WO2021200774A1 - Backup power supply system, power supply backup method, and program - Google Patents

Backup power supply system, power supply backup method, and program Download PDF

Info

Publication number
WO2021200774A1
WO2021200774A1 PCT/JP2021/013174 JP2021013174W WO2021200774A1 WO 2021200774 A1 WO2021200774 A1 WO 2021200774A1 JP 2021013174 W JP2021013174 W JP 2021013174W WO 2021200774 A1 WO2021200774 A1 WO 2021200774A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
circuit
switch circuit
auxiliary power
switch
Prior art date
Application number
PCT/JP2021/013174
Other languages
French (fr)
Japanese (ja)
Inventor
靖博 飯嶋
庸介 三谷
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2022512176A priority Critical patent/JPWO2021200774A1/ja
Publication of WO2021200774A1 publication Critical patent/WO2021200774A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • This disclosure generally relates to backup power systems, power backup methods and programs. More specifically, the present disclosure relates to backup power systems, power backup methods and programs capable of supplying power to a load in the event of a mains failure.
  • Patent Document 1 discloses a redundant power supply system (backup power supply system).
  • This redundant power supply system includes a main power supply, an auxiliary power supply (auxiliary power supply), first to fourth relays (switch circuit, switching element), a regulator, and a DCDC converter.
  • the DCDC converter is provided between the main power supply and the first load.
  • the first relay connects the DCDC converter and the auxiliary power supply so that they can be energized and cut off.
  • the second relay connects the DCDC converter and the second load so that they can be energized and cut off.
  • the third relay connects the main power supply and the DCDC converter so as to be energized and cut off.
  • the fourth relay connects the main power supply and the second load so that they can be energized and cut off.
  • the regulator connects the auxiliary power supply and the first load.
  • the first relay and the fourth relay are cut off, the second relay and the third relay are energized, and the second load is connected to the main power supply via the DCDC converter. 1 Connect the load to the auxiliary power supply via the regulator. If the main power supply fails during the engine restart process, the first relay is energized and the second to fourth relays are shut off, the second load is disconnected from the main power supply, and the first load is converted to a DCDC converter. Connect to the secondary power supply via.
  • a relay for example, the first relay that controls the power supply from the auxiliary power supply to the load.
  • the switch circuit can be controlled so as to prevent a through current from flowing between the two power supplies, or the failure of the switching element that controls the power supply from the auxiliary power supply to the load can be diagnosed.
  • the backup power supply system includes a first auxiliary power supply, a second auxiliary power supply, a first switch circuit, and a second switch circuit.
  • the first auxiliary power supply and the second auxiliary power supply can supply electric power to the load when the main power supply fails.
  • the first switch circuit conducts and cuts off the first power supply path connecting the first auxiliary power supply and the load.
  • the second switch circuit conducts and cuts off the second power supply path connecting the second auxiliary power supply and the load.
  • the backup power supply system further includes a compulsory circuit that forcibly shuts off one of the first switch circuit and the second switch circuit.
  • the backup power supply system includes a first auxiliary power supply, a second auxiliary power supply, a first switch circuit, a second switch circuit, and a control circuit.
  • the first auxiliary power supply and the second auxiliary power supply can supply electric power to the load when the main power supply fails.
  • the first switch circuit conducts and cuts off the first power supply path connecting the first auxiliary power supply and the load.
  • the second switch circuit conducts and cuts off the second power supply path connecting the second auxiliary power supply and the load.
  • the control circuit controls the second switch circuit.
  • the second switch circuit has a first switching element and a second switching element. The first switching element and the second switching element conduct and cut off the second power supply path, respectively.
  • the control circuit has a diagnostic mode in which the first switching element is cut off and the second switching element is made conductive during the power supply period during which the second auxiliary power supply supplies electric power.
  • the power supply backup method is a power supply backup method used in a backup power supply system including a first auxiliary power supply and a second auxiliary power supply capable of supplying power to a load when the main power supply fails.
  • the power supply backup method includes a first switching step, a second switching step, and a control step.
  • the first switching step the first power supply path connecting the first auxiliary power supply and the load is conducted and cut off by the first switch circuit.
  • the second switching step the second power supply path connecting the second auxiliary power supply and the load is conducted and cut off by the second switch circuit.
  • the control step controls the second switch circuit.
  • each of the first switching element and the second switching element conducts and cuts off the second power supply path.
  • the control step has a diagnostic mode in which the first switching element is cut off and the second switching element is made conductive during the power supply period during which the second auxiliary power supply is supplying electric power.
  • the program according to one aspect of the present disclosure is a program for causing one or more processors to execute the power supply backup method of the above aspect.
  • FIG. 1 is a diagram showing a configuration of a drive system using the backup power supply system according to the embodiment.
  • FIG. 2 is a side view in which a part of the vehicle equipped with the backup power supply system of the above is broken.
  • FIG. 3 is a time chart showing an operation example 1 of the backup power supply system of the above.
  • FIG. 4 is a time chart showing an operation example 2 of the backup power supply system of the above.
  • FIG. 5 is a time chart showing an operation example 3 of the backup power supply system of the above.
  • the backup power supply system 1 is mounted on the vehicle 9 (see FIG. 2), for example, and is used to supply electric power to the load when the main power supply 4 provided in the vehicle 9 fails. That is, the backup power supply system 1 is mounted on the vehicle 9 having the main power supply 4 and the load.
  • the term "when the main power supply 4 fails" as used in the present disclosure means that the power supply from the main power supply 4 to the load or the like is stopped due to a failure, deterioration, disconnection, or the like of the main power supply 4.
  • the vehicle 9 includes a drive system 10 and a vehicle body (vehicle body) 91 (see FIG. 2) on which the drive system 10 is mounted.
  • the drive system 10 includes a backup power supply system 1, a main power supply 4, a load (for example, a first load 5 and a second load 6), and an ECU (Electronic Control Unit) 7.
  • the main power source 4 is, for example, a battery mounted on a vehicle 9 (a lead storage battery as an example), and is configured to supply electric power to a plurality of loads.
  • the ECU 7 is configured to control a plurality of loads provided on the vehicle 9.
  • the first load 5 is, for example, a brake system (hereinafter, also referred to as “brake system 5”).
  • the second load 6 is, for example, a shift-by-wire system (hereinafter, also referred to as “shift-by-wire system 6”).
  • shift-by-wire system 6 is referred to as the "SBW system 6".
  • the brake system 5 is a system that electrically operates the brake mechanism provided on each wheel of the vehicle 9.
  • the brake system 5 includes a drive control unit 51 and an actuator 52.
  • the drive control unit 51 controls the drive of the actuator 52 by outputting a control signal to the actuator 52 based on the amount of operation of the brake pedal by the driver.
  • the actuator 52 is configured to operate a braking mechanism provided on each wheel to apply a brake to each wheel in response to a control signal from the drive control unit 51.
  • the shift-by-wire system 6 is a system that electrically switches the shift range of the automatic transmission mounted on the vehicle 9.
  • the shift-by-wire system 6 includes a drive control unit 61 and an actuator 62.
  • the drive control unit 61 controls the drive of the actuator 62 by outputting a control signal to the actuator 62 based on the position of the shift lever operated by the driver.
  • the actuator 62 is configured to switch the shift range of the automatic transmission in response to a control signal from the drive control unit 61.
  • the shift range of the automatic transmission includes a parking range (P range), a reverse range (R range), a neutral range (N range), and a drive range (D range).
  • the drive range is used when the vehicle 9 is moving forward
  • the reverse range is used when the vehicle 9 is moving backward
  • the parking range is used when the vehicle 9 is parked.
  • the actuator 62 locks the rotating shaft in the automatic transmission to lock the movement of the vehicle 9.
  • the brake system 5 and the shift-by-wire system 6 are configured to operate by the electric power supplied from the main power supply 4 or the backup power supply system 1.
  • the main power supply 4 When the main power supply 4 is normal, power is supplied from the main power supply 4 to the first load 5 and the second load 6 (that is, the brake system 5 and the shift-by-wire system 6). On the other hand, when the main power supply 4 fails, power is supplied from the backup power supply system 1 to the first load 5 and the second load 6. Therefore, even when the main power supply 4 fails, the first load 5 and the second load 6 can operate according to the operation of the driver.
  • the backup power supply system 1 includes a first auxiliary power supply 22 and a second auxiliary power supply 3.
  • Each of the first auxiliary power supply 22 and the second auxiliary power supply 3 is an auxiliary power supply capable of supplying electric power to the first load 5 when the main power supply 4 fails.
  • the backup power supply system 1 includes a first switch circuit 26, a second switch circuit 27, and a compulsory circuit 29.
  • the first switch circuit 26 conducts and cuts off the first power supply path L1 connecting the first auxiliary power supply 22 and the first load 5.
  • the first switch circuit 26 is controlled by hardware by the comparison circuit 28 described later.
  • the second switch circuit 27 conducts and cuts off the second power supply path L2 that connects the second auxiliary power supply 3 and the first load 5.
  • the second switch circuit 27 is controlled by software by the control circuit 21 described later.
  • the forced circuit 29 forcibly shuts off the first switch circuit 26.
  • the above-mentioned "controlled by software” means that it is controlled by a circuit operated by a program.
  • a circuit operated by a program is a circuit that executes a program stored in one or more memories and operates based on the executed program (for example, a circuit including one or more processors).
  • a circuit that operates by a program is a circuit that performs signal processing on a digital signal and outputs the result of the signal processing. Therefore, if the program is rewritten, the operation of the circuit operated by the program changes, and the relationship between the input and the output changes.
  • the above-mentioned "controlled by hardware” means that it is controlled by a circuit that is not operated by a program (that is, a circuit that is not operated by a program).
  • a circuit that does not operate by a program is a circuit that is composed of electronic components (including active elements and / or passive elements) having unique functions and operates with the unique functions of each electronic component.
  • a circuit that does not operate by a program is a circuit that performs signal processing on an analog signal and outputs the result of the signal processing. Therefore, even if the program is rewritten, the operation of the circuit that does not operate by the program does not change, and the relationship between the input and the output does not change.
  • “continuity” may be described as “on” and “cutoff” may be described as "off”.
  • the first switch circuit 26 can be forcibly cut off by the forced circuit 29. As a result, it is possible to prevent a period in which the first switch circuit 26 and the second switch circuit 27 are electrically connected to each other. As a result, it is possible to prevent a through current from flowing between the first auxiliary power supply 22 and the second auxiliary power supply 3.
  • the backup power supply system 1 includes a control circuit 21 that controls the second switch circuit 27.
  • the second switch circuit 27 has two switching elements SW3 and SW4, respectively, which conduct and cut off the second power supply path L2.
  • the control circuit 21 has a diagnostic mode in which the switch SW3 (first switching element) 3 is cut off and the switch SW4 (second switching element) is made conductive during the power supply period in which the second auxiliary power supply 3 is supplying power.
  • the backup power supply system 1 includes a backup power supply device 2 and a second auxiliary power supply 3.
  • the backup power supply device 2 includes a control circuit 21, a first auxiliary power supply 22, a power supply circuit 23, a first drive circuit 24, a second drive circuit 25, and a latch circuit 31 (five in FIG. 1). Switches SW1 to SW5, a comparison circuit 28, a compulsory circuit 29, and a plurality of diodes D1 to D4 (four in FIG. 1) are provided. Further, the backup power supply device 2 further includes a plurality of input terminals T1 and T2 (two in FIG. 1) and one output terminal T3. That is, in the backup power supply system 1 according to the present embodiment, the first auxiliary power supply 22 and the second auxiliary power supply 3 are separately provided. The switches SW1 and SW2 form the first switch circuit 26, and the switches SW3 and SW4 form the second switch circuit 27.
  • the input terminal T1 is connected to the main power supply 4 via the ignition switch 8.
