WO2021201331A1 - Omnidirectional non-rotating lidar-based safety system for work safety of smart factory - Google Patents

Omnidirectional non-rotating lidar-based safety system for work safety of smart factory Download PDF

Info

Publication number
WO2021201331A1
WO2021201331A1 PCT/KR2020/004959 KR2020004959W WO2021201331A1 WO 2021201331 A1 WO2021201331 A1 WO 2021201331A1 KR 2020004959 W KR2020004959 W KR 2020004959W WO 2021201331 A1 WO2021201331 A1 WO 2021201331A1
Authority
WO
WIPO (PCT)
Prior art keywords
risk
unit
sensing
case
area
Prior art date
Application number
PCT/KR2020/004959
Other languages
French (fr)
Korean (ko)
Inventor
어재홍
박유성
임민현
하지훈
Original Assignee
주식회사 제이캐스트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 제이캐스트 filed Critical 주식회사 제이캐스트
Publication of WO2021201331A1 publication Critical patent/WO2021201331A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4813Housing arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • G05B19/0423Input/output
    • G05B19/0425Safety, monitoring
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Definitions

  • the present invention relates to an omnidirectional non-rotation lidar-based safety system for work safety in a smart factory, and more particularly, high-risk industrial equipment by sensing the position of a sensing object approaching high-risk industrial equipment using a non-rotating lidar sensor It relates to an omnidirectional non-rotating lidar-based safety system for work safety in a smart factory that is implemented to control the operation of the high-risk industrial equipment so as to avoid collisions with sensing objects.
  • the present invention claims the benefit of the filing date of Korean Patent Application No. 10-2020-0039604 filed on April 1, 2020, the entire contents of which are incorporated herein by reference.
  • the safety inspection was decided at a meeting of related organizations on the safety inspection system hosted by the State Council (March 15, 2016), and industrial robots became compulsory safety inspections as dangerous machines (2017).
  • Article 35 of the Occupational Safety and Health Act is being promoted as compulsory safety equipment as a safety certification and disaster prevention system as a voluntary safety check and safety inspection system.
  • the above-mentioned background technology is technical information that the inventor possessed for the derivation of the present invention or acquired in the process of derivation of the present invention, and it cannot be said that it is necessarily a known technique disclosed to the general public before the filing of the present invention. .
  • One aspect of the present invention can control the driving of high-risk industrial equipment to avoid collision of high-risk industrial equipment and sensing objects by sensing the position of a sensing object approaching high-risk industrial equipment using a non-rotating lidar sensor. It provides an all-round non-rotating lidar-based safety system for work safety in smart factories.
  • An omnidirectional non-rotating lidar-based safety system for work safety in a smart factory is provided in a smart factory and when a sensing object (worker, etc.) approaches, it is located in the vicinity of a dangerous high-risk industrial facility or in a high-risk industrial facility
  • a sensing object worker, etc.
  • the omnidirectional non-rotational lidar-based safety system for work safety of a smart factory for controlling the operation of the high-risk industrial facility through position sensing of a sensing object that is installed and approaches the high-risk industrial facility, the perimeter of the high-risk industrial facility or a case part installed in a high-risk industrial facility and forming a columnar upper structure; a sensor unit installed on the upper part of the case unit and sensing a position of a sensing object approaching the high-risk industrial facility using a non-rotating lidar sensor; It is installed in the inner space of the case part, and stores the risk map generated by dividing the peripheral area of the case part by grade according to the high and low risk, and
  • the case unit forming a cylindrical structure, the upper body case in which the sensor unit is installed in the inner space; and a lower case formed in the form of a hexahedral box that forms an inner space for installing the control unit and the power unit, and installed in close contact with the lower side of the upper case to seal the inner space.
  • the sensor unit, the base plate is formed in the form of a disc and installed in the inner space of the upper body case; and 14 vertical resonance surface-emitting lasers installed at equal intervals along the edge of the base plate so that the sensing region faces the outside of the upper case so as to sense 360° omnidirectional sensing along the periphery of the case portion ( Vertical Cavity Surface-Emitting Laser); may include.
  • the sensor unit, the base plate is formed in the form of a disc and installed in the inner space of the upper body case; and a portion corresponding to 90° of the circumference of the case portion along the edge of the base plate so that the sensing portion faces the outside of the upper body case so as to sense a partial range corresponding to 270° along the circumference of the case portion. and 10 vertical resonant surface-emitting lasers that are spaced apart from each other and installed at equal intervals.
  • an irradiation angle of a laser beam for position sensing may be formed at an angle of 27°.
  • control unit a risk mapping unit for storing the generated risk map by dividing the peripheral area of the case part installed in the vicinity of the high-risk industrial equipment or high-risk industrial equipment in a grade according to the high and low risk; a position reading unit for reading a position of a sensing object approaching the high-risk industrial facility by using the sensing data transmitted from the sensor unit; an entry reading unit that analyzes the position of the sensing object read by the position reading unit and reads which area is included in the area of the risk map stored in the risk mapping unit; an industrial facility control unit for generating a warning signal or generating a driving control signal for controlling the driving of the high-risk industrial facility in response to the location on the risk map of the sensing object approaching the high-risk industrial facility; and a communication unit that transmits and receives data through the MES system and network of the smart factory, and transmits a driving control signal transmitted from the industrial facility control unit to the high-risk industrial facility through the network.
  • the risk mapping unit does not affect the driving of the high-risk industrial equipment even if the sensing object is located in an undetected area, which is an area in which the sensing by the sensor unit is not performed, in the peripheral area of the case unit 4 of the stable area, which is an area, a warning area, which is an area that generates a warning signal when a sensing object is located, and a danger area, which is an area that generates a drive control signal for controlling the driving of the high-risk industrial equipment when a sensing object is located can be divided into areas.
  • the entry reading unit may read a case where the high-risk industrial facility approaches the sensing target and a case where the sensing target approaches the high-risk industrial facility with the same approach.
  • the power supply unit may receive electricity from an external power source using a waterproof connector.
  • the omnidirectional non-rotating lidar-based safety system for work safety in a smart factory according to an embodiment of the present invention, the case unit, the sensor unit, the control unit, and the power supply unit are all formed in a module form and may be formed to be detachable from each other.
  • 16 Channel SPAD scanning rate of 200 Hz digital signal processing circuit (682,600 points/second) can be implemented, and laser scanning error correction can be provided through software development for 2D map display.
  • FIG. 1 is a diagram showing a schematic configuration of an omnidirectional non-rotating lidar-based safety system for work safety in a smart factory according to an embodiment of the present invention.
  • FIG. 2 is a view showing detailed configurations of a sensor unit, a control unit, and a power supply unit of FIG. 1 .
  • FIG. 3 is a network configuration diagram of an omnidirectional non-rotating lidar-based safety system for work safety in a smart factory according to an embodiment of the present invention.
  • FIG. 4 is a view showing the case part of FIG. 1 .
  • FIG. 5 is a view showing an embodiment of the sensor unit of FIG. 1 .
  • FIG. 6 is a view showing another embodiment of the sensor unit of FIG. 1 .
  • FIG. 7 is a diagram illustrating a functional block diagram of the control unit of FIG. 1 .
  • FIG. 8 and 9 are diagrams for explaining the division of the risk map by the risk mapping unit of FIG. 7 .
  • FIG. 1 is a diagram showing a schematic configuration of an omnidirectional non-rotating lidar-based safety system for work safety in a smart factory according to an embodiment of the present invention.
  • the omnidirectional non-rotating lidar-based safety system 10 for work safety of a smart factory is provided in a smart factory and a high-risk dangerous when a sensing object (operator, etc.) approaches It is installed in the vicinity of industrial equipment (R) or high-risk industrial equipment (R) and is intended to control the operation of high-risk industrial equipment (R) through position sensing of a sensing object approaching high-risk industrial equipment (R), and the case part ( 100 ), a sensor unit 200 , a control unit 300 , and a power supply unit 400 .
  • the high-risk industrial facility refers to a facility in which access to a specific area is prohibited, such as a robot arm, a press machine, a high voltage machine, a light curtain, a physical fence, and the like.
  • the case unit 100 is installed in a high-risk industrial facility (R), forms a columnar upper structure (S), and the sensor unit 200, the control unit 300 and the power supply unit 400 are installed in a sealed inner space. do.
  • the sensor unit 200 is installed on the upper portion of the case unit 100 and is a device for sensing a distance to an external approach, and uses a non-rotating lidar (Lidar, Light detection and ranging) sensor for high-risk industrial equipment (R). ) to sense the position of the sensing object approaching.
  • Lidar Light detection and ranging
  • R high-risk industrial equipment
  • the sensor unit 200 transmits/receives data to and from the control unit 300 through the I2C BUS 330 as shown in FIG. 2 , and may be formed of a lidar sensor having a power regulator.
  • the control unit 300 is a device for controlling the function of each component of the present invention, and performs functions such as a failure diagnosis test, external communication through TCP/IP, and signal transmission through relay control, and the case unit 100 ) is installed in the internal space of the level, and stores the risk map generated by dividing the peripheral area of the case unit 100 according to the level of risk, and after reading the position of the sensing object transmitted from the sensor unit 200 When a sensing object enters an area corresponding to a level of risk or higher in the risk map, the operation of the high-risk industrial equipment (R) is stopped.
  • the controller 300 as shown in FIG. 2, ARM Cortex M SERIES 310, EEPROM 320, I2C BUS 330, RS-485 converter 340, Ethernet controller 350 and a waterproof connector 360 .
  • the power supply unit 400 generally operates at 24Vdc, is installed in the inner space of the case unit 100 , and supplies electricity necessary for driving the sensor unit 200 and the control unit 300 .
  • the power supply unit 400 as shown in FIG. 2, a waterproof connector 410 for receiving external power, two relays 420, and a waterproof connector 430 for supplying power to the power input control. can be provided.
  • the waterproof connectors 410 and 430 are waterproof of an IP65 rating.
  • the power supply unit 400 may receive electricity supplied from the waterproof connector 410 through the power regulator C1 separately provided.
  • the sensor unit 200 may also receive electricity through a separately provided power regulator C2.
  • the omnidirectional non-rotating lidar-based safety system 10 for work safety in a smart factory having the configuration as described above includes the case unit 100 , the sensor unit 200 , and the control unit 300 . ), and the power supply unit 400 may be formed in a module form to be detachable from each other.
  • FIG. 3 is a network configuration diagram of the omnidirectional non-rotating lidar-based safety system 10 for work safety in a smart factory according to an embodiment of the present invention
  • the driving of each high-risk industrial facility (R-1 to RN) can be individually controlled so as to avoid the collision of the object.
  • the omnidirectional non-rotational lidar-based safety system 10 is shown to be directly installed (10-1 to 10-N) in each of the high-risk industrial facilities (R-1 to RN), but this is an omnidirectional non-rotational lidar-based It is an exemplary representation of the location where the safety system 10 is installed. That is, the omnidirectional non-rotating lidar-based safety system 10 according to the present invention is not directly installed in each of the high-risk industrial facilities (R-1 to RN), but is close to each of the high-risk industrial facilities (R-1 to RN). It can also be installed around.
  • the omnidirectional non-rotating lidar-based safety systems 10-1 to 10-N for work safety of each smart factory transmit and receive data to and from the MES system 20 of the smart factory through the network 50 to each high-risk industry
  • the operation of the facilities (R-1 to RN) can be controlled, and the sensor unit 200, the control unit 300 ) and data according to the driving of the power supply unit 400 may be transmitted and received.
  • the omnidirectional non-rotating lidar-based safety system 10 for work safety of each smart factory realizes the minimization of the sensing shadow area by implementing a high-resolution sensing area (horizontal FoV 360°, vertical FoV 27°).
  • 16 Channel SPAD scanning rate of 200 Hz digital signal processing circuit (682,600 points/second) can be implemented, laser scanning error correction can be performed through software development for 2D map display, and smart factory MES Interface/adaptors Big data and artificial intelligence of development and scanning data can be implemented.
  • the omnidirectional non-rotating lidar-based safety system 10 for work safety of a smart factory having the configuration as described above is not only a smart factory equipped with a production robot as described above It will also be applicable to smart factory automation equipment companies equipped with equipment that repeats regular movements such as automatic forklift equipment, and heavy equipment users who require an alarm when a person (worker) or an object approaches a place where the heavy equipment cannot see.
  • FIG. 4 is a view showing the case part of FIG. 1 .
  • the case part 100 includes an upper body case 110 and a lower body case 120 .
  • the upper body case 110 forms a cylindrical structure (S)
  • the sensor unit 200 is installed in the inner space
  • the lower body case 120 is installed on the lower side.
  • the upper case 110 is provided with a rubber ring 111 for sealing along the lower side opposite to the lower case 120 as shown in FIG. 1 , and a bolt on the lower case 120 . They may be fastened to each other by fastening.
  • the lower body case 120 is formed in the form of a hexahedral box forming an internal space 130 for installing the control unit 300 and the power supply unit 400 , and the upper body case 110 to seal the internal space 130 . It is installed in close contact with the lower side of the
  • the case part 100 having the configuration as described above may be formed so that the inner space can be sealed so that the upper body case 110 and the lower body case 120 can be waterproof of an IP65 rating and an explosion-proof design can be implemented. have.
  • FIG. 5 is a view showing an embodiment of the sensor unit of FIG. 1 .
  • the sensor unit 200a includes a base plate 210 and 14 vertical resonance surface-emitting lasers 220-1 to 220-14.
  • the base plate 210 is formed in a disk shape and installed in the inner space of the upper body case 110 , and 14 vertical resonance surface-emitting lasers 220-1 to 220-14 are installed along the periphery.
  • the plurality of vertical resonance surface-emitting lasers 220-1 to 220-14 are sensed in a radial direction with respect to the center of the base plate 210, respectively, in the vertical resonance surface-emitting lasers 220-1 to 220-14. It is arranged in a circumferential shape along the edge of the base plate 210 so as to irradiate the laser beam for detecting the object. More specifically, as shown in FIG. 5 , the vertical resonance type surface-emitting lasers 220-1 to 220-14 have a sensing region of the upper body case so that 360° omnidirectional sensing can be performed along the periphery of the case unit 100 . 14 are installed at the same distance from each other along the edge of the base plate 210 so as to face the outside of the base plate 210 (that is, spaced apart from each other at intervals of 27° with respect to the center of the base plate 210).
  • the simple specifications of the vertical resonance type surface emitting laser 220 are 1) 940 nm invisible laser, 2) Class 1 laser, 3) Time of flight (ToF) Type, 4) 50Hz ranging frequency, 5) SPAD type can be done
  • the vertical resonance surface-emitting laser 220, the sensing range shows a 'conical shape' with respect to the front, the vertical or left and right sensing range may be performed at 27°.
  • the sensor unit 200a is a value obtained by dividing 360° by 27°, which is the sensing area of the vertical resonance surface-emitting laser 220 for omnidirectional sensing of the upper body case 110 . (13.333...) 14 perpendicular resonance type surface emitting lasers 220-1 to 220-14, which are the number corresponding to the smallest integer value larger than that is required. That is, if the horizontal sensing area (range) for the front of each vertical resonance type surface-emitting laser 220 is A°, the sensor unit 200a according to an embodiment of the present invention performs 360° omnidirectional sensing, N vertical resonant surface-emitting lasers, which are the smallest integer greater than 360° divided by A°, are provided.
  • FIG. 6 is a view showing another embodiment of the sensor unit of FIG. 1 .
  • the sensor unit 200b includes a base plate 210 and ten vertical resonance surface-emitting lasers 220-1 to 220-10.
  • the base plate 210 is formed in a disk shape and installed in the inner space of the upper body case 110 , and 10 vertical resonance surface-emitting lasers 220-1 to 220-10 are installed along the periphery.
  • the vertical resonance surface-emitting lasers 220-1 to 220-10 have a sensing portion facing the outside of the upper body case 110 so as to sense a partial range corresponding to 270° along the circumference of the case portion 100. to be spaced apart from each other at equal intervals (that is, at intervals of 27° based on the center of the base plate 210) ) and 10 pieces are installed.
  • the irradiation angle of the laser beam for position sensing may be formed at an angle of 27°.
  • the sensor unit 200b when installed in a high-risk industrial facility (R), there is an area that does not require sensing due to the presence of an inaccessible area of the sensing object. This corresponds to an embodiment for sensing only a partial range corresponding to 270° along the circumference of the bar case unit 100 .
  • the sensor unit 200b is the case unit 100 except for a portion corresponding to 90° of the circumference of the case unit 100 that is not accessible to the sensing object. ) divided by 27°, which is the sensing area of the vertical resonance surface emitting laser 220, a partial range corresponding to 270° along the circumference of 10, that is, 10 vertical resonance surface emitting lasers 220-1 to 220-10 will be needed
  • the "sensing blank area" as shown in FIG. 6 between each vertical resonance surface emitting laser 220 is
  • the width of the "sensing blank area” is relatively small compared to the size of the operator's body or the size of the sensing object, it is not a problem in effective sensing.
  • FIG. 7 is a diagram illustrating a functional block diagram of the control unit of FIG. 1 .
  • the control unit 300 includes a risk mapping unit 301 , a location reading unit 302 , an entry reading unit 303 , an industrial equipment control unit 304 , and a communication unit 305 .
  • the risk mapping unit 301 stores the generated risk map by dividing the peripheral area of the case unit 100 installed in the high-risk industrial facility R in a grade according to the high and low risk.
  • the risk mapping unit 301 with the case unit 100 as a center, the maximum detection distance of up to 4m area (eg, area up to 4m) and the maximum detection height area (exemplarily) .
  • Safe area (A2) which is an area that does not affect the driving
  • Warning area (A3) which is an area that generates a warning signal when a sensing object is located
  • High risk when a sensing object is located It can be divided into four areas of a danger area (A4) that is an area for generating a drive control signal for controlling the driving of the industrial facility (R).
  • the risk mapping unit 301 senses the peripheral area 270° of the case unit 100 as illustrated in FIG. 8 according to the number of surface-emitting lasers 220 , and as illustrated in FIG. 9 .
  • a case of sensing 360° of the peripheral area of the case unit 100 may be separately divided to generate a risk map.
  • the position reading unit 302 reads the position of the sensing object approaching the high-risk industrial facility R by using the sensing data transmitted from the sensor unit 200 .
  • the entry reading unit 303 analyzes the position of the sensing object read by the position reading unit 302 and reads which area is included in the area of the risk map stored in the risk mapping unit 301 .
  • the entry reading unit 303 may read a case where the high-risk industrial facility R approaches the sensing target and a case where the sensing target approaches the high-risk industrial facility R with the same approach.
  • the industrial equipment control unit 304 generates a warning signal in response to the location on the risk map of the sensing object approaching the high-risk industrial equipment (R) or a driving control signal for controlling the driving of the high-risk industrial equipment (R) create More specifically, when the entry reading unit 303 reads that the sensing object is in the safe area A2 for the high-risk industrial facility R, the industrial facility control unit 304 does not generate a warning signal, and the sensing Position information indicating that the object is located in the safe area A2 is generated.
  • the entry reading unit 303 detects that the sensing object is in the warning area A3 (the sensing object is safe When reading from area A2 to entering warning area A3), the industrial equipment control unit 304 generates a warning signal and generates positional information indicating that the sensing object is located in the warning area A3. .
  • the entry reading unit 303 determines that the sensing object is in the danger area A4 (the sensing object is in the warning area A3).
  • the industrial equipment control unit 304 generates a warning signal and generates position information indicating that the sensing object is located in the dangerous area A4.
  • the warning signal generated by the industrial facility control unit 304 may correspond to a signal for operating a warning sound or a warning light for notifying a warning to a sensing object (operator, etc.) close to the high-risk industrial facility R.
  • the industrial equipment control unit 304 stops the driving of the high-risk industrial equipment R A driving stop signal is generated as a driving control signal for And, when the entry reading unit 303 reads that the sensing object enters the warning area A3 from the danger area A4, the industrial equipment control unit 304 restarts the driving of the high-risk industrial equipment R A driving restart signal is generated as a driving control signal for
  • the communication unit 305 transmits and receives data through the network with the MES (Manufacturing Execution System) system 20 of the smart factory, and transmits the location information and the driving control signal transmitted from the industrial facility control unit 304 to the MES system ( 20) is sent. Accordingly, in the MES system 20 receiving the location information from the communication unit 305, the relative position of the sensing object to the high-risk industrial facility R is a safe area A2, a warning area A3, and a danger area A4. Information on which area in the control room can be displayed on the display of the manager of the control room.
  • MES Manufacturing Execution System
  • the MES system 20 that has received the driving control signal from the communication unit 305 is a high-risk industrial facility (R) through the network 50 when the sensing object enters the warning area (A3) from the danger area (A4). to stop the operation of high-risk industrial equipment (R) by sending a drive stop signal to the Transmits the drive restart signal to the industrial facility (R) to restart the drive of the high-risk industrial facility (R) (safe mode release).
  • the driving control signal for the high-risk industrial facility R has been described as being generated by the entry reading unit 303 , but in some cases, the MES system 20 is a sensing object based on the location information received from the communication unit 305 . It is also possible to generate a drive control signal according to the relative position between the and high-risk industrial equipment (R).
  • the risk mapping unit 301 , the location reading unit 302 , the entry reading unit 303 and the industrial equipment control unit 304 of the control unit 300 having the configuration as described above is the ARM Cortex M SERIES 310 of FIG. 2 .
  • it is performed in the EEPROM 320
  • the function of the communication unit 305 may be performed in the I2C BUS 330 , the RS-485 converter 340 , and the Ethernet controller 350 .
  • ' ⁇ unit' used in the above embodiments means software or hardware components such as field programmable gate array (FPGA) or ASIC, and ' ⁇ unit' performs certain roles.
  • '-part' is not limited to software or hardware.
  • the ' ⁇ unit' may be configured to reside on an addressable storage medium or may be configured to refresh one or more processors.
  • ' ⁇ ' denotes components such as software components, object-oriented software components, class components, and task components, and processes, functions, properties, and procedures. , subroutines, segments of program patent code, drivers, firmware, microcode, circuitry, data, databases, data structures, tables, arrays, and variables.
  • components and ' ⁇ units' may be implemented to play one or more CPUs in a device or secure multimedia card.

