WO2021201362A1 - Mobile micro-robot control apparatus - Google Patents

Mobile micro-robot control apparatus Download PDF

Info

Publication number
WO2021201362A1
WO2021201362A1 PCT/KR2020/014984 KR2020014984W WO2021201362A1 WO 2021201362 A1 WO2021201362 A1 WO 2021201362A1 KR 2020014984 W KR2020014984 W KR 2020014984W WO 2021201362 A1 WO2021201362 A1 WO 2021201362A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
coil
magnetic
control device
mobile
Prior art date
Application number
PCT/KR2020/014984
Other languages
French (fr)
Korean (ko)
Inventor
박종오
김창세
최은표
홍아영
김자영
강병전
Original Assignee
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교산학협력단 filed Critical 전남대학교산학협력단
Publication of WO2021201362A1 publication Critical patent/WO2021201362A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/73Manipulators for magnetic surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J7/00Micromanipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/12Programme-controlled manipulators characterised by positioning means for manipulator elements electric
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00345Micromachines, nanomachines, microsystems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/73Manipulators for magnetic surgery
    • A61B2034/731Arrangement of the coils or magnets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/376Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy

Definitions

  • the present invention relates to a mobile microrobot control device.
  • Electromagnetic field devices for driving micro-robots inside the human body outside the human body are being developed.
  • Wired or wireless microrobots are being used depending on the purpose of the procedure in the human body, and technologies for controlling the direction and size of a magnetic field through an electromagnetic field device to drive the microrobot are known or under development.
  • a plurality of electromagnets/permanent magnets are disposed in consideration of disease sites in the human body and motion characteristics of microrobots, and an electromagnetic field control device having a fixed or movable system structure is being developed.
  • the previously developed electromagnetic field control device has a large number of electromagnets used, which increases the device size, making it inefficient to install and operate the device in the treatment space. It is inefficient from various operational viewpoints.
  • the number of magnets used is small, but there is a limit in controlling the microrobot.
  • the permanent magnet has a constant magnetization value, which drives the robot by changing the distance between the robot and the magnet and changing the direction of the magnet, so there is a limit in control performance. Due to the time difference, it is difficult to control the magnetic field in real time.
  • the existing electromagnetic field control device has a problem in that it is difficult to use it interchangeably with an already installed x-ray device due to the limitations of the size of the device and the arrangement direction of the electromagnets or permanent magnets.
  • the present inventors have completed the mobile microrobot control apparatus of the present invention and a mobile microrobot control system including the same in order to solve the problems of the prior art.
  • the present invention has been devised to solve the above-described problems in the prior art, and an object of the present invention is to be able to rotate and move a magnetic field generator including two electromagnet coils arranged to be symmetrical to each other on a two-dimensional plane.
  • An object of the present invention is to provide a movable microrobot control device including a rotary moving unit and a linear moving unit capable of linearly moving the magnetic field generating unit.
  • Another object of the present invention is to control a bed, a movable microrobot control device provided on both sides in the longitudinal direction of the bed, an X-ray device provided at one end in the longitudinal direction of the bed, and the movable microrobot control device and control for controlling the X-ray device a magnetic field generating unit including two electromagnet coils disposed to be symmetrical to each other on a two-dimensional plane, a rotational moving unit capable of rotating the magnetic field generating unit, and the magnetic field generating unit It is to provide a mobile microrobot control system, characterized in that it includes a linear moving part that can be moved linearly.
  • a mobile microrobot control apparatus comprising: a magnetic field generator including two electromagnet coils arranged to be symmetrical to each other on a two-dimensional plane; a rotational movement unit capable of rotationally moving the magnetic field generator; and a linear moving unit capable of linearly moving the magnetic field generating unit.
  • it may further include a magnetic field generator including two electromagnet coils arranged to be symmetrical to each other on a two-dimensional plane forming 30 to 90 degrees with the two-dimensional plane.
  • the electromagnet coil may be a solenoid coil, and the solenoid coil may be configured by winding a magnetic core made of a similar substance in a central portion and a coil wound on the outside of the magnetic core.
  • the electromagnet coil may be composed of a square coil, a circular coil, and a saddle coil in the form of an air core.
  • the solenoid coil may include a core protrusion in which the magnetic core is not wound by the coil for magnetic field focusing.
  • the core protrusion has a cylindrical shape having the same diameter as the inner diameter of the solenoid coil, or the diameter of the part where the core protrusion starts is the same as the inner diameter of the solenoid coil and the diameter of the end of the core protrusion is relative to the inner diameter of the solenoid coil , and the shape of the core protrusion may be formed in various shapes, such as a truncated cone shape or a shape in which a cylinder and a truncated cone are combined. In addition, the core protrusion may have the same diameter as the outer diameter of the solenoid coil.
  • the electromagnet coil may include a magnetic shield to increase the strength of the magnetic field.
  • the magnetic shield may be positioned outside the coil winding portion on which the coil is wound and may be configured to surround all or a part of the coil winding portion, and the coil winding portion and the magnetic
  • the length ratio of the shielding part may be 4 to 1:1 to 3, and preferably, the length ratio of the coil winding part and the magnetic shielding part is 4:1, 3:1, 3:2, 4:3, 1:1 days. and, more preferably, a length ratio of 4:3.
  • the rotational moving unit may be connected to one side of the magnetic field generating unit so that the magnetic field generating unit can rotate in a circle around a region of interest where the magnetic field is desired to be generated.
  • the rotary moving unit may include a driving means capable of rotating in a circular motion by configuring two electromagnet coils on one axis, and the driving means may be a motor.
  • the two rotating moving units may be configured to rotate independently.
  • the linear moving unit may be configured to be connected to one side of the rotary moving unit to linearly move the magnetic field generating unit to a region of interest where magnetic field generation is desired.
  • the linear moving part can be moved to the same length as the bed by placing rails in the longitudinal direction on both sides of the bed.
  • the linear moving unit is provided with a wheel that can be rotated by an external force, so that the magnetic field generating unit is moved in the longitudinal direction of the bed to be positioned in the region of interest.
  • a separate locking device capable of controlling the rotation of the wheel may be provided in order to fix the magnetic field generating unit to the corresponding position after moving to the region of interest.
  • a mobile microrobot control system for achieving the object of the present invention is a bed; A mobile microrobot control device provided on both sides in the longitudinal direction of the bed; X-ray device provided at one end in the longitudinal direction of the bed; and a control device for controlling the mobile microrobot controller and the X-ray device, wherein the mobile microrobot controller includes: a magnetic field generator including two electromagnet coils disposed to be symmetrical to each other on a two-dimensional plane; a rotational movement unit capable of rotationally moving the magnetic field generator; and a linear moving unit capable of linearly moving the magnetic field generating unit.
  • the present invention may further include an image navigation system.
  • the image navigation system is based on the 3D treatment environment, the microrobot movement path, the microrobot position, and the operating status of the magnetic field generator (magnetic field generation area, magnetic field
  • the operator uses the remote control device to move the mobile microrobot control device and generate a magnetic field, etc. control in real time so that the operation can be performed.
  • the X-ray apparatus may be provided at one end in the longitudinal direction of the bed, and may be generally provided on the head of the patient.
  • An X-ray device may provide information such as confirmation of a treatment site in the human body, a microrobot location, and a microrobot movement path in real time in an intra-human treatment environment.
  • control device is configured to control the current applied to the electromagnet coil constituting the magnetic field generating unit of the mobile microrobot control device, the rotational movement of the rotational moving part, and the linear movement of the linear moving part. and may be configured to control the operation of an X-ray device to obtain information such as a treatment site, a microrobot position, and a movement path.
  • a mobile microrobot control apparatus and a mobile microrobot control system including the same include: a magnetic field generator including two electromagnet coils; a rotational movement unit capable of rotationally moving the magnetic field generator; and a linear moving unit capable of linearly moving the magnetic field generating unit; by using a microrobot control device comprising a, efficient device/system operation is possible by reducing the number of electromagnets to reduce the number of power supplies for power supply, and reducing power consumption And by simplifying the device/system, it not only improves the efficiency of installation and operation of the device in the treatment space, but also increases the convenience of using it compatible with existing facilities (X-rays, etc.).
  • FIG. 1 is a configuration diagram for explaining a mobile microrobot control apparatus according to an embodiment of the present invention.
  • FIG. 2 is a view showing a solenoid coil among electromagnet coils according to an embodiment of the present invention.
  • FIG 3 is a view showing a square coil, a circular coil, and a saddle coil among the electromagnet coils according to an embodiment of the present invention.
  • FIG. 4A shows an example of an electromagnet coil having a cylindrical core protrusion among the electromagnet coils according to an embodiment of the present invention.
  • FIG. 4B shows an example of a magnetic field focusing type electromagnet coil having a core protrusion having a shape with a gradually narrowing end among the electromagnet coils according to an embodiment of the present invention.
  • 4C shows an example of a uniform magnetic field expansion type electromagnet coil having a core protrusion having the same diameter as the outer diameter of the solenoid coil among the electromagnet coils according to an embodiment of the present invention.
  • 5A is a simulation diagram illustrating a magnetic field region generated when a pair of electromagnet coils having a cylindrical core protrusion according to an embodiment of the present invention and current flows in the same rotational direction in each coil.
  • 5B is a simulation diagram illustrating a magnetic field region generated when an electromagnet coil having a cylindrical core protrusion is used as a pair according to an embodiment of the present invention, and current flows through each coil in an opposite rotational direction.
  • FIG. 6 shows an example of a solenoid coil including a magnetic shield for increasing magnetic field strength among the electromagnet coils according to an embodiment of the present invention.
  • FIG. 7 is a view showing the magnetic field strength in the region of interest according to the length ratio of the coil winding and the magnetic shield in the electromagnet coil including the magnetic shield according to an embodiment of the present invention.
  • FIG. 8 is a view showing a magnetic field generating unit and a rotational moving unit according to an embodiment of the present invention.
  • FIG. 9 is a view showing a simulation of generating a magnetic field in space through rotational movement among various application examples of a mobile microrobot control apparatus according to an embodiment of the present invention.
  • FIG. 10 is a view showing a simulation of generating a magnetic field in space through linear movement among various application examples of a mobile microrobot control apparatus according to an embodiment of the present invention.
  • FIG. 11 is a view showing a gradient magnetic field generating magnetic field simulation among various application examples of the mobile microrobot control apparatus according to an embodiment of the present invention.
  • FIG. 12 is a diagram illustrating a simulation of a magnetic field forming a uniform magnetic field among various application examples of a mobile microrobot control apparatus according to an embodiment of the present invention.
  • FIG. 13 is a configuration diagram for explaining a mobile microrobot control system according to an embodiment of the present invention.
  • a magnetic field generator including two electromagnet coils disposed to be symmetrical to each other on a two-dimensional plane; a rotational movement unit capable of rotationally moving the magnetic field generator; and a linear moving unit capable of linearly moving the magnetic field generating unit.
  • FIG. 1 is a configuration diagram for explaining a mobile microrobot control apparatus 100 according to an embodiment of the present invention.
  • the mobile microrobot control apparatus 100 includes: a magnetic field generator 110 including two electromagnet coils arranged to be symmetrical to each other on a two-dimensional plane; a rotational moving unit 120 capable of rotating the magnetic field generating unit 110; and a linear moving unit 130 capable of linearly moving the magnetic field generating unit 110 .
  • It may further include a magnetic field generator including two electromagnet coils 111 disposed to be symmetrical to each other on a two-dimensional plane forming 30 to 90° with the two-dimensional plane.
