信号干扰、节省能源。
1.3.3第三实施例的具体应用例
图19是用于说明第三实施例提供的对跟随车辆的控制处理和警报处理的具体示例的车队行驶场景示意图。图19中,车队由领航车辆A0、跟随车辆A1~A4组成,在车队周围存在与车队相关联的车队外车辆B0~B7。
首先,以领航车辆A0向作为目标车辆的跟随车辆A4发送行驶控制信息Mc时的情况为例,说明对跟随车辆的控制处理。图19中的范围R1、R2表示成员车辆A间的一跳可达情况。如该范围R1、R2所示,与A0处于一跳可达通信范围内的车队内车辆为跟随车辆A1、A2,与A4处于一跳可达通信范围内的车队内车辆为跟随车辆A1、A2、A3。即,领航车辆A0与跟随车辆A4进行车间通信时一跳不可达,需要中继。
在该情况下,领航车辆A0与跟随车辆A4之间存在作为中间车辆的跟随车辆A1、A2、A3,与领航车辆A0之间的成员车辆数和与跟随车辆A4之间的成员车辆数相同的中间车辆为跟随车辆A2。因此,首先判断跟随车辆A2是否满足规定条件。
该跟随车辆A2与领航车辆A0处于同一范围R1中,二者之间的链路可靠度为S1。同时,该跟随车辆A2与跟随车辆A4处于同一范围R2中,二者之间的链路可靠度为S2。如果满足规定条件即S1*S2≥S0则选择跟随车辆A2作为中继车辆,领航车辆A0经由跟随车辆A2向跟随车辆A4发送行驶控制信息Mc。如果不满足S1*S2≥S0则接着判断跟随车辆A2的前一辆即跟随车辆A1是否满足规定条件,在跟随车辆A1满足规定条件时,领航车辆A0经由跟随车辆A1向跟随车辆A4发送行驶控制信息Mc。
其次,对领航车辆A0的车辆控制装置400在图19的场景下进行的警报处理进行说明。图19中,示出了与领航车辆A0、跟随车辆A1~A4之间有连线的车队外车辆、即能够与车队通信的车队外车辆B0~B6。例如,领航车辆A0与车队外车辆B0之间有连线,表示二者能够收到对方广播的信息,在全局拓扑示意图中为相邻节点。在此,假定相邻节点间的链路可靠度均在可靠度阈值S0以上(可进行直连车间通信)。另外,由于主要是为了说明向车队外车辆B广播信息时的情况,因此,省略了成员车辆A间的连线。如上所述,成员车辆A间的一跳可达情况由范围R1、R2表示,且假定在同一范围内的相邻节点间的链路可靠度均在可靠度阈值S0以上。
在图19的场景下,首先,将领航车辆A0选为警报信息广播车辆,然后将领航车辆A0设为始点,从车队外车辆的集合{B0,B1,B2,B3,B4,B5,B6}中去除与该始点可进行直连车间通信的B0、B1,车队外车辆的集合变为{B2,B3,B4,B5,B6}。然后,确定与该始点可进行直连车间通信的成员车辆A的集合为{A1,A2},其中在始点后方距离该始点最远的成员车辆A为跟随车辆A2。车队外车辆的集合{B2,B3,B4,B5,B6}中,在车队行进方向上位于该跟随车辆A2与领航车辆A0之间的车队外车辆为B2、B3。在此,若某一车队外车辆位于领航车辆A0的车头到跟随车辆A2的车尾之间的 范围,则判定为其位于二者之间。当然,也可以采用其他判断方法,例如,在某一车队外车辆的局部位于领航车辆A0的车头到跟随车辆A2的车尾之间的范围时,即判定为其位于二者之间。
然后,由于该跟随车辆A2与车队外车辆B2、B3均可进行直连车间通信,因此,将该跟随车辆A2选为警报信息广播车辆,从车队外车辆的集合{B2,B3,B4,B5,B6}中去除与跟随车辆A2可进行直连车间通信的B2、B3、B4,从而车队外车辆的集合变为{B5,B6}。
之后,将跟随车辆A2设为始点,与该始点可进行直连车间通信的成员车辆的集合为{A1,A3,A4},其中在始点后方距离该始点最远的成员车辆A为跟随车辆A4。车队外车辆的集合{B5,B6}中,没有在车队行进方向上位于该跟随车辆A4与作为始点的跟随车辆A2之间的车队外车辆。此时将该跟随车辆A4选为警报信息广播车辆,从车队外车辆的集合{B5,B6}中去除与跟随车辆A4可进行直连车间通信的B5,B6,从而车队外车辆的集合变为空集。
经过上述处理,最终选定广播警报信息Ma的成员车辆为领航车辆A0和跟随车辆A2、A4。由此,无需所有成员车辆A均广播警报信息Ma,与车队相关联的车队外车辆B0~B6也均能够可靠地收到该警报信息Ma。
1.3.4第三实施例的变形例
在上述第三实施例中,在图17所示的对跟随车辆的控制处理的流程图中,在选择出一个满足规定条件的中间车辆时即结束步骤S533的判断,但本申请实施例并不局限于此。从选择最优的发送路径的观点出发,也可以对所有中间车辆均进行是否符合规定条件的判断。
在存在多个符合规定条件的中间车辆时,选择S1*S2的值最大的中间车辆作为中继车辆,经该中继车辆向目标车辆发送行驶控制信息Mc。或者,也可以选择两台不同的中继车辆生成两条不同的路径来向目标车辆发送行驶控制信息Mc。由此更能够保障信息传输的可靠性。
另外,在第三实施例中,将由通信路径规划单元420确定(规划出)的发送路径(通信路径)用于领航车辆A0向目标车辆发送行驶控制信息Mc,但本申请实施例并不局限于此。除此之外,还可以将规划出的较佳路径告知跟随车辆A1~A4,指示跟随车辆A1~A4通过该路径上报局部拓扑信息。此时,在跟随车辆A1~A4中,在没有领航车辆A0的关于上报路径的指示时,自己选择上报路径,在有关于上报路径的指示时,按照指示的路径上报局部拓扑信息。
再者,在上述实施例3中,在领航车辆A0不能直接向跟随车辆发送行驶控制信息Mc时,选择一个符合条件的中继节点进行发送,在没有符合条件的中继节点时,放弃向跟随车辆发送行驶控制信息Mc,但本申请实施例并不局限于此。例如,也可以根据需要选择两个以上的中继节点向跟随车辆发送行驶控制信息Mc。
1.4第一实施方式的变形例
在上述各实施例中,以领航车辆A0为自主行驶的自动驾驶车辆的情况为例进行了说明,但领航车辆A0也可以是搭载有ADAS系统的人工驾驶车辆。在这种情况下,车辆控制装置400例如可以通过在车辆具有的显示装置上显示提示信息等来 向驾驶员进行驾驶辅助,辅助驾驶员更好地掌握车队周围状况,保障车队顺畅行驶。
另外,在上述各实施例中,各成员车辆A具有相同结构(存储同样的程序),车辆控制装置400相应于本车作为领航车辆A0还是跟随车辆A1~A4来选择使相应的功能单元激活(发挥作用)或不激活。但本申请实施例不局限于此,也可以采用领航车辆A0与跟随车辆A1~A4具有不同结构的方式。在这种情况下,领航车辆A0的车辆控制装置400具有本车局部环境信息获取单元402、他车局部环境信息获取单元404、全局环境信息生成模块406、领航行为制定单元408、独立行为制定单元409、控制执行模块414、行驶控制信息生成模块416、警报信息生成模块418、通信路径规划单元420和警报方案制定单元422。跟随车辆A1~A4具有本车局部环境信息获取单元402、前车行为识别模块410、跟随行为制定单元412和控制执行模块414。
另外,在上述实施例中,以多台成员车辆A编队行驶而构成的编队行驶系统10在高速公路上行驶的场景为例进行了说明,但本申请实施例并不局限于此。本申请的编队行驶系统10也可以适用于在普通公路上、码头等行驶的场景。在这种情况下,在生成局部拓扑信息和全局拓扑信息时,除了识别车队外车辆B的信息之外,还可以识别行人、非机动车等可能影响车队行驶的物体。
另外,在上述实施例中,以行驶在车队最前方的领航车辆A0作为主控制车辆,其具有的车辆控制装置400中的他车局部环境信息获取单元404、全局环境信息生成模块406、领航行为制定单元408、独立行为制定单元409、行驶控制信息生成模块416、警报信息生成模块418、通信路径规划单元420、警报方案制定单元422发挥作用,从而使领航车辆A0的车辆控制装置400作为编队行驶系统的主控制装置发挥作用。然而,本申请实施例并不限于此,例如也可由行驶在车队中间的车辆作为主控制车辆。具体而言,使车辆控制装置400起到主控制装置作用的上述他车局部环境信息获取单元404、全局环境信息生成模块406、领航行为制定单元408、独立行为制定单元409、行驶控制信息生成模块416、警报信息生成模块418、通信路径规划单元420、警报方案制定单元422的处理也可以由跟随车辆所具有的车辆控制装置400执行。
另外,还可以在服务器中通过全局环境信息生成模块406、领航行为制定单元408、独立行为制定单元409、行驶控制信息生成模块416、警报信息生成模块418、警报方案制定单元422构成车辆控制装置,此时,可以理解的是,成员车辆将各自生成的局部环境信息上报给服务器,服务器基于此生成全局环境信息。
1.5第一实施方式的总结
由以上的第一至第三实施例与变形例至少可以获得如下方式:
