WO2021203405A1 - 触发非周期srs资源的方法和通信装置 - Google Patents

触发非周期srs资源的方法和通信装置 Download PDF

Info

Publication number
WO2021203405A1
WO2021203405A1 PCT/CN2020/084165 CN2020084165W WO2021203405A1 WO 2021203405 A1 WO2021203405 A1 WO 2021203405A1 CN 2020084165 W CN2020084165 W CN 2020084165W WO 2021203405 A1 WO2021203405 A1 WO 2021203405A1
Authority
WO
WIPO (PCT)
Prior art keywords
aperiodic srs
bits
srs resource
positioning
dci
Prior art date
Application number
PCT/CN2020/084165
Other languages
English (en)
French (fr)
Inventor
高鑫
张永平
李铁
黄甦
刘晓晴
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/084165 priority Critical patent/WO2021203405A1/zh
Publication of WO2021203405A1 publication Critical patent/WO2021203405A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • This application relates to the field of wireless communication technologies, and more specifically, to a method and communication device for triggering aperiodic SRS resources.
  • New radio is an emerging radio technology, and its unique properties can provide more value in enhancing positioning capabilities. Therefore, NR positioning has become the third generation partnership project, An important research topic of 3GPP) standards.
  • the 3GPP standard divides NR positioning technology into three major parts, radio access technology-independent, RAT-independent technology and radio access technology-independent, RAT-dependent. And the combination of RAT-independent and RAT-dependent technology.
  • RAT-dependent refers to a positioning method that only relies on wireless access technology or cellular networks.
  • RAT-independent stands for positioning technologies other than cellular network technologies, such as Bluetooth, wireless local area network (WLAN), global navigation satellite system (GNSS), and inertial measurement methods.
  • the RAT-dependent technology involves an uplink-based positioning technology.
  • the network side mainly measures the sounding reference signal (SRS) resources sent by the terminal device for positioning, and estimates the position of the terminal device according to the measurement result.
  • SRS sounding reference signal
  • aperiodic SRS resources used for positioning are triggered by the SRS request (SRS request) field carried in the downlink control information (DCI) sent by the base station.
  • DCI downlink control information
  • the SRS request field is used to trigger SRS resources for other purposes in addition to triggering aperiodic SRS resources for positioning.
  • certain states of the SRS request field trigger SRS resources for two or more purposes. It is assumed that the triggered aperiodic SRS resources include aperiodic SRS resources for positioning.
  • the terminal device is triggered in addition to sending For non-periodic SRS resources for other purposes, even if the terminal device or the network side has no positioning requirement, the terminal device still needs to send the triggered SRS resource for positioning.
  • This situation where the triggering of aperiodic SRS resources for different purposes is coupled together will bring many disadvantages. For example, it increases the processing complexity of the terminal device, causes a waste of resources of the terminal device, and causes interference to other terminal devices.
  • the present application provides a method for triggering aperiodic SRS resources, which can decouple the triggering of aperiodic SRS resources for positioning and aperiodic SRS resources for other purposes, so as to achieve flexible triggering of aperiodic SRS resources for positioning.
  • this application provides a method for triggering aperiodic SRS resources, the method including:
  • the terminal device receives the downlink control information DCI from the network device, where the DCI includes N bits, where N ⁇ 3 and N is an integer;
  • the terminal device sends an aperiodic sounding reference signal SRS resource for positioning according to the DCI;
  • M bits of the N bits are used to trigger aperiodic SRS resource sets for one or more purposes, and the remaining (NM) bits of the N bits are used to indicate whether to trigger Aperiodic SRS resource collection; or,
  • the N bits have L valid states, some of the L valid states only correspond to a set of aperiodic SRS resources for one purpose, and the partially valid state includes at least the aperiodic SRS used for positioning The valid status corresponding to the SRS resource set; or,
  • the N bits have L valid states, each valid state of the L valid states uniquely corresponds to a set of aperiodic SRS resources for one purpose, and the aperiodic SRS resource sets corresponding to the L valid states include A set of non-periodic SRS resources for positioning, where M and L are both positive integers.
  • the network device expands the bits used to trigger aperiodic SRS resources for positioning in the existing DCI, and redefines the meaning of the effective state of the expanded bits, so that the trigger
  • the aperiodic SRS for positioning purposes is decoupled from triggering other purposes (for example, for codebook transmission, non-codebook transmission, beam management, or antenna switching, etc.) to achieve flexible triggering of aperiodic SRS resources for different purposes.
  • the N bits have L valid states, and each valid state of the L valid states uniquely corresponds to a non-periodic SRS resource of a purpose
  • the method before the terminal device receives the DCI from the network device, the method further includes:
  • the terminal device receives RRC signaling from a network device, the RRC signaling includes trigger parameter information of aperiodic SRS resources for different purposes, and the trigger parameter information of aperiodic SRS resources for each purpose is associated with all the information contained in the DCI
  • the non-periodic SRS resource of each purpose will be triggered by the value of the associated valid state, wherein the trigger parameter information of the aperiodic SRS resource of different purposes is respectively
  • the setting of the value of the associated effective state is the same as the setting of the one-purpose aperiodic SRS resource set uniquely corresponding to each of the L effective states.
  • the N bits may represent 2 N states, among which (2 N -L) states are reserved states.
  • this application provides a method for triggering aperiodic SRS resources.
  • the method includes: a terminal device receives a media access control unit MAC-CE signaling from a network device, and the MAC-CE signaling includes R Bits, each of the R bits uniquely corresponds to a set of aperiodic SRS resources for one purpose, and each bit of the R bits is used to indicate whether the corresponding aperiodic SRS resource set is activated;
  • the terminal device receives the DCI from the network device, the DCI is used to trigger the terminal device to send aperiodic SRS resources for positioning, and the aperiodic SRS resources for positioning belong to the set of aperiodic SRS resources for positioning, so
  • the aperiodic SRS resource set used for positioning belongs to the aperiodic SRS resource set activated by the R bits; the terminal device sends the aperiodic SRS resource in the activated aperiodic SRS resource set.
  • this application provides a method for triggering aperiodic SRS resources.
  • the method includes: a terminal device receives RRC signaling from a network device, and the RRC signaling is used to indicate that aperiodic SRS resources of different purposes are used.
  • each group contains a set of aperiodic SRS resources for one purpose or multiple purposes;
  • the terminal device receives the MAC-CE signaling from the network device, and the MAC-CE signaling is used to activate the A group of a plurality of groups, the activated group includes the aperiodic SRS resource set used for positioning;
  • the terminal device receives the DCI from the network device, and the DCI is used to trigger the activated one
  • the method further includes: the terminal device sends the aperiodic SRS resource for positioning according to the DCI.
  • the present application provides a method for triggering aperiodic SRS resources, the method includes: a network device generates DCI, the DCI includes N bits, N ⁇ 3 and N is an integer;
  • M bits of the N bits are used to trigger aperiodic SRS resource sets for one or more purposes, and the remaining (NM) bits of the N bits are used to indicate whether to trigger Aperiodic SRS resource collection; or,
  • the N bits have L valid states, some of the L valid states only correspond to a set of aperiodic SRS resources for one purpose, and the partially valid state includes at least the aperiodic SRS used for positioning The valid status corresponding to the SRS resource set; or,
  • the N bits have L valid states, each of the L valid states uniquely corresponds to a non-periodic SRS resource for one purpose, and the aperiodic SRS resource set corresponding to the L valid states includes Aperiodic SRS resource set for positioning, M and L are both positive integers;
  • the network device sends the DCI to the terminal device.
  • the N bits have L valid states, and each valid state of the L valid states uniquely corresponds to a non-periodic SRS resource of one purpose
  • the method before the network device sends the DCI to the terminal device, the method further includes:
  • the network device sends RRC signaling to the terminal device.
  • the RRC signaling includes trigger parameter information of aperiodic SRS resources for different purposes.
  • the trigger parameter information of aperiodic SRS resources for each purpose is associated with the N contained in the DCI.
  • the value of a valid state of each bit, each use of aperiodic SRS resources will be triggered by the value of the associated effective state, wherein the trigger parameter information of the aperiodic SRS resources of different uses is associated with each
  • the setting of the value of the effective state is the same as the setting of the one-purpose aperiodic SRS resource set uniquely corresponding to each of the L effective states.
  • the N bits may represent 2 N states, among which (2 N -L) states are reserved states.
  • the present application provides a method for triggering aperiodic SRS resources.
  • the method includes: a network device sends a MAC-CE signaling to a terminal device, the MAC-CE signaling includes R bits, and the R bits Each bit in the R bits uniquely corresponds to a set of aperiodic SRS resources for one purpose, and each bit in the R bits is used to indicate whether the corresponding aperiodic SRS resource set is activated; the network device sends DCI to the terminal device, The DCI is used to trigger a terminal device to send aperiodic SRS resources used for positioning, the aperiodic SRS resources used for positioning belong to a set of aperiodic SRS resources used for positioning, and the set of aperiodic SRS resources used for positioning It belongs to the aperiodic SRS resource set activated by the R bits; the network device receives the aperiodic SRS resource for positioning from the terminal device.
  • this application provides a method for triggering aperiodic SRS resources.
  • the method includes: a network device sends RRC signaling to a terminal device, where the RRC signaling is used to indicate that aperiodic SRS resources for different purposes are configured to be multiple Groups, each group contains a set of aperiodic SRS resources for one purpose or multiple purposes; the network device sends MAC-CE signaling to the terminal device, and the MAC-CE signaling is used to activate the A group, the activated group includes the aperiodic SRS resource set used for positioning; the network device sends DCI to the terminal device, and the DCI is used to trigger the aperiodic SRS included in the activated group Aperiodic SRS resources used for positioning in the resource set.
  • the method further includes: the network device receives the aperiodic SRS resource for positioning from the terminal device.
  • the present application provides a method for triggering aperiodic SRS resources, which can decouple the triggering of aperiodic SRS resources for different purposes and realize flexible triggering of aperiodic SRS resources for different purposes.
  • the method includes:
  • the terminal device receives the DCI from the network device, where the DCI includes N bits, where N ⁇ 3 and N is an integer;
  • M bits of the N bits are used to trigger one or more use aperiodic SRS resource sets, and the remaining (NM) bits of the N bits are used to indicate whether to trigger the desired use A collection of non-periodic SRS resources; or,
  • the N bits have L valid states, some of the L valid states only correspond to a set of aperiodic SRS resources for one purpose, and the partially valid state includes at least the aperiodic SRS with the desired purpose The effective status corresponding to the resource collection; or,
  • the N bits have L valid states, each of the L valid states uniquely corresponds to a set of aperiodic SRS resources for one purpose, and the aperiodic SRS resource sets corresponding to the L valid states include all A collection of non-periodic SRS resources for the intended use,
  • M and L are both positive integers.
  • the "aperiodic SRS resource of the desired use” in the seventh aspect may be any aperiodic SRS resource of any purpose that is expected to be decoupled from other uses.
  • the uses of SRS resources defined in the current standard include five uses for codebook transmission, non-codebook transmission, beam management, antenna switching, and positioning.
  • the “desired use” may be any of the five uses. In other words, the use that is expected to be decoupled from other uses is the “desired use.”
  • this method can not only be applied to the scenario of triggering aperiodic SRS resources for positioning purposes, so that the triggering of aperiodic SRS resources for positioning purposes is not coupled with the triggering of aperiodic SRS resources for other purposes, but can also be applied to triggering. Under the scenario of aperiodic SRS resources for other purposes.
  • the "aperiodic SRS resources for expected use” in the method of the seventh aspect are the aperiodic SRS resources used for beam management .
  • the "expected use aperiodic SRS resource" in the method of the seventh aspect is the aperiodic SRS resource for codebook transmission . I will not list them one by one again.
  • this application also provides a method for triggering aperiodic SRS resources, the method including:
  • the terminal device receives the MAC-CE signaling from the network device, the MAC-CE signaling includes R bits, and each bit of the R bits uniquely corresponds to a set of aperiodic SRS resources for one purpose. Each of the R bits is used to indicate whether the corresponding aperiodic SRS resource set is activated, and R is a positive integer;
  • the terminal device receives the information from the network device DCI, where the DCI is used to trigger a terminal device to send aperiodic SRS resources of a desired use;
  • the terminal device sends the aperiodic SRS resource in the aperiodic SRS resource set of the desired use.
  • this application provides a method for triggering aperiodic SRS resources, the method including:
  • the terminal device receives RRC signaling from the network device, where the RRC signaling is used to indicate that aperiodic SRS resources of different purposes are configured as P groups, and each group contains aperiodic SRS resources of one purpose or multiple purposes Set, P>1 and P is an integer;
  • the terminal device receives MAC-CE signaling from the network device, where the MAC-CE signaling is used to activate one of the P groups;
  • the terminal device sends the aperiodic SRS resource in the aperiodic SRS resource set included in the one group.
  • the MAC-CE signaling is used to activate one of the P groups, and the one group includes only one of the desired uses
  • the DCI is used to trigger the aperiodic SRS resource set of the desired use; and the terminal device transmits the aperiodic SRS resource of the desired use according to the DCI.
  • the network side needs to decouple the triggering of aperiodic SRS resource sets for a certain purpose from the triggering of aperiodic SRS resource sets for other purposes, it only needs to select from the P groups Select a group that only includes the aperiodic SRS resource set for the desired use but not other uses, and trigger it through DCI. In this way, it is also possible to decouple the triggering of aperiodic SRS resources of a desired use from aperiodic SRS resources of other uses.
  • the present application provides a communication device that has the function of implementing the method in the first aspect or any of its possible implementations, or the communication device has the function of implementing the second aspect or any of its possible implementations.
  • the function of the method in the implementation manner, or the communication device has the function of implementing the method in the third aspect or any of its possible implementation manners, or the communication device has the function of implementing the seventh aspect to the ninth aspect or any of the methods.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above-mentioned functions.
  • this application provides a communication device that has the function of implementing the method in the fourth aspect or any of its possible implementations, or the communication device has the ability to implement the fifth aspect or any of its possible implementations.
  • the function of the method in the implementation manner of, or the communication device has the function of implementing the method in the sixth aspect or any of its possible implementation manners.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above-mentioned functions.
  • this application provides a terminal device, including a processor, a memory, and a transceiver.
  • the memory is used to store computer programs
  • the processor is used to call and run the computer programs stored in the memory, and control the transceiver to send and receive signals, so that the terminal device can execute the method in the first aspect or any of its possible implementation modes, or , Execute the method in the second aspect or any of its possible implementation manners, or execute the method in the third aspect or any of its possible implementation manners, or execute the seventh aspect to the ninth aspect or any of its possibilities The method in the implementation.
  • this application provides a network device, including a processor, a memory, and a transceiver.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory, and control the transceiver to send and receive signals, so that the terminal device can execute the method in the fourth aspect or any of its possible implementation modes, or Execute the method in the fifth aspect or any possible implementation manner thereof, or execute the method in the sixth aspect or any possible implementation manner thereof.
  • this application provides a computer-readable storage medium in which computer instructions are stored.
  • the computer instructions are executed on a computer, as in the first aspect or any possible
  • the method in the implementation manner is implemented, or the method in the second aspect or any of its possible implementation manners is implemented, or the method in the third aspect or any of its possible implementation manners is implemented, or, as in the first aspect
  • the methods in the seventh aspect to the ninth aspect or any possible implementation manner thereof are implemented.
  • the present application provides a computer-readable storage medium that stores computer instructions in the computer-readable storage medium.
  • the computer instructions are executed on a computer, as in the fourth aspect or any possible
  • the method in the implementation manner is implemented, or the method in the fifth aspect or any possible implementation manner thereof is implemented, or the method in the sixth aspect or any possible implementation manner thereof is implemented.
  • this application provides a computer program product, the computer program product comprising a computer program or code, when the computer program or code is run on a computer, as in the first aspect or any possible implementation manner thereof
  • the method in is implemented, or the method in the second aspect or any of its possible implementations is implemented, or the method in the third aspect or any of its possible implementations is implemented, or, as the seventh aspect
  • the method in the ninth aspect or any possible implementation manner thereof is implemented.
  • this application provides a computer program product, the computer program product includes a computer program or code, when the computer program or code is run on a computer, as in the fourth aspect or any possible implementation manner thereof
  • the method in is implemented, or the method in the fifth aspect or any possible implementation manner thereof is implemented, or the method in the sixth aspect or any possible implementation manner thereof is implemented.
  • the present application provides a communication device, including a processor and a communication interface, the communication interface is configured to receive a signal and transmit the signal to the processor, and the processor processes the signal to To cause the method in the first aspect or any of its possible implementations to be executed, or to execute the method in the second aspect or any of its possible implementations, or to execute the third aspect or any of its possible implementations
  • the method in is executed, or the method in the seventh aspect to the ninth aspect or any possible implementation manner thereof is executed.
  • the present application provides a communication device including a processor and a communication interface, the communication interface is used to receive a signal and transmit the signal to the processor, and the processor processes the signal to To cause the method in the fourth aspect or any of its possible implementation manners to be executed, or to execute the method in the fifth aspect or any of its possible implementation manners, or to execute the method in the sixth aspect or any of its possible implementation manners The method in is executed.
  • the present application provides a wireless communication system, including the terminal device described in the twelfth aspect and the network device described in the thirteenth aspect.
  • Figure 1 shows the general flow of the uplink-based positioning technology.
  • Fig. 2 is a schematic diagram of a method for triggering aperiodic SRS resources provided by this application.
  • FIG. 3 is a schematic diagram of another method for triggering aperiodic SRS resources provided by this application.
  • Figure 4 is an example of triggering aperiodic SRS resources provided by this application.
  • FIG. 5 is a schematic diagram of another method for triggering aperiodic SRS resources provided by this application.
  • FIG. 6 is a schematic block diagram of the communication device 1000 provided by this application.
  • FIG. 7 is a schematic block diagram of another communication device 2000 provided by this application.
  • FIG. 8 is a schematic structural diagram of the communication device 10 provided by this application.
  • FIG. 9 is a schematic structural diagram of another communication device 20 provided by this application.
  • FIG. 1 is a general flow of the uplink-based positioning technology.
