WO2021201278A1 - Evaporator - Google Patents

Evaporator Download PDF

Info

Publication number
WO2021201278A1
WO2021201278A1 PCT/JP2021/014324 JP2021014324W WO2021201278A1 WO 2021201278 A1 WO2021201278 A1 WO 2021201278A1 JP 2021014324 W JP2021014324 W JP 2021014324W WO 2021201278 A1 WO2021201278 A1 WO 2021201278A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
transfer tube
refrigerant
tube group
liquid film
Prior art date
Application number
PCT/JP2021/014324
Other languages
French (fr)
Japanese (ja)
Inventor
文平 呉
良枝 栂野
明正 横山
石黒 達男
大智 吉井
青木 泰高
和仁 吉田
将之 左海
Original Assignee
三菱重工サーマルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工サーマルシステムズ株式会社 filed Critical 三菱重工サーマルシステムズ株式会社
Priority to CN202180026838.6A priority Critical patent/CN115427743A/en
Priority to KR1020227036971A priority patent/KR20220158781A/en
Publication of WO2021201278A1 publication Critical patent/WO2021201278A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D5/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation
    • F28D5/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation in which the evaporating medium flows in a continuous film or trickles freely over the conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates

Definitions

  • This disclosure relates to an evaporator.
  • a liquid film type evaporator that supplies a liquid phase refrigerant from above to a group of heat transfer tubes through which a cooling medium flows inside is known.
  • a plate-shaped member may be provided above or to the side of the heat transfer tube group for the purpose of suitably evaporating the refrigerant in the heat transfer tube group (for example, Patent Document 1).
  • the end of the hood located above the tube bundle and the upper end of the wall located on the side of the tube bundle are connected. That is, in the evaporator of Patent Document 1, a space closed above is formed between the hood and the wall, and the tube bundle is arranged in this space.
  • the resistance (pressure loss) becomes large. Therefore, the pressure in the space increases.
  • the evaporator described in Patent Document 1 in which the end of the hood and the upper end of the wall are connected has only a route that passes through the lower end of the space when the refrigerant vaporized in the tube flows out of the space. ..
  • the flow velocity of the vaporized refrigerant toward the outlet of the pressure vessel becomes high.
  • the gas phase refrigerant discharged to the outside of the pressure vessel is likely to be accompanied by the liquid phase refrigerant (so-called carryover).
  • the present disclosure has been made in view of such circumstances, and an object of the present disclosure is to provide an evaporator capable of improving the heat exchange efficiency of the heat transfer tube group.
  • the evaporator of the present disclosure employs the following means.
  • the evaporator according to one aspect of the present disclosure is provided with a refrigerant outlet for discharging the evaporated refrigerant to the outside, and has a housing forming an outer shell and a plurality of liquids housed in the housing and having a cooling medium flowing inside.
  • a liquid film type heat transfer tube group having a film heat transfer tube, a refrigerant supply unit housed in the housing and supplying a liquid phase refrigerant from above to the liquid film type heat transfer tube group, and the liquid film type heat transfer tube group.
  • a side plate portion that covers the liquid film type heat transfer tube group from the side and an upper plate portion that covers the liquid film type heat transfer tube group from above are provided, and a gap is formed between the side plate portion and the upper plate portion.
  • the heat exchange efficiency of the heat transfer tube group can be improved.
  • FIG. 1 It is a perspective view which shows the evaporator which concerns on 1st Embodiment of this disclosure. It is a schematic vertical sectional view which shows the evaporator which concerns on 1st Embodiment of this disclosure. It is a schematic vertical sectional view which shows the evaporator which concerns on 2nd Embodiment of this disclosure. It is a schematic vertical sectional view which shows the modification of FIG. It is a schematic vertical sectional view which shows the modification of FIG. It is a schematic vertical sectional view which shows the modification of FIG. It is a schematic vertical sectional view which shows the modification of FIG. It is a schematic vertical sectional view which shows the evaporator which concerns on 3rd Embodiment of this disclosure.
  • FIG. It is a schematic vertical sectional view which shows the modification of FIG. It is a schematic vertical sectional view which shows the evaporator which concerns on 4th Embodiment of this disclosure. It is a schematic vertical sectional view which shows the modification of FIG. It is a schematic vertical sectional view which shows the modification of FIG. It is a schematic perspective view which shows the evaporator which concerns on 5th Embodiment of this disclosure. It is a schematic vertical sectional view which shows the evaporator which concerns on 5th Embodiment of this disclosure. It is a schematic perspective view which shows the modification of FIG.
  • the vertical vertical direction will be the Z-axis direction
  • the extending direction of the heat transfer tube will be the X-axis direction
  • the Z-axis direction and the direction orthogonal to the X-axis direction will be described as the Y-axis direction.
  • the evaporator 10 is applied to a turbo refrigeration system.
  • the turbo refrigeration system includes a turbo compressor that compresses the refrigerant (not shown), a condenser that condenses the refrigerant compressed by the turbo compressor (not shown), and an expansion valve that expands the refrigerant condensed by the condenser (not shown). It is configured in a unit shape with an evaporator (not shown) and an evaporator that evaporates the refrigerant expanded by the expansion valve.
  • Each device is connected by a pipe through which a refrigerant flows.
  • a low-pressure refrigerant such as R1233zd used at a maximum pressure of less than 0.2 MPaG is used.
  • the applicable refrigerant is not limited to the low pressure refrigerant.
  • a high-pressure refrigerant may be used as the refrigerant.
  • the evaporator 10 includes a pressure container (housing) 11 forming an outer shell, a refrigerant inlet pipe 12 for introducing a liquid into the pressure container 11, and a lower portion of the refrigerant inlet pipe 12.
  • a refrigerant tray (refrigerant supply unit) 13 provided in the A liquid film type heat transfer tube group 15 provided above the liquid level S of the phase refrigerant (see FIGS.
  • the pressure vessel 11, the full-liquid heat transfer tube group 14, and the refrigerant outlet tube 16 are omitted.
  • the pressure vessel 11 closes a cylindrical portion 11a whose central axis extends along the X-axis direction and both ends of the cylindrical portion 11a in the direction along the central axis (X-axis direction). It has two tube plates (not shown) integrally.
  • the cylindrical portion 11a is arranged so that the central axis is substantially horizontal.
  • Each tube plate is a disk-shaped plate material.
  • a liquid phase refrigerant is stored in the lower part of the pressure vessel 11.
  • the region in which the liquid phase refrigerant is stored is referred to as a storage unit 11c.
  • inside and outside mean “inside” and “outside” with respect to the central axis of the cylindrical portion 11a. That is, “inside” means the central axis side of the cylindrical portion 11a, and “outside” means the inner peripheral surface side of the cylindrical portion 11a.
  • the refrigerant inlet pipe 12 is a cylindrical member extending in the vertical direction and is formed in a substantially linear shape.
  • the refrigerant inlet pipe 12 is provided so as to penetrate the upper portion of the cylindrical portion 11a in the vertical direction.
  • the refrigerant inlet pipe 12 is provided at substantially the center of the cylindrical portion 11a in the X-axis direction.
  • the refrigerant inlet pipe 12 is connected to a pipe (not shown) that connects the evaporator 10 and the expansion valve. That is, the refrigerant expanded by the expansion valve is guided to the inside of the pressure vessel 11 via the refrigerant inlet pipe 12.
  • the refrigerant tray 13 is a substantially rectangular plate-shaped member.
  • the refrigerant tray 13 is arranged above the inside of the pressure vessel 11 so that the plate surface is substantially horizontal. Further, the refrigerant tray 13 is provided so that the lower end of the refrigerant inlet pipe 12 and the plate surface face each other. Both ends of the refrigerant tray 13 in the Y-axis direction are arranged so as to be separated from the inner peripheral surface of the cylindrical portion 11a of the pressure vessel 11 by a predetermined distance. Further, the refrigerant tray 13 is provided over substantially the entire area of the pressure vessel 11 in the X-axis direction. Both ends of the refrigerant tray 13 in the X-axis direction are fixed to the tube plate.
  • the refrigerant tray 13 is formed with a large number of holes penetrating in the vertical direction. A large number of holes are formed in substantially the entire area of the refrigerant tray 13.
  • the liquid refrigerant discharged from the refrigerant inlet pipe 12 is discharged onto the refrigerant tray 13.
  • the refrigerant discharged to the refrigerant tray 13 flows on the upper surface of the refrigerant tray 13 and then falls downward through a large number of holes. In this way, the refrigerant tray 13 distributes the refrigerant supplied from the refrigerant inlet pipe 12 in the X-axis direction and the Y-axis direction.
  • the full-liquid heat transfer tube group 14 is housed in the pressure vessel 11. Further, the full-liquid heat transfer tube group 14 is immersed in the refrigerant stored in the storage unit 11c. That is, it is arranged below the liquid level S of the stored refrigerant.
  • the full-filled heat transfer tube group 14 has a plurality of full-filled heat transfer tubes 14a extending along the X-axis direction.
  • the plurality of heat transfer tubes 14a for filling liquid are arranged substantially in parallel.
  • the plurality of liquid heat transfer tubes 14a are arranged side by side at predetermined intervals in the vertical direction (Z-axis direction) and the Y-axis direction.
  • the plurality of heat transfer tubes 14a for filling liquid are arranged in a plurality of stages in the vertical direction and in a plurality of rows in the Y-axis direction.
  • Water as a cooling medium (hereinafter referred to as "cooled water”) is circulated inside each full heat transfer tube 14a.
  • each full liquid heat transfer tube 14a is formed in a straight line.
  • each liquid heat transfer tube 14a extends from one end to the other end of the pressure vessel 11 in the X-axis direction and penetrates each tube plate.
  • the liquid film type heat transfer tube group 15 is housed in the pressure vessel 11 as shown in FIGS. 1 and 2.
  • the liquid film type heat transfer tube group 15 is arranged above the liquid level S of the stored refrigerant.
  • the liquid film type heat transfer tube group 15 has a plurality of liquid film heat transfer tubes 15a extending along the X-axis direction.
  • the plurality of liquid film heat transfer tubes 15a are arranged substantially in parallel.
  • the plurality of liquid film heat transfer tubes 15a are arranged side by side at predetermined intervals in the vertical direction (Z-axis direction) and the Y-axis direction. Specifically, the plurality of liquid film heat transfer tubes 15a are arranged in a plurality of stages in the vertical direction and in a plurality of rows in the Y-axis direction.
  • each liquid film heat transfer tube 15a Water as a cooling medium is circulated inside each liquid film heat transfer tube 15a. Further, each liquid film heat transfer tube 15a is formed in a straight line. Further, each liquid film heat transfer tube 15a extends from one end to the other end of the pressure vessel 11 in the X-axis direction and penetrates each tube plate.
  • the refrigerant outlet pipe 16 is a cylindrical member extending so as to be inclined with respect to the Z-axis direction.
  • the refrigerant outlet pipe 16 is provided so as to communicate with an opening formed in the upper part of the cylindrical portion 11a.
  • the refrigerant outlet pipe 16 is provided at the end of the cylindrical portion 11a in the X-axis direction. That is, the refrigerant outlet pipe 16 is provided in the vicinity of the pipe plate of the pressure vessel 11.
  • the refrigerant vaporized in the evaporator 10 is discharged to the outside of the pressure vessel 11 via the refrigerant outlet pipe 16.
  • the refrigerant outlet pipe 16 is provided above the baffle plate 17.
  • the baffle plate 17 is a flat plate-like member arranged so that the plate surface faces a vertical plane.
  • the baffle plates 17 are arranged on both sides of the liquid film type heat transfer tube group 15. That is, the baffle plate 17 is arranged outside the liquid film type heat transfer tube group 15 in the Y-axis direction.
  • Each baffle plate 17 is arranged so that the plate surface faces the liquid film type heat transfer tube group 15.
  • the baffle plate 17 extends a predetermined distance downward from the vicinity from both ends of the refrigerant tray 13 in the Y-axis direction. The lower end of the baffle plate 17 is located above the lower end of the liquid film type heat transfer tube group 15.
  • the baffle plate 17 covers substantially the entire area in the Z-axis direction except for the lower end of the liquid film type heat transfer tube group 15 from the side.
  • the upper end of the baffle plate 17 is located below the blow-up prevention plate 18.
  • a gap G is formed between the upper end of the baffle plate 17 and the blow-up prevention plate 18.
  • the baffle plate 17 extends along the liquid film type heat transfer tube group 15 over substantially the entire area of the pressure vessel 11 in the X-axis direction.
  • the baffle plate 17 may be provided only in a part in the X-axis direction.
  • the blow-up prevention plate 18 has a flat plate portion 18a arranged so that the plate surface is a horizontal plane, and an inclined portion 18b that bends from both ends of the flat plate portion 18a in the Y-axis direction and extends diagonally downward. doing.
  • the blow-up prevention plate 18 is arranged above the refrigerant tray 13.
  • the blow-up prevention plate 18 is arranged away from the baffle plate 17.
  • the refrigerant inlet pipe 12 penetrates the central portion of the flat plate portion 18a of the blow-up prevention plate 18 in the X-axis direction and the Y-axis direction.
  • the lower end of the inclined portion 18b is located above the baffle plate 17.
  • a gap G is formed between the lower end of the inclined portion 18b and the upper end of the baffle plate 17.
  • blow-up prevention plate 18 extends along the liquid film type heat transfer tube group 15 over substantially the entire area of the pressure vessel 11 in the X-axis direction.
  • the blow-up prevention plate 18 may be provided only in a part in the X-axis direction.
  • the refrigerant flows as follows. As shown in FIG. 1, in the evaporator 10, the refrigerant flows into the pressure vessel 11 from the refrigerant inlet pipe 12. The refrigerant flowing into the pressure vessel 11 is dispersed in the X-axis direction and the Y-axis direction of the pressure vessel 11 by the refrigerant tray 13, and then passes through a large number of holes formed in the refrigerant tray 13 and falls downward. The liquid-phase refrigerant that has fallen from the refrigerant tray 13 comes into contact with the liquid film heat transfer tube 15a arranged at the uppermost stage of the liquid film heat transfer tube group 15, and forms a film on the outer peripheral surface of the liquid film heat transfer tube 15a. cover.
  • the refrigerant that covers the outer peripheral surface of the liquid film heat transfer tube 15a in a film shape exchanges heat with the water to be cooled inside the liquid film heat transfer tube 15a.
  • the refrigerant exceeding the boiling point evaporates due to heat exchange, and the refrigerant not exceeding the boiling point falls further down to the liquid film heat transfer tube 15a.
  • Such heat exchange is continuously repeated.
  • the refrigerant that has not evaporated even by heat exchange with the water in the liquid film heat transfer tube 15a arranged at the lowermost part is stored in the storage portion 11c provided at the lower part of the pressure vessel 11 (see FIG. 2). In this way, a pool of liquid phase refrigerant is formed in the storage portion 11c inside the pressure vessel 11.
  • the level of the liquid level S of the refrigerant pool is automatically adjusted to a predetermined height.
  • the mainstream of the refrigerant evaporated in the liquid film type heat transfer tube group 15 rises around the lower end of the baffle plate 17 as shown by arrow A1 and is guided to the refrigerant outlet tube 16. .. Further, a part of the refrigerant evaporated in the liquid film type heat transfer tube group 15 passes through the gap G formed between the obstruction plate 17 and the blow-up prevention plate 18 as shown by the arrow A2, and passes through the refrigerant outlet pipe. Guided to 16.
  • the full-liquid heat transfer tube 14a of the full-liquid heat transfer tube group 14 is in a state of being immersed in the refrigerant of the stored liquid phase of the storage section 11c.
  • the water to be cooled flowing in the heat transfer tube 15a for the liquid film exchanges heat with the refrigerant stored in the storage unit 11c.
  • the refrigerant that has exchanged heat with the liquid film heat transfer tube 15a evaporates and is discharged upward from the liquid level S.
  • the refrigerant discharged from the liquid level S is guided to the refrigerant outlet pipe 16 as shown by the arrow A3.
  • the refrigerant that evaporates in the liquid film type heat transfer tube group 15 and the full liquid type heat transfer tube group 14 and is guided to the refrigerant outlet pipe 16 is discharged to the outside of the pressure vessel 11.
  • the refrigerant discharged from the refrigerant outlet pipe 16 is sucked and compressed by the turbo compressor.
  • the baffle plate 17 covers the liquid film type heat transfer tube group 15 from the side. Further, the blow-up prevention plate 18 covers the liquid film type heat transfer tube group 15 from above. That is, the baffle plate 17 and the blow-up prevention plate 18 form a space (hereinafter, referred to as "inner space S1") in which the liquid film type heat transfer tube group 15 is provided. Further, the baffle plate 17 and the blow-up prevention plate 18 separate the inner space S1 from the space formed outside the inner space S1 (hereinafter, referred to as "outer space S2"). In the present embodiment, a gap G is formed between the blow-up prevention plate 18 and the baffle plate 17.
  • the gap G connects the inner space S1 and the outer space S2.
  • the refrigerant when the refrigerant is supplied from the refrigerant tray 13 to the liquid film type heat transfer tube group 15, the refrigerant evaporates.
  • the evaporated refrigerant diffuses in the inner space S1.
  • a part of the diffused refrigerant passes through the gap G formed between the blow-up prevention plate 18 and the baffle plate 17 and moves to the outer space S2.
  • the gap G formed between the blow-up prevention plate 18 and the baffle plate 17 and moves to the outer space S2.
  • the gap G is not formed (that is, when the baffle plate 17 and the blow-up prevention plate 18 are connected). Therefore, since the environment around the liquid film type heat transfer tube group 15 can be made an environment suitable for heat exchange, the heat exchange efficiency of the liquid film type heat transfer tube group 15 can be improved. Therefore, the performance of the evaporator 10 can be improved.
  • two routes for the refrigerant to flow from the inner space S1 to the outer space S2 are formed, a route passing through the lower end of the inner space S1 and a route passing through the gap G. Therefore, it is possible to suppress a situation in which the flow velocity of the vaporized refrigerant becomes high at the lower end of the inner space S1 (that is, near the lower end of the baffle plate 17). As a result, it is possible to make it difficult for the gas phase refrigerant discharged to the outside of the pressure vessel 11 to accompany the liquid phase refrigerant (so-called carryover).
  • the vaporized refrigerant (hereinafter referred to as "flash gas") easily moves to the outer space S2 through the gap G formed between the blow-up prevention plate 18 and the obstruction plate 17. .. Therefore, it is possible to suppress an increase in pressure in the inner space S1 due to the flash gas. Further, since the flash gas is discharged from the inner space S1, the liquid phase refrigerant supplied to the liquid film type heat transfer tube group 15 without being vaporized is not easily affected by the flash gas. Therefore, the refrigerant can be accurately supplied to the liquid film type heat transfer tube group 15.
  • the baffle plate 17 is provided. As a result, the flow of the refrigerant from the side with respect to the liquid film type heat transfer tube group 15 can be blocked, so that the situation in which the refrigerant supplied in the liquid film type heat transfer tube group 15 is scattered can be suppressed. Further, in the present embodiment, the blow-up prevention plate 18 is provided. As a result, it is possible to suppress a situation in which the refrigerant supplied to the liquid film type heat transfer tube group 15 is blown up.
  • the refrigerant outlet pipe 16 is provided above the lower end of the baffle plate 17.
  • the refrigerant that evaporates in the liquid film type heat transfer tube group 15 and heads for the refrigerant outlet tube 16 is easily blocked by the obstruction plate 17 and the blow-up prevention plate 18. Therefore, the evaporated refrigerant tends to stay in the inner space S1, so that the pressure in the inner space S1 tends to increase.
  • the gap G is formed between the baffle plate 17 and the blow-up prevention plate 18, the refrigerant evaporated in the liquid film type heat transfer tube group 15 passes through the gap G to the outer space S2. You can move.
  • the refrigerant tray 13 is provided above the liquid film type heat transfer tube group 15.
  • the pressure in the inner space S1 tends to increase.
  • the gap G is formed between the baffle plate 17 and the blow-up prevention plate 18, the flash gas can pass through the gap G and move to the outer space S2.
  • the increase in pressure in the inner space S1 can be more preferably suppressed. Therefore, more preferably, the heat exchange efficiency of the liquid film type heat transfer tube group 15 can be improved, and the performance of the evaporator 10 can be improved.
  • the evaporator 20 according to the present embodiment is first in that a lower plate portion 21 provided between the lower end of the liquid film type heat transfer tube group 15 and the liquid level S is provided instead of the baffle plate 17. It is different from the embodiment. Since other points are the same as those of the first embodiment, the same reference numerals are given to the same configurations, and detailed description thereof will be omitted.
  • the evaporator 20 includes a pair of lower plate portions 21 provided between the lower end of the liquid film type heat transfer tube group 15 and the liquid level S.
  • the pair of lower plate portions 21 are arranged apart from each other in the Y-axis direction.
  • the pair of lower plate portions 21 are provided symmetrically with respect to the center in the Y-axis direction.
  • Each lower plate portion 21 is inclined so that the outer end portion in the Y-axis direction is higher than the inner end portion in the Y-axis direction.
  • the outer end portion of each lower plate portion 21 in the Y-axis direction is arranged outside the outer end portion of the liquid film type heat transfer tube group 15 in the Y-axis direction.
  • the pair of lower plate portions 21 extend along the liquid film type heat transfer tube group 15 over substantially the entire area of the pressure vessel 11 in the X-axis direction.
  • the pair of lower plate portions 21 may be provided only in a part in the X-axis direction.
  • the lower plate portion 21 is provided between the liquid film type heat transfer tube group 15 and the liquid level S.
  • the refrigerant that evaporates by the full-liquid heat transfer tube group 14 and goes from the liquid level S to the liquid film type heat transfer tube group 15 is blocked by the lower plate portion 21.
  • the refrigerant blocked by the lower plate portion 21 bypasses the outside of the lower plate portion 21 and is guided to the refrigerant outlet pipe 16 as shown by the broken line arrow in FIG. Therefore, it is possible to make it difficult for the refrigerant evaporated in the full-liquid heat transfer tube group 14 to reach the liquid film heat transfer tube group 15.
  • the situation in which the refrigerant supplied to the liquid film type heat transfer tube group 15 is scattered by the refrigerant evaporated in the liquid film type heat transfer tube group 14 can be suppressed, so that the environment around the liquid film type heat transfer tube group 15 can be suppressed.
  • each lower plate portion 21 is inclined so that the inner end portion is downward.
  • the liquid phase refrigerant moves on the upper surface of the lower plate portion 21 to the inner end and falls from the inner end to the storage portion 11c.
  • the amount of refrigerant that is not supplied to each heat transfer tube group can be reduced, so that the performance of the evaporator 10 can be improved.
  • the shape of the lower plate portion is not limited to the shape described above.
  • a plate-shaped member that is inclined so as to be positioned downward from both ends in the Y-axis direction toward the center portion may be used.
  • the lower plate portion 26 may be provided with a refrigerant discharge pipe 27 at the center portion in the Y-axis direction.
  • the refrigerant discharge pipe 27 is formed in a straight line extending in the Z-axis direction.
  • the upper end of the refrigerant discharge pipe 27 is connected to the lower plate portion 26, and the lower end is arranged below the full-liquid heat transfer pipe group 14.
  • the upper end of the refrigerant discharge pipe 27 is open on the upper surface of the lower plate portion 26.
  • the refrigerant stored on the upper surface of the lower plate portion 26 is guided to the lower side of the full-liquid heat transfer tube group 14 via the refrigerant discharge pipe 27. Therefore, the refrigerant on the upper surface of the lower plate portion 26 can be guided to the storage portion 11c. As a result, the amount of refrigerant that is not supplied to each heat transfer tube group can be reduced, so that the performance of the evaporator 10 can be improved.
  • the refrigerant on the upper surface of the lower plate portion 26 is guided to the lower side of the full-liquid heat transfer tube group 14.
  • the refrigerant guided from the upper surface of the lower plate portion 26 to the storage portion 11c can be prevented from interfering with the refrigerant that evaporates in the full-liquid heat transfer tube group 14 and heads toward the liquid level S. Therefore, since heat exchange can be suitably performed in the full-liquid heat transfer tube group 14, the performance of the evaporator 10 can be improved.
  • the lower plate portion 26 may have the same shape as the lower plate portion 26 shown in the first modification and may have a plurality of through holes penetrating from the upper surface to the lower surface.
  • the refrigerant that has fallen to the lower plate portion 31 passes through the through hole and is guided to the storage portion 11c. Therefore, it is possible to prevent the refrigerant from being stored on the upper surface of the lower plate portion 31. Therefore, the refrigerant that is not supplied to each heat transfer tube group can be reduced, so that the performance of the evaporator 10 can be improved.
  • the lower plate portion 31 may be formed of a wire mesh instead of forming a plurality of through holes.
  • the lower plate portion 36 shown in FIG. 6 integrally has a flat bottom surface portion 36a and an inclined portion 36b that bends from both ends of the bottom surface portion 36a in the Y-axis direction and extends diagonally upward. It may be a dish-shaped member.
  • the lower plate portion 36 may be provided with a plurality of refrigerant discharge pipes 37 (three as an example in the present embodiment) on the bottom surface portion 36a.
  • the plurality of refrigerant discharge pipes 37 are arranged side by side in the Y-axis direction.
  • the upper end of the refrigerant discharge pipe 37 is connected to the lower plate portion 36, and the lower end is arranged below the full-liquid heat transfer tube group 14.
  • the refrigerant stored on the upper surface of the lower plate portion 36 is guided to the lower side of the full-liquid heat transfer tube group 14 via the refrigerant discharge pipe 37. Therefore, the refrigerant on the upper surface of the lower plate portion 36 can be guided to the storage portion 11c. As a result, the amount of refrigerant that is not supplied to each heat transfer tube group can be reduced, so that the performance of the evaporator 10 can be improved.
  • the lower plate portion 31 may have the same shape as the lower plate portion 31 shown in the second modification and may have a plurality of through holes penetrating from the upper surface to the lower surface.