  • the electromagnet coil 111 constituting the magnetic field generator 110 may be a solenoid coil 112 , and the solenoid coil 112 has a magnetic core 112-1 and a magnetic core 112-1 made of a paramagnetic material in the center. ) may be configured by winding the coil 112-2 on the outside (FIG. 2).
  • the coil winding part on which the coil is wound may be configured in a form in which a coil made of a copper wire or an aluminum wire coated with an insulating material is continuously wound in a ring shape.
  • the electromagnet coil 111 may include a square coil 113 , a circular coil 114 , and a saddle coil 115 in the form of an air core.
  • the shape of the coil shown in FIGS. 2 and 3 is exemplary, and any shape in which a magnetic field can be formed can be used without limitation.
  • the electromagnet coil 111 constituting the magnetic field generator 110 may be configured in various forms in order to focus the magnetic field on the region of interest or to improve the strength of the magnetic field.
  • 4A to 4C are electromagnet coils capable of controlling a microrobot by focusing a magnetic field on a region of interest.
  • Magnetic cores 116-1, 117-1, and 118-1 made of a paramagnetic material and a coil wound on the outside of the magnetic core ( 116-2, 117-2, 118-2) may be configured.
  • the coil winding part on which the coil is wound may be configured in a form in which a coil made of a copper wire or an aluminum wire coated with an insulating material is continuously wound in a ring shape.
  • the magnetic core 116-1 is a solenoid coil that may include a core protrusion on which the coil is not wound.
  • the core protrusion has a cylindrical shape having the same diameter as the inner diameter of the solenoid coil.
  • 4B shows an example of a magnetic field focusing type electromagnet coil having a core protrusion having a shape that is gradually narrowed at an end.
  • the diameter of the protrusion of the core protrusion may be the same as the inner diameter of the solenoid coil, and the diameter of the end of the core protrusion may be relatively smaller than the inner diameter of the solenoid coil.
  • the core protrusion may have a truncated cone shape or a shape in which a cylinder and a truncated cone are combined.
  • a magnetic field focused in a narrow area with a higher density may be implemented.
  • FIG. 4C shows an example of a uniform magnetic field expansion type electromagnet coil having a core protrusion having the same diameter as the outer diameter of the solenoid coil.
  • a magnetic field region formed more widely with uniform strength can be implemented.
  • FIG. 5A and 5B show simulations of a magnetic field region formed according to the direction of current flowing in the pair of electromagnet coils 111 shown in FIG. 4A.
  • the magnetic field may be focused in a circular shape at the upper center.
  • the magnetic field may be focused in an elliptical shape in the upper center.
  • the electromagnet coil 111 constituting the magnetic field generator 110 may include a magnetic shield to increase the strength of generating a magnetic field in the region of interest.
  • the magnetic core 119-1 and the coil are wound on the outside of the magnetic core 119-2.
  • the magnetic shield may be positioned outside the coil winding part on which the coil is wound, and may be configured to surround all or a part of the coil winding part.
  • the magnetic core 119-1 may be made of a soft magnetic material, and the coil winding unit may be formed in a form in which a coil made of a copper wire or an aluminum wire coated with an insulating material is continuously wound in a ring shape.
  • the magnetic shield may be made of a soft magnetic material magnetized by an external magnetic field, and the material of the soft magnetic material is pure iron, electromagnetic soft iron, silicon steel, permalloy (Ni-Fe-based), Co-Fe-based alloy (ex. VACOFULXTM) ), sendust (Fe-Al-Si-based), Mn-Zn-based ferrite, Ni-Zn-based ferrite, Fe-based amorphous alloy, Co-based amorphous alloy, Fe-based thin film and multi-layer film, Co-based thin film and multi-layer film, and A soft magnetic material selected from the group consisting of a Ni-based thin film and a multilayer film, but is not limited thereto.
  • a means for adjusting the area surrounding the coil winding by adjusting the length of the magnetic shield may be additionally included.
  • the length ratio of the coil winding part and the magnetic shielding part may be 4 to 1:1 to 3, preferably, the length ratio of the coil winding part and the magnetic shielding part being 4:1, 3:1, 3:2, 4:3, It may be 1:1, and more preferably has a length ratio of 4:3. 7 is a comparison of the magnetic field strength in the region of interest according to the length ratio of the coil winding part and the magnetic shielding part through FEM analysis.
  • the magnetic field strength at the center point of the region of interest is about 3.3 mT, and the ratio of the length of the coil winding to the length of the magnetic shield is 3:1
  • the magnetic field strength at the central point of the region of interest is about 3.5 mT
  • the magnetic field strength at the central point of the region of interest is about 3.6 mT
  • the length and magnetic field of the coil winding When the ratio of the length of the shield is 3:2, the magnetic field strength at the center point of the region of interest is about 3.9 mT, and when the ratio of the length of the coil winding to the length of the magnetic shield is 4:3, the magnetic field strength at the center point of the region of interest is about 4.1 It can be seen that the magnetic field strength at the center point of the region of interest is about 3.8 mT when the ratio of the length of the coil winding to the length of the magnetic shield is 4:1, the magnetic field strength at the center point of the region of interest is about 3.3 mT, and the ratio of the length of the coil winding to the length of the
  • the magnetic field strength at the center point of the region of interest of the microrobot gradually increases as the length of the magnetic shield increases.
  • the length of the magnetic shield was equal to that of the coil winding (1:1)
  • the magnetic field strength at the center point of the ROI of the microrobot decreased. This is the effect that occurs as the magnetic field from the end of the coil winding flows directly into the magnetic shield by the magnetic field circuit effect. Accordingly, it can be seen that configuring the magnetic shield in a shape that does not wrap some ends of the coil winding portion rather than configuring the coil winding portion maximizes the magnetic field strength.
  • the rotational moving unit 120 has a magnetic field on the other side of the region of interest where the magnetic field is to be generated so that the electromagnet coil 111 can rotate in a circle based on the central axis of the two electromagnet coils 111 arranged to be symmetrical on a two-dimensional plane. It may be configured in connection with the generator 110 .
  • the rotation moving unit 120 may include a driving means capable of rotating in a circular motion by configuring the two electromagnet coils 111 as one axis, and the driving means may be a motor.
  • the two rotary moving units 120 can be independently rotated. The simulation result of the magnetic field plane formed in the region of interest by rotating the magnetic field generating unit 110 by the rotation moving unit 120 is shown in FIG. 9 .
  • the linear moving unit 130 may be provided on the lower side of the rotation moving unit 120 , and may be configured to move the magnetic field generating unit 110 to a desired region of interest to form a magnetic field.
  • the linear moving unit 130 may move up to the same length as the bed 210 by placing rails in the longitudinal direction on both sides of the bed 210 .
  • the linear moving unit 130 may be provided with a wheel that can be rotated by an external force to move the magnetic field generating unit 110 in the longitudinal direction of the bed 210 to position it in the region of interest.
  • a separate locking device capable of controlling the rotation of the wheel may be provided in order to fix the magnetic field generating unit 110 to the corresponding position after moving to the region of interest.
  • FIG. 10 A simulation result of the magnetic field plane formed in the region of interest by linearly moving the magnetic field generating unit 110 by the linear moving unit 130 is shown in FIG. 10 .
  • FIG. 11 and 12 show generation of a gradient magnetic field (FIG. 11) and generation of a uniform magnetic field (FIG. 12) formed by the magnetic field generator 110 of the present invention.
  • a gradient magnetic field or a uniform magnetic field may be generated by adjusting the direction and magnitude of the current in the electromagnet coil 111 .
  • the direction and strength of the gradient or uniform magnetic field are controlled through current control, and the input current is generated through the magnetic field control equation.
  • the required current value can be derived through the magnetic field control equation.
  • the uniform magnetic field is responsible for generating torque for the rotational operation of the microrobot
  • the gradient magnetic field is responsible for generating torque and driving force for the rotational or moving operation.
  • the uniform magnetic field can be used to control streamlined microrobots such as catheter robots and needle robots, and the gradient magnetic field can be used to control not only streamlined microrobots, but also wireless microrobots such as capsule robots and vascular robots. It can be used selectively.
  • FIG. 13 is a configuration diagram for explaining a mobile microrobot control system 200 according to an embodiment of the present invention.
  • a mobile microrobot control system 200 includes a bed 210; A movable microrobot control device 100 provided on both sides in the longitudinal direction of the bed; X-ray device 220 provided at one end in the longitudinal direction of the bed; and a control device 230 for controlling the movable microrobot control device and the X-ray device, wherein the movable microrobot control device includes two electromagnet coils disposed to be symmetrical to each other on a two-dimensional plane a magnetic field generating unit 110; a rotational movement unit 120 capable of rotationally moving the magnetic field generator; and a linear moving unit 130 capable of linearly moving the magnetic field generating unit.
  • the microrobot control system 200 of the present invention may further include an image navigation system 240 .
  • the image navigation system 240 provides information such as a three-dimensional operating environment, a microrobot movement path, a microrobot position, etc. and a magnetic field based on the treatment site and microrobot position information in the human body obtained by the X-ray device 220 . All information necessary to operate the microrobot control system 200, such as the operating status of the generator (magnetic field generation region, magnetic field generation strength, etc.), patient status, etc., necessary for performing a procedure through the microrobot control system, etc. By providing it through an output device, the operator can control the movement and magnetic field generation of the mobile microrobot control device in real time through the control device to perform the procedure.
  • the movable microrobot control device 100 may be installed on both sides in the longitudinal direction of the bed 210, and a linear moving part 130 capable of linear movement along the longitudinal direction of the bed 210 is provided. , it is possible to easily move the mobile microrobot control device 100 when moving to a region of interest for generating a magnetic field.
  • the X-ray device 220 may be provided at one end in the longitudinal direction of the bed 210, and will generally be provided on the patient's head.
  • the X-ray device is intended to provide real-time information such as the confirmation of the treatment site in the human body, the location of the microrobot, and the movement path of the microrobot in the treatment environment. For example, by using an X-ray device to check the treatment site in the human body and based on the microrobot positioning information, the mobile microrobot control device 100 is moved linearly to the exact position to be treated. (100) can be placed.
  • the microrobot control system 200 of the present invention is compatible with various medical devices such as a body monitoring device for checking heart rate and respiration, an oxygen supply device, and a respiratory anesthesia device in addition to the x-ray device 220 .
  • various medical devices such as a body monitoring device for checking heart rate and respiration, an oxygen supply device, and a respiratory anesthesia device in addition to the x-ray device 220 .
  • the control device 230 includes a current applied to the electromagnet coil 110 constituting the magnetic field generator 100 of the mobile microrobot control device 100 and a rotational movement and linear movement unit 130 of the rotational movement unit 120 . ) is configured to control the linear movement of In addition, it is configured to control the operation of the X-ray device 220 to obtain information such as a treatment site, a microrobot position, and a movement path.
  • the control device 230 is configured by an operator who performs a procedure using the mobile microrobot control system 200 based on all information necessary for the procedure provided by the image navigation system 240 to configure the mobile microrobot control system. It is configured so that the device can be freely controlled remotely.
  • 112 solenoid coil
  • 112-1 magnetic core
  • 112-2 coil
  • 116 basic coupling solenoid coil
  • 116-1 magnetic core
  • 116-2 coil
  • 117 magnetic field focusing type solenoid coil
  • 117-1 magnetic core
  • 117-2 coil
  • 118 uniform magnetic field expansion type solenoid coil
  • 118-1 magnetic core
  • 118-2 coil
  • the present invention relates to a mobile microrobot control device.

Abstract

The present invention relates to a mobile micro-robot control apparatus. According to the present invention, the mobile micro-robot control apparatus and a mobile micro-robot control system including same are provided, and by using the micro-robot control apparatus comprising: a magnetic field generation unit including two electromagnet coils; a rotational movement unit capable of rotationally moving the magnetic field generation unit; and a linear movement unit capable of linearly moving the magnetic field generation unit, efficient apparatus/system operation is enabled by means of reducing the number of electromagnets to thereby reduce the amount of power for power supply and reduce power consumption, installation and operation of the apparatus in a procedure space is made more efficient by reducing the size of the apparatus/system, and also convenience is increased due to compatibility with existing equipment (such as X-ray machines).