Abstract

The present invention relates to an omnidirectional non-rotating lidar-based safety system for work safety of a smart factory, which, in particular, is implemented so that the operation of a high-risk industrial facility can be controlled so as to avoid collisions of the high-risk industrial facility with objects to be sensed by sensing the location of the objects to be sensed approaching the high-risk industrial facility by using the non-rotating lidar sensor.

Description

스마트 공장의 작업 안전을 위한 전방위 무회전 라이다 기반 안전 시스템All-round non-rotating lidar-based safety system for work safety in smart factories
본 발명은 스마트 공장의 작업 안전을 위한 전방위 무회전 라이다 기반 안전 시스템에 관한 것으로서, 보다 상세하게는 무회전 라이다 센서를 이용하여 고위험 산업설비로 접근하는 센싱 대상물의 위치를 센싱하여 고위험 산업설비와 센싱 대상물의 충돌을 회피할 수 있도록 상기 고위험 산업설비의 구동을 제어할 수 있도록 구현한 스마트 공장의 작업 안전을 위한 전방위 무회전 라이다 기반 안전 시스템에 관한 것이다. 본 발명은 2020년 4월 1일 출원된 한국특허출원 제10-2020-0039604호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.The present invention relates to an omnidirectional non-rotation lidar-based safety system for work safety in a smart factory, and more particularly, high-risk industrial equipment by sensing the position of a sensing object approaching high-risk industrial equipment using a non-rotating lidar sensor It relates to an omnidirectional non-rotating lidar-based safety system for work safety in a smart factory that is implemented to control the operation of the high-risk industrial equipment so as to avoid collisions with sensing objects. The present invention claims the benefit of the filing date of Korean Patent Application No. 10-2020-0039604 filed on April 1, 2020, the entire contents of which are incorporated herein by reference.
최근 5년 간 (2011-2015년) 제조업에서 산업용 로봇(2,525 사업장, 34,870대)에 의한 전체 재해자수는 207명(사망 15명)으로 한 해 평균 41.4명(제조업 재해자의 53.6%)으로 안전보호 기기의 필요성이 대두되고 있다.In the last 5 years (2011-2015), the total number of industrial robots (2,525 workplaces, 34,870 units) in the manufacturing industry was 207 (15 deaths), with an average of 41.4 people (53.6% of manufacturing accidents) per year. The need for equipment is emerging.
국무회의실 주관 안전검사체계 관계기관회의(2016.3.15.)에서 안전검사도입 결정하여, 산업용 로봇을 위험 기계물로 안전검사가 의무화(2017년) 되었다.The safety inspection was decided at a meeting of related organizations on the safety inspection system hosted by the State Council (March 15, 2016), and industrial robots became compulsory safety inspections as dangerous machines (2017).
산업안전 보건법 제35조 자율 안전 확인과 안전검사제도로 안전인증 및 재해예방을 위한 제도시행으로 안전기기의 의무화로 추진되고 있다.Article 35 of the Occupational Safety and Health Act is being promoted as compulsory safety equipment as a safety certification and disaster prevention system as a voluntary safety check and safety inspection system.
그리고, 산업용 로봇(ISO 10218-1:2011, ISO 10218-2:2011)와 협동로봇(ISO 15066:2016) 등의 안전요구사항으로 안전기기의 의무화로 추진되고 있다.In addition, as safety requirements for industrial robots (ISO 10218-1:2011, ISO 10218-2:2011) and collaborative robots (ISO 15066:2016), safety devices are being made mandatory.
이에 따라, 스마트 공장의 안전 환경을 확보하기 위해 펜스, 라이트 커튼(Light Curtain), 안전매트 등의 한계를 극복하고, 해외로부터 수입되고 있는 기존 제품의 수입 대체 제품의 필요성에 따라 스마트공장의 안전 환경 확보용 무회전 라이다 시스템 개발 시급성 대두되고 있는 실정이다.Accordingly, in order to secure a safe environment in a smart factory, we overcome the limitations of fences, light curtains, and safety mats, and in accordance with the need for imported replacement products for existing products imported from abroad, the safe environment of the smart factory There is an urgent need to develop a non-rotating lidar system for securing.
한편, 전술한 배경 기술은 발명자가 본 발명의 도출을 위해 보유하고 있었거나, 본 발명의 도출 과정에서 습득한 기술 정보로서, 반드시 본 발명의 출원 전에 일반 공중에게 공개된 공지기술이라 할 수는 없다.On the other hand, the above-mentioned background technology is technical information that the inventor possessed for the derivation of the present invention or acquired in the process of derivation of the present invention, and it cannot be said that it is necessarily a known technique disclosed to the general public before the filing of the present invention. .
본 발명의 일측면은 무회전 라이다 센서를 이용하여 고위험 산업설비로 접근하는 센싱 대상물의 위치를 센싱하여 고위험 산업설비와 센싱 대상물의 충돌을 회피할 수 있도록 상기 고위험 산업설비의 구동을 제어할 수 있도록 구현한 스마트 공장의 작업 안전을 위한 전방위 무회전 라이다 기반 안전 시스템을 제공한다.One aspect of the present invention can control the driving of high-risk industrial equipment to avoid collision of high-risk industrial equipment and sensing objects by sensing the position of a sensing object approaching high-risk industrial equipment using a non-rotating lidar sensor. It provides an all-round non-rotating lidar-based safety system for work safety in smart factories.
본 발명의 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The technical problems of the present invention are not limited to the technical problems mentioned above, and other technical problems not mentioned will be clearly understood by those skilled in the art from the following description.
본 발명의 일 실시예에 따른 스마트 공장의 작업 안전을 위한 전방위 무회전 라이다 기반 안전 시스템은, 스마트 공장에 구비되고 센싱 대상물(작업자 등)이 접근하면 위험한 고위험 산업설비의 주변 또는 고위험 산업설비에 설치되어 상기 고위험 산업설비로 접근하는 센싱 대상물의 위치 센싱을 통해 상기 고위험 산업설비의 구동을 제어하기 위한 스마트 공장의 작업 안전을 위한 전방위 무회전 라이다 기반 안전 시스템에 있어서, 상기 고위험 산업설비의 주변 또는 고위험 산업설비에 설치되며, 원기둥 형태의 상부 구조를 형성하는 케이스부; 상기 케이스부의 상부에 설치되며, 무회전 라이다(Lidar) 센서를 이용하여 상기 고위험 산업설비로 접근하고 있는 센싱 대상물의 위치를 센싱하는 센서부; 상기 케이스부의 내부 공간에 설치되며, 위험도의 높낮음에 따른 등급으로 상기 케이스부의 주변 영역을 구획하여 생성시킨 위험도맵을 저장해 두며, 상기 센서부로부터 전달되는 센싱 대상물의 위치를 판독한 뒤 상기 위험도맵에서 기 설정된 등급 이상의 위험도에 해당하는 영역으로 센싱 대상물이 진입한 경우 상기 고위험 산업설비의 구동을 정지시키는 제어부; 및 상기 케이스부의 내부 공간에 설치되며, 상기 센서부 및 상기 제어부의 구동에 필요한 전기를 공급하는 전원부;를 포함한다.An omnidirectional non-rotating lidar-based safety system for work safety in a smart factory according to an embodiment of the present invention is provided in a smart factory and when a sensing object (worker, etc.) approaches, it is located in the vicinity of a dangerous high-risk industrial facility or in a high-risk industrial facility In the omnidirectional non-rotational lidar-based safety system for work safety of a smart factory for controlling the operation of the high-risk industrial facility through position sensing of a sensing object that is installed and approaches the high-risk industrial facility, the perimeter of the high-risk industrial facility or a case part installed in a high-risk industrial facility and forming a columnar upper structure; a sensor unit installed on the upper part of the case unit and sensing a position of a sensing object approaching the high-risk industrial facility using a non-rotating lidar sensor; It is installed in the inner space of the case part, and stores the risk map generated by dividing the peripheral area of the case part by grade according to the high and low risk, and after reading the position of the sensing object transmitted from the sensor part, in the risk map a control unit for stopping the operation of the high-risk industrial equipment when a sensing object enters an area corresponding to a degree of risk above a preset level; and a power supply unit installed in the inner space of the case unit and supplying electricity necessary for driving the sensor unit and the control unit.
일 실시예에서, 상기 케이스부는, 원기둥 형태의 구조를 형성하며, 내부 공간에 상기 센서부가 설치되는 상체 케이스; 및 상기 제어부 및 상기 전원부가 설치되기 위한 내부 공간을 형성하는 육면체 박스 형태로 형성되며, 내부 공간을 밀폐시킬 수 있도록 상기 상체 케이스의 하측에 밀착되어 설치되는 하체 케이스;를 포함할 수 있다.In one embodiment, the case unit, forming a cylindrical structure, the upper body case in which the sensor unit is installed in the inner space; and a lower case formed in the form of a hexahedral box that forms an inner space for installing the control unit and the power unit, and installed in close contact with the lower side of the upper case to seal the inner space.
일 실시예에서, 상기 센서부는, 원판 형태로 형성되어 상기 상체 케이스의 내부 공간에 설치되는 베이스 플레이트; 및 상기 케이스부의 둘레를 따라 360°전방위를 센싱할 수 있도록 센싱 부위가 상기 상체 케이스의 외측을 향하도록 상기 베이스 플레이트의 테두리를 따라 서로 동일한 간격으로 이격되어 설치되는 14 개의 수직 공진형 표면 발광 레이저(Vertical Cavity Surface-Emitting Laser);를 포함할 수 있다.In one embodiment, the sensor unit, the base plate is formed in the form of a disc and installed in the inner space of the upper body case; and 14 vertical resonance surface-emitting lasers installed at equal intervals along the edge of the base plate so that the sensing region faces the outside of the upper case so as to sense 360° omnidirectional sensing along the periphery of the case portion ( Vertical Cavity Surface-Emitting Laser); may include.
일 실시예에서, 상기 센서부는, 원판 형태로 형성되어 상기 상체 케이스의 내부 공간에 설치되는 베이스 플레이트; 및 상기 케이스부의 둘레를 따라 270°에 해당하는 일부 범위를 센싱할 수 있도록 센싱 부위가 상기 상체 케이스의 외측을 향하도록 상기 베이스 플레이트의 테두리를 따라 상기 케이스부의 둘레의 90°에 해당되는 부분을 제외하고 서로 동일한 간격으로 이격되어 설치되는 10 개의 수직 공진형 표면 발광 레이저(Vertical Cavity Surface-Emitting Laser);를 포함할 수 있다.In one embodiment, the sensor unit, the base plate is formed in the form of a disc and installed in the inner space of the upper body case; and a portion corresponding to 90° of the circumference of the case portion along the edge of the base plate so that the sensing portion faces the outside of the upper body case so as to sense a partial range corresponding to 270° along the circumference of the case portion. and 10 vertical resonant surface-emitting lasers that are spaced apart from each other and installed at equal intervals.
일 실시예에서, 상기 수직 공진형 표면 발광 레이저는, 위치 센싱을 위한 레이저빔의 조사각도가 27° 각도로 형성될 수 있다.In an embodiment, in the vertical resonance surface-emitting laser, an irradiation angle of a laser beam for position sensing may be formed at an angle of 27°.