  • the uplink-based positioning technology usually only requires the base station side to measure the uplink reference signal, using uplink-observed time difference of arrival (UL-TDOA) technology and Uplink observation-angle of arrival (uplink-angle of arrival, UL-AOA) technology.
  • UL-TDOA uplink-observed time difference of arrival
  • uplink-angle of arrival uplink-angle of arrival
  • the implementation of these positioning technologies basically requires the following steps: First, the serving base station instructs a user equipment (user equipment, UE) to send configuration information of an uplink reference signal. The UE starts to send the SRS after receiving the instruction from the base station.
  • UE user equipment
  • the serving base station and neighboring base stations perform related measurements on the received SRS, for example, measuring the arrival time, angle of arrival, or reference signal received power (RSRP) of the SRS.
  • RSRP reference signal received power
  • the base station reports the measurement result to the location management function (location management function, LMF), and the LMF uses the measurement result to estimate the location of the UE.
  • LMF location management function
  • the network side (for example, the serving base station and neighboring base stations) needs to measure the SRS sent by the UE for positioning to obtain the arrival time or angle of arrival of the SRS, and then the UE can be obtained.
  • the UE needs to send the SRS according to the configuration information of the SRS received from the base station.
  • the configuration information of the SRS may generally include the bandwidth, period, initialization value, and time-frequency position of the SRS resource.
  • the base station also needs to configure multiple SRS resources or resource sets for the UE at the same time.
  • the resource set refers to a set composed of multiple SRS resources.
  • the periodic SRS resource refers to that after the high-level radio resource control (Radio Resource Control, RRC) signaling configures the SRS resource, the UE will continuously send the SRS resource according to the configured period.
  • the semi-static SRS resource means that after the SRS resource is configured in the RRC signaling, the UE will not send the SRS resource immediately, but requires the base station to activate it through the medium access control-control element (MAC-CE) signaling After that, the UE continuously sends SRS resources in the configured period, and stops sending until the MAC-CE signaling is deactivated.
  • the aperiodic SRS resource means that after the base station configures the SRS resource through RRC signaling, the base station triggers the transmission of the aperiodic SRS resource through DCI, and only transmits it once.
  • the time-domain behavior of SRS resources (for example, periodic, semi-static, or aperiodic) mentioned here is configured at the level of the SRS resource set, that is, if an SRS resource set is configured as periodic, then All SRS resources included in the SRS resource set are periodic. Therefore, the SRS resource mentioned in this application is periodic, which means that the SRS resource set to which the SRS resource belongs is periodic.
  • This application mainly relates to the triggering process of aperiodic SRS resources used for positioning.
  • aperiodic SRS resources used for positioning is the same as that of version 15 (Rel-15) aperiodic SRS resources, that is, use DCI format 0_1, format 0_2, format 1- 1.
  • the SRS request (SRS request) field in format 1-2 and format 2-3 triggers whether to send aperiodic SRS resources.
  • SRS request field also referred to as the SRS request field
  • Table 1 the meanings of different values of the SRS request field (also referred to as the SRS request field) in each format of the DCI are shown in Table 1.
  • the SRS request field includes 2 bits. If DCI format 0_1,0_2, 1-1, 1-2 is used to trigger, and the 2 bits are set to "00", it means that no aperiodic SRS is triggered Sending of resources. If the 2 bits are set to "01”, it means that the aperiodic SRS resource set with the "aperiodicSRS-ResourceTrigger” field set to 1 in the SRS-config is triggered. If the 2 bits are set to "10”, it means that the aperiodic SRS resource set in which the "aperiodicSRS-ResourceTrigger” field is set to 2 in the SRS-config is triggered. If the 2 bits are set to "11”, it means that the aperiodic SRS resource set in which the "aperiodicSRS-ResourceTrigger” field is set to 3 in the SRS-config is triggered.
  • DCI format 2_3 is used to trigger, there are two cases.
  • the high-level parameter SRS-TPC-PDCCH-Group is set to "type B”
  • the meaning represented by the SRS request field and the trigger mechanism are the same as those in DCI format 0_1, 0_2, 1_1, and 1_2 in Table 1.
  • the upper layer parameter SRS-TPC-PDCCH-Group is set to "type A”
  • the SRS request field is set to "00”
  • the SRS request field is set to "01", it means to trigger the aperiodic SRS used as antenna in the first group of serving cells (i.e., SRS-resource set for antenna Switching) and the aperiodic SRS used for positioning (i.e., SRS) -resource set for positioning). If the SRS request field is set to "10", it means to trigger the aperiodic SRS used as an antenna in the second group of serving cells and the aperiodic SRS used for positioning. If the SRS request field is set to "11”, it means to trigger the aperiodic SRS used as an antenna in the third group of serving cells and the aperiodic SRS used for positioning.
  • the SRS request field used to trigger the transmission of aperiodic SRS resources includes 2 bits, which can indicate a total of 4 states. Among them, "00" does not trigger any aperiodic SRS resources, so there are only 3 The states “01", “10” and “11” are used to trigger aperiodic SRS resources. Therefore, the SRS request field can trigger SRS resources for 3 purposes at most.
  • the use of aperiodic SRS resources also includes other uses, such as codebook transmission, non-codebook transmission, beam management, antenna switching, and so on. Then, based on the above trigger mechanism, if the SRS request field is used to trigger the above five states, some states must trigger SRS resources for two or more purposes.
  • SRS resources are configured by RRC signaling.
  • the UE When the UE enters the connected state, it receives the configuration information of the SRS resources from the base station side, and then only the base station needs to pass DCI. activation.
  • a state of the SRS request field triggers SRS resources for multiple purposes, when there is no positioning requirement on the UE or the network side, the DCI used to trigger SRS resources for other purposes may also trigger aperiodic SRS for positioning. Resource transmission.
  • the UE still needs to send the SRS resource for positioning triggered by the SRS request field. That is, according to the current standard SRS request field to trigger aperiodic SRS resources, a situation where triggers of aperiodic SRS resources of different purposes are inevitably coupled together, which will have many disadvantages.
  • the present application provides a solution that can flexibly trigger aperiodic SRS resources used for positioning, so that triggering of aperiodic SRS resources used for positioning is decoupled from SRS resources used for other purposes.
  • the triggering of aperiodic SRS resources of various different purposes can be decoupled.
  • the technical solution of the present application can be applied not only in the scenario of triggering aperiodic SRS resources for positioning, but also in the scenario of triggering aperiodic SRS resources for other purposes, which is not limited by this application.
  • aperiodic SRS resources (sets) used for positioning in the various embodiments of the present application are replaced with the desired use (for example, for codebook transmission, for non-codebook transmission, and for Antenna switching or aperiodic SRS resources used for beam management, etc., can realize the decoupling of the triggering of the aperiodic SRS resources of the "desired use" from the triggering of the aperiodic SRS resources of other purposes.
  • the decoupling of aperiodic SRS resources that trigger positioning purposes and aperiodic SRS resources that trigger other purposes is taken as an example for description.
  • FIG. 2 is a schematic diagram of a method for triggering aperiodic SRS resources provided by this application.
  • the network device sends DCI to the terminal device.
  • the DCI includes N bits, where N ⁇ 3 and N is an integer.
  • the terminal device receives the DCI from the network device.
  • M bits of the N bits are used to trigger a set of aperiodic SRS resources for one or more purposes, and the remaining (NM) bits of the N bits are used for Indicates whether to trigger the aperiodic SRS resource set for positioning.
  • the SRS request field of the traditional DCI includes 2 bits.
  • 1 bit is added to the traditional SRS request field, and the added 1 bit is used to indicate whether to trigger A collection of located aperiodic SRS resources.
  • the added 1 bit is set to "1", which means that the aperiodic SRS resource set used for positioning is triggered; the added 1 bit is set to "0", which means that the aperiodic SRS resource set used for positioning is not triggered.
  • the purpose of the SRS resource indicated by the original 2 bits of the SRS request field remains unchanged. It can be understood that if the original 2-bit SRS resource set triggered by the SRS request field does not include the aperiodic SRS resource set used for positioning, or in other words, the original 2-bit aperiodic SRS triggered by the SRS request field The use of resources does not include the use of positioning, and the added 1 bit should be set to not trigger the aperiodic SRS resource set used for positioning.
  • the added 1 bit can be set to not trigger positioning, or it can be set to trigger positioning.
  • the SRS request field originally includes 2 bits, and a new bit is added to indicate whether to trigger the aperiodic SRS resource set for positioning. Therefore, the SRS request field includes 3 bits in total, assuming that in the order from left to right, it is assumed that the highest bit (that is, the first bit) is an additional 1 bit.
  • 1 bit is added as an example, and 2 or more bits can also be added to indicate whether to trigger the aperiodic SRS resource set for positioning.
  • the above setting of the highest bit of the N bits as the newly added bit is also taken as an example. It is easy to think of other variants. For example, it is also feasible to set the newly added 1 bit at the lowest position or other positions. limit.
  • the N bits have L valid states, and some of the L valid states only correspond to a non-periodic SRS resource set for one purpose.
  • the SRS resource set includes at least aperiodic SRS resource set used for positioning.
  • the N bits have L valid states, and some of the L valid states are only used to trigger one use of aperiodic SRS resources. If one of the partial valid states is designed to only be used to trigger the positioning of aperiodic SRS resources, the aperiodic SRS resources that trigger positioning can be decoupled from the aperiodic SRS resources that trigger other purposes.
  • the SRS request field includes N bits in total, and the N bits can represent L valid states, wherein one valid state of the L valid states is only used to trigger SRS resources for positioning purposes.
  • L ⁇ 2 N , N and L are both integers.
  • N bits can represent 2 N states in total.
  • the remaining (2 N -L) states can be used as reserved states, or can be used to separately trigger the newly added aperiodic SRS resources.
  • this application is not limited.
  • the extended SRS request field includes 3 bits in total, among which 3 bits can represent 8 states, which are 000, 001, 010, 011, 100, 101, 110, and 111, respectively.
  • the state that the SRS request field after the extension can represent has increased by four. It can be defined that the first 4 states of the above 8 states have the same meaning as the 2 bits of the SRS request field before the expansion.
  • one of the added 4 states is selected to trigger aperiodic positioning purposes. SRS resources.
  • the N bits have L valid states, each valid state of the L valid states uniquely corresponds to a non-periodic SRS resource of one purpose, and the L valid states correspond to
  • the aperiodic SRS resource set includes the aperiodic SRS resource set used for positioning.
  • the N bits have L valid states, and each valid state is only used to trigger a set of aperiodic SRS resources for one purpose.
  • the triggering of all aperiodic SRS resources for different purposes can be decoupled.
  • the effective state refers to a state defined to indicate the use of aperiodic SRS resources.
  • Table 3 "110" and “111” can be regarded as not belonging to the above-mentioned valid status.
  • the meaning of the L valid states corresponding to the N bits of the extended SRS request field has changed (that is, the meaning of the The two bits of the request field have different meanings. Therefore, the trigger parameter information of aperiodic SRS resources for different purposes needs to be set to correspond to Table 3.
  • the trigger parameter information of the aperiodic SRS resource for each purpose is associated with the value of a valid state of the N bits, and the aperiodic SRS resource for each purpose will be triggered by the value of the associated valid state.
  • the setting of the value of the valid state associated with the trigger parameter information of the aperiodic SRS resources of different purposes is set to the value of the aperiodic SRS resource set of one purpose uniquely corresponding to each of the L valid states The settings are the same.
  • the trigger parameter information of the aperiodic SRS resource may specifically be the "aperiodicSRS-ResourceTrigger" field.
  • the aperiodicSRS-ResourceTrigger field should be set to 1, corresponding to the valid status "001" in Table 3;
  • the aperiodicSRS-ResourceTrigger field should be set to 2, corresponding to the valid status "010" in Table 3;
  • the aperiodicSRS-ResourceTrigger field should be set to 3, corresponding to the valid status "011" in Table 3;
  • the aperiodicSRS-ResourceTrigger field should be set to 4, corresponding to the valid status "100" in Table 3;
  • the aperiodicSRS-ResourceTrigger field should be set to 5, corresponding to the valid status "101" in Table 3.
  • the terminal device sends the aperiodic SRS resource in the aperiodic SRS resource set used for positioning according to the DCI.
  • the terminal device sends the aperiodic SRS resource corresponding to the triggered use according to the use of the aperiodic SRS resource triggered by the SRS request field of the DCI. Specifically, the terminal device transmits the aperiodic SRS resource corresponding to the triggered use according to the configuration information of the aperiodic SRS resource for various purposes received from the network device before receiving the DCI.
  • the SRS request field of the DCI only triggers the aperiodic SRS resource set used for positioning, and the terminal device sends the aperiodic SRS resource in the aperiodic SRS resource set used for positioning to the network side for measurement by the network side, thereby realizing the network Estimation of the location of the UE from the side.
  • the following provides a bit mapping method, which can realize the decoupling of triggering of aperiodic SRS resources for various purposes.
  • Fig. 3 shows a schematic diagram of another method for triggering aperiodic SRS resources provided by the present application.
  • the network device sends MAC-CE signaling to the terminal device, where the MAC-CE signaling is used to indicate whether to activate the aperiodic SRS resource set.
  • the MAC-CE signaling includes R bits, each of the R bits uniquely corresponds to a set of aperiodic SRS resources for one purpose, and each bit of the R bits is used to indicate all Whether the corresponding aperiodic SRS resource set is activated, R is a positive integer.
  • the terminal device receives the MAC-CE signaling from the network device. According to the MAC-CE signaling, the terminal device can learn the activated aperiodic SRS resource set. Moreover, according to the mapping relationship between the R bit and the aperiodic SRS resource set, the terminal device can learn which uses of the aperiodic SRS resource are activated.
  • the network side may set the bit corresponding to the aperiodic SRS resource set for positioning purposes among the R bits to "activated”, and set other uses to "deactivate”, thus, It is possible to decouple the aperiodic SRS resources that trigger the positioning and the aperiodic SRS resources that trigger other purposes.
  • the network device then triggers the activated aperiodic SRS resource set for positioning through DCI, as in the following steps 320.
  • the network device sends DCI to the terminal device, where the DCI is used to trigger the terminal device to send aperiodic SRS resources for positioning.
  • the aperiodic SRS resource used for positioning belongs to an SRS resource set used for positioning, and the SRS resource set used for positioning belongs to an aperiodic SRS resource set activated by the R bits.
  • the terminal device receives the DCI from the network device.
  • the terminal device sends the SRS resource in the triggered aperiodic SRS resource set used for positioning.
  • a field or bitmap is added to the MAC-CE signaling, and the bitmap is used to activate the aperiodic SRS resource set configured in the RRC signaling.
  • each bit in the bitmap uniquely corresponds to an aperiodic SRS resource set. If a bit in the bitmap is set to 1, it means that the aperiodic SRS resource (set) corresponding to the bit is activated, and only the activated aperiodic SRS resource (set) will be triggered by the DCI.
  • each aperiodic SRS resource corresponds to a purpose, namely codebook transmission, non-codebook transmission, beam management, and antenna switching. And positioning.
  • the length of the bitmap can be set to 5 bits, the 5 bits are in the order from the highest bit to the lowest bit (that is, from left to right), and the purpose of each bit is codebook transmission, Non-codebook transmission, beam management, antenna switching, and positioning.
  • bitmap is set to "00001"
  • the fifth bit from left to right that is, the lowest bit
  • the fifth bit is set to 1, indicating that the aperiodic SRS resource corresponding to the fifth bit (that is, used for Aperiodic SRS resources for positioning purposes) are activated.
  • the network side will only trigger the sending of aperiodic SRS resources for positioning through DCI.
  • the length of the SRS request field in the DCI can be configured according to the number of aperiodic SRS resources activated by the bitmap.
  • the DCI can indicate whether to trigger the aperiodic SRS resource of this purpose by using 1 bit. For example, in the above example, if the bitmap is set to "00001", the network side only activates the aperiodic SRS resource for positioning, and the DCI can use 1 bit to indicate whether to trigger the aperiodic SRS resource for positioning. As an example, DCI is set to 1, which means that aperiodic SRS resources for positioning is triggered, and DCI is set to 0, which means that aperiodic SRS resources for positioning are not triggered.
  • the DCI may use 2 or more bits to indicate whether to trigger the activated aperiodic SRS resources.
  • DCI can also be set to 5 bits, where each bit corresponds to a non-periodic SRS resource of one purpose.
  • the bit of the SRS resource corresponding to the purpose of the 5 bits of the DCI is set to 1, otherwise it is set to 0.
  • the bit corresponding to the aperiodic SRS resource that is not activated by the MAC-CE is also set to 0.
  • the bitmap of MAC-CE signaling is set to "10001"
  • the network side sends DCI to the terminal device, and the DCI is set to "00001", in which, in the order from left to right, the first bit is set to 0, indicating that the SRS resource for codebook transmission is not triggered. 5 bits are set to 1, indicating that the SRS resource used for positioning is triggered.
  • the remaining bits of the DCI except for the first and fifth bits are set to 0, indicating that SRS resources for other purposes are not activated.
  • the bitmap of the MAC-CE signaling is set to "10001", which indicates that the SRS resource used for codebook transmission and the SRS resource used for positioning are activated.
  • the network side sends DCI to the terminal device, and the DCI includes 2 bits, where the 2 bits respectively represent 4 states, which are 00, 01, 10, and 11, respectively.
  • the above four states respectively indicate whether the combination of activated SRS resources of the two uses is triggered. For example, 00 indicates that neither the SRS resource used for codebook transmission nor the SRS resource used for positioning are triggered.
  • 01 indicates that the SRS resource used for codebook transmission is not triggered, but the SRS resource used for positioning is triggered. 10 means that the SRS resource used for codebook transmission is triggered, but the SRS resource used for positioning is not triggered. 11 indicates that the SRS resource used for codebook transmission and the SRS resource used for positioning are both triggered.
  • the method 300 can also realize the decoupling of the triggering of aperiodic SRS resources of different purposes.
  • this application also provides another method for triggering aperiodic SRS resources.
  • the network side adds a field (or called an extension field) to RRC signaling to group aperiodic SRS resources for different purposes, and then, according to For the purpose of the aperiodic SRS resource that needs to be triggered, the network device uses the MAC-CE to activate a group of aperiodic SRS resources. Finally, the network side uses DCI to trigger the aperiodic SRS resources in the group, as shown in Figure 4.
  • the network side configures aperiodic SRS resources for different purposes into P groups through RRC signaling, where P>0 and P is an integer.
  • Each group includes aperiodic SRS resources for one purpose or multiple purposes.
  • each group represents a combination of SRS resources for different purposes.
  • Q is a positive integer.
  • the network side may only configure some of the P groups, and no configuration is made for the combination of uses of some aperiodic SRS resources that are not frequently used, which is not limited in this application.
  • the network device can add a field "group" to the high-level parameter SRS-config to achieve this.
  • the network side sets the field "group” to one or more of ⁇ 1,2,3,...,N ⁇ , which means that the group corresponding to "group” is activated .
  • the MAC-CE activates any one of the groups corresponding to the field "group”
  • the DCI will trigger the aperiodic SRS resource set for positioning in the group.
  • the aperiodic SRS resources used for positioning belong to both the fifth group and the Nth group, and other groups containing aperiodic SRS resources used for positioning are temporarily ignored.
  • the network side can set the field "group" of the high-level parameter SRS-config to ⁇ 5, N ⁇ .
  • the SRS request field of the DCI will be Trigger the sending of aperiodic SRS resources for positioning.
  • the configuration of the high-level parameter SRS-config can be as shown in the following fields:
  • FIG. 5 is a schematic diagram of another method for triggering aperiodic SRS resources provided by this application.