  • the refrigerant that has fallen to the lower plate portion 41 passes through the through hole and is guided to the storage portion 11c. Therefore, it is possible to prevent the refrigerant from being stored on the upper surface of the lower plate portion 41. Therefore, the refrigerant that is not supplied to each heat transfer tube group can be reduced, so that the performance of the evaporator 10 can be improved.
  • the lower plate portion 41 may be formed of a wire mesh instead of forming a plurality of through holes.
  • the evaporator 50 according to the present embodiment is different from the first embodiment in that a pressure loss increasing portion is provided instead of the baffle plate 17. Since other points are the same as those of the first embodiment, the same reference numerals are given to the same configurations, and detailed description thereof will be omitted.
  • the evaporator 50 is provided with a pair of lower end side plate portions (pressure loss increasing portions) 51 arranged on both sides of the lower end portion of the liquid film type heat transfer tube group 15.
  • the pair of lower end side plate portions 51 are arranged so as to sandwich the lower end portions of the liquid film type heat transfer tube group 15. That is, the pair of lower end side plate portions 51 cover the liquid film type heat transfer tube group 15 from the Y-axis direction.
  • the pair of lower end side plate portions 51 increases the pressure loss of the route passing through the region where the lower end portion of the liquid film type heat transfer tube group 15 is arranged (hereinafter, referred to as "lower end region P").
  • Each lower end side plate portion 51 is a flat plate-shaped member.
  • the lower end side plate portion 51 may be formed with a plurality of through holes penetrating in the plate thickness direction. Further, instead of forming a plurality of through holes, it may be formed of a wire mesh.
  • the length of the lower end side plate portion 51 in the Z-axis direction is set to be less than half the length of the liquid film type heat transfer tube group 15 in the Z-axis direction. That is, a large gap is formed above the lower end side plate portion 51 with the blow-up prevention plate 18.
  • the pair of lower end side plate portions 51 extend along the liquid film type heat transfer tube group 15 over substantially the entire area of the pressure vessel 11 in the X-axis direction.
  • the pair of lower end side plate portions 51 may be provided only in a part in the X-axis direction.
  • a pair of lower end side plate portions 51 are provided as pressure loss increasing portions for increasing the pressure loss in the lower end region P.
  • the pair of lower end side plate portions 51 cover the lower end portions of the liquid film type heat transfer tube group 15 from both sides.
  • the pressure loss in the lower end region P can be increased, so that the refrigerant that evaporates by the full-liquid heat transfer tube group 14 and goes from the liquid level S to the refrigerant outlet tube 16 is shown by the broken line arrow in FIG. , It is difficult to flow into the lower end region P. Therefore, it is possible to make it difficult for the refrigerant evaporated in the full-liquid heat transfer tube group 14 to reach the liquid film heat transfer tube group 15.
  • the situation in which the refrigerant supplied to the liquid film type heat transfer tube group 15 is scattered by the refrigerant evaporated in the liquid film type heat transfer tube group 14 can be suppressed, so that the environment around the liquid film type heat transfer tube group 15 can be suppressed.
  • a plurality of dummy tubes 56 may be provided on both sides of the lower end portion of the liquid film type heat transfer tube group 15 as pressure loss increasing portions. good.
  • the inside of the dummy tube 56 is hollow, and no fluid or the like flows through the inside.
  • the plurality of dummy tubes 56 are arranged so that the distance between the adjacent dummy tubes 56 is shorter than the distance between the adjacent liquid film heat transfer tubes 15a. By arranging in this way, the pressure loss of the flow path passing between the dummy tubes 56 can be increased. Therefore, the pressure loss in the lower end region P can be increased.
  • a fluid such as water may be circulated in the dummy pipe 56. With this configuration, the dummy pipe 56 can also exchange heat with the refrigerant, so that the heat exchange efficiency can be improved. Therefore, the performance of the evaporator 10 can be improved.
  • the evaporator 60 according to the present embodiment is different from the first embodiment in that a rectifying unit is provided instead of the baffle plate 17. Since other points are the same as those of the first embodiment, the same reference numerals are given to the same configurations, and detailed description thereof will be omitted.
  • the evaporator 60 is provided with a pair of lower side plate portions (rectifying portions) 61 arranged on both sides of the lower portion of the liquid film type heat transfer tube group 15.
  • the pair of lower side plate portions 61 are arranged so as to sandwich the lower portion of the liquid film type heat transfer tube group 15. That is, the pair of lower plate portions 61 covers the liquid film type heat transfer tube group 15 from the Y-axis direction.
  • the pair of lower side plate portions 61 guide the refrigerant evaporated in the full-liquid heat transfer tube group 14 to the refrigerant outlet tube 16. That is, the refrigerant evaporated in the full-liquid heat transfer tube group 14 is suppressed from flowing into the region where the liquid film type heat transfer tube group 15 is provided.
  • Each lower plate portion 61 is a flat plate-shaped member. Further, each lower plate portion 61 is arranged so that the plate surface faces a vertical plane.
  • the lower plate portion 61 may be formed with a plurality of through holes penetrating in the plate thickness direction. Further, instead of forming a plurality of through holes, it may be formed of a wire mesh.
  • the length of the lower plate portion 61 in the Z-axis direction is set to be less than half the length of the liquid film type heat transfer tube group 15 in the Z-axis direction. That is, a large gap is formed above the lower side plate portion 61 with the blow-up prevention plate 18.
  • the lower part of the liquid film type heat transfer tube group 15 may be lower than the central part of the liquid film type heat transfer tube group 15 in the Z-axis direction.
  • the pair of lower side plate portions 61 extend along the liquid film type heat transfer tube group 15 over substantially the entire area of the pressure vessel 11 in the X-axis direction.
  • the pair of lower plate portions 61 may be provided only in a part in the X-axis direction. Further, as shown in FIG. 11, each lower plate portion 61 may be inclined with respect to the vertical plane so that the lower end is located inside in the Y-axis direction.
  • a pair of lower side plate portions 61 are provided as rectifying portions for guiding the refrigerant evaporated in the full-liquid heat transfer tube group 14 to the refrigerant outlet pipe 16.
  • a pair of lower plate portions 61 cover the lower portion of the liquid film type heat transfer tube group 15 from both sides.
  • the refrigerant that evaporates in the full-liquid heat transfer tube group 14 and goes from the side to the liquid film type heat transfer tube group 15 is discharged by the pair of lower side plate portions 61 as shown by the broken line arrows in FIG. You will be guided to the pipe 16.
  • the refrigerant evaporated in the full-liquid heat transfer tube group 14 it is possible to make it difficult for the refrigerant evaporated in the full-liquid heat transfer tube group 14 to reach the liquid film heat transfer tube group 15. Therefore, the situation in which the refrigerant supplied to the liquid film type heat transfer tube group 15 is scattered by the refrigerant evaporated in the liquid film type heat transfer tube group 14 can be suppressed, so that the environment around the liquid film type heat transfer tube group 15 can be suppressed. Can be an environment suitable for heat exchange. Therefore, the heat exchange efficiency of the liquid film type heat transfer tube group 15 can be improved, and the performance of the evaporator 10 can be improved.
  • the lower side plate portion 61 is arranged so as to sandwich the lower portion of the liquid film type heat transfer tube group 15, the refrigerant rising from the liquid level S can be guided to the refrigerant outlet pipe 16 relatively early. .. Therefore, it is possible to make it more difficult for the refrigerant evaporated in the full-liquid heat transfer tube group 14 to reach the liquid film heat transfer tube group 15.
  • a plurality of dummy tubes 66 may be provided on both sides of the lower portion of the liquid film type heat transfer tube group 15 as rectifying portions.
  • the inside of the dummy tube 66 is hollow, and no fluid or the like flows through the inside.
  • the plurality of dummy tubes 66 are arranged so that the distance between the adjacent dummy tubes 66 is shorter than the distance between the adjacent liquid film heat transfer tubes 15a. By arranging in this way, the pressure loss of the flow path passing between the dummy tubes 66 can be increased.
  • a fluid such as water may be circulated in the dummy pipe 66.
  • the dummy tube 66 can also exchange heat with the refrigerant, so that the heat exchange efficiency can be improved. Therefore, the performance of the evaporator 10 can be improved.
  • the evaporator 70 according to the present embodiment is different from the first embodiment in that a cross plate portion is provided instead of the baffle plate 17. Since other points are the same as those of the first embodiment, the same reference numerals are given to the same configurations, and detailed description thereof will be omitted.
  • FIG. 13 for the sake of illustration, the pressure vessel 11 and the full-liquid heat transfer tube group 14 and the like are omitted. Further, in FIG. 13, due to the illustration, the liquid film heat transfer tubes 15a are not shown one by one, but are collectively shown as a liquid film type heat transfer tube group 15.
  • a plurality of evaporators 70 are arranged so as to intersect the X-axis direction on both sides of the liquid film type heat transfer tube group 15 in the Y-axis direction (an example in the present embodiment). 3) Cross plate portions 71 are provided. The plurality of intersecting plate portions 71 are arranged side by side at predetermined intervals in the X-axis direction. The length of the cross plate portion 71 in the Z-axis direction is substantially the same as the length of the liquid film type heat transfer tube group 15 in the Z-axis direction. Each cross plate portion 71 is formed of a flat plate-shaped member.
  • the refrigerant outlet pipe 16 is provided at the end of the pressure vessel 11 in the X-axis direction. Therefore, the refrigerant evaporated in the liquid-filled heat transfer tube group 14 and the liquid film-type heat transfer tube group 15 is guided to the refrigerant outlet tube 16 while moving in the X-axis direction. For example, when the cross plate portion 71 is not provided, the refrigerant evaporated in the liquid film type heat transfer tube group 15 moves along the X-axis direction with almost no increase to the lower region of the refrigerant outlet tube 16. Then, they merge in the region below the refrigerant outlet pipe 16 and soar.
  • the cross plate portion 71 arranged so as to intersect the X-axis direction is provided on the side of the liquid film type heat transfer tube group 15. That is, the space formed inside the pressure vessel 11 is divided into a plurality of spaces in the X-axis direction by the cross plate portion 71. As a result, as shown by the broken line arrows in FIGS. 13 and 14, the refrigerant evaporated in the liquid film type heat transfer tube group 15 moves upward in each of the divided spaces. Therefore, it is possible to suppress a rapid rise of the refrigerant in the region below the refrigerant outlet pipe 16. Therefore, carryover can be made less likely to occur.
  • the cross plate portion 71 can increase the pressure loss with respect to the movement of the refrigerant in the X-axis direction. Therefore, since the flow velocity of the refrigerant can be reduced, carryover can be less likely to occur.
  • the cross plate portion is not limited to the structure described above. As shown in the cross plate portion 76 of FIG. 15, a plurality of through holes penetrating in the plate thickness direction may be formed. Further, instead of forming a plurality of through holes, it may be formed of a wire mesh. With this configuration, the flow velocity of the refrigerant can be reduced while ensuring the movement of the refrigerant in the X-axis direction.
  • a refrigerant tray is used as a device for supplying a refrigerant to a liquid film type heat transfer tube group or the like
  • the device for supplying the refrigerant may have a structure capable of supplying the refrigerant to the liquid film type heat transfer tube group, and may be, for example, a pipe-shaped member extending along the X-axis direction.
  • the refrigerant outlet pipe 16 is provided in the upper part of the pressure vessel 11 has been described, but the present disclosure is not limited to this.
  • the refrigerant outlet pipe 16 may be provided on the side of the pressure vessel 11. Further, the refrigerant outlet pipe 16 may be provided in the lower part of the pressure vessel 11. Further, for example, each of the above embodiments may be combined.
  • the evaporator described in the present embodiment described above is grasped as follows, for example.
  • the evaporator (10) according to one aspect of the present disclosure is provided with a refrigerant outlet (16) for discharging the evaporated refrigerant to the outside, and is housed in the housing, and a plurality of liquid films through which the cooled medium flows inside.
  • a liquid film type heat transfer tube group (15) having a heat transfer tube (15a) for use, and a refrigerant supply unit (13) housed in the housing and supplying a liquid phase refrigerant from above to the liquid film type heat transfer tube group.
  • a side plate portion (17) that covers the liquid film type heat transfer tube group from the side and an upper plate portion (18) that covers the liquid film type heat transfer tube group from above are provided.
  • a gap (G) is formed between the upper plate portion and the upper plate portion.
  • the side plate portion covers the liquid film type heat transfer tube group from the side.
  • the upper plate portion covers the liquid film type heat transfer tube group from above. That is, the side plate portion and the upper plate portion form a space (hereinafter, referred to as "inner space") in which the liquid film type heat transfer tube group is provided. Further, the side plate portion and the upper plate portion separate the inner space from the space formed outside the inner space (hereinafter, referred to as "outer space").
  • a gap is formed between the upper plate portion and the side plate portion. That is, the gap connects the inner space and the outer space.
  • the refrigerant when the refrigerant is supplied from the refrigerant supply unit to the liquid film type heat transfer tube group, the refrigerant evaporates.
  • the evaporated refrigerant diffuses in the inner space.
  • the diffused part passes through the gap formed between the upper plate portion and the side plate portion and moves to the outer space.
  • the heat exchange efficiency of the liquid film type heat transfer tube group can be improved. Therefore, the performance of the evaporator can be improved.
  • the increase in pressure in the inner space can be suppressed, it is possible to suppress the situation where the flow velocity of the vaporized refrigerant becomes high at the lower end of the inner space (that is, near the lower end of the side plate portion). As a result, it is possible to make it difficult for the gas phase refrigerant discharged to the outside of the housing to accompany the liquid phase refrigerant (so-called carryover). Further, a part of the refrigerant supplied from the refrigerant supply unit is vaporized before reaching the liquid film type heat transfer tube group due to the decrease in pressure.
  • the vaporized refrigerant (hereinafter referred to as "flash gas”) easily moves to the outer space through the gap formed between the upper plate portion and the side plate portion. Therefore, it is possible to suppress an increase in pressure in the inner space due to the flash gas. Further, since the flash gas is discharged from the inner space, the liquid phase refrigerant supplied to the liquid film type heat transfer tube group without vaporization is not easily affected by the flash gas. Therefore, the refrigerant can be accurately supplied to the liquid film heat transfer tube.
  • the evaporator according to one aspect of the present disclosure is housed in the housing and is immersed in a liquid phase refrigerant stored in the lower part of the housing, and a plurality of filled mediums through which the cooling medium flows are filled.
  • a full-liquid heat transfer tube group (14) having a liquid heat transfer tube (14a) is provided, and the liquid film type heat transfer tube group (15) is the liquid level of the liquid phase refrigerant stored in the lower part of the housing. It is provided above (S).
  • a part of the refrigerant evaporated in the full-liquid heat transfer tube group can also pass through the gap formed between the upper plate portion and the side plate portion and head toward the refrigerant outlet. As a result, it is possible to suppress an increase in pressure in the inner space.
  • the refrigerant outlet is provided above the lower end of the side plate portion.
  • the refrigerant outlet is provided above the lower end of the side plate portion.
  • the refrigerant that evaporates in the liquid film type heat transfer tube group and goes to the refrigerant outlet is easily blocked by the side plate portion and the upper plate portion. Therefore, the evaporated refrigerant tends to stay in the inner space, and the pressure in the inner space tends to increase.
  • the refrigerant evaporated in the liquid film type heat transfer tube group can pass through the gap and move to the outer space. This makes it difficult for the refrigerant to stay in the inner space. Therefore, the increase in pressure in the inner space can be suppressed more preferably. Therefore, more preferably, the heat exchange efficiency of the liquid film type heat transfer tube group can be improved, and the performance of the evaporator can be improved.
  • the refrigerant supply unit is provided above the liquid film type heat transfer tube group, and the side plate portion is on the upper side of the liquid film type heat transfer tube group. It covers from the side.
  • the refrigerant supply unit is provided above the liquid film type heat transfer tube group.
  • the flash gas tends to stay in the inner space, so that the pressure in the inner space tends to increase.
  • the flash gas can pass through the gap and move to the outer space. This makes it difficult for the refrigerant to stay in the inner space. Therefore, the increase in pressure in the inner space can be suppressed more preferably. Therefore, more preferably, the heat exchange efficiency of the liquid film type heat transfer tube group can be improved, and the performance of the evaporator can be improved.
  • the evaporator (20) has a refrigerant outlet (16) for discharging the evaporated refrigerant to the outside, and is housed in a housing (11) forming an outer shell and the housing.
  • a full-liquid heat transfer tube group (14) having a plurality of full-liquid heat transfer tubes (14a) immersed in a liquid-phase refrigerant stored in the lower part of the housing and having a cooled medium flowing inside.
  • a plurality of liquid film heat transfer tubes housed in the housing and provided above the liquid level (S) of the liquid phase refrigerant stored in the lower part of the housing, and through which the cooled medium flows.
  • a lower plate portion (21) provided between the type heat transfer tube group and the liquid level is provided.
  • a lower plate portion is provided between the liquid film type heat transfer tube group and the liquid level.
  • the refrigerant that evaporates by the full-liquid heat transfer tube group and goes from the liquid level to the liquid film type heat transfer tube group is blocked by the lower plate portion. Therefore, it is possible to make it difficult for the refrigerant evaporated in the full-liquid heat transfer tube group to reach the liquid film heat transfer tube group. Therefore, it is possible to suppress the situation where the refrigerant supplied to the liquid film type heat transfer tube group is scattered by the refrigerant evaporated in the liquid film type heat transfer tube group, so that the environment around the liquid film type heat transfer tube group is heat exchanged. The environment can be suitable for.
  • the heat exchange efficiency of the liquid film type heat transfer tube group can be improved, and the performance of the evaporator can be improved. Further, in the above configuration, it is possible to suppress a situation in which the refrigerant supplied to the liquid film type heat transfer tube group is scattered by the refrigerant evaporated in the liquid film type heat transfer tube group. As a result, it is possible to prevent the phenomenon that the gas phase refrigerant flowing toward the refrigerant outlet is accompanied by the liquid phase refrigerant (so-called carryover).
  • the evaporator according to one aspect of the present disclosure includes a refrigerant discharge pipe (27) whose upper end is connected to the lower plate portion and whose lower end is arranged below the full-liquid heat transfer tube group, and the lower plate is provided. The portion is provided below the liquid film type heat transfer tube group.
  • the lower plate portion is provided below the liquid film type heat transfer tube group.
  • the liquid phase refrigerant that has not completely evaporated in the liquid film type heat transfer tube group is stored on the upper surface of the lower plate portion.
  • the upper end is connected to the lower plate portion, and the lower end is provided with a refrigerant discharge pipe arranged below the full-liquid heat transfer tube group.
  • the refrigerant stored on the upper surface of the lower plate portion is guided to the lower side of the full-liquid heat transfer tube group via the refrigerant discharge pipe.
  • the refrigerant on the upper surface of the lower plate portion can be guided to the portion where the refrigerant is stored in the lower part of the housing (hereinafter, referred to as “storage portion”).
  • storage portion the portion where the refrigerant is stored in the lower part of the housing
  • the amount of refrigerant that is not supplied to each heat transfer tube group can be reduced, so that the performance of the evaporator can be improved.
  • the refrigerant on the upper surface of the lower plate portion is guided to the lower side of the full-liquid heat transfer tube group.
  • the refrigerant guided from the upper surface of the lower plate portion to the storage portion can be made less likely to interfere with the refrigerant that evaporates in the full-liquid heat transfer tube group and heads toward the liquid surface.
  • the lower plate portion has a hole penetrating from the upper surface to the lower surface.
  • the lower plate portion has a hole penetrating from the upper surface to the lower surface.
  • the refrigerant that has not completely evaporated in the liquid film type heat transfer tube group and has fallen to the lower plate portion passes through the holes and is guided to the storage portion below the lower plate portion. Therefore, it is possible to prevent the refrigerant from being stored on the upper surface of the lower plate portion. Therefore, it is possible to reduce the amount of refrigerant that is not guided to the liquid film type heat transfer tube group, and thus it is possible to improve the performance of the evaporator.
  • the evaporator (50) is provided with a refrigerant outlet (16) for discharging the evaporated refrigerant to the outside, and is housed in a housing (11) forming an outer shell and the housing.
  • a full-liquid heat transfer tube group (14) having a plurality of full-liquid heat transfer tubes (14a) immersed in a liquid-phase refrigerant stored in the lower part of the housing and having a cooled medium flowing inside.
  • a plurality of liquid film heat transfer tubes housed in the housing and provided above the liquid level (S) of the liquid phase refrigerant stored in the lower part of the housing, and through which the cooled medium flows.
  • a pressure loss increasing portion (51) is provided on the side of the lower end portion of the type heat transfer tube group and increases the pressure in the region where the lower end portion of the liquid film type heat transfer tube group is arranged.
  • the above configuration includes a pressure loss increasing portion that increases the pressure in the region where the lower end portion of the liquid film type heat transfer tube group is arranged (hereinafter, referred to as "lower end region").
  • the pressure in the lower end region can be increased, so that the refrigerant that evaporates by the full-liquid heat transfer tube group and goes from the liquid surface to the liquid film type heat transfer tube group does not easily flow into the lower end region. Therefore, it is possible to make it difficult for the refrigerant evaporated in the full-liquid heat transfer tube group to reach the liquid film heat transfer tube group.
  • the refrigerant supplied to the liquid film type heat transfer tube group is scattered by the refrigerant evaporated in the liquid film type heat transfer tube group, so that the environment around the liquid film type heat transfer tube group is heat exchanged.
  • the environment can be suitable for. Therefore, the heat exchange efficiency of the liquid film type heat transfer tube group can be improved, and the performance of the evaporator can be improved.
  • the pressure loss increasing portion is arranged so as to sandwich the lower end portion of the liquid film type heat transfer tube group, and a pair of lower ends that cover the liquid film type heat transfer tube group from the side. It has a side plate portion (51).
  • a pair of lower end side plates cover the lower end of the liquid film type heat transfer tube group from both sides.
  • the pressure in the lower end region can be increased more than in other regions. Therefore, it is possible to make it difficult for the refrigerant that evaporates by the full-liquid heat transfer tube group and goes from the liquid surface to the liquid film type heat transfer tube group to flow into the lower end region. Therefore, it is possible to make it difficult for the refrigerant evaporated in the full-liquid heat transfer tube group to reach the liquid film heat transfer tube group.
  • the evaporator (60) is provided with a refrigerant outlet (16) for discharging the evaporated refrigerant to the outside, and is housed in a housing (11) forming an outer shell and the housing.
  • a full-liquid heat transfer tube group (14) having a plurality of full-liquid heat transfer tubes (14a) immersed in a liquid-phase refrigerant stored in the lower part of the housing and having a cooled medium flowing inside.
  • rectifying sections for guiding the refrigerant evaporated in the full-liquid heat transfer tube group to the refrigerant outlet are provided on both sides of the liquid film type heat transfer tube group.
  • the rectifying unit is arranged so as to sandwich the lower part of the liquid film type heat transfer tube group, the refrigerant rising from the liquid surface can be guided to the refrigerant outlet relatively early. Therefore, it is possible to make it more difficult for the refrigerant evaporated in the full-liquid heat transfer tube group to reach the liquid film heat transfer tube group.
  • the rectifying portion has a pair of lower side plate portions (61) that cover the liquid film type heat transfer tube group from both sides.
  • the housing extends in a predetermined direction and intersects the predetermined direction on the side of the liquid film type heat transfer tube group.
  • a plurality of arranged cross plate portions (71) are provided.
  • the refrigerant evaporated in the full-liquid heat transfer tube group and the liquid film heat transfer tube group is guided to the refrigerant outlet while moving in a predetermined direction.
  • a cross plate portion arranged so as to intersect a predetermined direction is provided on the side of the liquid film type heat transfer tube group. This makes it possible to increase the pressure loss with respect to the movement of the refrigerant in a predetermined direction. Therefore, since the flow velocity of the refrigerant can be reduced, it is possible to make it difficult for the gas phase refrigerant flowing toward the refrigerant outlet to accompany the liquid phase refrigerant (so-called carryover).
  • Evaporator 11 Pressure vessel (housing) 11a: Cylindrical part 11c: Storage part 12: Refrigerant inlet pipe 13: Refrigerant tray (refrigerant supply part) 14: Full-liquid heat transfer tube group 14a: Full-liquid heat transfer tube 15: Liquid film type heat transfer tube group 15a: Liquid film heat transfer tube 16: Refrigerant outlet tube (refrigerant outlet) 17: Disturbing plate (side plate) 18: Blow-up prevention plate (upper plate) 18a: Flat plate portion 18b: Inclined portion 20: Evaporator 21: Lower plate portion 26: Lower plate portion 27: Refrigerant discharge pipe 31: Lower plate portion 36: Lower plate portion 36a: Bottom plate portion 36b: Inclined portion 37: Refrigerant discharge pipe 41: Lower plate part 50: Evaporator 51: Lower end side plate part (pressure loss increasing part) 56: Dummy tube 60: Evaporator 61: Lower plate part (rectifying part) 66: Dummy pipe 70: E