일 실시예에서, 상기 제어부는, 위험도의 높낮음에 따른 등급으로 상기 고위험 산업설비의 주변 또는 고위험 산업설비에 설치된 상기 케이스부의 주변 영역을 구획하여 생성된 위험도맵을 저장해 두는 위험도 맵핑부; 상기 센서부로부터 전달되는 센싱 데이터를 이용하여 상기 고위험 산업설비로 접근하고 있는 센싱 대상물의 위치를 판독하는 위치 판독부; 상기 위치 판독부에서 판독된 센싱 대상물의 위치를 분석하여 상기 위험도 맵핑부에 저장된 위험도맵의 영역 중 어느 영역에 포함되는 지를 판독하는 진입 판독부; 상기 고위험 산업설비로 접근하고 있는 센싱 대상물의 위험도맵에서의 위치에 대응하여 경고 신호 생성 또는 상기 고위험 산업설비의 구동을 제어하기 위한 구동 제어 신호를 생성하는 산업설비 제어부; 및 스마트 공장의 MES 시스템과 네트워크를 통해 데이터를 송수신하며, 상기 산업설비 제어부로부터 전달되는 구동 제어 신호를 상기 네트워크를 통해 상기 고위험 산업설비로 전송하는 통신부;를 포함할 수 있다.In one embodiment, the control unit, a risk mapping unit for storing the generated risk map by dividing the peripheral area of the case part installed in the vicinity of the high-risk industrial equipment or high-risk industrial equipment in a grade according to the high and low risk; a position reading unit for reading a position of a sensing object approaching the high-risk industrial facility by using the sensing data transmitted from the sensor unit; an entry reading unit that analyzes the position of the sensing object read by the position reading unit and reads which area is included in the area of the risk map stored in the risk mapping unit; an industrial facility control unit for generating a warning signal or generating a driving control signal for controlling the driving of the high-risk industrial facility in response to the location on the risk map of the sensing object approaching the high-risk industrial facility; and a communication unit that transmits and receives data through the MES system and network of the smart factory, and transmits a driving control signal transmitted from the industrial facility control unit to the high-risk industrial facility through the network.
일 실시예에서, 상기 위험도 맵핑부는, 상기 케이스부의 주변 영역을 상기 센서부에 의한 센싱이 이루어지지 아니하는 영역인 미감지 영역, 센싱 대상물이 위치하고 있어도 상기 고위험 산업설비의 구동에 영향을 주지 아니하는 영역인 안정 영역, 센싱 대상물이 위치하는 경우 경고 신호를 생성하는 영역인 경고 영역, 및 센싱 대상물이 위치하는 경우 상기 고위험 산업설비의 구동을 제어하기 위한 구동 제어 신호를 생성하는 영역인 위험 영역의 4 가지 영역으로 구분할 수 있다.In an embodiment, the risk mapping unit does not affect the driving of the high-risk industrial equipment even if the sensing object is located in an undetected area, which is an area in which the sensing by the sensor unit is not performed, in the peripheral area of the case unit 4 of the stable area, which is an area, a warning area, which is an area that generates a warning signal when a sensing object is located, and a danger area, which is an area that generates a drive control signal for controlling the driving of the high-risk industrial equipment when a sensing object is located can be divided into areas.
일 실시예에서, 상기 진입 판독부는, 상기 고위험 산업설비가 센싱 대상물로 접근하는 경우와 센싱 대상물이 상기 고위험 산업설비로 접근하는 경우를 동일한 접근으로 판독할 수 있다.In an embodiment, the entry reading unit may read a case where the high-risk industrial facility approaches the sensing target and a case where the sensing target approaches the high-risk industrial facility with the same approach.
일 실시예에서, 상기 전원부는, 방수 커넥터를 이용하여 외부 전원으로부터 전기를 공급받을 수 있다.In an embodiment, the power supply unit may receive electricity from an external power source using a waterproof connector.
일 실시예에서, 본 발명의 일 실시예에 따른 스마트 공장의 작업 안전을 위한 전방위 무회전 라이다 기반 안전 시스템은, 상기 케이스부, 상기 센서부, 상기 제어부, 및 상기 전원부 모두가 모듈 형태로 형성되어 서로 탈부착 가능하도록 형성될 수 있다.In one embodiment, the omnidirectional non-rotating lidar-based safety system for work safety in a smart factory according to an embodiment of the present invention, the case unit, the sensor unit, the control unit, and the power supply unit are all formed in a module form and may be formed to be detachable from each other.
상술한 본 발명의 일측면에 따르면, 고 분해능의 센싱 영역(horizontal FoV 360°, vertical FoV 27°)을 구현함으로써 센싱 음영지역의 최소화를 구현하는 효과를 제공할 수 있다.According to the above-described aspect of the present invention, it is possible to provide an effect of realizing the minimization of the sensing shadow area by realizing a high-resolution sensing area (horizontal FoV 360°, vertical FoV 27°).
16 Channel SPAD scanning rate of 200 Hz 디지털 신호처리회로(682,600 points/second)를 구현할 수 있고, 2D map display용 소프트웨어 개발을 통해 레이저 스캐닝 오차 보정을 수행하도록 하는 효과를 제공할 수 있다.16 Channel SPAD scanning rate of 200 Hz digital signal processing circuit (682,600 points/second) can be implemented, and laser scanning error correction can be provided through software development for 2D map display.
또한, 스마트공장 MES Interface/adaptors개발 및 스캐닝 데이터(Scanning data)의 빅데이터화와 인공지능화를 구현하는 효과를 제공할 수 있다.In addition, it can provide the effect of realizing smart factory MES Interface/adaptors development and big dataization and artificial intelligence of scanning data.
본 발명의 효과는 이상에서 언급한 효과들로 제한되지 않으며, 이하에서 설명할 내용으로부터 통상의 기술자에게 자명한 범위 내에서 다양한 효과들이 포함될 수 있다.The effects of the present invention are not limited to the above-mentioned effects, and various effects may be included within the range apparent to those skilled in the art from the description below.
도 1은 본 발명의 일 실시예에 따른 스마트 공장의 작업 안전을 위한 전방위 무회전 라이다 기반 안전 시스템의 개략적인 구성이 도시된 도면이다.1 is a diagram showing a schematic configuration of an omnidirectional non-rotating lidar-based safety system for work safety in a smart factory according to an embodiment of the present invention.
도 2는 도 1의 센서부, 제어부 및 전원부의 세부 구성을 보여주는 도면이다.FIG. 2 is a view showing detailed configurations of a sensor unit, a control unit, and a power supply unit of FIG. 1 .
도 3은 본 발명의 일 실시예에 따른 스마트 공장의 작업 안전을 위한 전방위 무회전 라이다 기반 안전 시스템의 네트워크 구성도이다.3 is a network configuration diagram of an omnidirectional non-rotating lidar-based safety system for work safety in a smart factory according to an embodiment of the present invention.
도 4는 도 1의 케이스부를 보여주는 도면이다.FIG. 4 is a view showing the case part of FIG. 1 .
도 5는 도 1의 센서부의 일 실시예를 보여주는 도면이다.FIG. 5 is a view showing an embodiment of the sensor unit of FIG. 1 .
도 6은 도 1의 센서부의 다른 실시예를 보여주는 도면이다.FIG. 6 is a view showing another embodiment of the sensor unit of FIG. 1 .
도 7은 도 1의 제어부의 기능 블록도를 나타내는 도면이다.FIG. 7 is a diagram illustrating a functional block diagram of the control unit of FIG. 1 .
도 8 및 도 9는 도 7의 위험도 맵핑부에 의한 위험도맵 구획을 설명하는 도면들이다.8 and 9 are diagrams for explaining the division of the risk map by the risk mapping unit of FIG. 7 .
후술하는 본 발명에 대한 상세한 설명은, 본 발명이 실시될 수 있는 특정 실시예를 예시로서 도시하는 첨부 도면을 참조한다. 이들 실시예는 당업자가 본 발명을 실시할 수 있기에 충분하도록 상세히 설명된다. 본 발명의 다양한 실시예는 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 여기에 기재되어 있는 특정 형상, 구조 및 특성은 일 실시예와 관련하여 본 발명의 정신 및 범위를 벗어나지 않으면서 다른 실시예로 구현될 수 있다. 또한, 각각의 개시된 실시예 내의 개별 구성요소의 위치 또는 배치는 본 발명의 정신 및 범위를 벗어나지 않으면서 변경될 수 있음이 이해되어야 한다. 따라서, 후술하는 상세한 설명은 한정적인 의미로서 취하려는 것이 아니며, 본 발명의 범위는, 적절하게 설명된다면, 그 청구항들이 주장하는 것과 균등한 모든 범위와 더불어 첨부된 청구항에 의해서만 한정된다. 도면에서 유사한 참조부호는 여러 측면에 걸쳐서 동일하거나 유사한 기능을 지칭한다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS [0010] DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS [0010] DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS [0023] Reference is made to the accompanying drawings, which show by way of illustration specific embodiments in which the present invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the present invention. It should be understood that the various embodiments of the present invention are different but need not be mutually exclusive. For example, certain shapes, structures, and characteristics described herein with respect to one embodiment may be embodied in other embodiments without departing from the spirit and scope of the invention. In addition, it should be understood that the location or arrangement of individual components within each disclosed embodiment may be changed without departing from the spirit and scope of the present invention. Accordingly, the detailed description set forth below is not intended to be taken in a limiting sense, and the scope of the invention, if properly described, is limited only by the appended claims, along with all scope equivalents to those claimed. Like reference numerals in the drawings refer to the same or similar functions throughout the various aspects.
이하, 도면들을 참조하여 본 발명의 바람직한 실시예들을 보다 상세하게 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in more detail with reference to the drawings.
도 1은 본 발명의 일 실시예에 따른 스마트 공장의 작업 안전을 위한 전방위 무회전 라이다 기반 안전 시스템의 개략적인 구성이 도시된 도면이다.1 is a diagram showing a schematic configuration of an omnidirectional non-rotating lidar-based safety system for work safety in a smart factory according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 일 실시예에 따른 스마트 공장의 작업 안전을 위한 전방위 무회전 라이다 기반 안전 시스템(10)는, 스마트 공장에 구비되고 센싱 대상물(작업자 등)이 접근하면 위험한 고위험 산업설비(R)의 주변 또는 고위험 산업설비(R)에 설치되어 고위험 산업설비(R)으로 접근하는 센싱 대상물의 위치 센싱을 통해 고위험 산업설비(R)의 구동을 제어하기 위한 것으로서, 케이스부(100), 센서부(200), 제어부(300) 및 전원부(400)를 포함한다.Referring to FIG. 1 , the omnidirectional non-rotating lidar-based safety system 10 for work safety of a smart factory according to an embodiment of the present invention is provided in a smart factory and a high-risk dangerous when a sensing object (operator, etc.) approaches It is installed in the vicinity of industrial equipment (R) or high-risk industrial equipment (R) and is intended to control the operation of high-risk industrial equipment (R) through position sensing of a sensing object approaching high-risk industrial equipment (R), and the case part ( 100 ), a sensor unit 200 , a control unit 300 , and a power supply unit 400 .
본 발명에 있어서, 고위험 산업설비(R)라 함은, 로봇암, 프레스기, 고전압기기, 라이트 커튼, 물리적 펜스 등과 같이 특정 영역으로의 접근이 금지되는 설비를 지칭하는 것이다.In the present invention, the high-risk industrial facility (R) refers to a facility in which access to a specific area is prohibited, such as a robot arm, a press machine, a high voltage machine, a light curtain, a physical fence, and the like.
케이스부(100)는, 고위험 산업설비(R)에 설치되며, 원기둥 형태의 상부 구조(S)를 형성하며, 밀폐된 내부 공간에 센서부(200), 제어부(300) 및 전원부(400) 설치된다.The case unit 100 is installed in a high-risk industrial facility (R), forms a columnar upper structure (S), and the sensor unit 200, the control unit 300 and the power supply unit 400 are installed in a sealed inner space. do.
센서부(200)는, 케이스부(100)의 상부에 설치되어 외부 접근에 대한 거리를 센싱하기 위한 장치로서, 무회전 라이다(Lidar, Light detection and ranging) 센서를 이용하여 고위험 산업설비(R)으로 접근하고 있는 센싱 대상물의 위치를 센싱한다.The sensor unit 200 is installed on the upper portion of the case unit 100 and is a device for sensing a distance to an external approach, and uses a non-rotating lidar (Lidar, Light detection and ranging) sensor for high-risk industrial equipment (R). ) to sense the position of the sensing object approaching.