  • the network device sends RRC signaling to the terminal device, where the RRC signaling includes an extension field, and the extension field is used to configure aperiodic SRS resources of different purposes into P groups, and each group includes one purpose or multiple groups.
  • multiple uses include two uses and two or more uses.
  • the terminal device receives the RRC signaling from the network device, and according to the RRC signaling, learns the P groups of aperiodic SRS resources for different purposes.
  • the network device sends MAC-CE signaling to the terminal device, where the MAC-CE signaling is used to activate one of the P groups.
  • the terminal device receives the MAC-CE signaling from the network device, and learns the activated group according to the MAC-CE signaling.
  • the P groups may include all combinations of different uses of aperiodic SRS resources. Therefore, the network side can select appropriate aperiodic SRS resources for different uses to be triggered from the P groups. Group, triggered by MAC-CE signaling.
  • the network device can activate the fifth group through MAC-CE.
  • the network device can activate the third group through MAC-CE.
  • the network device selects a corresponding combination from the P groups and activates it through MAC-CE. For example, if a network device needs to trigger aperiodic SRS resources for two purposes: codebook transmission and beam management, the network device can activate the sixth group through MAC-CE. By analogy, I won't repeat it.
  • the network device can activate the fifth group through MAC-CE. Therefore, it is possible to decouple the aperiodic SRS resource triggering for positioning and the aperiodic SRS resource triggering for other purposes. Subsequently, the network device triggers the terminal device to send the aperiodic SRS resource in the activated aperiodic SRS resource set through the DCI, as in step 530 below.
  • the network device sends DCI to the terminal device, where the DCI is used to trigger the aperiodic SRS resource set included in the activated group.
  • the method 500 may further include step 540.
  • the terminal device sends the aperiodic SRS resource in the triggered aperiodic SRS resource set to the network device.
  • the network device configures P groups of aperiodic SRS resources for different purposes, so that combinations of aperiodic SRS resources for different purposes have a corresponding group.
  • the network side only needs to trigger the terminal device to send the aperiodic SRS resources for positioning, the MAC-CE can be used to activate the group containing only the aperiodic SRS resources for positioning.
  • the network side triggers the aperiodic SRS resource in the group of activated aperiodic SRS resources for positioning through DCI, so as to trigger the aperiodic SRS resource for positioning and trigger the aperiodic SRS resource for other purposes.
  • SRS resource decoupling is an example, the network side decoupling.
  • the method 500 can also avoid the RRC reconfiguration process. As long as the MAC-CE is used to quickly switch groups of different combinations, flexible triggering of aperiodic SRS resources for different purposes can be realized.
  • the use for positioning is an example of the desired use.
  • the desired use may also be any other use of the SRS resource, and the implementation of decoupling is similar to both.
  • aperiodic SRS resource set in each embodiment of the present application may include one aperiodic SRS resource, or may include multiple aperiodic SRS resources, which is not limited.
  • the signaling used to activate or trigger the aperiodic SRS resource set in the above embodiments for example, RRC signaling, MAC-CE signaling, etc. are just examples, and can also be replaced by other feasible messages or signaling in the field. , Not limited.
  • FIG. 6 is a schematic block diagram of a communication device 1000 provided by this application.
  • the communication device 1000 includes a receiving unit 1100 and a sending unit 1200.
  • the receiving unit 1100 is configured to receive DCI from a network device, where the DCI includes N bits, where N ⁇ 3 and N is an integer;
  • the sending unit 1200 is configured to send aperiodic SRS resources for positioning according to the DCI;
  • M bits of the N bits are used to trigger aperiodic SRS resource sets for one or more purposes, and the remaining (NM) bits of the N bits are used to indicate whether to trigger Aperiodic SRS resource collection; or,
  • the N bits have L valid states, some of the L valid states only correspond to a set of aperiodic SRS resources for one purpose, and the partially valid state includes at least the aperiodic SRS used for positioning The effective status corresponding to the resource collection; or,
  • the N bits have L valid states, each of the L valid states uniquely corresponds to a non-periodic SRS resource for one purpose, and the aperiodic SRS resource set corresponding to the L valid states includes A collection of located non-periodic SRS resources,
  • M and L are both positive integers.
  • the receiving unit 1100 and the sending unit 1200 can also be integrated into one transceiver unit, which has both receiving and sending functions, which is not limited here.
  • the receiving unit 1100 is also used for:
  • the RRC signaling includes trigger parameter information of aperiodic SRS resources for different purposes, and the trigger parameter information of aperiodic SRS resources for each purpose is associated with all the information contained in the DCI
  • the aperiodic SRS resources of each use will be triggered by the value of the associated valid state, wherein the trigger parameter information of the aperiodic SRS resources of different uses is respectively
  • the setting of the value of the associated effective state is the same as the setting of the one-purpose aperiodic SRS resource set uniquely corresponding to each of the L effective states.
  • the receiving unit 1100 is configured to:
  • Receive media access control unit MAC-CE signaling from a network device where the MAC-CE signaling includes R bits, and each of the R bits uniquely corresponds to a set of aperiodic SRS resources for one purpose , Each of the R bits is used to indicate whether the corresponding aperiodic SRS resource set is activated;
  • Receive DCI from the network device where the DCI is used to trigger the terminal device to send aperiodic SRS resources for positioning, and the aperiodic SRS resources for positioning belong to a set of aperiodic SRS resources for positioning, so The aperiodic SRS resource set used for positioning belongs to the aperiodic SRS resource set activated by the R bits;
  • the sending unit 1200 is configured to send aperiodic SRS resources in the activated aperiodic SRS resource set.
  • the receiving unit 1100 is configured to:
  • RRC signaling from a network device, where the RRC signaling is used to indicate that aperiodic SRS resources of different purposes are configured into multiple groups, and each group includes a set of aperiodic SRS resources of one purpose or multiple purposes;
  • Receive MAC-CE signaling from the network device where the MAC-CE signaling is used to activate one of the multiple groups, and the activated one includes the aperiodic for positioning SRS resource collection;
  • the sending unit 1200 is configured to send the aperiodic SRS resource used for positioning.
  • the communication apparatus 1000 may be a terminal device in the method embodiment.
  • the receiving unit 1100 may be a receiver
  • the sending unit 1200 may be a transmitter.
  • the receiver and transmitter can also be integrated into one transceiver.
  • the communication device 1000 may be a chip or an integrated circuit in a terminal device.
  • the receiving unit 1100 and the sending unit 1200 may be communication interfaces or interface circuits.
  • the receiving unit 1100 is an input interface or an input circuit
  • the sending unit 1200 is an output interface or an output circuit.
  • the communication device 1000 may further include a processing unit 1300 for performing processing and/or operations implemented inside the terminal device in addition to sending and receiving actions.
  • the processing unit 1300 may be a processing device.
  • the function of the processing device can be realized by hardware, or by hardware executing corresponding software.
  • the processing device may include at least one processor and at least one memory, wherein the at least one memory is used to store a computer program, and the at least one processor reads and executes the computer program stored in the at least one memory, so that The communication device 1000 executes operations and/or processing performed by the terminal device in each method embodiment.
  • the processing device may only include a processor, and the memory for storing the computer program is located outside the processing device.
  • the processor is connected to the memory through a circuit/wire to read and execute the computer program stored in the memory.
  • the processing device may also be a chip or an integrated circuit.
  • FIG. 7 is a schematic block diagram of another communication device 2000 provided by this application. As shown in FIG. 7, the communication device 2000 includes a processing unit 2100 and a sending unit 2200.
  • the processing unit 2100 is configured to generate DCI, where the DCI includes N bits, where N ⁇ 3 and N is an integer,
  • M bits of the N bits are used to trigger aperiodic SRS resource sets for one or more purposes, and the remaining (NM) bits of the N bits are used to indicate whether to trigger Aperiodic SRS resource collection; or,
  • the N bits have L valid states, some of the L valid states only correspond to a set of aperiodic SRS resources for one purpose, and the partially valid state includes at least the aperiodic SRS used for positioning The valid status corresponding to the SRS resource set; or,
  • the N bits have L valid states, each of the L valid states uniquely corresponds to a non-periodic SRS resource for one purpose, and the aperiodic SRS resource set corresponding to the L valid states includes Aperiodic SRS resource set for positioning, M and L are both positive integers;
  • the sending unit 2200 is configured to send the DCI to a terminal device.
  • the communication apparatus 2000 may further include a receiving unit 2300, configured to perform the receiving action performed by the network device.
  • the sending unit 2200 is also used for:
  • the RRC signaling includes trigger parameter information of aperiodic SRS resources for different purposes, and the trigger parameter information of aperiodic SRS resources for each purpose is associated with the N contained in the DCI.
  • the value of a valid state of each bit, each use of aperiodic SRS resources will be triggered by the value of the associated effective state, wherein the trigger parameter information of the aperiodic SRS resources of different uses is associated with each
  • the setting of the value of the valid state is the same as the setting of the aperiodic SRS resource set of one purpose uniquely corresponding to each of the L valid states.
  • the sending unit 2200 is configured to:
  • the MAC-CE signaling includes R bits, each of the R bits uniquely corresponds to a set of aperiodic SRS resources for one purpose, and among the R bits Each bit of is used to indicate whether the corresponding aperiodic SRS resource set is activated;
  • the DCI is used to trigger the terminal device to send aperiodic SRS resources for positioning, the aperiodic SRS resources used for positioning belong to the set of aperiodic SRS resources used for positioning, and the The aperiodic SRS resource set for positioning belongs to the aperiodic SRS resource set activated by the R bits;
  • the receiving unit 2300 is further configured to receive the aperiodic SRS resource used for positioning from the terminal device.
  • the sending unit 2200 is configured to:
  • RRC signaling is used to indicate that aperiodic SRS resources of different purposes are configured into multiple groups, and each group includes a set of aperiodic SRS resources of one purpose or multiple purposes;
  • the receiving unit 2300 is further configured to receive the SRS resource used for positioning sent from the terminal device.
  • the communication apparatus 2000 may be a network device (for example, a base station) in the method embodiment.
  • the sending unit 2200 may be a transmitter
  • the receiving unit 2300 may be a receiver.
  • the receiver and transmitter can also be integrated into one transceiver.
  • the processing unit 2100 may be a processing device.
  • the communication device 2000 may be a chip or an integrated circuit installed in a network device.
  • the sending unit 2200 and the receiving unit 2300 may be communication interfaces or interface circuits.
  • the sending unit 2200 is an output interface or an output circuit
  • the receiving unit 2300 is an input interface or an input circuit
  • the processing unit 2100 may be a processing device.
  • the function of the processing device can be realized by hardware, or by hardware executing corresponding software.
  • the processing device may include at least one processor and at least one memory, wherein the at least one memory is used to store a computer program, and the at least one processor reads and executes the computer program stored in the at least one memory, so that The communication device 2000 executes operations and/or processing performed by the network device in each method embodiment.
  • the processing device may only include a processor, and the memory for storing the computer program is located outside the processing device.
  • the processor is connected to the memory through a circuit/wire to read and execute the computer program stored in the memory.
  • the processing device may also be a chip or an integrated circuit.
  • FIG. 8 is a schematic structural diagram of the communication device 10 provided by this application.
  • the communication device 10 includes: one or more processors 11, one or more memories 12 and one or more communication interfaces 13.
  • the processor 11 is used to control the communication interface 13 to send and receive signals
  • the memory 12 is used to store a computer program
  • the processor 11 is used to call and run the computer program from the memory 12, so that the terminal device executes the Processes and/or operations are executed.
  • the processor 11 may have the function of the processing unit 1300 shown in FIG. 6, and the communication interface 13 may have the function of the sending unit 1100 and/or the receiving unit 1200 shown in FIG. 6.
  • the processor 11 may be used to perform the processing or operations performed internally by the terminal device in FIG. 2 to FIG. 5, and the communication interface 13 is used to perform the sending and/or receiving actions performed by the terminal device in FIG. 2 to FIG. .
  • the communication device 10 may be a terminal device in the method embodiment.
  • the communication interface 13 may be a transceiver.
  • the transceiver may include a receiver and a transmitter.
  • the processor 11 may be a baseband device, and the communication interface 13 may be a radio frequency device.
  • the communication device 10 may be a chip or an integrated circuit installed in a terminal device.
  • the communication interface 13 may be an interface circuit or an input/output interface.
  • FIG. 9 is a schematic structural diagram of another communication device 20 provided by this application.
  • the communication device 20 includes: one or more processors 21, one or more memories 22 and one or more communication interfaces 23.
  • the processor 21 is used to control the communication interface 23 to send and receive signals, and the memory 22 is used to store computer programs. Processes and/or operations are executed.
  • the processor 21 may have the function of the processing unit 2100 shown in FIG. 7, and the communication interface 23 may have the function of the sending unit 2200 and/or the receiving unit 2300 shown in FIG. 7.
  • the processor 21 may be used to perform the processing or operations performed by the network device in FIGS. 2 to 5, and the communication interface 33 is used to perform the sending and/or receiving actions performed by the network device in FIGS. 2 to 5 .
  • the communication device 20 may be a network device in the method embodiment.
  • the communication interface 23 may be a transceiver.
  • the transceiver may include a receiver and a transmitter.
  • the processor 21 may be a baseband device, and the communication interface 23 may be a radio frequency device.
  • the communication device 20 may be a chip or an integrated circuit installed in a network device.
  • the communication interface 23 may be an interface circuit or an input/output interface.
  • the memory and the processor in the foregoing device embodiments may be physically independent units, or the memory and the processor may be integrated together, which is not limited herein.
  • this application also provides a computer-readable storage medium in which computer instructions are stored.
  • the operations performed by the terminal device in the method embodiments of this application are And/or the process is executed.
  • the present application also provides a computer-readable storage medium having computer instructions stored in the computer-readable storage medium.
  • the computer instructions When executed on a computer, the operations performed by the network device in the various method embodiments of the present application and/ Or the process is executed.
  • the present application also provides a computer program product.
  • the computer program product includes computer program codes or instructions.
  • the operations performed by the terminal devices in the various method embodiments of the present application and/ Or the process is executed.
  • the application also provides a computer program product.
  • the computer program product includes computer program code or instructions.
  • the operations and/or processes performed by the network device in the method embodiments of the application are Be executed.
  • the present application also provides a chip including a processor.
  • the memory for storing the computer program is provided independently of the chip, and the processor is used to execute the computer program stored in the memory, so that operations and/or processing performed by the terminal device in any method embodiment are executed.
  • the chip may also include a communication interface.
  • the communication interface may be an input/output interface, or an interface circuit or the like.
  • the chip may also include the memory.
  • the application also provides a chip including a processor.
  • the memory for storing the computer program is provided independently of the chip, and the processor is used to execute the computer program stored in the memory, so that the operation and/or processing performed by the network device in any method embodiment is executed.
  • the chip may also include a communication interface.
  • the communication interface may be an input/output interface, or an interface circuit or the like.
  • the chip may also include the memory.
  • the present application also provides a communication device (for example, a chip), including a processor and a communication interface, the communication interface is used to receive a signal and transmit the signal to the processor, and the processor processes The signal enables the operation and/or processing performed by the terminal device in any method embodiment to be executed.
  • a communication device for example, a chip
  • the communication interface is used to receive a signal and transmit the signal to the processor, and the processor processes The signal enables the operation and/or processing performed by the terminal device in any method embodiment to be executed.
  • the present application also provides a communication device (for example, a chip), including a processor and a communication interface, where the communication interface is used to receive a signal and transmit the signal to the processor, and the processor processes the Signal, so that operations and/or processing performed by the network device in any method embodiment are executed.
  • a communication device for example, a chip
  • the communication interface is used to receive a signal and transmit the signal to the processor, and the processor processes the Signal, so that operations and/or processing performed by the network device in any method embodiment are executed.
  • the present application also provides a communication device, including at least one processor, the at least one processor is coupled with at least one memory, and the at least one processor is configured to execute a computer program or instruction stored in the at least one memory, The operation and/or processing performed by the terminal device in any method embodiment is executed.
  • the present application also provides a communication device, including at least one processor, the at least one processor is coupled with at least one memory, and the at least one processor is configured to execute a computer program or instruction stored in the at least one memory, so that any The operations and/or processing performed by the network device in a method embodiment are performed.
  • this application also provides a terminal device, including a processor, a memory, and a transceiver.
  • the memory is used to store computer programs
  • the processor is used to call and run the computer programs stored in the memory, and control the transceiver to send and receive signals, so that the terminal device can perform operations and/or processing performed by the terminal device in any method embodiment. .
  • This application also provides a network device, including a processor, a memory, and a transceiver.
  • the memory is used to store computer programs
  • the processor is used to call and run the computer programs stored in the memory, and control the transceiver to send and receive signals, so that the terminal device can perform the operation and/or processing performed by the network device in any method embodiment. .
  • this application also provides a wireless communication system, including the terminal device and the network device in the embodiment of this application.
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has the ability to process signals.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the processor can be a general-purpose processor, digital signal processor (digital signal processor, DSP), application specific integrated circuit (ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic Devices, discrete gates or transistor logic devices, discrete hardware components.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware encoding processor, or executed and completed by a combination of hardware and software modules in the encoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory direct rambus RAM, DRRAM
  • direct rambus RAM direct rambus RAM
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • a and/or B can mean that there is A alone, and both A and B exist. There are three cases of B. Among them, A, B, and C can all be singular or plural, and are not limited.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种发送非周期SRS资源的方法,网络设备通过对现有的用于触发定位用途的非周期SRS资源的字段所包含的比特进行扩展,并对扩展后的比特的有效状态所表示的含义重新进行定义,使得触发定位用途的非周期SRS和触发其它用途(例如,用于码本传输、非码本传输、波束管理或者天线切换等)解耦,实现对不同用途的非周期SRS资源的灵活触发。