  • the input terminal T1 is a terminal for inputting the power supplied from the main power supply 4 to the backup power supply device 2 when the ignition switch 8 is on.
  • the input terminal T2 is connected to the second auxiliary power supply 3.
  • the input terminal T2 is a terminal for inputting the power supplied from the second auxiliary power supply 3 to the backup power supply device 2.
  • the output terminal T3 is connected to the brake system 5.
  • the output terminal T3 is a terminal for outputting the electric power supplied from the first auxiliary power source 22 or the second auxiliary power source 3 to the brake system 5.
  • main power supply 4 is connected to the brake system 5 via the ignition switch 8. Therefore, in the brake system 5, when the main power supply 4 is normal and the ignition switch 8 is on, power is also supplied from the main power supply 4.
  • the first auxiliary power supply 22 and the second auxiliary power supply 3 are backup (that is, auxiliary or spare) power supplies for the main power supply 4.
  • the first auxiliary power supply 22 and the second auxiliary power supply 3 are auxiliary power supplies capable of supplying power to the first load 5 when the main power supply 4 fails.
  • the first auxiliary power supply 22 is connected between the branch point N2 of the power supply path 101 and the power supply circuit 23.
  • the second auxiliary power supply 3 is connected between the downstream side of the ignition switch 8 and the input terminal T2. Further, the second auxiliary power supply 3 is connected to the second load 6 and can supply power to the second load 6.
  • the outputs of the first auxiliary power supply 22 and the second auxiliary power supply 3 are controlled by, for example, the ECU 7.
  • Each of the first auxiliary power supply 22 and the second auxiliary power supply 3 is, for example, an electric double layer capacitor (EDLC: Electric Double Layer Capacitor).
  • EDLC Electric Double Layer Capacitor
  • Each of the first auxiliary power source 22 and the second auxiliary power source 3 may be a secondary battery such as a lithium ion capacitor (LIC: Lithium Ion Capacitor) or a lithium ion battery (LIB: Lithium Ion Battery).
  • a positive electrode is formed of a material similar to EDLC (for example, activated carbon), and a negative electrode is formed of a material similar to LIB (for example, a carbon material such as graphite).
  • each of the first auxiliary power supply 22 and the second auxiliary power supply 3 is not limited to the electric double layer capacitor, and may be, for example, an electrochemical device having the configuration described below.
  • the electrochemical device referred to here includes a positive electrode member, a negative electrode member, and a non-aqueous electrolyte solution.
  • the positive electrode member includes a positive electrode current collector and a positive electrode material layer supported on the positive electrode current collector and containing a positive electrode active material.
  • the positive electrode material layer contains a conductive polymer as a positive electrode active material that is doped and dedoped with an anion (dopant).
  • the negative electrode member has a negative electrode material layer containing a negative electrode active material.
  • the negative electrode active material is, for example, a substance in which a redox reaction accompanied by occlusion and release of lithium ions proceeds, and specifically, a carbon material, a metal compound, an alloy, a ceramic material, or the like.
  • the non-aqueous electrolyte solution has lithium ion conductivity as an example.
  • This type of non-aqueous electrolyte contains a lithium salt and a non-aqueous solution that dissolves the lithium salt.
  • An electrochemical device having such a configuration has a higher energy density than an electric double layer capacitor or the like.
  • each of the first auxiliary power supply 22 and the second auxiliary power supply 3 is composed of two or more power storage devices (for example, electric double layer capacitors) electrically connected in parallel, in series, or in parallel and in series. May be. That is, one first auxiliary power supply 22 and one second auxiliary power supply 3 may be realized by a parallel circuit or a series circuit of two or more power storage devices, or a combination thereof.
  • the first auxiliary power supply 22 and the second auxiliary power supply 3 are charged by the power supplied from the main power supply 4. Specifically, when the ignition switch 8 is turned on and the switch SW5 is turned on, the first auxiliary power supply 22 is supplied with electric power from the main power supply 4 and is charged by this electric power. Further, when the ignition switch 8 is turned on, the second auxiliary power source 3 is supplied with electric power from the main power source 4 and is charged by this electric power. Further, the first auxiliary power supply 22 and the second auxiliary power supply 3 are configured to discharge when the ignition switch 8 is turned off. Therefore, when the ignition switch 8 is turned on again, the first auxiliary power supply 22 and the second auxiliary power supply 3 are in an uncharged state.
  • the "uncharged state" as used in the present disclosure means a fully charged state, that is, a state in which the remaining amount of electric energy is less than a state in which electric energy is sufficiently stored.
  • the power supply circuit 23 is a circuit that generates an operating voltage of the control circuit 21.
  • the power supply circuit 23 steps down the output voltage of the main power supply 4 input via the input terminals T1 and the diodes D1 and D3 to a predetermined voltage (for example, 5V) and outputs the output voltage to the control circuit 21. Further, the power supply circuit 23 steps down the output voltage of the first auxiliary power supply 22 input via the diode D2 to a predetermined voltage (for example, 5V) and outputs the output voltage to the control circuit 21. Further, the power supply circuit 23 steps down the output voltage of the second auxiliary power supply 3 input via the diode D4 to a predetermined voltage (for example, 5V) and outputs the output voltage to the control circuit 21.
  • the control circuit 21 can be operated by the output power of the power supply circuit 23.
  • the first drive circuit 24 is configured to drive two switches SW1 and SW2 together. Specifically, the first drive circuit 24 creates a drive signal for turning on (conducting) / off (cutting off) the switches SW1 and SW2 according to the output signal of the comparison circuit 28, and uses the created second drive signal. Output to switches SW1 and SW2. The switches SW1 and SW2 are turned on / off according to the drive signal from the first drive circuit 24.
  • the second drive circuit 25 is configured to control the two switches SW3 to SW5 separately. Specifically, the second drive circuit 25 is a third to fifth drive signal for turning on (conducting) / turning off (cutting off) the switches SW3 to SW5 according to the third to fifth control signals from the control circuit 21. Is created, and the created third to fifth drive signals are output to the switches SW3 to SW5. The switches SW3 to SW5 are turned on / off according to the third to fifth drive signals from the second drive circuit 25.
  • the latch circuit 31 is a circuit for preventing chattering of switches SW1 and SW2 by the first drive circuit 24.
  • the latch circuit 31 controls the signal input from the comparison circuit 28 to the first drive circuit 24 according to the control from the control circuit 21 (that is, in terms of software).
  • the control circuit 21 monitors the output signal (that is, the H level signal or the L level signal) of the comparison circuit 28. More specifically, when the output signal of the comparison circuit 28 fluctuates, the control circuit 21 inputs the fluctuation from the comparison circuit 28 to the first drive circuit 24 by the latch circuit if the fluctuation is within a short time. The signal to be generated is maintained (latched) to the signal before the fluctuation. This prevents chattering of the switches SW1 and SW2.
  • the control circuit 21 does not maintain the signal input from the comparison circuit 28 to the first drive circuit 24 unless the fluctuation is within a short period of time.
  • the first drive circuit 24 can drive the switches SW1 and SW2 according to the output signal of the comparison circuit 28.
  • Each of the plurality of switches SW1 to SW5 is, for example, an enhancement type P-channel MOSFET (Metal Oxide Semiconductor Field Effect Transistor).
  • the plurality of switches SW1 to SW5 are turned on (conducting) / off (disconnecting) according to the drive signal output from the first drive circuit 24 or the second drive circuit 25.
  • the switches SW1 and SW2 are provided between the first auxiliary power supply 22 and the output terminal T3 in the power supply path 101 connecting the input terminal T1 and the output terminal T3.
  • the power supply path 101 constitutes a part of the first power supply path L1 that connects the main power supply 4 and the first load 5.
  • the switches SW1 and SW2 are connected in series with each other in the power supply path 101.
  • the source of the switch SW1 is connected to the first auxiliary power supply 22, and the drain of the switch SW1 is connected to the drain of the switch SW2. Further, the source of the switch SW2 is connected to the output terminal T3. Then, by turning on the switches SW1 and SW2 together, the electric power stored in the first auxiliary power supply 22 can be supplied to the brake system 5 via the switches SW1 and SW2.
  • the switches SW3 and SW4 are provided in the power supply path 102 connecting the input terminal T2 and the output terminal T3.
  • the power supply path 102 constitutes a part of the second power supply path L2 that connects the second auxiliary power supply 3 and the first load 5.
  • the switches SW3 and SW4 are connected in series with each other in the power supply path 102.
  • the source of the switch SW4 is connected to the input terminal T2, and the drain of the switch SW4 is connected to the drain of the switch SW3. Further, the source of the switch SW3 is connected to the output terminal T3. Then, by turning on the switches SW3 and SW4 together, the electric power stored in the second auxiliary power source 3 can be supplied to the brake system 5 via the switches SW3 and SW4.
  • the backup power supply system 1 is configured to supply power to the brake system 5 from one of the auxiliary power supplies 22 of the first auxiliary power supply 22 and the second auxiliary power supply 3. Therefore, when the switches SW1 and SW2 are turned on to supply power to the brake system 5 from the first auxiliary power supply 22, the switches SW3 and SW4 are turned off to stop the power supply from the second auxiliary power supply 3. There is. When the switches SW3 and SW4 are turned on to supply power to the brake system 5 from the second auxiliary power supply 3, the switches SW1 and SW2 are turned off to stop the power supply from the first auxiliary power supply 22. There is.
  • the first switch circuit 26 is configured by the switches SW1 and SW2, and the second switch circuit 27 is configured by the switches SW3 and SW4. That is, the backup power supply system 1 according to the present embodiment further includes a first switch circuit 26 that conducts and cuts off the first power supply path L1 and a second switch circuit 27 that conducts and cuts off the second power supply path L2.
  • the first switch circuit 26 is turned on (conducting) when both switches SW1 and SW2 are turned on (conducting), and is turned off (cutting off) when at least one of the switches SW1 and SW2 is turned off (cutting off).
  • the second switch circuit 27 is turned on (conducting) when both the switches SW3 and SW4 are turned on (conducting), and is turned off (cutting off) when at least one of the switches SW3 and SW4 is turned off (cutting off).
  • the switch SW5 is provided between the input terminal T1 and the first auxiliary power supply 22 in the power supply path 101 connecting the input terminal T1 and the output terminal T3.
  • the source of the switch SW5 is connected to the input terminal T1 via the diode D1, and the drain of the switch SW5 is connected to the first auxiliary power supply 22.
  • the first auxiliary power supply 22 can be charged by turning on the ignition switch 8 and turning on the switch SW5. Therefore, even if the ignition switch 8 is on, if the switch SW5 is off, the first auxiliary power supply 22 is not charged.
  • the comparison circuit 28 compares the divided voltage of the power supply path 101 with the reference voltage Vref, and controls the first drive circuit 24 according to the comparison result to turn on (conduct) the switches SW1 and SW2. ) / Off (block) is controlled. As a result, when the main power supply 4 fails, power can be supplied from the first auxiliary power supply 22 to the first load 5 under the control of the comparison circuit 28 (that is, in terms of hardware).
  • the comparison circuit 28 monitors the failure and restoration of the main power supply 4 by comparing the divided voltage of the power supply path 101 with the reference voltage Vref. Since the switches SW1 and SW2 constitute the first switch circuit 26, the first switch circuit 26 is controlled according to the control of the comparison circuit 28 (in other words, according to the failure and / or restoration of the main power supply 4). NS.
  • the comparison circuit 28 determines that the main power supply 4 has not failed, and drives the H level signal first. By outputting to the circuit 24, both switches SW1 and SW2 are turned on. Further, when the partial pressure of the power supply path 101 is less than the reference voltage Vref, the comparison circuit 28 determines that the main power supply 4 has failed and outputs the L level signal to the first drive circuit 24. By doing so, both switches SW1 and SW2 are turned off.
  • the comparison circuit 28 has a first input unit (that is, an input unit on the + side), a second input unit (that is, an input unit on the ⁇ side), and an output unit.