일 실시예에서, 센서부(200)는, 도 2에 도시된 바와 같이 I2C BUS(330)을 통해 제어부(300)와 데이터를 송수신하며, 전원 조절기를 구비하는 라이다 센서로 형성될 수 있다.In an embodiment, the sensor unit 200 transmits/receives data to and from the control unit 300 through the I2C BUS 330 as shown in FIG. 2 , and may be formed of a lidar sensor having a power regulator.
제어부(300)는, 본 발명의 각 구성요소들의 기능 제어를 위한 장치로서, 고장진단 테스트, TCP/IP를 통한 외부 통신, 릴레이 제어를 통한 신호 전달 등의 기능을 수행하는 것으로, 케이스부(100)의 내부 공간에 설치되며, 위험도의 높낮음에 따른 등급으로 케이스부(100)의 주변 영역을 구획하여 생성시킨 위험도맵을 저장해 두며, 센서부(200)로부터 전달되는 센싱 대상물의 위치를 판독한 뒤 위험도맵에서 기 설정된 등급 이상의 위험도에 해당하는 영역으로 센싱 대상물이 진입한 경우 고위험 산업설비(R)의 구동을 정지시킨다.The control unit 300 is a device for controlling the function of each component of the present invention, and performs functions such as a failure diagnosis test, external communication through TCP/IP, and signal transmission through relay control, and the case unit 100 ) is installed in the internal space of the level, and stores the risk map generated by dividing the peripheral area of the case unit 100 according to the level of risk, and after reading the position of the sensing object transmitted from the sensor unit 200 When a sensing object enters an area corresponding to a level of risk or higher in the risk map, the operation of the high-risk industrial equipment (R) is stopped.
일 실시예에서, 제어부(300)는, 도 2에 도시된 바와 같이 ARM Cortex M SERIES(310), EEPROM(320), I2C BUS(330), RS-485 변환기(340), 이더넷 컨트롤러(350) 및 방수 커넥터(360)를 포함할 수 있다.In one embodiment, the controller 300, as shown in FIG. 2, ARM Cortex M SERIES 310, EEPROM 320, I2C BUS 330, RS-485 converter 340, Ethernet controller 350 and a waterproof connector 360 .
전원부(400)는, 일반적으로 24Vdc로 동작하며, 케이스부(100)의 내부 공간에 설치되며, 센서부(200) 및 제어부(300)의 구동에 필요한 전기를 공급한다.The power supply unit 400 generally operates at 24Vdc, is installed in the inner space of the case unit 100 , and supplies electricity necessary for driving the sensor unit 200 and the control unit 300 .
일 실시예에서, 전원부(400)는, 도 2에 도시된 바와 같이 외부 전원을 공급받기 위한 방수 커넥터(410), 두 개의 릴레이(420), 전원 입력 컨트롤로 전원을 공급하는 방수 커넥터(430)를 구비할 수 있다. 이때, 방수 커넥터(410, 430)는 IP65 등급의 방수가 가능한 것이 바람직하다.In one embodiment, the power supply unit 400, as shown in FIG. 2, a waterproof connector 410 for receiving external power, two relays 420, and a waterproof connector 430 for supplying power to the power input control. can be provided. In this case, it is preferable that the waterproof connectors 410 and 430 are waterproof of an IP65 rating.
일 실시예에서, 전원부(400), 즉 ARM Cortex M SERIES(310)는, 방수 커넥터(410)로부터 공급되는 전원을 별도로 구비되는 전원 조정기(C1)를 통해 전기를 공급받을 수 있다.In an embodiment, the power supply unit 400 , that is, the ARM Cortex M SERIES 310 , may receive electricity supplied from the waterproof connector 410 through the power regulator C1 separately provided.
그리고, 센서부(200) 역시 별도로 구비되는 전원 조정기(C2)를 통해 전기를 공급받을 수 있다.In addition, the sensor unit 200 may also receive electricity through a separately provided power regulator C2.
상술한 바와 같은 구성을 가지는 본 발명의 일 실시예에 따른 스마트 공장의 작업 안전을 위한 전방위 무회전 라이다 기반 안전 시스템(10)은, 케이스부(100), 센서부(200), 제어부(300), 및 전원부(400) 모두가 모듈 형태로 형성되어 서로 탈부착 가능하도록 형성될 수 있다.The omnidirectional non-rotating lidar-based safety system 10 for work safety in a smart factory according to an embodiment of the present invention having the configuration as described above includes the case unit 100 , the sensor unit 200 , and the control unit 300 . ), and the power supply unit 400 may be formed in a module form to be detachable from each other.
본 발명의 일 실시예에 따른 스마트 공장의 작업 안전을 위한 전방위 무회전 라이다 기반 안전 시스템(10)의 네트워크 구성도인 도 3에 도시된 바와 같이 다수 개의 고위험 산업설비(R-1 내지 R-N)에 각각 설치(10-1 내지 10-N)되거나 주변에 설치되어 각 고위험 산업설비(R-1 내지 R-N)으로 접근하는 센싱 대상물의 위치를 센싱하여 고위험 산업설비(R-1 내지 R-N)과 센싱 대상물의 충돌을 회피할 수 있도록 각 고위험 산업설비(R-1 내지 R-N)의 구동을 개별적으로 제어할 수 있다. 도 3에는 전방위 무회전 라이다 기반 안전 시스템(10)이 고위험 산업설비(R-1 내지 R-N) 각각에 직접 설치(10-1 내지 10-N)되는 것으로 도시되었으나, 이는 전방위 무회전 라이다 기반 안전 시스템(10)이 설치되는 위치를 예시적으로 표현한 것이다. 즉, 본 발명에 따른 전방위 무회전 라이다 기반 안전 시스템(10)은 고위험 산업설비(R-1 내지 R-N) 각각에 직접 설치되는 것이 아닌, 고위험 산업설비(R-1 내지 R-N) 각각에 대하여 근접한 주변에 설치될 수도 있다.A plurality of high-risk industrial facilities (R-1 to RN) as shown in FIG. 3, which is a network configuration diagram of the omnidirectional non-rotating lidar-based safety system 10 for work safety in a smart factory according to an embodiment of the present invention Sensing with high-risk industrial facilities (R-1 to RN) by sensing the position of a sensing object that is installed in (10-1 to 10-N) or installed in the vicinity to each high-risk industrial facility (R-1 to RN) The driving of each high-risk industrial facility (R-1 to RN) can be individually controlled so as to avoid the collision of the object. 3, the omnidirectional non-rotational lidar-based safety system 10 is shown to be directly installed (10-1 to 10-N) in each of the high-risk industrial facilities (R-1 to RN), but this is an omnidirectional non-rotational lidar-based It is an exemplary representation of the location where the safety system 10 is installed. That is, the omnidirectional non-rotating lidar-based safety system 10 according to the present invention is not directly installed in each of the high-risk industrial facilities (R-1 to RN), but is close to each of the high-risk industrial facilities (R-1 to RN). It can also be installed around.
각각의 스마트 공장의 작업 안전을 위한 전방위 무회전 라이다 기반 안전 시스템(10-1 내지 10-N)은, 네트워크(50)를 통해 스마트 공장의 MES 시스템(20)과 데이터를 송수신함으로써 각 고위험 산업설비(R-1 내지 R-N)의 구동이 제어되도록 할 수 있으며, 기타 스마트 공장 시스템 서버(30) 또는 스마트 공장의 관리자 단말기(40)와도 네트워크(50)를 통해 센서부(200), 제어부(300) 및 전원부(400)의 구동에 따른 데이터를 송수신할 수 있다.The omnidirectional non-rotating lidar-based safety systems 10-1 to 10-N for work safety of each smart factory transmit and receive data to and from the MES system 20 of the smart factory through the network 50 to each high-risk industry The operation of the facilities (R-1 to RN) can be controlled, and the sensor unit 200, the control unit 300 ) and data according to the driving of the power supply unit 400 may be transmitted and received.
이때, 각각의 스마트 공장의 작업 안전을 위한 전방위 무회전 라이다 기반 안전 시스템(10)은, 고 분해능의 센싱 영역(horizontal FoV 360°, vertical FoV 27°)을 구현함으로써 센싱 음영지역의 최소화를 구현할 수 있고, 16 Channel SPAD scanning rate of 200 Hz 디지털 신호처리회로(682,600 points/second)를 구현할 수 있고, 2D map display용 소프트웨어 개발을 통해 레이저 스캐닝 오차 보정을 수행할 수 있으며, 스마트공장 MES Interface/adaptors개발 및 스캐닝 데이터(Scanning data)의 빅데이터화와 인공지능화를 구현할 수 있다.At this time, the omnidirectional non-rotating lidar-based safety system 10 for work safety of each smart factory realizes the minimization of the sensing shadow area by implementing a high-resolution sensing area (horizontal FoV 360°, vertical FoV 27°). 16 Channel SPAD scanning rate of 200 Hz digital signal processing circuit (682,600 points/second) can be implemented, laser scanning error correction can be performed through software development for 2D map display, and smart factory MES Interface/adaptors Big data and artificial intelligence of development and scanning data can be implemented.
또한, 상술한 바와 같은 구성을 가지는 본 발명의 일 실시예에 따른 스마트 공장의 작업 안전을 위한 전방위 무회전 라이다 기반 안전 시스템(10)은, 상술한 바와 같은 생산 로봇을 구비한 스마트 공장 뿐만 아니라, 자동 지게차 설비등 규칙적인 운동을 반복하는 설비를 구비한 스마트 공장 자동화 설비 업체, 중장비에 시야가 안 보이는 곳에 사람(작업자) 혹은 물체 접근 시 알람을 요하는 중장비 사용 업체 등에도 적용될 수 있을 것이다.In addition, the omnidirectional non-rotating lidar-based safety system 10 for work safety of a smart factory according to an embodiment of the present invention having the configuration as described above is not only a smart factory equipped with a production robot as described above It will also be applicable to smart factory automation equipment companies equipped with equipment that repeats regular movements such as automatic forklift equipment, and heavy equipment users who require an alarm when a person (worker) or an object approaches a place where the heavy equipment cannot see.
도 4는 도 1의 케이스부를 보여주는 도면이다.FIG. 4 is a view showing the case part of FIG. 1 .
도 4를 참조하면, 케이스부(100)는, 상체 케이스(110) 및 하체 케이스(120)를 포함한다.Referring to FIG. 4 , the case part 100 includes an upper body case 110 and a lower body case 120 .
상체 케이스(110)는, 원기둥 형태의 구조(S)를 형성하며, 내부 공간에 센서부(200)가 설치되며, 하측에 하체 케이스(120)가 설치된다.The upper body case 110 forms a cylindrical structure (S), the sensor unit 200 is installed in the inner space, and the lower body case 120 is installed on the lower side.
일 실시예에서, 상체 케이스(110)는, 도 1에 도시된 바와 같이 하체 케이스(120)와 대향하는 하측면을 따라 밀봉을 위한 고무링(111)이 구비되고, 하체 케이스(120)에 볼트 체결에 의하여 서로 체결될 수 있다.In one embodiment, the upper case 110 is provided with a rubber ring 111 for sealing along the lower side opposite to the lower case 120 as shown in FIG. 1 , and a bolt on the lower case 120 . They may be fastened to each other by fastening.
하체 케이스(120)는, 제어부(300) 및 전원부(400)가 설치되기 위한 내부 공간(130)을 형성하는 육면체 박스 형태로 형성되며, 내부 공간(130)을 밀폐시킬 수 있도록 상체 케이스(110)의 하측에 밀착되어 설치된다.The lower body case 120 is formed in the form of a hexahedral box forming an internal space 130 for installing the control unit 300 and the power supply unit 400 , and the upper body case 110 to seal the internal space 130 . It is installed in close contact with the lower side of the
상술한 바와 같은 구성을 가지는 케이스부(100)는, 상체 케이스(110) 및 하체 케이스(120)가 IP65 등급의 방수가 가능하고 방폭 설계가 구현될 수 있도록 내부 공간이 밀폐될 수 있도록 형성될 수 있다.The case part 100 having the configuration as described above may be formed so that the inner space can be sealed so that the upper body case 110 and the lower body case 120 can be waterproof of an IP65 rating and an explosion-proof design can be implemented. have.
도 5는 도 1의 센서부의 일 실시예를 보여주는 도면이다.FIG. 5 is a view showing an embodiment of the sensor unit of FIG. 1 .