Description

触发非周期SRS资源的方法和通信装置 技术领域
本申请涉及无线通信技术领域,更具体地,涉及一种触发非周期SRS资源的方法和通信装置。
背景技术
新空口(new radio,NR)作为一种新兴的无线电技术,其特有的性质可以在增强定位能力方面提供更多的价值,因此,NR定位成为第三代合作伙伴计划(the third generation partnership project,3GPP)标准的一个重要研究课题。目前,3GPP标准将NR定位技术分为三大部分,独立无线接入技术(radio access technology-independent,RAT-independent)技术、非独立无线接入技术(radio access technology-independent,RAT-dependent),以及RAT-independent和RAT-dependent相结合的技术。其中,RAT-dependent指的是仅仅依靠无线接入技术或者蜂窝网的定位方法。RAT-independent代表除了蜂窝网技术的其它定位技术,例如,蓝牙、无线局域网(wireless local area network,WLAN)、全球导航卫星系统(global navigation satellite system,GNSS)以及惯性测量等方法。其中,RAT-dependent技术中涉及一种基于上行链路的定位技术。
在基于上行链路的定位技术中,主要是由网络侧对终端设备发送的用于定位的探测参考信号(sounding reference signal,SRS)资源进行测量,并根据测量结果对终端设备的位置进行估算。在目前的标准中,用于定位的非周期SRS资源是由基站发送的下行控制信息(downlink control information,DCI)中携带的SRS请求(SRS request)字段触发的。但是,由于通信场景的多样化,SRS请求字段除了触发用于定位的非周期SRS资源,还用于触发其它用途的SRS资源。例如,SRS请求字段的某些状态触发两种或两种以上用途的SRS资源,假设,被触发的非周期SRS资源中包括用于定位的非周期SRS资源,此时,终端设备除了发送被触发的其它用途的非周期SRS资源,即使终端设备或者网络侧没有定位需求,终端设备依然需要发送被触发的用于定位的SRS资源。这种不同用途的非周期SRS资源的触发耦合在一起的状况,会带来很多不利方面。例如,增加了终端设备的处理复杂度、造成终端设备的资源浪费,以及对其它终端设备造成干扰等。
发明内容
本申请提供一种触发非周期SRS资源的方法,能够将用于定位的非周期SRS资源和其它用途的非周期SRS资源的触发解耦,实现对定位用途的非周期SRS资源的灵活触发。
第一方面,本申请提供一种触发非周期SRS资源的方法,该方法包括:
终端设备接收来自于网络设备的下行控制信息DCI,所述DCI包括N个比特,N≥3且N为整数;
终端设备根据所述DCI,发送用于定位的非周期探测参考信号SRS资源;
其中,所述N个比特中的M个比特用于触发一种或多种用途的非周期SRS资源集合,所述N个比特中的剩余(N-M)个比特用于指示是否触发用于定位的非周期SRS资源集合;或者,
所述N个比特具有L个有效状态,所述L个有效状态中的部分有效状态仅对应一种用途的非周期SRS资源集合,所述部分有效状态至少包括和所述用于定位的非周期SRS资源集合对应的有效状态;或者,
所述N个比特具有L个有效状态,所述L个有效状态中的每个有效状态唯一对应一种用途的非周期SRS资源集合,所述L个有效状态对应的非周期SRS资源集合包括用于定位的非周期SRS资源集合,其中,M和L均为正整数。
本申请的技术方案,网络设备通过对现有的DCI中用于触发用于定位的非周期SRS资源的比特进行扩展,并对扩展后的比特的有效状态所表示的含义重新进行定义,使得触发定位用途的非周期SRS和触发其它用途(例如,用于码本传输、非码本传输、波束管理或者天线切换等)解耦,实现对不同用途的非周期SRS资源的灵活触发。
结合第一方面,在第一方面的某些实现方式中,在所述N个比特具有L个有效状态,所述L个有效状态中的每个有效状态唯一对应一种用途的非周期SRS资源集合的情况下,终端设备接收来自于网络设备的DCI之前,该方法还包括:
终端设备接收来自于网络设备的RRC信令,所述RRC信令包括不同用途的非周期SRS资源的触发参数信息,每种用途的非周期SRS资源的触发参数信息关联所述DCI所包含的所述N个比特的一个有效状态的取值,每种用途的非周期SRS资源会被所关联的有效状态的取值所触发,其中,所述不同用途的非周期SRS资源的触发参数信息各自所关联的有效状态的取值的设置与所述L个有效状态中的每个有效状态唯一对应的一种用途的非周期SRS资源集合的设置相同。
结合第一方面,在第一方面的某些实现方式中,所述N个比特可表示2 N个状态,其中,(2 N-L)个状态作为保留状态。
第二方面,本申请提供了一种触发非周期SRS资源的方法,该方法包括:终端设备接收来自于网络设备的媒体接入控制单元MAC-CE信令,所述MAC-CE信令包含R个比特,所述R个比特中的每个比特唯一对应一种用途的非周期SRS资源集合,所述R个比特中的每个比特用于指示所对应的非周期SRS资源集合是否被激活;终端设备接收来自于网络设备的DCI,所述DCI用于触发终端设备发送用于定位的非周期SRS资源,所述用于定位的非周期SRS资源属于用于定位的非周期SRS资源集合,所述用于定位的非周期SRS资源集合属于被所述R个比特激活的非周期SRS资源集合;终端设备发送所述被激活的非周期SRS资源集合中的非周期SRS资源。
第三方面,本申请提供了一种触发非周期SRS资源的方法,该方法包括:终端设备接收来自于网络设备的RRC信令,所述RRC信令用于指示不同用途的非周期SRS资源被配置为多个组,每个组包含一种用途或多种用途的非周期SRS资源集合;终端设备接收来自于网络设备的MAC-CE信令,所述MAC-CE信令用于激活所述多个组中的一个组,所述被激活的一个组包括所述用于定位的非周期SRS资源集合;终端设备接收来自于网络设备的DCI,所述DCI用于触发所述被激活的一个组所包括的非周期SRS资源集合中的用于定位的非周期SRS资源。
结合第三方面,在第三方面的某些实现方式中,该方法还包括:终端设备根据所述DCI,发送所述用于定位的非周期SRS资源。
第四方面,本申请提供一种触发非周期SRS资源的方法,该方法包括:网络设备生成DCI,所述DCI包括N个比特,N≥3且N为整数;
其中,所述N个比特中的M个比特用于触发一种或多种用途的非周期SRS资源集合,所述N个比特中的剩余(N-M)个比特用于指示是否触发用于定位的非周期SRS资源集合;或者,
所述N个比特具有L个有效状态,所述L个有效状态中的部分有效状态仅对应一种用途的非周期SRS资源集合,所述部分有效状态至少包括和所述用于定位的非周期SRS资源集合对应的有效状态;或者,
所述N个比特具有L个有效状态,所述L个有效状态中的每个有效状态唯一对应一种用途的非周期SRS资源,所述L个有效状态对应的非周期SRS资源集合包括用于定位的非周期SRS资源集合,M和L均为正整数;
以及,网络设备向终端设备发送所述DCI。
结合第四方面,在第四方面的某些实现方式中,在所述N个比特具有L个有效状态,所述L个有效状态中的每个有效状态唯一对应一种用途的非周期SRS资源集合的情况下,网络设备向终端设备发送所述DCI之前,该方法还包括:
网络设备向终端设备发送RRC信令,所述RRC信令包括不同用途的非周期SRS资源的触发参数信息,每种用途的非周期SRS资源的触发参数信息关联所述DCI所包含的所述N个比特的一个有效状态的取值,每种用途的非周期SRS资源会被所关联的有效状态的取值所触发,其中,所述不同用途的非周期SRS资源的触发参数信息各自所关联的有效状态的取值的设置与所述L个有效状态中的每个有效状态唯一对应的一种用途的非周期SRS资源集合的设置相同。
结合第四方面,在第四方面的某些实现方式中,所述N个比特可表示2 N个状态,其中,(2 N-L)个状态作为保留状态。
第五方面,本申请提供一种触发非周期SRS资源的方法,该方法包括:网络设备向终端设备发送MAC-CE信令,所述MAC-CE信令包含R个比特,所述R个比特中的每个比特唯一对应一种用途的非周期SRS资源集合,所述R个比特中的每个比特用于指示所对应的非周期SRS资源集合是否被激活;网络设备向终端设备发送DCI,所述DCI用于触发终端设备发送用于定位的非周期SRS资源,所述用于定位的非周期SRS资源属于用于定位的非周期SRS资源集合,所述用于定位的非周期SRS资源集合属于被所述R个比特激活的非周期SRS资源集合;网络设备接收来自于终端设备的所述用于定位的非周期SRS资源。
第六方面,本申请提供一种触发非周期SRS资源的方法,该方法包括:网络设备向终端设备发送RRC信令,所述RRC信令用于指示不同用途的非周期SRS资源被配置为多个组,每个组包含一种用途或多种用途的非周期SRS资源集合;网络设备向终端设备发送MAC-CE信令,所述MAC-CE信令用于激活所述多个组中的一个组,所述被激活的一个组包括所述用于定位的非周期SRS资源集合;网络设备向终端设备发送DCI,所述DCI用于触发所述被激活的一个组所包括的非周期SRS资源集合中的用于定位的非周期 SRS资源。
结合第六方面,在第六方面的某些实现方式中,该方法还包括:网络设备接收来自于终端设备的所述用于定位的非周期SRS资源。
第七方面,本申请提供一种触发非周期SRS资源的方法,能够将不同用途的非周期SRS资源的触发解耦,实现对不同用途的非周期SRS资源的灵活触发,该方法包括:
终端设备接收来自于网络设备的DCI,所述DCI包括N个比特,N≥3且N为整数;
所述终端设备根据所述DCI,发送期望用途的非周期SRS资源;
其中,所述N个比特中的M个比特用于触发一种或多种用途的非周期SRS资源集合,所述N个比特中的剩余(N-M)个比特用于指示是否触发所述期望用途的非周期SRS资源集合;或者,
所述N个比特具有L个有效状态,所述L个有效状态中的部分有效状态仅对应一种用途的非周期SRS资源集合,所述部分有效状态至少包括和所述期望用途的非周期SRS资源集合对应的有效状态;或者,
所述N个比特具有L个有效状态,所述L个有效状态中的每个有效状态唯一对应一种用途的非周期SRS资源集合,所述L个有效状态对应的非周期SRS资源集合包括所述期望用途的非周期SRS资源集合,
其中,M和L均为正整数。
应理解,第七方面中所述的“期望用途的非周期SRS资源”可以是期望与其它用途解耦的任意一种用途的非周期SRS资源。例如,目前标准中定义的SRS资源的用途包括用于码本传输、非码本传输、波束管理、天线切换以及定位共5种用途。所述“期望用途”可以是所述5种用途中的任意一种。换句话说,期望与其它用途解耦的用途,即是“期望用途”。
由此可知,通过第七方面的方法,可以实现任意用途的非周期SRS资源与其它用途的非周期SRS资源的解耦。因此,该方法不仅可以应用在触发定位用途的非周期SRS资源的场景下,使得定位用途的非周期SRS资源的触发不和其它用途的非周期SRS资源的触发耦合在一起,也可以应用于触发其它用途的非周期SRS资源的场景下。
例如,若网络侧需要触发终端设备发送用于波束管理的非周期SRS资源,则第七方面的方法中所述的“期望用途的非周期SRS资源”即为用于波束管理的非周期SRS资源。若网络侧需要触发终端设备发送用于码本传输的非周期SRS资源,则第七方面的方法中所述的“期望用途的非周期SRS资源”即为用于码本传输的非周期SRS资源。不再一一列举。
此外,如果非周期SRS资源的用途除了目前标准中定义的上述5种用途之外,新增了其它用途,本申请技术方案中的“期望用途”也可以是该新增的用途,不作限定。
第八方面,本申请还提供一种触发非周期SRS资源的方法,该方法包括:
终端设备接收来自于网络设备的MAC-CE信令,所述MAC-CE信令包含R个比特,所述R个比特中的每个比特唯一对应一种用途的非周期SRS资源集合,所述R个比特中的每个比特用于指示所对应的非周期SRS资源集合是否被激活,R为正整数;
在所述R个比特中和期望用途对应的非周期SRS资源集合对应的比特用于指示所述期望用途的非周期SRS资源被激活的情况下,所述终端设备接收来自于所述网络设备的DCI,所述DCI用于触发终端设备发送期望用途的非周期SRS资源;
所述终端设备发送所述期望用途的非周期SRS资源集合中的非周期SRS资源。
第九方面,本申请提供一种触发非周期SRS资源的方法,该方法包括:
终端设备接收来自于网络设备的RRC信令,所述RRC信令用于指示不同用途的非周期SRS资源被配置为P个组,每个组包含一种用途或多种用途的非周期SRS资源集合,P>1且P为整数;
所述终端设备接收来自于所述网络设备的MAC-CE信令,所述MAC-CE信令用于激活所述P个组中的一个组;
所述终端设备接收来自于所述网络设备的DCI,所述DCI用于触发所述一个组中包括的非周期SRS资源集合中的非周期SRS资源;
所述终端设备发送所述一个组中包括的非周期SRS资源集合中的非周期SRS资源。
结合第九方面,在第九方面的一种实现方式中,当所述MAC-CE信令用于激活所述P个组中的一个组,且所述一个组中仅包括一种期望用途的非周期SRS资源集合的情况下,所述DCI用于触发所述期望用途的非周期SRS资源集合;以及,终端设备根据所述DCI,发送所述期望用途的非周期SRS资源。
可以理解,在第九方面的方法中,若网络侧需要将某种用途的非周期SRS资源集合的触发与其它用途的非周期SRS资源集合的触发解耦,只需要从所述P个组中选择仅包括期望用途而不包括其它用途的非周期SRS资源集合的组,并通过DCI触发即可。由此,也可以实现将期望用途的非周期SRS资源与其它用途的非周期SRS资源的触发解耦。
第十方面,本申请提供一种通信装置,所述通信装置具有实现第一方面或其任意可能的实现方式中的方法的功能,或者,所述通信装置具有实现第二方面或其任意可能的实现方式中的方法的功能,或者,所述通信装置具有实现第三方面或其任意可能的实现方式中的方法的功能,或者,所述通信装置具有实现第七方面至第九方面或其任意可能的实现方式中的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
第十一方面,本申请提供一种通信装置,所述通信装置具有实现第四方面或其任意可能的实现方式中的方法的功能,或者,所述通信装置具有实现第五方面或其任意可能的实现方式中的方法的功能,或者,所述通信装置具有实现第六方面或其任意可能的实现方式中的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
第十二方面,本申请提供一种终端设备,包括处理器、存储器和收发器。其中,存储器用于存储计算机程序,处理器用于调用并运行存储器中存储的计算机程序,并控制收发器收发信号,以使终端设备执行如第一方面或其任意可能的实现方式中的方法,或者,执行如第二方面或其任意可能的实现方式中的方法,或者,执行如第三方面或其任意可能的实现方式中的方法,或者,执行如第七方面至第九方面或其任意可能的实现方式中的方法。
第十三方面,本申请提供一种网络设备,包括处理器、存储器和收发器。其中,存储器用于存储计算机程序,处理器用于调用并运行存储器中存储的计算机程序,并控制收发器收发信号,以使终端设备执行如第四方面或其任意可能的实现方式中的方法,或者,执行如第五方面或其任意可能的实现方式中的方法,或者,执行如第六方面或其任意可能的实现方式中的方法。
第十四方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,当所述计算机指令在计算机上被执行时,如第一方面或其任意可能的实现方式中的方法被实现,或者,如第二方面或其任意可能的实现方式中的方法被实现,或者,如第三方面或其任意可能的实现方式中的方法被实现,或者,如第七方面至第九方面或其任意可能的实现方式中的方法被实现。
第十五方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,当所述计算机指令在计算机上被执行时,如第四方面或其任意可能的实现方式中的方法被实现,或者,如第五方面或其任意可能的实现方式中的方法被实现,或者,如第六方面或其任意可能的实现方式中的方法被实现。
第十六方面,本申请提供一种计算机程序产品,所述计算机程序产品包括计算机程序或代码,当所述计算机程序或代码在计算机上被运行时,如第一方面或其任意可能的实现方式中的方法被实现,或者,如第二方面或其任意可能的实现方式中的方法被实现,或者,如第三方面或其任意可能的实现方式中的方法被实现,或者,如第七方面至第九方面或其任意可能的实现方式中的方法被实现。
第十七方面,本申请提供一种计算机程序产品,所述计算机程序产品包括计算机程序或代码,当所述计算机程序或代码在计算机上被运行时,如第四方面或其任意可能的实现方式中的方法被实现,或者,如第五方面或其任意可能的实现方式中的方法被实现,或者,如第六方面或其任意可能的实现方式中的方法被实现。
第十八方面,本申请提供一种通信装置,包括处理器和通信接口,所述通信接口用于接收信号并将所述信号传输至所述处理器,所述处理器处理所述信号,以使得如第一方面或其任意可能的实现方式中的方法被执行,或者,如第二方面或其任意可能的实现方式中的方法被执行,或者,如第三方面或其任意可能的实现方式中的方法被执行,或者,如第七方面至第九方面或其任意可能的实现方式中的方法被执行。
第十九方面,本申请提供一种通信装置,包括处理器和通信接口,所述通信接口用于接收信号并将所述信号传输至所述处理器,所述处理器处理所述信号,以使得如第四方面或其任意可能的实现方式中的方法被执行,或者,如第五方面或其任意可能的实现方式中的方法被执行,或者,如第六方面或其任意可能的实现方式中的方法被执行。
第二十方面,本申请提供一种无线通信系统,包括如第十二方面所述的终端设备和第十三方面所述的网络设备。
附图说明
图1为基于上行链路的定位技术的一般流程。
图2为本申请提供的触发非周期SRS资源的一种方法的示意图。
图3为本申请提供的触发非周期SRS资源的另一种方法的示意图。
图4为本申请提供的触发非周期SRS资源的一个示例。
图5为本申请提供的触发非周期SRS资源的另一种方法的示意图。
图6为本申请提供的通信装置1000的示意性框图。
图7为本申请提供的另一通信装置2000的示意性框图。
图8为本申请提供的通信装置10的示意性结构图。
图9为本申请提供的另一通信装置20的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
参见图1,图1为基于上行链路的定位技术的一般流程。如图1,基于上行链路的定位技术,通常只需要基站侧对上行链路的参考信号进行测量,利用基于上行-观测到达时间差(uplink-observed time difference of arrival,UL-TDOA)技术和基于上行观测-到达角(uplink-angle of arrival,UL-AOA)技术。这些定位技术的实现基本都需要经过如下步骤:首先,服务基站向用户设备(user equipment,UE)指示发送上行参考信号的配置信息。UE在接收到基站的指示后开始发送SRS。服务基站和邻基站对接收到的SRS进行相关测量,例如,测量SRS的到达时间、到达角度或者参考信号接收功率(reference signal received power,RSRP)等。最后,基站将测量得到的结果上报给定位管理功能(location management function,LMF),由LMF利用测量结果进行对UE的位置进行估算。
在上述定位过程中,最重要的过程是网络侧(例如,服务基站和邻基站)需要对UE发送的用于定位的SRS进行测量,以得到SRS的到达时间或到达角度,进而才能得出UE与基站的距离和方向,并估算UE的位置。对于UE来说,UE需要根据从基站接收的SRS的配置信息来发送SRS。SRS的配置信息通常可以包括SRS资源的带宽、周期、初始化值以及时频位置等。并且,基站还需要同时给UE配置多个SRS资源或资源集。这里,资源集是指由多个SRS资源组成的集合。