Abstract

An object is to improve heat-exchange efficiency of a heat exchange tube group. An evaporator (10) includes a pressure vessel (11) that has a coolant outlet tube (16) for discharging evaporated coolant, a liquid film heat exchange tube group (15) that is accommodated in the pressure vessel (11) and that has a plurality of liquid film heat exchange tubes (15a) through which water to be cooled flows, a coolant tray (13) that supplies coolant in a liquid phase to the liquid film heat exchange tube group (15) from above, a baffle plate (17) that covers the liquid film heat exchange tube group (15) from a side, and a blow-up prevention plate (18) that covers the liquid film heat exchange tube group (15) from above. A gap (G) is formed between the baffle plate (17) and the blow-up prevention plate (18).

Description

蒸発器Evaporator
 本開示は、蒸発器に関するものである。 This disclosure relates to an evaporator.
 冷凍機で用いられる蒸発器として、内部に被冷却媒体が流通する伝熱管群に対して、上方から液相の冷媒を供給する液膜式の蒸発器が知られている。液膜式の蒸発器では、伝熱管群において、冷媒を好適に蒸発させることを目的として、伝熱管群の上方や側方に板状の部材を設ける場合がある(例えば、特許文献1)。 As an evaporator used in a refrigerator, a liquid film type evaporator that supplies a liquid phase refrigerant from above to a group of heat transfer tubes through which a cooling medium flows inside is known. In the liquid film type evaporator, a plate-shaped member may be provided above or to the side of the heat transfer tube group for the purpose of suitably evaporating the refrigerant in the heat transfer tube group (for example, Patent Document 1).
 特許文献1には、チューブ束のチューブ間での蒸気冷媒又は液体及び蒸気冷媒の横断流れを実質上阻止するようにチューブ束の上方に位置するフードと、フードの上方端部の両端からシェルの下方部分の方へ延びる壁と、を備える蒸発器が記載されている。 US Pat. An evaporator is described with a wall extending towards the lower portion.
特表2008-516187号公報Special Table 2008-516187
 特許文献1の蒸発器は、チューブ束の上方に位置するフードの端部と、チューブ束の側方に位置する壁の上端とが接続されている。すなわち、特許文献1の蒸発器は、フードと壁との間に上方が閉鎖された空間が形成され、この空間にチューブ束が配置されている。このような構成では、供給される冷媒のフラッシュガス及びチューブ束で蒸発した冷媒が、チューブ束が設けられた空間から排出される際に、冷媒の大部分がチューブ同士の間を通過することとなるので、抵抗(圧力損失)が大きくなる。このため、該空間の圧力が上昇する。チューブ側が配置された空間の圧力が上昇すると、チューブ束の表面で冷媒が蒸発し難くなる。したがって、チューブ束の熱交換効率が低下し、蒸発器の性能が低下してしまう可能性があった。 In the evaporator of Patent Document 1, the end of the hood located above the tube bundle and the upper end of the wall located on the side of the tube bundle are connected. That is, in the evaporator of Patent Document 1, a space closed above is formed between the hood and the wall, and the tube bundle is arranged in this space. In such a configuration, when the flush gas of the supplied refrigerant and the refrigerant evaporated in the tube bundle are discharged from the space where the tube bundle is provided, most of the refrigerant passes between the tubes. Therefore, the resistance (pressure loss) becomes large. Therefore, the pressure in the space increases. When the pressure in the space where the tube side is arranged rises, it becomes difficult for the refrigerant to evaporate on the surface of the tube bundle. Therefore, the heat exchange efficiency of the tube bundle may be lowered, and the performance of the evaporator may be lowered.
 また、フードの端部と壁の上端とが接続されている特許文献1に記載の蒸発器は、チューブで蒸発した冷媒が空間の外部へ流出する際に、空間の下端を通過するルートしかない。このような場合には、空間の下端(すなわち、壁の下端近傍)において、圧力容器の出口へ向かう気化冷媒の流速が速くなる。これにより、圧力容器の外部へ排出される気相の冷媒が、液相の冷媒を同伴する現象(いわゆるキャリーオーバー)が発生し易くなってしまう可能性があった。 Further, the evaporator described in Patent Document 1 in which the end of the hood and the upper end of the wall are connected has only a route that passes through the lower end of the space when the refrigerant vaporized in the tube flows out of the space. .. In such a case, at the lower end of the space (that is, near the lower end of the wall), the flow velocity of the vaporized refrigerant toward the outlet of the pressure vessel becomes high. As a result, there is a possibility that the gas phase refrigerant discharged to the outside of the pressure vessel is likely to be accompanied by the liquid phase refrigerant (so-called carryover).
 本開示は、このような事情に鑑みてなされたものであって、伝熱管群の熱交換効率を向上させることができる蒸発器を提供することを目的とする。 The present disclosure has been made in view of such circumstances, and an object of the present disclosure is to provide an evaporator capable of improving the heat exchange efficiency of the heat transfer tube group.
 上記課題を解決するために、本開示の蒸発器は以下の手段を採用する。
 本開示の一態様に係る蒸発器は、蒸発した冷媒を外部へ排出する冷媒出口が設けられ、外殻を為す筐体と、前記筐体に収容され内部に被冷却媒体が流通する複数の液膜用伝熱管を有する液膜式伝熱管群と、前記筐体に収容され、上方から前記液膜式伝熱管群へ液相の冷媒を供給する冷媒供給部と、前記液膜式伝熱管群を側方から覆う側方板部と、前記液膜式伝熱管群を上方から覆う上方板部と、を備え、前記側方板部と前記上方板部との間には隙間が形成されている。
In order to solve the above problems, the evaporator of the present disclosure employs the following means.
The evaporator according to one aspect of the present disclosure is provided with a refrigerant outlet for discharging the evaporated refrigerant to the outside, and has a housing forming an outer shell and a plurality of liquids housed in the housing and having a cooling medium flowing inside. A liquid film type heat transfer tube group having a film heat transfer tube, a refrigerant supply unit housed in the housing and supplying a liquid phase refrigerant from above to the liquid film type heat transfer tube group, and the liquid film type heat transfer tube group. A side plate portion that covers the liquid film type heat transfer tube group from the side and an upper plate portion that covers the liquid film type heat transfer tube group from above are provided, and a gap is formed between the side plate portion and the upper plate portion. There is.
 本開示によれば、伝熱管群の熱交換効率を向上させることができる。 According to the present disclosure, the heat exchange efficiency of the heat transfer tube group can be improved.
本開示の第1実施形態に係る蒸発器を示す斜視図である。It is a perspective view which shows the evaporator which concerns on 1st Embodiment of this disclosure. 本開示の第1実施形態に係る蒸発器を示す模式的な縦断面図である。It is a schematic vertical sectional view which shows the evaporator which concerns on 1st Embodiment of this disclosure. 本開示の第2実施形態に係る蒸発器を示す模式的な縦断面図である。It is a schematic vertical sectional view which shows the evaporator which concerns on 2nd Embodiment of this disclosure. 図3の変形例を示す模式的な縦断面図である。It is a schematic vertical sectional view which shows the modification of FIG. 図3の変形例を示す模式的な縦断面図である。It is a schematic vertical sectional view which shows the modification of FIG. 図3の変形例を示す模式的な縦断面図である。It is a schematic vertical sectional view which shows the modification of FIG. 図3の変形例を示す模式的な縦断面図である。It is a schematic vertical sectional view which shows the modification of FIG. 本開示の第3実施形態に係る蒸発器を示す模式的な縦断面図である。It is a schematic vertical sectional view which shows the evaporator which concerns on 3rd Embodiment of this disclosure. 図8の変形例を示す模式的な縦断面図である。It is a schematic vertical sectional view which shows the modification of FIG. 本開示の第4実施形態に係る蒸発器を示す模式的な縦断面図である。It is a schematic vertical sectional view which shows the evaporator which concerns on 4th Embodiment of this disclosure. 図10の変形例を示す模式的な縦断面図である。It is a schematic vertical sectional view which shows the modification of FIG. 図10の変形例を示す模式的な縦断面図である。It is a schematic vertical sectional view which shows the modification of FIG. 本開示の第5実施形態に係る蒸発器を示す模式的な斜視図である。It is a schematic perspective view which shows the evaporator which concerns on 5th Embodiment of this disclosure. 本開示の第5実施形態に係る蒸発器を示す模式的な縦断面図である。It is a schematic vertical sectional view which shows the evaporator which concerns on 5th Embodiment of this disclosure. 図13の変形例を示す模式的な斜視図である。It is a schematic perspective view which shows the modification of FIG.
 以下に、本開示に係る蒸発器の一実施形態について、図面を参照して説明する。
〔第1実施形態〕
 以下、本開示の第1実施形態について、図1及び図2を用いて説明する。なお、以下の説明及び図面では、鉛直上下方向をZ軸方向とし、伝熱管の延在する方向をX軸方向とし、Z軸方向及びX軸方向と直交する方向をY軸方向として説明する。
Hereinafter, an embodiment of the evaporator according to the present disclosure will be described with reference to the drawings.
[First Embodiment]
Hereinafter, the first embodiment of the present disclosure will be described with reference to FIGS. 1 and 2. In the following description and drawings, the vertical vertical direction will be the Z-axis direction, the extending direction of the heat transfer tube will be the X-axis direction, and the Z-axis direction and the direction orthogonal to the X-axis direction will be described as the Y-axis direction.
 本実施形態に係る蒸発器10は、ターボ冷凍装置に適用される。ターボ冷凍装置は、冷媒を圧縮するターボ圧縮機(図示省略)と、ターボ圧縮機で圧縮された冷媒を凝縮する凝縮器(図示省略)と、凝縮器で凝縮された冷媒を膨張させる膨張弁(図示省略)と、膨張弁で膨張された冷媒を蒸発させる蒸発器等を備えて、ユニット状に構成されている。各装置は、冷媒が流通する配管によって接続されている。冷媒としては、例えば、最高圧力0.2MPaG未満で使用されるR1233zd等の低圧冷媒当が用いられる。なお、適用可能な冷媒は、低圧冷媒に限定されない。例えば、冷媒として、高圧冷媒を用いてもよい。 The evaporator 10 according to this embodiment is applied to a turbo refrigeration system. The turbo refrigeration system includes a turbo compressor that compresses the refrigerant (not shown), a condenser that condenses the refrigerant compressed by the turbo compressor (not shown), and an expansion valve that expands the refrigerant condensed by the condenser (not shown). It is configured in a unit shape with an evaporator (not shown) and an evaporator that evaporates the refrigerant expanded by the expansion valve. Each device is connected by a pipe through which a refrigerant flows. As the refrigerant, for example, a low-pressure refrigerant such as R1233zd used at a maximum pressure of less than 0.2 MPaG is used. The applicable refrigerant is not limited to the low pressure refrigerant. For example, a high-pressure refrigerant may be used as the refrigerant.
 図1及び図2に示すように、蒸発器10は、外殻を為す圧力容器(筐体)11と、圧力容器11の内部へ冷媒を導入する冷媒入口管12と、冷媒入口管12の下方に設けられる冷媒トレイ(冷媒供給部)13と、圧力容器11の下部に貯留される液相の冷媒に浸漬している満液式伝熱管群14と、圧力容器11の下部に貯留される液相の冷媒の液面S(図2及び図3参照)よりも上方に設けられる液膜式伝熱管群15と、蒸発した冷媒を圧力容器11から排出する冷媒出口管(冷媒出口)16と、液膜式伝熱管群15を側方から覆う邪魔板(側方板部)17と、液膜式伝熱管群15を上方から覆う吹上防止板(上方板部)18と、を有している。なお、図1では、図示の関係上、圧力容器11及び満液式伝熱管群14及び冷媒出口管16を省略して図示している。 As shown in FIGS. 1 and 2, the evaporator 10 includes a pressure container (housing) 11 forming an outer shell, a refrigerant inlet pipe 12 for introducing a liquid into the pressure container 11, and a lower portion of the refrigerant inlet pipe 12. A refrigerant tray (refrigerant supply unit) 13 provided in the A liquid film type heat transfer tube group 15 provided above the liquid level S of the phase refrigerant (see FIGS. 2 and 3), a refrigerant outlet pipe (refrigerant outlet) 16 for discharging the evaporated refrigerant from the pressure vessel 11, and It has a baffle plate (side plate portion) 17 that covers the liquid film type heat transfer tube group 15 from the side, and a blow-up prevention plate (upper plate portion) 18 that covers the liquid film type heat transfer tube group 15 from above. .. In FIG. 1, for the sake of illustration, the pressure vessel 11, the full-liquid heat transfer tube group 14, and the refrigerant outlet tube 16 are omitted.
 圧力容器11は、図2に示すように、中心軸線がX軸方向に沿って延在する円筒部11aと、該円筒部11aの中心軸線に沿う方向(X軸方向)の両端部を閉鎖する2枚の管板(図示省略)とを一体的に有する。円筒部11aは、中心軸線が略水平となるように配置されている。各管板は、円盤状の板材である。また、圧力容器11の下部には液相の冷媒が貯留している。以下では、液相の冷媒が貯留されている領域を貯留部11cと称する。
 なお、以下の説明において、単に「内側」及び「外側」と称した場合には、円筒部11aの中心軸線を基準とした「内側」及び「外側」を意味する。すなわち、「内側」は、円筒部11aの中心軸線側を意味し、「外側」は、円筒部11aの内周面側を意味する。
As shown in FIG. 2, the pressure vessel 11 closes a cylindrical portion 11a whose central axis extends along the X-axis direction and both ends of the cylindrical portion 11a in the direction along the central axis (X-axis direction). It has two tube plates (not shown) integrally. The cylindrical portion 11a is arranged so that the central axis is substantially horizontal. Each tube plate is a disk-shaped plate material. Further, a liquid phase refrigerant is stored in the lower part of the pressure vessel 11. Hereinafter, the region in which the liquid phase refrigerant is stored is referred to as a storage unit 11c.
In the following description, the terms "inside" and "outside" mean "inside" and "outside" with respect to the central axis of the cylindrical portion 11a. That is, "inside" means the central axis side of the cylindrical portion 11a, and "outside" means the inner peripheral surface side of the cylindrical portion 11a.
 冷媒入口管12は、図1及び図2に示すように、上下方向に延びる円筒状の部材であって、略直線状に形成されている。冷媒入口管12は、円筒部11aの上部を上下方向に貫通するように設けられている。冷媒入口管12は、円筒部11aのX軸方向の略中央に設けられている。冷媒入口管12は、蒸発器10と膨張弁とを接続する配管(図示省略)と接続されている。すなわち、膨張弁で膨張した冷媒は、冷媒入口管12を介して、圧力容器11の内部へ導かれる。 As shown in FIGS. 1 and 2, the refrigerant inlet pipe 12 is a cylindrical member extending in the vertical direction and is formed in a substantially linear shape. The refrigerant inlet pipe 12 is provided so as to penetrate the upper portion of the cylindrical portion 11a in the vertical direction. The refrigerant inlet pipe 12 is provided at substantially the center of the cylindrical portion 11a in the X-axis direction. The refrigerant inlet pipe 12 is connected to a pipe (not shown) that connects the evaporator 10 and the expansion valve. That is, the refrigerant expanded by the expansion valve is guided to the inside of the pressure vessel 11 via the refrigerant inlet pipe 12.
 冷媒トレイ13は、略矩形板状の部材である。冷媒トレイ13は、圧力容器11の内部の上部に、板面が略水平となるように配置されている。また、冷媒トレイ13は、冷媒入口管12の下端と板面が対向するように設けられた。冷媒トレイ13は、Y軸方向の両端部が圧力容器11の円筒部11aの内周面から所定距離だけ離間して配置されている。また、冷媒トレイ13は、圧力容器11のX軸方向の略全域に亘って設けられている。冷媒トレイ13のX軸方向の両端部は、各々、菅板に固定されている。冷媒トレイ13には、上下方向に貫通する多数の孔が形成されている。多数の孔は、冷媒トレイ13の略全域に形成されている。冷媒入口管12から吐出された液冷媒は、冷媒トレイ13上に排出される。冷媒トレイ13に排出された冷媒は、冷媒トレイ13の上面を流れ、その後に多数の孔を通って下方へ落下する。このようにして、冷媒トレイ13は、冷媒入口管12から供給された冷媒をX軸方向及びY軸方向へ分配している。 The refrigerant tray 13 is a substantially rectangular plate-shaped member. The refrigerant tray 13 is arranged above the inside of the pressure vessel 11 so that the plate surface is substantially horizontal. Further, the refrigerant tray 13 is provided so that the lower end of the refrigerant inlet pipe 12 and the plate surface face each other. Both ends of the refrigerant tray 13 in the Y-axis direction are arranged so as to be separated from the inner peripheral surface of the cylindrical portion 11a of the pressure vessel 11 by a predetermined distance. Further, the refrigerant tray 13 is provided over substantially the entire area of the pressure vessel 11 in the X-axis direction. Both ends of the refrigerant tray 13 in the X-axis direction are fixed to the tube plate. The refrigerant tray 13 is formed with a large number of holes penetrating in the vertical direction. A large number of holes are formed in substantially the entire area of the refrigerant tray 13. The liquid refrigerant discharged from the refrigerant inlet pipe 12 is discharged onto the refrigerant tray 13. The refrigerant discharged to the refrigerant tray 13 flows on the upper surface of the refrigerant tray 13 and then falls downward through a large number of holes. In this way, the refrigerant tray 13 distributes the refrigerant supplied from the refrigerant inlet pipe 12 in the X-axis direction and the Y-axis direction.
 満液式伝熱管群14は、図2に示すように、圧力容器11に収容されている。また、満液式伝熱管群14は、貯留部11cに貯留されている冷媒に浸漬している。すなわち、貯留する冷媒の液面Sよりも下方に配置されている。満液式伝熱管群14は、X軸方向に沿って延在する複数の満液用伝熱管14aを有する。複数の満液用伝熱管14aは、略平行に配置されている。複数の満液用伝熱管14aは、上下方向(Z軸方向)及びY軸方向に所定の間隔で並んで配置されている。詳細には、複数の満液用伝熱管14aは、上下方向に複数段並んでいるとともに、Y軸方向に複数列並んでいる。各満液用伝熱管14aの内部には、被冷却媒体としての水(以下、「被冷却水」と称する)が流通している。また、各満液用伝熱管14aは、直線状に形成されている。また、各満液用伝熱管14aは、圧力容器11のX軸方向の一端から他端まで延びていて、各管板を貫通している。 As shown in FIG. 2, the full-liquid heat transfer tube group 14 is housed in the pressure vessel 11. Further, the full-liquid heat transfer tube group 14 is immersed in the refrigerant stored in the storage unit 11c. That is, it is arranged below the liquid level S of the stored refrigerant. The full-filled heat transfer tube group 14 has a plurality of full-filled heat transfer tubes 14a extending along the X-axis direction. The plurality of heat transfer tubes 14a for filling liquid are arranged substantially in parallel. The plurality of liquid heat transfer tubes 14a are arranged side by side at predetermined intervals in the vertical direction (Z-axis direction) and the Y-axis direction. Specifically, the plurality of heat transfer tubes 14a for filling liquid are arranged in a plurality of stages in the vertical direction and in a plurality of rows in the Y-axis direction. Water as a cooling medium (hereinafter referred to as "cooled water") is circulated inside each full heat transfer tube 14a. Further, each full liquid heat transfer tube 14a is formed in a straight line. Further, each liquid heat transfer tube 14a extends from one end to the other end of the pressure vessel 11 in the X-axis direction and penetrates each tube plate.
 液膜式伝熱管群15は、図1及び図2に示すように、圧力容器11に収容されている。液膜式伝熱管群15は、貯留する冷媒の液面Sよりも上方に配置されている。液膜式伝熱管群15は、X軸方向に沿って延在する複数の液膜用伝熱管15aを有する。複数の液膜用伝熱管15aは、略平行に配置されている。複数の液膜用伝熱管15aは、上下方向(Z軸方向)及びY軸方向に所定の間隔で並んで配置されている。詳細には、複数の液膜用伝熱管15aは、上下方向に複数段並んでいるとともに、Y軸方向に複数列並んでいる。各液膜用伝熱管15aの内部には、被冷却媒体としての水が流通している。また、各液膜用伝熱管15aは、直線状に形成されている。また、各液膜用伝熱管15aは、圧力容器11のX軸方向の一端から他端まで延びていて、各管板を貫通している。 The liquid film type heat transfer tube group 15 is housed in the pressure vessel 11 as shown in FIGS. 1 and 2. The liquid film type heat transfer tube group 15 is arranged above the liquid level S of the stored refrigerant. The liquid film type heat transfer tube group 15 has a plurality of liquid film heat transfer tubes 15a extending along the X-axis direction. The plurality of liquid film heat transfer tubes 15a are arranged substantially in parallel. The plurality of liquid film heat transfer tubes 15a are arranged side by side at predetermined intervals in the vertical direction (Z-axis direction) and the Y-axis direction. Specifically, the plurality of liquid film heat transfer tubes 15a are arranged in a plurality of stages in the vertical direction and in a plurality of rows in the Y-axis direction. Water as a cooling medium is circulated inside each liquid film heat transfer tube 15a. Further, each liquid film heat transfer tube 15a is formed in a straight line. Further, each liquid film heat transfer tube 15a extends from one end to the other end of the pressure vessel 11 in the X-axis direction and penetrates each tube plate.
 冷媒出口管16は、図2に示すように、Z軸方向に対して傾斜するように延びる円筒状の部材である。冷媒出口管16は、円筒部11aの上部に形成された開口と連通するように設けられている。冷媒出口管16は、円筒部11aのX軸方向の端部に設けられている。すなわち、冷媒出口管16は、圧力容器11の管板の近傍に設けられている。蒸発器10で蒸発した冷媒は、冷媒出口管16を介して、圧力容器11の外部へ排出される。冷媒出口管16は、邪魔板17よりも上方に設けられている。 As shown in FIG. 2, the refrigerant outlet pipe 16 is a cylindrical member extending so as to be inclined with respect to the Z-axis direction. The refrigerant outlet pipe 16 is provided so as to communicate with an opening formed in the upper part of the cylindrical portion 11a. The refrigerant outlet pipe 16 is provided at the end of the cylindrical portion 11a in the X-axis direction. That is, the refrigerant outlet pipe 16 is provided in the vicinity of the pipe plate of the pressure vessel 11. The refrigerant vaporized in the evaporator 10 is discharged to the outside of the pressure vessel 11 via the refrigerant outlet pipe 16. The refrigerant outlet pipe 16 is provided above the baffle plate 17.
 邪魔板17は、板面が鉛直面となるように配置された平板状の部材である。邪魔板17は、液膜式伝熱管群15の両側方に配置されている。すなわち、邪魔板17は、液膜式伝熱管群15のY軸方向の外側に配置されている。各邪魔板17は、板面が液膜式伝熱管群15に対向するように、配置されている。邪魔板17は、冷媒トレイ13のY軸方向の両端部から近傍から下方へ所定距離延びている。邪魔板17の下端は、液膜式伝熱管群15の下端よりも上方に位置している。詳細には、邪魔板17は、液膜式伝熱管群15の下端部を除くZ軸方向の略全域を側方から覆っている。
 邪魔板17の上端は、吹上防止板18の下方に位置している。邪魔板17の上端と吹上防止板18との間には隙間Gが形成されている。
 また、邪魔板17は、液膜式伝熱管群15に沿って、圧力容器11のX軸方向の略全域に亘って延在している。なお、邪魔板17は、X軸方向の一部のみに設けてもよい。
The baffle plate 17 is a flat plate-like member arranged so that the plate surface faces a vertical plane. The baffle plates 17 are arranged on both sides of the liquid film type heat transfer tube group 15. That is, the baffle plate 17 is arranged outside the liquid film type heat transfer tube group 15 in the Y-axis direction. Each baffle plate 17 is arranged so that the plate surface faces the liquid film type heat transfer tube group 15. The baffle plate 17 extends a predetermined distance downward from the vicinity from both ends of the refrigerant tray 13 in the Y-axis direction. The lower end of the baffle plate 17 is located above the lower end of the liquid film type heat transfer tube group 15. Specifically, the baffle plate 17 covers substantially the entire area in the Z-axis direction except for the lower end of the liquid film type heat transfer tube group 15 from the side.
The upper end of the baffle plate 17 is located below the blow-up prevention plate 18. A gap G is formed between the upper end of the baffle plate 17 and the blow-up prevention plate 18.
Further, the baffle plate 17 extends along the liquid film type heat transfer tube group 15 over substantially the entire area of the pressure vessel 11 in the X-axis direction. The baffle plate 17 may be provided only in a part in the X-axis direction.
 吹上防止板18は、板面が水平面となるように配置された平板状の平板部18aと、平板部18aのY軸方向の両端部から曲折して斜め下方に延びる傾斜部18bと、を有している。吹上防止板18は、冷媒トレイ13の上方に配置されている。吹上防止板18は、邪魔板17から離間して配置される。吹上防止板18の平板部18aのX軸方向及びY軸方向の中央部には、冷媒入口管12が貫通している。傾斜部18bの下端は、邪魔板17の上方に位置している。傾斜部18bの下端と邪魔板17の上端との間には、隙間Gが形成されている。また、吹上防止板18は、液膜式伝熱管群15に沿って、圧力容器11のX軸方向の略全域に亘って延在している。なお、吹上防止板18は、X軸方向の一部のみに設けてもよい。 The blow-up prevention plate 18 has a flat plate portion 18a arranged so that the plate surface is a horizontal plane, and an inclined portion 18b that bends from both ends of the flat plate portion 18a in the Y-axis direction and extends diagonally downward. doing. The blow-up prevention plate 18 is arranged above the refrigerant tray 13. The blow-up prevention plate 18 is arranged away from the baffle plate 17. The refrigerant inlet pipe 12 penetrates the central portion of the flat plate portion 18a of the blow-up prevention plate 18 in the X-axis direction and the Y-axis direction. The lower end of the inclined portion 18b is located above the baffle plate 17. A gap G is formed between the lower end of the inclined portion 18b and the upper end of the baffle plate 17. Further, the blow-up prevention plate 18 extends along the liquid film type heat transfer tube group 15 over substantially the entire area of the pressure vessel 11 in the X-axis direction. The blow-up prevention plate 18 may be provided only in a part in the X-axis direction.
 以上のように構成された蒸発器10において、冷媒は以下のように流通する。
 図1に示すように、蒸発器10では、冷媒入口管12から圧力容器11の内部に流入する。圧力容器11内に流入した冷媒は、冷媒トレイ13によって圧力容器11のX軸方向及びY軸方向に分散した後、冷媒トレイ13に形成された多数の孔を通過して下方へ落下する。冷媒トレイ13から落下した液相状の冷媒は、液膜式伝熱管群15の最上段に配置された液膜用伝熱管15aと接触し、液膜用伝熱管15aの外周面を膜状に覆う。液膜用伝熱管15aの外周面を膜状に覆った冷媒は、液膜用伝熱管15aの内部の被冷却水と熱交換を行う。熱交換により沸点を超えた冷媒は蒸発するとともに、沸点を超えなかった冷媒はさらに下方に配置された液膜用伝熱管15aへと落下する。このような熱交換を連続的に繰り返す。最も下部に配置された液膜用伝熱管15a内の水との熱交換でも蒸発しなかった冷媒は、圧力容器11の下部に設けられた貯留部11cに貯留される(図2参照)。このようにして、圧力容器11の内部の貯留部11cで液相の冷媒のプールが形成される。この冷媒プールの液面Sのレベルは、所定の高さとなるように自動調整される。
In the evaporator 10 configured as described above, the refrigerant flows as follows.