  • the reference voltage Vref is input to the first input unit.
  • the second input unit is connected to the branch point N1 of the power supply path 101 via the voltage dividing circuit 30.
  • the branch point N1 is located between the first auxiliary power supply 22 and the first switch circuit 26 in the power supply path 101.
  • the voltage dividing circuit 30 has two electric resistance components R1 and R2.
  • the two electrical resistance components R1 and R2 are connected side by side in series between the branch point N1 and the grounding point.
  • the second input portion of the comparison circuit 28 is connected between the two electrical resistance components R1 and R2.
  • the output unit of the comparison circuit 28 is connected to the first drive circuit 24 and outputs the above H level signal and L level signal.
  • the forced circuit 29 forcibly turns on (conducts) / turns off (conducts) switches SW1 and SW2 via the first drive circuit 24 according to the control from the control circuit 21 (that is, in terms of software). Shut off).
  • the switch SW1 and SW2 and the switches SW3 and SW4 are both turned on, the switch SW1 and SW2 are forcibly turned off by the forced circuit 29, so that the switches SW1 and SW2 and the switches SW3 and SW4 become Can be avoided from being turned on together.
  • the above-mentioned "forced” means that when the control of the first drive circuit 24 by the comparison circuit 28 and the control of the first drive circuit 24 by the forced circuit 29 overlap, the first drive circuit 24 by the forced circuit 29 It means that the control of is prioritized.
  • the control circuit 21 when the control circuit 21 turns on the switches SW3 and SW4 to supply the electric power from the second auxiliary power source 3 to the first load 5 at the request from the vehicle side (for example, ECU 7), the main power source 4 is turned on.
  • the control circuit 21 turns on the SW3 and SW4 at the request of the vehicle side, and further, by the comparison circuit 28 that detects the failure of the main power supply 4 (that is, in terms of hardware). ) Switches SW1 and SW2 are turned on. That is, the switches SW1 to SW4 are both turned on.
  • the compulsory circuit 29 since the compulsory circuit 29 is provided, when the switches SW1 to SW4 are both turned on as in the above case, the compulsory circuit 29 forcibly turns off the switches SW1 and SW2. As a result, it is suppressed that the switches SW1 and SW2 and the switches SW3 and SW4 are both turned on.
  • control circuit 21 is composed of, for example, a microcomputer having a processor and a memory. That is, the control circuit 21 is realized in a computer system having a processor and a memory. Then, when the processor executes an appropriate program, the computer system functions as the control circuit 21.
  • the program may be pre-recorded in a memory, may be recorded through a telecommunication line such as the Internet, or may be recorded and provided on a non-temporary recording medium such as a memory card.
  • the control circuit 21 controls the first drive circuit 24, the second drive circuit 25, the latch circuit 31, and the compulsory circuit 29. By this control, the control circuit 21 controls the switches SW1 to SW5.
  • the control circuit 21 controls the on / off of the switches SW3 and SW4 via the second drive circuit 25 according to a signal from the vehicle side (for example, the ECU 7).
  • the ECU 7 is an example of an “external device”.
  • the control circuit 21 first controls the first drive circuit 24 via the forced circuit 29 to control the switches S1 and SW2. Forcibly turn off.
  • the control circuit 21 turns on the switches SW3 and SW4 via the second drive circuit 25.
  • the switches SW3 and SW4 should be controlled to be turned off via the second drive circuit 25, the main power supply 4 has failed and the first auxiliary power supply 22 is sufficiently charged. If not, the switch SW1 and SW2 are forcibly turned off by the control of the first drive circuit 24 by the forced circuit 29, and the switches SW3 and SW4 are turned on via the second drive circuit 25. To continue. As a result, it is possible to prevent the power from being supplied to the first load 5 from being supplied.
  • the control circuit 21 controls the switches SW3 and SW4 to be turned off via the second drive circuit 25, and then controls the switches SW3 and SW4 to be off. , The forced control of the first drive circuit 24 by the forced circuit 29 is released.
  • control circuit 21 turns off the switches SW3 and SW4 via the second drive circuit 25 when the main power supply 4 has not failed or the first auxiliary power supply 22 is sufficiently charged. .. After that, the control circuit 21 releases the forced control of the first drive circuit 24 by the forced circuit 29.
  • the control circuit 21 monitors the output voltage of the main power supply 4 and the output voltage of the first auxiliary power supply 22. As a result, the control circuit 21 monitors whether or not the main power supply 4 has failed and whether or not the first auxiliary power supply 22 is sufficiently charged.
  • the fact that the first auxiliary power supply 22 is sufficiently charged means that the charging voltage (output voltage) of the first auxiliary power supply 22 is equal to or higher than a predetermined charging voltage.
  • control circuit 21 has a function of diagnosing a failure of the second switch circuit 27.
  • the control circuit 21 uses the output voltage of the second auxiliary power supply 3 to diagnose a failure of the second switch circuit 27. Therefore, the control circuit 21 diagnoses the failure of the second switch circuit 27 during the power supply period in which the power is supplied from the second auxiliary power supply 3. In other words, the control circuit 21 has a diagnostic mode for diagnosing a failure of the second switch circuit 27 during the power supply period in which power is supplied from the second auxiliary power source 3.
  • the above power supply period is a fixed period.
  • the power supply period for supplying power from the second auxiliary power source 3 can be limited for the diagnostic mode. As a result, waste of the second auxiliary power supply 3 can be suppressed.
  • the control circuit 21 diagnoses a failure of the switch SW4 (for example, an open failure and a short failure) in the failure diagnosis of the second switch circuit 27. More specifically, the diagnosis of open failure is performed as follows. That is, the control circuit 21 controls the switch SW4 to be turned on with the switch SW3 turned off via the second drive circuit 25 during the power supply period of the second auxiliary power supply 3, and the switch SW4 is turned on in this control state. Detects the voltage across. As a result of this detection, the control circuit 21 determines that the switch SW4 is not an open failure when the voltages across the switch SW4 are the same, and when there is a voltage difference between the voltages across the switch SW4, the switch SW4 Is determined to be an open failure.
  • a failure of the switch SW4 for example, an open failure and a short failure
  • the diagnosis of short failure is performed as follows. That is, the control circuit 21 controls the switch SW4 to be turned off while the switch SW3 is turned off via the second drive circuit 25 during the power supply period of the second auxiliary power supply 3, and the switch SW4 is turned off in this control state. Detects the voltage across. As a result of this detection, the control circuit 21 determines that the switch SW4 is not a short-circuit failure when there is a voltage difference between the voltages across the switch SW4, and when the voltages across the switch SW4 are the same, the switch SW4 Is determined to be a short-circuit failure.
  • the second auxiliary power supply 3 is controlled by a device (for example, ECU 7) other than the control circuit 21.
  • the second auxiliary power supply 3 outputs a voltage (that is, electric power) for a certain period of time from the start of the control circuit 21 under the control of the ECU 7 for the failure diagnosis of the second switch circuit 27.
  • the control circuit 21 performs a failure diagnosis of the second switch circuit 27 in accordance with this fixed time. As a result, the failure diagnosis of the second switch circuit 27 can be easily adjusted to the power supply period of the second auxiliary power supply 3.
  • control circuit 21 performs a failure diagnosis of the second switch circuit 27 (that is, executes a diagnosis mode) based on a signal from an external device (for example, the ECU 7). That is, the control circuit 21 acquires information regarding the timing at which the second auxiliary power supply 3 supplies electric power by a signal from the external device, and performs a failure diagnosis of the second switch circuit 27 according to the timing.
  • the above-mentioned "signal from an external device” is, for example, a signal for remotely parking the vehicle 9 (for example, a request signal for requesting the implementation of remote parking described later).
  • electric power is output from the second auxiliary power source 3 in order to operate the first load 5 by the electric power from the second auxiliary power source 3.
  • the control circuit 21 performs a failure diagnosis of the second switch circuit 27 based on a signal from an external device (for example, the ECU 7) in order to utilize the period in which this electric power is output.
  • the failure diagnosis of the second switch circuit 27 is possible in any period of a certain period from the start of the control circuit 21 and a period based on the signal from the external device thereafter. ..
  • the control circuit 21 monitors the presence or absence of the voltage output (power supply) of the second auxiliary power supply 3, and after confirming that the voltage is output from the second auxiliary power supply 3, the second switch circuit 27 fails. Make a diagnosis.
  • the diode D1 is provided between the input terminal T1 and the switch SW5 in the power supply path 101 connecting the input terminal T1 and the output terminal T3.
  • the anode of the diode D1 is connected to the input terminal T1, and the cathode of the diode D1 is connected to the source of the switch SW5.
  • the diode D2 is provided between the first auxiliary power supply 22 and the power supply circuit 23.
  • the anode of the diode D2 is connected to the first auxiliary power supply 22, and the cathode of the diode D2 is connected to the power supply circuit 23.
  • the diode D3 is provided between the connection point of the diode D1 and the switch SW5 and the power supply circuit 23.
  • the anode of the diode D3 is connected to the connection point of the diode D1 and the switch SW5, and the cathode of the diode D3 is connected to the power supply circuit 23.
  • the diode D4 is provided between the input terminal T2 and the power supply circuit 23.
  • the anode of the diode D4 is connected to the input terminal T2, and the cathode of the diode D4 is connected to the power supply circuit 23.
  • the diodes D1 and D3 are conductive and the diodes D2 and D4 are non-conducting, so that the main power supply 4
  • the output voltage of is input to the power supply circuit 23 via the diodes D1 and D3.
  • the power supply circuit 23 steps down the input output voltage of the main power supply 4 to a predetermined voltage (for example, 5V) and outputs it to the control circuit 21.
  • the diodes D2 are conductive and the diodes D1, D3, and D4 are non-conducting, so that the first auxiliary power supply is non-conducting.
  • the output voltage of 22 is input to the power supply circuit 23 via the diode D2. Then, the power supply circuit 23 steps down the input output voltage of the first auxiliary power supply 22 to a predetermined voltage (for example, 5V) and outputs it to the control circuit 21.
  • the diodes D4 become conductive and the diodes D1, D2, D3 become non-conducting, so that the second auxiliary power supply becomes non-conducting.
  • the output voltage of 3 is input to the power supply circuit 23 via the diode D4.
  • the power supply circuit 23 steps down the input output voltage of the second auxiliary power supply 3 to a predetermined voltage (for example, 5V) and outputs it to the control circuit 21.
  • F1 is an output flag indicating the output state of the second auxiliary power supply 3.
  • F2 is a request flag that requests an output from the second auxiliary power supply 3.
  • F3 is a permission flag indicating whether or not remote parking is permitted.
  • F4 is a prohibition flag indicating whether or not remote parking is prohibited.
  • F5 is a charging permission flag indicating whether or not charging of the first auxiliary power source 22 is permitted.
  • the user (driver or passenger) of the vehicle 9 gives an instruction for remote parking to the ECU 7 of the vehicle 9 using, for example, a dedicated remote controller.
  • the ignition switch 8 is off. Therefore, in this case, power is not supplied from the main power supply 4 to the first auxiliary power supply 22 and the second auxiliary power supply 3, and the first auxiliary power supply 22 and the second auxiliary power supply 3 are not charged. Further, when the ignition switch 8 is off, the electric power stored in the first auxiliary power supply 22 and the second auxiliary power supply 3 is discharged, so that the first auxiliary power supply 22 and the second auxiliary power supply 3 are in an uncharged state. be.
  • the ECU 7 When the remote parking instruction is given to the ECU 7, the ECU 7 turns on the ignition switch 8 and starts charging the second auxiliary power source 3.
  • the ignition switch 8 When the ignition switch 8 is turned on, power is supplied from the main power supply 4 to the power supply circuit 23, and the control circuit 21 is activated by the output power of the power supply circuit 23.