目前,用于定位的SRS资源支持周期、半静态和非周期配置。其中,周期SRS资源是指当高层无线资源控制(radio resource control,RRC)信令配置完SRS资源之后,UE就会按照配置的周期不断地发送SRS资源。其中,半静态SRS资源是指在RRC信令配置完SRS资源后,UE不会立即发送SRS资源,而是需要基站通过媒体介入控制单元(medium access control-control element,MAC-CE)信令激活之后,UE再以配置的周期不断地发送SRS资源,直到MAC-CE信令去激活后才停止发送。非周期SRS资源是指基站通过RRC信令配置完SRS资源之后,基站通过DCI来触发非周期SRS资源的发送,并且只发送一次。
需要说明的是,这里所说的SRS资源的时域行为(例如,周期、半静态或非周期)是在SRS资源集合的级别上配置的,即如果一个SRS资源集合被配置为周期的,那么该SRS资源集合中包含的所有SRS资源都是周期的。因此,本申请中提及的SRS资源是周期的,是指该SRS资源所属的SRS资源集合是周期的。
本申请主要涉及用于定位的非周期SRS资源的触发过程。
在目前的标准中,用于定位的非周期SRS资源的触发机制与版本15(Rel-15)的非周期SRS资源的触发机制是相同的,即,利用DCI format 0_1,format 0_2,format 1-1,format 1-2,format 2-3中的SRS请求(SRS request)字段来触发非周期的SRS资源是否发送。其中,SRS request字段(也称为SRS request域)的不同取值在DCI的各格式下所代表的含义如表1所示。
表1
Figure PCTCN2020084165-appb-000001
如表1所示,SRS request字段包括2个比特,如果使用DCI format 0_1,0_2,1-1,1-2来触发,并且所述2比特设置为“00”,表示不触发任何非周期SRS资源的发送。如果所述2比特设置为“01”,表示触发在SRS-config中把“aperiodicSRS-ResourceTrigger”字段设置为1的非周期SRS资源集。如果所述2比特设置为“10”,表示触发在SRS-config中把“aperiodicSRS-ResourceTrigger”字段设置为2的非周期SRS资源集。如果所述2比特设置为“11”,表示触发在SRS-config中把“aperiodicSRS-ResourceTrigger”字段设置为3的非周期SRS资源集。
如果使用DCI format 2_3来触发,需要分两种情况。在一种情况下,当高层参数SRS-TPC-PDCCH-Group设置为“type B”,则SRS request字段代表的含义以及触发机制与表1中DCI format 0_1、0_2、1_1、1_2中的相同。在另一种情况下,当高层参数SRS-TPC-PDCCH-Group设置为“type A”,且如果SRS request字段设置为“00”,仍表示不触发任何非周期SRS资源。如果SRS request字段设置为“01”,代表的是触发第一组服务小区中用作天线的非周期SRS(即,SRS-resource set for antenna Switching)以及用于定位的非周期SRS(即,SRS-resource set for positioning)。如果SRS request字段设置为“10”,代表的是触发第二组服务小区中用作天线的非周期SRS以及用于定位的非周期SRS。如果SRS request字段设置为“11”,代表的是触发第三组服务小区中用作天线的非周期SRS以及用于定位的非周期SRS。
可见,在目前标准的触发机制中,用于触发非周期SRS资源发送的SRS request字段包括2比特,总共可以表示4种状态,其中,“00”不触发任何非周期SRS资源,因而只有3个状态“01”,“10”和“11”用于触发非周期SRS资源。因此,SRS request字段最多可以分别触发3种用途的SRS资源。而目前,非周期SRS资源的用途除了用于定位,还包 括其它的用途,例如用于码本传输、用于非码本传输、用于波束管理、用于天线切换等。那么,基于上述触发机制,则SRS request字段如果用于触发上述5种状态,必然有一些状态触发了两种或两种以上用途的SRS资源。
这里需要说明的是,在非周期SRS资源的触发机制中,SRS资源是由RRC信令配置的,当UE进入连接态之后就从基站侧接收到了SRS资源的配置信息,后续只需要基站通过DCI激活。如果SRS request字段的一种状态触发了多种用途的SRS资源,当UE或者网络侧没有定位需求的情况下,用于触发其它用途的SRS资源的DCI可能同时触发了用于定位的非周期SRS资源的发送,在这种情况下,即使UE或者网络侧没有定位需求,UE依然需要发送被SRS request字段触发的用于定位的SRS资源。也即,按照目前标准的SRS request字段触发非周期SRS资源,必然出现不同用途的非周期SRS资源的触发耦合在一起的状况,这样会有很多不利方面。
为此,本申请提供一种解决方案,可以灵活地触发用于定位的非周期SRS资源,使得触发用于定位的非周期SRS资源和触发其它用途的SRS资源解耦。
需要说明的是,根据本申请的技术方案,可以实现将各种不同用途的非周期SRS资源的触发解耦。本申请的技术方案除了可以应用在触发用于定位的非周期SRS资源的场景下,也可以应用于触发其它用途的非周期SRS资源的场景下,本申请不作限制。本领域技术人员能够理解,将本申请各实施例中的用于定位的非周期SRS资源(集合)替换为所期望的用途(例如,用于码本传输、用于非码本传输、用于天线切换或用于波束管理等)的非周期SRS资源,则可以实现将“期望用途”的非周期SRS资源的触发与其它用途的非周期SRS资源的触发解耦。以下实施例中仅以将触发定位用途的非周期SRS资源和触发其它用途的非周期SRS资源进行解耦为例进行说明。
下面介绍本申请的技术方案。
参见图2,图2为本申请提供的触发非周期SRS资源的一种方法的示意图。
210、网络设备向终端设备发送DCI,DCI包括N个比特,N≥3且N为整数。
终端设备接收来自于网络设备的DCI。
其中,在一种实现方式中,所述N个比特中的M个比特用于触发一种或多种用途的非周期SRS资源集合,所述N个比特中的剩余(N-M)个比特用于指示是否触发用于定位的非周期SRS资源集合。
如上文所述,传统的DCI的SRS request字段包括2个比特,在本申请中,作为一个示例,在传统的SRS request字段中增加1个比特,增加的该1比特用于指示是否触发用于定位的非周期SRS资源集合。
也即,保持Rel-15中的非周期SRS资源集合的触发机制不变,在原有的基础上,在SRS request字段中增加1个比特,该1比特用于指示是否触发用于定位的非周期SRS资源集合。例如,增加的1比特设置为“1”,表示触发用于定位的非周期SRS资源集合;增加的1比特设置为“0”,表示不触发用于定位的非周期SRS资源集合。
需要说明的是,在这种实现方式中,SRS request字段原有的2比特所指示的SRS资源的用途不变。由此可以理解的是,若SRS request字段原有的2比特触发的SRS资源集合中不包括用于定位的非周期SRS资源集合,或者说,SRS request字段原有的2比特触发的非周期SRS资源的用途中不包括定位的用途,则增加的1比特应被设置为不触发用 于定位的非周期SRS资源集合。但是,若SRS request字段原有的2比特触发的非周期SRS资源集合包括用于定位的非周期SRS资源集合,或者说,SRS request字段原有的2比特触发的非周期SRS资源的用途中包括定位的用途,则增加的1比特可以被设置为不触发定位的用途,也可以被设置为触发定位的用途。
下面结合表2进行举例说明。在表2中,假设SRS request字段原本包括2个比特,新增加1比特用于指示是否触发用于定位的非周期SRS资源集合。由此,SRS request字段共包括3比特,假设按照从左向右的顺序,假设最高位(即,第1位)为增加的1比特。
表2
Figure PCTCN2020084165-appb-000002
应理解,上述实施例中以1增加1个比特作为示例,也可以增加2比特或者更多比特来指示是否触发用于定位的非周期SRS资源集合。
此外,以上将N个比特的最高位设置为新增加的比特也是作为示例,容易想到其它的变形形式,例如,将新增加的1个比特设置在最低位或者其它位置也是可行的,本申请不作限制。
在另一种实现方式中,所述N个比特具有L个有效状态,所述L个有效状态中的部分有效状态仅对应一种用途的非周期SRS资源集合,所述一种用途的非周期SRS资源集合至少包括用于定位的非周期SRS资源集合。
换句话说,所述N个比特具有L个有效状态,所述L个有效状态中的部分有效状态 仅用于触发非周期SRS资源的一种用途。若设计所述部分有效状态中的某一种有效状态仅用于触发非周期SRS资源的定位的用途,则可以实现将触发定位的非周期SRS资源和触发其它用途的非周期SRS资源解耦。
在这种实现方式中,作为一个示例,在SRS request字段原来的2比特的基础上,增加若干个比特(例如,1个比特),对SRS request字段的长度进行扩展,使得扩展后的SRS request字段共包括N个比特,所述N个比特可以表示L个有效状态,其中,所述L个有效状态中的一个有效状态仅用于触发定位用途的SRS资源。其中,L<2 N,N和L均为整数。
应理解,N个比特总共可以表示2 N个状态,可选地,作为一个示例,其余的(2 N-L)个状态可以作为保留状态,或者可以用于单独触发非周期SRS资源新增加的其它用途,本申请不作限定。
例如,扩展后的SRS request字段共包括3个比特,其中,3个比特可以表示8个状态,分别为000,001,010,011,100,101,110和111。与扩展前的SRS request字段相比,扩展后的SRS request字段所能表示的状态增加了4个。可以定义上述8个状态中的前4个状态与扩展前的SRS request字段的2比特所表示的含义相同,此外,再从增加的4个状态中选择一个状态专门用于触发定位用途的非周期SRS资源。
可选地,作为另一个示例,所述N个比特具有L个有效状态,所述L个有效状态中的每个有效状态唯一对应一种用途的非周期SRS资源,所述L个有效状态对应的非周期SRS资源集合包括用于定位的非周期SRS资源集合。
换句话说,所述N个比特具有L个有效状态,每个有效状态仅用于触发一种用途的非周期SRS资源集合,这样,也可以实现将触发用于定位的非周期SRS资源集合和触发其它用途的非周期SRS资源集合解耦。实际上,通过这种方式,可以实现将所有不同用途的非周期SRS资源的触发解耦。下面结合表3进行说明。
表3
SRS request字段表示的状态 触发的SRS资源
000 不触发任何用途的非周期SRS资源
001 触发用于码本的SRS资源
010 触发用于非码本的SRS资源
011 触发用于波束管理的SRS资源
100 触发用于天线切换的SRS资源
101 触发用于定位的SRS资源
110 保留
111 保留
应理解,在本申请中,有效状态是指被定义用于指示非周期SRS资源的用途的状态。例如,表3中,“110”和“111”可以认为不属于上述有效状态。
此外,需要注意的是,在后一种示例中(例如,表3的示例),由于扩展后的SRS request字段的N个比特对应的L个有效状态的含义改变(即,与扩展前的SRS request字段的2个比特表示的含义不同),因此,对于不同用途的非周期SRS资源的触发参数信息,需 要设置成与表3相对应。
即是说,每种用途的非周期SRS资源的触发参数信息关联所述N个比特的一个有效状态的取值,每种用途的非周期SRS资源会被所关联的有效状态的取值所触发。其中,不同用途的非周期SRS资源的触发参数信息各自所关联的有效状态的取值的设置与所述L个有效状态中的每个有效状态唯一对应的一种用途的非周期SRS资源集合的设置相同。
具体地,非周期SRS资源的触发参数信息具体可以为“aperiodicSRS-ResourceTrigger”字段。
例如,对于用于码本的SRS资源,aperiodicSRS-ResourceTrigger字段应设置为1,对应表3中的有效状“001”;
对于用于非码本的SRS资源,aperiodicSRS-ResourceTrigger字段应设置为2,对应表3中的有效状“010”;
对于用于波束管理的SRS资源,aperiodicSRS-ResourceTrigger字段应设置为3,对应表3中的有效状“011”;
对于用于天线切换的SRS资源,aperiodicSRS-ResourceTrigger字段应设置为4,对应表3中的有效状“100”;
对于用于定位的SRS资源,aperiodicSRS-ResourceTrigger字段应设置为5,对应表3中的有效状“101”。
220、终端设备根据DCI,发送用于定位的非周期的SRS资源集合中的非周期SRS资源。
终端设备根据DCI的SRS request字段所触发的非周期SRS资源的用途,发送与所述被触发的用途对应的非周期SRS资源。具体地,终端设备根据在接收DCI之前,从网络设备接收到的各种用途的非周期SRS资源的配置信息,发送与所述被触发的用途对应的非周期SRS资源。
例如,DCI的SRS request字段仅触发用于定位的非周期SRS资源集合,则终端设备向网络侧发送用于定位的非周期SRS资源集合中的非周期SRS资源,供网络侧测量,进而实现网络侧对UE的位置的估算。
下面再提供一种比特映射的方法,可以实现各种不同用途的非周期SRS资源的触发的解耦。
参见如下图3。图3示出了本申请提供的触发非周期SRS资源的另一种方法的示意图。
310、网络设备向终端设备发送MAC-CE信令,所述MAC-CE信令用于指示是否激活非周期SRS资源集合。
其中,所述MAC-CE信令包含R个比特,所述R个比特中的每个比特唯一对应一种用途的非周期SRS资源集合,所述R个比特中的每个比特用于指示所对应的非周期SRS资源集合是否被激活,R为正整数。
终端设备接收来自于网络设备的所述MAC-CE信令。根据所述MAC-CE信令,终端设备可以获知被激活非周期SRS资源集合。并且,根据所述R比特和非周期SRS资源集合之间的映射关系,终端设备可以获知非周期SRS资源的哪些用途被激活。
例如,如果为了实现对终端设备进行定位,网络侧可以将所述R个比特中与定位用途的非周期SRS资源集合对应的比特设置为“激活”,其它用途设置为“去激活”,从而,可 以将触发用于定位的非周期SRS资源与触发其它用途的非周期SRS资源解耦。
在该实施例中,只有被激活的非周期SRS资源集合,后续才会被DCI触发。假设步骤310中,所述MAC-CE信令激活了用于定位的非周期SRS资源集合,则网络设备再通过DCI触发被激活的所述用于定位的非周期SRS资源集合,如下面的步骤320。
320、网络设备向终端设备发送DCI,所述DCI用于触发终端设备发送用于定位的非周期SRS资源。
其中,所述用于定位的非周期SRS资源属于用于定位的SRS资源集合,所述用于定位的SRS资源集合属于被所述R个比特激活的非周期SRS资源集合。
终端设备接收来自于网络设备的所述DCI。
330、终端设备发送所述被触发的用于定位的非周期SRS资源集合中的SRS资源。
下面对图3提供的比特映射的方法进行举例说明。
例如,在MAC-CE信令中增加一个字段或比特映射(bitmap),该bitmap用于激活RRC信令中配置的非周期SRS资源集合。具体地,bitmap中的每个比特唯一对应一个非周期SRS资源集合。若bitmap中的某个比特被设置为1,表示该比特对应的非周期SRS资源(集合)被激活,并且,只有被激活的非周期SRS资源(集合)才会被DCI触发。
假设,网络侧共配置了5个非周期SRS资源(集合),其中,每个非周期SRS资源(集合)分别对应一种用途,分别为码本传输、非码本传输、波束管理、天线切换以及定位。作为一个示例,bitmap的长度可以设置为5个比特,所述5个比特按照从最高位到最低位(也即,从左到右)的顺序,每个比特对应的用途分别为码本传输、非码本传输、波束管理、天线切换以及定位。
作为一个示例,所述5个比特中的部分比特如果被设置为1(也可以设置其他数值或标识),表示这些比特对应的用途的非周期SRS资源被激活。例如,bitmap被设置为“00001”,则从左到右的第5个比特(也即,最低位的比特)被设置为1,表示第5个比特对应的非周期SRS资源(即,用于定位用途的非周期SRS资源)被激活。则后续,网络侧只会通过DCI触发用于定位的非周期SRS资源的发送。
作为一个示例,DCI中的SRS request字段的长度可以根据bitmap所激活的非周期SRS资源的个数来配置。
例如,如果bitmap仅激活了一种用途的非周期SRS资源,则DCI通过1比特即可指示是否触发该用途的非周期SRS资源。例如,在上面的示例中,bitmap被设置为“00001”,则网络侧仅激活了用于定位的非周期SRS资源,则DCI可以通过1比特来指示是否触发用于定位的非周期SRS资源。作为一个示例,DCI被设置为1,表示触发用于定位的非周期SRS资源,DCI被设置为0,表示不触发用于定位的非周期SRS资源。
又例如,如果bitmap激活了两种或者两种以上用途的非周期SRS资源,则DCI可以通过2比特或者更多比特来指示是否触发被激活的非周期SRS资源。例如,DCI也可以设置为5个比特,其中,每个比特对应一种用途的非周期SRS资源。其中,如果网络侧触发被MAC-CE信令激活的某个非周期SRS资源,则DCI的5个比特中对应该用途的SRS资源的比特被设置为1,否则设置为0。此外,未被MAC-CE激活的非周期SRS资源对应的比特也设置为0。
例如,假设MAC-CE信令的bitmap被设置为“10001”,表示用于码本传输的SRS资 源和用于定位的SRS资源被激活。进一步地,网络侧向终端设备发送DCI,DCI被设置为“00001”,其中,按照从左向右的顺序,第1个比特设置为0,表示不触发用于码本传输的SRS资源,第5个比特设置为1,表示触发用于定位的SRS资源。另外,结合bitmap表示的含义,DCI的除了第1个比特和第5个比特之外的其余比特被设置为0,表示其它用途的SRS资源未被激活。
又例如,假设MAC-CE信令的bitmap被设置为“10001”,表示用于码本传输的SRS资源和用于定位的SRS资源被激活。进一步地,网络侧向终端设备发送DCI,DCI包括2个比特,其中,所述2个比特分别表示4种状态,分别为00,01,10和11。按照bitmap包含的比特对应的非周期SRS资源的用途,上述4种状态分别表示被激活的两种用途的SRS资源是否被触发的组合。例如,00表示用于码本传输的SRS资源和用于定位的SRS资源均不触发。01表示用于码本传输的SRS资源不被触发,而用于定位的SRS资源被触发。10表示用于码本传输的SRS资源被触发,而用于定位的SRS资源不被触发。11表示用于码本传输的SRS资源和用于定位的SRS资源均被触发。
可见,方法300与方法200的具体实现虽然不同,方法300也可以实现将不同用途的非周期SRS资源的触发解耦。
此外,本申请还提供一种另一种触发非周期SRS资源的方法,网络侧在RRC信令中增加字段(或者称为扩展字段),对不同用途的非周期SRS资源进行分组,然后,根据需要触发的非周期SRS资源的用途,网络设备使用MAC-CE激活其中一组非周期SRS资源。最后,网络侧再用DCI触发该组中的非周期SRS资源,如图4所示。
参见图4,图4为本申请提供的触发非周期SRS资源的一个示例。例如,网络侧通过RRC信令,将不同用途的非周期SRS资源配置为P个组,其中,P>0且P为整数。每个组包括一种用途或多种用途的非周期SRS资源。或者说,每个组代表了不同用途的SRS资源的组合。在一个示例中,假设共有Q种用途的非周期SRS资源,则
Figure PCTCN2020084165-appb-000003
其中,Q为正整数。假设Q=5,则
Figure PCTCN2020084165-appb-000004