도 5를 참조하면, 일 실시예에 따른 센서부(200a)는, 베이스 플레이트(210) 및 14 개의 수직 공진형 표면 발광 레이저(220-1 내지 220-14)를 포함한다.Referring to FIG. 5 , the sensor unit 200a according to an embodiment includes a base plate 210 and 14 vertical resonance surface-emitting lasers 220-1 to 220-14.
베이스 플레이트(210)는, 원판 형태로 형성되어 상체 케이스(110)의 내부 공간에 설치되며, 둘레를 따라 14 개의 수직 공진형 표면 발광 레이저(220-1 내지 220-14)가 설치된다.The base plate 210 is formed in a disk shape and installed in the inner space of the upper body case 110 , and 14 vertical resonance surface-emitting lasers 220-1 to 220-14 are installed along the periphery.
다수의 수직 공진형 표면 발광 레이저(220-1 내지 220-14)는, 수직 공진형 표면 발광 레이저(220-1 내지 220-14) 각각이 베이스 플레이트(210)의 중심을 기준으로 방사 방향으로 센싱 대상물을 감지하기 위한 레이저빔을 조사할 수 있도록, 베이스 플레이트(210)의 테두리를 따라 원주형으로 배치된다. 보다 구체적으로, 도 5에 도시된 바와 같이, 수직 공진형 표면 발광 레이저(220-1 내지 220-14)는 케이스부(100)의 둘레를 따라 360°전방위를 센싱할 수 있도록 센싱 부위가 상체 케이스(110)의 외측을 향하도록 베이스 플레이트(210)의 테두리를 따라 서로 동일한 간격(즉, 베이스 플레이트(210)의 중심을 기준으로 서로 27° 간격으로 이격되어)으로 이격되어 14개가 설치된다.The plurality of vertical resonance surface-emitting lasers 220-1 to 220-14 are sensed in a radial direction with respect to the center of the base plate 210, respectively, in the vertical resonance surface-emitting lasers 220-1 to 220-14. It is arranged in a circumferential shape along the edge of the base plate 210 so as to irradiate the laser beam for detecting the object. More specifically, as shown in FIG. 5 , the vertical resonance type surface-emitting lasers 220-1 to 220-14 have a sensing region of the upper body case so that 360° omnidirectional sensing can be performed along the periphery of the case unit 100 . 14 are installed at the same distance from each other along the edge of the base plate 210 so as to face the outside of the base plate 210 (that is, spaced apart from each other at intervals of 27° with respect to the center of the base plate 210).
여기서, 수직 공진형 표면 발광 레이저(220)의 간단한 스펙은, 1) 940 nm invisible laser, 2) Class 1 laser, 3) ToF(time of flight) Type, 4) 50Hz ranging frequency, 5) SPAD type으로 이루어질 수 있다.Here, the simple specifications of the vertical resonance type surface emitting laser 220 are 1) 940 nm invisible laser, 2) Class 1 laser, 3) Time of flight (ToF) Type, 4) 50Hz ranging frequency, 5) SPAD type can be done
여기서, 수직 공진형 표면 발광 레이저(220)는, 감지범위(레이저 스캐닝 범위)는 전방에 대해 ‘원뿔 형태’를 보이며, 상하 또는 좌우 감지 범위는 27°로 수행될 수 있다.Here, the vertical resonance surface-emitting laser 220, the sensing range (laser scanning range) shows a 'conical shape' with respect to the front, the vertical or left and right sensing range may be performed at 27°.
상술한 바와 같은 구성을 가지는 일 실시예에 따른 센서부(200a)는, 상체 케이스(110)의 전방위 센싱을 위해 360°를 수직 공진형 표면 발광 레이저(220)의 센싱 영역인 27°로 나눈 값(13.333…) 보다 큰 최소의 정수 값에 해당하는 개수인 14 개의 수직 공진형 표면 발광 레이저(220-1 내지 220-14)가 필요하게 되는 것이다. 즉, 각각의 수직 공진형 표면 발광 레이저(220)의 전방에 대한 수평 센싱 영역(범위)이 A°이라면, 본 발명의 일 실시예에 따른 센서부(200a)는 360°의 전방위 센싱을 위해서, 360°를 A°로 나눈 값 보다 큰 최소의 정수인 N개의 수직 공진형 표면 발광 레이저가 구비된다.The sensor unit 200a according to an embodiment having the configuration as described above is a value obtained by dividing 360° by 27°, which is the sensing area of the vertical resonance surface-emitting laser 220 for omnidirectional sensing of the upper body case 110 . (13.333...) 14 perpendicular resonance type surface emitting lasers 220-1 to 220-14, which are the number corresponding to the smallest integer value larger than that is required. That is, if the horizontal sensing area (range) for the front of each vertical resonance type surface-emitting laser 220 is A°, the sensor unit 200a according to an embodiment of the present invention performs 360° omnidirectional sensing, N vertical resonant surface-emitting lasers, which are the smallest integer greater than 360° divided by A°, are provided.
도 6은 도 1의 센서부의 다른 실시예를 보여주는 도면이다.FIG. 6 is a view showing another embodiment of the sensor unit of FIG. 1 .
도 6을 참조하면, 다른 실시예에 따른 센서부(200b)는, 베이스 플레이트(210) 및 10개의 수직 공진형 표면 발광 레이저(220-1 내지 220-10)를 포함한다.Referring to FIG. 6 , the sensor unit 200b according to another embodiment includes a base plate 210 and ten vertical resonance surface-emitting lasers 220-1 to 220-10.
베이스 플레이트(210)는, 원판 형태로 형성되어 상체 케이스(110)의 내부 공간에 설치되며, 둘레를 따라 10 개의 수직 공진형 표면 발광 레이저(220-1 내지 220-10)가 설치된다.The base plate 210 is formed in a disk shape and installed in the inner space of the upper body case 110 , and 10 vertical resonance surface-emitting lasers 220-1 to 220-10 are installed along the periphery.
수직 공진형 표면 발광 레이저(220-1 내지 220-10)는, 케이스부(100)의 둘레를 따라 270°에 해당하는 일부 범위를 센싱할 수 있도록 센싱 부위가 상체 케이스(110)의 외측을 향하도록 베이스 플레이트(210)의 테두리를 따라 케이스부(100)의 둘레의 90°에 해당되는 부분을 제외하고 서로 동일한 간격(즉, 베이스 플레이트(210)의 중심을 기준으로 서로 27° 간격으로 이격되어)으로 이격되어 10 개가 설치된다.The vertical resonance surface-emitting lasers 220-1 to 220-10 have a sensing portion facing the outside of the upper body case 110 so as to sense a partial range corresponding to 270° along the circumference of the case portion 100. to be spaced apart from each other at equal intervals (that is, at intervals of 27° based on the center of the base plate 210) ) and 10 pieces are installed.
이때, 수직 공진형 표면 발광 레이저(220)는, 위치 센싱을 위한 레이저빔의 조사각도가 27° 각도로 형성될 수 있다.In this case, in the vertical resonance surface-emitting laser 220 , the irradiation angle of the laser beam for position sensing may be formed at an angle of 27°.
상술한 바와 같은 구성을 가지는 다른 실시예에 따른 센서부(200b)는, 고위험 산업설비(R)에 설치되는 경우에 있어서 센싱 대상물의 접근할 수 없는 영역의 존재로 인해 센싱이 필요 없는 영역이 존재하는 바 케이스부(100)의 둘레를 따라 270°에 해당하는 일부 범위만 센싱하기 위한 실시예에 해당한다.In the case of the sensor unit 200b according to another embodiment having the above-described configuration, when installed in a high-risk industrial facility (R), there is an area that does not require sensing due to the presence of an inaccessible area of the sensing object. This corresponds to an embodiment for sensing only a partial range corresponding to 270° along the circumference of the bar case unit 100 .
이에 따라, 상술한 바와 같은 구성을 가지는 다른 실시예에 따른 센서부(200b)는, 센싱 대상물이 접근할 수 없는 케이스부(100)의 둘레의 90°에 해당되는 부분을 제외하고 케이스부(100)의 둘레를 따라 270°에 해당하는 일부 범위를 수직 공진형 표면 발광 레이저(220)의 센싱 영역인 27°로 나눈 10, 즉 10 개의 수직 공진형 표면 발광 레이저(220-1 내지 220-10)가 필요하게 되는 것이다.Accordingly, the sensor unit 200b according to another embodiment having the above-described configuration is the case unit 100 except for a portion corresponding to 90° of the circumference of the case unit 100 that is not accessible to the sensing object. ) divided by 27°, which is the sensing area of the vertical resonance surface emitting laser 220, a partial range corresponding to 270° along the circumference of 10, that is, 10 vertical resonance surface emitting lasers 220-1 to 220-10 will be needed
이때, 각 수직 공진형 표면 발광 레이저(220)의 센싱 범위에 해당하는 "감지범위"의 한계에 따라 각 수직 공진형 표면 발광 레이저(220) 사이 사이에 도 6에 도시된 바와 같은 "감지공백영역"이 발생하게 되나, 작업자의 신체 크기 또는 센싱 대상물의 크기 대비 "감지공백영역"의 폭은 상대적으로 작기 때문에 유효한 센싱에 있어서는 문제가 되지 않는다.At this time, according to the limit of the "sensing range" corresponding to the sensing range of each vertical resonance surface emitting laser 220, the "sensing blank area" as shown in FIG. 6 between each vertical resonance surface emitting laser 220 is However, since the width of the "sensing blank area" is relatively small compared to the size of the operator's body or the size of the sensing object, it is not a problem in effective sensing.
도 7은 도 1의 제어부의 기능 블록도를 나타내는 도면이다.FIG. 7 is a diagram illustrating a functional block diagram of the control unit of FIG. 1 .
도 7을 참조하면, 제어부(300)는, 위험도 맵핑부(301), 위치 판독부(302), 진입 판독부(303), 산업설비 제어부(304) 및 통신부(305)를 포함한다.Referring to FIG. 7 , the control unit 300 includes a risk mapping unit 301 , a location reading unit 302 , an entry reading unit 303 , an industrial equipment control unit 304 , and a communication unit 305 .
위험도 맵핑부(301)는, 위험도의 높낮음에 따른 등급으로 고위험 산업설비(R)에 설치된 케이스부(100)의 주변 영역을 구획하여 생성된 위험도맵을 저장해 둔다.The risk mapping unit 301 stores the generated risk map by dividing the peripheral area of the case unit 100 installed in the high-risk industrial facility R in a grade according to the high and low risk.
일 실시예에서, 위험도 맵핑부(301)는, 케이스부(100)를 중심으로 하여 최대 검지 거리인 4m까지의 영역(예시적으로, 4m까지의 영역) 그리고 최대 검지 높이인 영역(예시적으로, 1.8m의 영역)을 1) 케이스부(100)의 주변 영역을 센서부(200)에 의한 센싱이 이루어지지 아니하는 영역인 미감지 영역(A1), 2) 센싱 대상물이 위치하고 있어도 고위험 산업설비(R)의 구동에 영향을 주지 아니하는 영역인 안전 영역(A2), 3) 센싱 대상물이 위치하는 경우 경고 신호를 생성하는 영역인 경고 영역(A3), 및 4) 센싱 대상물이 위치하는 경우 고위험 산업설비(R)의 구동을 제어하기 위한 구동 제어 신호를 생성하는 영역인 위험 영역(A4)의 4 가지 영역으로 구분할 수 있다.In one embodiment, the risk mapping unit 301, with the case unit 100 as a center, the maximum detection distance of up to 4m area (eg, area up to 4m) and the maximum detection height area (exemplarily) . (R) Safe area (A2), which is an area that does not affect the driving, 3) Warning area (A3), which is an area that generates a warning signal when a sensing object is located, and 4) High risk when a sensing object is located It can be divided into four areas of a danger area (A4) that is an area for generating a drive control signal for controlling the driving of the industrial facility (R).
이때, 위험도 맵핑부(301)는, 표면 발광 레이저(220)의 개수에 따라 도 8에 예시된 바와 같이 케이스부(100)의 주변 영역 270°를 센싱하는 경우와, 도 9에 예시된 바와 같이 케이스부(100)의 주변 영역 360°를 센싱하는 경우를 별도로 구분하여 위험도맵을 생성할 수 있다.At this time, the risk mapping unit 301 senses the peripheral area 270° of the case unit 100 as illustrated in FIG. 8 according to the number of surface-emitting lasers 220 , and as illustrated in FIG. 9 . A case of sensing 360° of the peripheral area of the case unit 100 may be separately divided to generate a risk map.
위치 판독부(302)는, 센서부(200)로부터 전달되는 센싱 데이터를 이용하여 고위험 산업설비(R)으로 접근하고 있는 센싱 대상물의 위치를 판독한다.The position reading unit 302 reads the position of the sensing object approaching the high-risk industrial facility R by using the sensing data transmitted from the sensor unit 200 .