  • the permission flag B2 is turned off, and remote parking cannot be performed.
  • all of the switches SW1 to SW5 are off.
  • the first auxiliary power supply 22 is not charged, and only the second auxiliary power supply 3 is charged. That is, the second auxiliary power supply 3 is charged with priority over the first auxiliary power supply 22 by the electric power supplied from the main power supply 4.
  • the ECU 7 outputs a request signal Sigma 1 requesting the execution of remote parking to the control circuit 21.
  • the control circuit 21 executes various processes shown below in order to perform remote parking.
  • the ECU 7 of the vehicle 9 is an external system.
  • the control circuit 21 detects a short circuit (short circuit failure) of the switches SW2 and SW3 before the time t1. At this time, the control circuit 21 detects a short circuit of the switch SW2 by measuring the voltage at the midpoint between the switches SW1 and SW2 while the switches SW1 to SW4 are off, and detects the short circuit of the switch SW2 and the midpoint P2 between the switches SW3 and SW4. A short circuit of the switch SW3 is detected by measuring the voltage. Further, the control circuit 21 turns on the switch SW3 at time t1 and measures the voltage between the switches SW3 and SW4 to detect the opening (open failure) of the switch SW3. The control circuit 21 turns off the switch SW3 at the time t2.
  • the control circuit 21 turns on the request flag F2 at time t2 if the switch SW3 is not short-circuited and is not open.
  • the control circuit 21 measures the voltage at the midpoint P1, and if this voltage is equal to or higher than the first voltage, it determines that power is being output from the second auxiliary power supply 3. Then, the control circuit 21 turns on the output flag F1 (see FIG. 4). At this time, since the switches SW3 and SW4 are off, the output power of the second auxiliary power supply 3 is supplied to the shift-by-wire system 6, but not to the brake system 5.
  • the control circuit 21 performs a failure diagnosis of the switch SW4 in the period from the time t2 to the time t3 (that is, using the power supply period of the second auxiliary power supply 3).
  • the control circuit 21 detects a short circuit (short circuit failure) of the switch SW4. More specifically, the control circuit 21 detects a short circuit of the switch SW4 by measuring the voltage across the switch SW4 with the switch SW4 turned off. More specifically, the control circuit 21 determines that the switch SW4 is not short-circuited if there is a voltage difference across the switch SW4, and if the voltage across the switch SW4 is the same voltage, the switch SW4 is short-circuited. It is determined that it is.
  • the control circuit 21 detects the opening (open failure) of the switch SW4 by turning on the switch SW4. More specifically, the control circuit 21 detects the opening of the switch SW4 by measuring the voltage across the switch SW4 with the switch SW4 turned off. More specifically, the control circuit 21 determines that the switch SW4 is not open if the voltage across the switch SW4 is the same, and opens the switch SW4 if the voltage across the switch SW4 has the same voltage difference. Judge that it is.
  • the failure diagnosis of the switch SW4 is performed in the period from time t3 to t4, and this period is an example of a fixed period from the time of startup. That is, in the operation example 1, the failure diagnosis of the switch SW4 is performed within a certain period from the time when the control circuit 21 is started. However, the failure diagnosis of the switch SW4 may be performed at the time of starting the control circuit 21 (that is, at the same time as starting the control circuit 21).
  • the above-mentioned failure diagnosis for the switch SW4 may be performed on the switch SW3 or on both the switches SW3 and SW4. That is, the above-mentioned failure diagnosis for the switch SW4 may be performed on at least one of the switches SW3 and SW4.
  • the control circuit 21 turns on the switch SW3 at time t4 if the switch SW4 is not short-circuited and is not open. At this time, the control circuit 21 turns off the request flag F2. At this time, since the switches SW3 and SW4 are both turned on, the output power of the second auxiliary power source 3 is supplied to both the brake system 5 and the shift-by-wire system 6.
  • the permission flag F3 is turned on because the second auxiliary power supply 3 is in a state where power can be supplied to the brake system (first load) 5 and remote parking is possible.
  • an authorization signal is output to the ECU 7.
  • the ECU 7 Upon receiving the permission signal from the control circuit 21, the ECU 7 transmits an operable signal indicating that remote parking is possible to the remote controller. Remote parking is started when the user performs a specific operation (operation for performing remote parking) on the remote controller that has received the operable signal.
  • control circuit 21 turns on the charge permission flag F5 and turns on the switch SW5 to start charging the first auxiliary power supply 22.
  • the control circuit 21 turns off the output flag F1 because the output voltage of the second auxiliary power supply 3 is equal to or lower than the first voltage at time t6. At time t7, the control circuit 21 turns off the permission flag F3 because the output voltage of the second auxiliary power supply 3 is equal to or lower than the first voltage and is not in a state where power can be supplied to the brake system 5. do. Further, the control circuit 21 turns on the prohibition flag F4 when the permission flag F3 is turned from on to off at the time t8. The control circuit 21 turns off the switches SW3 and SW4 at time t9, and stops the power supply from the second auxiliary power supply 3 to the brake system 5.
  • the control circuit 21 detects a short circuit of the switch SW1 in the period from time t9 to time t10.
  • the control circuit 21 detects a short circuit of the switch SW1 by measuring the voltage at the third midpoint between the switches SW1 and SW2 while the switches SW1 and SW2 are off.
  • the control circuit 21 detects that the switches SW1 and SW2 are open if the switches SW1 and SW2 are not short-circuited.
  • the control circuit 21 turns on the switches SW1 and SW2 at time t10 and measures the voltage at the third midpoint between the switches SW1 and SW2 to detect the opening of the switches SW1 and SW2.
  • the control circuit 21 turns off the switches SW1 and SW2 and turns on the switches SW3 and SW4 at time t11. Then, at time t12, the control circuit 21 outputs because the output voltage of the second auxiliary power supply 3 is equal to or higher than the first voltage and is in a state where power can be supplied to the brake system 5.
  • the flag F1 is turned on and the permission flag F3 is turned on.
  • the control circuit 21 Since the first auxiliary power supply 22 has been charged at the time t13, the control circuit 21 turns off the switches SW3 and SW4 in order to stop the power supply from the second auxiliary power supply 3 to the brake system 5. do. As a result, the power supply from the second auxiliary power supply 3 to the brake system 5 is stopped. Then, after time t13, since the first auxiliary power supply 22 is in a state where power can be supplied to the brake system 5, the control circuit 21 turns on the switches SW1 and SW2 to turn on the first auxiliary power supply 22. Power is supplied to the brake system 5.
  • the second auxiliary power supply 3 is used during the period when the switches SW3 and SW4 are on and the output flag F1 is on (the period from time t4 to t6 and the period from time t12 to t13). Remote parking can be done by electric power.
  • "Bin” is a flag indicating whether or not a failure has occurred in the main power supply 4. If the main power supply 4 has not failed, the flag Bin is turned off, and if the main power supply 4 has failed, the flag Bin is turned on.
  • “B0” is a flag indicating whether the control circuit 21 has received the remote parking execution signal from the ECU 7 or the control circuit 21 has received the remote parking end signal from the ECU 7. When the control circuit 21 receives the remote parking execution signal from the ECU 7, the flag B0 is turned on, and when the control circuit 21 receives the remote parking end signal from the ECU 7, the flag B0 is turned off.
  • the remote parking execution signal is a signal requesting the execution of remote parking
  • the remote parking end signal is a signal requesting the end of remote parking.
  • “B1” is a bluff indicating whether or not the second auxiliary power source 3 is in the fully charged state. If the second auxiliary power source 3 is in the fully charged state, the flag B1 is turned on, and if the second auxiliary power source 3 is in the incompletely charged state, the flag B1 is turned off. Become. "B2" is a permission flag indicating whether or not remote parking is permitted.
  • “B3” is a flag indicating whether or not the backup power supply system 1 is in the first auxiliary power supply mode for outputting power from the first auxiliary power supply 22.
  • “B4” is a flag indicating whether or not the output terminal T3 is outputting power from the first auxiliary power supply 22 or the second auxiliary power supply 3.
  • “B5” is a flag indicating whether or not the comparison circuit 28 has detected the failure of the main power supply 4.
  • “B6” is a flag indicating whether or not the switches SW1 and SW2 are forcibly turned off by the forced circuit 29.
  • “B7” is a flag indicating whether or not the latch circuit 31 latches the switches SW1 and SW2.
  • “SW1” to “SW4” indicate whether the switches SW1 to SW4 are turned on or off, respectively.
  • the control circuit 21 When the control circuit 21 receives the remote parking execution signal from the ECU 7 at the time t21 (flag B0 is turned on), the control circuit 21 forcibly turns off the switches SW1 and SW2 via the forced circuit 29 at the time t22 (the flag B0 is turned on). Flag B6 on). After that, at time t23, the control circuit 21 turns on the switches SW3 and SW4. As a result, at time t23, the electric power from the second auxiliary power source 3 is supplied from the output terminal T3 to the first load 5 via the switches SW3 and SW4 (flag B4 is turned on). With this power supply, remote parking can be performed at time t23 (flag B2 is turned on). In the present embodiment, since the switches SW1 and SW2 are turned off from the time t21, the forced off state of the switches SW1 and SW2 is maintained at the time t22.
  • the control circuit 21 receives the remote parking end signal from the ECU 7 (flag B0 is off). In this case, since the main power supply 4 has failed and the first auxiliary power supply 22 has not been charged, the control circuit 21 turns on the switches SW3 and SW4 even if the remote parking end signal is received from the ECU 7. To continue. As a result, the power from the second auxiliary power source continues to be supplied from the output terminal T3 to the first load 5 without interruption (that is, the flag B4 continues to be turned on).
  • the comparison circuit 28 detects the restoration (flag B5 is off), and the power of the main power supply 4 is supplied to the first load 5. ..
  • the control circuit 21 turns off the switches SW3 and SW4 at time t31.
  • the power supply of the second auxiliary power supply 3 from the output terminal T3 to the first load 5 is stopped (flag B4 is turned off).
  • remote parking becomes impossible at time t32 (flag B2 is off).
  • the first auxiliary power supply mode is turned off at time t32 (flag B3 is turned off).
  • the switches SW3 and SW4 are turned off at time t31, the first auxiliary power supply mode of the backup power supply system 1 is released at time t32 (flag B3 is turned off). Further, when the switches SW3 and SW4 are turned off at the time t31, the forced off of the switches SW1 and SW2 by the forced circuit 29 is released at the subsequent time t32 (flag B6 is turned off).
  • the control circuit 21 when the control circuit 21 receives the remote parking end signal from the ECU 7 at time t26 (flag B0 is turned off), the control circuit 21 turns off the switches SW3 and SW4 at time t27. As a result, at time t27, the power supply of the second auxiliary power supply 3 from the output terminal T3 is stopped (flag B4 is turned off). As a result, remote parking becomes impossible at time t27 (flag B2 is off). Further, when the switches SW3 and SW4 are turned off, the forced off of the switches SW1 and SW2 by the forced circuit 29 is released at the subsequent time t28 (flag B6 is turned off).
  • the switches SW1 and SW3 are turned on by the comparison circuit 28 at time t28.
  • power from the first auxiliary power supply 22 that has not been charged is supplied from the output terminal T3 (flag B4 is turned on).
  • the latch circuit 31 latches the on of the switches SW1 and SW2 at the time t29 (flag B7 is turned on).
  • the comparison circuit 28 detects the restoration (flag B5 is off), but the latch circuit 31 is in the on state (flag B7 is on).
  • Switches SW1 and SW2 continue to be on.
  • the latch circuit 31 is turned off at time t31 (flag B7 is turned off)
  • the power supply of the first auxiliary power supply 22 from the output terminal T3 is stopped at time t31 (flag B4 is turned off).