在第一实施方式的编队行驶系统10中,包括组成车队的多个成员车辆A0~A4。另外,编队行驶系统10具有设置在领航车辆A0上的作为主控制装置的车辆控制装置400,该车辆控制装置400包括:局部环境信息获取模块440、全局环境信息生成模块406和决策制定模块450。局部环境信息获取模块440用于获取表示多个成员车辆中各个成员车辆的行驶环境的局部环境信息;全局环境信息生成模块406用于根据局部环境信息生成表示车队的行驶环境的全局环境信息;决策制定模块450用于根据全局环境信息制定针对车队的控制决策。
作为控制决策所针对的对象,可以是领航车辆A0,也可以是跟随车辆A1~A4。另外,作为决策制定模块450所制定的“控制决策”,不仅包括加速、制动、变道等运动行为的决策,还包括例如发送行驶控制信息Mc、警报信息Ma等处理决策,此外还可以想象到鸣笛等行为的决策。另外,作为上述决策制定模块450的具体例子,在上述实施方式中说明了领航行为制定单元408、独立行为制定单元409、通信路径规划单元420、警报方案制定单元422。
另外,如上述变形例中所说明的,主控制装置不仅可以设置在领航车辆A0上,还可以设置在跟随车辆A1~A4上,或者设置在能够与成员车辆通信的服务器、无人机上。
采用具有如上结构的编队行驶系统10,由于是根据表示包含全部成员车辆A0~A4在内的车队整体的行驶环境的全局环境信息制定针对成员车辆A的决策,因而,是在考虑了车队行驶环境的基础上做出判断,从而,能够做出从车队整体来看更加适当的决策,例如可以减少后车不能跟随行驶造成脱离车队的情况,或者抑制车队行为对车队外车辆造成的影响,进而能够提高行驶的安全性。
另外,在编队行驶系统10中,全局环境信息中包括成员车辆A与位于车队周围的车队外车辆B的位置、或位置与速度的信息。
采用如上结构,根据上述信息,可以准确地判断车队外车辆对车队行为的影响或者成员车辆的行为对车队外车辆的影响,从而制定出从车队整体来看更加适当的决策。另外,根据速度信息,可以预测车辆接下来的位置或行为,从而能够制定更加适当的控制决策。
另外,在第一至第三实施例的编队行驶系统10中,多个成员车辆包括设置有上述主控制装置的主控制车辆(例如上述领航车辆A0)与其他成员车辆(例如上述跟随车辆A1~A4),主控制装置(例如上述领航车辆A0上的车辆控制装置400)获取表示作为本车的主控制车辆的行驶环境的第一局部环境信息(例如上述领航车辆A0中生成的表示其行驶环境的局部环境信息),其他成员车辆所具有的车辆控制装置(例如上述跟随车辆A1~A4上的车辆控制装置400)获取表示作为本车的其他成员车辆的行驶环境的第二局部环境信息(例如上述跟随车辆A1~A4中生成的表示其周围行驶环境的局部环境信息),并将第二局部环境信息发送给主控制装置。主控制装置的全局环境信息生成模块根据第一局部环境信息与第二局部环境信息生成全局环境信息。
采用如上结构,各个成员车辆分别获取表示自身行驶环境的局部环境信息,其他成员车辆将自身生成的局部环境信息发送给主控制车辆,主控制车辆根据自身的局部环境信息与其他成员车辆的局部环境信息生成全局环境信息,主控制车辆根据该全局环境信息制定控制决策,例如与主控制车辆仅根据自身的行驶环境信息制定决策相比,能够做出从车队整体来看更加适当的决策,提高车队行驶的安全性与稳定性。
在上述第一至第三实施例中,主控制车辆是行驶在最前方的领航车辆A0,其他成员车辆是跟随在领航车辆A0后方行驶的跟随车辆A1~A4。
采用这样的结构,由在车队最前方的领航车辆作出关于车队的控制决策, 决策车辆与领航车辆一致,从而能够立即引领车队执行所作出的决策。
另外,在上述第一至第三实施例中,局部环境信息至少包括成员车辆和位于车队外的其他车辆(车队外车辆)的位置信息;全局环境信息生成模块将局部环境信息获取模块获取到的全部局部环境信息中的位置信息汇总而生成所述全局环境信息。除了位置信息外,在上述第一至第三实施例中,局部环境信息中还包括车速信息。
另外,在上述第一至第三实施例中,决策制定模块450包括领航行为制定单元408,领航行为制定单元408根据全局环境信息制定多个成员车辆中行驶在最前方的领航车辆A0的运动行为。此时,主控制装置可以将所制定的领航车辆A0的运动行为通知多个成员车辆中跟随在领航车辆后方行驶的跟随车辆A1~A4。
采用如上结构,根据全局环境信息特别是其中的表示跟随车辆的行驶环境的信息来制定领航车辆A0的行为,如此,能够抑制跟随车辆不能进行跟随行驶而脱离车队的情况发生。另外,将所制定的领航车辆A0的行为通知跟随车辆A1~A4,跟随车辆A1~A4能够在知晓领航车辆A0的行为的基础上顺利地跟随领航车辆A0行驶,从而能够保证编队行驶的顺畅性。
另外,在上述第二实施例中,决策制定模块450包括独立行为制定单元409,独立行为制定单元409根据全局环境信息制定跟随车辆的独立行为,该独立行为不同于跟随领航车辆A0行驶的行为。
采用如上结构,根据全局环境信息制定跟随车辆的不同于跟随行为的独立行为,从而能够应对不同的道路状况,提高编队行驶的灵活性。
在第二实施例中,独立行为制定单元409在领航行为制定单元408判断领航车辆A0无法变道时,可使跟随车辆进行下述任一独立行为:
①跟随车辆A1~A4中的最后一个变道;
②跟随车辆A1~A4中距离领航车辆A0最近的那一个变道;
③全部的跟随车辆A1~A4同时变道。
采用上述①的方式,例如在整个车队应该变道但领航车辆A0暂时不能变道时,可以由跟随车辆A1~A4中的最后一个变道而占领车道,为车队整体变道做好准备。采用上述②的方式,由距离领航车辆A0最近的那一个引领后面的跟随车辆变道,与领航车辆A0等待路况允许时再变道以引领车队变道相比,能够避免等待期间路况的变化导致后面的跟随车辆无法实现变道。采用上述③的方式,全部的跟随车辆A1~A4同时变道,能够缩短车队变道所需的时间。
在第二实施例中,主控制装置由设置在领航车辆A0上的车辆控制装置400构成,且包括行驶控制信息生成模块416,行驶控制信息生成模块416根据独立行为制定单元409制定的独立行为,生成用于指示跟随车辆执行独立行为的行驶控制信息,作为主控制装置的领航车辆A0上的车辆控制装置400通过领航车辆A0所具有的通信单元300将行驶控制信息向跟随车辆发送。
另外,在第二实施例中,决策制定模块450包括警报方案制定单元422,警报方案制定单元422按照如下任一方式选定向车队外车辆发送警报信息的车辆(发送节点):
①全部的成员车辆A发送警报信息Ma;
②多个成员车辆A中行驶在最前方的领航车辆A0发送警报信息Ma,并且,以领航车辆的编号为0,跟随在其后行驶的跟随车辆A1~A4以自然数依次编号,车辆序号能整除N的跟随车辆发送警报信息Ma,其中,N≥2;
③领航车辆A0发送警报信息Ma,多个跟随车辆A1~A4中,按照与领航车辆A0的距离计算,距离每增加规定距离的跟随车辆发送警报信息Ma;
④领航车辆A0发送警报信息Ma,车队中的每个跟随车辆生成随机值,随机值范围为[0,1],并且,确定一个门限值,随机值与门限值比较,使随机值大于门限值的跟随车辆发送警报信息Ma。
采用上述①的方式,可以有效保证周围的车队外车辆收到警报信息Ma,提高行驶安全性。采用上述②~④的方式,在使尽量多的车队外车辆收到警报信息Ma的前提下,能够抑制信号干扰。
另外,在上述第三实施例中,决策制定模块450包括警报方案制定单元422,其根据全局环境信息从多个成员车辆A中选定向车队外车辆B发送警报信息Ma的发送节点,该警报信息Ma用于向车队外车辆B提供车队的情况而对车队外车辆B形成安全警示。
采用如上结构,根据全局环境信息选定发出警报信息Ma的成员车辆,因而,例如根据车队外车辆B的位置信息判断其可接收到多个成员车辆A发送来的信息时,可以不需全部的成员车辆A发送警报信息Ma,仅需一部分成员车辆发送警报信息Ma即可,从而,一方面能够减小车队的通信负担,另一方面抑制车队外车辆频繁的收到警告信息对其处理造成负担。
另外,在上述第三实施例中,生成的全局环境信息中包含表示成员车辆A与车队外车辆B间的直连车间通信链路状况的通信链路状况信息(记为第一通信链路状况信息),警报方案制定单元422根据第一通信链路状况信息从多个成员车辆A中选定向车队外车辆B发送警报信息Ma的车辆(发送节点)。
采用如上结构,根据成员车辆A与车队外车辆B间的通信链路状况信息来选定发送警报信息Ma的成员车辆A,从而,不但如上所述地能够减小通信负担,而且由于考虑了通信链路状况因此能够可靠地保证车队外车辆收到警报信息Ma。
在第三实施例中,警报方案制定单元422选择多个成员车辆中行驶在最前方的领航车辆A0作为首个选定的发送节点,并从跟随车辆A1~A4中依次选定其他发送节点,在其他发送节点的选定中,以能够与前一个选定出的发送节点进行直连车间通信且由其发送警报信息能够覆盖其与前一个发送节点之间的全部车队外车辆为条件,进行选定。