As shown in FIG. 1, in the evaporator 10, the refrigerant flows into the pressure vessel 11 from the refrigerant inlet pipe 12. The refrigerant flowing into the pressure vessel 11 is dispersed in the X-axis direction and the Y-axis direction of the pressure vessel 11 by the refrigerant tray 13, and then passes through a large number of holes formed in the refrigerant tray 13 and falls downward. The liquid-phase refrigerant that has fallen from the refrigerant tray 13 comes into contact with the liquid film heat transfer tube 15a arranged at the uppermost stage of the liquid film heat transfer tube group 15, and forms a film on the outer peripheral surface of the liquid film heat transfer tube 15a. cover. The refrigerant that covers the outer peripheral surface of the liquid film heat transfer tube 15a in a film shape exchanges heat with the water to be cooled inside the liquid film heat transfer tube 15a. The refrigerant exceeding the boiling point evaporates due to heat exchange, and the refrigerant not exceeding the boiling point falls further down to the liquid film heat transfer tube 15a. Such heat exchange is continuously repeated. The refrigerant that has not evaporated even by heat exchange with the water in the liquid film heat transfer tube 15a arranged at the lowermost part is stored in the storage portion 11c provided at the lower part of the pressure vessel 11 (see FIG. 2). In this way, a pool of liquid phase refrigerant is formed in the storage portion 11c inside the pressure vessel 11. The level of the liquid level S of the refrigerant pool is automatically adjusted to a predetermined height.
 一方、図2に示すように、液膜式伝熱管群15で蒸発した冷媒の主流は、矢印A1に示すように、邪魔板17の下端を迂回して上昇し、冷媒出口管16へ導かれる。また、液膜式伝熱管群15で蒸発した冷媒の一部は、矢印A2で示すように、邪魔板17と吹上防止板18との間に形成された隙間Gを通過して、冷媒出口管16へ導かれる。
 満液式伝熱管群14の満液用伝熱管14aは、貯留部11cの貯留された液相の冷媒に浸漬された状態となっている。液膜用伝熱管15a内を流通する被冷却水は、貯留部11cに貯留された冷媒と熱交換を行う。液膜用伝熱管15aと熱交換した冷媒は、蒸発し液面Sから上方に放出される。液面Sから放出された冷媒は、矢印A3で示すように、冷媒出口管16へ導かれる。
On the other hand, as shown in FIG. 2, the mainstream of the refrigerant evaporated in the liquid film type heat transfer tube group 15 rises around the lower end of the baffle plate 17 as shown by arrow A1 and is guided to the refrigerant outlet tube 16. .. Further, a part of the refrigerant evaporated in the liquid film type heat transfer tube group 15 passes through the gap G formed between the obstruction plate 17 and the blow-up prevention plate 18 as shown by the arrow A2, and passes through the refrigerant outlet pipe. Guided to 16.
The full-liquid heat transfer tube 14a of the full-liquid heat transfer tube group 14 is in a state of being immersed in the refrigerant of the stored liquid phase of the storage section 11c. The water to be cooled flowing in the heat transfer tube 15a for the liquid film exchanges heat with the refrigerant stored in the storage unit 11c. The refrigerant that has exchanged heat with the liquid film heat transfer tube 15a evaporates and is discharged upward from the liquid level S. The refrigerant discharged from the liquid level S is guided to the refrigerant outlet pipe 16 as shown by the arrow A3.
 液膜式伝熱管群15及び満液式伝熱管群14で蒸発し、冷媒出口管16に導かれた冷媒は、圧力容器11の外部へ排出される。冷媒出口管16から排出された冷媒は、ターボ圧縮機に吸入・圧縮される。 The refrigerant that evaporates in the liquid film type heat transfer tube group 15 and the full liquid type heat transfer tube group 14 and is guided to the refrigerant outlet pipe 16 is discharged to the outside of the pressure vessel 11. The refrigerant discharged from the refrigerant outlet pipe 16 is sucked and compressed by the turbo compressor.
 本実施形態によれば、以下の作用効果を奏する。
 本実施形態では、邪魔板17が、液膜式伝熱管群15を側方から覆っている。また、吹上防止板18が、液膜式伝熱管群15を上方から覆っている。すなわち、邪魔板17及び吹上防止板18は、液膜式伝熱管群15が設けられる空間(以下、「内側空間S1」と称する。)を形成している。また、邪魔板17及び吹上防止板18は、内側空間S1と、内側空間S1の外側に形成される空間(以下、「外側空間S2」と称する。)と、を隔てている。本実施形態では、吹上防止板18と邪魔板17との間に隙間Gが形成されている。すなわち、隙間Gは、内側空間S1と外側空間S2とを繋いでいる。本実施形態では、冷媒トレイ13から液膜式伝熱管群15へ冷媒が供給されると冷媒が蒸発する。冷媒が蒸発すると、蒸発した冷媒は、内側空間S1で拡散する。拡散した一部の冷媒は、吹上防止板18と邪魔板17との間に形成された隙間Gを通過して、外側空間S2へ移動する。これにより、隙間Gが形成されていない場合(すなわち、邪魔板17と吹上防止板18とが接続されている場合)と比較して、内側空間S1における圧力の上昇を抑制することができる。したがって、液膜式伝熱管群15の周囲の環境を熱交換に適した環境にすることができるので、液膜式伝熱管群15の熱交換効率を向上させることができる。よって、蒸発器10の性能を向上させることができる。
According to this embodiment, the following effects are exhibited.
In the present embodiment, the baffle plate 17 covers the liquid film type heat transfer tube group 15 from the side. Further, the blow-up prevention plate 18 covers the liquid film type heat transfer tube group 15 from above. That is, the baffle plate 17 and the blow-up prevention plate 18 form a space (hereinafter, referred to as "inner space S1") in which the liquid film type heat transfer tube group 15 is provided. Further, the baffle plate 17 and the blow-up prevention plate 18 separate the inner space S1 from the space formed outside the inner space S1 (hereinafter, referred to as "outer space S2"). In the present embodiment, a gap G is formed between the blow-up prevention plate 18 and the baffle plate 17. That is, the gap G connects the inner space S1 and the outer space S2. In the present embodiment, when the refrigerant is supplied from the refrigerant tray 13 to the liquid film type heat transfer tube group 15, the refrigerant evaporates. When the refrigerant evaporates, the evaporated refrigerant diffuses in the inner space S1. A part of the diffused refrigerant passes through the gap G formed between the blow-up prevention plate 18 and the baffle plate 17 and moves to the outer space S2. As a result, it is possible to suppress an increase in pressure in the inner space S1 as compared with the case where the gap G is not formed (that is, when the baffle plate 17 and the blow-up prevention plate 18 are connected). Therefore, since the environment around the liquid film type heat transfer tube group 15 can be made an environment suitable for heat exchange, the heat exchange efficiency of the liquid film type heat transfer tube group 15 can be improved. Therefore, the performance of the evaporator 10 can be improved.
 また、本実施形態では、内側空間S1から外側空間S2へと冷媒が流通するルートが、内側空間S1の下端を通過するルートと、隙間Gを通過するルートと、の2つ形成される。したがって、内側空間S1の下端(すなわち、邪魔板17の下端近傍)における、気化冷媒の流速が速くなる事態を抑制することができる。これにより、圧力容器11の外部へ排出される気相の冷媒が、液相の冷媒を同伴する現象(いわゆるキャリーオーバー)を、発生し難くすることができる。 Further, in the present embodiment, two routes for the refrigerant to flow from the inner space S1 to the outer space S2 are formed, a route passing through the lower end of the inner space S1 and a route passing through the gap G. Therefore, it is possible to suppress a situation in which the flow velocity of the vaporized refrigerant becomes high at the lower end of the inner space S1 (that is, near the lower end of the baffle plate 17). As a result, it is possible to make it difficult for the gas phase refrigerant discharged to the outside of the pressure vessel 11 to accompany the liquid phase refrigerant (so-called carryover).
 また、冷媒トレイ13から供給される冷媒の一部が、圧力の低下により、液膜式伝熱管群15に達する前に気化する。本実施形態では、気化した冷媒(以下、「フラッシュガス」と称する。)が、吹上防止板18と邪魔板17との間に形成された隙間Gを通過して、外側空間S2へ移動し易い。このため、フラッシュガスによる、内側空間S1の圧力上昇を抑制することができる。また、フラッシュガスが内側空間S1から排出されるので、気化せずに液膜式伝熱管群15へ供給される液相の冷媒が、フラッシュガスの影響を受け難い。したがって、的確に液膜式伝熱管群15へ冷媒を供給することができる。 Further, a part of the refrigerant supplied from the refrigerant tray 13 is vaporized before reaching the liquid film type heat transfer tube group 15 due to the decrease in pressure. In the present embodiment, the vaporized refrigerant (hereinafter referred to as "flash gas") easily moves to the outer space S2 through the gap G formed between the blow-up prevention plate 18 and the obstruction plate 17. .. Therefore, it is possible to suppress an increase in pressure in the inner space S1 due to the flash gas. Further, since the flash gas is discharged from the inner space S1, the liquid phase refrigerant supplied to the liquid film type heat transfer tube group 15 without being vaporized is not easily affected by the flash gas. Therefore, the refrigerant can be accurately supplied to the liquid film type heat transfer tube group 15.
 また、本実施形態では、邪魔板17を設けている。これにより、液膜式伝熱管群15に対する側方からの冷媒流れを遮ることができるので、液膜式伝熱管群15において供給された冷媒が飛散する事態を抑制することができる。
 また、本実施形態では、吹上防止板18を設けている。これにより、液膜式伝熱管群15に供給された冷媒が吹き上げられる事態を抑制することができる。
Further, in the present embodiment, the baffle plate 17 is provided. As a result, the flow of the refrigerant from the side with respect to the liquid film type heat transfer tube group 15 can be blocked, so that the situation in which the refrigerant supplied in the liquid film type heat transfer tube group 15 is scattered can be suppressed.
Further, in the present embodiment, the blow-up prevention plate 18 is provided. As a result, it is possible to suppress a situation in which the refrigerant supplied to the liquid film type heat transfer tube group 15 is blown up.
 また、本実施形態では、邪魔板17の下端よりも上方に冷媒出口管16が設けられている。このような構造の蒸発器10は、液膜式伝熱管群15で蒸発し冷媒出口管16へ向かう冷媒が、邪魔板17及び吹上防止板18に遮られ易い。このため、蒸発した冷媒が、内側空間S1内に滞留し易いので、内側空間S1内の圧力が上昇し易い。一方、本実施形態では、邪魔板17と吹上防止板18との間に隙間Gが形成されているので、液膜式伝熱管群15で蒸発した冷媒が隙間Gを通過して外側空間S2へ移動することができる。これにより、内側空間S1内に冷媒が滞留し難くすることができる。したがって、邪魔板17の下端よりも上方に冷媒出口管16が設けられている構造であっても、内側空間S1における圧力の上昇をより好適に抑制することができる。よって、好適に、液膜式伝熱管群15の熱交換効率を向上させ、蒸発器10の性能を向上させることができる。 Further, in the present embodiment, the refrigerant outlet pipe 16 is provided above the lower end of the baffle plate 17. In the evaporator 10 having such a structure, the refrigerant that evaporates in the liquid film type heat transfer tube group 15 and heads for the refrigerant outlet tube 16 is easily blocked by the obstruction plate 17 and the blow-up prevention plate 18. Therefore, the evaporated refrigerant tends to stay in the inner space S1, so that the pressure in the inner space S1 tends to increase. On the other hand, in the present embodiment, since the gap G is formed between the baffle plate 17 and the blow-up prevention plate 18, the refrigerant evaporated in the liquid film type heat transfer tube group 15 passes through the gap G to the outer space S2. You can move. As a result, it is possible to prevent the refrigerant from staying in the inner space S1. Therefore, even if the structure is such that the refrigerant outlet pipe 16 is provided above the lower end of the baffle plate 17, the increase in pressure in the inner space S1 can be more preferably suppressed. Therefore, it is possible to preferably improve the heat exchange efficiency of the liquid film type heat transfer tube group 15 and improve the performance of the evaporator 10.
 また、本実施形態では、冷媒トレイ13が、液膜式伝熱管群15の上方に設けられている。このような構造の蒸発器10は、フラッシュガスが内側空間S1内に滞留し易いので、内側空間S1内の圧力が上昇し易い。一方、本実施形態では、邪魔板17と吹上防止板18との間に隙間Gが形成されているので、フラッシュガスが隙間Gを通過して外側空間S2へ移動することができる。これにより、内側空間S1内に冷媒が滞留し難くすることができる。したがって、冷媒トレイ13が、液膜式伝熱管群15の上方に設けられている構造であっても、内側空間S1における圧力の上昇をより好適に抑制することができる。よって、より好適に、液膜式伝熱管群15の熱交換効率を向上させ、蒸発器10の性能を向上させることができる。 Further, in the present embodiment, the refrigerant tray 13 is provided above the liquid film type heat transfer tube group 15. In the evaporator 10 having such a structure, since the flash gas tends to stay in the inner space S1, the pressure in the inner space S1 tends to increase. On the other hand, in the present embodiment, since the gap G is formed between the baffle plate 17 and the blow-up prevention plate 18, the flash gas can pass through the gap G and move to the outer space S2. As a result, it is possible to prevent the refrigerant from staying in the inner space S1. Therefore, even if the refrigerant tray 13 has a structure provided above the liquid film type heat transfer tube group 15, the increase in pressure in the inner space S1 can be more preferably suppressed. Therefore, more preferably, the heat exchange efficiency of the liquid film type heat transfer tube group 15 can be improved, and the performance of the evaporator 10 can be improved.
[第2実施形態]
 次に、本開示の第2実施形態に係る蒸発器について、図3を用いて説明する。
 本実施形態に係る蒸発器20は、邪魔板17の代わりに、液膜式伝熱管群15の下端と液面Sとの間に設けられる下方板部21が設けられている点で、第1実施形態と異なっている。その他の点は、第1実施形態と同様であるので、同様の構成については同一の符号を付してその詳細な説明は省略する。
[Second Embodiment]
Next, the evaporator according to the second embodiment of the present disclosure will be described with reference to FIG.
The evaporator 20 according to the present embodiment is first in that a lower plate portion 21 provided between the lower end of the liquid film type heat transfer tube group 15 and the liquid level S is provided instead of the baffle plate 17. It is different from the embodiment. Since other points are the same as those of the first embodiment, the same reference numerals are given to the same configurations, and detailed description thereof will be omitted.
 蒸発器20は、図3に示すように、液膜式伝熱管群15の下端と液面Sとの間に設けられる一対の下方板部21を備えている。一対の下方板部21は、Y軸方向に離間して配置されている。一対の下方板部21は、Y軸方向の中心を基準として対称に設けられている。各下方板部21は、Y軸方向の外側の端部が、Y軸方向の内側の端部よりも上方となるように、傾斜している。各下方板部21のY軸方向の外側の端部は、液膜式伝熱管群15のY軸方向の外側の端部よりも、外側に配置されている。
 一対の下方板部21は、液膜式伝熱管群15に沿って、圧力容器11のX軸方向の略全域に亘って延在している。なお、一対の下方板部21は、X軸方向の一部のみに設けてもよい。
As shown in FIG. 3, the evaporator 20 includes a pair of lower plate portions 21 provided between the lower end of the liquid film type heat transfer tube group 15 and the liquid level S. The pair of lower plate portions 21 are arranged apart from each other in the Y-axis direction. The pair of lower plate portions 21 are provided symmetrically with respect to the center in the Y-axis direction. Each lower plate portion 21 is inclined so that the outer end portion in the Y-axis direction is higher than the inner end portion in the Y-axis direction. The outer end portion of each lower plate portion 21 in the Y-axis direction is arranged outside the outer end portion of the liquid film type heat transfer tube group 15 in the Y-axis direction.
The pair of lower plate portions 21 extend along the liquid film type heat transfer tube group 15 over substantially the entire area of the pressure vessel 11 in the X-axis direction. The pair of lower plate portions 21 may be provided only in a part in the X-axis direction.
 本実施形態によれば、以下の作用効果を奏する。
 本実施形態では、液膜式伝熱管群15と液面Sとの間に下方板部21が設けられている。これにより、満液式伝熱管群14によって蒸発し液面Sから液膜式伝熱管群15へ向かう冷媒が、下方板部21によって遮られる。下方板部21によって遮られた冷媒は、図3の破線矢印で示すように、下方板部21の外側を迂回して冷媒出口管16へ導かれる。したがって、満液式伝熱管群14で蒸発した冷媒が、液膜式伝熱管群15へ到達し難くすることができる。よって、液膜式伝熱管群15に供給される冷媒が、満液式伝熱管群14で蒸発した冷媒によって飛散する事態を抑制することができるので、液膜式伝熱管群15の周囲の環境を熱交換に適した環境にすることができる。よって、液膜式伝熱管群15の熱交換効率を向上させ、蒸発器10の性能を向上させることができる。
According to this embodiment, the following effects are exhibited.
In the present embodiment, the lower plate portion 21 is provided between the liquid film type heat transfer tube group 15 and the liquid level S. As a result, the refrigerant that evaporates by the full-liquid heat transfer tube group 14 and goes from the liquid level S to the liquid film type heat transfer tube group 15 is blocked by the lower plate portion 21. The refrigerant blocked by the lower plate portion 21 bypasses the outside of the lower plate portion 21 and is guided to the refrigerant outlet pipe 16 as shown by the broken line arrow in FIG. Therefore, it is possible to make it difficult for the refrigerant evaporated in the full-liquid heat transfer tube group 14 to reach the liquid film heat transfer tube group 15. Therefore, the situation in which the refrigerant supplied to the liquid film type heat transfer tube group 15 is scattered by the refrigerant evaporated in the liquid film type heat transfer tube group 14 can be suppressed, so that the environment around the liquid film type heat transfer tube group 15 can be suppressed. Can be an environment suitable for heat exchange. Therefore, the heat exchange efficiency of the liquid film type heat transfer tube group 15 can be improved, and the performance of the evaporator 10 can be improved.
 また、本実施形態では、満液式伝熱管群14で蒸発した冷媒によって液膜式伝熱管群15に供給される冷媒が飛散する事態を、抑制することができる。これにより、キャリーオーバーが発生し難くすることができる。 Further, in the present embodiment, it is possible to suppress a situation in which the refrigerant supplied to the liquid film type heat transfer tube group 15 is scattered by the refrigerant evaporated in the full liquid type heat transfer tube group 14. This makes it difficult for carryover to occur.
 また、本実施形態では、一対の下方板部21の内側の端部同士が離間している。また、各下方板部21は、内側の端部が下方となるように傾斜している。これにより、液膜式伝熱管群15で蒸発し切らず、貯留部11cに向かう液相の冷媒が下方板部21の上面に落下した場合であっても、図3の実線矢印で示すように、液相の冷媒が下方板部21の上面を内端まで移動して、内端から貯留部11cに落下する。これにより、各伝熱管群に供給されない冷媒を低減することができるので、蒸発器10の性能を向上させることができる。 Further, in the present embodiment, the inner ends of the pair of lower plate portions 21 are separated from each other. Further, each lower plate portion 21 is inclined so that the inner end portion is downward. As a result, even if the liquid film type heat transfer tube group 15 does not completely evaporate and the liquid phase refrigerant toward the storage portion 11c falls on the upper surface of the lower plate portion 21, as shown by the solid line arrow in FIG. , The liquid phase refrigerant moves on the upper surface of the lower plate portion 21 to the inner end and falls from the inner end to the storage portion 11c. As a result, the amount of refrigerant that is not supplied to each heat transfer tube group can be reduced, so that the performance of the evaporator 10 can be improved.
[変形例1]
 なお、下方板部の形状は、上記説明の形状に限定されない。例えば、図4で示す下方板部26のように、Y軸方向の両端部から中心部に向かうにつれて下方に位置するように傾斜する板状の部材であってもよい。また、下方板部26は、Y軸方向の中心部に、冷媒排出管27を設けてもよい。冷媒排出管27は、Z軸方向に延在する直線状に形成されている。冷媒排出管27は、上端が下方板部26に接続され、下端が満液式伝熱管群14の下方に配置されている。冷媒排出管27の上端は、下方板部26の上面に開口している。
[Modification 1]
The shape of the lower plate portion is not limited to the shape described above. For example, like the lower plate portion 26 shown in FIG. 4, a plate-shaped member that is inclined so as to be positioned downward from both ends in the Y-axis direction toward the center portion may be used. Further, the lower plate portion 26 may be provided with a refrigerant discharge pipe 27 at the center portion in the Y-axis direction. The refrigerant discharge pipe 27 is formed in a straight line extending in the Z-axis direction. The upper end of the refrigerant discharge pipe 27 is connected to the lower plate portion 26, and the lower end is arranged below the full-liquid heat transfer pipe group 14. The upper end of the refrigerant discharge pipe 27 is open on the upper surface of the lower plate portion 26.
 このように構成することで、下方板部26の上面に貯留した冷媒が、冷媒排出管27を介して、満液式伝熱管群14の下方へ導かれる。したがって、下方板部26の上面の冷媒を、貯留部11cへ導くことができる。これにより、各伝熱管群に供給されない冷媒を低減することができるので、蒸発器10の性能を向上させることができる。 With this configuration, the refrigerant stored on the upper surface of the lower plate portion 26 is guided to the lower side of the full-liquid heat transfer tube group 14 via the refrigerant discharge pipe 27. Therefore, the refrigerant on the upper surface of the lower plate portion 26 can be guided to the storage portion 11c. As a result, the amount of refrigerant that is not supplied to each heat transfer tube group can be reduced, so that the performance of the evaporator 10 can be improved.
 また、下方板部26の上面の冷媒を、満液式伝熱管群14の下方へ導いている。これにより、下方板部26の上面から貯留部11cへ導かれる冷媒が、満液式伝熱管群14で蒸発し液面Sへ向かう冷媒と干渉し難くすることができる。したがって、満液式伝熱管群14で好適に熱交換を行うことができるので、蒸発器10の性能を向上させることができる。 Further, the refrigerant on the upper surface of the lower plate portion 26 is guided to the lower side of the full-liquid heat transfer tube group 14. As a result, the refrigerant guided from the upper surface of the lower plate portion 26 to the storage portion 11c can be prevented from interfering with the refrigerant that evaporates in the full-liquid heat transfer tube group 14 and heads toward the liquid level S. Therefore, since heat exchange can be suitably performed in the full-liquid heat transfer tube group 14, the performance of the evaporator 10 can be improved.
[変形例2]
 また、図5で示す下方板部31のように、変形例1で示した下方板部26と同形状であって、上面から下面へ貫通する貫通孔を複数有していてもよい。このように構成することで、下方板部31へ落下した冷媒が、貫通孔を通過して、貯留部11cへ導かれる。したがって、下方板部31の上面に冷媒が貯留し難くすることができる。よって、各伝熱管群に供給されない冷媒を低減することができるので、蒸発器10の性能を向上させることができる。なお、下方板部31は、複数の貫通孔を形成する代わりに、金網で形成されていてもよい。
[Modification 2]
Further, like the lower plate portion 31 shown in FIG. 5, the lower plate portion 26 may have the same shape as the lower plate portion 26 shown in the first modification and may have a plurality of through holes penetrating from the upper surface to the lower surface. With this configuration, the refrigerant that has fallen to the lower plate portion 31 passes through the through hole and is guided to the storage portion 11c. Therefore, it is possible to prevent the refrigerant from being stored on the upper surface of the lower plate portion 31. Therefore, the refrigerant that is not supplied to each heat transfer tube group can be reduced, so that the performance of the evaporator 10 can be improved. The lower plate portion 31 may be formed of a wire mesh instead of forming a plurality of through holes.
[変形例3]
 また、図6で示す下方板部36のように、平板状の底面部36aと、底面部36aのY軸方向の両端部から曲折して斜め上方に延びる傾斜部36bと、を一体的に有する皿状の部材であってもよい。また、下方板部36は、底面部36aに、複数(本実施形態では、一例として3本)の冷媒排出管37を設けてもよい。複数の冷媒排出管37は、Y軸方向に並んで配置されている。冷媒排出管37は、上端が下方板部36に接続され、下端が満液式伝熱管群14の下方に配置されている。
[Modification 3]
Further, like the lower plate portion 36 shown in FIG. 6, it integrally has a flat bottom surface portion 36a and an inclined portion 36b that bends from both ends of the bottom surface portion 36a in the Y-axis direction and extends diagonally upward. It may be a dish-shaped member. Further, the lower plate portion 36 may be provided with a plurality of refrigerant discharge pipes 37 (three as an example in the present embodiment) on the bottom surface portion 36a. The plurality of refrigerant discharge pipes 37 are arranged side by side in the Y-axis direction. The upper end of the refrigerant discharge pipe 37 is connected to the lower plate portion 36, and the lower end is arranged below the full-liquid heat transfer tube group 14.
 このように構成することで、下方板部36の上面に貯留した冷媒が、冷媒排出管37を介して、満液式伝熱管群14の下方へ導かれる。したがって、下方板部36の上面の冷媒を、貯留部11cへ導くことができる。これにより、各伝熱管群に供給されない冷媒を低減することができるので、蒸発器10の性能を向上させることができる。 With this configuration, the refrigerant stored on the upper surface of the lower plate portion 36 is guided to the lower side of the full-liquid heat transfer tube group 14 via the refrigerant discharge pipe 37. Therefore, the refrigerant on the upper surface of the lower plate portion 36 can be guided to the storage portion 11c. As a result, the amount of refrigerant that is not supplied to each heat transfer tube group can be reduced, so that the performance of the evaporator 10 can be improved.
[変形例4]
 また、図7で示す下方板部41のように、変形例2で示した下方板部31と同形状であって、上面から下面へ貫通する貫通孔を複数有していてもよい。このように構成することで、下方板部41へ落下した冷媒が、貫通孔を通過して、貯留部11cへ導かれる。したがって、下方板部41の上面に冷媒が貯留し難くすることができる。よって、各伝熱管群に供給されない冷媒を低減することができるので、蒸発器10の性能を向上させることができる。なお、下方板部41は、複数の貫通孔を形成する代わりに、金網で形成されていてもよい。
[Modification example 4]
Further, like the lower plate portion 41 shown in FIG. 7, the lower plate portion 31 may have the same shape as the lower plate portion 31 shown in the second modification and may have a plurality of through holes penetrating from the upper surface to the lower surface. With this configuration, the refrigerant that has fallen to the lower plate portion 41 passes through the through hole and is guided to the storage portion 11c. Therefore, it is possible to prevent the refrigerant from being stored on the upper surface of the lower plate portion 41. Therefore, the refrigerant that is not supplied to each heat transfer tube group can be reduced, so that the performance of the evaporator 10 can be improved. The lower plate portion 41 may be formed of a wire mesh instead of forming a plurality of through holes.
[第3実施形態]
 次に、本開示の第3実施形態に係る蒸発器について、図8を用いて説明する。
 本実施形態に係る蒸発器50は、邪魔板17の代わりに、圧損増大部が設けられている点で、第1実施形態と異なっている。その他の点は、第1実施形態と同様であるので、同様の構成については同一の符号を付してその詳細な説明は省略する。
[Third Embodiment]
Next, the evaporator according to the third embodiment of the present disclosure will be described with reference to FIG.
The evaporator 50 according to the present embodiment is different from the first embodiment in that a pressure loss increasing portion is provided instead of the baffle plate 17. Since other points are the same as those of the first embodiment, the same reference numerals are given to the same configurations, and detailed description thereof will be omitted.