  • the switches SW3 and SW4 are turned off when the control circuit 21 receives the remote parking end signal (time t26) during the failure of the main power supply 4. (Time t27), a period (time t27 to t28) in which the power supply from the output terminal T3 is stopped occurs. Therefore, in the present embodiment (graph of practice in FIG. 4), when the control circuit 21 receives the remote parking end signal (time t26) during the failure of the main power supply 4, the switches SW3 and SW4 are continuously turned on. By doing so, it is possible to prevent the power supply from the output terminal T3 from being interrupted during the period from time t27 to t28.
  • the control circuit 21 When the control circuit 21 receives the remote parking execution signal from the ECU 7 at the time t41 (flag B0 is turned on), the control circuit 21 forcibly turns off the switches SW1 and SW2 via the forced circuit 29 at the time t42 (the flag B0 is turned on). Flag B6 on). After that, at time t43, the control circuit 21 turns on the switches SW3 and SW4. As a result, at time t43, the electric power from the second auxiliary power source 3 is supplied from the output terminal T43 to the first load 5 via the switches SW3 and SW4 (flag B4 is turned on). With this power supply, remote parking can be performed at time t43 (flag B2 is turned on). In the present embodiment, since the switches SW1 and SW2 are off from the time t41, the forced off state of the switches SW1 and SW2 is maintained at the time t42.
  • the comparison circuit 28 detects the restoration (flag B5 is off), and the power of the main power supply 4 is supplied to the first load 5. .. Then, when the main power supply 4 is restored at time t46, the first auxiliary power supply mode is turned off at time t47 (flag B3 is turned off).
  • the control circuit 21 receives the remote parking end signal from the ECU 7 at time t48 (flag B0 is turned off), the control circuit 21 turns off the switches SW3 and SW4 at time t49.
  • the power supply of the second auxiliary power source from the output terminal T43 is stopped (flag B4 is turned off), and remote parking becomes impossible (flag B2 is turned off).
  • the switches SW3 and SW4 are turned off, the forced off of the switches SW1 and SW2 by the forced circuit 29 is released at the subsequent time t50 (flag B6 is turned off).
  • both the first condition and the second condition are satisfied, but at least one of the first condition and the second condition may be satisfied.
  • the first condition is that the second switch circuit 27 (that is, switches SW3 and SW4) is controlled to be turned on (conducting) after the first switch circuit 26 (that is, switches SW1 and SW2) is forcibly turned off (disconnected). It is a condition.
  • the second condition is that the forced cutoff (off) of the first switch circuit 26 is released after the second switch circuit 27 is turned off (cut off).
  • the backup power supply system 1 described above includes a first auxiliary power supply 22, a second auxiliary power supply 3, a first switch circuit 26, and a second switch circuit 27.
  • the first auxiliary power supply 22 and the second auxiliary power supply 3 can supply electric power to the first load 5 (load) when the main power supply 4 fails.
  • the first switch circuit 26 conducts and cuts off the first power supply path L1 connecting the first auxiliary power supply 22 and the first load 5.
  • the second switch circuit 27 conducts and cuts off the second power supply path L2 that connects the second auxiliary power supply 3 and the first load 5.
  • the first switch circuit 26 is controlled by hardware.
  • the second switch circuit 27 is controlled by software.
  • the backup power supply system 1 further includes a compulsory circuit 29 that forcibly shuts off the first switch circuit 26.
  • the first switch circuit 26 can be forcibly cut off by the forced circuit 29. As a result, it is possible to prevent a period in which the first switch circuit 26 and the second switch circuit 27 are electrically connected to each other. As a result, it is possible to prevent a through current from flowing between the first auxiliary power supply 22 and the second auxiliary power supply 3.
  • the backup power supply system 1 includes a first auxiliary power supply 22, a second auxiliary power supply 3, a first switch circuit 26, a second switch circuit 27, and a control circuit 21.
  • the first auxiliary power supply 22 and the second auxiliary power supply 3 can supply electric power to the first load 5 when the main power supply 4 fails.
  • the first switch circuit 26 conducts and cuts off the first power supply path L1 connecting the first auxiliary power supply 22 and the first load 5.
  • the second switch circuit 27 conducts and cuts off the second power supply path L2 that connects the second auxiliary power supply 3 and the first load 5.
  • the control circuit 21 controls the second switch circuit 27.
  • the second switch circuit 27 has a switch SW3 (first switching element) and a switch SW4 (second switching element).
  • the switch SW3 and the switch SW4 conduct and cut off the second power supply path L2, respectively.
  • the control circuit 21 has a diagnostic mode in which the switch SW3 is shut off and the switch SW4 is made conductive during the power supply period in which the second auxiliary power supply 3 is supplying power.
  • the output of the second auxiliary power supply 3 can be used to diagnose the failure of the second switch circuit 27.
  • the power supply backup method is a power supply backup method used for a backup power supply system 1 including a first auxiliary power supply 22 and a second auxiliary power supply 3 capable of supplying power to the load 5 when the main power supply 4 fails.
  • the power supply backup method includes a first switching step, a second switching step, and a control step.
  • the first switching step the first power supply path L1 connecting the first auxiliary power supply 22 and the load 5 is conducted and cut off by the first switch circuit 26.
  • the second power supply path L2 connecting the second auxiliary power supply 3 and the load 5 is conducted and cut off by the second switch circuit 27.
  • the control process controls the second switch circuit 27.
  • the switch SW3 (first switching element) and the switch SW4 (second switching element) each conduct and cut off the second power supply path L2.
  • the control step has a diagnostic mode in which the switch SW3 is shut off and the switch SW4 is made conductive during the power supply period in which the second auxiliary power supply 3 is supplying power.
  • the program according to one aspect is a program for causing one or more processors to execute the above-mentioned power supply backup method.
  • the forced circuit 29 forcibly turns off the first switch circuit 26.
  • the forced circuit 29 may forcibly turn off the second switch circuit 27 instead of the first switch circuit 26.
  • the forced circuit 29 is configured to forcibly shut off the second switch circuit 27 when the first switch circuit 26 is on.
  • the ECU 7 controls the output of the second auxiliary power supply 3, and the second auxiliary power supply 3 constantly outputs the electric power after the control circuit 21 is activated.
  • the second auxiliary power supply 3 may be controlled as described above. In this case, the failure diagnosis of the switch SW4 can be performed at any time after the control circuit 21 is activated in accordance with the output of the second auxiliary power supply 3.
  • the ECU 7 controls the second auxiliary power supply 3 so that the second auxiliary power supply 3 outputs power only for a certain period including the period in which the switches SW3 and SW4 are turned on to supply power from the output terminal T3. May be good.
  • the failure diagnosis of the switch SW4 should be performed during the free time (a period other than the period in which the switches SW3 and SW4 are turned on for power supply) within the above-mentioned fixed period after the control circuit 21 is activated. Can be done.
  • the control circuit 21 can adjust the timing of performing the failure diagnosis of the switch SW4 to the above-mentioned free time based on the remote parking execution signal received from the ECU 7. That is, the control circuit 21 can execute the diagnosis (that is, the diagnosis mode) of the switch SW4 based on the remote parking execution signal (that is, the signal from the outside).
  • the backup power supply system (1) of the first aspect includes the first auxiliary power supply (22), the second auxiliary power supply (3), the first switch circuit (26), and the second switch circuit (27). And.
  • the first auxiliary power supply (22) and the second auxiliary power supply (3) can supply electric power to the load (5) when the main power supply (4) fails.
  • the first switch circuit (26) conducts and cuts off the first power supply path (L1) connecting the first auxiliary power supply (22) and the load (5).
  • the second switch circuit (27) conducts and cuts off the second power supply path (L2) connecting the second auxiliary power supply (3) and the load (5).
  • the backup power supply system (1) further includes a compulsory circuit (29) for forcibly shutting off one of the first switch circuit (26) and the second switch circuit (27).
  • the forced circuit (29) can forcibly shut off one of the switch circuits (for example, the first switch circuit 26) of the first switch circuit (26) and the second switch circuit (27). can.
  • the switch circuits for example, the first switch circuit 26
  • the second switch circuit 27
  • a through current from flowing between the first auxiliary power supply (22) and the second auxiliary power supply (3).
  • the first switch circuit (26) is controlled by hardware.
  • the second switch circuit (27) is controlled by software.
  • the compulsory circuit (29) forcibly forces one switch circuit (for example, the first switch circuit 26) when the other switch circuit of the first switch circuit (26) and the second switch circuit (27) is in a conductive state. Shut off.
  • the backup power supply system (1) of the third aspect at least one of the first condition and the second condition is satisfied in the first or second aspect.
  • the first condition is that one switch circuit (for example, the first switch circuit 26) is forcibly shut off and then the other switch circuit (for example, the second switch circuit 27) is controlled to be turned on.
  • the second condition is that the forced cutoff of one switch circuit is released after the other switch circuit is cut off.
  • one switch circuit for example, the first switch circuit
  • the other switch circuit for example, the second switch circuit 27
  • the first auxiliary power supply (22) cannot be sufficiently supplied with power from both the main power supply (4) and the first auxiliary power supply (22) during the period when the other switch circuit should be cut off.
  • Power can be supplied from the second auxiliary power source (3) while preventing a through current from being generated between the second auxiliary power source (3) and the second auxiliary power source (3).
  • one switch circuit (for example, the first switch circuit 26) has a failure of the main power supply (4) or It is controlled according to the recovery.
  • one of the above switch circuits can be controlled according to the failure or restoration of the main power supply (4).
  • the backup power supply system (1) of the sixth aspect includes a first auxiliary power supply (22), a second auxiliary power supply (3), a first switch circuit (26), a second switch circuit (27), and a control circuit. (21) and.
  • the first auxiliary power supply (22) and the second auxiliary power supply (3) can supply electric power to the load (5) when the main power supply (4) fails.
  • the first switch circuit (26) conducts and cuts off the first power supply path (L1) connecting the first auxiliary power supply (22) and the load (5).
  • the second switch circuit (27) conducts and cuts off the second power supply path (L2) connecting the second auxiliary power supply (3) and the load (5).
  • the control circuit (21) controls the second switch circuit (27).
  • the second switch circuit (27) has a first switching element (SW3) and a second switching element (SW4).
  • the first switching element (SW3) and the second switching element (SW4) conduct and cut off the second power supply path (L2), respectively.
  • the control circuit (21) has a diagnostic mode in which the first switching element (SW3) is cut off and the second switching element (SW4) is made conductive during the power supply period in which the second auxiliary power supply (3) is supplying power. ..
  • control circuit (21) is diagnosed at the time of starting the control circuit (21) or within a certain period from the time of starting the control circuit (21). Execute the mode.
  • the diagnostic mode can be easily set to the second auxiliary power supply (3) by executing the diagnostic mode within a certain period from the start of the control circuit (21) or the start of the control circuit (21). It can be adjusted to the power supply period.
  • control circuit (21) executes the diagnostic mode based on a signal from the outside (for example, a remote parking execution signal).
  • the diagnostic mode can be easily adjusted to the power supply period of the second auxiliary power supply (3).
  • the power supply period is a fixed period.
  • the power supply period for supplying power from the second auxiliary power supply (3) can be limited for the diagnostic mode. As a result, waste of the second auxiliary power supply (3) can be suppressed.
  • control circuit (21) is the first switching element (SW3) and the second switching element in the diagnostic mode. Diagnose the failure of at least the second switching element (SW4) of (SW4).
  • a failure of at least the second switching element (SW4) of the first switching element (SW3) and the second switching element (SW4) can be diagnosed.
  • the power supply backup method of the eleventh aspect is a backup power supply including a first auxiliary power supply (22) and a second auxiliary power supply (3) capable of supplying power to the load (5) when the main power supply (4) fails.
  • This is a power supply backup method used in the system (1).
  • the power supply backup method includes a first switching step, a second switching step, and a control step.
  • the first switching step the first power supply path (L1) connecting the first auxiliary power supply (22) and the load (5) is conducted and cut off by the first switch circuit (26).