其中,根据情况(是否覆盖全部的车队外车辆),选定出的其他发送节点可以是1个,也可以有多个。
采用如上结构,能够迅速有效地选定出发送警报信息Ma的车辆,且能够选定合理的发布节点以覆盖全部车队外车辆。
另外,在所述其他发送节点的选定中,可以优先选定距离前一个选定出的发送节点较远的跟随车辆,例如可以从距离前一个选定出的发送节点较远的跟随车辆开始判断,判断其能够作为发送节点后,将其选定为发送节点,不再选定其他节点。
采用如上结构,由于是从距离前一个选定出的发送节点较远的所述跟随车辆开始判断,即,从覆盖更多的车队外车辆的可能性高的跟随车辆开始判断,因而能够降低运算负担,迅速地选定警报信息Ma的发送节点。
另外,在上述第三实施例中,生成的全局环境信息中包含表示多个成员车辆间的直连通信链路状况的通信链路状况信息(记为第二通信链路状况信息)。决策制定模块450包括通信路径规划单元420,通信路径规划单元420根据第二通信链路状况信息规划多个成员车辆间进行车间通信的车间通信路径。
采用如上结构,由于根据上述第二通路链路状况信息规划成员车辆间进行车间通信的车间通信路径,因而能够通过可靠的通信路径进行通信,保证信息传输的可靠性、稳定性,提高编队行驶的可靠性、稳定性。
另外,作为具体的通信路径规划方法,通信路径规划单元420根据第二通信链路状况信息,判断多个成员车辆中任意的两个成员车辆间是否能够进行直连车间通信,在判断为不能进行直连车间通信时,通信路径规划单元420从位于两个成员车辆间的成员车辆中选定中继节点,从而规划车间通信路径。
采用如上结构,在不能直连通信或者直连通信不可靠时,选择中继节点进行中继,从而使信息可靠地被传输,提高了编队行驶的可靠性、稳定性。
在中继节点的选定中,通信路径规划单元420可以从位于两个成员车辆正中间的成员车辆开始判断。
采用如上结构,从能够作为中继节点的可能性高的节点开始判断,能够迅速地选择出合适的中继节点,降低运算负担。
另外,在两个成员车辆为行驶在最前方的领航车辆A0与跟随在领航车辆A0后方行驶的1个跟随车辆的情况下,当位于领航车辆A0与1个跟随车辆正中间的跟随车辆为两个时,从这两个中距离领航车辆A0较近的那一个开始判断。
采用如上结构,从正中间的两个车辆中距离领航车辆A0车辆近的那一个开始判断,从而能够在其符合条件时优先将其作为中继节点,以使中继节点更可靠地从领航车辆A0接收例如上述行驶控制信息Mc等继而实现可靠的中继发送。
另外,在上述第三实施例中,主控制装置由设置在领航车辆A0上的车辆控制装置400构成,决策制定模块450包括独立行为制定单元409,独立行为制定单元409根据全局环境信息制定跟随车辆的独立行为,该独立行为不同于跟随领航车辆行驶的行为,车辆控制装置的行驶控制信息生成模块416根据独立行为制定单元409制定的独立行为,生成用于指示跟随车辆执行独立行为的行驶控制信息Mc。作为主控制装置的领航车辆上的车辆控制装置400利用通信路径规划单元420所规划的领航车辆与跟随车辆间的车间通信路径发送行驶控制信息Mc。
采用如上结构,能够可靠地向跟随车辆发送行驶控制信息Mc,从而提高了车队控制的可靠性、稳定性。
2第二实施方式
本申请的第二实施方式涉及一种车辆控制装置,该车辆控制装置作为控制车队的主控制装置发挥作用,与第一实施方式中的领航车辆A0所具有的车辆控制装置400间存在相同的结构、功能。因此,在本第二实施方式中借用第一实施方式的附 图并沿用其附图标记来对本实施方式涉及的车辆控制装置进行简要的说明。另外,更多具体的内容可以参见上述第一实施方式。
本实施方式的车辆控制装置400作为主控制装置用于控制由多个成员车辆A组成的车队,多个成员车辆A包括行驶在最前方的领航车辆A0与跟随在领航车辆A0后方行驶的跟随车辆A1~A4,该车辆控制装置400包括:局部环境信息获取模块440,用于获取表示多个成员车辆各自的行驶环境的局部环境信息;全局环境信息生成模块406,其根据获取到的局部环境信息生成表示车队的行驶环境的全局环境信息;决策制定模块450,其根据全局环境信息制定针对车队的控制决策。
作为决策制定模块450所制定的“控制决策”,不仅包括加速、制动、变道等运动行为的决策,还包括例如发送行驶控制信息Mc、警报信息Ma等处理决策,此外还可以想象到鸣笛等行为的决策。
另外,全局环境信息可以包括成员车辆与位于车队周围的车队外车辆的位置、或位置与速度的信息。
本实施方式中的车辆控制装置400作为主控制装置可以设置在成员车辆A上,例如领航车辆A0或者跟随车辆A1~A4。另外,作为其他实施例,还可以不设置在成员车辆A上,例如设置在与成员车辆A能够通信的服务器上,或者设置在跟随车队行进的无人机上。
在车辆控制装置400作为主控制装置设置在某一成员车辆i上的情况下,其中成员车辆i为多个成员车辆中的任一成员车辆,局部环境信息获取模块440包括本车局部环境信息获取单元402和他车局部环境信息获取单元404;本车局部环境信息获取单元402用于获取表示成员车辆i的行驶环境的局部环境信息;他车局部环境信息获取单元404用于通过成员车辆i的通信单元,从除成员车辆i以外的其他成员车辆获取表示该其他成员车辆的行驶环境的局部环境信息。
在设置于服务器或无人机上的情况下,车辆控制装置400包括上述全局环境信息生成模块406和领航行为制定单元408(决策制定模块450)。此时,作为用于生成全局环境信息的基础信息,除了服务器或无人机从各成员车辆A获取到的表示其自身周围行驶环境的局部环境信息之外,也可以使用无人机通过自带的摄像头、雷达等感知单元检测到的信息,或者通过通信单元接收广播等从行驶在车队周围的车队外车辆B获取到的信息;另外,还可以使用服务器通过设置在道路两侧的摄像头、雷达等获取到的信息。
成员车辆生成的局部环境信息中包括成员车辆和位于车队外的其他车辆的位置信息;全局环境信息生成模块406将局部环境信息获取模块440获取到的全部局部环境信息中的位置信息汇总而生成全局环境信息。此外,除了位置信息外,还可以包括车速信息。
作为本实施方式中的决策制定模块450的一例,可以包括领航行为制定单元408,该领航行为制定单元408根据全局环境信息制定领航车辆A0的加速、制动、变道或保持不变等运动行为。此时,车辆控制装置400可以将所制定的领航车辆A0的运动行为通知跟随车辆A1~A4。
另外,作为决策制定模块450的又一例子,还可以包括独立行为制定单元 409,该独立行为制定单元409根据全局环境信息制定某一或某些跟随车辆A1~A4的独立行为,该独立行为不同于跟随领航车辆A0行驶的行为。
此时,独立行为制定单元409可以在领航行为制定单元408判断为领航车辆A0无法变道时,制定下述任一独立行为:
①跟随车辆A1~A4中的最后一个变道;
②跟随车辆A1~A4中距离领航车辆A0最近的那一个变道;
③全部的跟随车辆A1~A4同时变道。
另外,在车辆控制装置400设置在领航车辆A0上时,可以还包括行驶控制信息生成模块416,该行驶控制信息生成模块416根据独立行为制定单元409所制定的独立行为,生成用于指示跟随车辆A1~A4中相应的车辆执行独立行为的行驶控制信息Mc,车辆控制装置400通过领航车辆A0所具有的通信单元300将行驶控制信息Mc向相应的目标成员车辆发送。
另外,作为决策制定模块450的另一例子,还可以包括警报方案制定单元422,其从多个成员车辆A中选定一个以上的成员车辆作为向车队外车辆B发送警报信息Ma的发送节点,警报信息Ma用于向车队外车辆B提供车队的情况而对车队外车辆B形成安全警示。
作为警报信息Ma的发送方式,例如可以采用广播。
在本实施方式中,警报方案制定单元422可以按照如下任一方式选定向车队外车辆B发送警报信息Ma的成员车辆A:
①全部的成员车辆A发送警报信息;
②领航车辆A0发送警报信息Ma,设领航车辆A0的编号为0,其后的跟随车辆A1~A4以自然数依次编号,车辆序号能整除N的跟随车辆发送警报信息,其中,N≥2;
③领航车辆A0发送警报信息Ma,多个跟随车辆A1~A4中,按照与领航车辆A0的距离计算,距离每增加规定距离的跟随车辆发送警报信息Ma;
④领航车辆A0发送警报信息Ma,车队中的每个成员车辆生成随机值,随机值范围为[0,1],并且确定一个门限值,随机值与门限值比较,使随机值大于门限值的跟随车辆发送警报信息Ma。
另外,作为不同于上述①~④的方式的实施例,局部环境信息包括,表示成员车辆和其他车辆间的直连通信链路状况的第一通信链路状况信息;全局环境信息生成模块406将局部环境信息获取模块440获取到的全部局部环境信息中的第一通信链路状况信息汇总而生成全局环境信息;警报方案制定单元422根据全局环境信息从多个成员车辆A中选定一个以上的成员车辆作为发送节点(发送警报信息Ma的车辆)。