Description

이동형 마이크로로봇 제어장치Mobile microrobot control device
본 발명은 이동형 마이크로로봇 제어장치에 관한 것이다.The present invention relates to a mobile microrobot control device.
인체 내 마이크로 로봇을 인체 외부에서 구동하기 위한 전자기장 장치들이 개발되고 있다. 인체 내 시술 목적에 따라 유선 또는 무선의 마이크로로봇이 활용되고 있으며, 전자기장 장치를 통해 자기장의 방향과 크기를 제어하여 마이크로로봇을 구동하는 기술들이 알려진바 있거나 개발 중에 있다. 구체적으로 예를 들면, 인체 내 질환 부위 및 마이크로로봇의 운동 특성을 고려하여 다수 개의 전자석/영구자석을 배치하고 고정형 또는 이동형의 시스템 구조를 갖는 전자기장 제어장치가 개발되고 있다.Electromagnetic field devices for driving micro-robots inside the human body outside the human body are being developed. Wired or wireless microrobots are being used depending on the purpose of the procedure in the human body, and technologies for controlling the direction and size of a magnetic field through an electromagnetic field device to drive the microrobot are known or under development. Specifically, for example, a plurality of electromagnets/permanent magnets are disposed in consideration of disease sites in the human body and motion characteristics of microrobots, and an electromagnetic field control device having a fixed or movable system structure is being developed.
기 개발된 전자기장 제어장치는 사용하는 전자석의 개수가 많아, 장치 크기가 커져서 시술 공간상 장치설치 및 운용이 효율적이지 못하고, 전자석 개수 증가에 따른 전원공급용 파워 개수 증가로 인해, 전력사용량이 증가하는 등 다양한 운용 관점에서 비효율적이다.The previously developed electromagnetic field control device has a large number of electromagnets used, which increases the device size, making it inefficient to install and operate the device in the treatment space. It is inefficient from various operational viewpoints.
한편, 영구자석을 활용한 자기장 제어장치의 경우, 사용되는 자석의 개수는 적으나 마이크로로봇을 제어하는데 한계가 있다. 더불어 영구자석은 자화 값이 일정하여 로봇과 자석간의 거리변화, 자석의 방향전환을 통해 로봇을 구동하므로 제어 성능에 한계가 있으며, 모터를 이용하여 영구자석의 제어공간을 확보하고 있으나, 모터 이동의 시간차로 인해 실시간 자기장 제어에 어려움이 있다.On the other hand, in the case of a magnetic field control device using a permanent magnet, the number of magnets used is small, but there is a limit in controlling the microrobot. In addition, the permanent magnet has a constant magnetization value, which drives the robot by changing the distance between the robot and the magnet and changing the direction of the magnet, so there is a limit in control performance. Due to the time difference, it is difficult to control the magnetic field in real time.
또한, 기존 전자기장 제어장치는 장치의 크기, 전자석 또는 영구자석의 배치방향의 한계로 인해 기 설치되어 있는 엑스레이(x-ray) 장치와 호환하여 사용하는데 어려움이 있는 문제점이 있다.In addition, the existing electromagnetic field control device has a problem in that it is difficult to use it interchangeably with an already installed x-ray device due to the limitations of the size of the device and the arrangement direction of the electromagnets or permanent magnets.
본 발명자들은 상술한 종래 기술의 문제점들을 해결하고자 본 발명의 이동형 마이크로로봇 제어장치 및 이를 포함하는 이동형 마이크로로봇 제어시스템을 완성하였다.The present inventors have completed the mobile microrobot control apparatus of the present invention and a mobile microrobot control system including the same in order to solve the problems of the prior art.
본 발명은 상술한 종래 기술상의 문제점을 해결하기 위해 고안된 것으로, 본 발명의 목적은 2차원 평면상에 상호 대칭되도록 배치되는 2개의 전자석 코일을 포함하는 자기장 생성부, 상기 자기장 생성부를 회전이동 시킬 수 있는 회전이동부 및 상기 자기장 생성부를 선형이동 시킬 수 있는 선형이동부를 포함하는 이동형 마이크로로봇 제어장치를 제공하는 것이다.The present invention has been devised to solve the above-described problems in the prior art, and an object of the present invention is to be able to rotate and move a magnetic field generator including two electromagnet coils arranged to be symmetrical to each other on a two-dimensional plane. An object of the present invention is to provide a movable microrobot control device including a rotary moving unit and a linear moving unit capable of linearly moving the magnetic field generating unit.
본 발명의 다른 목적은 베드, 베드의 길이방향으로 양측면에 구비되는 이동형 마이크로로봇 제어장치, 베드의 길이방향으로 일 말단에 구비되는 엑스레이 장치 및 상기 이동형 마이크로로봇 제어장치 및 엑스레이 장치를 제어하기 위한 제어장치를 포함하고, 상기 이동형 마이크로로봇 제어장치는 2차원 평면상에 상호 대칭되도록 배치되는 2개의 전자석 코일을 포함하는 자기장 생성부, 상기 자기장 생성부를 회전이동 시킬 수 있는 회전이동부 및 상기 자기장 생성부를 선형이동 시킬 수 있는 선형이동부를 포함하는 것을 특징으로 하는 이동형 마이크로로봇 제어시스템을 제공하는 것이다.Another object of the present invention is to control a bed, a movable microrobot control device provided on both sides in the longitudinal direction of the bed, an X-ray device provided at one end in the longitudinal direction of the bed, and the movable microrobot control device and control for controlling the X-ray device a magnetic field generating unit including two electromagnet coils disposed to be symmetrical to each other on a two-dimensional plane, a rotational moving unit capable of rotating the magnetic field generating unit, and the magnetic field generating unit It is to provide a mobile microrobot control system, characterized in that it includes a linear moving part that can be moved linearly.
본 발명의 목적들은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있으며, 본 발명의 실시예에 의해 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 청구범위에 나타낸 수단 및 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.The objects of the present invention are not limited to the above-mentioned objects, and other objects and advantages of the present invention not mentioned can be understood by the following description, and will be more clearly understood by the examples of the present invention. It will also be readily apparent that the objects and advantages of the present invention may be realized by means and combinations indicated in the claims.
상기 목적을 달성하기 위한 본 발명의 관점에 따른 이동형 마이크로로봇 제어장치는 2차원 평면상에 상호 대칭되도록 배치되는 2개의 전자석 코일을 포함하는 자기장 생성부; 상기 자기장 생성부를 회전이동 시킬 수 있는 회전이동부; 및 상기 자기장 생성부를 선형이동 시킬 수 있는 선형이동부;를 포함하는 것을 특징으로 한다.In accordance with an aspect of the present invention for achieving the above object, there is provided a mobile microrobot control apparatus comprising: a magnetic field generator including two electromagnet coils arranged to be symmetrical to each other on a two-dimensional plane; a rotational movement unit capable of rotationally moving the magnetic field generator; and a linear moving unit capable of linearly moving the magnetic field generating unit.
본 발명의 일 실시예에 있어서, 상기 2차원 평면과 30 내지 90°를 이루는 2차원 평면상에 상호 대칭되도록 배치되는 2개의 전자석 코일을 포함하는 자기장 생성부를 더 포함할 수 있다.In one embodiment of the present invention, it may further include a magnetic field generator including two electromagnet coils arranged to be symmetrical to each other on a two-dimensional plane forming 30 to 90 degrees with the two-dimensional plane.
본 발명의 일 실시예에 있어서, 전자석 코일은 솔레노이드 코일일 수 있고, 솔레노이드 코일은 중심부에 상사정성체로 이루어진 자기코어 및 자기코어 외부에 코일이 권선되어 구성될 수 있다. 또한 전자석 코일은 에어코어 형태로 사각코일, 원형코일, 새들코일로 구성될 수도 있다. 한편, 상기 솔레노이드 코일은 자기장 집속을 위해서 자기코어가 코일로 권취되지 않은 코어 돌출부를 포함할 수 있다. 상기 코어 돌출부는 솔레노이드 코일의 내경과 동일한 직경을 갖는 원통 형상이거나, 코어 돌출부가 시작되는 부분의 직경은 상기 솔레노이트 코일의 내경과 동일하고 상기 코어 돌출부 말단의 직경은 솔레노이드 코일의 내경에 비해 상대적으로 작을 수 있으며, 상기 코어 돌출부의 형상은 원뿔대 형상 또는 원통형과 원뿔대가 결합된 형상 등 다양한 형상으로 이루어질 수 있다. 또한, 상기 코어 돌출부는 솔레노이드 코일 외경과 동일한 직경을 가질 수도 있다.In one embodiment of the present invention, the electromagnet coil may be a solenoid coil, and the solenoid coil may be configured by winding a magnetic core made of a similar substance in a central portion and a coil wound on the outside of the magnetic core. In addition, the electromagnet coil may be composed of a square coil, a circular coil, and a saddle coil in the form of an air core. Meanwhile, the solenoid coil may include a core protrusion in which the magnetic core is not wound by the coil for magnetic field focusing. The core protrusion has a cylindrical shape having the same diameter as the inner diameter of the solenoid coil, or the diameter of the part where the core protrusion starts is the same as the inner diameter of the solenoid coil and the diameter of the end of the core protrusion is relative to the inner diameter of the solenoid coil , and the shape of the core protrusion may be formed in various shapes, such as a truncated cone shape or a shape in which a cylinder and a truncated cone are combined. In addition, the core protrusion may have the same diameter as the outer diameter of the solenoid coil.
한편, 전자석 코일은 자기장의 세기 증가를 위해서 자기 차폐부를 포함할 수 있다. 자기코어 및 자기코어 외부에 코일이 권선된 구성의 전자석 코일에서 자기 차폐부는 코일이 권선된 코일 권선부의 외곽에 위치하여 코일 권선부의 전부 또는 일부를 감싸는 형태로 구성될 수 있고, 코일 권선부와 자기 차폐부의 길이비는 4 내지 1 : 1 내지 3일 수 있고, 바람직하게는 코일 권선부와 자기 차폐부의 길이비는 4:1, 3:1, 3:2, 4:3, 1:1일 일 수 있으며, 보다 바람직하게는 4:3의 길이비일 수 있다.Meanwhile, the electromagnet coil may include a magnetic shield to increase the strength of the magnetic field. In an electromagnet coil having a magnetic core and a coil wound outside the magnetic core, the magnetic shield may be positioned outside the coil winding portion on which the coil is wound and may be configured to surround all or a part of the coil winding portion, and the coil winding portion and the magnetic The length ratio of the shielding part may be 4 to 1:1 to 3, and preferably, the length ratio of the coil winding part and the magnetic shielding part is 4:1, 3:1, 3:2, 4:3, 1:1 days. and, more preferably, a length ratio of 4:3.
본 발명의 일 실시예에 있어서, 상기 회전이동부는 자기장 생성부의 일측면에 연결되어 자기장 생성을 원하는 관심영역을 중심으로 자기장 생성부가 원형으로 회전할 수 있도록 구비될 수 있다.In an embodiment of the present invention, the rotational moving unit may be connected to one side of the magnetic field generating unit so that the magnetic field generating unit can rotate in a circle around a region of interest where the magnetic field is desired to be generated.
본 발명의 일 실시예에 있어서, 상기 회전이동부는 두 개의 전자석 코일을 한 축으로 구성하여, 원형으로 회전운동을 할 수 있는 구동수단을 포함할 수 있고, 구동수단은 모터일 수 있다. 한편, 베드의 양측에 자기장 생성부를 설치할 경우 두 개의 회전이동부는 독립적으로 회전이동할 수 있도록 구성될 수 있다.In one embodiment of the present invention, the rotary moving unit may include a driving means capable of rotating in a circular motion by configuring two electromagnet coils on one axis, and the driving means may be a motor. On the other hand, when the magnetic field generating unit is installed on both sides of the bed, the two rotating moving units may be configured to rotate independently.
본 발명의 일 실시예에 있어서, 상기 선형이동부는 회전이동부의 일측면에 연결되어 자기장 생성을 원하는 관심영역으로 자기장생성부를 선형으로 이동시킬 수 있도록 구성될 수 있다.In one embodiment of the present invention, the linear moving unit may be configured to be connected to one side of the rotary moving unit to linearly move the magnetic field generating unit to a region of interest where magnetic field generation is desired.
본 발명의 일 실시예에 있어서, 상기 선형이동부는 베드의 양측에 길이방향으로 레일을 두어 베드와 동일한 길이까지 이동이 가능하게 할 수 있다. 또한 선형이동부는 외력에 의해 회전할 수 있는 바퀴부를 구비하게 하여 자기장 생성부를 베드의 길이방향으로 이동시켜 관심영역에 위치시킬 수 있다. 상기 바퀴부를 통해 선형이동을 할 수 있도록 하는 경우에는 관심영역으로 이동한 후 자기장 생성부를 해당 위치에 고정시키기 위해서 바퀴부의 회전을 제어할 수 있는 별도의 잠금장치를 구비할 수 있다.In one embodiment of the present invention, the linear moving part can be moved to the same length as the bed by placing rails in the longitudinal direction on both sides of the bed. In addition, the linear moving unit is provided with a wheel that can be rotated by an external force, so that the magnetic field generating unit is moved in the longitudinal direction of the bed to be positioned in the region of interest. In the case of allowing linear movement through the wheel, a separate locking device capable of controlling the rotation of the wheel may be provided in order to fix the magnetic field generating unit to the corresponding position after moving to the region of interest.