  • the second power supply path (L2) connecting the second auxiliary power supply (3) and the load (5) is conducted and cut off by the second switch circuit (27).
  • the control step controls the second switch circuit (27).
  • each of the first switching element (SW3) and the second switching element (SW4) conducts and cuts off the second power supply path (L2).
  • the control step has a diagnostic mode in which the first switching element (SW3) is cut off and the second switching element (SW4) is made conductive during the power supply period in which the second auxiliary power supply (3) is supplying electric power.
  • the second switch circuit (27) can be diagnosed.
  • the program of the twelfth aspect is a program for causing one or more processors to execute the power supply backup method of the eleventh aspect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

A backup power supply system 1 is equipped with a first auxiliary power supply 22, a second auxiliary power supply 3, a first switch circuit 26, and a second switch circuit 27. The first auxiliary power supply 22 and the second auxiliary power supply 3 are able to supply power to a load 5 when a main power supply 4 fails. The first switch circuit 26 conducts and interrupts current in a first power supply line L1 connecting the first auxiliary power supply 22 and the load 5. The second switch circuit 27 conducts and interrupts current in a second power supply line L2 connecting the second auxiliary power supply 3 and the load 5. The backup power supply system 1 is further provided with a forcing circuit 29 for forcibly interrupting current in one of the switching circuits, that is, the first switching circuit 26 or the second switching circuit 27.

Description

バックアップ電源システム、電源バックアップ方法及びプログラムBackup power system, power backup method and program
 本開示は、一般にバックアップ電源システム、電源バックアップ方法及びプログラムに関する。より詳細には、本開示は、主電源の失陥時に負荷に対して電力を供給可能なバックアップ電源システム、電源バックアップ方法及びプログラムに関する。 This disclosure generally relates to backup power systems, power backup methods and programs. More specifically, the present disclosure relates to backup power systems, power backup methods and programs capable of supplying power to a load in the event of a mains failure.
 特許文献1は、冗長電源システム(バックアップ電源システム)を開示する。この冗長電源システムは、主電源、副電源(補助電源)、第1~第4リレー(スイッチ回路、スイッチング素子)、レギュレータと、DCDCコンバータとを備える。DCDCコンバータは、主電源と第1負荷との間に設けられる。第1リレーは、DCDCコンバータと副電源とを通電及び遮断可能に接続する。第2リレーは、DCDCコンバータと第2負荷とを通電及び遮断可能に接続する。第3リレーは、主電源とDCDCコンバータとを通電及び遮断可能に接続する。第4リレーは、主電源と第2負荷とを通電及び遮断可能に接続する。レギュレータは、副電源と第1負荷とを接続する。 Patent Document 1 discloses a redundant power supply system (backup power supply system). This redundant power supply system includes a main power supply, an auxiliary power supply (auxiliary power supply), first to fourth relays (switch circuit, switching element), a regulator, and a DCDC converter. The DCDC converter is provided between the main power supply and the first load. The first relay connects the DCDC converter and the auxiliary power supply so that they can be energized and cut off. The second relay connects the DCDC converter and the second load so that they can be energized and cut off. The third relay connects the main power supply and the DCDC converter so as to be energized and cut off. The fourth relay connects the main power supply and the second load so that they can be energized and cut off. The regulator connects the auxiliary power supply and the first load.
 このシステムでは、エンジン再始動処理においては、第1リレー及び第4リレーを遮断しかつ第2リレー及び第3リレーを通電して、第2負荷をDCDCコンバータを介して主電源に接続し、第1負荷をレギュレータを介して副電源に接続する。また、エンジン再始動処理において主電源が失陥した場合には、第1リレーを通電しかつ第2~第4リレーを遮断して、第2負荷を主電源から切り離し、第1負荷をDCDCコンバータを介して副電源に接続する。 In this system, in the engine restart process, the first relay and the fourth relay are cut off, the second relay and the third relay are energized, and the second load is connected to the main power supply via the DCDC converter. 1 Connect the load to the auxiliary power supply via the regulator. If the main power supply fails during the engine restart process, the first relay is energized and the second to fourth relays are shut off, the second load is disconnected from the main power supply, and the first load is converted to a DCDC converter. Connect to the secondary power supply via.
特開2020-26215号公報Japanese Unexamined Patent Publication No. 2020-26215
 上記の冗長電源システムでは、第1リレー及び第2リレーが共に導通すると、2つの電源(主電源及び副電源)の間で貫通電流が流れる場合がある。 In the above redundant power supply system, if both the first relay and the second relay are conducting, a through current may flow between the two power supplies (main power supply and sub power supply).
 また、副電源からの電力供給を安定的に行うために、副電源から負荷への電力供給を制御するリレー(例えば第1リレー)の故障の診断が可能であることが望ましい。 Further, in order to stably supply power from the auxiliary power supply, it is desirable to be able to diagnose a failure of a relay (for example, the first relay) that controls the power supply from the auxiliary power supply to the load.
 本開示の目的は、2つの電源の間で貫通電流が流れることを防止するようにスイッチ回路を制御でき、又は、補助電源から負荷への電力供給を制御するスイッチング素子の故障の診断が可能なバックアップ電源システム、電源バックアップ方法及びプログラムを提供することである。 It is an object of the present disclosure that the switch circuit can be controlled so as to prevent a through current from flowing between the two power supplies, or the failure of the switching element that controls the power supply from the auxiliary power supply to the load can be diagnosed. To provide a backup power supply system, power supply backup method and program.
 本開示の一態様に係るバックアップ電源システムは、第1補助電源及び第2補助電源と、第1スイッチ回路と、第2スイッチ回路と、を備える。前記第1補助電源及び第2補助電源は、主電源の失陥時に負荷への電力の供給が可能である。前記第1スイッチ回路は、前記第1補助電源と前記負荷を繋ぐ第1給電路を導通及び遮断する。前記第2スイッチ回路は、前記第2補助電源と前記負荷を繋ぐ第2給電路を導通及び遮断する。前記バックアップ電源システムは、前記第1スイッチ回路及び前記第2スイッチ回路のうちの一方のスイッチ回路を強制的に遮断させる強制回路を更に備える。 The backup power supply system according to one aspect of the present disclosure includes a first auxiliary power supply, a second auxiliary power supply, a first switch circuit, and a second switch circuit. The first auxiliary power supply and the second auxiliary power supply can supply electric power to the load when the main power supply fails. The first switch circuit conducts and cuts off the first power supply path connecting the first auxiliary power supply and the load. The second switch circuit conducts and cuts off the second power supply path connecting the second auxiliary power supply and the load. The backup power supply system further includes a compulsory circuit that forcibly shuts off one of the first switch circuit and the second switch circuit.
 本開示の一態様に係るバックアップ電源システムは、第1補助電源及び第2補助電源と、第1スイッチ回路と、第2スイッチ回路と、制御回路と、を備える。前記第1補助電源及び第2補助電源は、主電源の失陥時に負荷への電力の供給が可能である。前記第1スイッチ回路は、前記第1補助電源と前記負荷を繋ぐ第1給電路を導通及び遮断する。前記第2スイッチ回路は、前記第2補助電源と前記負荷を繋ぐ第2給電路を導通及び遮断する。前記制御回路は、前記第2スイッチ回路を制御する。前記第2スイッチ回路は、第1スイッチング素子及び第2スイッチング素子を有する。前記第1スイッチング素子及び第2スイッチング素子は、それぞれ前記第2給電路を導通及び遮断する。前記制御回路は、前記第2補助電源が電力を供給している給電期間において、前記第1スイッチング素子を遮断させ且つ前記第2スイッチング素子を導通させる診断モードを有する。 The backup power supply system according to one aspect of the present disclosure includes a first auxiliary power supply, a second auxiliary power supply, a first switch circuit, a second switch circuit, and a control circuit. The first auxiliary power supply and the second auxiliary power supply can supply electric power to the load when the main power supply fails. The first switch circuit conducts and cuts off the first power supply path connecting the first auxiliary power supply and the load. The second switch circuit conducts and cuts off the second power supply path connecting the second auxiliary power supply and the load. The control circuit controls the second switch circuit. The second switch circuit has a first switching element and a second switching element. The first switching element and the second switching element conduct and cut off the second power supply path, respectively. The control circuit has a diagnostic mode in which the first switching element is cut off and the second switching element is made conductive during the power supply period during which the second auxiliary power supply supplies electric power.
 本開示の一態様に係る電源バックアップ方法は、主電源の失陥時に負荷への電力の供給が可能な第1補助電源及び第2補助電源を備えるバックアップ電源システムに用いられる電源バックアップ方法である。前記電源バックアップ方法は、第1スイッチング工程と、第2スイッチング工程と、制御工程と、を含む。前記第1スイッチング工程は、第1スイッチ回路によって前記第1補助電源と前記負荷を繋ぐ第1給電路を導通及び遮断する。前記第2スイッチング工程は、第2スイッチ回路によって前記第2補助電源と前記負荷を繋ぐ第2給電路を導通及び遮断する。前記制御工程は、前記第2スイッチ回路を制御する。前記第2スイッチング工程では、第1スイッチング素子及び第2スイッチング素子の各々によって前記第2給電路を導通及び遮断する。前記制御工程は、前記第2補助電源が電力を供給している給電期間において、前記第1スイッチング素子を遮断させ且つ前記第2スイッチング素子を導通させる診断モードを有する。 The power supply backup method according to one aspect of the present disclosure is a power supply backup method used in a backup power supply system including a first auxiliary power supply and a second auxiliary power supply capable of supplying power to a load when the main power supply fails. The power supply backup method includes a first switching step, a second switching step, and a control step. In the first switching step, the first power supply path connecting the first auxiliary power supply and the load is conducted and cut off by the first switch circuit. In the second switching step, the second power supply path connecting the second auxiliary power supply and the load is conducted and cut off by the second switch circuit. The control step controls the second switch circuit. In the second switching step, each of the first switching element and the second switching element conducts and cuts off the second power supply path. The control step has a diagnostic mode in which the first switching element is cut off and the second switching element is made conductive during the power supply period during which the second auxiliary power supply is supplying electric power.
 本開示の一態様に係るプログラムは、上記の一態様の電源バックアップ方法を、1以上のプロセッサに実行させるためのプログラムである。 The program according to one aspect of the present disclosure is a program for causing one or more processors to execute the power supply backup method of the above aspect.
 本開示によれば、2つの電源の間で貫通電流が流れることを防止するようにスイッチ回路を制御でき、又は、補助電源から負荷への電力供給を制御するスイッチング素子の故障の診断が可能である、という効果がある。 According to the present disclosure, it is possible to control a switch circuit so as to prevent a through current from flowing between two power supplies, or to diagnose a failure of a switching element that controls power supply from an auxiliary power supply to a load. There is an effect that there is.
図1は、実施形態に係るバックアップ電源システムを用いた駆動システムの構成を示す図である。FIG. 1 is a diagram showing a configuration of a drive system using the backup power supply system according to the embodiment. 図2は、同上のバックアップ電源システムを搭載した車両の一部を破断した側面図である。FIG. 2 is a side view in which a part of the vehicle equipped with the backup power supply system of the above is broken. 図3は、同上のバックアップ電源システムの動作例1を示すタイムチャートである。FIG. 3 is a time chart showing an operation example 1 of the backup power supply system of the above. 図4は、同上のバックアップ電源システムの動作例2を示すタイムチャートである。FIG. 4 is a time chart showing an operation example 2 of the backup power supply system of the above. 図5は、同上のバックアップ電源システムの動作例3を示すタイムチャートである。FIG. 5 is a time chart showing an operation example 3 of the backup power supply system of the above.