在另一个示例中,网络侧可以仅配置P个组中的部分组,对于一些不常使用的非周期SRS资源的用途的组合不作配置,本申请不作限制。
可选地,作为一个示例,网络设备可以在高层参数SRS-config中增加一个字段“group”来实现。例如,网络侧在不同用途的SRS资源的配置参数中,将字段“group”设置为{1,2,3,…,N}中的一个或多个取值,表示激活“group”对应的组。进一步地,当MAC-CE激活所述字段“group”对应的组的中的任意一个时,DCI都会触发该组中的用于定位的非周期SRS资源集合。
例如,在图4的示例中,用于定位的非周期SRS资源既属于第五组,也属于第N组,其它包含用于定位用途的非周期SRS资源的组暂且忽略。在这种情况下,网络侧可以将高层参数SRS-config的字段“group”设置为{5,N},当MAC-CE激活第5组或者第N组的情况下,DCI的SRS request字段都会触发用于定位的非周期SRS资源的发送。
作为一个示例,高层参数SRS-config的配置可以如下字段所示:
Figure PCTCN2020084165-appb-000005
Figure PCTCN2020084165-appb-000006
参见图5,图5为本申请提供的触发非周期SRS资源的另一种方法的示意图。
510、网络设备向终端设备发送RRC信令,所述RRC信令包括扩展字段,所述扩展字段用于将不同用途的非周期SRS资源配置为P个组,每个组包含一种用途或多种用途的非周期SRS资源集合,其中,P>1且P为整数。
这里,多种用途包括两种用途以及两种以上的用途。
终端设备接收来自于网络设备的RRC信令,并根据RRC信令,获知不同用途的非周期SRS资源构成的所述P个组。
520、网络设备向终端设备发送MAC-CE信令,所述MAC-CE信令用于激活所述P个组中的一个组。
终端设备接收来自于网络设备的MAC-CE信令,并根据所述MAC-CE信令,获知被激活的组。
可以理解的是,所述P个组可以包括非周期SRS资源的不同用途的全部组合,因此,网络侧可以根据需要触发的不同用途的非周期SRS资源,从所述P个组中选择合适的组,通过MAC-CE信令触发。
以图4所示为例,如果网络侧仅需要触发一种用途的非周期SRS资源,以将该用途的非周期SRS资源的触发和其它用途的非周期SRS资源的触发解耦,网络设备仅需要激活所述P个组中仅包括所需用途的组即可。
例如,网络设备仅需要触发终端设备发送用于定位的非周期SRS资源,则网络设备通过MAC-CE激活第5组即可。又例如,网络设备仅需要触发用于波束管理的非周期SRS资源,则网络设备通过MAC-CE激活第3组即可。
又例如,若网络设备需要触发多个用途的非周期SRS资源,网络设备从所述P个组 中选择相应的组合,并通过MAC-CE激活即可。例如,网络设备需要触发用于码本传输和用于波束管理的两种用途的非周期SRS资源,则网络设备通过MAC-CE激活第6组即可。以此类推,不再赘述。
如果网络侧为了实现对终端设备进行定位,网络设备仅需要触发终端设备发送用于定位的非周期SRS资源,则网络设备通过MAC-CE激活第5组即可。从而,可以将触发用于定位的非周期SRS资源与触发其它用途的非周期SRS资源解耦。后续,网络设备再通过DCI触发终端设备发送被激活的非周期SRS资源集合中的非周期SRS资源,如下面的步骤530。
530、网络设备向终端设备发送DCI,DCI用于触发所述被激活的组中所包含的非周期SRS资源集合。
进一步地,方法500还可以包括步骤540。
540、终端设备向网络设备发送被触发的非周期SRS资源集合中的非周期SRS资源。
可以理解的是,在图5的方法中,网络设备通过配置不同用途的非周期SRS资源的P个组,使得不同的用途的非周期SRS资源的组合都有一个对应的组。如果网络侧只需要触发终端设备发送用于定位的非周期SRS资源,则可以通过MAC-CE来激活仅包含用于定位的非周期SRS资源的组即可。进一步地,网络侧再通过DCI触发该被激活的用于定位的非周期SRS资源的组中的非周期SRS资源,即可实现将触发用于定位的非周期SRS资源和触发其它用途的非周期SRS资源解耦。
另外,方法500还可以避免RRC的重配过程,只要通过MAC-CE快速切换不同组合的组,就能实现对不同用途的非周期SRS资源的灵活触发。
在本申请各实施例中,用于定位的用途是期望用途的一个示例。所述期望用途还可以是SRS资源的其它任意一个用途,并且解耦的实现方式与均是类似的。
另外,本申请各实施例中的非周期SRS资源集合中可以包括一个非周期SRS资源,也可以包括多个非周期SRS资源,不作限定。
以上各实施例中用于激活或触发非周期SRS资源集合的信令,例如,RRC信令、MAC-CE信令等仅是作为示例,也可以替换为本领域其它可行的消息或信令等,不作限定。
以上对本申请提供的触发非周期SRS资源的方法进行了详细说明,下面介绍本申请提供的通信装置。
参见图6,图6为本申请提供的通信装置1000的示意性框图。如图6,通信装置1000包括接收单元1100和发送单元1200。
接收单元1100,用于接收来自于网络设备的DCI,所述DCI包括N个比特,N≥3且N为整数;
发送单元1200,用于根据所述DCI,发送用于定位的非周期SRS资源;
其中,所述N个比特中的M个比特用于触发一种或多种用途的非周期SRS资源集合,所述N个比特中的剩余(N-M)个比特用于指示是否触发用于定位的非周期SRS资源集合;或者,
所述N个比特具有L个有效状态,所述L个有效状态中的部分有效状态仅对应一种用途的非周期SRS资源集合,所述部分有效状态至少包括所述用于定位的非周期SRS资源集合对应的有效状态;或者,
所述N个比特具有L个有效状态,所述L个有效状态中的每个有效状态唯一对应一种用途的非周期SRS资源,所述L个有效状态对应的非周期SRS资源集合包括用于定位的非周期SRS资源集合,
其中,M和L均为正整数。
可选地,接收单元1100和发送单元1200也可以集成为一个收发单元,同时具备接收和发送的功能,这里不作限定。
可选地,在一个实施例中,在所述N个比特具有L个有效状态,所述L个有效状态中的每个有效状态唯一对应一种用途的非周期SRS资源集合的情况下,所述接收单元1100还用于:
接收来自于所述网络设备的RRC信令,所述RRC信令包括不同用途的非周期SRS资源的触发参数信息,每种用途的非周期SRS资源的触发参数信息关联所述DCI所包含的所述N个比特的一个有效状态的取值,每种用途的非周期SRS资源会被所关联的有效状态的取值所触发,其中,所述不同用途的非周期SRS资源的触发参数信息各自所关联的有效状态的取值的设置与所述L个有效状态中的每个有效状态唯一对应的一种用途的非周期SRS资源集合的设置相同。
可选地,在另一个实施例中,接收单元1100用于:
接收来自于网络设备的媒体接入控制单元MAC-CE信令,所述MAC-CE信令包含R个比特,所述R个比特中的每个比特唯一对应一种用途的非周期SRS资源集合,所述R个比特中的每个比特用于指示所对应的非周期SRS资源集合是否被激活;
接收来自于所述网络设备的DCI,所述DCI用于触发终端设备发送用于定位的非周期SRS资源,所述用于定位的非周期SRS资源属于用于定位的非周期SRS资源集合,所述用于定位的非周期SRS资源集合属于被所述R个比特激活的非周期SRS资源集合;
以及,所述发送单元1200,用于发送所述被激活的非周期SRS资源集合中的非周期SRS资源。
可选地,在另一个实施例中,接收单元1100用于:
接收来自于网络设备的RRC信令,所述RRC信令用于指示不同用途的非周期SRS资源被配置为多个组,每个组包含一种用途或多种用途的非周期SRS资源集合;
接收来自于所述网络设备的MAC-CE信令,所述MAC-CE信令用于激活所述多个组中的一个组,所述被激活的一个组包括所述用于定位的非周期SRS资源集合;
接收来自于所述网络设备的DCI,所述DCI用于触发所述被激活的一个组所包括的非周期SRS资源集合中的用于定位的非周期SRS资源。
以及,发送单元1200用于发送所述用于定位的非周期SRS资源。
在一种实现方式中,通信装置1000可以为方法实施例中的终端设备。在这种实现方式中,接收单元1100可以为接收器,发送单元1200可以为发射器。接收器和发射器也可以集成为一个收发器。
在另一种实现方式中,通信装置1000可以为终端设备中的芯片或集成电路。在这种实现方式中,接收单元1100和发送单元1200可以为通信接口或者接口电路。例如,接收单元1100为输入接口或输入电路,发送单元1200为输出接口或输出电路。
此外,通信装置1000还可以包括处理单元1300,用于执行除了发送和接收的动作之 外由终端设备内部实现的处理和/或操作。
处理单元1300可以为处理装置。其中,处理装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。例如,处理装置可以包括至少一个处理器和至少一个存储器,其中,所述至少一个存储器用于存储计算机程序,所述至少一个处理器读取并执行所述至少一个存储器中存储的计算机程序,使得通信装置1000执行各方法实施例中由终端设备执行的操作和/或处理。
可选地,处理装置可以仅包括处理器,用于存储计算机程序的存储器位于处理装置之外。处理器通过电路/电线与存储器连接,以读取并执行存储器中存储的计算机程序。可选地,在一些示例中,处理装置还可以为芯片或集成电路。
参见图7,图7为本申请提供的另一通信装置2000的示意性框图。如图7,通信装置2000包括处理单元2100和发送单元2200。
处理单元2100,用于生成DCI,所述DCI包括N个比特,N≥3且N为整数,
其中,所述N个比特中的M个比特用于触发一种或多种用途的非周期SRS资源集合,所述N个比特中的剩余(N-M)个比特用于指示是否触发用于定位的非周期SRS资源集合;或者,
所述N个比特具有L个有效状态,所述L个有效状态中的部分有效状态仅对应一种用途的非周期SRS资源集合,所述部分有效状态至少包括和所述用于定位的非周期SRS资源集合对应的有效状态;或者,
所述N个比特具有L个有效状态,所述L个有效状态中的每个有效状态唯一对应一种用途的非周期SRS资源,所述L个有效状态对应的非周期SRS资源集合包括用于定位的非周期SRS资源集合,M和L均为正整数;
所述发送单元2200,用于向终端设备发送所述DCI。
可选地,通信装置2000还可以包括接收单元2300,用于执行由网络设备执行的接收的动作。
可选地,在一个实施例中,在所述N个比特具有L个有效状态,所述L个有效状态中的每个有效状态唯一对应一种用途的非周期SRS资源集合的情况下,所述发送单元2200还用于:
向所述终端设备发送RRC信令,所述RRC信令包括不同用途的非周期SRS资源的触发参数信息,每种用途的非周期SRS资源的触发参数信息关联所述DCI所包含的所述N个比特的一个有效状态的取值,每种用途的非周期SRS资源会被所关联的有效状态的取值所触发,其中,所述不同用途的非周期SRS资源的触发参数信息各自所关联的有效状态的取值的设置与所述L个有效状态中的每个有效状态唯一对应的一种用途的非周期SRS资源集合的设置相同。
可选地,在另一个实施例中,发送单元2200用于:
向终端设备发送MAC-CE信令,所述MAC-CE信令包含R个比特,所述R个比特中的每个比特唯一对应一种用途的非周期SRS资源集合,所述R个比特中的每个比特用于指示所对应的非周期SRS资源集合是否被激活;
向所述终端设备发送DCI,所述DCI用于触发终端设备发送用于定位的非周期SRS资源,所述用于定位的非周期SRS资源属于用于定位的非周期SRS资源集合,所述用于 定位的非周期SRS资源集合属于被所述R个比特激活的非周期SRS资源集合;
以及,接收单元2300,还用于接收来自于所述终端设备的所述用于定位的非周期SRS资源。
可选,在另一个实施例中,发送单元2200用于:
向终端设备发送RRC信令,所述RRC信令用于指示不同用途的非周期SRS资源被配置为多个组,每个组包含一种用途或多种用途的非周期SRS资源集合;
向所述终端设备发送MAC-CE信令,所述MAC-CE信令用于激活所述多个组中的一个组,所述被激活的一个组包括所述用于定位的非周期SRS资源集合;
向所述终端设备发送DCI,所述DCI用于触发所述被激活的一个组所包括的非周期SRS资源。
以及,所述接收单元2300还用于接收来自于所述终端设备发送的所述用于定位的SRS资源。
在一种实现方式中,通信装置2000可以为方法实施例中的网络设备(例如,基站)。在这种实现方式中,发送单元2200可以为发射器,接收单元2300可以为接收器。接收器和发射器也可以集成为一个收发器。处理单元2100可以为处理装置。
在另一种实现方式中,通信装置2000可以为安装在网络设备中的芯片或集成电路。在这种实现方式中,发送单元2200和接收单元2300可以为通信接口或者接口电路。例如,发送单元2200为输出接口或输出电路,接收单元2300为输入接口或输入电路,处理单元2100可以为处理装置。
其中,处理装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。例如,处理装置可以包括至少一个处理器和至少一个存储器,其中,所述至少一个存储器用于存储计算机程序,所述至少一个处理器读取并执行所述至少一个存储器中存储的计算机程序,使得通信装置2000执行各方法实施例中由网络设备执行的操作和/或处理。可选地,处理装置可以仅包括处理器,用于存储计算机程序的存储器位于处理装置之外。处理器通过电路/电线与存储器连接,以读取并执行存储器中存储的计算机程序。可选地,在一些示例中,处理装置还可以芯片或集成电路。
参见图8,图8为本申请提供的通信装置10的示意性结构图。如图8,通信装置10包括:一个或多个处理器11,一个或多个存储器12以及一个或多个通信接口13。处理器11用于控制通信接口13收发信号,存储器12用于存储计算机程序,处理器11用于从存储器12中调用并运行该计算机程序,以使得本申请各方法实施例中由终端设备执行的流程和/或操作被执行。
例如,处理器11可以具有图6中所示的处理单元1300的功能,通信接口13可以具有图6中所示的发送单元1100和/或接收单元1200的功能。具体地,处理器11可以用于执行图2-图5中由终端设备内部执行的处理或操作,通信接口13用于执行图2-图5中由终端设备执行的发送和/或接收的动作。
在一种实现方式中,通信装置10可以为方法实施例中的终端设备。在这种实现方式中,通信接口13可以为收发器。收发器可以包括接收器和发射器。可选地,处理器11可以为基带装置,通信接口13可以为射频装置。在另一种实现中,通信装置10可以为安装在终端设备中的芯片或者集成电路。在这种实现方式中,通信接口13可以为接口电路或 者输入/输出接口。
参见图9,图9为本申请提供的另一通信装置20的示意性结构图。如图9,通信装置20包括:一个或多个处理器21,一个或多个存储器22以及一个或多个通信接口23。处理器21用于控制通信接口23收发信号,存储器22用于存储计算机程序,处理器21用于从存储器22中调用并运行该计算机程序,以使得本申请各方法实施例中由网络设备执行的流程和/或操作被执行。
例如,处理器21可以具有图7中所示的处理单元2100的功能,通信接口23可以具有图7中所示的发送单元2200和/或接收单元2300的功能。具体地,处理器21可以用于执行图2-图5中由网络设备内部执行的处理或操作,通信接口33用于执行图2-图5中由网络设备执行的发送和/或接收的动作。
在一种实现方式中,通信装置20可以为方法实施例中的网络设备。在这种实现方式中,通信接口23可以为收发器。收发器可以包括接收器和发射器。可选地,处理器21可以为基带装置,通信接口23可以为射频装置。在另一种实现中,通信装置20可以为安装在网络设备中的芯片或者集成电路。在这种实现方式中,通信接口23可以为接口电路或者输入/输出接口。
可选的,上述各装置实施例中的存储器与处理器可以是物理上相互独立的单元,或者,存储器也可以和处理器集成在一起,本文不做限定。
此外,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得本申请各方法实施例中由终端设备执行的操作和/或流程被执行。
本申请还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得本申请各方法实施例中由网络设备执行的操作和/或流程被执行。
此外,本申请还提供一种计算机程序产品,计算机程序产品包括计算机程序代码或指令,当计算机程序代码或指令在计算机上运行时,使得本申请各方法实施例中由终端设备执行的操作和/或流程被执行。
本申请还提供一种计算机程序产品,计算机程序产品包括计算机程序代码或指令,当计算机程序代码或指令在计算机上运行时,使得本申请各方法实施例中由网络设备执行的操作和/或流程被执行。
此外,本申请还提供一种芯片,所述芯片包括处理器。用于存储计算机程序的存储器独立于芯片而设置,处理器用于执行存储器中存储的计算机程序,以使得任意一个方法实施例中由终端设备执行的操作和/或处理被执行。
进一步地,所述芯片还可以包括通信接口。所述通信接口可以是输入/输出接口,也可以为接口电路等。进一步地,所述芯片还可以包括所述存储器。
本申请还提供一种芯片,所述芯片包括处理器。用于存储计算机程序的存储器独立于芯片而设置,处理器用于执行存储器中存储的计算机程序,以使得任意一个方法实施例中由网络设备执行的操作和/或处理被执行。
进一步地,所述芯片还可以包括通信接口。所述通信接口可以是输入/输出接口,也可以为接口电路等。进一步地,所述芯片还可以包括所述存储器。
此外,本申请还提供一种通信装置(例如,可以为芯片),包括处理器和通信接口,所述通信接口用于接收信号并将所述信号传输至所述处理器,所述处理器处理所述信号,以使得任意一个方法实施例中由终端设备执行的操作和/或处理被执行。
本申请还提供一种通信装置(例如,可以为芯片),包括处理器和通信接口,所述通信接口用于接收信号并将所述信号传输至所述处理器,所述处理器处理所述信号,以使得任意一个方法实施例中由网络设备执行的操作和/或处理被执行。
此外,本申请还提供一种通信装置,包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合,所述至少一个处理器用于执行所述至少一个存储器中存储的计算机程序或指令,使得任意一个方法实施例中由终端设备执行的操作和/或处理被执行。
本申请还提供一种通信装置,包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合,所述至少一个处理器用于执行所述至少一个存储器中存储的计算机程序或指令,使得任意一个方法实施例中由网络设备执行的操作和/或处理被执行。
此外,本申请还提供一种终端设备,包括处理器、存储器和收发器。其中,存储器用于存储计算机程序,处理器用于调用并运行存储器中存储的计算机程序,并控制收发器收发信号,以使终端设备执行任意一个方法实施例中由终端设备执行的操作和/或处理。
本申请还提供一种网络设备,包括处理器、存储器和收发器。其中,存储器用于存储计算机程序,处理器用于调用并运行存储器中存储的计算机程序,并控制收发器收发信号,以使终端设备执行任意一个方法实施例中由网络设备执行的操作和/或处理。
此外,本申请还提供一种无线通信系统,包括本申请实施例中的终端设备和网络设备。
本申请实施例中的处理器可以是集成电路芯片,具有处理信号的能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。本申请实施例公开的方法的步骤可以直接体现为硬件编码处理器执行完成,或者用编码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总 线随机存取存储器(direct rambus RAM,DRRAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。其中,A、B以及C均可以为单数或者复数,不作限定。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (27)