본 발명의 목적을 달성하기 위한 본 발명의 다른 일 관점에 따른 이동형 마이크로로봇 제어시스템은 베드; 베드의 길이방향으로 양측면에 구비되는 이동형 마이크로로봇 제어장치; 베드의 길이방향으로 일 말단에 구비되는 엑스레이 장치; 및 상기 이동형 마이크로로봇 제어장치 및 엑스레이 장치를 제어하기 위한 제어장치;를 포함하고, 상기 이동형 마이크로로봇 제어장치는 2차원 평면상에 상호 대칭되도록 배치되는 2개의 전자석 코일을 포함하는 자기장 생성부; 상기 자기장 생성부를 회전이동 시킬 수 있는 회전이동부; 및 상기 자기장 생성부를 선형이동 시킬 수 있는 선형이동부;를 포함하는 것을 특징으로 한다.A mobile microrobot control system according to another aspect of the present invention for achieving the object of the present invention is a bed; A mobile microrobot control device provided on both sides in the longitudinal direction of the bed; X-ray device provided at one end in the longitudinal direction of the bed; and a control device for controlling the mobile microrobot controller and the X-ray device, wherein the mobile microrobot controller includes: a magnetic field generator including two electromagnet coils disposed to be symmetrical to each other on a two-dimensional plane; a rotational movement unit capable of rotationally moving the magnetic field generator; and a linear moving unit capable of linearly moving the magnetic field generating unit.
본 발명의 일 실시예에 있어서, 영상네비게이션 시스템을 더 포함할 수 있다. 영상내비게이션 시스템은 엑스레이(X-ray) 장치에 의해 획득된 인체 내 시술부위 및 마이크로로봇 위치를 토대로 3차원 시술환경, 마이크로로봇 이동경로, 마이크로로봇 위치, 자기장 생성부의 운전상태 (자기장 발생영역, 자기장 발생세기 등), 환자상태 등 마이크로로봇 제어시스템을 통해 시술을 진행함에 있어서 필요한 모든 정보를 모니터 등의 출력장치를 통해 제공함으로써 시술자가 원격제어장치를 통해 이동형 마이크로로봇 제어장치의 이동 및 자기장 발생 등을 실시간으로 제어하여 시술을 수행할 수 있도록 한다.In one embodiment of the present invention, it may further include an image navigation system. The image navigation system is based on the 3D treatment environment, the microrobot movement path, the microrobot position, and the operating status of the magnetic field generator (magnetic field generation area, magnetic field By providing all necessary information through the micro-robot control system such as generation intensity, patient status, etc., through an output device such as a monitor, the operator uses the remote control device to move the mobile microrobot control device and generate a magnetic field, etc. control in real time so that the operation can be performed.
본 발명의 일 실시예에 있어서, 상기 엑스레이 장치는 베드의 길이방향으로 일 말단에 구비될 수 있고, 일반적으로는 환자의 머리 부분에 구비될 될 수 있다. 엑스레이(X-ray) 장치는 인체 내 시술환경에서 인체 내 시술부위 확인, 마이크로로봇 위치, 마이크로로봇 이동경로 등의 정보를 실시간으로 제공할 수 있다.In one embodiment of the present invention, the X-ray apparatus may be provided at one end in the longitudinal direction of the bed, and may be generally provided on the head of the patient. An X-ray device may provide information such as confirmation of a treatment site in the human body, a microrobot location, and a microrobot movement path in real time in an intra-human treatment environment.
본 발명의 일 실시예에 있어서, 상기 제어장치는 이동형 마이크로로봇 제어장치의 자기장 생성부를 구성하는 전자석 코일에 인가되는 전류 및 회전이동부의 회전운동 및 선형이동부의 선형이동을 제어할 수 있도록 구성될 수 있고, 엑스레이(X-ray) 장치의 작동을 제어하여 시술부위, 마이크로로봇 위치 및 이동경로 등의 정보를 획득할 수 있도록 구성될 수 있다.In one embodiment of the present invention, the control device is configured to control the current applied to the electromagnet coil constituting the magnetic field generating unit of the mobile microrobot control device, the rotational movement of the rotational moving part, and the linear movement of the linear moving part. and may be configured to control the operation of an X-ray device to obtain information such as a treatment site, a microrobot position, and a movement path.
본 발명에 따른 이동형 마이크로로봇 제어장치 및 이를 포함하는 이동형 마이크로로봇 제어시스템은 2개의 전자석코일을 포함하는 자기장 생성부; 상기 자기장 생성부를 회전이동 시킬 수 있는 회전이동부; 및 상기 자기장 생성부를 선형이동 시킬 수 있는 선형이동부;를 포함하는 마이크로로봇 제어장치를 이용함으로써, 전자석 개수를 줄여 전원공급용 파워 개수를 감소시키고, 전력 사용량을 줄임으로써 효율적인 장치/시스템 운용이 가능하며 장치/시스템을 간소화함으로써 시술 공간강 장치설치 및 운용에 효율성을 기할 수 있을 뿐만 아니라 기존 설비(엑스레이 등)와 호환하여 사용하는데 편의성이 증대되는 효과가 있다.A mobile microrobot control apparatus and a mobile microrobot control system including the same according to the present invention include: a magnetic field generator including two electromagnet coils; a rotational movement unit capable of rotationally moving the magnetic field generator; and a linear moving unit capable of linearly moving the magnetic field generating unit; by using a microrobot control device comprising a, efficient device/system operation is possible by reducing the number of electromagnets to reduce the number of power supplies for power supply, and reducing power consumption And by simplifying the device/system, it not only improves the efficiency of installation and operation of the device in the treatment space, but also increases the convenience of using it compatible with existing facilities (X-rays, etc.).
도 1은 본 발명의 일 실시예에 따른 이동형 마이크로로봇 제어장치를 설명하기 위한 구성도이다.1 is a configuration diagram for explaining a mobile microrobot control apparatus according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 전자석 코일 중 솔레노이트 코일을 보여주는 도면이다.2 is a view showing a solenoid coil among electromagnet coils according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 전자석 코일 중 사각코일, 원형코일, 새들코일을 보여주는 도면이다.3 is a view showing a square coil, a circular coil, and a saddle coil among the electromagnet coils according to an embodiment of the present invention.
도 4a는 본 발명의 일 실시예에 따른 전자석 코일 중 원통 형상의 코어 돌출부를 갖는 전자석 코일의 일례를 나타낸다.4A shows an example of an electromagnet coil having a cylindrical core protrusion among the electromagnet coils according to an embodiment of the present invention.
도 4b는 본 발명의 일 실시예에 따른 전자석 코일 중 말단이 점차 좁아지는 형상의 코어 돌출부를 갖는 자기장 집속형 전자석 코일의 일례를 나타낸다.4B shows an example of a magnetic field focusing type electromagnet coil having a core protrusion having a shape with a gradually narrowing end among the electromagnet coils according to an embodiment of the present invention.
도 4c는 본 발명의 일 실시예에 따른 전자석 코일 중 솔레노이드 코일 외경과 동일한 직경을 갖는 코어 돌출부를 갖는 균일 자계 확장형 전자석 코일의 일례를 나타낸다.4C shows an example of a uniform magnetic field expansion type electromagnet coil having a core protrusion having the same diameter as the outer diameter of the solenoid coil among the electromagnet coils according to an embodiment of the present invention.
도 5a는 본 발명의 일 실시예에 따른 원통 형상의 코어 돌출부를 갖는 전자석 코일을 한 쌍으로 하여 각각의 코일에 동일 회전 방향으로 전류가 흐르는 경우 발생하는 자기장 영역을 나타내는 시뮬레이션 도면이다.5A is a simulation diagram illustrating a magnetic field region generated when a pair of electromagnet coils having a cylindrical core protrusion according to an embodiment of the present invention and current flows in the same rotational direction in each coil.
도 5b는 본 발명의 일 실시예에 따른 원통 형상의 코어 돌출부를 갖는 전자석 코일을 한 쌍으로 하여 각각의 코일에 반대 회전 방향으로 전류가 흐르는 경우 발생하는 자기장 영역을 나타내는 시뮬레이션 도면이다.5B is a simulation diagram illustrating a magnetic field region generated when an electromagnet coil having a cylindrical core protrusion is used as a pair according to an embodiment of the present invention, and current flows through each coil in an opposite rotational direction.
도 6은 본 발명의 일 실시예에 따른 전자석 코일 중 자기장 세기 증가를 위한 자기 차폐부를 포함하는 솔레노이드 코일의 일례를 나타낸다.6 shows an example of a solenoid coil including a magnetic shield for increasing magnetic field strength among the electromagnet coils according to an embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른 자기 차폐부를 포함하는 전자석 코일에서 코일 권선부 및 자기 차폐부에 대한 길이비에 따른 관심영역 내 자기장 세기를 나타낸 도면이다.7 is a view showing the magnetic field strength in the region of interest according to the length ratio of the coil winding and the magnetic shield in the electromagnet coil including the magnetic shield according to an embodiment of the present invention.
도 8은 본 발명의 일 실시예에 따른 자기장 생성부와 회전이동부를 보여주는 도면이다.8 is a view showing a magnetic field generating unit and a rotational moving unit according to an embodiment of the present invention.
도 9는 본 발명의 일 실시예에 따른 이동형 마이크로로봇 제어장치의 다양한 응용 실시예들 중 회전이동을 통한 공간 내 자기장 생성 시뮬레이션을 보여주는 도면이다.9 is a view showing a simulation of generating a magnetic field in space through rotational movement among various application examples of a mobile microrobot control apparatus according to an embodiment of the present invention.
도 10은 본 발명의 일 실시예에 따른 이동형 마이크로로봇 제어장치의 다양한 응용 실시예들 중 선형이동을 통한 공간 내 자기장 생성 시뮬레이션을 보여주는 도면이다.10 is a view showing a simulation of generating a magnetic field in space through linear movement among various application examples of a mobile microrobot control apparatus according to an embodiment of the present invention.
도 11은 본 발명의 일 실시예에 따른 이동형 마이크로로봇 제어장치의 다양한 응용 실시예들 중 경사 자계 생성 자기장 시뮬레이션을 보여주는 도면이다.11 is a view showing a gradient magnetic field generating magnetic field simulation among various application examples of the mobile microrobot control apparatus according to an embodiment of the present invention.
도 12는 본 발명의 일 실시예에 따른 이동형 마이크로로봇 제어장치의 다양한 응용 실시예들 중 균일 자계 형성 자기장 시뮬레이션을 보여주는 도면이다.12 is a diagram illustrating a simulation of a magnetic field forming a uniform magnetic field among various application examples of a mobile microrobot control apparatus according to an embodiment of the present invention.
도 13은 본 발명의 일 실시예에 따른 이동형 마이크로로봇 제어시스템을 설명하기 위한 구성도이다.13 is a configuration diagram for explaining a mobile microrobot control system according to an embodiment of the present invention.
2차원 평면상에 상호 대칭되도록 배치되는 2개의 전자석 코일을 포함하는 자기장 생성부; 상기 자기장 생성부를 회전이동 시킬 수 있는 회전이동부; 및 상기 자기장 생성부를 선형이동 시킬 수 있는 선형이동부;를 포함하는 이동형 마이크로로봇 제어장치.a magnetic field generator including two electromagnet coils disposed to be symmetrical to each other on a two-dimensional plane; a rotational movement unit capable of rotationally moving the magnetic field generator; and a linear moving unit capable of linearly moving the magnetic field generating unit.
상술한 목적, 특징 및 장점은 첨부된 도면을 참조하여 후술되어 있는 상세한 설명을 통하여 보다 명확해질 것이며, 그에 따라 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다. 또한, 본 발명을 설명함에 있어서 본 발명과 관련된 공지기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에 그 상세한 설명을 생략하기고 한다. 이하, 첨부된 도면들을 함께 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다.The above-described objects, features and advantages will become more clear through the detailed description to be described later with reference to the accompanying drawings, and accordingly, those of ordinary skill in the art to which the present invention pertains to easily implement the technical idea of the present invention You can do it. In addition, in the description of the present invention, if it is determined that a detailed description of a known technology related to the present invention may unnecessarily obscure the gist of the present invention, the detailed description thereof will be omitted. Hereinafter, preferred embodiments according to the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 일 실시예에 따른 이동형 마이크로로봇 제어장치(100)를 설명하기 위한 구성도이다.1 is a configuration diagram for explaining a mobile microrobot control apparatus 100 according to an embodiment of the present invention.
본 발명의 일 실시예에 따른 이동형 마이크로로봇 제어장치(100)는 2차원 평면상에 상호 대칭되도록 배치되는 2개의 전자석 코일을 포함하는 자기장 생성부(110); 상기 자기장 생성부(110)를 회전이동 시킬 수 있는 회전이동부(120); 및 상기 자기장 생성부(110)를 선형이동시킬 수 있는 선형이동부(130);를 포함할 수 있다.The mobile microrobot control apparatus 100 according to an embodiment of the present invention includes: a magnetic field generator 110 including two electromagnet coils arranged to be symmetrical to each other on a two-dimensional plane; a rotational moving unit 120 capable of rotating the magnetic field generating unit 110; and a linear moving unit 130 capable of linearly moving the magnetic field generating unit 110 .
상기 2차원 평면과 30 내지 90°를 이루는 2차원 평면상에 상호 대칭되도록 배치되는 2개의 전자석 코일(111)을 포함하는 자기장 생성부를 더 포함할 수 있다.It may further include a magnetic field generator including two electromagnet coils 111 disposed to be symmetrical to each other on a two-dimensional plane forming 30 to 90° with the two-dimensional plane.