由于警报方案制定单元422根据第一通信链路状况信息从多个成员车辆A中选定向车队外车辆B发送警报信息Ma的车辆,因此,能够可靠地向车队外车辆B发送警报信息Ma,另外,有时一部分成员车辆A发送警报信息Ma即可全面覆盖全部的车队外车辆B,而不需全部的成员车辆A都发送警报信息Ma,抑制信号干扰等问题。
作为一个例子,警报方案制定单元422可以选定领航车辆A0作为一个发送节点发送警报信息Ma,并从跟随车辆A1~A4中选定作为发送警报信息Ma的其他发送节点的车辆,其选择方式可以如下:以能够与领航车辆A0进行直连车间通信且由其发送警报信息Ma能够覆盖其与领航车辆之间的全部车队外车辆B为条件,选择第一个其他发送节点。之后,根据情况(是否覆盖了全部的车队外车辆),选择第二个其他发送节点,其选择方式为,从位于第一个发送节点后方的跟随车辆中,以能够与第一个发送节点进行直连车间通信且由其发送警报信息Ma能够覆盖其与第一个发送节点之间的全部车队外车辆B为条件,选择第二个其他发送节点。之后,根据情况可以按照同样的方式选择第三、第四…个其他发送节点。
上述方式可以总结为,警报方案制定单元422将车队中行驶在最前方的领航车辆A0作为首个选定的发送节点,并进行其他节点选定处理,在该其他节点选定处理中,从车队中的跟随在领航车辆后方行驶的跟随车辆A1~A4中,以能够与前一个选定的发送节点进行直连车间通信且由其发送警报信息Ma能够覆盖其与前一个选定的发送节点之间的全部其他车辆为条件,进行选定。
另外,在其他节点选定处理中,优先选定距离前一个选定的发送节点较远的跟随车辆。比如,在选定第一个其他发送节点时,与领航车辆A0能够直连通信的跟随车辆有多个,此时,从距离领航车辆A0较远的那一个开始判断是否满足能够全部覆盖与领航车辆A0间的车队外车辆这一条件。
另外,在本实施方式中,可选的,局部环境信息获取模块440获取的局部环境信息包括,表示成员车辆与其他成员车辆间的直连通信链路状况的第二通信链路状况信息;全局环境信息生成模块406将局部环境信息获取模块440获取到的全部局部环境信息中的第二通信链路状况信息汇总而生成全局环境信息;决策制定模块450包括通信路径规划单元420,通信路径规划单元420根据全局环境信息中的第二通信链路状况信息规划车间通信路径,车间通信路径用于多个成员车辆间(例如领航车辆A0与任一跟随车辆间)进行车间通信。
由于通信路径规划单元420根据第二通信链路状况信息规划多个成员车辆间进行车间通信的车间通信路径,因而,能够规划出可靠的通信路径,保证信息的传输准确,提高编队的稳定性。
作为一个具体的方案,通信路径规划单元420可以根据第二通信链路状况信息,判断任意的两个成员车辆A间(例如领航车辆A0与作为通信目标的跟随车辆即目标车辆间)是否能够进行直连车间通信,在判断为不能进行直连车间通信时,通信路径规划单元420进行从位于两个成员车辆间的成员车辆中选定中继节点的中继节点选定处理,从而规划车间通信路径。
另外,在中继节点选定处理中,可选的,通信路径规划单元420从两个成员车辆正中间的成员车辆开始判断。
此时,在规划领航车辆A0与目标车辆(A1~A4中的任一)间的通信路径的情况下,当位于领航车辆A0与目标车辆正中间的跟随车辆为两个时,可以从这两个中距离领航车辆A0较近的那一个开始判断,即优先选定距离领航车辆A0较近的跟随车辆作为中继节点。
另外,在本实施方式中,在车辆控制装置400设置在领航车辆A0上的情况下,决策制定模块450还可以包括独立行为制定单元409,独立行为制定单元409制定跟随车辆A1~A4的独立行为,该独立行为不同于跟随领航车辆A0行驶的行为。另外,车辆控制装置400还可以包括行驶控制信息生成模块416,行驶控制信息生成模块416根据独立行为制定单元409所制定的独立行为,生成用于指示跟随车辆执行独立行为的行驶控制信息Mc。利用通信路径规划单元420所规划的车间通信路径发送行驶控制信息Mc。
在本实施方式中,通信路径规划单元420根据上述第二通信链路状况信息规划用于发送行驶控制信息Mc的通信路径,从而能够可靠地保证行驶控制信息Mc的送达,提高对车队的控制可靠性。
采用本实施方式的车辆控制装置,由于是根据上述全局环境信息制定针对领航车辆A0和/或跟随车辆A1~A4的决策,因而,是在考虑了车队行驶环境的基础上做出判断,从而,能够做出从车队整体来看更加适当的决策,例如可以减少后车不能跟随行驶造成脱离车队的情况,或者抑制车队行为对车队外车辆造成的影响,进而能够提高行驶的安全性。
3第三实施方式:车辆控制方法
本申请的第三实施方式涉及一种车辆控制方法,该车辆控制方法可由第二实施方式中的车辆控制装置400执行。另外,该车辆控制方法与第一实施方式中说明的流程处理间存在相同的内容,因此在本实施方式的说明中会适当地引用第一实施方式中的相关处理步骤进行说明。
本实施方式的车辆控制方法,用于控制由多个成员车辆A组成的车队,多个成员车辆A包括行驶在最前方的领航车辆A0与跟随在领航车辆后方行驶的跟随车辆A1~A4,包括如下步骤:获取表示多个成员车辆中各个成员车辆的行驶环境的局部环境信息的局部环境信息获取步骤(例如图8中的S300以及S500中的“获取跟随车辆的局部拓扑信息”);根据局部环境信息生成表示包含全部成员车辆在内的车队整体的行驶环境的全局环境信息的全局环境信息生成步骤(例如图8的S500中的“生成全局拓扑信息”);根据全局环境信息制定针对车队的控制决策的决策制定步骤(例如图8中的S510、图16中的S530、S540)。
作为决策制定模块450所制定的“控制决策”,不仅包括加速、制动、变道等运动行为的决策,还包括例如发送行驶控制信息Mc、警报信息Ma等处理决策,此外还可以想象到鸣笛等行为的决策。
另外,作为全局环境信息中包含的具体内容的例子,可以包括成员车辆A与位于车队周围的车队外车辆B的位置、或位置与速度的信息。例如,在图8的S300以及S500中,获取包含车辆位置与速度信息的局部拓扑信息,在图8的S500中,生成包含车辆位置与速度信息的全局拓扑信息。另外,除了车辆位置与速度(车速)信息外,局部环境信息与全局环境信息中还可以包含行人、动物信息或者静态环境信息(例如障碍物信息)。
本实施方式中的车辆控制方法可以由任一成员车辆A(领航车辆A0或任一跟随车辆A1~A4)执行。另外,作为其他实施例,还可以由服务器或无人机执行。
在由成员车辆A(领航车辆A0或跟随车辆A1~A4)执行的情况下,上述局部环境信息获取步骤可以包括如下步骤:获取表示作为本车的成员车辆A周围的行驶环境的本车局部环境信息的本车局部环境信息获取步骤(例如图8中的S300);以及通过作为本车的成员车辆A所具有的通信单元300获取他车局部环境信息的他车局部环境信息获取步骤(例如图8的S500中的“获取跟随车辆的局部拓扑信息”)。其中,他车局部环境信息表示除本车以外的其他成员车辆周围的行驶环境。在全局环境信息生成步骤中根据本车局部环境信息与他车局部环境信息生成全局环境信息(例如图8的S500中的“生成全局拓扑信息”)。
在由服务器或无人机执行的情况下,车辆控制方法包括上述全局环境信息生成步骤和领航行为制定步骤。此时,作为用于生成全局环境信息的基础信息,例如可以是服务器或无人机从各成员车辆A获取到的表示其自身行驶环境的局部环境信息,也可以是无人机通过自带的摄像头、雷达等感知单元检测到的信息,或者通过通信单元接收广播等从行驶在车队周围的车队外车辆B获取到的信息;还可以是服务器通过设置在道路两侧的摄像头、雷达等获取到的信息。
可选的,决策制定步骤中包括领航行为制定步骤(例如图8的S510中的“制定本车即领航车辆的行为”),在领航行为制定步骤中,根据全局环境信息制定领航车辆A0的运动行为,车辆控制方法还可以包括将所制定的领航车辆A0的运动行为通知跟随车辆A1~A4的步骤(例如图8的S510中的“向跟随车辆发送领航车辆行为信息”)。
可选的,在决策制定步骤中还包括独立行为制定步骤(例如图13、图16中的S530),在独立行为制定步骤中制定跟随车辆A1~A4的独立行为,该独立行为不同于跟随领航车辆A0行驶的行为。
作为具体的独立行为制定内容,在独立行为制定步骤中,在领航车辆A0无法变道时,可以制定下述任一独立行为:
①跟随车辆A1~A4中的最后一个变道;
②跟随车辆A1~A4中距离领航车辆A0最近的那一个变道;
③全部的跟随车辆A1~A4同时变道。