 (実施形態)
 以下に説明する実施形態及び変形例は、本開示の一例に過ぎず、本開示は、下記の実施形態及び変形例に限定されない。下記の実施形態及び変形例以外であっても、本開示の技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能である。
(Embodiment)
The embodiments and modifications described below are merely examples of the present disclosure, and the present disclosure is not limited to the following embodiments and modifications. Other than the following embodiments and modifications, various changes can be made according to the design and the like as long as they do not deviate from the technical idea of the present disclosure.
 (1)概要
 まず、実施形態に係るバックアップ電源システム1の概要について、図1及び図2を参照して説明する。
(1) Outline First, an outline of the backup power supply system 1 according to the embodiment will be described with reference to FIGS. 1 and 2.
 本実施形態に係るバックアップ電源システム1は、例えば、車両9(図2参照)に搭載され、車両9に設けられた主電源4の失陥時に負荷に対して電力を供給するために用いられる。つまり、バックアップ電源システム1は、主電源4と負荷とを備える車両9に搭載される。本開示でいう「主電源4の失陥時」とは、主電源4の故障、劣化又は断線等によって主電源4から負荷等への電力の供給が停止することをいう。 The backup power supply system 1 according to the present embodiment is mounted on the vehicle 9 (see FIG. 2), for example, and is used to supply electric power to the load when the main power supply 4 provided in the vehicle 9 fails. That is, the backup power supply system 1 is mounted on the vehicle 9 having the main power supply 4 and the load. The term "when the main power supply 4 fails" as used in the present disclosure means that the power supply from the main power supply 4 to the load or the like is stopped due to a failure, deterioration, disconnection, or the like of the main power supply 4.
 車両9は、駆動システム10と、駆動システム10が搭載される車体(車両本体)91(図2参照)と、を備える。駆動システム10は、バックアップ電源システム1と、主電源4と、負荷(一例として第1負荷5及び第2負荷6)と、ECU(Electronic Control Unit)7と、を有する。主電源4は、例えば、車両9に搭載されたバッテリ(一例として鉛蓄電池)であり、複数負荷に電力を供給するように構成されている。ECU7は、車両9に設けられた複数負荷を制御するように構成されている。 The vehicle 9 includes a drive system 10 and a vehicle body (vehicle body) 91 (see FIG. 2) on which the drive system 10 is mounted. The drive system 10 includes a backup power supply system 1, a main power supply 4, a load (for example, a first load 5 and a second load 6), and an ECU (Electronic Control Unit) 7. The main power source 4 is, for example, a battery mounted on a vehicle 9 (a lead storage battery as an example), and is configured to supply electric power to a plurality of loads. The ECU 7 is configured to control a plurality of loads provided on the vehicle 9.
 第1負荷5は、例えば、ブレーキシステム(以下、「ブレーキシステム5」ともいう)である。第2負荷6は、例えば、シフトバイワイヤシステム(以下、「シフトバイワイヤシステム6」ともいう)である。なお、図1では、「シフトバイワイヤシステム6」を「SBWシステム6」と表記している。 The first load 5 is, for example, a brake system (hereinafter, also referred to as “brake system 5”). The second load 6 is, for example, a shift-by-wire system (hereinafter, also referred to as “shift-by-wire system 6”). In FIG. 1, the "shift-by-wire system 6" is referred to as the "SBW system 6".
 ブレーキシステム5は、車両9の各車輪に設けられたブレーキ機構を電動で動作させるシステムである。ブレーキシステム5は、駆動制御部51と、アクチュエータ52と、を備える。駆動制御部51は、運転者によるブレーキペダルの操作量に基づいて、アクチュエータ52に制御信号を出力することで、アクチュエータ52の駆動を制御する。アクチュエータ52は、駆動制御部51からの制御信号に応じて、各車輪に設けられたブレーキ機構を動作させて各車輪にブレーキを掛けるように構成されている。 The brake system 5 is a system that electrically operates the brake mechanism provided on each wheel of the vehicle 9. The brake system 5 includes a drive control unit 51 and an actuator 52. The drive control unit 51 controls the drive of the actuator 52 by outputting a control signal to the actuator 52 based on the amount of operation of the brake pedal by the driver. The actuator 52 is configured to operate a braking mechanism provided on each wheel to apply a brake to each wheel in response to a control signal from the drive control unit 51.
 シフトバイワイヤシステム6は、車両9に搭載された自動変速機のシフトレンジを電動で切り替えるシステムである。シフトバイワイヤシステム6は、駆動制御部61と、アクチュエータ62と、を備える。駆動制御部61は、運転者が操作するシフトレバーの位置に基づいて、アクチュエータ62に制御信号を出力することで、アクチュエータ62の駆動を制御する。アクチュエータ62は、駆動制御部61からの制御信号に応じて、自動変速機のシフトレンジを切り替えるように構成されている。 The shift-by-wire system 6 is a system that electrically switches the shift range of the automatic transmission mounted on the vehicle 9. The shift-by-wire system 6 includes a drive control unit 61 and an actuator 62. The drive control unit 61 controls the drive of the actuator 62 by outputting a control signal to the actuator 62 based on the position of the shift lever operated by the driver. The actuator 62 is configured to switch the shift range of the automatic transmission in response to a control signal from the drive control unit 61.
 自動変速機のシフトレンジには、パーキングレンジ(Pレンジ)、リバースレンジ(Rレンジ)、ニュートラルレンジ(Nレンジ)及びドライブレンジ(Dレンジ)が含まれる。ドライブレンジは、車両9の前進時に使用され、リバースレンジは、車両9の後退時に使用され、パーキングレンジは、車両9の駐車時に使用される。パーキングレンジでは、アクチュエータ62によって自動変速機内の回転シャフトがロックされて、車両9の動きがロックされる。 The shift range of the automatic transmission includes a parking range (P range), a reverse range (R range), a neutral range (N range), and a drive range (D range). The drive range is used when the vehicle 9 is moving forward, the reverse range is used when the vehicle 9 is moving backward, and the parking range is used when the vehicle 9 is parked. In the parking range, the actuator 62 locks the rotating shaft in the automatic transmission to lock the movement of the vehicle 9.
 ブレーキシステム5及びシフトバイワイヤシステム6は、主電源4又はバックアップ電源システム1から供給される電力により動作するように構成されている。 The brake system 5 and the shift-by-wire system 6 are configured to operate by the electric power supplied from the main power supply 4 or the backup power supply system 1.
 主電源4が正常である場合には、主電源4から第1負荷5及び第2負荷6(すなわちブレーキシステム5及びシフトバイワイヤシステム6)に電力が供給される。一方、主電源4の失陥時には、バックアップ電源システム1から第1負荷5及び第2負荷6に電力が供給される。したがって、主電源4の失陥時においても、第1負荷5及び第2負荷6は、運転者の操作に応じて動作可能となる。 When the main power supply 4 is normal, power is supplied from the main power supply 4 to the first load 5 and the second load 6 (that is, the brake system 5 and the shift-by-wire system 6). On the other hand, when the main power supply 4 fails, power is supplied from the backup power supply system 1 to the first load 5 and the second load 6. Therefore, even when the main power supply 4 fails, the first load 5 and the second load 6 can operate according to the operation of the driver.
 バックアップ電源システム1は、第1補助電源22と、第2補助電源3と、を備える。第1補助電源22及び第2補助電源3の各々は、主電源4の失陥時に第1負荷5に対して電力を供給可能な補助電源である。 The backup power supply system 1 includes a first auxiliary power supply 22 and a second auxiliary power supply 3. Each of the first auxiliary power supply 22 and the second auxiliary power supply 3 is an auxiliary power supply capable of supplying electric power to the first load 5 when the main power supply 4 fails.
 さらに、バックアップ電源システム1は、第1スイッチ回路26と、第2スイッチ回路27と、強制回路29と、を備える。第1スイッチ回路26は、第1補助電源22と第1負荷5を繋ぐ第1給電路L1を導通及び遮断する。第1スイッチ回路26は、後述の比較回路28によってハードウエア的に制御される。第2スイッチ回路27は、第2補助電源3と第1負荷5を繋ぐ第2給電路L2を導通及び遮断する。第2スイッチ回路27は、後述の制御回路21によってソフトウエア的に制御される。強制回路29は、第1スイッチ回路26を強制的に遮断させる。 Further, the backup power supply system 1 includes a first switch circuit 26, a second switch circuit 27, and a compulsory circuit 29. The first switch circuit 26 conducts and cuts off the first power supply path L1 connecting the first auxiliary power supply 22 and the first load 5. The first switch circuit 26 is controlled by hardware by the comparison circuit 28 described later. The second switch circuit 27 conducts and cuts off the second power supply path L2 that connects the second auxiliary power supply 3 and the first load 5. The second switch circuit 27 is controlled by software by the control circuit 21 described later. The forced circuit 29 forcibly shuts off the first switch circuit 26.
 ここで、上記の「ソフトウエア的に制御される」とは、プログラムによって動作する回路によって制御されるという意味である。プログラムによって動作する回路とは、1以上のメモリに記憶されているプログラムを実行し、実行したプログラムに基づいて動作する回路(例えば1以上のプロセッサを含む回路)である。換言すれば、プログラムによって動作する回路とは、デジタル信号を対象とした信号処理を行い、その信号処理の結果を出力する回路である。そのため、プログラムによって動作する回路は、プラグラムが書き換えられれば、回路としての動作が変化し、入力と出力との関係が変化する。上記の「ハードウエア的に制御される」とは、プログラムによって動作する回路ではない回路(つまり、プログラムによって動作しない回路)によって制御されるという意味である。プログラムによって動作しない回路とは、固有の機能を有する電子部品(能動素子及び/又は受動素子を含む)にて構成され、各電子部品の固有の機能にて動作する回路である。換言すれば、プログラムによって動作しない回路とは、アナログ信号を対象とした信号処理を行い、その信号処理の結果を出力する回路である。そのため、プログラムによって動作しない回路は、プラグラムが書き換えられても、回路としての動作は変化せず、入力と出力との関係は変化しない。なお、以下の説明では、「導通」を「オン」と記載し、「遮断」を「オフ」と記載する場合がある。 Here, the above-mentioned "controlled by software" means that it is controlled by a circuit operated by a program. A circuit operated by a program is a circuit that executes a program stored in one or more memories and operates based on the executed program (for example, a circuit including one or more processors). In other words, a circuit that operates by a program is a circuit that performs signal processing on a digital signal and outputs the result of the signal processing. Therefore, if the program is rewritten, the operation of the circuit operated by the program changes, and the relationship between the input and the output changes. The above-mentioned "controlled by hardware" means that it is controlled by a circuit that is not operated by a program (that is, a circuit that is not operated by a program). A circuit that does not operate by a program is a circuit that is composed of electronic components (including active elements and / or passive elements) having unique functions and operates with the unique functions of each electronic component. In other words, a circuit that does not operate by a program is a circuit that performs signal processing on an analog signal and outputs the result of the signal processing. Therefore, even if the program is rewritten, the operation of the circuit that does not operate by the program does not change, and the relationship between the input and the output does not change. In the following description, "continuity" may be described as "on" and "cutoff" may be described as "off".
 この構成により、強制回路29によって第1スイッチ回路26を強制的に遮断させることができる。これにより、第1スイッチ回路26及び第2スイッチ回路27が共に導通する期間が発生することを防止できる。この結果、第1補助電源22と第2補助電源3との間で貫通電流が流れることを防止できる。 With this configuration, the first switch circuit 26 can be forcibly cut off by the forced circuit 29. As a result, it is possible to prevent a period in which the first switch circuit 26 and the second switch circuit 27 are electrically connected to each other. As a result, it is possible to prevent a through current from flowing between the first auxiliary power supply 22 and the second auxiliary power supply 3.