  1. 一种触发非周期SRS资源的方法,其特征在于,包括:
    终端设备接收来自于网络设备的下行控制信息DCI,所述DCI包括N个比特,N≥3且N为整数;
    所述终端设备根据所述DCI,发送用于定位的非周期探测参考信号SRS资源;
    其中,所述N个比特中的M个比特用于触发一种或多种用途的非周期SRS资源集合,所述N个比特中的剩余(N-M)个比特用于指示是否触发用于定位的非周期SRS资源集合;或者,
    所述N个比特具有L个有效状态,所述L个有效状态中的部分有效状态仅对应一种用途的非周期SRS资源集合,所述部分有效状态至少包括所述用于定位的非周期SRS资源集合对应的有效状态;或者,
    所述N个比特具有L个有效状态,所述L个有效状态中的每个有效状态唯一对应一种用途的非周期SRS资源,所述L个有效状态对应的非周期SRS资源集合包括用于定位的非周期SRS资源集合,
    其中,M和L均为正整数。
  2. 根据权利要求1所述的方法,其特征在于,在所述N个比特具有L个有效状态,所述L个有效状态中的每个有效状态唯一对应一种用途的非周期SRS资源集合的情况下,所述终端设备接收来自于网络设备的DCI之前,所述方法还包括:
    所述终端设备接收来自于所述网络设备的RRC信令,所述RRC信令包括不同用途的非周期SRS资源的触发参数信息,每种用途的非周期SRS资源的触发参数信息关联所述DCI所包含的所述N个比特的一个有效状态的取值,每种用途的非周期SRS资源会被所关联的有效状态的取值所触发,其中,所述不同用途的非周期SRS资源的触发参数信息各自所关联的有效状态的取值的设置与所述L个有效状态中的每个有效状态唯一对应的一种用途的非周期SRS资源集合的设置相同。
  3. 根据权利要求1或2所述的方法,其特征在于,所述N个比特可表示2 N个状态,其中,(2 N-L)个状态作为保留状态。
  4. 一种触发非周期SRS资源的方法,其特征在于,包括:
    终端设备接收来自于网络设备的媒体接入控制单元MAC-CE信令,所述MAC-CE信令包含R个比特,所述R个比特中的每个比特唯一对应一种用途的非周期SRS资源集合,所述R个比特中的每个比特用于指示所对应的非周期SRS资源集合是否被激活,R为正整数;
    所述终端设备接收来自于所述网络设备的DCI,所述DCI用于触发终端设备发送用于定位的非周期SRS资源,所述用于定位的非周期SRS资源属于用于定位的非周期SRS资源集合,所述用于定位的非周期SRS资源集合属于被所述R个比特激活的非周期SRS资源集合;
    所述终端设备发送所述被触发的非周期SRS资源集合中的非周期SRS资源。
  5. 一种触发非周期SRS资源的方法,其特征在于,包括:
    终端设备接收来自于网络设备的RRC信令,所述RRC信令用于指示不同用途的非周期SRS资源被配置为多个组,每个组包含一种用途或多种用途的非周期SRS资源集合;
    所述终端设备接收来自于所述网络设备的MAC-CE信令,所述MAC-CE信令用于激活所述多个组中的一个组,所述被激活的一个组包括所述用于定位的非周期SRS资源集合;
    所述终端设备接收来自于所述网络设备的DCI,所述DCI用于触发所述被激活的一个组所包括的非周期SRS资源集合中的用于定位的非周期SRS资源。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据所述DCI,发送被触发的非周期SRS资源集合中的所述用于定位的非周期SRS资源。
  7. 一种触发非周期SRS资源的方法,其特征在于,包括:
    网络设备生成DCI,所述DCI包括N个比特,N≥3且N为整数;
    其中,所述N个比特中的M个比特用于触发一种或多种用途的非周期SRS资源集合,所述N个比特中的剩余(N-M)个比特用于指示是否触发用于定位的非周期SRS资源集合;或者,
    所述N个比特具有L个有效状态,所述L个有效状态中的部分有效状态仅对应一种用途的非周期SRS资源集合,所述部分有效状态至少包括所述用于定位的非周期SRS资源集合对应的有效状态;或者,
    所述N个比特具有L个有效状态,所述L个有效状态中的每个有效状态唯一对应一种用途的非周期SRS资源,所述L个有效状态对应的非周期SRS资源集合包括用于定位的非周期SRS资源集合,M和L均为正整数;
    以及,所述网络设备向终端设备发送所述DCI。
  8. 根据权利要求7所述的方法,其特征在于,在所述N个比特具有L个有效状态,所述L个有效状态中的每个有效状态唯一对应一种用途的非周期SRS资源集合的情况下,所述网络设备向终端设备发送所述DCI之前,所述方法还包括:
    所述网络设备向所述终端设备发送RRC信令,所述RRC信令包括不同用途的非周期SRS资源的触发参数信息,每种用途的非周期SRS资源的触发参数信息关联所述DCI所包含的所述N个比特的一个有效状态的取值,每种用途的非周期SRS资源会被所关联的有效状态的取值所触发,其中,所述不同用途的非周期SRS资源的触发参数信息各自所关联的有效状态的取值的设置与所述L个有效状态中的每个有效状态唯一对应的一种用途的非周期SRS资源集合的设置相同。
  9. 根据权利要求7或8所述的方法,其特征在于,所述N个比特可表示2 N个状态,其中,(2 N-L)个状态作为保留状态。
  10. 一种触发非周期SRS资源的方法,其特征在于,包括:
    网络设备向终端设备发送MAC-CE信令,所述MAC-CE信令包含R个比特,所述R个比特中的每个比特唯一对应一种用途的非周期SRS资源集合,所述R个比特中的每个比特用于指示所对应的非周期SRS资源集合是否被激活,R为正整数;
    所述网络设备向所述终端设备发送DCI,所述DCI用于触发终端设备发送用于定位的非周期SRS资源,所述用于定位的非周期SRS资源属于用于定位的非周期SRS资源集合, 所述用于定位的非周期SRS资源集合属于被所述R个比特激活的非周期SRS资源集合;
    所述网络设备接收来自于所述终端设备的所述用于定位的非周期SRS资源。
  11. 一种触发非周期SRS资源的方法,其特征在于,包括:
    网络设备向终端设备发送RRC信令,所述RRC信令用于指示不同用途的非周期SRS资源被配置为多个组,每个组包含一种用途或多种用途的非周期SRS资源集合;
    所述网络设备向所述终端设备发送MAC-CE信令,所述MAC-CE信令用于激活所述多个组中的一个组,所述被激活的一个组包括所述用于定位的非周期SRS资源集合;
    所述网络设备向所述终端设备发送DCI,所述DCI用于触发所述被激活的一个组所包括的非周期SRS资源集合中的用于定位的非周期SRS资源。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收来自于所述终端设备的所述用于定位的非周期SRS资源。
  13. 一种通信装置,其特征在于,包括:
    接收单元,用于接收来自于网络设备的下行控制信息DCI,所述DCI包括N个比特,N≥3且N为整数;
    发送单元,用于根据所述DCI,发送用于定位的非周期SRS资源;
    其中,所述N个比特中的M个比特用于触发一种或多种用途的非周期SRS资源集合,所述N个比特中的剩余(N-M)个比特用于指示是否触发用于定位的非周期SRS资源集合;或者,
    所述N个比特具有L个有效状态,所述L个有效状态中的部分有效状态仅对应一种用途的非周期SRS资源集合,所述部分有效状态至少包括所述用于定位的非周期SRS资源集合对应的有效状态;或者,
    所述N个比特具有L个有效状态,所述L个有效状态中的每个有效状态唯一对应一种用途的非周期SRS资源,所述L个有效状态对应的非周期SRS资源集合包括用于定位的非周期SRS资源集合,
    其中,M和L均为正整数。
  14. 根据权利要求13所述的通信装置,其特征在于,在所述N个比特具有L个有效状态,所述L个有效状态中的每个有效状态唯一对应一种用途的非周期SRS资源集合的情况下,所述接收单元还用于:
    接收来自于所述网络设备的RRC信令,所述RRC信令包括不同用途的非周期SRS资源的触发参数信息,每种用途的非周期SRS资源的触发参数信息关联所述DCI所包含的所述N个比特的一个有效状态的取值,每种用途的非周期SRS资源会被所关联的有效状态的取值所触发,其中,所述不同用途的非周期SRS资源的触发参数信息各自所关联的有效状态的取值的设置与所述L个有效状态中的每个有效状态唯一对应的一种用途的非周期SRS资源集合的设置相同。
  15. 根据权利要求13或14所述的通信装置,其特征在于,所述N个比特可表示2 N个状态,其中,(2 N-L)个状态作为保留状态。
  16. 一种通信装置,其特征在于,包括:
    接收单元,用于接收来自于网络设备的媒体接入控制单元MAC-CE信令,所述MAC-CE信令包含R个比特,所述R个比特中的每个比特唯一对应一种用途的非周期SRS 资源集合,所述R个比特中的每个比特用于指示所对应的非周期SRS资源集合是否被激活,R为正整数;
    所述接收单元,还用于接收来自于所述网络设备的DCI,所述DCI用于触发终端设备发送用于定位的非周期SRS资源,所述用于定位的非周期SRS资源属于用于定位的非周期SRS资源集合,所述用于定位的非周期SRS资源集合属于被所述R个比特激活的非周期SRS资源集合;
    发送单元,用于发送被触发的所述非周期SRS资源集合中的非周期SRS资源。
  17. 一种通信装置,其特征在于,包括:
    接收单元,用于接收来自于网络设备的RRC信令,所述RRC信令用于指示不同用途的非周期SRS资源被配置为多个组,每个组包含一种用途或多种用途的非周期SRS资源集合;
    所述接收单元,还用于接收来自于所述网络设备的MAC-CE信令,所述MAC-CE信令用于激活所述多个组中的一个组,所述被激活的一个组包括所述用于定位的非周期SRS资源集合;
    所述接收单元,还用于接收来自于所述网络设备的DCI,所述DCI用于触发所述被激活的一个组所包括的非周期SRS资源集合中的用于定位的非周期SRS资源。
  18. 根据权利要求17所述的通信装置,其特征在于,所述通信装置还包括:
    发送单元,用于根据所述DCI,发送所述用于定位的非周期SRS资源。
  19. 一种通信装置,其特征在于,包括:
    处理单元,用于生成DCI,所述DCI包括N个比特,N≥3且N为整数;
    其中,所述N个比特中的M个比特用于触发一种或多种用途的非周期SRS资源集合,所述N个比特中的剩余(N-M)个比特用于指示是否触发用于定位的非周期SRS资源集合;或者,
    所述N个比特具有L个有效状态,所述L个有效状态中的部分有效状态仅对应一种用途的非周期SRS资源集合,所述部分有效状态至少包括所述用于定位的非周期SRS资源集合对应的有效状态;或者,
    所述N个比特具有L个有效状态,所述L个有效状态中的每个有效状态唯一对应一种用途的非周期SRS资源,所述L个有效状态对应的非周期SRS资源集合包括用于定位的非周期SRS资源集合,M和L均为正整数;
    以及,发送单元,用于向终端设备发送所述DCI。
  20. 根据权利要求19所述的通信装置,其特征在于,在所述N个比特具有L个有效状态,所述L个有效状态中的每个有效状态唯一对应一种用途的非周期SRS资源集合的情况下,所述发送单元还用于:
    向所述终端设备发送RRC信令,所述RRC信令包括不同用途的非周期SRS资源的触发参数信息,每种用途的非周期SRS资源的触发参数信息关联所述DCI所包含的所述N个比特的一个有效状态的取值,每种用途的非周期SRS资源会被所关联的有效状态的取值所触发,其中,所述不同用途的非周期SRS资源的触发参数信息各自所关联的有效状态的取值的设置与所述L个有效状态中的每个有效状态唯一对应的一种用途的非周期SRS资源集合的设置相同。
  21. 根据权利要求19或20所述的通信装置,其特征在于,所述N个比特可表示2 N个状态,其中,(2 N-L)个状态作为保留状态。
  22. 一种通信装置,其特征在于,包括:
    发送单元,用于向终端设备发送MAC-CE信令,所述MAC-CE信令包含R个比特,所述R个比特中的每个比特唯一对应一种用途的非周期SRS资源集合,所述R个比特中的每个比特用于指示所对应的非周期SRS资源集合是否被激活,R为正整数;
    所述发送单元,还用于向所述终端设备发送DCI,所述DCI用于触发终端设备发送用于定位的非周期SRS资源,所述用于定位的非周期SRS资源属于用于定位的非周期SRS资源集合,所述用于定位的非周期SRS资源集合属于被所述R个比特激活的非周期SRS资源集合;
    接收单元,用于接收来自于所述终端设备的所述用于定位的非周期SRS资源。
  23. 一种通信装置,其特征在于,包括:
    发送单元,用于向终端设备发送RRC信令,所述RRC信令用于指示不同用途的非周期SRS资源被配置为多个组,每个组包含一种用途或多种用途的非周期SRS资源集合;
    所述发送单元,还用于向所述终端设备发送MAC-CE信令,所述MAC-CE信令用于激活所述多个组中的一个组,所述被激活的一个组包括所述用于定位的非周期SRS资源集合;
    所述发送单元,还用于向所述终端设备发送DCI,所述DCI用于触发所述被激活的一个组所包括的非周期SRS资源集合中的用于定位的非周期SRS资源。
  24. 根据权利要求23所述的通信装置,其特征在于,所述通信装置还包括:
    接收单元,用于接收来自于所述终端设备的所述用于定位的非周期SRS资源。
  25. 一种通信装置,其特征在于,包括处理器和接口电路,其中,所述接口电路用于接收计算机代码或指令并将其传输至所述处理器,所述处理器运行所述计算机代码或指令,如权利要求1-6中任一项所述的方法被实现,或者,如权利要求7-12中任一项所述的方法被实现。
  26. 一种通信装置,其特征在于,其特征在于,包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合,所述至少一个处理器用于执行所述至少一个存储器中存储的计算机程序或指令,当所述计算机程序或指令被执行时,如权利要求1-6中任一项所述的方法被实现,或者,如权利要求7-12中任一项所述的方法被实现。
  27. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机指令,当所述计算机指令被运行时,如权利要求1-6中任一项所述的方法被实现,或者,如权利要求7-12中任一项所述的方法被实现。
PCT/CN2020/084165 2020-04-10 2020-04-10 触发非周期srs资源的方法和通信装置 WO2021203405A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/084165 WO2021203405A1 (zh) 2020-04-10 2020-04-10 触发非周期srs资源的方法和通信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/084165 WO2021203405A1 (zh) 2020-04-10 2020-04-10 触发非周期srs资源的方法和通信装置