另外,在车辆控制方法由设置在领航车辆A0上的车辆控制装置400执行的情况下,可以还包括行驶控制信息生成步骤(例如图17的S537中的“生成行驶控制信息”),在该行驶控制信息生成步骤中,根据由独立行为制定步骤所制定的独立行为,生成用于指示跟随车辆执行独立行为的行驶控制信息Mc,车辆控制方法还包括通过领航车辆A0所具有的通信单元300将行驶控制信息Mc向跟随车辆A1~A4发送的步骤(例如图17的S537中的“将行驶控制信息向跟随车辆发送”)。
另外,在本实施方式中,作为决策制定步骤的另一例,其中还包括警报方案制定步骤(例如图13、图16中的S540),在该警报方案制定步骤中,从多个成员车辆A中选定向车队外车辆B发送警报信息Ma的车辆。其中,警报信息Ma用于向车队外车辆B提供车队的情况而对车队外车辆形成安全警示。
作为警报方案制定的具体方案,在警报方案制定步骤中,可以按照如下任一方式选定向车队外车辆B发送警报信息Ma的车辆(发送节点):
全部的成员车辆A发送警报信息Ma;
②领航车辆A0发送警报信息Ma,以领航车辆A0的编号为0,其后的跟随车辆A1~A4以自然数依次编号,车辆序号能整除N的跟随车辆发送警报信息Ma,其中,N≥2;
③领航车辆A0发送警报信息Ma,多个跟随车辆A1~A4中,按照与领航车辆A0的距离计算,距离每增加规定距离的跟随车辆发送警报信息Ma;
④领航车辆A0发送警报信息Ma,车队中的每个跟随车辆生成随机值,随机值范围为[0,1],同时确定一个门限值,随机值与门限值比较,使随机值大于门限值的跟随车辆发送警报信息Ma。
在本实施方式中,可选的,全局环境信息中包含第一通信链路状况信息,第一通信链路状况信息表示成员车辆A与车队外车辆B间的直连通信链路状况,在警报方案制定步骤中,根据第一通信链路状况信息从多个成员车辆A中选定向车队外车辆B发送警报信息Ma的车辆(例如S540)。
可选的,在警报方案制定步骤中,选定领航车辆A0发送警报信息Ma,并从跟随车辆A1~A4中选择作为发送警报信息Ma的发送节点的车辆,其选择方式如下:以能够与领航车辆A0进行直连车间通信且由其发送警报信息Ma能够覆盖其与领航车辆A0之间的全部车队外车辆B为条件,选择第一个其他发送节点。之后,根据情况(是否覆盖了车队周围的全部车队外车辆),选择第二个其他发送节点,其选择方式为,从位于第一个发送节点后方的跟随车辆中,以能够与第一个发送节点进行直连车间通信且由其发送警报信息Ma能够覆盖其与第一个发送节点之间的全部车队外车辆B为条件,选择第二个其他发送节点。之后,根据情况可以按照同样的方式选择第三、第四…个其他发送节点。
上述方式可以总结为,警报方案制定单元422选择领航车辆A0作为首个选定的发送节点,并进行其他发送节点选定处理,在其他发送节点选定处理中,从跟随车辆A1~A4中,以能够与前一个选定出的发送节点进行直连车间通信且由其发送警报信息Ma能够覆盖其与前一个发送节点之间的全部车队外车辆B为条件,进行选定。
另外,在选定其他发送节点时,可以从距离前一个选定出的发送节点较远的跟随车辆开始判断,即,优先选定距离前一个选定出的发送节点较远的跟随车辆作为上述其他发送节点。比如,在选定第一个其他发送节点时,与领航车辆A0能够直连通信的跟随车辆有多个,此时,从距离领航车辆A0较远的那一个开始判断是否满足能够全部覆盖与领航车辆A0间的车队外车辆这一条件。
在本实施方式中,可选的,全局环境信息中包含第二通信链路状况信息,第二通信链路状况信息表示多个成员车辆A间的直连通信链路状况,在决策制定步骤中包括通信路径规划步骤,在通信路径规划步骤中,根据第二通信链路状况信息规划多个成员车辆间(例如领航车辆A0与任一跟随车辆间)进行车间通信的车间通信路径(例如图17中的S532至S537)。
可选的,在通信路径规划步骤中,根据第二通信链路状况信息,判断任意的两个成员车辆间(例如领航车辆A0与作为通信目标的跟随车辆即目标车辆间)是 否能够进行直连车间通信(例如图17中的S532),在判断为不能进行直连车间通信时(S532中的“否”),从位于二者间的成员车辆中选定中继节点,从而规划车间通信路径(例如图17中的S533、S535)。
另外,在中继节点的选定中,可以从位于二者正中间的跟随车辆开始判断。
此时,在规划领航车辆A0与目标车辆间的通信路径时,当位于领航车辆A0与目标车辆正中间的跟随车辆为两个时,可以从这两个中距离领航车辆A0较近的那一个开始判断。
另外,在车辆控制方法由设置在领航车辆A0上的车辆控制装置400执行的情况下,在决策制定步骤中可以还包括独立行为制定步骤(例如S530),在独立行为制定步骤中,制定跟随车辆的独立行为,该独立行为不同于跟随领航车辆A0行驶的行为。此时,车辆控制方法还可以包括行驶控制信息生成步骤,在行驶控制信息生成步骤中,根据由独立行为制定步骤所制定的独立行为,生成用于指示跟随车辆执行独立行为的行驶控制信息Mc,利用车间通信路径发送行驶控制信息Mc。
采用本实施方式的车辆控制方法,由于是根据所述全局环境信息制定针对所述领航车辆A0和/或所述跟随车辆A1~A4的决策,因而,是在考虑了车队周围行驶环境的基础上做出判断,从而,能够做出从车队整体来看更加适当的决策,例如可以减少后车不能跟随行驶造成脱离车队的情况,或者抑制车队行为对车队外车辆造成的影响,进而能够提高行驶的安全性。
4第四实施方式:车辆
本申请的第四实施方式涉及一种车辆。该车辆具有第二实施方式中的车辆控制装置400。该车辆还可以具有定位单元100、感知单元200、通信单元300,可以是自动驾驶车辆,能够通过通信单元300与其他车辆组成车队而进行编队行驶。在编队行驶时,该车辆发挥主控制车辆的作用,并且,该车辆可以是车队中行驶在最前方的领航车辆A0,也可以是跟随在领航车辆A0后方行驶的跟随车辆A1~A4。
采用本实施方式的车辆,由于是根据所述全局环境信息制定针对所述成员车辆的决策,因而,是在考虑了车队行驶环境的基础上做出判断,从而,能够做出从车队整体来看更加适当的决策,例如可以减少后车不能跟随行驶造成脱离车队的情况,或者抑制车队行为对车队外车辆造成的影响,进而能够提高行驶的安全性。
5第五实施方式:计算机可读存储介质
本申请的第五实施方式提供一种计算机可读存储介质,该计算机可读存储介质存储有能够被计算机读取的程序,计算机通过运行该程序能够作为第二实施方式中的车辆控制装置400发挥作用,或者执行第三实施方式中的车辆控制方法。
采用本实施方式的计算机可读存储介质,能够使计算机作为第二实施方式中的车辆控制装置400发挥作用,或者执行第三实施方式中的车辆控制方法,此时,由于是根据所述全局环境信息制定针对所述领航车辆A0和/或所述跟随车辆A1~A4的决策,因而,是在考虑了车队行驶环境的基础上做出判断,从而,能够做出从车队整体来看更加适当的决策,例如可以减少后车不能跟随行驶造成脱离车队的情况,或者抑制车队行为对车队外车辆造成的影响,进而能够提高行驶的安全性。
6第六实施方式:计算机程序
本申请的第六实施方式提供一种计算机程序,计算机通过运行该程序能够作为第二实施方式中的车辆控制装置400发挥作用,或者执行第三实施方式中的车辆控制方法。
采用本实施方式的计算机程序,能够使计算机作为第二实施方式中的车辆控制装置400发挥作用,或者执行第三实施方式中的车辆控制方法,此时,由于根据所述全局环境信息制定针对所述领航车辆A0和/或所述跟随车辆A1~A4的决策,因而,是在考虑了车队行驶环境的基础上做出判断,从而,能够做出从车队整体来看更加适当的决策,例如可以减少后车不能跟随行驶造成脱离车队的情况,或者抑制车队行为对车队外车辆造成的影响,进而能够提高行驶的安全性。
7第七实施方式:计算设备
本申请的第七实施方式提供一种计算设备,该计算设备典型地具有处理器、存储器、输入输出装置,存储器中存储有计算机程序,通过处理器运行该计算机程序,使计算设备能够作为第二实施方式中的车辆控制装置400发挥作用,或者执行第三实施方式中的车辆控制方法。
采用本实施方式的计算设备,由于根据所述全局环境信息制定针对所述领航车辆A0和/或所述跟随车辆A1~A4的决策,因而,是在考虑了车队行驶环境的基础上做出判断,从而,能够做出从车队整体来看更加适当的决策,例如可以减少后车不能跟随行驶造成脱离车队的情况,或者抑制车队行为对车队外车辆造成的影响,进而能够提高行驶的安全性。
注意,上述仅为本申请的较佳实施例及所运用的技术原理。本领域技术人员会理解,本申请不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本申请的保护范围。因此,虽然通过以上实施例对本申请进行了较为详细的说明,但是本申请不仅仅限于以上实施例,在不脱离本申请构思的情况下,还可以包括更多其他等效实施例,均属于本申请保护范畴。