 蒸発器50は、図8に示すように、液膜式伝熱管群15の下端部の両側方に配置される一対の下端側方板部(圧損増大部)51が設けられている。一対の下端側方板部51は、液膜式伝熱管群15の下端部を挟んで配置されている。すなわち、一対の下端側方板部51は、液膜式伝熱管群15をY軸方向から覆っている。一対の下端側方板部51は、液膜式伝熱管群15の下端部が配置されている領域(以下、「下端領域P」と称する。)を通過するルートの圧力損失を増大させる。各下端側方板部51は、平板状の部材である。なお、下端側方板部51は、板厚方向に貫通する複数の貫通孔が形成されていてよい。また、複数の貫通孔を形成する代わりに、金網で形成されていてもよい。 As shown in FIG. 8, the evaporator 50 is provided with a pair of lower end side plate portions (pressure loss increasing portions) 51 arranged on both sides of the lower end portion of the liquid film type heat transfer tube group 15. The pair of lower end side plate portions 51 are arranged so as to sandwich the lower end portions of the liquid film type heat transfer tube group 15. That is, the pair of lower end side plate portions 51 cover the liquid film type heat transfer tube group 15 from the Y-axis direction. The pair of lower end side plate portions 51 increases the pressure loss of the route passing through the region where the lower end portion of the liquid film type heat transfer tube group 15 is arranged (hereinafter, referred to as "lower end region P"). Each lower end side plate portion 51 is a flat plate-shaped member. The lower end side plate portion 51 may be formed with a plurality of through holes penetrating in the plate thickness direction. Further, instead of forming a plurality of through holes, it may be formed of a wire mesh.
 下端側方板部51のZ軸方向の長さは、液膜式伝熱管群15のZ軸方向の長さの半分以下とされている。すなわち、下端側方板部51の上方には、吹上防止板18との間に大きな隙間が形成されている。
 一対の下端側方板部51は、液膜式伝熱管群15に沿って、圧力容器11のX軸方向の略全域に亘って延在している。なお、一対の下端側方板部51は、X軸方向の一部のみに設けてもよい。
The length of the lower end side plate portion 51 in the Z-axis direction is set to be less than half the length of the liquid film type heat transfer tube group 15 in the Z-axis direction. That is, a large gap is formed above the lower end side plate portion 51 with the blow-up prevention plate 18.
The pair of lower end side plate portions 51 extend along the liquid film type heat transfer tube group 15 over substantially the entire area of the pressure vessel 11 in the X-axis direction. The pair of lower end side plate portions 51 may be provided only in a part in the X-axis direction.
 本実施形態によれば、以下の作用効果を奏する。
 本実施形態では、下端領域Pの圧力損失を増大させる圧損増大部として、一対の下端側方板部51を備えている。一対の下端側方板部51は、液膜式伝熱管群15の下端部を両側方から覆っている。これにより、下端領域Pの圧力損失を高くすることができるので、満液式伝熱管群14によって蒸発し、液面Sから冷媒出口管16へ向かう冷媒が、図10の破線矢印で示すように、下端領域Pに流入し難い。したがって、満液式伝熱管群14で蒸発した冷媒が、液膜式伝熱管群15へ到達し難くすることができる。よって、液膜式伝熱管群15に供給される冷媒が、満液式伝熱管群14で蒸発した冷媒によって飛散する事態を抑制することができるので、液膜式伝熱管群15の周囲の環境を熱交換に適した環境にすることができる。よって、液膜式伝熱管群15の熱交換効率を向上させ、蒸発器10の性能を向上させることができる。
According to this embodiment, the following effects are exhibited.
In the present embodiment, a pair of lower end side plate portions 51 are provided as pressure loss increasing portions for increasing the pressure loss in the lower end region P. The pair of lower end side plate portions 51 cover the lower end portions of the liquid film type heat transfer tube group 15 from both sides. As a result, the pressure loss in the lower end region P can be increased, so that the refrigerant that evaporates by the full-liquid heat transfer tube group 14 and goes from the liquid level S to the refrigerant outlet tube 16 is shown by the broken line arrow in FIG. , It is difficult to flow into the lower end region P. Therefore, it is possible to make it difficult for the refrigerant evaporated in the full-liquid heat transfer tube group 14 to reach the liquid film heat transfer tube group 15. Therefore, the situation in which the refrigerant supplied to the liquid film type heat transfer tube group 15 is scattered by the refrigerant evaporated in the liquid film type heat transfer tube group 14 can be suppressed, so that the environment around the liquid film type heat transfer tube group 15 can be suppressed. Can be an environment suitable for heat exchange. Therefore, the heat exchange efficiency of the liquid film type heat transfer tube group 15 can be improved, and the performance of the evaporator 10 can be improved.
[変形例5]
 また、図9に示すように、一対の下端側方板部51の代わりに、圧損増大部として、液膜式伝熱管群15の下端部の両側方に、複数のダミー管56を設けてもよい。ダミー管56は、内部が空洞とされ、内部を流体等が流通していない。複数のダミー管56は、隣接するダミー管56同士の距離が、隣接する液膜用伝熱管15aの距離よりも短くなるように、配置されている。このように配置することで、ダミー管56同士の間を通る流路の圧力損失を増大させることができる。したがって、下端領域Pの圧力損失を高くすることができる。
 なお、ダミー管56内に水等の流体を流通させてもよい。このように構成することで、ダミー管56においても冷媒と熱交換をすることができるので、熱交換効率を向上させることができる。よって、蒸発器10の性能を向上させることができる。
[Modification 5]
Further, as shown in FIG. 9, instead of the pair of lower end side plate portions 51, a plurality of dummy tubes 56 may be provided on both sides of the lower end portion of the liquid film type heat transfer tube group 15 as pressure loss increasing portions. good. The inside of the dummy tube 56 is hollow, and no fluid or the like flows through the inside. The plurality of dummy tubes 56 are arranged so that the distance between the adjacent dummy tubes 56 is shorter than the distance between the adjacent liquid film heat transfer tubes 15a. By arranging in this way, the pressure loss of the flow path passing between the dummy tubes 56 can be increased. Therefore, the pressure loss in the lower end region P can be increased.
A fluid such as water may be circulated in the dummy pipe 56. With this configuration, the dummy pipe 56 can also exchange heat with the refrigerant, so that the heat exchange efficiency can be improved. Therefore, the performance of the evaporator 10 can be improved.
[第4実施形態]
 次に、本開示の第4実施形態に係る蒸発器について、図10を用いて説明する。
 本実施形態に係る蒸発器60は、邪魔板17の代わりに、整流部が設けられている点で、第1実施形態と異なっている。その他の点は、第1実施形態と同様であるので、同様の構成については同一の符号を付してその詳細な説明は省略する。
[Fourth Embodiment]
Next, the evaporator according to the fourth embodiment of the present disclosure will be described with reference to FIG.
The evaporator 60 according to the present embodiment is different from the first embodiment in that a rectifying unit is provided instead of the baffle plate 17. Since other points are the same as those of the first embodiment, the same reference numerals are given to the same configurations, and detailed description thereof will be omitted.
 蒸発器60は、図10に示すように、液膜式伝熱管群15の下部の両側方に配置される一対の下側方板部(整流部)61が設けられている。一対の下側方板部61は、液膜式伝熱管群15の下部を挟んで配置されている。すなわち、一対の下側方板部61は、液膜式伝熱管群15をY軸方向から覆っている。一対の下側方板部61は、満液式伝熱管群14で蒸発した冷媒を、冷媒出口管16へ案内する。すなわち、満液式伝熱管群14で蒸発した冷媒が、液膜式伝熱管群15が設けられた領域へ流入することを抑制している。
 各下側方板部61は、平板状の部材である。また、各下側方板部61は、板面が鉛直面となるように配置されている。なお、下側方板部61は、板厚方向に貫通する複数の貫通孔が形成されていてよい。また、複数の貫通孔を形成する代わりに、金網で形成されていてもよい。
As shown in FIG. 10, the evaporator 60 is provided with a pair of lower side plate portions (rectifying portions) 61 arranged on both sides of the lower portion of the liquid film type heat transfer tube group 15. The pair of lower side plate portions 61 are arranged so as to sandwich the lower portion of the liquid film type heat transfer tube group 15. That is, the pair of lower plate portions 61 covers the liquid film type heat transfer tube group 15 from the Y-axis direction. The pair of lower side plate portions 61 guide the refrigerant evaporated in the full-liquid heat transfer tube group 14 to the refrigerant outlet tube 16. That is, the refrigerant evaporated in the full-liquid heat transfer tube group 14 is suppressed from flowing into the region where the liquid film type heat transfer tube group 15 is provided.
Each lower plate portion 61 is a flat plate-shaped member. Further, each lower plate portion 61 is arranged so that the plate surface faces a vertical plane. The lower plate portion 61 may be formed with a plurality of through holes penetrating in the plate thickness direction. Further, instead of forming a plurality of through holes, it may be formed of a wire mesh.
 下側方板部61のZ軸方向の長さは、液膜式伝熱管群15のZ軸方向の長さの半分以下とされている。すなわち、下側方板部61の上方には、吹上防止板18との間に大きな隙間が形成されている。なお、液膜式伝熱管群15の下部とは、液膜式伝熱管群15のZ軸方向の中心部よりも下方であってもよい。
 一対の下側方板部61は、液膜式伝熱管群15に沿って、圧力容器11のX軸方向の略全域に亘って延在している。なお、一対の下側方板部61は、X軸方向の一部のみに設けてもよい。
 また、図11で示すように、各下側方板部61は、下端がY軸方向の内側に位置するように、鉛直面に対して傾斜していてもよい。
The length of the lower plate portion 61 in the Z-axis direction is set to be less than half the length of the liquid film type heat transfer tube group 15 in the Z-axis direction. That is, a large gap is formed above the lower side plate portion 61 with the blow-up prevention plate 18. The lower part of the liquid film type heat transfer tube group 15 may be lower than the central part of the liquid film type heat transfer tube group 15 in the Z-axis direction.
The pair of lower side plate portions 61 extend along the liquid film type heat transfer tube group 15 over substantially the entire area of the pressure vessel 11 in the X-axis direction. The pair of lower plate portions 61 may be provided only in a part in the X-axis direction.
Further, as shown in FIG. 11, each lower plate portion 61 may be inclined with respect to the vertical plane so that the lower end is located inside in the Y-axis direction.
 本実施形態によれば、以下の作用効果を奏する。
 本実施形態では、満液式伝熱管群14で蒸発した冷媒を、冷媒出口管16へ案内する整流部として、一対の下側方板部61を備えている。一対の下側方板部61が液膜式伝熱管群15の下部を両側方から覆っている。これにより、満液式伝熱管群14で蒸発し、側方から液膜式伝熱管群15へ向かう冷媒が、図10の破線矢印で示すように、一対の下側方板部61によって冷媒出口管16へ案内される。したがって、満液式伝熱管群14で蒸発した冷媒が、液膜式伝熱管群15へ到達し難くすることができる。よって、液膜式伝熱管群15に供給される冷媒が、満液式伝熱管群14で蒸発した冷媒によって飛散する事態を抑制することができるので、液膜式伝熱管群15の周囲の環境を熱交換に適した環境にすることができる。よって、液膜式伝熱管群15の熱交換効率を向上させ、蒸発器10の性能を向上させることができる。
 また、下側方板部61が、液膜式伝熱管群15の下部を挟んで配置されているので、液面Sから上昇する冷媒を比較的早期に冷媒出口管16へ案内することができる。したがって、満液式伝熱管群14で蒸発した冷媒が、液膜式伝熱管群15へより到達し難くすることができる。
According to this embodiment, the following effects are exhibited.
In the present embodiment, a pair of lower side plate portions 61 are provided as rectifying portions for guiding the refrigerant evaporated in the full-liquid heat transfer tube group 14 to the refrigerant outlet pipe 16. A pair of lower plate portions 61 cover the lower portion of the liquid film type heat transfer tube group 15 from both sides. As a result, the refrigerant that evaporates in the full-liquid heat transfer tube group 14 and goes from the side to the liquid film type heat transfer tube group 15 is discharged by the pair of lower side plate portions 61 as shown by the broken line arrows in FIG. You will be guided to the pipe 16. Therefore, it is possible to make it difficult for the refrigerant evaporated in the full-liquid heat transfer tube group 14 to reach the liquid film heat transfer tube group 15. Therefore, the situation in which the refrigerant supplied to the liquid film type heat transfer tube group 15 is scattered by the refrigerant evaporated in the liquid film type heat transfer tube group 14 can be suppressed, so that the environment around the liquid film type heat transfer tube group 15 can be suppressed. Can be an environment suitable for heat exchange. Therefore, the heat exchange efficiency of the liquid film type heat transfer tube group 15 can be improved, and the performance of the evaporator 10 can be improved.
Further, since the lower side plate portion 61 is arranged so as to sandwich the lower portion of the liquid film type heat transfer tube group 15, the refrigerant rising from the liquid level S can be guided to the refrigerant outlet pipe 16 relatively early. .. Therefore, it is possible to make it more difficult for the refrigerant evaporated in the full-liquid heat transfer tube group 14 to reach the liquid film heat transfer tube group 15.
[変形例6]
 また、図12に示すように、一対の下側方板部61の代わりに、整流部として、液膜式伝熱管群15の下部の両側方に、複数のダミー管66を設けてもよい。ダミー管66は、内部が空洞とされ、内部を流体等が流通していない。複数のダミー管66は、隣接するダミー管66同士の距離が、隣接する液膜用伝熱管15aの距離よりも短くなるように、配置されている。このように配置することで、ダミー管66同士の間を通る流路の圧力損失を増大させることができる。したがって、満液式伝熱管群14で蒸発した冷媒が、液膜式伝熱管群15が設けられた領域へ流入することを抑制することができる。
 なお、ダミー管66内に水等の流体を流通させてもよい。このように構成することで、ダミー管66においても冷媒と熱交換をすることができるので、熱交換効率を向上させることができる。よって、蒸発器10の性能を向上させることができる。
[Modification 6]
Further, as shown in FIG. 12, instead of the pair of lower side plate portions 61, a plurality of dummy tubes 66 may be provided on both sides of the lower portion of the liquid film type heat transfer tube group 15 as rectifying portions. The inside of the dummy tube 66 is hollow, and no fluid or the like flows through the inside. The plurality of dummy tubes 66 are arranged so that the distance between the adjacent dummy tubes 66 is shorter than the distance between the adjacent liquid film heat transfer tubes 15a. By arranging in this way, the pressure loss of the flow path passing between the dummy tubes 66 can be increased. Therefore, it is possible to prevent the refrigerant evaporated in the full-liquid heat transfer tube group 14 from flowing into the region where the liquid film heat transfer tube group 15 is provided.
A fluid such as water may be circulated in the dummy pipe 66. With this configuration, the dummy tube 66 can also exchange heat with the refrigerant, so that the heat exchange efficiency can be improved. Therefore, the performance of the evaporator 10 can be improved.
[第5実施形態]
 次に、本開示の第5実施形態に係る蒸発器について、図13及び図14を用いて説明する。
 本実施形態に係る蒸発器70は、邪魔板17の代わりに、交差板部が設けられている点で、第1実施形態と異なっている。その他の点は、第1実施形態と同様であるので、同様の構成については同一の符号を付してその詳細な説明は省略する。なお、図13では、図示の関係上、圧力容器11や満液式伝熱管群14等を省略して図示している。また、図13では、図示の関係上、液膜用伝熱管15aを1本ずつ図示せず、まとめて液膜式伝熱管群15として図示している。
[Fifth Embodiment]
Next, the evaporator according to the fifth embodiment of the present disclosure will be described with reference to FIGS. 13 and 14.
The evaporator 70 according to the present embodiment is different from the first embodiment in that a cross plate portion is provided instead of the baffle plate 17. Since other points are the same as those of the first embodiment, the same reference numerals are given to the same configurations, and detailed description thereof will be omitted. In FIG. 13, for the sake of illustration, the pressure vessel 11 and the full-liquid heat transfer tube group 14 and the like are omitted. Further, in FIG. 13, due to the illustration, the liquid film heat transfer tubes 15a are not shown one by one, but are collectively shown as a liquid film type heat transfer tube group 15.
 蒸発器70は、図13及び図14に示すように、液膜式伝熱管群15のY軸方向の両側方に、X軸方向と交差するように配置された複数(本実施形態では、一例として3つ)の交差板部71が設けられている。複数の交差板部71は、X軸方向に所定の間隔で並んで配置されている。交差板部71のZ軸方向の長さは、液膜式伝熱管群15のZ軸方向の長さと略同一とされている。各交差板部71は、平板状の部材で形成されている。 As shown in FIGS. 13 and 14, a plurality of evaporators 70 are arranged so as to intersect the X-axis direction on both sides of the liquid film type heat transfer tube group 15 in the Y-axis direction (an example in the present embodiment). 3) Cross plate portions 71 are provided. The plurality of intersecting plate portions 71 are arranged side by side at predetermined intervals in the X-axis direction. The length of the cross plate portion 71 in the Z-axis direction is substantially the same as the length of the liquid film type heat transfer tube group 15 in the Z-axis direction. Each cross plate portion 71 is formed of a flat plate-shaped member.
 本実施形態によれば、以下の作用効果を奏する。
 冷媒出口管16は、圧力容器11のX軸方向の端部に設けられている。したがって、満液式伝熱管群14及び液膜式伝熱管群15で蒸発した冷媒は、X軸方向に移動しながら冷媒出口管16へ導かれる。例えば、交差板部71が設けられていない場合には、液膜式伝熱管群15で蒸発した冷媒は、冷媒出口管16の下方領域までは、ほとんど上昇せずにX軸方向に沿って移動し、冷媒出口管16の下方の領域で合流し急上昇する。したがって、冷媒出口管16に向かって上昇する冷媒の流速は速くなる。
 一方、本実施形態では、液膜式伝熱管群15の側方にX軸方向と交差するように配置された交差板部71が設けられている。すなわち、圧力容器11の内部に形成される空間が、交差板部71によってX軸方向に複数に分割されている。これにより、図13及び図14の破線矢印で示すように、液膜式伝熱管群15で蒸発した冷媒は、分割された各空間で上方に移動する。したがって、冷媒出口管16の下方の領域における冷媒の急上昇を抑制することができる。したがって、キャリーオーバーが発生し難くすることができる。
According to this embodiment, the following effects are exhibited.
The refrigerant outlet pipe 16 is provided at the end of the pressure vessel 11 in the X-axis direction. Therefore, the refrigerant evaporated in the liquid-filled heat transfer tube group 14 and the liquid film-type heat transfer tube group 15 is guided to the refrigerant outlet tube 16 while moving in the X-axis direction. For example, when the cross plate portion 71 is not provided, the refrigerant evaporated in the liquid film type heat transfer tube group 15 moves along the X-axis direction with almost no increase to the lower region of the refrigerant outlet tube 16. Then, they merge in the region below the refrigerant outlet pipe 16 and soar. Therefore, the flow velocity of the refrigerant rising toward the refrigerant outlet pipe 16 becomes high.
On the other hand, in the present embodiment, the cross plate portion 71 arranged so as to intersect the X-axis direction is provided on the side of the liquid film type heat transfer tube group 15. That is, the space formed inside the pressure vessel 11 is divided into a plurality of spaces in the X-axis direction by the cross plate portion 71. As a result, as shown by the broken line arrows in FIGS. 13 and 14, the refrigerant evaporated in the liquid film type heat transfer tube group 15 moves upward in each of the divided spaces. Therefore, it is possible to suppress a rapid rise of the refrigerant in the region below the refrigerant outlet pipe 16. Therefore, carryover can be made less likely to occur.
 また、本実施形態では、交差板部71によって、冷媒のX軸方向の移動に対する圧力損失を増大させることができる。したがって、冷媒の流速を低減させることができるので、キャリーオーバーが発生し難くすることができる。 Further, in the present embodiment, the cross plate portion 71 can increase the pressure loss with respect to the movement of the refrigerant in the X-axis direction. Therefore, since the flow velocity of the refrigerant can be reduced, carryover can be less likely to occur.
 なお、交差板部は、上記説明の構造に限定されない。図15の交差板部76のように、板厚方向に貫通する複数の貫通孔が形成されていてよい。また、複数の貫通孔を形成する代わりに、金網で形成されていてもよい。このように構成することで、冷媒のX軸方向の移動を確保しつつ冷媒の流速を低減することができる。 The cross plate portion is not limited to the structure described above. As shown in the cross plate portion 76 of FIG. 15, a plurality of through holes penetrating in the plate thickness direction may be formed. Further, instead of forming a plurality of through holes, it may be formed of a wire mesh. With this configuration, the flow velocity of the refrigerant can be reduced while ensuring the movement of the refrigerant in the X-axis direction.
 なお、本開示は、上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲において、適宜変形が可能である。 Note that the present disclosure is not limited to the above embodiment, and can be appropriately modified as long as it does not deviate from the gist thereof.
 例えば、上記各実施形態では、液膜式伝熱管群等に冷媒を供給する装置として、冷媒トレイを用いる例について説明したが、本開示はこれに限定されない。冷媒を供給する装置は、液膜式伝熱管群に冷媒を供給できる構造であればよく、例えば、X軸方向に沿って延びる配管状の部材であってもよい。
 例えば、上記各実施形態では、冷媒出口管16が圧力容器11の上部に設けられている例について説明したが、本開示はこれに限定されない。例えば、圧力容器11の側部に冷媒出口管16が設けられていてもよい。また、圧力容器11の下部に冷媒出口管16が設けられていてもよい。
 また、例えば、上記各実施形態を組み合わせてもよい。
For example, in each of the above embodiments, an example in which a refrigerant tray is used as a device for supplying a refrigerant to a liquid film type heat transfer tube group or the like has been described, but the present disclosure is not limited to this. The device for supplying the refrigerant may have a structure capable of supplying the refrigerant to the liquid film type heat transfer tube group, and may be, for example, a pipe-shaped member extending along the X-axis direction.
For example, in each of the above embodiments, an example in which the refrigerant outlet pipe 16 is provided in the upper part of the pressure vessel 11 has been described, but the present disclosure is not limited to this. For example, the refrigerant outlet pipe 16 may be provided on the side of the pressure vessel 11. Further, the refrigerant outlet pipe 16 may be provided in the lower part of the pressure vessel 11.
Further, for example, each of the above embodiments may be combined.
 以上説明した本実施形態に記載の蒸発器は例えば以下のように把握される。
 本開示の一態様に係る蒸発器(10)は、蒸発した冷媒を外部へ排出する冷媒出口(16)が設けられ、前記筐体に収容され、内部に被冷却媒体が流通する複数の液膜用伝熱管(15a)を有する液膜式伝熱管群(15)と、前記筐体に収容され、上方から前記液膜式伝熱管群へ液相の冷媒を供給する冷媒供給部(13)と、前記液膜式伝熱管群を側方から覆う側方板部(17)と、前記液膜式伝熱管群を上方から覆う上方板部(18)と、を備え、前記側方板部と前記上方板部との間には隙間(G)が形成されている。
The evaporator described in the present embodiment described above is grasped as follows, for example.
The evaporator (10) according to one aspect of the present disclosure is provided with a refrigerant outlet (16) for discharging the evaporated refrigerant to the outside, and is housed in the housing, and a plurality of liquid films through which the cooled medium flows inside. A liquid film type heat transfer tube group (15) having a heat transfer tube (15a) for use, and a refrigerant supply unit (13) housed in the housing and supplying a liquid phase refrigerant from above to the liquid film type heat transfer tube group. A side plate portion (17) that covers the liquid film type heat transfer tube group from the side and an upper plate portion (18) that covers the liquid film type heat transfer tube group from above are provided. A gap (G) is formed between the upper plate portion and the upper plate portion.
 上記構成では、側方板部が、液膜式伝熱管群を側方から覆っている。また、上方板部が、液膜式伝熱管群を上方から覆っている。すなわち、側方板部及び上方板部は、液膜式伝熱管群が設けられる空間(以下、「内側空間」と称する。)を形成している。また、側方板部及び上方板部は、内側空間と、内側空間の外側に形成される空間(以下、「外側空間」と称する。)と、を隔てている。上記構成では、上方板部と側方板部との間に隙間が形成されている。すなわち、隙間は、内側空間と外側空間とを繋いでいる。上記構成では、冷媒供給部から液膜式伝熱管群へ冷媒が供給されると冷媒が蒸発する。冷媒が蒸発すると、蒸発した冷媒は、内側空間で拡散する。拡散した一部は、上方板部と側方板部との間に形成された隙間を通過して、外側空間へ移動する。これにより、隙間が形成されていない場合と比較して、内側空間における圧力の上昇を抑制することができる。したがって、液膜式伝熱管群の周囲の環境を熱交換に適した環境にすることができるので、液膜式伝熱管群の熱交換効率を向上させることができる。よって、蒸発器の性能を向上させることができる。
 また、内側空間における圧力の上昇を抑制することができるので、内側空間の下端(すなわち、側方板部の下端近傍)における、気化冷媒の流速が速くなる事態を抑制することができる。これにより、筐体の外部へ排出される気相の冷媒が、液相の冷媒を同伴する現象(いわゆるキャリーオーバー)を、発生し難くすることができる。
 また、冷媒供給部から供給される冷媒の一部が、圧力の低下により、液膜式伝熱管群に達する前に気化する。上記構成では、気化した冷媒(以下、「フラッシュガス」と称する。)が、上方板部と側方板部との間に形成された隙間を通過して、外側空間へ移動し易い。このため、フラッシュガスによる、内側空間の圧力上昇を抑制することができる。また、フラッシュガスが内側空間から排出されるので、気化せずに液膜式伝熱管群へ供給される液相の冷媒が、フラッシュガスの影響を受け難い。したがって、的確に液膜用伝熱管へ冷媒を供給することができる。
In the above configuration, the side plate portion covers the liquid film type heat transfer tube group from the side. In addition, the upper plate portion covers the liquid film type heat transfer tube group from above. That is, the side plate portion and the upper plate portion form a space (hereinafter, referred to as "inner space") in which the liquid film type heat transfer tube group is provided. Further, the side plate portion and the upper plate portion separate the inner space from the space formed outside the inner space (hereinafter, referred to as "outer space"). In the above configuration, a gap is formed between the upper plate portion and the side plate portion. That is, the gap connects the inner space and the outer space. In the above configuration, when the refrigerant is supplied from the refrigerant supply unit to the liquid film type heat transfer tube group, the refrigerant evaporates. When the refrigerant evaporates, the evaporated refrigerant diffuses in the inner space. The diffused part passes through the gap formed between the upper plate portion and the side plate portion and moves to the outer space. As a result, it is possible to suppress an increase in pressure in the inner space as compared with the case where no gap is formed. Therefore, since the environment around the liquid film type heat transfer tube group can be made an environment suitable for heat exchange, the heat exchange efficiency of the liquid film type heat transfer tube group can be improved. Therefore, the performance of the evaporator can be improved.
Further, since the increase in pressure in the inner space can be suppressed, it is possible to suppress the situation where the flow velocity of the vaporized refrigerant becomes high at the lower end of the inner space (that is, near the lower end of the side plate portion). As a result, it is possible to make it difficult for the gas phase refrigerant discharged to the outside of the housing to accompany the liquid phase refrigerant (so-called carryover).