상기 자기장 생성부(110)를 구성하는 전자석 코일(111)은 솔레노이드 코일(112)일 수 있고, 솔레노이드 코일(112)은 중심부에 상자성체로 이루어진 자기코어(112-1) 및 자기코어(112-1) 외부에 코일이 권선(112-2)되어 구성될 수 있다 (도 2). 이때, 코일이 권선되는 코일 권선부는 절연재료로 피막된 구리선, 알루미늄선으로 이루어진 코일이 연속적으로 고리모양으로 감겨진 형태로 구성될 수 있다. 또한, 전자석 코일(111)은 도 3에 나타낸 바와 같이 에어코어 형태로 사각코일(113), 원형코일(114), 새들코일(115)로 구성될 수 있다. 도 2 및 도 3에 도시된 코일의 형상은 예시적인 것으로 자기장이 형성될 수 있는 형상이면 제한 없이 사용가능하다.The electromagnet coil 111 constituting the magnetic field generator 110 may be a solenoid coil 112 , and the solenoid coil 112 has a magnetic core 112-1 and a magnetic core 112-1 made of a paramagnetic material in the center. ) may be configured by winding the coil 112-2 on the outside (FIG. 2). In this case, the coil winding part on which the coil is wound may be configured in a form in which a coil made of a copper wire or an aluminum wire coated with an insulating material is continuously wound in a ring shape. In addition, as shown in FIG. 3 , the electromagnet coil 111 may include a square coil 113 , a circular coil 114 , and a saddle coil 115 in the form of an air core. The shape of the coil shown in FIGS. 2 and 3 is exemplary, and any shape in which a magnetic field can be formed can be used without limitation.
상기 자기장 생성부(110)를 구성하는 전자석 코일(111)은 관심 영역에 자기장을 집속시키거나 자기장의 세기를 향상시키기 위해서 다양한 형태로 구성될 수 있다. 도 4a 내지 4c는 관심 영역에 자기장을 집속시켜 마이크로로봇을 제어할 수 있는 전자석 코일로써 상자성체로 이루어진 자기코어(116-1, 117-1, 118-1) 및 상기 자기코어 외부에 코일이 권선(116-2, 117-2, 118-2)되어 구성될 수 있다. 이때, 코일이 권선되는 코일 권선부는 절연재료로 피막된 구리선, 알루미늄선으로 이루어진 코일이 연속적으로 고리모양으로 감겨진 형태로 구성될 수 있다.The electromagnet coil 111 constituting the magnetic field generator 110 may be configured in various forms in order to focus the magnetic field on the region of interest or to improve the strength of the magnetic field. 4A to 4C are electromagnet coils capable of controlling a microrobot by focusing a magnetic field on a region of interest. Magnetic cores 116-1, 117-1, and 118-1 made of a paramagnetic material and a coil wound on the outside of the magnetic core ( 116-2, 117-2, 118-2) may be configured. In this case, the coil winding part on which the coil is wound may be configured in a form in which a coil made of a copper wire or an aluminum wire coated with an insulating material is continuously wound in a ring shape.
도 4a는 전자석 코일(111)의 다양한 응용실시예들 중 하나의 형태를 나타낸 것으로써, 자기코어(116-1)는 코일이 권취되지 않은 코어 돌출부를 포함할 수 있는 솔레노이드 코일이다. 상기 코어 돌출부는 솔레노이드 코일의 내경과 동일한 직경을 갖는 원통 형상이다. 도 4b는 말단이 점차 좁아지는 형상의 코어 돌출부를 갖는 자기장 집속형 전자석 코일의 일례를 나타낸다. 구체적으로 예를 들면, 코어 돌출부는 돌출이 시작되는 부분의 직경이 상기 솔레노이드 코일의 내경과 동일하고, 상기 코어 돌출부 말단의 직경은 솔레노이드 코일의 내경에 비해 상대적으로 작을 수 있다. 보다 더 구체적으로 예를 들면, 상기 코어 돌출부는 원뿔대 형상 또는 원통과 원뿔대가 결합된 형상일 수 있다. 이와 같이 말단이 점차 좁아지는 형상의 코어 돌출부를 갖는 자기장 집속형 전자석 코일을 사용하는 경우, 더욱 높은 밀도로 좁은 영역에 집속된 자기장을 구현할 수 있다.4A shows one form of various application embodiments of the electromagnet coil 111. The magnetic core 116-1 is a solenoid coil that may include a core protrusion on which the coil is not wound. The core protrusion has a cylindrical shape having the same diameter as the inner diameter of the solenoid coil. 4B shows an example of a magnetic field focusing type electromagnet coil having a core protrusion having a shape that is gradually narrowed at an end. Specifically, for example, the diameter of the protrusion of the core protrusion may be the same as the inner diameter of the solenoid coil, and the diameter of the end of the core protrusion may be relatively smaller than the inner diameter of the solenoid coil. More specifically, for example, the core protrusion may have a truncated cone shape or a shape in which a cylinder and a truncated cone are combined. In the case of using a magnetic field focusing type electromagnet coil having a core protrusion having a gradually narrower end as described above, a magnetic field focused in a narrow area with a higher density may be implemented.
도 4c는 솔레노이드 코일 외경과 동일한 직경을 갖는 코어 돌출부를 갖는 균일 자계 확장형 전자석 코일의 일례를 나타낸다. 본 실시예와 같이 솔레노이드 코일 외경과 동일한 직경을 갖는 코어 돌출부를 갖는 자기장 집속형 전자석 코일을 사용하는 경우, 균일한 세기로 더욱 넓게 형성된 자기장 영역을 구현할 수 있다.4C shows an example of a uniform magnetic field expansion type electromagnet coil having a core protrusion having the same diameter as the outer diameter of the solenoid coil. In the case of using a magnetic field focusing type electromagnet coil having a core protrusion having the same diameter as the outer diameter of the solenoid coil as in the present embodiment, a magnetic field region formed more widely with uniform strength can be implemented.
도 5a 및 5b는 도 4a에 나타낸 전자석 코일(111) 한 쌍에 흐르는 전류 방향에 따라 형성되는 자기장 영역에 대한 시뮬레이션을 나타낸다. 자기코어(116-1) 외부에 권취된 각각의 코일(116-2)에 동일 회전 방향으로 전류가 흐르는 경우 도 5a의 탑뷰에서 보는 바와 같이, 상부 중앙에 원형상으로 자기장이 집속될 수 있다. 한편, 반대 회전 방향으로 전류가 흐르는 경우 도 5b의 탑뷰에서 보는 바와 같이, 상부 중앙에 타원형상으로 자기장이 집속될 수 있다.5A and 5B show simulations of a magnetic field region formed according to the direction of current flowing in the pair of electromagnet coils 111 shown in FIG. 4A. When a current flows in the same rotational direction in each coil 116-2 wound outside the magnetic core 116-1, as shown in the top view of FIG. 5A , the magnetic field may be focused in a circular shape at the upper center. On the other hand, when the current flows in the opposite rotational direction, as shown in the top view of FIG. 5B , the magnetic field may be focused in an elliptical shape in the upper center.
상기 자기장 생성부(110)를 구성하는 전자석 코일(111)은 자기 차폐부를 구비하여 관심영역 내에 자기장 발생 세기를 증가시킬 수 있다.The electromagnet coil 111 constituting the magnetic field generator 110 may include a magnetic shield to increase the strength of generating a magnetic field in the region of interest.
도 6은 본 발명의 일 실시예에 따른 전자석 코일 중 자기장 세기 증가를 위한 자기 차폐부를 포함하는 전자석 코일로써, 자기코어(119-1) 및 자기코어 외부에 코일이 권선(119-2)되어 구성될 수 있고, 자기 차폐부는 코일이 권선된 코일 권선부의 외곽에 위치하여, 코일 권선부의 전부 또는 일부분을 감싸는 형태로 구성될 수 있다. 이때, 자기코어(119-1)는 연자성체 재질로 구성될 수 있고, 코일 권선부는 절연재료로 피막된 구리선, 알루미늄선으로 이루어진 코일이 연속적으로 고리모양으로 감겨진 형태로 구성될 수 있다.6 is an electromagnet coil including a magnetic shield for increasing the magnetic field strength among the electromagnet coil according to an embodiment of the present invention, and the magnetic core 119-1 and the coil are wound on the outside of the magnetic core 119-2. The magnetic shield may be positioned outside the coil winding part on which the coil is wound, and may be configured to surround all or a part of the coil winding part. In this case, the magnetic core 119-1 may be made of a soft magnetic material, and the coil winding unit may be formed in a form in which a coil made of a copper wire or an aluminum wire coated with an insulating material is continuously wound in a ring shape.
상기 자기 차폐부는 외부 자기장에 의해 자화되는 연자성체로 구성될 수 있고, 연자성체의 재질은 순철, 전자연철, 규소강, 퍼멀로이(permalloy, Ni-Fe 계), Co-Fe계 합금(ex. VACOFULXTM), 센더스트(sendust, Fe-Al-Si계), Mn-Zn계 페라이트, Ni-Zn계 페라이트, Fe계 비정질합금, Co계 비정질합금, Fe계 박막 및 다층막, Co계 박막 및 다층막, 및 Ni계 박막 및 다층막으로 이루어진 군으로부터 선택되는 연자성체이나, 이에 한정되는 것은 아니다. 한편, 자기 차폐부의 길이를 조절하여 코일 권선부를 감싸는 영역을 조절할 수 있는 수단이 추가적으로 포함될 수 있다. 코일 권선부와 자기 차폐부의 길이비는 4 내지 1 : 1 내지 3일 수 있고, 바람직하게는 코일 권선부와 자기 차폐부의 길이비는 4:1, 3:1, 3:2, 4:3, 1:1일 일 수 있고, 보다 바람직하게는 4:3의 길이비를 갖는 것이다. 도 7은 코일 권선부 및 자기 차폐부에 대한 길이비에 따른 관심영역 내에 자기장 세기를 FEM 해석을 통해 비교한 것으로써, 자기 차폐부의 적용이 없는 경우, 관심영역 중심점에서의 자기장 세기는 약 2.5mT인 것을 알 수 있다. 자기 차폐부의 적용이 있고, 코일 권선부의 길이와 자기 차폐부의 길이의 비가 4:1인 경우에 관심영역 중심점에서의 자기장 세기는 약 3.3mT, 코일 권선부의 길이와 자기 차폐부의 길이의 비가 3:1인 경우에 관심영역 중심점에서의 자기장 세기는 약 3.5mT, 코일 권선부의 길이와 자기 차폐부의 길이의 비가 2:1인 경우에 관심영역 중심점에서의 자기장 세기는 약 3.6mT, 코일 권선부의 길이와 자기 차폐부의 길이의 비가 3:2인 경우에 관심영역 중심점에서의 자기장 세기는 약 3.9mT, 코일 권선부의 길이와 자기 차폐부의 길이의 비가 4:3인 경우에 관심영역 중심점에서의 자기장 세기는 약 4.1mT, 코일 권선부의 길이와 자기 차폐부의 길이의 비가 1:1인 경우에 관심영역 중심점에서의 자기장 세기는 약 3.8mT인 것을 알 수 있다. 실험 결과와 같이, 자기 차폐부의 길이가 늘어남에 따라 마이크로로봇의 관심영역 중심점에서의 자기장 세기는 점차 증가하는 것을 알 수 있다. 그러나 자기 차폐부의 길이가 코일 권선부와 동일해질 때(1:1), 마이크로로봇의 관심영역 중심점에서의 자기장 세기가 감소하였다. 이는 코일 권선부의 끝에서 나오는 자기장이 magnetic field circuit 효과에 의해 자기 차폐부로 바로 흘러감에 따라 발생하는 효과이다. 이에, 자기 차폐부를 코일 권선부를 전부 감싸도록 구성하는 것 보다 일부 말단을 감싸지 않는 형태로 구성하는 것이 자기장 세기를 최대화시키는 것을 알 수 있다.The magnetic shield may be made of a soft magnetic material magnetized by an external magnetic field, and the material of the soft magnetic material is pure iron, electromagnetic soft iron, silicon steel, permalloy (Ni-Fe-based), Co-Fe-based alloy (ex. VACOFULXTM) ), sendust (Fe-Al-Si-based), Mn-Zn-based ferrite, Ni-Zn-based ferrite, Fe-based amorphous alloy, Co-based amorphous alloy, Fe-based thin film and multi-layer film, Co-based thin film and multi-layer film, and A soft magnetic material selected from the group consisting of a Ni-based thin film and a multilayer film, but is not limited thereto. On the other hand, a means for adjusting the area surrounding the coil winding by adjusting the length of the magnetic shield may be additionally included. The length ratio of the coil winding part and the magnetic shielding part may be 4 to 1:1 to 3, preferably, the length ratio of the coil winding part and the magnetic shielding part being 4:1, 3:1, 3:2, 4:3, It may be 1:1, and more preferably has a length ratio of 4:3. 7 is a comparison of the magnetic field strength in the region of interest according to the length ratio of the coil winding part and the magnetic shielding part through FEM analysis. it can be seen that When a magnetic shield is applied and the ratio of the length of the coil winding to the length of the magnetic shield is 4:1, the magnetic field strength at the center point of the region of interest is about 3.3 mT, and the ratio of the length of the coil winding to the length of the magnetic shield is 3:1 In the case of , the magnetic field strength at the central point of the region of interest is about 3.5 mT, and when the ratio of the length of the coil winding to the length of the magnetic shield is 2:1, the magnetic field strength at the central point of the region of interest is about 3.6 mT, and the length and magnetic field of the coil winding When the ratio of the length of the shield is 3:2, the magnetic field strength at the center point of the region of interest is about 3.9 mT, and when the ratio of the length of the coil winding to the length of the magnetic shield is 4:3, the magnetic field strength at the center point of the region of interest is about 4.1 It can be seen that the magnetic field strength at the center point of the region of interest is about 3.8 mT when mT, the ratio of the length of the coil winding to the length of the magnetic shield is 1:1. As shown in the experimental results, it can be seen that the magnetic field strength at the center point of the region of interest of the microrobot gradually increases as the length of the magnetic shield increases. However, when the length of the magnetic shield was equal to that of the coil winding (1:1), the magnetic field strength at the center point of the ROI of the microrobot decreased. This is the effect that occurs as the magnetic field from the end of the coil winding flows directly into the magnetic shield by the magnetic field circuit effect. Accordingly, it can be seen that configuring the magnetic shield in a shape that does not wrap some ends of the coil winding portion rather than configuring the coil winding portion maximizes the magnetic field strength.
상기 회전이동부(120)는 2차원 평면에 대칭되도록 배치된 두 개의 전자석 코일(111)의 중심축을 기준으로 전자석 코일(111)이 원형으로 회전할 수 있도록 자기장 생성을 원하는 관심영역의 타측에 자기장 생성부(110)와 연결되어 구성될 수 있다.The rotational moving unit 120 has a magnetic field on the other side of the region of interest where the magnetic field is to be generated so that the electromagnet coil 111 can rotate in a circle based on the central axis of the two electromagnet coils 111 arranged to be symmetrical on a two-dimensional plane. It may be configured in connection with the generator 110 .