Claims (57)

  1. 一种车辆控制装置,用于控制由多个成员车辆组成的车队,其特征在于,包括局部环境信息获取模块、全局环境信息生成模块和决策制定模块;
    所述局部环境信息获取模块用于获取表示所述多个成员车辆中各个成员车辆的行驶环境的局部环境信息;
    所述全局环境信息生成模块用于根据所述局部环境信息生成表示所述车队的行驶环境的全局环境信息;
    所述决策制定模块用于根据所述全局环境信息制定针对所述车队的控制决策。
  2. 根据权利要求1所述的车辆控制装置,其特征在于,
    所述车辆控制装置设置在成员车辆i上,所述成员车辆i为所述多个成员车辆中的任一成员车辆;
    所述局部环境信息获取模块包括本车局部环境信息获取单元和他车局部环境信息获取单元;
    所述本车局部环境信息获取单元用于获取表示所述成员车辆i的行驶环境的局部环境信息;
    所述他车局部环境信息获取单元用于通过所述成员车辆i的通信单元,从除所述成员车辆i以外的其他成员车辆获取表示该其他成员车辆的行驶环境的局部环境信息。
  3. 根据权利要求2所述的车辆控制装置,其特征在于,所述成员车辆i为所述车队中行驶在最前方的领航车辆。
  4. 根据权利要求1-3中任一项所述的车辆控制装置,其特征在于,
    所述局部环境信息至少包括成员车辆和位于所述车队外的其他车辆的位置信息;
    所述全局环境信息生成模块将所述局部环境信息获取模块获取到的全部所述局部环境信息中的所述位置信息汇总而生成所述全局环境信息。
  5. 根据权利要求1-4中任一项所述的车辆控制装置,其特征在于,
    所述决策制定模块包括领航行为制定单元,所述领航行为制定单元根据所述全局环境信息制定所述车队中行驶在最前方的领航车辆的运动行为。
  6. 根据权利要求1-5中任一项所述的车辆控制装置,其特征在于,
    所述多个成员车辆包括行驶在所述车队最前方的领航车辆与所述车队中跟随在所述领航车辆后方行驶的跟随车辆;
    所述决策制定模块包括独立行为制定单元,所述独立行为制定单元根据所述全局环境信息制定所述跟随车辆的独立行为,该独立行为不同于跟随所述领航车辆行驶的行为。
  7. 根据权利要求6所述的车辆控制装置,其特征在于,
    所述独立行为制定单元在所述领航车辆无法变道时,制定下述任一所述独立行为:
    ①所述跟随车辆中的最后一个变道;
    ②所述跟随车辆中距离所述领航车辆最近的那一个变道;
    ③全部的所述跟随车辆同时变道。
  8. 根据权利要求6或7所述的车辆控制装置,其特征在于,
    所述车辆控制装置设置在所述领航车辆上,且包括行驶控制信息生成模块,所述行驶控制信息生成模块根据所述独立行为制定单元制定的所述独立行为,生成用于指示所述跟随车辆执行所述独立行为的行驶控制信息;
    所述车辆控制装置通过所述领航车辆的通信单元将所述行驶控制信息向所述跟随车辆发送。
  9. 根据权利要求1-8中任一项所述的车辆控制装置,其特征在于,
    所述决策制定模块包括警报方案制定单元,所述警报方案制定单元按照如下任一方式制定向位于所述车队外的其他车辆发送警报信息的方案,其中,所述警报信息用于向所述其他车辆提供所述车队的情况:
    ①所述多个成员车辆全部发送所述警报信息;
    ②所述多个成员车辆中行驶在所述车队最前方的领航车辆发送所述警报信息,并且,以所述领航车辆的编号为0,所述车队中跟随在所述领航车辆后方行驶的多个跟随车辆以自然数依次编号,车辆序号能整除N的跟随车辆发送所述警报信息,其中,所述N≥2;
    ③领航车辆发送所述警报信息,多个跟随车辆中,按照与所述领航车辆的距离计算,距离每增加规定距离的跟随车辆发送所述警报信息;
    ④领航车辆发送所述警报信息,每个跟随车辆生成随机值,随机值范围为[0,1],并且,确定一个门限值,随机值与门限值比较,使随机值大于门限值的跟随车辆发送所述警报信息。
  10. 根据权利要求1-8中任一项所述的车辆控制装置,其特征在于,所述决策制定模块包括警报方案制定单元,其根据所述全局环境信息从所述多个成员车辆中选定一个以上的成员车辆作为向位于所述车队外的其他车辆发送警报信息的发送节点,所述警报信息用于向所述其他车辆提供所述车队的情况。
  11. 根据权利要求10所述的车辆控制装置,其特征在于,
    所述局部环境信息包括,表示成员车辆和所述其他车辆间的直连通信链路状况的第一通信链路状况信息;
    所述全局环境信息生成模块将所述局部环境信息获取模块获取到的全部所述局部环境信息中的所述第一通信链路状况信息汇总而生成所述全局环境信息;
    所述警报方案制定单元根据所述全局环境信息从所述多个成员车辆中选定一个以上的成员车辆作为所述发送节点。
  12. 根据权利要求11所述的车辆控制装置,其特征在于,
    所述警报方案制定单元将所述车队中行驶在最前方的领航车辆作为首个选定的发送节点,
    并进行其他节点选定处理,在该其他节点选定处理中,从所述车队中的跟随在所述领航车辆后方行驶的跟随车辆中,以能够与前一个选定的发送节点进行直连车间通信且由其发送所述警报信息能够覆盖其与前一个选定的发送节点之间的全部所述其他车辆为条件,进行选定。
  13. 根据权利要求12所述的车辆控制装置,其特征在于,
    在所述其他节点选定处理中,优先选定距离前一个选定的发送节点较远的跟随车辆。
  14. 根据权利要求1-13中任一项所述的车辆控制装置,其特征在于,
    所述局部环境信息获取模块获取的所述局部环境信息包括,表示成员车辆与其他成员车辆间的直连通信链路状况的第二通信链路状况信息;
    所述全局环境信息生成模块将所述局部环境信息获取模块获取到的全部所述局部环境信息中的所述第二通信链路状况信息汇总而生成所述全局环境信息;
    所述决策制定模块包括通信路径规划单元,所述通信路径规划单元根据所述全局环境信息中的所述第二通信链路状况信息规划车间通信路径,所述车间通信路径用于所述多个成员车辆间进行车间通信。
  15. 根据权利要求14所述的车辆控制装置,其特征在于,
    所述通信路径规划单元根据所述全局环境信息中的所述第二通信链路状况信息,判断所述多个成员车辆中任意的两个成员车辆间是否能够进行直连车间通信;
    在判断为不能进行所述直连车间通信时,所述通信路径规划单元进行从位于所述两个成员车辆间的成员车辆中选定中继节点的中继节点选定处理,从而规划所述车间通信路径。
  16. 根据权利要求15所述的车辆控制装置,其特征在于,
    在所述中继节点选定处理中,所述通信路径规划单元优先选定位于所述两个成员车辆正中间的成员车辆作为所述中继节点。
  17. 根据权利要求16所述的车辆控制装置,其特征在于,
    所述多个成员车辆包括所述车队中行驶在最前方的领航车辆与所述车队中跟随在所述领航车辆后方行驶的跟随车辆;
    当位于所述两个成员车辆正中间的跟随车辆为两个时,优先选定距离所述领航车辆较近的跟随车辆作为所述中继节点。
  18. 根据权利要求14-17中任一项所述的车辆控制装置,其特征在于,
    所述车辆控制装置设置在所述车队中行驶在最前方的领航车辆上;
    所述决策制定模块包括独立行为制定单元,所述独立行为制定单元根据所述全局环境信息制定所述车队中跟随在所述领航车辆后方行驶的跟随车辆的独立行为,该独立行为不同于跟随所述领航车辆行驶的行为;
    所述车辆控制装置包括行驶控制信息生成模块,所述行驶控制信息生成模块根据所述独立行为制定单元制定的所述独立行为,生成用于指示所述跟随车辆执行所述独立行为的行驶控制信息;
    所述通信路径规划单元根据所述全局环境信息中的所述第二通路链路状况信息规划所述领航车辆向所述跟随车辆发送所述行驶控制信息用的车间通信路径。
  19. 一种车辆控制方法,用于控制由多个成员车辆组成的车队,其特征在于,包括局部环境信息获取步骤、全局环境信息生成步骤和决策制定步骤;
    在所述局部环境信息获取步骤中,获取表示所述多个成员车辆中各个成员车辆的行驶环境的局部环境信息;
    在所述全局环境信息生成步骤中,根据所述局部环境信息生成表示所述车队的行驶环境的全局环境信息;
    在所述决策制定步骤中,根据所述全局环境信息制定针对所述车队的控制决策。
  20. 根据权利要求19所述的车辆控制方法,其特征在于,
    所述车辆控制方法由设置在成员车辆i上的车辆控制装置执行,所述成员车辆i为所述多个成员车辆中的任一成员车辆;
    所述局部环境信息获取步骤包括本车局部环境信息获取步骤和他车局部环境信息获取步骤;
    在所述本车局部环境信息获取步骤中,获取表示所述成员车辆i的行驶环境的局部环境信息;
    在所述他车局部环境信息获取步骤中,通过所述成员车辆i的通信单元,从除所述成员车辆i以外的其他成员车辆获取表示该其他成员车辆的行驶环境的局部环境信息。
  21. 根据权利要求20所述的车辆控制方法,其特征在于,所述成员车辆i为所述车队中行驶在最前方的领航车辆。
  22. 根据权利要求19-21所述的车辆控制方法,其特征在于,
    所述局部环境信息至少包括成员车辆和位于所述车队外的其他车辆的位置信息;
    在所述全局环境信息生成步骤中,将所述局部环境信息获取步骤获取到的全部所述局部环境信息中的所述位置信息汇总而生成所述全局环境信息。
  23. 根据权利要求19-22中任一项所述的车辆控制方法,其特征在于,
    所述决策制定步骤包括领航行为制定步骤,在所述领航行为制定步骤中,根据所述全局环境信息制定所述车队中行驶在最前方的领航车辆的运动行为。
  24. 根据权利要求19-23中任一项所述的车辆控制方法,其特征在于,
    所述多个成员车辆包括行驶在所述车队最前方的领航车辆与所述车队中跟随在所述领航车辆后方行驶的跟随车辆;
    所述决策制定步骤包括独立行为制定步骤,在所述独立行为制定步骤中,根据所述全局环境信息制定所述跟随车辆的独立行为,该独立行为不同于跟随所述领航车辆行驶的行为。
  25. 根据权利要求24所述的车辆控制方法,其特征在于,
    在所述独立行为制定步骤中,在所述领航车辆无法变道时,制定下述任一所述独立行为:
    ①所述跟随车辆中的最后一个变道;
    ②所述跟随车辆中距离所述领航车辆最近的那一个变道;
    ③全部的所述跟随车辆同时变道。
  26. 根据权利要求24或25所述的车辆控制方法,其特征在于,
    所述车辆控制方法由设置在所述领航车辆上的车辆控制装置执行,且包括行驶控制信息生成步骤,在所述行驶控制信息生成步骤中,根据所述独立行为制定步骤制定的所述独立行为,生成用于指示所述跟随车辆执行所述独立行为的行驶控制信息;
    所述车辆控制方法还包括通过所述领航车辆的通信单元将所述行驶控制信息向 所述跟随车辆发送的步骤。
  27. 根据权利要求19-26中任一项所述的车辆控制方法,其特征在于,
    所述决策制定步骤包括警报方案制定步骤,在所述警报方案制定步骤中按照如下任一方式制定向位于所述车队外的其他车辆发送警报信息的方案,其中,所述警报信息用于向所述其他车辆提供所述车队的情况:
    ①所述多个成员车辆全部发送所述警报信息;
    ②所述多个成员车辆中行驶在所述车队最前方的领航车辆发送所述警报信息,并且,以所述领航车辆的编号为0,所述车队中跟随在所述领航车辆后方行驶的多个跟随车辆以自然数依次编号,车辆序号能整除N的跟随车辆发送所述警报信息,其中,所述N≥2;
    ③领航车辆发送所述警报信息,多个跟随车辆中,按照与所述领航车辆的距离计算,距离每增加规定距离的跟随车辆发送所述警报信息;
    ④领航车辆发送所述警报信息,每个跟随车辆生成随机值,随机值范围为[0,1],并且,确定一个门限值,随机值与门限值比较,使随机值大于门限值的跟随车辆发送所述警报信息。
  28. 根据权利要求19-27中任一项所述的车辆控制方法,其特征在于,所述决策制定步骤包括警报方案制定步骤,在所述警报方案制定步骤中,根据所述全局环境信息从所述多个成员车辆中选定一个以上的成员车辆作为向位于所述车队外的其他车辆发送警报信息的发送节点,所述警报信息用于向所述其他车辆提供所述车队的情况。
  29. 根据权利要求28所述的车辆控制方法,其特征在于,
    所述局部环境信息包括,表示成员车辆和所述其他车辆间的直连通信链路状况的第一通信链路状况信息;
    在所述全局环境信息生成步骤中,将所述局部环境信息获取步骤获取到的全部所述局部环境信息中的所述第一通信链路状况信息汇总而生成所述全局环境信息;
    在所述警报方案制定步骤中,根据所述全局环境信息从所述多个成员车辆中选定一个以上的成员车辆作为所述发送节点。
  30. 根据权利要求29所述的车辆控制方法,其特征在于,