진입 판독부(303)는, 위치 판독부(302)에서 판독된 센싱 대상물의 위치를 분석하여 위험도 맵핑부(301)에 저장된 위험도맵의 영역 중 어느 영역에 포함되는지를 판독한다.The entry reading unit 303 analyzes the position of the sensing object read by the position reading unit 302 and reads which area is included in the area of the risk map stored in the risk mapping unit 301 .
일 실시예에서, 진입 판독부(303)는, 고위험 산업설비(R)이 센싱 대상물로 접근하는 경우와 센싱 대상물이 고위험 산업설비(R)으로 접근하는 경우를 동일한 접근으로 판독할 수 있다.In an embodiment, the entry reading unit 303 may read a case where the high-risk industrial facility R approaches the sensing target and a case where the sensing target approaches the high-risk industrial facility R with the same approach.
산업설비 제어부(304)는, 고위험 산업설비(R)으로 접근하고 있는 센싱 대상물의 위험도맵에서의 위치에 대응하여 경고 신호를 생성하거나 또는 고위험 산업설비(R)의 구동을 제어하기 위한 구동 제어 신호를 생성한다. 보다 구체적으로, 진입 판독부(303)가 센싱 대상물이 고위험 산업설비(R)에 대하여 안전 영역(A2)에 있는 것으로 판독하는 경우에, 산업설비 제어부(304)는 경고 신호를 생성하지 않고, 센싱 대상물이 안전 영역(A2)에 위치한다는 위치 정보를 생성한다. 그리고, 센싱 대상물이 고위험 산업설비(R)에 접근하거나 고위험 산업설비(R)이 센싱 대상물에 접근함에 따라서 진입 판독부(303)가 센싱 대상물이 경고 영역(A3)에 있는 것(센싱 대상물이 안전 영역(A2)에서 경고 영역(A3)으로 진입하는 것)으로 판독하는 경우에, 산업설비 제어부(304)는 경고 신호를 생성하고, 센싱 대상물이 경고 영역(A3)에 위치한다는 위치 정보를 생성한다. 또한, 센싱 대상물과 고위험 산업설비(R) 간의 상대적인 거리가 매우 근접함에 따라서 진입 판독부(303)가 센싱 대상물이 위험 영역(A4)에 있는 것(센싱 대상물이 경고 영역(A3)에서 위험 영역(A4)으로 진입하는 것)으로 판독하는 경우에, 산업설비 제어부(304)는 경고 신호를 생성하고, 센싱 대상물이 위험 영역(A4)에 위치한다는 위치 정보를 생성한다. 이때, 산업설비 제어부(304)가 생성하는 경고 신호는 고위험 산업설비(R)에 근접한 센싱 대상물(작업자 등)에 경고를 알리기 위한 경고음이나 경고등을 작동시키는 신호에 해당할 수 있다.The industrial equipment control unit 304 generates a warning signal in response to the location on the risk map of the sensing object approaching the high-risk industrial equipment (R) or a driving control signal for controlling the driving of the high-risk industrial equipment (R) create More specifically, when the entry reading unit 303 reads that the sensing object is in the safe area A2 for the high-risk industrial facility R, the industrial facility control unit 304 does not generate a warning signal, and the sensing Position information indicating that the object is located in the safe area A2 is generated. And, as the sensing object approaches the high-risk industrial equipment (R) or the high-risk industrial equipment (R) approaches the sensing object, the entry reading unit 303 detects that the sensing object is in the warning area A3 (the sensing object is safe When reading from area A2 to entering warning area A3), the industrial equipment control unit 304 generates a warning signal and generates positional information indicating that the sensing object is located in the warning area A3. . In addition, as the relative distance between the sensing object and the high-risk industrial facility R is very close, the entry reading unit 303 determines that the sensing object is in the danger area A4 (the sensing object is in the warning area A3). A4)), the industrial equipment control unit 304 generates a warning signal and generates position information indicating that the sensing object is located in the dangerous area A4. At this time, the warning signal generated by the industrial facility control unit 304 may correspond to a signal for operating a warning sound or a warning light for notifying a warning to a sensing object (operator, etc.) close to the high-risk industrial facility R.
한편, 진입 판독부(303)가 센싱 대상물이 경고 영역(A3)에서 위험 영역(A4)으로 진입하는 것으로 판독하는 경우에, 산업설비 제어부(304)는 고위험 산업설비(R)의 구동을 정지시키기 위한 구동 제어 신호로서 구동 정지 신호를 생성한다. 그리고, 진입 판독부(303)가 센싱 대상물이 위험 영역(A4)에서 경고 영역(A3)으로 진입하는 것으로 판독하는 경우에, 산업설비 제어부(304)는 고위험 산업설비(R)의 구동을 재가동시키기 위한 구동 제어 신호로서 구동 재가동 신호를 생성한다.On the other hand, when the entry reading unit 303 reads that the sensing object enters the danger area A4 from the warning area A3, the industrial equipment control unit 304 stops the driving of the high-risk industrial equipment R A driving stop signal is generated as a driving control signal for And, when the entry reading unit 303 reads that the sensing object enters the warning area A3 from the danger area A4, the industrial equipment control unit 304 restarts the driving of the high-risk industrial equipment R A driving restart signal is generated as a driving control signal for
통신부(305)는, 스마트 공장의 MES(Manufacturing Execution System) 시스템(20)과 네트워크를 통해 데이터를 송수신하며, 산업설비 제어부(304)로부터 전달되는 위치 정보와 구동 제어 신호를 네트워크를 통해 MES 시스템(20)으로 전송한다. 이에 따라, 통신부(305)로부터 위치 정보를 전송받은 MES 시스템(20)은 센싱 대상물의 고위험 산업설비(R)에 대한 상대적인 위치가 안전 영역(A2), 경고 영역(A3), 위험 영역(A4) 중 어느 영역에 있는지에 대한 정보를 상황실의 관리자의 디스플레이에 표시할 수 있다. 또한, 통신부(305)로부터 구동 제어 신호를 전송받은 MES 시스템(20)은 센싱 대상물이 위험 영역(A4)에서 경고 영역(A3)으로 진입하는 경우에 네트워크(50)를 통해 고위험 산업설비(R)로 구동 정지 신호를 전송하여 고위험 산업설비(R)의 구동을 정지시키거나(안전 모드), 센싱 대상물이 경고 영역(A3)에서 위험 영역(A4)으로 이동하는 경우에 네트워크(50)를 통해 고위험 산업설비(R)로 구동 재가동 신호를 전송하여 고위험 산업설비(R)의 구동을 재가동시킨다(안전 모드 해제). The communication unit 305 transmits and receives data through the network with the MES (Manufacturing Execution System) system 20 of the smart factory, and transmits the location information and the driving control signal transmitted from the industrial facility control unit 304 to the MES system ( 20) is sent. Accordingly, in the MES system 20 receiving the location information from the communication unit 305, the relative position of the sensing object to the high-risk industrial facility R is a safe area A2, a warning area A3, and a danger area A4. Information on which area in the control room can be displayed on the display of the manager of the control room. In addition, the MES system 20 that has received the driving control signal from the communication unit 305 is a high-risk industrial facility (R) through the network 50 when the sensing object enters the warning area (A3) from the danger area (A4). to stop the operation of high-risk industrial equipment (R) by sending a drive stop signal to the Transmits the drive restart signal to the industrial facility (R) to restart the drive of the high-risk industrial facility (R) (safe mode release).
앞서, 고위험 산업설비(R)에 대한 구동 제어 신호는 진입 판독부(303)에서 생성되는 것으로 기술되었으나, 경우에 따라서 MES 시스템(20)이 통신부(305)로부터 전송받은 위치 정보에 기초하여 센싱 대상물과 고위험 산업설비(R) 간의 상대적인 위치에 따라 구동 제어 신호를 생성할 수도 있다.Previously, the driving control signal for the high-risk industrial facility R has been described as being generated by the entry reading unit 303 , but in some cases, the MES system 20 is a sensing object based on the location information received from the communication unit 305 . It is also possible to generate a drive control signal according to the relative position between the and high-risk industrial equipment (R).
상술한 바와 같은 구성을 가지는 제어부(300)의 위험도 맵핑부(301), 위치 판독부(302), 진입 판독부(303) 및 산업설비 제어부(304)는 도 2의 ARM Cortex M SERIES(310) 또는 EEPROM(320)에서 수행되는 것이고, 통신부(305)의 기능은 I2C BUS(330), RS-485 변환기(340) 및 이더넷 컨트롤러(350) 등에서 수행될 수 있다.The risk mapping unit 301 , the location reading unit 302 , the entry reading unit 303 and the industrial equipment control unit 304 of the control unit 300 having the configuration as described above is the ARM Cortex M SERIES 310 of FIG. 2 . Alternatively, it is performed in the EEPROM 320 , and the function of the communication unit 305 may be performed in the I2C BUS 330 , the RS-485 converter 340 , and the Ethernet controller 350 .
이상의 실시예들에서 사용되는 '~부'라는 용어는 소프트웨어 또는 FPGA(field programmable gate array) 또는 ASIC 와 같은 하드웨어 구성요소를 의미하며, '~부'는 어떤 역할들을 수행한다. 그렇지만 '~부'는 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. '~부'는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일 예로서 '~부'는 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램특허 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들, 및 변수들을 포함한다.The term '~ unit' used in the above embodiments means software or hardware components such as field programmable gate array (FPGA) or ASIC, and '~ unit' performs certain roles. However, '-part' is not limited to software or hardware. The '~ unit' may be configured to reside on an addressable storage medium or may be configured to refresh one or more processors. Thus, as an example, '~' denotes components such as software components, object-oriented software components, class components, and task components, and processes, functions, properties, and procedures. , subroutines, segments of program patent code, drivers, firmware, microcode, circuitry, data, databases, data structures, tables, arrays, and variables.
구성요소들과 '~부'들 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 '~부'들로 결합되거나 추가적인 구성요소들과 '~부'들로부터 분리될 수 있다.Functions provided in components and '~ units' may be combined into a smaller number of components and '~ units' or separated from additional components and '~ units'.
뿐만 아니라, 구성요소들 및 '~부'들은 디바이스 또는 보안 멀티미디어카드 내의 하나 또는 그 이상의 CPU 들을 재생시키도록 구현될 수도 있다.In addition, components and '~ units' may be implemented to play one or more CPUs in a device or secure multimedia card.
상술된 실시예들은 예시를 위한 것이며, 상술된 실시예들이 속하는 기술분야의 통상의 지식을 가진 자는 상술된 실시예들이 갖는 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 상술된 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The above-described embodiments are for illustration, and those of ordinary skill in the art to which the above-described embodiments pertain can easily transform into other specific forms without changing the technical idea or essential features of the above-described embodiments. You will understand. Therefore, it should be understood that the above-described embodiments are illustrative in all respects and not restrictive. For example, each component described as a single type may be implemented in a dispersed form, and likewise components described as distributed may be implemented in a combined form.
본 명세서를 통해 보호받고자 하는 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태를 포함하는 것으로 해석되어야 한다.The scope to be protected through this specification is indicated by the claims described below rather than the above detailed description, and it should be construed to include all changes or modifications derived from the meaning and scope of the claims and their equivalents. .