도 8은 두 개의 전자석 코일(111)을 포함하는 자기장 생성부(110)의 일측에 회전이동부(120)가 연결된 일례를 나타낸 것이다. 회전이동부(120)는 두 개의 전자석 코일(111)을 한 축으로 구성하여, 원형으로 회전운동을 할 수 있는 구동수단을 포함할 수 있고, 구동수단은 모터일 수 있다. 한편, 베드(210)의 양측에 자기장 생성부(110)를 설치할 경우 두 개의 회전이동부(120)는 독립적으로 회전이동할 수 있다. 상기 회전이동부(120)에 의해 자기장 생성부(110)를 회전이동하여 관심영역 내에 형성되는 자기장 평면에 대한 시뮬레이션 결과는 도 9에 나타내었다.8 shows an example in which the rotational moving unit 120 is connected to one side of the magnetic field generating unit 110 including two electromagnet coils 111 . The rotation moving unit 120 may include a driving means capable of rotating in a circular motion by configuring the two electromagnet coils 111 as one axis, and the driving means may be a motor. On the other hand, when the magnetic field generating unit 110 is installed on both sides of the bed 210, the two rotary moving units 120 can be independently rotated. The simulation result of the magnetic field plane formed in the region of interest by rotating the magnetic field generating unit 110 by the rotation moving unit 120 is shown in FIG. 9 .
상기 선형이동부(130)는 회전이동부(120)의 하측면에 구비될 수 있고, 자기기장 생성부(110)를 자기장 형성을 원하는 관심영역으로 이동시킬 수 있도록 구성될 수 있다.The linear moving unit 130 may be provided on the lower side of the rotation moving unit 120 , and may be configured to move the magnetic field generating unit 110 to a desired region of interest to form a magnetic field.
상기 선형이동부(130)는 베드(210)의 양측에 길이방향으로 레일을 두어 베드(210)와 동일한 길이까지 이동이 가능하게 할 수 있다. 또한 선형이동부(130)는 외력에 의해 회전할 수 있는 바퀴부를 구비하게 하여 자기장 생성부(110)를 베드(210)의 길이방향으로 이동시켜 관심영역에 위치시킬 수 있다. 상기 바퀴부를 통해 선형이동을 할 수 있도록 하는 경우에는 관심영역으로 이동한 후 자기장 생성부(110)을 해당 위치에 고정시키기 위해서 바퀴부의 회전을 제어할 수 있는 별도의 잠금장치를 구비할 수 있다. 상기 선형이동부(130)에 의해 자기장 생성부(110)를 선형이동하여 관심영역 내에 형성되는 자기장 평면에 대한 시뮬레이션 결과는 도 10에 나타내었다.The linear moving unit 130 may move up to the same length as the bed 210 by placing rails in the longitudinal direction on both sides of the bed 210 . In addition, the linear moving unit 130 may be provided with a wheel that can be rotated by an external force to move the magnetic field generating unit 110 in the longitudinal direction of the bed 210 to position it in the region of interest. In the case of allowing linear movement through the wheel, a separate locking device capable of controlling the rotation of the wheel may be provided in order to fix the magnetic field generating unit 110 to the corresponding position after moving to the region of interest. A simulation result of the magnetic field plane formed in the region of interest by linearly moving the magnetic field generating unit 110 by the linear moving unit 130 is shown in FIG. 10 .
도 11과 도 12는 본 발명의 자기장 생성부(110)에 의해 형성되는 경사 자계 생성(도 11)과 균일 자계 생성(도 12)을 나타낸 것이다.11 and 12 show generation of a gradient magnetic field (FIG. 11) and generation of a uniform magnetic field (FIG. 12) formed by the magnetic field generator 110 of the present invention.
전자석 코일(111)에 전류의 방향과 크기를 조절하여 경사자계 또는 균일자계를 생성할 수 있다. 전류제어를 통해 경사자계 또는 균일자계의 방향, 세기를 조절하고, 입력되는 전류는 자기장제어수식을 통해 생성된다. 관심영역 내에서 원하는 경사, 균일 자기장의 방향, 크기를 요구값을 설정하여, 자기장 제어수식을 통해 필요한 전류값을 도출할 수 있다. 주로 균일자계는 마이크로로봇의 회전 동작을 위한 토크생성, 경사자계는 회전 또는 이동 동작을 위한 토크 및 구동력생성을 담당한다. 균일자계는 카테터로봇, 니들로봇과 같은 유선형 마이크로로봇을 제어하는데 사용될 수 있고, 경사자계는 유선형 마이크로로봇 뿐만 아니라, 캡슐로봇, 혈관로봇과 같은 무선형 마이크로로봇을 제어하는데 사용될 수 있으므로, 시술목표에 따라 선택적으로 사용이 가능하다.A gradient magnetic field or a uniform magnetic field may be generated by adjusting the direction and magnitude of the current in the electromagnet coil 111 . The direction and strength of the gradient or uniform magnetic field are controlled through current control, and the input current is generated through the magnetic field control equation. By setting the required values for the desired inclination, the direction, and the magnitude of the uniform magnetic field within the region of interest, the required current value can be derived through the magnetic field control equation. Mainly, the uniform magnetic field is responsible for generating torque for the rotational operation of the microrobot, and the gradient magnetic field is responsible for generating torque and driving force for the rotational or moving operation. The uniform magnetic field can be used to control streamlined microrobots such as catheter robots and needle robots, and the gradient magnetic field can be used to control not only streamlined microrobots, but also wireless microrobots such as capsule robots and vascular robots. It can be used selectively.
도 13은 발명의 일 실시예에 따른 이동형 마이크로로봇 제어시스템(200)을 설명하기 위한 구성도이다. 13 is a configuration diagram for explaining a mobile microrobot control system 200 according to an embodiment of the present invention.
본 발명의 일 실시예에 따른 이동형 마이크로로봇 제어시스템(200)은 베드(210); 베드의 길이방향으로 양측면에 구비되는 이동형 마이크로로봇 제어장치(100); 베드의 길이방향으로 일 말단에 구비되는 엑스레이 장치(220); 및 상기 이동형 마이크로로봇 제어장치 및 엑스레이 장치를 제어하기 위한 제어장치(230);를 포함할 수 있고, 상기 이동형 마이크로로봇 제어장치는, 2차원 평면상에 상호 대칭되도록 배치되는 2개의 전자석 코일을 포함하는 자기장 생성부(110); 상기 자기장 생성부를 회전이동 시킬 수 있는 회전이동부(120); 및 상기 자기장 생성부를 선형이동 시킬 수 있는 선형이동부(130);를 포함할 수 있다.A mobile microrobot control system 200 according to an embodiment of the present invention includes a bed 210; A movable microrobot control device 100 provided on both sides in the longitudinal direction of the bed; X-ray device 220 provided at one end in the longitudinal direction of the bed; and a control device 230 for controlling the movable microrobot control device and the X-ray device, wherein the movable microrobot control device includes two electromagnet coils disposed to be symmetrical to each other on a two-dimensional plane a magnetic field generating unit 110; a rotational movement unit 120 capable of rotationally moving the magnetic field generator; and a linear moving unit 130 capable of linearly moving the magnetic field generating unit.
또한, 본 발명의 마이크로로봇 제어시스템(200)은 영상내비게이션 시스템(240)을 더 포함할 수 있다. 영상내비게이션 시스템(240)은 엑스레이(X-ray) 장치(220)에 의해 획득된 인체 내 시술부위 및 마이크로로봇 위치 정보를 토대로 3차원 시술환경, 마이크로로봇 이동경로, 마이크로로봇 위치 등의 정보와 자기장 생성부의 운전상태 (자기장 발생 영역, 자기장 발생 세기 등), 환자상태 등 마이크로로봇 제어시스템을 통해 시술을 진행함에 있어서 필요한 정보 등 마이크로로봇 제어시스템(200)을 운영함에 있어서 필요한 모든 정보를 모니터 등의 출력장치를 통해 제공함으로써 시술자가 제어장치를 통해 이동형 마이크로로봇 제어장치의 이동 및 자기장 발생 등을 실시간으로 제어하여 시술을 수행할 수 있도록 한다.In addition, the microrobot control system 200 of the present invention may further include an image navigation system 240 . The image navigation system 240 provides information such as a three-dimensional operating environment, a microrobot movement path, a microrobot position, etc. and a magnetic field based on the treatment site and microrobot position information in the human body obtained by the X-ray device 220 . All information necessary to operate the microrobot control system 200, such as the operating status of the generator (magnetic field generation region, magnetic field generation strength, etc.), patient status, etc., necessary for performing a procedure through the microrobot control system, etc. By providing it through an output device, the operator can control the movement and magnetic field generation of the mobile microrobot control device in real time through the control device to perform the procedure.
상기 이동형 마이크로로봇 제어장치(100)는 베드(210)의 길이방향으로 양측에 설치될 수 있고, 베드(210)의 길이방향에 따라 선형이동을 할 수 있는 선형이동부(130)가 구비되어 있어, 자기장 생성을 위한 관심영역으로 이동시 용이하게 이동형 마이크로로봇 제어장치(100)를 이동할 수 있다.The movable microrobot control device 100 may be installed on both sides in the longitudinal direction of the bed 210, and a linear moving part 130 capable of linear movement along the longitudinal direction of the bed 210 is provided. , it is possible to easily move the mobile microrobot control device 100 when moving to a region of interest for generating a magnetic field.
상기 엑스레이(X-ray) 장치(220)는 베드(210)의 길이방향으로 일 말단에 구비될 수 있고, 일반적으로는 환자의 머리 부분에 구비될 것이다.The X-ray device 220 may be provided at one end in the longitudinal direction of the bed 210, and will generally be provided on the patient's head.
엑스레이(X-ray) 장치는 시술환경에서 인체 내 시술부위 확인, 마이크로로봇 위치, 마이크로로봇 이동경로 등의 정보를 실시간으로 제공해 주기 위한 것이다. 예를 들어, 엑스레이(X-ray) 장치에 의해 인체 내 시술부위를 확인 및 마이크로로봇 위치확인 정보를 토대로 이동형 마이크로로봇 제어장치(100)를 선형이동시켜 시술하고자 하는 정확한 위치에 이동형 마이크로로봇 제어장치(100)를 위치시킬 수 있다.The X-ray device is intended to provide real-time information such as the confirmation of the treatment site in the human body, the location of the microrobot, and the movement path of the microrobot in the treatment environment. For example, by using an X-ray device to check the treatment site in the human body and based on the microrobot positioning information, the mobile microrobot control device 100 is moved linearly to the exact position to be treated. (100) can be placed.
한편, 본 발명의 마이크로로봇 제어 시스템(200)은 상기 엑스레이(x-ray) 장치(220) 이외에 심박 및 호흡 등을 체크하는 신체 모니터링 장치, 산소공급 장치, 호흡마취 장치 등 다양한 의료기기들과 호환하여 사용할 수 있다.On the other hand, the microrobot control system 200 of the present invention is compatible with various medical devices such as a body monitoring device for checking heart rate and respiration, an oxygen supply device, and a respiratory anesthesia device in addition to the x-ray device 220 . can be used by
상기 제어장치(230)는 이동형 마이크로로봇 제어장치(100)의 자기장 생성부(100)를 구성하는 전자석 코일(110)에 인가되는 전류 및 회전이동부(120)의 회전이동 및 선형이동부(130)의 선형이동을 제어할 수 있도록 구성된다. 또한 엑스레이(X-ray) 장치(220)의 작동을 제어하여 시술부위, 마이크로로봇 위치 및 이동경로 등의 정보를 획득할 수 있도록 구성된다. 제어장치(230)는 영상내비게이션 시스템(240)에 의해 제공되는 시술에 필요한 모든 정보를 토대로 이동형 마이크로로봇 제어시스템(200)을 이용하여 시술을 수행하는 시술자가 이동형 마이크로로봇 제어스스템을 구성하는 각각의 장치를 원격으로 자유롭게 제어할 수 있도록 구성된다. The control device 230 includes a current applied to the electromagnet coil 110 constituting the magnetic field generator 100 of the mobile microrobot control device 100 and a rotational movement and linear movement unit 130 of the rotational movement unit 120 . ) is configured to control the linear movement of In addition, it is configured to control the operation of the X-ray device 220 to obtain information such as a treatment site, a microrobot position, and a movement path. The control device 230 is configured by an operator who performs a procedure using the mobile microrobot control system 200 based on all information necessary for the procedure provided by the image navigation system 240 to configure the mobile microrobot control system. It is configured so that the device can be freely controlled remotely.
이상에서 설명한 본 발명은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하므로 전술한 실시예 및 첨부된 도면에 의해 한정되는 것은 아니다.The present invention described above is capable of various substitutions, modifications and changes within the scope without departing from the technical spirit of the present invention for those of ordinary skill in the art to which the present invention pertains, so the above-described embodiments and the accompanying drawings is not limited by
[부호의 설명][Explanation of code]
100: 이동형 마이크로로봇 제어장치100: mobile microrobot control device
110: 자기장 생성부110: magnetic field generator
111: 전자석 코일111: electromagnet coil
112: 솔레노이드 코일, 112-1: 자기코어, 112-2: 코일112: solenoid coil, 112-1: magnetic core, 112-2: coil
113: 사각코일113: square coil
114: 원형코일114: circular coil
115: 새들코일115: saddle coil
116: 기본결합 솔레노이드 코일, 116-1: 자기코어, 116-2: 코일116: basic coupling solenoid coil, 116-1: magnetic core, 116-2: coil
117: 자기장 집속형 솔레노이드 코일, 117-1: 자기코어, 117-2: 코일117: magnetic field focusing type solenoid coil, 117-1: magnetic core, 117-2: coil
118: 균일 자계 확장형 솔레노이드 코일, 118-1: 자기코어, 118-2: 코일118: uniform magnetic field expansion type solenoid coil, 118-1: magnetic core, 118-2: coil
119: 솔레노이드 코일, 119-1: 자기코어, 119-2: 코일119: solenoid coil, 119-1: magnetic core, 119-2: coil
120: 회전이동부120: rotation moving part
130: 선형이동부130: linear moving part
200: 이동형 마이크로로봇 제어시스템200: mobile microrobot control system
210: 베드210: bed
220: 엑스레이(X-ray) 장치220: X-ray (X-ray) device
230: 제어장치230: control device
240: 영상내비게이션 시스템240: video navigation system
본 발명은 이동형 마이크로로봇 제어장치에 관한 것이다.The present invention relates to a mobile microrobot control device.