    在所述警报方案制定步骤中,将所述车队中行驶在最前方的领航车辆作为首个选定的发送节点,
    并进行其他节点选定处理,在该其他节点选定处理中,从所述车队中的跟随在所述领航车辆后方行驶的跟随车辆中,以能够与前一个选定的发送节点进行直连车间通信且由其发送所述警报信息能够覆盖其与前一个选定的发送节点之间的全部所述其他车辆为条件,进行选定。
  31. 根据权利要求30所述的车辆控制方法,其特征在于,
    在所述其他节点选定处理中,优先选定距离前一个选定的发送节点较远的跟随车辆。
  32. 根据权利要求19-31中任一项所述的车辆控制方法,其特征在于,
    所述局部环境信息获取步骤获取的所述局部环境信息包括,表示成员车辆与其他 成员车辆间的直连通信链路状况的第二通信链路状况信息;
    在所述全局环境信息生成步骤中,将所述局部环境信息获取步骤获取到的全部所述局部环境信息中的所述第二通信链路状况信息汇总而生成所述全局环境信息;
    所述决策制定步骤包括通信路径规划步骤,在所述通信路径规划步骤中,根据所述全局环境信息中的所述第二通信链路状况信息规划车间通信路径,所述车间通信路径用于所述多个成员车辆间进行车间通信。
  33. 根据权利要求32所述的车辆控制方法,其特征在于,
    在所述通信路径规划步骤中,根据所述全局环境信息中的所述第二通信链路状况信息,判断所述多个成员车辆中任意的两个成员车辆间是否能够进行直连车间通信;
    在判断为不能进行所述直连车间通信时,进行从位于所述两个成员车辆间的成员车辆中选定中继节点的中继节点选定处理,从而规划所述车间通信路径。
  34. 根据权利要求33所述的车辆控制方法,其特征在于,
    在所述中继节点选定处理中,优先选定位于所述两个成员车辆正中间的成员车辆作为所述中继节点。
  35. 根据权利要求34所述的车辆控制方法,其特征在于,
    所述多个成员车辆包括所述车队中行驶在最前方的领航车辆与所述车队中跟随在所述领航车辆后方行驶的跟随车辆;
    当位于所述两个成员车辆正中间的跟随车辆为两个时,优先选定距离所述领航车辆较近的跟随车辆作为所述中继节点。
  36. 根据权利要求32-35中任一项所述的车辆控制方法,其特征在于,
    所述车辆控制方法由设置在所述车队中行驶在最前方的领航车辆上的车辆控制装置执行;
    所述决策制定步骤包括独立行为制定步骤,在所述独立行为制定步骤中,根据所述全局环境信息制定所述车队中跟随在所述领航车辆后方行驶的跟随车辆的独立行为,该独立行为不同于跟随所述领航车辆行驶的行为;
    所述车辆控制方法包括行驶控制信息生成步骤,在所述行驶控制信息生成步骤中,根据所述独立行为制定步骤中制定的所述独立行为,生成用于指示所述跟随车辆执行所述独立行为的行驶控制信息;
    在所述通信路径规划步骤中,根据所述全局环境信息中的所述第二通路链路状况信息规划所述领航车辆向所述跟随车辆发送所述行驶控制信息用的车间通信路径。
  37. 一种计算机可读存储介质,其特征在于,存储有使计算机执行权利要求19-36中任一项所述的车辆控制方法的程序。
  38. 一种计算设备,包括处理器与存储器,其特征在于,存储器中存储有程序,通过由处理器运行该程序而执行权利要求19-36中任一项所述的车辆控制方法。
  39. 一种车辆,其特征在于,包括权利要求1-18中任一项所述的车辆控制装置。
  40. 一种编队行驶系统,其包括由多个成员车辆组成的车队,其特征在于,
    所述编队行驶系统具有主控制装置,所述主控制装置包括局部环境信息获取模块、全局环境信息生成模块和决策制定模块;
    所述局部环境信息获取模块用于获取表示所述多个成员车辆中各个成员车辆的 行驶环境的局部环境信息;
    所述全局环境信息生成模块用于根据所述局部环境信息生成表示所述车队的行驶环境的全局环境信息;
    所述决策制定模块用于根据所述全局环境信息制定针对所述车队的控制决策。
  41. 根据权利要求40所述的编队行驶系统,其特征在于,
    多个所述成员车辆包括设置有所述主控制装置的主控制车辆与其他成员车辆,
    所述主控制装置生成表示所述主控制车辆的行驶环境的第一局部环境信息;
    所述其他成员车辆所具有的车辆控制装置生成表示所述其他成员车辆的行驶环境的第二局部环境信息,并将生成的所述第二局部环境信息发送给所述主控制装置;
    所述主控制装置的所述全局环境信息生成模块根据所述第一局部环境信息与所述第二局部环境信息生成所述全局环境信息。
  42. 根据权利要求41所述的编队行驶系统,其特征在于,所述主控制车辆为所述车队中行驶在最前方的领航车辆,所述其他成员车辆是跟随在所述领航车辆后方行驶的跟随车辆。
  43. 根据权利要求40-42所述的编队行驶系统,其特征在于,
    所述局部环境信息至少包括成员车辆和位于所述车队外的其他车辆的位置信息;
    所述全局环境信息生成模块将所述局部环境信息获取模块获取到的全部所述局部环境信息中的所述位置信息汇总而生成所述全局环境信息。
  44. 根据权利要求40-43中任一项所述的编队行驶系统,其特征在于,
    所述决策制定模块包括领航行为制定单元,所述领航行为制定单元根据所述全局环境信息制定所述车队中行驶在最前方的领航车辆的运动行为。
  45. 根据权利要求40-44中任一项所述的编队行驶系统,其特征在于,
    所述多个成员车辆包括行驶在所述车队最前方的领航车辆与所述车队中跟随在所述领航车辆后方行驶的跟随车辆;
    所述决策制定模块包括独立行为制定单元,所述独立行为制定单元根据所述全局环境信息制定所述跟随车辆的独立行为,该独立行为不同于跟随所述领航车辆行驶的行为。
  46. 根据权利要求45所述的编队行驶系统,其特征在于,
    所述独立行为制定单元在所述领航车辆无法变道时,制定下述任一所述独立行为:
    ①所述跟随车辆中的最后一个变道;
    ②所述跟随车辆中距离所述领航车辆最近的那一个变道;
    ③全部的所述跟随车辆同时变道。
  47. 根据权利要求45或46所述的编队行驶系统,其特征在于,
    所述主控制装置设置在所述领航车辆上,且包括行驶控制信息生成模块,所述行驶控制信息生成模块根据所述独立行为制定单元制定的所述独立行为,生成用于指示所述跟随车辆执行所述独立行为的行驶控制信息;
    所述主控制装置通过所述领航车辆的通信单元将所述行驶控制信息向所述跟随车辆发送。
  48. 根据权利要求40-47中任一项所述的编队行驶系统,其特征在于,
    所述决策制定模块包括警报方案制定单元,所述警报方案制定单元按照如下任一方式制定向位于所述车队外的其他车辆发送警报信息的方案,其中,所述警报信息用于向所述其他车辆提供所述车队的情况:
    ①所述多个成员车辆全部发送所述警报信息;
    ②所述多个成员车辆中行驶在所述车队最前方的领航车辆发送所述警报信息,并且,以所述领航车辆的编号为0,所述车队中跟随在所述领航车辆后方行驶的多个跟随车辆以自然数依次编号,车辆序号能整除N的跟随车辆发送所述警报信息,其中,所述N≥2;
    ③所述领航车辆发送所述警报信息,所述多个跟随车辆中,按照与所述领航车辆的距离计算,距离每增加规定距离的跟随车辆发送所述警报信息;
    ④所述领航车辆发送所述警报信息,每个跟随车辆生成随机值,随机值范围为[0,1],并且,确定一个门限值,随机值与门限值比较,使随机值大于门限值的跟随车辆发送所述警报信息。
  49. 根据权利要求40-47中任一项所述的编队行驶系统,其特征在于,所述决策制定模块包括警报方案制定单元,其根据所述全局环境信息从所述多个成员车辆中选定一个以上的成员车辆作为向位于所述车队外的其他车辆发送警报信息的发送节点,所述警报信息用于向所述其他车辆提供所述车队的情况。
  50. 根据权利要求49所述的编队行驶系统,其特征在于,
    所述局部环境信息包括,表示成员车辆和所述其他车辆间的直连通信链路状况的第一通信链路状况信息;
    所述全局环境信息生成模块将所述局部环境信息获取模块获取到的全部所述局部环境信息中的所述第一通信链路状况信息汇总而生成所述全局环境信息;
    所述警报方案制定单元根据所述全局环境信息从所述多个成员车辆中选定一个以上的成员车辆作为所述发送节点。
  51. 根据权利要求50所述的编队行驶系统,其特征在于,
    所述警报方案制定单元将所述车队中行驶在最前方的领航车辆作为首个选定的发送节点,
    并进行其他节点选定处理,在该其他节点选定处理中,从所述车队中的跟随在所述领航车辆后方行驶的跟随车辆中,以能够与前一个选定的发送节点进行直连车间通信且由其发送所述警报信息能够覆盖其与前一个选定的发送节点之间的全部所述其他车辆为条件,进行选定。
  52. 根据权利要求51所述的编队行驶系统,其特征在于,
    在所述其他节点选定处理中,优先选定距离前一个选定的发送节点较远的跟随车辆。
  53. 根据权利要求40-52中任一项所述的编队行驶系统,其特征在于,
    所述局部环境信息获取模块获取的所述局部环境信息包括,表示成员车辆与其他成员车辆间的直连通信链路状况的第二通信链路状况信息;
    所述全局环境信息生成模块将所述局部环境信息获取模块获取到的全部所述局 部环境信息中的所述第二通信链路状况信息汇总而生成所述全局环境信息;
    所述决策制定模块包括通信路径规划单元,所述通信路径规划单元根据所述全局环境信息中的所述第二通信链路状况信息规划车间通信路径,所述车间通信路径用于所述多个成员车辆间进行车间通信。
  54. 根据权利要求53所述的编队行驶系统,其特征在于,
    所述通信路径规划单元根据所述全局环境信息中的所述第二通信链路状况信息,判断所述多个成员车辆中任意的两个成员车辆间是否能够进行直连车间通信;
    在判断为不能进行所述直连车间通信时,所述通信路径规划单元进行从位于所述两个成员车辆间的成员车辆中选定中继节点的中继节点选定处理,从而规划所述车间通信路径。
  55. 根据权利要求54所述的编队行驶系统,其特征在于,
    在所述中继节点选定处理中,所述通信路径规划单元优先选定位于所述两个成员车辆正中间的成员车辆作为所述中继节点。
  56. 根据权利要求55所述的编队行驶系统,其特征在于,
    所述多个成员车辆包括所述车队中行驶在最前方的领航车辆与所述车队中跟随在所述领航车辆后方行驶的跟随车辆;
    当位于所述两个成员车辆正中间的跟随车辆为两个时,优先选定距离所述领航车辆较近的跟随车辆作为所述中继节点。
  57. 根据权利要求53-56中任一项所述的编队行驶系统,其特征在于,
    所述主控制装置设置在所述车队中行驶在最前方的领航车辆上;
    所述决策制定模块包括独立行为制定单元,所述独立行为制定单元根据所述全局环境信息制定所述车队中跟随在所述领航车辆后方行驶的跟随车辆的独立行为,该独立行为不同于跟随所述领航车辆行驶的行为;
    所述主控制装置包括行驶控制信息生成模块,所述行驶控制信息生成模块根据所述独立行为制定单元制定的所述独立行为,生成用于指示所述跟随车辆执行所述独立行为的行驶控制信息;
    所述通信路径规划单元根据所述全局环境信息中的所述第二通路链路状况信息规划所述领航车辆向所述跟随车辆发送所述行驶控制信息用的车间通信路径。
PCT/CN2020/084354 2020-04-11 2020-04-11 车辆控制装置、方法、计算机可读存储介质及编队行驶系统 WO2021203447A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20930353.6A EP4123619A4 (en) 2020-04-11 2020-04-11 VEHICLE CONTROL DEVICE AND METHOD, AND COMPUTER READABLE STORAGE MEDIUM AND PLATOON PROPULSION SYSTEM
CN202080004390.3A CN112543958B (zh) 2020-04-11 2020-04-11 车辆控制装置、方法、计算机可读存储介质及编队行驶系统
PCT/CN2020/084354 WO2021203447A1 (zh) 2020-04-11 2020-04-11 车辆控制装置、方法、计算机可读存储介质及编队行驶系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/084354 WO2021203447A1 (zh) 2020-04-11 2020-04-11 车辆控制装置、方法、计算机可读存储介质及编队行驶系统