Further, a part of the refrigerant supplied from the refrigerant supply unit is vaporized before reaching the liquid film type heat transfer tube group due to the decrease in pressure. In the above configuration, the vaporized refrigerant (hereinafter referred to as "flash gas") easily moves to the outer space through the gap formed between the upper plate portion and the side plate portion. Therefore, it is possible to suppress an increase in pressure in the inner space due to the flash gas. Further, since the flash gas is discharged from the inner space, the liquid phase refrigerant supplied to the liquid film type heat transfer tube group without vaporization is not easily affected by the flash gas. Therefore, the refrigerant can be accurately supplied to the liquid film heat transfer tube.
 また、本開示の一態様に係る蒸発器は、前記筐体に収容され、前記筐体の下部に貯留される液相の冷媒に浸漬しており、内部に被冷却媒体が流通する複数の満液用伝熱管(14a)を有する満液式伝熱管群(14)を備え、前記液膜式伝熱管群(15)は、前記筐体の下部に貯留されている液相の冷媒の液面(S)よりも上方に設けられている。 Further, the evaporator according to one aspect of the present disclosure is housed in the housing and is immersed in a liquid phase refrigerant stored in the lower part of the housing, and a plurality of filled mediums through which the cooling medium flows are filled. A full-liquid heat transfer tube group (14) having a liquid heat transfer tube (14a) is provided, and the liquid film type heat transfer tube group (15) is the liquid level of the liquid phase refrigerant stored in the lower part of the housing. It is provided above (S).
 上記構成では、満液式伝熱管群で蒸発した冷媒の一部も、上方板部と側方板部との間に形成された隙間を通過して、冷媒出口へ向かうことができる。これにより、内側空間における圧力の上昇を抑制することができる。 In the above configuration, a part of the refrigerant evaporated in the full-liquid heat transfer tube group can also pass through the gap formed between the upper plate portion and the side plate portion and head toward the refrigerant outlet. As a result, it is possible to suppress an increase in pressure in the inner space.
 また、本開示の一態様に係る蒸発器は、前記冷媒出口は、前記側方板部の下端よりも上方に設けられている。 Further, in the evaporator according to one aspect of the present disclosure, the refrigerant outlet is provided above the lower end of the side plate portion.
 上記構成では、側方板部の下端よりも上方に冷媒出口が設けられている。このような構造の蒸発器は、液膜式伝熱管群で蒸発し冷媒出口へ向かう冷媒が、側方板部及び上方板部に遮られ易い。このため、蒸発した冷媒が、内側空間内に滞留し易いので、内部空間内の圧力が上昇し易い。
 上記構成では、側方板部と上方板部との間に隙間が形成されているので、液膜式伝熱管群で蒸発した冷媒が隙間を通過して外側空間へ移動することができる。これにより、内側空間内に冷媒が滞留し難くすることができる。したがって、内側空間における圧力の上昇をより好適に抑制することができる。よって、より好適に、液膜式伝熱管群の熱交換効率を向上させ、蒸発器の性能を向上させることができる。
In the above configuration, the refrigerant outlet is provided above the lower end of the side plate portion. In the evaporator having such a structure, the refrigerant that evaporates in the liquid film type heat transfer tube group and goes to the refrigerant outlet is easily blocked by the side plate portion and the upper plate portion. Therefore, the evaporated refrigerant tends to stay in the inner space, and the pressure in the inner space tends to increase.
In the above configuration, since a gap is formed between the side plate portion and the upper plate portion, the refrigerant evaporated in the liquid film type heat transfer tube group can pass through the gap and move to the outer space. This makes it difficult for the refrigerant to stay in the inner space. Therefore, the increase in pressure in the inner space can be suppressed more preferably. Therefore, more preferably, the heat exchange efficiency of the liquid film type heat transfer tube group can be improved, and the performance of the evaporator can be improved.
 また、本開示の一態様に係る蒸発器は、前記冷媒供給部は、前記液膜式伝熱管群の上方に設けられ、前記側方板部は、前記液膜式伝熱管群の上部を側方から覆っている。 Further, in the evaporator according to one aspect of the present disclosure, the refrigerant supply unit is provided above the liquid film type heat transfer tube group, and the side plate portion is on the upper side of the liquid film type heat transfer tube group. It covers from the side.
 上記構成では、冷媒供給部が、液膜式伝熱管群の上方に設けられている。このような構造の蒸発器は、フラッシュガスが内側空間内に滞留し易いので、内部空間内の圧力が上昇し易い。
 上記構成では、側方板部と上方板部との間に隙間が形成されているので、フラッシュガスが隙間を通過して外側空間へ移動することができる。これにより、内側空間内に冷媒が滞留し難くすることができる。したがって、内側空間における圧力の上昇をより好適に抑制することができる。よって、より好適に、液膜式伝熱管群の熱交換効率を向上させ、蒸発器の性能を向上させることができる。
In the above configuration, the refrigerant supply unit is provided above the liquid film type heat transfer tube group. In an evaporator having such a structure, the flash gas tends to stay in the inner space, so that the pressure in the inner space tends to increase.
In the above configuration, since a gap is formed between the side plate portion and the upper plate portion, the flash gas can pass through the gap and move to the outer space. This makes it difficult for the refrigerant to stay in the inner space. Therefore, the increase in pressure in the inner space can be suppressed more preferably. Therefore, more preferably, the heat exchange efficiency of the liquid film type heat transfer tube group can be improved, and the performance of the evaporator can be improved.
 また、本開示の一態様に係る蒸発器(20)は、蒸発した冷媒を外部へ排出する冷媒出口(16)を有し、外殻を為す筐体(11)と、前記筐体に収容され、前記筐体の下部に貯留される液相の冷媒に浸漬しており、内部に被冷却媒体が流通する複数の満液用伝熱管(14a)を有する満液式伝熱管群(14)と、前記筐体に収容され、前記筐体の下部に貯留される液相の冷媒の液面(S)よりも上方に設けられ、内部に被冷却媒体が流通する複数の液膜用伝熱管(15a)を有する液膜式伝熱管群(15)と、前記筐体に収容され、上方から前記液膜式伝熱管群へ液相の冷媒を供給する冷媒供給部(13)と、前記液膜式伝熱管群と前記液面との間に設けられる下方板部(21)と、を備える。 Further, the evaporator (20) according to one aspect of the present disclosure has a refrigerant outlet (16) for discharging the evaporated refrigerant to the outside, and is housed in a housing (11) forming an outer shell and the housing. A full-liquid heat transfer tube group (14) having a plurality of full-liquid heat transfer tubes (14a) immersed in a liquid-phase refrigerant stored in the lower part of the housing and having a cooled medium flowing inside. , A plurality of liquid film heat transfer tubes housed in the housing and provided above the liquid level (S) of the liquid phase refrigerant stored in the lower part of the housing, and through which the cooled medium flows. A liquid film type heat transfer tube group (15) having 15a), a refrigerant supply unit (13) housed in the housing and supplying a liquid phase refrigerant from above to the liquid film type heat transfer tube group, and the liquid film. A lower plate portion (21) provided between the type heat transfer tube group and the liquid level is provided.
 上記構成では、液膜式伝熱管群と液面との間に下方板部が設けられている。これにより、満液式伝熱管群によって蒸発し液面から液膜式伝熱管群へ向かう冷媒が、下方板部によって遮られる。したがって、満液式伝熱管群で蒸発した冷媒が、液膜式伝熱管群へ到達し難くすることができる。よって、液膜式伝熱管群に供給される冷媒が、満液式伝熱管群で蒸発した冷媒によって飛散する事態を抑制することができるので、液膜式伝熱管群の周囲の環境を熱交換に適した環境にすることができる。よって、液膜式伝熱管群の熱交換効率を向上させ、蒸発器の性能を向上させることができる。
 また、上記構成では、満液式伝熱管群で蒸発した冷媒によって液膜式伝熱管群に供給される冷媒が飛散する事態を、抑制することができる。これにより、冷媒出口に向かって流れる気相の冷媒が、液相の冷媒を同伴する現象(いわゆるキャリーオーバー)が発生し難くすることができる。
In the above configuration, a lower plate portion is provided between the liquid film type heat transfer tube group and the liquid level. As a result, the refrigerant that evaporates by the full-liquid heat transfer tube group and goes from the liquid level to the liquid film type heat transfer tube group is blocked by the lower plate portion. Therefore, it is possible to make it difficult for the refrigerant evaporated in the full-liquid heat transfer tube group to reach the liquid film heat transfer tube group. Therefore, it is possible to suppress the situation where the refrigerant supplied to the liquid film type heat transfer tube group is scattered by the refrigerant evaporated in the liquid film type heat transfer tube group, so that the environment around the liquid film type heat transfer tube group is heat exchanged. The environment can be suitable for. Therefore, the heat exchange efficiency of the liquid film type heat transfer tube group can be improved, and the performance of the evaporator can be improved.
Further, in the above configuration, it is possible to suppress a situation in which the refrigerant supplied to the liquid film type heat transfer tube group is scattered by the refrigerant evaporated in the liquid film type heat transfer tube group. As a result, it is possible to prevent the phenomenon that the gas phase refrigerant flowing toward the refrigerant outlet is accompanied by the liquid phase refrigerant (so-called carryover).
 また、本開示の一態様に係る蒸発器は、上端が前記下方板部に接続され、下端が前記満液式伝熱管群の下方に配置される冷媒排出管(27)を備え、前記下方板部は、前記液膜式伝熱管群の下方に設けられている。 Further, the evaporator according to one aspect of the present disclosure includes a refrigerant discharge pipe (27) whose upper end is connected to the lower plate portion and whose lower end is arranged below the full-liquid heat transfer tube group, and the lower plate is provided. The portion is provided below the liquid film type heat transfer tube group.
 上記構成では、下方板部が液膜式伝熱管群の下方に設けられている。これにより、液膜式伝熱管群で蒸発しきらなかった液相の冷媒が、下方板部の上面に貯留する。上記構成では、上端が下方板部に接続され、下端が満液式伝熱管群の下方に配置される冷媒排出管を備えている。これにより、下方板部の上面に貯留した冷媒が、冷媒排出管を介して、満液式伝熱管群の下方へ導かれる。したがって、下方板部の上面の冷媒を、筐体の下部で冷媒を貯留している部分(以下、「貯留部」と称する。)へ導くことができる。これにより、各伝熱管群に供給されない冷媒を低減することができるので、蒸発器の性能を向上させることができる。
 また、下方板部の上面の冷媒を、満液式伝熱管群の下方へ導いている。これにより、下方板部の上面から貯留部へ導かれる冷媒が、満液式伝熱管群で蒸発し液面へ向かう冷媒と干渉し難くすることができる。
In the above configuration, the lower plate portion is provided below the liquid film type heat transfer tube group. As a result, the liquid phase refrigerant that has not completely evaporated in the liquid film type heat transfer tube group is stored on the upper surface of the lower plate portion. In the above configuration, the upper end is connected to the lower plate portion, and the lower end is provided with a refrigerant discharge pipe arranged below the full-liquid heat transfer tube group. As a result, the refrigerant stored on the upper surface of the lower plate portion is guided to the lower side of the full-liquid heat transfer tube group via the refrigerant discharge pipe. Therefore, the refrigerant on the upper surface of the lower plate portion can be guided to the portion where the refrigerant is stored in the lower part of the housing (hereinafter, referred to as “storage portion”). As a result, the amount of refrigerant that is not supplied to each heat transfer tube group can be reduced, so that the performance of the evaporator can be improved.
Further, the refrigerant on the upper surface of the lower plate portion is guided to the lower side of the full-liquid heat transfer tube group. As a result, the refrigerant guided from the upper surface of the lower plate portion to the storage portion can be made less likely to interfere with the refrigerant that evaporates in the full-liquid heat transfer tube group and heads toward the liquid surface.
 また、本開示の一態様に係る蒸発器は、前記下方板部は、上面から下面に貫通する孔を有している。 Further, in the evaporator according to one aspect of the present disclosure, the lower plate portion has a hole penetrating from the upper surface to the lower surface.
 上記構成では、下方板部が、上面から下面に貫通する孔を有している。これにより、液膜式伝熱管群で蒸発し切らず下方板部へ落下した冷媒が、孔を通過して、下方板部の下方の貯留部へ導かれる。したがって、下方板部の上面に冷媒が貯留し難くすることができる。よって、液膜式伝熱管群へ導かれない冷媒を低減することができるので、蒸発器の性能を向上させることができる。 In the above configuration, the lower plate portion has a hole penetrating from the upper surface to the lower surface. As a result, the refrigerant that has not completely evaporated in the liquid film type heat transfer tube group and has fallen to the lower plate portion passes through the holes and is guided to the storage portion below the lower plate portion. Therefore, it is possible to prevent the refrigerant from being stored on the upper surface of the lower plate portion. Therefore, it is possible to reduce the amount of refrigerant that is not guided to the liquid film type heat transfer tube group, and thus it is possible to improve the performance of the evaporator.
 また、本開示の一態様に係る蒸発器(50)は、蒸発した冷媒を外部へ排出する冷媒出口(16)が設けられ、外殻を為す筐体(11)と、前記筐体に収容され、前記筐体の下部に貯留される液相の冷媒に浸漬しており、内部に被冷却媒体が流通する複数の満液用伝熱管(14a)を有する満液式伝熱管群(14)と、前記筐体に収容され、前記筐体の下部に貯留される液相の冷媒の液面(S)よりも上方に設けられ、内部に被冷却媒体が流通する複数の液膜用伝熱管(15a)を有する液膜式伝熱管群(15)と、前記筐体に収容され、上方から前記液膜式伝熱管群へ液相の冷媒を供給する冷媒供給部(13)と、前記液膜式伝熱管群の下端部の側方に配置され、前記液膜式伝熱管群の下端部が配置されている領域の圧力を増大させる圧損増大部(51)と、を備える。 Further, the evaporator (50) according to one aspect of the present disclosure is provided with a refrigerant outlet (16) for discharging the evaporated refrigerant to the outside, and is housed in a housing (11) forming an outer shell and the housing. A full-liquid heat transfer tube group (14) having a plurality of full-liquid heat transfer tubes (14a) immersed in a liquid-phase refrigerant stored in the lower part of the housing and having a cooled medium flowing inside. , A plurality of liquid film heat transfer tubes housed in the housing and provided above the liquid level (S) of the liquid phase refrigerant stored in the lower part of the housing, and through which the cooled medium flows. A liquid film type heat transfer tube group (15) having 15a), a refrigerant supply unit (13) housed in the housing and supplying a liquid phase refrigerant from above to the liquid film type heat transfer tube group, and the liquid film. A pressure loss increasing portion (51) is provided on the side of the lower end portion of the type heat transfer tube group and increases the pressure in the region where the lower end portion of the liquid film type heat transfer tube group is arranged.
 上記構成では、液膜式伝熱管群の下端部が配置されている領域(以下、「下端領域」と称する。)の圧力を増大させる圧損増大部を備えている。これにより、下端領域の圧力を高くすることができるので、満液式伝熱管群によって蒸発し液面から液膜式伝熱管群へ向かう冷媒が下端領域に流入し難い。したがって、満液式伝熱管群で蒸発した冷媒が、液膜式伝熱管群へ到達し難くすることができる。よって、液膜式伝熱管群に供給される冷媒が、満液式伝熱管群で蒸発した冷媒によって飛散する事態を抑制することができるので、液膜式伝熱管群の周囲の環境を熱交換に適した環境にすることができる。よって、液膜式伝熱管群の熱交換効率を向上させ、蒸発器の性能を向上させることができる。 The above configuration includes a pressure loss increasing portion that increases the pressure in the region where the lower end portion of the liquid film type heat transfer tube group is arranged (hereinafter, referred to as "lower end region"). As a result, the pressure in the lower end region can be increased, so that the refrigerant that evaporates by the full-liquid heat transfer tube group and goes from the liquid surface to the liquid film type heat transfer tube group does not easily flow into the lower end region. Therefore, it is possible to make it difficult for the refrigerant evaporated in the full-liquid heat transfer tube group to reach the liquid film heat transfer tube group. Therefore, it is possible to suppress the situation where the refrigerant supplied to the liquid film type heat transfer tube group is scattered by the refrigerant evaporated in the liquid film type heat transfer tube group, so that the environment around the liquid film type heat transfer tube group is heat exchanged. The environment can be suitable for. Therefore, the heat exchange efficiency of the liquid film type heat transfer tube group can be improved, and the performance of the evaporator can be improved.
 また、本開示の一態様に係る蒸発器は、前記圧損増大部は、前記液膜式伝熱管群の下端部を挟んで配置され、前記液膜式伝熱管群を側方から覆う一対の下端側方板部(51)を有する。 Further, in the evaporator according to one aspect of the present disclosure, the pressure loss increasing portion is arranged so as to sandwich the lower end portion of the liquid film type heat transfer tube group, and a pair of lower ends that cover the liquid film type heat transfer tube group from the side. It has a side plate portion (51).
 上記構成では、一対の下端側方板部が液膜式伝熱管群の下端部を両側方から覆っている。これにより、下端領域の圧力を他の領域よりも増大させることができる。したがって、満液式伝熱管群によって蒸発し液面から液膜式伝熱管群へ向かう冷媒が下端領域に流入し難くすることができる。よって、満液式伝熱管群で蒸発した冷媒が、液膜式伝熱管群へ到達し難くすることができる。 In the above configuration, a pair of lower end side plates cover the lower end of the liquid film type heat transfer tube group from both sides. As a result, the pressure in the lower end region can be increased more than in other regions. Therefore, it is possible to make it difficult for the refrigerant that evaporates by the full-liquid heat transfer tube group and goes from the liquid surface to the liquid film type heat transfer tube group to flow into the lower end region. Therefore, it is possible to make it difficult for the refrigerant evaporated in the full-liquid heat transfer tube group to reach the liquid film heat transfer tube group.
 また、本開示の一態様に係る蒸発器(60)は、蒸発した冷媒を外部へ排出する冷媒出口(16)が設けられ、外殻を為す筐体(11)と、前記筐体に収容され、前記筐体の下部に貯留される液相の冷媒に浸漬しており、内部に被冷却媒体が流通する複数の満液用伝熱管(14a)を有する満液式伝熱管群(14)と、前記筐体に収容され、前記筐体の下部に貯留される液相の冷媒の液面(S)よりも上方に設けられ、内部に被冷却媒体が流通する複数の液膜用伝熱管(15a)を有する液膜式伝熱管群(15)と、前記筐体に収容され、上方から前記液膜式伝熱管群へ液相の冷媒を供給する冷媒供給部(13)と、前記液膜式伝熱管群の下部を挟んで配置され、前記満液式伝熱管群で蒸発した冷媒を前記冷媒出口へ導く整流部(61)と、を備える。 Further, the evaporator (60) according to one aspect of the present disclosure is provided with a refrigerant outlet (16) for discharging the evaporated refrigerant to the outside, and is housed in a housing (11) forming an outer shell and the housing. A full-liquid heat transfer tube group (14) having a plurality of full-liquid heat transfer tubes (14a) immersed in a liquid-phase refrigerant stored in the lower part of the housing and having a cooled medium flowing inside. , A plurality of liquid film heat transfer tubes housed in the housing and provided above the liquid level (S) of the liquid phase refrigerant stored in the lower part of the housing, and a medium to be cooled flows inside. A liquid film type heat transfer tube group (15) having 15a), a refrigerant supply unit (13) housed in the housing and supplying a liquid phase refrigerant from above to the liquid film type heat transfer tube group, and the liquid film. It is provided with a rectifying unit (61) arranged so as to sandwich the lower portion of the type heat transfer tube group and guiding the refrigerant evaporated in the full-liquid type heat transfer tube group to the refrigerant outlet.
 上記構成では、液膜式伝熱管群の両側方に、満液式伝熱管群で蒸発した冷媒を冷媒出口へ導く整流部を備えている。これにより、満液式伝熱管群で蒸発し、側方から液膜式伝熱管群へ向かう冷媒が、整流部によって冷媒出口へ導かれる。したがって、満液式伝熱管群で蒸発した冷媒が、液膜式伝熱管群へ到達し難くすることができる。よって、液膜式伝熱管群に供給される冷媒が、満液式伝熱管群で蒸発した冷媒によって飛散する事態を抑制することができるので、液膜式伝熱管群の周囲の環境を熱交換に適した環境にすることができる。よって、液膜式伝熱管群の熱交換効率を向上させ、蒸発器の性能を向上させることができる。
 また、整流部が、液膜式伝熱管群の下部を挟んで配置されているので、液面から上昇する冷媒を比較的早期に冷媒出口へ導くことができる。したがって、満液式伝熱管群で蒸発した冷媒が、液膜式伝熱管群へより到達し難くすることができる。
In the above configuration, rectifying sections for guiding the refrigerant evaporated in the full-liquid heat transfer tube group to the refrigerant outlet are provided on both sides of the liquid film type heat transfer tube group. As a result, the refrigerant that evaporates in the full-liquid heat transfer tube group and heads for the liquid film type heat transfer tube group from the side is guided to the refrigerant outlet by the rectifying section. Therefore, it is possible to make it difficult for the refrigerant evaporated in the full-liquid heat transfer tube group to reach the liquid film heat transfer tube group. Therefore, it is possible to suppress the situation where the refrigerant supplied to the liquid film type heat transfer tube group is scattered by the refrigerant evaporated in the liquid film type heat transfer tube group, so that the environment around the liquid film type heat transfer tube group is heat exchanged. The environment can be suitable for. Therefore, the heat exchange efficiency of the liquid film type heat transfer tube group can be improved, and the performance of the evaporator can be improved.
Further, since the rectifying unit is arranged so as to sandwich the lower part of the liquid film type heat transfer tube group, the refrigerant rising from the liquid surface can be guided to the refrigerant outlet relatively early. Therefore, it is possible to make it more difficult for the refrigerant evaporated in the full-liquid heat transfer tube group to reach the liquid film heat transfer tube group.
 また、本開示の一態様に係る蒸発器は、前記整流部は、前記液膜式伝熱管群を両側方から覆う一対の下側方板部(61)を有する。 Further, in the evaporator according to one aspect of the present disclosure, the rectifying portion has a pair of lower side plate portions (61) that cover the liquid film type heat transfer tube group from both sides.
 上記構成では、一対の下側方板部が液膜式伝熱管群の下部を両側方から覆っている。これにより、満液式伝熱管群で蒸発し、側方から液膜式伝熱管群へ向かう冷媒が、下側方板部によって遮られる。したがって、満液式伝熱管群で蒸発した冷媒が、液膜式伝熱管群へ到達し難くすることができる。 In the above configuration, a pair of lower plate portions cover the lower part of the liquid film type heat transfer tube group from both sides. As a result, the refrigerant that evaporates in the full-liquid heat transfer tube group and goes from the side to the liquid film type heat transfer tube group is blocked by the lower side plate portion. Therefore, it is possible to make it difficult for the refrigerant evaporated in the full-liquid heat transfer tube group to reach the liquid film heat transfer tube group.
 また、本開示の一態様に係る蒸発器(70)は、前記筐体は、所定方向に延在していて、前記液膜式伝熱管群の側方に、前記所定方向と交差するように配置された複数の交差板部(71)が設けられている。 Further, in the evaporator (70) according to one aspect of the present disclosure, the housing extends in a predetermined direction and intersects the predetermined direction on the side of the liquid film type heat transfer tube group. A plurality of arranged cross plate portions (71) are provided.
 満液式伝熱管群及び液膜式伝熱管群で蒸発した冷媒は、所定方向に移動しながら冷媒出口へ導かれる。上記構成では、液膜式伝熱管群の側方に所定方向と交差するように配置された交差板部が設けられている。これにより、冷媒の所定方向の移動に対する圧力損失を増大させることができる。したがって、冷媒の流速を低減させることができるので、冷媒出口に向かって流れる気相の冷媒が、液相の冷媒を同伴する現象(いわゆるキャリーオーバー)が発生し難くすることができる。 The refrigerant evaporated in the full-liquid heat transfer tube group and the liquid film heat transfer tube group is guided to the refrigerant outlet while moving in a predetermined direction. In the above configuration, a cross plate portion arranged so as to intersect a predetermined direction is provided on the side of the liquid film type heat transfer tube group. This makes it possible to increase the pressure loss with respect to the movement of the refrigerant in a predetermined direction. Therefore, since the flow velocity of the refrigerant can be reduced, it is possible to make it difficult for the gas phase refrigerant flowing toward the refrigerant outlet to accompany the liquid phase refrigerant (so-called carryover).
10  :蒸発器
11  :圧力容器(筐体)
11a :円筒部
11c :貯留部
12  :冷媒入口管
13  :冷媒トレイ(冷媒供給部)
14  :満液式伝熱管群
14a :満液用伝熱管
15  :液膜式伝熱管群
15a :液膜用伝熱管
16  :冷媒出口管(冷媒出口)
17  :邪魔板(側方板部)
18  :吹上防止板(上方板部)
18a :平板部
18b :傾斜部
20  :蒸発器
21  :下方板部
26  :下方板部
27  :冷媒排出管
31  :下方板部
36  :下方板部
36a :底面部
36b :傾斜部
37  :冷媒排出管
41  :下方板部
50  :蒸発器
51  :下端側方板部(圧損増大部)
56  :ダミー管
60  :蒸発器
61  :下側方板部(整流部)
66  :ダミー管
70  :蒸発器
71  :交差板部
76  :交差板部
10: Evaporator 11: Pressure vessel (housing)
11a: Cylindrical part 11c: Storage part 12: Refrigerant inlet pipe 13: Refrigerant tray (refrigerant supply part)
14: Full-liquid heat transfer tube group 14a: Full-liquid heat transfer tube 15: Liquid film type heat transfer tube group 15a: Liquid film heat transfer tube 16: Refrigerant outlet tube (refrigerant outlet)
17: Disturbing plate (side plate)
18: Blow-up prevention plate (upper plate)
18a: Flat plate portion 18b: Inclined portion 20: Evaporator 21: Lower plate portion 26: Lower plate portion 27: Refrigerant discharge pipe 31: Lower plate portion 36: Lower plate portion 36a: Bottom plate portion 36b: Inclined portion 37: Refrigerant discharge pipe 41: Lower plate part 50: Evaporator 51: Lower end side plate part (pressure loss increasing part)
56: Dummy tube 60: Evaporator 61: Lower plate part (rectifying part)
66: Dummy pipe 70: Evaporator 71: Cross plate part 76: Cross plate part