Claims (20)

  1. 2차원 평면상에 상호 대칭되도록 배치되는 2개의 전자석 코일을 포함하는 자기장 생성부; a magnetic field generator including two electromagnet coils disposed to be symmetrical to each other on a two-dimensional plane;
    상기 자기장 생성부를 회전이동 시킬 수 있는 회전이동부; 및a rotational movement unit capable of rotationally moving the magnetic field generator; and
    상기 자기장 생성부를 선형이동 시킬 수 있는 선형이동부;를 포함하는 이동형 마이크로로봇 제어장치.A mobile microrobot control device comprising a; a linear moving unit capable of linearly moving the magnetic field generating unit.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 2차원 평면과 30 내지 90°를 이루는 2차원 평면상에 상호 대칭되도록 배치되는 2개의 전자석 코일을 포함하는 자기장 생성부를 더 포함하는 것을 특징으로 하는 이동형 마이크로로봇 제어장치.The mobile microrobot control apparatus according to claim 1, further comprising a magnetic field generator including two electromagnet coils arranged to be symmetrical to each other on a two-dimensional plane forming 30 to 90° with the two-dimensional plane.
  3. 제 1 항 또는 제 2 항에 있어서,3. The method according to claim 1 or 2,
    전자석 코일은 상자성체로 이루어진 자기코어 및 자기코어 외부에 코일이 권선되어 있는 솔레노이드 코일, 사각코일, 원형코일 및 새들코일로 이루어진 군에서 선택되는 어느 하나인 것을 특징으로 하는 이동형 마이크로로봇 제어장치.The electromagnet coil is a magnetic core made of a paramagnetic material and a solenoid coil in which a coil is wound outside the magnetic core, a square coil, a circular coil, and a saddle coil.
  4. 제 3 항에 있어서,4. The method of claim 3,
    상기 솔레노이드 코일은 자기코어 외부에 코일이 권취되어 있지 않은 코어 돌출부를 포함하는 것을 특징으로 하는 이동형 마이크로로봇 제어장치.The solenoid coil is a mobile microrobot control device, characterized in that it includes a core protrusion on the outside of the magnetic core, the coil is not wound.
  5. 제 4 항에 있어서,5. The method of claim 4,
    상기 코어 돌출부는 돌출이 시작되는 부분의 직경이 상기 솔레노이드 코일의 내경과 동일하고, 상기 코어 돌출부 말단의 직경은 솔레노이드 코일의 내경보다 작은 것은 특징으로 하는 이동형 마이크로로봇 제어장치.The mobile microrobot control device, characterized in that the diameter of the protruding portion of the core protrusion is the same as the inner diameter of the solenoid coil, and the diameter of the end of the core protrusion is smaller than the inner diameter of the solenoid coil.
  6. 제 4 항에 있어서,5. The method of claim 4,
    상기 코어 돌출부는 상기 솔레노이드 코일 외경과 동일한 직경을 갖는 것을 특징으로 하는 이동형 마이크로로봇 제어장치.The mobile microrobot control device, characterized in that the core protrusion has the same diameter as the outer diameter of the solenoid coil.
  7. 제 3 항에 있어서,4. The method of claim 3,
    상기 솔레노이드 코일은 자기 차폐부를 포함하는 것을 특징으로 하는 이동형 마이크로로봇 제어장치.The solenoid coil is a mobile microrobot control device, characterized in that it includes a magnetic shield.
  8. 제 7 항에 있어서,8. The method of claim 7,
    상기 솔레노이드 코일 중 코일이 권선된 코일 권선부와 자기 차폐부의 길이비는 4 내지 1 : 1 내지 3인 것을 특징으로 하는 마이크로로봇 제어장치.The length ratio of the coil winding part on which the coil is wound and the magnetic shield part among the solenoid coils is 4 to 1: 1 to 3.
  9. 제 1 항 또는 제 2 항에 있어서,3. The method according to claim 1 or 2,
    상기 회전이동부는 자기장 생성부의 일측면에 연결되어 자기장 생성을 원하는 관심영역을 중심으로 자기장 생성부가 원형으로 회전할 수 있도록 구비되는 되는 것을 특징으로 하는 이동형 마이크로로봇 제어장치.The rotary moving unit is connected to one side of the magnetic field generating unit, and the mobile microrobot control device, characterized in that provided so that the magnetic field generating unit can rotate in a circle around a region of interest to generate a magnetic field.
  10. 제 1 항 또는 제 2 항에 있어서,3. The method according to claim 1 or 2,
    상기 선형이동부는 회전이동부의 일측면에 연결되어 자기장 생성을 원하는 관심영역으로 자기장생성부를 선형으로 이동시킬 수 있도록 구비되는 것을 특징으로 하는 이동형 마이크로로봇 제어장치.The linear movement unit is connected to one side of the rotational movement unit and is provided to linearly move the magnetic field generator to a region of interest where magnetic field generation is desired.
  11. 베드;bed;
    베드의 길이방향으로 양측면에 구비되는 이동형 마이크로로봇 제어장치;A mobile microrobot control device provided on both sides in the longitudinal direction of the bed;
    베드의 길이방향으로 일 말단에 구비되는 엑스레이 장치; 및X-ray device provided at one end in the longitudinal direction of the bed; and
    상기 이동형 마이크로로봇 제어장치 및 엑스레이 장치를 제어하기 위한 제어장치;를 포함하고,Including; a control device for controlling the mobile microrobot control device and the X-ray device;
    상기 이동형 마이크로로봇 제어장치는,The mobile microrobot control device,
    2차원 평면상에 상호 대칭되도록 배치되는 2개의 전자석 코일을 포함하는 자기장 생성부;a magnetic field generator including two electromagnet coils disposed to be symmetrical to each other on a two-dimensional plane;
    상기 자기장 생성부를 회전이동 시킬 수 있는 회전이동부; 및a rotational movement unit capable of rotationally moving the magnetic field generator; and
    상기 자기장 생성부를 선형이동 시킬 수 있는 선형이동부;를 포함하는 것을 특징으로 하는 이동형 마이크로로봇 제어시스템.and a linear movement unit capable of linearly moving the magnetic field generating unit.
  12. 제 11 항에 있어서,12. The method of claim 11,
    상기 2차원 평면과 30 내지 90°를 이루는 2차원 평면상에 상호 대칭되도록 배치되는 2개의 전자석 코일을 포함하는 자기장 생성부를 더 포함하는 것을 특징으로 하는 이동형 마이크로로봇 제어시스템.The mobile microrobot control system according to claim 1, further comprising a magnetic field generator including two electromagnet coils arranged to be symmetrical to each other on a two-dimensional plane forming 30 to 90° with the two-dimensional plane.
  13. 제 11 항 또는 제 12 항에 있어서,13. The method according to claim 11 or 12,
    전자석 코일은 상자성체로 이루어진 자기코어 및 자기코어 외부에 코일이 권선되어 있는 솔레노이드 코일, 사각코일, 원형코일 및 새들코일로 이루어진 군에서 선택되는 어느 하나인 것을 특징으로 하는 이동형 마이크로로봇 제어시스템.The electromagnet coil is a magnetic core made of a paramagnetic material and a solenoid coil in which a coil is wound on the outside of the magnetic core, a square coil, a circular coil, and a saddle coil.
  14. 제 13 항에 있어서,14. The method of claim 13,
    상기 솔레노이드 코일은 자기코어 외부에 코일이 권취되어 있지 않은 코어 돌출부를 포함하는 것을 특징으로 하는 이동형 마이크로로봇 제어시스템.The solenoid coil is a mobile microrobot control system, characterized in that it includes a core protrusion in which the coil is not wound outside the magnetic core.
  15. 제 14 항에 있어서,15. The method of claim 14,
    상기 코어 돌출부는 돌출이 시작되는 부분의 직경이 상기 솔레노이드 코일의 내경과 동일하고, 상기 코어 돌출부 말단의 직경은 솔레노이드 코일의 내경보다 작은 것은 특징으로 하는 이동형 마이크로로봇 제어시스템.The mobile microrobot control system, characterized in that the diameter of the protruding portion of the core protrusion is the same as the inner diameter of the solenoid coil, and the diameter of the end of the core protrusion is smaller than the inner diameter of the solenoid coil.
  16. 제 14 항에 있어서,15. The method of claim 14,
    상기 코어 돌출부는 상기 솔레노이드 코일 외경과 동일한 직경을 갖는 것을 특징으로 하는 이동형 마이크로로봇 제어시스템.The mobile microrobot control system, characterized in that the core protrusion has the same diameter as the outer diameter of the solenoid coil.
  17. 제 13 항에 있어서,14. The method of claim 13,
    상기 솔레노이드 코일은 자기 차폐부를 포함하는 것을 특징으로 하는 이동형 마이크로로봇 제어시스템.The solenoid coil is a mobile microrobot control system, characterized in that it includes a magnetic shield.
  18. 제 17 항에 있어서,18. The method of claim 17,
    상기 솔레노이드 코일 중 코일이 권선된 코일 권선부와 자기 차폐부의 길이비는 4 내지 1 : 1 내지 3인 것을 특징으로 하는 마이크로 로봇 제어장치.The length ratio of the coil winding part on which the coil is wound and the magnetic shield part among the solenoid coils is 4 to 1: 1 to 3. The micro-robot control device.
  19. 제 11 항 또는 제 12 항에 있어서,13. The method according to claim 11 or 12,
    상기 회전이동부는 자기장 생성부의 일측면에 연결되어 자기장 생성을 원하는 관심영역을 중심으로 자기장 생성부가 원형으로 회전할 수 있도록 구비되는 되는 것을 특징으로 하는 이동형 마이크로로봇 제어시스템.The rotational moving unit is connected to one side of the magnetic field generating unit, the mobile microrobot control system, characterized in that provided so that the magnetic field generating unit can rotate in a circle around a region of interest to generate a magnetic field.
  20. 제 11 항 또는 제 12 항에 있어서,13. The method according to claim 11 or 12,
    상기 선형이동부는 회전이동부의 일측면에 연결되어 자기장 생성을 원하는 관심영역으로 자기장생성부를 선형으로 이동시킬 수 있도록 구비되는 것을 특징으로 하는 이동형 마이크로로봇 제어시스템.The linear moving part is connected to one side of the rotational moving part and is provided so as to linearly move the magnetic field generator to a region of interest where magnetic field generation is desired.
PCT/KR2020/014984 2020-04-03 2020-10-30 Mobile micro-robot control apparatus WO2021201362A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0040802 2020-04-03
KR1020200040802A KR102389251B1 (en) 2020-04-03 2020-04-03 Movable Apparatus For Controlling Micro/Nano Robot