Claims (10)

  1. 스마트 공장에 구비되는 고위험 산업설비의 주변 또는 상기 고위험 산업설비에 설치되어 상기 고위험 산업설비로 접근하는 센싱 대상물의 위치 센싱을 통해 상기 고위험 산업설비의 구동을 제어하기 위한 스마트 공장의 작업 안전을 위한 전방위 무회전 라이다 기반 안전 시스템에 있어서,All directions for work safety of a smart factory for controlling the operation of the high-risk industrial equipment through the sensing of the position of a sensing object installed in the vicinity of the high-risk industrial equipment provided in the smart factory or the high-risk industrial equipment approaching the high-risk industrial equipment In the non-rotating lidar-based safety system,
    상기 고위험 산업설비의 주변 또는 상기 고위험 산업설비에 설치되며, 원기둥 형태의 상부 구조를 형성하는 케이스부;a case part installed around the high-risk industrial equipment or in the high-risk industrial equipment, and forming a columnar upper structure;
    상기 케이스부의 상부에 설치되며, 무회전 라이다(Lidar) 센서를 이용하여 상기 고위험 산업설비로 접근하고 있는 센싱 대상물의 위치를 센싱하는 센서부;a sensor unit installed on the upper portion of the case unit and sensing the position of a sensing object approaching the high-risk industrial facility using a non-rotating lidar sensor;
    상기 케이스부의 내부 공간에 설치되며, 위험도의 높낮음에 따른 등급으로 상기 케이스부의 주변 영역을 구획하여 생성시킨 위험도맵을 저장해 두며, 상기 센서부로부터 전달되는 센싱 대상물의 위치를 판독한 뒤 상기 위험도맵에서 기 설정된 등급 이상의 위험도에 해당하는 영역으로 센싱 대상물이 진입한 경우 상기 고위험 산업설비의 구동을 정지시키는 제어부; 및It is installed in the inner space of the case part, and stores the risk map generated by dividing the peripheral area of the case part by grade according to the high and low risk, and after reading the position of the sensing object transmitted from the sensor part, in the risk map a control unit for stopping the operation of the high-risk industrial equipment when a sensing object enters an area corresponding to a degree of risk above a preset level; and
    상기 케이스부의 내부 공간에 설치되며, 상기 센서부 및 상기 제어부의 구동에 필요한 전기를 공급하는 전원부;를 포함하는, 스마트 공장의 작업 안전을 위한 전방위 무회전 라이다 기반 안전 시스템.A power supply unit installed in the inner space of the case unit and supplying electricity necessary for driving the sensor unit and the control unit; including, a omnidirectional non-rotating lidar-based safety system for work safety in a smart factory.
  2. 제1항에 있어서, 상기 케이스부는,According to claim 1, wherein the case portion,
    원기둥 형태의 구조를 형성하며, 내부 공간에 상기 센서부가 설치되는 상체 케이스; 및an upper body case forming a cylindrical structure and having the sensor unit installed in the inner space; and
    상기 제어부 및 상기 전원부가 설치되기 위한 내부 공간을 형성하는 육면체 박스 형태로 형성되며, 내부 공간을 밀폐시킬 수 있도록 상기 상체 케이스의 하측에 밀착되어 설치되는 하체 케이스;를 포함하는, 스마트 공장의 작업 안전을 위한 전방위 무회전 라이다 기반 안전 시스템.The control unit and the power supply unit are formed in the form of a hexahedron box forming an inner space for installation, the lower body case is installed in close contact with the lower side of the upper body case so as to seal the inner space; Work safety of a smart factory, including; An omnidirectional, non-rotating lidar-based safety system for
  3. 제2항에 있어서, 상기 센서부는,According to claim 2, wherein the sensor unit,
    원판 형태로 형성되어 상기 상체 케이스의 내부 공간에 설치되는 베이스 플레이트; 및a base plate formed in a disk shape and installed in the inner space of the upper body case; and
    상기 케이스부의 둘레를 따라 360°전방위를 센싱할 수 있도록 센싱 부위가 상기 상체 케이스의 외측을 향하도록 상기 베이스 플레이트의 테두리를 따라 서로 동일한 간격으로 이격되어 설치되는 14 개의 수직 공진형 표면 발광 레이저(Vertical Cavity Surface-Emitting Laser);를 포함하는, 스마트 공장의 작업 안전을 위한 전방위 무회전 라이다 기반 안전 시스템.14 vertical resonance surface-emitting lasers installed at equal intervals along the edge of the base plate so that the sensing region faces the outside of the upper case so as to sense 360° omnidirectional sensing along the circumference of the case part. All-round non-rotating lidar-based safety system for work safety in smart factories, including Cavity Surface-Emitting Laser).
  4. 제2항에 있어서, 상기 센서부는,According to claim 2, wherein the sensor unit,
    원판 형태로 형성되어 상기 상체 케이스의 내부 공간에 설치되는 베이스 플레이트; 및a base plate formed in a disk shape and installed in the inner space of the upper body case; and
    상기 케이스부의 둘레를 따라 270°에 해당하는 일부 범위를 센싱할 수 있도록 센싱 부위가 상기 상체 케이스의 외측을 향하도록 상기 베이스 플레이트의 테두리를 따라 상기 케이스부의 둘레의 90°에 해당되는 부분을 제외하고 서로 동일한 간격으로 이격되어 설치되는 10 개의 수직 공진형 표면 발광 레이저(Vertical Cavity Surface-Emitting Laser);를 포함하는, 스마트 공장의 작업 안전을 위한 전방위 무회전 라이다 기반 안전 시스템.Except for a portion corresponding to 90° of the circumference of the case portion along the edge of the base plate so that the sensing portion faces the outside of the upper body case so as to sense a partial range corresponding to 270° along the circumference of the case portion An omnidirectional non-rotating lidar-based safety system for work safety in smart factories, including 10 Vertical Cavity Surface-Emitting Lasers installed at equal intervals from each other.
  5. 제3항 또는 제4항에 있어서, 상기 수직 공진형 표면 발광 레이저는,5. The method of claim 3 or 4, wherein the vertical resonance type surface emitting laser,
    위치 센싱을 위한 레이저빔의 조사각도가 27° 각도인, 스마트 공장의 작업 안전을 위한 전방위 무회전 라이다 기반 안전 시스템.An omnidirectional, non-rotating lidar-based safety system for work safety in smart factories with an irradiation angle of 27° for position sensing.
  6. 제1항에 있어서, 상기 제어부는,According to claim 1, wherein the control unit,
    위험도의 높낮음에 따른 등급으로 상기 고위험 산업설비의 주변 또는 상기 고위험 산업설비에 설치된 상기 케이스부의 주변 영역을 구획하여 생성된 위험도맵을 저장해 두는 위험도 맵핑부;a risk mapping unit for storing the generated risk map by dividing the area around the high-risk industrial facility or the case part installed in the high-risk industrial facility with a grade according to the high and low risk;
    상기 센서부로부터 전달되는 센싱 데이터를 이용하여 상기 고위험 산업설비로 접근하고 있는 센싱 대상물의 위치를 판독하는 위치 판독부;a position reading unit for reading a position of a sensing object approaching the high-risk industrial facility by using the sensing data transmitted from the sensor unit;
    상기 위치 판독부에서 판독된 센싱 대상물의 위치를 분석하여 상기 위험도 맵핑부에 저장된 위험도맵의 영역 중 어느 영역에 포함되는 지를 판독하는 진입 판독부;an entry reading unit that analyzes the position of the sensing object read by the position reading unit and reads which area is included in the area of the risk map stored in the risk mapping unit;
    상기 고위험 산업설비로 접근하고 있는 센싱 대상물의 위험도맵에서의 위치에 대응하여 경고 신호 생성 또는 상기 고위험 산업설비의 구동을 제어하기 위한 구동 제어 신호를 생성하는 산업설비 제어부; 및an industrial facility control unit for generating a warning signal or generating a driving control signal for controlling the driving of the high-risk industrial facility in response to the location on the risk map of the sensing object approaching the high-risk industrial facility; and
    스마트 공장의 MES 시스템과 네트워크를 통해 데이터를 송수신하며, 상기 산업설비 제어부로부터 전달되는 구동 제어 신호를 상기 네트워크를 통해 상기 고위험 산업설비로 전송하는 통신부;를 포함하는, 스마트 공장의 작업 안전을 위한 전방위 무회전 라이다 기반 안전 시스템.A communication unit that transmits and receives data through the MES system and the network of the smart factory, and transmits the drive control signal transmitted from the industrial facility control unit to the high-risk industrial facility through the network; including; Rotation-free lidar-based safety system.
  7. 제6항에 있어서, 상기 위험도 맵핑부는,The method of claim 6, wherein the risk mapping unit,
    상기 케이스부의 주변 영역을 상기 센서부에 의한 센싱이 이루어지지 아니하는 영역인 미감지 영역, 센싱 대상물이 위치하고 있어도 상기 고위험 산업설비의 구동에 영향을 주지 아니하는 영역인 안정 영역, 센싱 대상물이 위치하는 경우 경고 신호를 생성하는 영역인 경고 영역, 및 센싱 대상물이 위치하는 경우 상기 고위험 산업설비의 구동을 제어하기 위한 구동 제어 신호를 생성하는 영역인 위험 영역의 4 가지 영역으로 구분하는, 스마트 공장의 작업 안전을 위한 전방위 무회전 라이다 기반 안전 시스템.An undetected area that is an area where the sensing by the sensor unit is not performed in the peripheral area of the case part, a stable area that is an area that does not affect the operation of the high-risk industrial equipment even if the sensing object is located, and the sensing object is located The operation of a smart factory, which is divided into four areas: a warning area, which is an area for generating a warning signal in case An omnidirectional, non-rotating lidar-based safety system for safety.
  8. 제6항에 있어서, 상기 진입 판독부는,The method of claim 6, wherein the entry reading unit,
    상기 고위험 산업설비가 센싱 대상물로 접근하는 경우와 센싱 대상물이 상기 고위험 산업설비로 접근하는 경우를 동일한 접근으로 판독하는, 스마트 공장의 작업 안전을 위한 전방위 무회전 라이다 기반 안전 시스템.An omnidirectional non-rotating lidar-based safety system for work safety in a smart factory that reads the case where the high-risk industrial facility approaches the sensing object and the case where the sensing object approaches the high-risk industrial facility with the same approach.
  9. 제1항에 있어서, 상기 전원부는,According to claim 1, wherein the power supply unit,
    방수 커넥터를 이용하여 외부 전원으로부터 전기를 공급받는, 스마트 공장의 작업 안전을 위한 전방위 무회전 라이다 기반 안전 시스템.An omnidirectional, non-rotating lidar-based safety system for work safety in smart factories that receives electricity from an external power source using a waterproof connector.
  10. 제1항에 있어서,According to claim 1,
    상기 케이스부, 상기 센서부, 상기 제어부, 및 상기 전원부 모두가 모듈 형태로 형성되어 서로 탈부착 가능하도록 형성되는, 스마트 공장의 작업 안전을 위한 전방위 무회전 라이다 기반 안전 시스템.The case unit, the sensor unit, the control unit, and the power supply unit are all formed in the form of a module and are formed to be detachable from each other, an omnidirectional non-rotating lidar-based safety system for work safety in a smart factory.
PCT/KR2020/004959 2020-04-01 2020-04-13 Omnidirectional non-rotating lidar-based safety system for work safety of smart factory WO2021201331A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0039604 2020-04-01
KR1020200039604A KR20210122457A (en) 2020-04-01 2020-04-01 Omni-directional non-rotating lidar-based safety system for work safety in smart factories