Publications (1)

Publication Number Publication Date
WO2021203405A1 true WO2021203405A1 (zh) 2021-10-14

Family

ID=78023843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/084165 WO2021203405A1 (zh) 2020-04-10 2020-04-10 触发非周期srs资源的方法和通信装置

Country Status (1)

Country Link
WO (1) WO2021203405A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180288755A1 (en) * 2017-03-31 2018-10-04 Futurewei Technologies, Inc. System and Method for Beam Management in High Frequency Multi-Carrier Operations with Spatial Quasi Co-Locations
CN110535572A (zh) * 2019-05-15 2019-12-03 中兴通讯股份有限公司 上行信息反馈资源确定方法和装置
CN110838902A (zh) * 2018-08-17 2020-02-25 电信科学技术研究院有限公司 一种上行传输方法及装置
CN110945822A (zh) * 2017-12-01 2020-03-31 Lg 电子株式会社 在无线通信系统中的上行链路发送和接收方法及其装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180288755A1 (en) * 2017-03-31 2018-10-04 Futurewei Technologies, Inc. System and Method for Beam Management in High Frequency Multi-Carrier Operations with Spatial Quasi Co-Locations
CN110945822A (zh) * 2017-12-01 2020-03-31 Lg 电子株式会社 在无线通信系统中的上行链路发送和接收方法及其装置
CN110838902A (zh) * 2018-08-17 2020-02-25 电信科学技术研究院有限公司 一种上行传输方法及装置
CN110535572A (zh) * 2019-05-15 2019-12-03 中兴通讯股份有限公司 上行信息反馈资源确定方法和装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Outcome of email thread [100e-NR-Pos-ULRS-04]", 3GPP DRAFT; R1-2001289, vol. RAN WG1, 3 March 2020 (2020-03-03), pages 1 - 7, XP051858899 *
HUAWEI: "Introduction of NR positioning suppport", 3GPP TSG-RAN WG1 MEETING #99 R1-1913687, vol. RAN WG1, 22 November 2019 (2019-11-22), Reno, USA, pages 1 - 15, XP051838237 *
HUAWEI; HISILICON: "[Offline-611][POS] Summary on support of non-periodic SRS cases", 3GPP DRAFT; R2-2001935, vol. RAN WG2, 11 March 2020 (2020-03-11), pages 1 - 13, XP051864574 *

Similar Documents

Publication Publication Date Title
WO2019095893A1 (zh) 传输配置指示tci的传输方法、网络侧设备和终端设备
WO2019095692A1 (zh) 测量csi-rs的方法和指示方法,网络设备、终端
WO2019128873A1 (zh) 一种波束训练方法及相关设备
WO2019090522A1 (zh) D2d通信中资源配置的方法、终端设备和网络设备
WO2020001532A1 (zh) 定位参考信号配置方法、网络侧设备和终端设备
WO2017190659A1 (zh) 配置探测参考信号的方法和装置
WO2018228535A1 (zh) 传输方法、网络设备和终端
CN108810932A (zh) 信道状态信息处理方法及其装置
WO2019179350A1 (zh) 资源选择方法、用户设备和网络侧设备
ES2860274T3 (es) Método para determinar parámetros de transmisión de señal de enlace ascendente, terminal y dispositivo de red
JP7047086B2 (ja) データの伝送方法、端末機器およびネットワーク機器
US11968699B2 (en) Radio communication method and device
WO2018228176A1 (zh) 通信方法、终端设备和网络设备
WO2020164517A1 (zh) 用于测量信号的方法和通信装置
WO2021087828A1 (zh) 激活或者更新srs的路损rs的方法和设备
WO2019184696A1 (zh) 配置物理下行控制信道的方法、用户设备和网络侧设备
WO2019157801A1 (zh) 资源上报的方法、终端设备和网络设备
US11770833B2 (en) Communication method, terminal device, and network device
WO2019157789A1 (zh) 资源上报的方法、终端设备和网络设备
WO2019029290A1 (zh) 一种波束信息的指示、确定方法及装置、通信系统
JP7386359B2 (ja) ビーム報告の方法及び装置
WO2019127462A1 (zh) 无线通信方法、终端设备和网络设备
WO2019029405A1 (zh) 通信方法与设备
WO2021203405A1 (zh) 触发非周期srs资源的方法和通信装置
WO2021087827A1 (zh) 激活或者更新pusch路损rs的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20930041

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20930041

Country of ref document: EP

Kind code of ref document: A1