Claims (12)

  1.  蒸発した冷媒を外部へ排出する冷媒出口が設けられ、外殻を為す筐体と、
     前記筐体に収容され、内部に被冷却媒体が流通する複数の液膜用伝熱管を有する液膜式伝熱管群と、
     前記筐体に収容され、上方から前記液膜式伝熱管群へ液相の冷媒を供給する冷媒供給部と、
     前記液膜式伝熱管群を側方から覆う側方板部と、
     前記液膜式伝熱管群を上方から覆う上方板部と、を備え、
     前記側方板部と前記上方板部との間には隙間が形成されている蒸発器。
    A housing that is provided with a refrigerant outlet that discharges the evaporated refrigerant to the outside and forms an outer shell,
    A group of liquid film type heat transfer tubes housed in the housing and having a plurality of liquid film heat transfer tubes in which a medium to be cooled flows.
    A refrigerant supply unit housed in the housing and supplying a liquid phase refrigerant from above to the liquid film type heat transfer tube group.
    A side plate portion that covers the liquid film type heat transfer tube group from the side, and
    An upper plate portion that covers the liquid film type heat transfer tube group from above is provided.
    An evaporator in which a gap is formed between the side plate portion and the upper plate portion.
  2.  前記筐体に収容され、前記筐体の下部に貯留される液相の冷媒に浸漬しており、内部に被冷却媒体が流通する複数の満液用伝熱管を有する満液式伝熱管群を備え、
     前記液膜式伝熱管群は、前記筐体の下部に貯留されている液相の冷媒の液面よりも上方に設けられている請求項1に記載の蒸発器。
    A group of full-liquid heat transfer tubes housed in the housing, immersed in a liquid-phase refrigerant stored in the lower part of the housing, and having a plurality of full-fill heat transfer tubes in which a cooling medium flows. Prepare,
    The evaporator according to claim 1, wherein the liquid film type heat transfer tube group is provided above the liquid level of the liquid phase refrigerant stored in the lower part of the housing.
  3.  前記冷媒出口は、前記側方板部の下端よりも上方に設けられている請求項1または請求項2に記載の蒸発器。 The evaporator according to claim 1 or 2, wherein the refrigerant outlet is provided above the lower end of the side plate portion.
  4.  前記冷媒供給部は、前記液膜式伝熱管群の上方に設けられ、
     前記側方板部は、前記液膜式伝熱管群の上部を側方から覆っている請求項1から請求項3のいずれかに記載の蒸発器。
    The refrigerant supply unit is provided above the liquid film type heat transfer tube group, and is provided.
    The evaporator according to any one of claims 1 to 3, wherein the side plate portion covers the upper part of the liquid film type heat transfer tube group from the side.
  5.  蒸発した冷媒を外部へ排出する冷媒出口を有し、外殻を為す筐体と、
     前記筐体に収容され、前記筐体の下部に貯留される液相の冷媒に浸漬しており、内部に被冷却媒体が流通する複数の満液用伝熱管を有する満液式伝熱管群と、
     前記筐体に収容され、前記筐体の下部に貯留される液相の冷媒の液面よりも上方に設けられ、内部に被冷却媒体が流通する複数の液膜用伝熱管を有する液膜式伝熱管群と、
     前記筐体に収容され、上方から前記液膜式伝熱管群へ液相の冷媒を供給する冷媒供給部と、
     前記液膜式伝熱管群と前記液面との間に設けられる下方板部と、を備えた蒸発器。
    A housing that has a refrigerant outlet that discharges evaporated refrigerant to the outside and forms an outer shell,
    A group of full-liquid heat transfer tubes housed in the housing, immersed in a liquid-phase refrigerant stored in the lower part of the housing, and having a plurality of full-fill heat transfer tubes in which a cooling medium flows. ,
    A liquid film type having a plurality of heat transfer tubes for a liquid film, which are housed in the housing and are provided above the liquid level of the liquid phase refrigerant stored in the lower part of the housing, and have a plurality of heat transfer tubes for the liquid film in which the cooling medium flows. Heat transfer tube group and
    A refrigerant supply unit housed in the housing and supplying a liquid phase refrigerant from above to the liquid film type heat transfer tube group.
    An evaporator including a lower plate portion provided between the liquid film type heat transfer tube group and the liquid level.
  6.  上端が前記下方板部に接続され、下端が前記満液式伝熱管群の下方に配置される冷媒排出管を備え、
     前記下方板部は、前記液膜式伝熱管群の下方に設けられている請求項5に記載の蒸発器。
    The lower end is connected to the lower plate portion, and the lower end is provided with a refrigerant discharge pipe arranged below the full-liquid heat transfer tube group.
    The evaporator according to claim 5, wherein the lower plate portion is provided below the liquid film type heat transfer tube group.
  7.  前記下方板部は、上面から下面に貫通する孔を有している請求項5または請求項6に記載の蒸発器。 The evaporator according to claim 5 or 6, wherein the lower plate portion has a hole penetrating from the upper surface to the lower surface.
  8.  蒸発した冷媒を外部へ排出する冷媒出口が設けられ、外殻を為す筐体と、
     前記筐体に収容され、前記筐体の下部に貯留される液相の冷媒に浸漬しており、内部に被冷却媒体が流通する複数の満液用伝熱管を有する満液式伝熱管群と、
     前記筐体に収容され、前記筐体の下部に貯留される液相の冷媒の液面よりも上方に設けられ、内部に被冷却媒体が流通する複数の液膜用伝熱管を有する液膜式伝熱管群と、
     前記筐体に収容され、上方から前記液膜式伝熱管群へ液相の冷媒を供給する冷媒供給部と、
     前記液膜式伝熱管群の下端部の側方に配置され、前記液膜式伝熱管群の下端部が配置されている領域の圧力損失を増大させる圧損増大部と、を備えた蒸発器。
    A housing that is provided with a refrigerant outlet that discharges the evaporated refrigerant to the outside and forms an outer shell,
    A group of full-liquid heat transfer tubes housed in the housing, immersed in a liquid-phase refrigerant stored in the lower part of the housing, and having a plurality of full-fill heat transfer tubes in which a cooling medium flows. ,
    A liquid film type having a plurality of heat transfer tubes for a liquid film, which are housed in the housing and are provided above the liquid level of the liquid phase refrigerant stored in the lower part of the housing, and have a plurality of heat transfer tubes for the liquid film in which the cooling medium flows. Heat transfer tube group and
    A refrigerant supply unit housed in the housing and supplying a liquid phase refrigerant from above to the liquid film type heat transfer tube group.
    An evaporator comprising a pressure loss increasing portion which is arranged on the side of the lower end portion of the liquid film type heat transfer tube group and increases the pressure loss in the region where the lower end portion of the liquid film type heat transfer tube group is arranged.
  9.  前記圧損増大部は、前記液膜式伝熱管群の下端部を挟んで配置され、前記液膜式伝熱管群を側方から覆う一対の下端側方板部を有する請求項8に記載の蒸発器。 The evaporation according to claim 8, wherein the pressure loss increasing portion is arranged so as to sandwich the lower end portion of the liquid film type heat transfer tube group, and has a pair of lower end side plate portions that cover the liquid film type heat transfer tube group from the side. vessel.
  10.  蒸発した冷媒を外部へ排出する冷媒出口が設けられ、外殻を為す筐体と、
     前記筐体に収容され、前記筐体の下部に貯留される液相の冷媒に浸漬しており、内部に被冷却媒体が流通する複数の満液用伝熱管を有する満液式伝熱管群と、
     前記筐体に収容され、前記筐体の下部に貯留される液相の冷媒の液面よりも上方に設けられ、内部に被冷却媒体が流通する複数の液膜用伝熱管を有する液膜式伝熱管群と、
     前記筐体に収容され、上方から前記液膜式伝熱管群へ液相の冷媒を供給する冷媒供給部と、
     前記液膜式伝熱管群の下部を挟んで配置され、前記満液式伝熱管群で蒸発した冷媒を前記冷媒出口へ導く整流部と、を備えた蒸発器。
    A housing that is provided with a refrigerant outlet that discharges the evaporated refrigerant to the outside and forms an outer shell,
    A group of full-liquid heat transfer tubes housed in the housing, immersed in a liquid-phase refrigerant stored in the lower part of the housing, and having a plurality of full-fill heat transfer tubes in which a cooling medium flows. ,
    A liquid film type having a plurality of heat transfer tubes for a liquid film, which are housed in the housing and are provided above the liquid level of the liquid phase refrigerant stored in the lower part of the housing, and have a plurality of heat transfer tubes for the liquid film in which the cooling medium flows. Heat transfer tube group and
    A refrigerant supply unit housed in the housing and supplying a liquid phase refrigerant from above to the liquid film type heat transfer tube group.
    An evaporator provided with a rectifying unit that is arranged across the lower portion of the liquid film type heat transfer tube group and guides the refrigerant evaporated in the full liquid type heat transfer tube group to the refrigerant outlet.
  11.  前記整流部は、前記液膜式伝熱管群を両側方から覆う一対の下側方板部を有する請求項10に記載の蒸発器。 The evaporator according to claim 10, wherein the rectifying unit has a pair of lower side plate portions that cover the liquid film type heat transfer tube group from both sides.
  12.  前記筐体は、所定方向に延在していて、
     前記液膜式伝熱管群の側方に、前記所定方向と交差するように配置された複数の交差板部が設けられている請求項1から請求項11のいずれかに記載の蒸発器。
    The housing extends in a predetermined direction and
    The evaporator according to any one of claims 1 to 11, wherein a plurality of crossing plate portions arranged so as to intersect the predetermined direction are provided on the side of the liquid film type heat transfer tube group.
PCT/JP2021/014324 2020-04-03 2021-04-02 Evaporator WO2021201278A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180026838.6A CN115427743A (en) 2020-04-03 2021-04-02 Evaporator and evaporator assembly
KR1020227036971A KR20220158781A (en) 2020-04-03 2021-04-02 evaporator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020067564A JP7098680B2 (en) 2020-04-03 2020-04-03 Evaporator
JP2020-067564 2020-04-03