Publications (1)

Publication Number Publication Date
WO2021201331A1 true WO2021201331A1 (en) 2021-10-07

Family

ID=77929668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/004959 WO2021201331A1 (en) 2020-04-01 2020-04-13 Omnidirectional non-rotating lidar-based safety system for work safety of smart factory

Country Status (2)

Country Link
KR (1) KR20210122457A (en)
WO (1) WO2021201331A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101357444B1 (en) * 2012-12-27 2014-02-05 한국남부발전 주식회사 Safety system for plant
KR20170071395A (en) * 2015-12-15 2017-06-23 (주)다울아토닉스 Detecting device for lidar light source without rotation
KR101873569B1 (en) * 2017-07-13 2018-07-03 백정환 For safety warning indicator and alert notification method using it
US20180329066A1 (en) * 2017-05-15 2018-11-15 Ouster, Inc. Augmenting panoramic lidar results with color
KR20200024914A (en) * 2017-07-05 2020-03-09 아우스터, 인크. Optical ranging device with emitter array and synchronized sensor array electronically scanned

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101505129B1 (en) 2013-08-19 2015-03-23 부경대학교 산학협력단 Method for location recognization using system for location recognization and mapping using laser scanner
DE102014118974A1 (en) 2014-12-18 2016-06-23 Valeo Schalter Und Sensoren Gmbh Laser scanner, Umlenkspiegelanordnung this and optical release means for a Umlenkspiegelanordnung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101357444B1 (en) * 2012-12-27 2014-02-05 한국남부발전 주식회사 Safety system for plant
KR20170071395A (en) * 2015-12-15 2017-06-23 (주)다울아토닉스 Detecting device for lidar light source without rotation
US20180329066A1 (en) * 2017-05-15 2018-11-15 Ouster, Inc. Augmenting panoramic lidar results with color
KR20200024914A (en) * 2017-07-05 2020-03-09 아우스터, 인크. Optical ranging device with emitter array and synchronized sensor array electronically scanned
KR101873569B1 (en) * 2017-07-13 2018-07-03 백정환 For safety warning indicator and alert notification method using it

Also Published As

Publication number Publication date
KR20210122457A (en) 2021-10-12

Similar Documents

Publication Publication Date Title
US5198661A (en) Segmented light curtain system and method
WO2020141676A1 (en) Smart factory monitoring system
JP2006317237A (en) Multi-optical axis photoelectric safety device
JP2006317238A (en) Multi-optical axis photoelectric safety device
WO2021201331A1 (en) Omnidirectional non-rotating lidar-based safety system for work safety of smart factory
US20050007348A1 (en) Laser grid for measuring distance
WO2017188468A1 (en) Integrated safety management system for radioisotopes and radiation workers
CN107614218A (en) Access management system to sharing region
WO2022231122A1 (en) Electrical safety alarm device
WO2021040329A1 (en) Elevator display system
CN108050373A (en) A kind of gas chamber piston safety monitoring system
Saad et al. A cost effective UV robot for disinfecting hospital and factory spaces for covid-19 and other communicable diseases
CN113330381A (en) Control system
WO2023047777A1 (en) Monitoring apparatus and monitoring method
KR101539316B1 (en) Overhead hoist trasporter controll sensor system
Cisco Installation Prerequisites for the ONS 15190
US9336636B2 (en) Apparatus and system for controlling access to premises
Cisco Preparing the Cisco ONS 15194 for Installation
WO2014157973A1 (en) Remote alarm system for dangerous article container using wireless communication unit for mobile communication network
WO2015186948A1 (en) Method for sensing objects around platform screen doors
CN113129548A (en) System and method for supervising assets
CN213210508U (en) Security check equipment
CN210456158U (en) Roller conveying line
CN214456654U (en) Anti-collision safety device for working platform of aerial work vehicle
JP2005079686A (en) Condominium interphone system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20929278

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20929278

Country of ref document: EP

Kind code of ref document: A1