Publications (1)

Publication Number Publication Date
WO2021201362A1 true WO2021201362A1 (en) 2021-10-07

Family

ID=77928221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/014984 WO2021201362A1 (en) 2020-04-03 2020-10-30 Mobile micro-robot control apparatus

Country Status (2)

Country Link
KR (1) KR102389251B1 (en)
WO (1) WO2021201362A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220246339A1 (en) * 2021-01-29 2022-08-04 Korea Institute Of Medical Microrobotics Dual hybrid electromagnet module for controlling microrobot
CN116019565A (en) * 2022-10-28 2023-04-28 中国科学院深圳先进技术研究院 Semi-open type magnetic control device for micro-robot

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102436113B1 (en) * 2021-11-02 2022-08-25 주식회사 아임시스템 Magnetic field generator for precision procedure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100540758B1 (en) * 2003-06-17 2006-01-10 한국과학기술연구원 Capsule type robot system
KR101647020B1 (en) * 2015-03-12 2016-08-11 전남대학교산학협력단 Electromagnetic based actuation device with adjustable movement of coil-module
KR20160101441A (en) * 2015-02-17 2016-08-25 재단법인대구경북과학기술원 System for controlling micro-robot using transter robot
KR101740553B1 (en) * 2016-03-14 2017-05-26 재단법인대구경북과학기술원 Magnetic field precise control system with x-ray apparatus
KR101983789B1 (en) * 2017-05-26 2019-09-03 재단법인대구경북과학기술원 System for controlling microrobot combined with vision system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4542326B2 (en) * 2003-09-30 2010-09-15 オリンパス株式会社 Capsule type medical device guidance system
KR101790297B1 (en) * 2016-02-23 2017-11-20 재단법인대구경북과학기술원 Device for controlling a magnetic field for driving the micro robot and method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100540758B1 (en) * 2003-06-17 2006-01-10 한국과학기술연구원 Capsule type robot system
KR20160101441A (en) * 2015-02-17 2016-08-25 재단법인대구경북과학기술원 System for controlling micro-robot using transter robot
KR101647020B1 (en) * 2015-03-12 2016-08-11 전남대학교산학협력단 Electromagnetic based actuation device with adjustable movement of coil-module
KR101740553B1 (en) * 2016-03-14 2017-05-26 재단법인대구경북과학기술원 Magnetic field precise control system with x-ray apparatus
KR101983789B1 (en) * 2017-05-26 2019-09-03 재단법인대구경북과학기술원 System for controlling microrobot combined with vision system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220246339A1 (en) * 2021-01-29 2022-08-04 Korea Institute Of Medical Microrobotics Dual hybrid electromagnet module for controlling microrobot
CN116019565A (en) * 2022-10-28 2023-04-28 中国科学院深圳先进技术研究院 Semi-open type magnetic control device for micro-robot

Also Published As

Publication number Publication date
KR102389251B1 (en) 2022-04-22
KR20210124562A (en) 2021-10-15

Similar Documents

Publication Publication Date Title
WO2021201362A1 (en) Mobile micro-robot control apparatus
WO2020171446A1 (en) Micro-robot control apparatus
CN101909541B (en) Coil arrangement for guiding a magnetic element in a working space
JP2005081146A (en) Magnet coil system
WO2020171443A1 (en) Device for driving micro robot
JP2005081147A (en) Noncontact transfer and/or fixing device of magnetic body within action space using magnet coil system
US20020100486A1 (en) Efficient magnet system for magnetically-assisted surgery
US20210052190A1 (en) Hybrid electromagnetic device for remote control of micro-nano scale robots, medical tools and implantable devices
Grady et al. Preliminary experimental investigation of in vivo magnetic manipulation: Results and potential application in hyperthermia
JP3632073B2 (en) Medical magnetic device
CN111481157A (en) Electromagnetic driving device and capsule endoscope magnetic control system
KR20210013478A (en) Magnetic navigation system and method for controlling micro robot using the system
WO2021020784A1 (en) Magnetic drive system and microrobot control method using same
CN108420391A (en) A kind of capsule endoscope control device, system and method
CN106963492B (en) Magnetic is anchored robot system
WO2021080092A1 (en) Micro-robot control apparatus
RU2683204C1 (en) Device for controlling the movement of a foreign body inside the patient by external magnetic field
KR20200101286A (en) Electromagnetic drive system for micro robot
WO2022010044A1 (en) Bed-integrated type electromagnetic field apparatus for controlling movement of micro-robot and micro-robot operation method using same
CN115349813A (en) Magnetic control device and navigation system of capsule endoscope
US20220246339A1 (en) Dual hybrid electromagnet module for controlling microrobot
CN208693239U (en) A kind of capsule endoscope control equipment and system
KR20210075599A (en) Dual Electromagnet Module for Controling Micro-robot
WO2023068901A1 (en) Magnetic field control device
WO2023043279A1 (en) Magnetic field generation module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20929468

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20929468

Country of ref document: EP

Kind code of ref document: A1