Publications (1)

Publication Number Publication Date
WO2021201278A1 true WO2021201278A1 (en) 2021-10-07

Family

ID=77927905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014324 WO2021201278A1 (en) 2020-04-03 2021-04-02 Evaporator

Country Status (4)

Country Link
JP (1) JP7098680B2 (en)
KR (1) KR20220158781A (en)
CN (1) CN115427743A (en)
WO (1) WO2021201278A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5993181A (en) * 1982-11-19 1984-05-29 Hitachi Ltd Liquid film vaporization type heat exchanger
US20140311721A1 (en) * 2011-11-18 2014-10-23 Carrier Corporation Shell and tube heat exchanger
JP2016525206A (en) * 2013-07-11 2016-08-22 ダイキン アプライド アメリカズ インコーポレィティッド Heat exchanger

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006044448A2 (en) 2004-10-13 2006-04-27 York International Corporation Falling film evaporator
CN101641558A (en) * 2006-12-21 2010-02-03 江森自控科技公司 Falling film evaporator
CN102472589B (en) * 2009-07-22 2014-01-22 江森自控科技公司 Compact evaporator for chillers
KR101251851B1 (en) 2011-11-30 2013-04-10 현대자동차주식회사 Idle stop & go system and control method thereof
CN202452766U (en) * 2012-02-03 2012-09-26 特灵空调系统(中国)有限公司 Improved falling film evaporator used in refrigeration air-conditioning system
JP6313090B2 (en) 2014-03-28 2018-04-18 荏原冷熱システム株式会社 Turbo refrigerator evaporator and turbo refrigerator equipped with the evaporator
CN107101420B (en) * 2016-02-19 2023-04-07 约克(无锡)空调冷冻设备有限公司 Heat exchange device suitable for low-pressure refrigerant
KR20170114320A (en) 2016-04-04 2017-10-16 엘지전자 주식회사 Evaporator and chiller system comprising the same
CN107726673A (en) * 2016-08-11 2018-02-23 荏原冷热系统株式会社 The manufacture method of heat exchanger and heat exchanger
CN106512454B (en) * 2016-11-18 2018-11-23 重庆美的通用制冷设备有限公司 A kind of shell-and-tube type falling film evaporator and water cooler
CN109682131B (en) 2017-10-18 2022-03-08 开利公司 Distributor, falling film evaporator and refrigerating system
CN108827027B (en) * 2018-06-27 2019-06-25 珠海格力电器股份有限公司 Pipe heat exchanger and downward film evaporator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5993181A (en) * 1982-11-19 1984-05-29 Hitachi Ltd Liquid film vaporization type heat exchanger
US20140311721A1 (en) * 2011-11-18 2014-10-23 Carrier Corporation Shell and tube heat exchanger
JP2016525206A (en) * 2013-07-11 2016-08-22 ダイキン アプライド アメリカズ インコーポレィティッド Heat exchanger

Also Published As

Publication number Publication date
CN115427743A (en) 2022-12-02
JP7098680B2 (en) 2022-07-11
KR20220158781A (en) 2022-12-01
JP2021162282A (en) 2021-10-11

Similar Documents

Publication Publication Date Title
EP1870647B1 (en) Flooded evaporator
JP5850099B2 (en) Flowing film evaporator
JP6423221B2 (en) Evaporator and refrigerator
US10612859B2 (en) Heat exchanger
US9677818B2 (en) Heat exchanger
JP6769870B2 (en) Heat exchanger
ES2929231T3 (en) Heat exchanger
CN104303000A (en) Heat exchanger
US20150053378A1 (en) Heat exchanger
WO2017179630A1 (en) Evaporator, and turbo-refrigerating apparatus equipped with same
JP2016014495A (en) Falling film evaporator
JP2016525205A5 (en)
WO2017061211A1 (en) Evaporator and turbo-freezer provided with same
JP2022517728A (en) Heat exchanger
JP2014020755A (en) Downward flow liquid film type evaporator
WO2021201278A1 (en) Evaporator
JP2014020753A (en) Downward flow liquid film type evaporator
KR20090095557A (en) Apparatus and method for separating droplets from vaporized refrigerant
US20220178595A1 (en) Liquid refrigerant sprayer and falling liquid film type evaporator
ES2949036T3 (en) Heat exchanger
JP6880280B1 (en) Evaporator
JP6878550B2 (en) Refrigerator
JP6944337B2 (en) Evaporator and freezing system
JP2004340546A (en) Evaporator for refrigerating machine
JPS6358098A (en) Plate fin type vaporizer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21780481

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227036971

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21780481

Country of ref document: EP

Kind code of ref document: A1