Publications (1)

Publication Number Publication Date
WO2021203447A1 true WO2021203447A1 (zh) 2021-10-14

Family

ID=75017316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/084354 WO2021203447A1 (zh) 2020-04-11 2020-04-11 车辆控制装置、方法、计算机可读存储介质及编队行驶系统

Country Status (3)

Country Link
EP (1) EP4123619A4 (zh)
CN (1) CN112543958B (zh)
WO (1) WO2021203447A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114919599A (zh) * 2022-05-17 2022-08-19 厦门金龙联合汽车工业有限公司 一种在自动驾驶车辆上实现车辆编队的装置
CN115311839A (zh) * 2022-08-03 2022-11-08 九识(苏州)智能科技有限公司 一种低速自动驾驶车辆组队通过复杂场景的方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113345215A (zh) * 2021-05-25 2021-09-03 腾讯科技(深圳)有限公司 车辆编队行驶控制方法及相关设备
CN113467449B (zh) * 2021-06-30 2023-05-30 深圳市海柔创新科技有限公司 车队控制方法、装置、电子设备和存储介质
CN113838306A (zh) * 2021-09-03 2021-12-24 北京汽车研究总院有限公司 自动驾驶车队的预警方法及装置
CN113891279A (zh) * 2021-09-17 2022-01-04 华能伊敏煤电有限责任公司 基于v2x的矿用卡车云端编组调度方法
CN114973633A (zh) * 2022-05-12 2022-08-30 北京凯拉斯信息技术有限公司 无人车辆编队行驶控制方法及系统
CN115083152A (zh) * 2022-06-09 2022-09-20 北京主线科技有限公司 一种车辆编队感知系统、方法、装置、设备及介质
CN115497279A (zh) * 2022-08-09 2022-12-20 江铃汽车股份有限公司 一种高速公路车路协同混合车流编队系统
CN115909797A (zh) * 2022-11-03 2023-04-04 中国第一汽车股份有限公司 一种多车智能协同方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107657809A (zh) * 2017-11-22 2018-02-02 重庆长安汽车股份有限公司 模块化列队行驶系统及采用该系统的驾驶方法
CN109895771A (zh) * 2017-12-11 2019-06-18 现代自动车株式会社 前导车辆中的用于控制队列行驶的装置和方法
CN109996217A (zh) * 2017-12-29 2019-07-09 华为技术有限公司 一种通信方法、装置及系统
CN110365733A (zh) * 2018-04-09 2019-10-22 罗伯特·博世有限公司 用于传输信息的方法、用于处理辅助请求的方法以及相应的设备
US20200074862A1 (en) * 2018-08-30 2020-03-05 Cisco Technology, Inc. Raw sensor data sharing for enhanced fleet-wide environmental awareness and safety

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9547989B2 (en) * 2014-03-04 2017-01-17 Google Inc. Reporting road event data and sharing with other vehicles
US10115314B2 (en) * 2015-07-08 2018-10-30 Magna Electronics Inc. Lane change system for platoon of vehicles
GB2554135B (en) * 2016-07-08 2020-05-20 Jaguar Land Rover Ltd Vehicle communication system and method
EP3324209A1 (en) * 2016-11-18 2018-05-23 Dibotics Methods and systems for vehicle environment map generation and updating
US11181929B2 (en) * 2018-07-31 2021-11-23 Honda Motor Co., Ltd. System and method for shared autonomy through cooperative sensing
CN110751825B (zh) * 2019-10-29 2021-09-14 北京百度网讯科技有限公司 编队行驶的避让方法、装置、设备和计算机可读存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107657809A (zh) * 2017-11-22 2018-02-02 重庆长安汽车股份有限公司 模块化列队行驶系统及采用该系统的驾驶方法
CN109895771A (zh) * 2017-12-11 2019-06-18 现代自动车株式会社 前导车辆中的用于控制队列行驶的装置和方法
CN109996217A (zh) * 2017-12-29 2019-07-09 华为技术有限公司 一种通信方法、装置及系统
CN110365733A (zh) * 2018-04-09 2019-10-22 罗伯特·博世有限公司 用于传输信息的方法、用于处理辅助请求的方法以及相应的设备
US20200074862A1 (en) * 2018-08-30 2020-03-05 Cisco Technology, Inc. Raw sensor data sharing for enhanced fleet-wide environmental awareness and safety

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4123619A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114919599A (zh) * 2022-05-17 2022-08-19 厦门金龙联合汽车工业有限公司 一种在自动驾驶车辆上实现车辆编队的装置
CN114919599B (zh) * 2022-05-17 2023-08-29 厦门金龙联合汽车工业有限公司 一种在自动驾驶车辆上实现车辆编队的装置
CN115311839A (zh) * 2022-08-03 2022-11-08 九识(苏州)智能科技有限公司 一种低速自动驾驶车辆组队通过复杂场景的方法
CN115311839B (zh) * 2022-08-03 2024-05-17 九识(苏州)智能科技有限公司 一种低速自动驾驶车辆组队通过复杂场景的方法

Also Published As

Publication number Publication date
EP4123619A1 (en) 2023-01-25
EP4123619A4 (en) 2023-04-05
CN112543958B (zh) 2022-03-11
CN112543958A (zh) 2021-03-23

Similar Documents

Publication Publication Date Title
WO2021203447A1 (zh) 车辆控制装置、方法、计算机可读存储介质及编队行驶系统
CN113299096B (zh) 合作式交叉路口通行控制方法、装置及设备
CN113320532B (zh) 合作式变道控制方法、装置及设备
WO2020258277A1 (zh) 一种智能驾驶车辆让行方法、装置及车载设备
US8352112B2 (en) Autonomous vehicle management
US20190206254A1 (en) Method, apparatus and device for illegal vehicle warning
US20180056998A1 (en) System and Method for Multi-Vehicle Path Planning Technical Field
US20190286163A1 (en) Vehicle control device, vehicle control method, and storage medium
JP7271259B2 (ja) 車両管理システム、車両管理装置、および車両管理方法
US11568741B2 (en) Communication device, control method thereof, and communication system including the same
JP7409258B2 (ja) サーバ、車両、交通制御方法、及び、交通制御システム
US11697416B2 (en) Travel assistance method and travel assistance device
WO2020258276A1 (zh) 一种智能驾驶车辆让行方法、装置及车载设备
JPWO2021038741A1 (ja) 車線変更経路指示装置及び車線変更経路指示システム
US11395208B2 (en) Mobility information provision system for mobile bodies, server, and vehicle
JP2020050109A (ja) 車両制御装置、車両制御方法、及びプログラム
US20230415762A1 (en) Peer-to-peer occupancy estimation
JP5239804B2 (ja) 運転支援装置
JP7452650B2 (ja) 駐停車地点管理装置、駐停車地点管理方法、車両用装置
JP6966626B2 (ja) 車両制御装置、車両制御方法、及びプログラム
JP7435787B2 (ja) 経路確認装置および経路確認方法
US20210200241A1 (en) Mobility information provision system, server, and vehicle
US20210201668A1 (en) Mobility information provision system, server, and vehicle
JP2021068315A (ja) 車線状態の推定方法及び推定システム
US20240067204A1 (en) Method for building an ad hoc virtual network and system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20930353

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020930353

Country of ref document: EP

Effective date: 20221019

NENP Non-entry into the national phase

Ref country code: DE