 さらに、バックアップ電源システム1は、第2スイッチ回路27を制御する制御回路21を備える。第2スイッチ回路27は、それぞれ第2給電路L2を導通及び遮断する2つのスイッチング素子SW3,SW4を有する。制御回路21は、第2補助電源3が電力を供給している給電期間において、スイッチSW3(第1スイッチング素子)3を遮断させ且つスイッチSW4(第2スイッチング素子)を導通させる診断モードを有する。 Further, the backup power supply system 1 includes a control circuit 21 that controls the second switch circuit 27. The second switch circuit 27 has two switching elements SW3 and SW4, respectively, which conduct and cut off the second power supply path L2. The control circuit 21 has a diagnostic mode in which the switch SW3 (first switching element) 3 is cut off and the switch SW4 (second switching element) is made conductive during the power supply period in which the second auxiliary power supply 3 is supplying power.
 この構成により、第2補助電源3の出力を利用して、第2スイッチ回路27の故障の診断を行うことができる。 With this configuration, it is possible to diagnose the failure of the second switch circuit 27 by using the output of the second auxiliary power supply 3.
 (2)詳細
 次に、実施形態に係るバックアップ電源システム1の詳細について、図1を参照して説明する。
(2) Details Next, the details of the backup power supply system 1 according to the embodiment will be described with reference to FIG.
 本実施形態に係るバックアップ電源システム1は、図1に示すように、バックアップ電源装置2と、第2補助電源3と、を備える。 As shown in FIG. 1, the backup power supply system 1 according to the present embodiment includes a backup power supply device 2 and a second auxiliary power supply 3.
 バックアップ電源装置2は、制御回路21と、第1補助電源22と、電源回路23と、第1駆動回路24と、第2駆動回路25と、ラッチ回路31と、複数(図1では5つ)のスイッチSW1~SW5と、比較回路28と、強制回路29と、複数(図1では4つ)のダイオードD1~D4と、を備える。また、バックアップ電源装置2は、複数(図1では2つ)の入力端子T1,T2と、1つの出力端子T3と、を更に備える。つまり、本実施形態に係るバックアップ電源システム1では、第1補助電源22と第2補助電源3とが別々に設けられている。スイッチSW1,SW2は、第1スイッチ回路26を構成し、スイッチSW3,SW4は、第2スイッチ回路27を構成している。 The backup power supply device 2 includes a control circuit 21, a first auxiliary power supply 22, a power supply circuit 23, a first drive circuit 24, a second drive circuit 25, and a latch circuit 31 (five in FIG. 1). Switches SW1 to SW5, a comparison circuit 28, a compulsory circuit 29, and a plurality of diodes D1 to D4 (four in FIG. 1) are provided. Further, the backup power supply device 2 further includes a plurality of input terminals T1 and T2 (two in FIG. 1) and one output terminal T3. That is, in the backup power supply system 1 according to the present embodiment, the first auxiliary power supply 22 and the second auxiliary power supply 3 are separately provided. The switches SW1 and SW2 form the first switch circuit 26, and the switches SW3 and SW4 form the second switch circuit 27.
 (2.1)端子
 入力端子T1は、イグニッションスイッチ8を介して主電源4に接続されている。入力端子T1は、イグニッションスイッチ8がオンのときに、主電源4から供給される電力をバックアップ電源装置2に入力するための端子である。
(2.1) Terminal The input terminal T1 is connected to the main power supply 4 via the ignition switch 8. The input terminal T1 is a terminal for inputting the power supplied from the main power supply 4 to the backup power supply device 2 when the ignition switch 8 is on.
 入力端子T2は、第2補助電源3に接続されている。入力端子T2は、第2補助電源3から供給される電力をバックアップ電源装置2に入力するための端子である。 The input terminal T2 is connected to the second auxiliary power supply 3. The input terminal T2 is a terminal for inputting the power supplied from the second auxiliary power supply 3 to the backup power supply device 2.
 出力端子T3は、ブレーキシステム5に接続されている。出力端子T3は、第1補助電源22又は第2補助電源3から供給される電力をブレーキシステム5に出力するための端子である。 The output terminal T3 is connected to the brake system 5. The output terminal T3 is a terminal for outputting the electric power supplied from the first auxiliary power source 22 or the second auxiliary power source 3 to the brake system 5.
 また、ブレーキシステム5には、イグニッションスイッチ8を介して主電源4が接続されている。したがって、ブレーキシステム5は、主電源4が正常であり、かつイグニッションスイッチ8がオンのときには、主電源4からも電力が供給される。 Further, the main power supply 4 is connected to the brake system 5 via the ignition switch 8. Therefore, in the brake system 5, when the main power supply 4 is normal and the ignition switch 8 is on, power is also supplied from the main power supply 4.
 (2.2)補助電源
 第1補助電源22及び第2補助電源3は、主電源4のバックアップ用(すなわち補助又は予備)の電源である。言い換えると、第1補助電源22及び第2補助電源3は、主電源4の失陥時に第1負荷5に対して電力を供給可能な補助電源である。
(2.2) Auxiliary power supply The first auxiliary power supply 22 and the second auxiliary power supply 3 are backup (that is, auxiliary or spare) power supplies for the main power supply 4. In other words, the first auxiliary power supply 22 and the second auxiliary power supply 3 are auxiliary power supplies capable of supplying power to the first load 5 when the main power supply 4 fails.
 第1補助電源22は、給電路101の分岐点N2と電源回路23との間に接続されている。第2補助電源3は、イグニッションスイッチ8の下流側と入力端子T2との間に接続されている。また、第2補助電源3は、第2負荷6に接続されており、第2負荷6に電力供給可能である。第1補助電源22及び第2補助電源3の各々の出力は、例えばECU7によって制御される。 The first auxiliary power supply 22 is connected between the branch point N2 of the power supply path 101 and the power supply circuit 23. The second auxiliary power supply 3 is connected between the downstream side of the ignition switch 8 and the input terminal T2. Further, the second auxiliary power supply 3 is connected to the second load 6 and can supply power to the second load 6. The outputs of the first auxiliary power supply 22 and the second auxiliary power supply 3 are controlled by, for example, the ECU 7.
 第1補助電源22及び第2補助電源3の各々は、例えば、電気二重層キャパシタ(EDLC:Electrical Double Layer Capacitor)である。なお、第1補助電源22及び第2補助電源3の各々は、リチウムイオンキャパシタ(LIC:Lithium Ion Capacitor)、又はリチウムイオン電池(LIB:Lithium Ion Battery)等の二次電池であってもよい。リチウムイオンキャパシタでは、EDLCと同様の材質(例えば活性炭)で正極が形成され、LIBと同様の材質(例えば黒鉛等の炭素材料)で負極が形成される。 Each of the first auxiliary power supply 22 and the second auxiliary power supply 3 is, for example, an electric double layer capacitor (EDLC: Electric Double Layer Capacitor). Each of the first auxiliary power source 22 and the second auxiliary power source 3 may be a secondary battery such as a lithium ion capacitor (LIC: Lithium Ion Capacitor) or a lithium ion battery (LIB: Lithium Ion Battery). In a lithium ion capacitor, a positive electrode is formed of a material similar to EDLC (for example, activated carbon), and a negative electrode is formed of a material similar to LIB (for example, a carbon material such as graphite).
 また、第1補助電源22及び第2補助電源3の各々は、電気二重層キャパシタに限らず、例えば、以下に説明する構成を有する電気化学デバイスであってもよい。ここでいう電気化学デバイスは、正極部材と、負極部材と、非水電解液と、を備える。正極部材は、正極集電体と、正極集電体に担持され正極活物質を含む正極材料層と、を有する。正極材料層は、アニオン(ドーパント)をドープ及び脱ドープする正極活物質として導電性高分子を含む。負極部材は、負極活物質を含む負極材料層を有する。負極活物質は、一例として、リチウムイオンの吸蔵及び放出を伴う酸化還元反応が進行する物質であり、具体的には、炭素材料、金属化合物、合金又はセラミックス材料等である。非水電解液は、一例として、リチウムイオン伝導性を有する。この種の非水電解液は、リチウム塩と、リチウム塩を溶解させる非水溶液と、を含んでいる。このような構成の電気化学デバイスは、電気二重層キャパシタ等に比べて、高いエネルギ密度を有する。 Further, each of the first auxiliary power supply 22 and the second auxiliary power supply 3 is not limited to the electric double layer capacitor, and may be, for example, an electrochemical device having the configuration described below. The electrochemical device referred to here includes a positive electrode member, a negative electrode member, and a non-aqueous electrolyte solution. The positive electrode member includes a positive electrode current collector and a positive electrode material layer supported on the positive electrode current collector and containing a positive electrode active material. The positive electrode material layer contains a conductive polymer as a positive electrode active material that is doped and dedoped with an anion (dopant). The negative electrode member has a negative electrode material layer containing a negative electrode active material. The negative electrode active material is, for example, a substance in which a redox reaction accompanied by occlusion and release of lithium ions proceeds, and specifically, a carbon material, a metal compound, an alloy, a ceramic material, or the like. The non-aqueous electrolyte solution has lithium ion conductivity as an example. This type of non-aqueous electrolyte contains a lithium salt and a non-aqueous solution that dissolves the lithium salt. An electrochemical device having such a configuration has a higher energy density than an electric double layer capacitor or the like.
 また、第1補助電源22及び第2補助電源3の各々は、電気的に並列、直列、又は並列かつ直列に接続された、2個以上の蓄電デバイス(例えば電気二重層キャパシタ)にて構成されていてもよい。すなわち、2個以上の蓄電デバイスの並列回路若しくは直列回路、又はその組み合わせによって、1つの第1補助電源22及び1つの第2補助電源3がそれぞれ実現されてもよい。 Further, each of the first auxiliary power supply 22 and the second auxiliary power supply 3 is composed of two or more power storage devices (for example, electric double layer capacitors) electrically connected in parallel, in series, or in parallel and in series. May be. That is, one first auxiliary power supply 22 and one second auxiliary power supply 3 may be realized by a parallel circuit or a series circuit of two or more power storage devices, or a combination thereof.
 ここで、本実施形態に係るバックアップ電源システム1では、第1補助電源22及び第2補助電源3は、主電源4から供給される電力によって充電される。具体的には、第1補助電源22は、イグニッションスイッチ8がオンになり、かつスイッチSW5がオンになると主電源4から電力が供給され、この電力により充電される。また、第2補助電源3は、イグニッションスイッチ8がオンになると主電源4から電力が供給され、この電力により充電される。また、第1補助電源22及び第2補助電源3は、イグニッションスイッチ8がオフになると放電するように構成されている。したがって、イグニッションスイッチ8を再度オンにしたときには、第1補助電源22及び第2補助電源3は未充電の状態である。本開示でいう「未充電の状態」とは、満充電の状態、つまり電気エネルギが十分に蓄えられている状態よりも電気エネルギの残量が少ない状態をいう。 Here, in the backup power supply system 1 according to the present embodiment, the first auxiliary power supply 22 and the second auxiliary power supply 3 are charged by the power supplied from the main power supply 4. Specifically, when the ignition switch 8 is turned on and the switch SW5 is turned on, the first auxiliary power supply 22 is supplied with electric power from the main power supply 4 and is charged by this electric power. Further, when the ignition switch 8 is turned on, the second auxiliary power source 3 is supplied with electric power from the main power source 4 and is charged by this electric power. Further, the first auxiliary power supply 22 and the second auxiliary power supply 3 are configured to discharge when the ignition switch 8 is turned off. Therefore, when the ignition switch 8 is turned on again, the first auxiliary power supply 22 and the second auxiliary power supply 3 are in an uncharged state. The "uncharged state" as used in the present disclosure means a fully charged state, that is, a state in which the remaining amount of electric energy is less than a state in which electric energy is sufficiently stored.
 (2.3)電源回路
 電源回路23は、制御回路21の動作電圧を生成する回路である。電源回路23は、入力端子T1及びダイオードD1,D3を介して入力される主電源4の出力電圧を、所定の電圧(例えば5V)に降圧して制御回路21に出力する。また、電源回路23は、ダイオードD2を介して入力される第1補助電源22の出力電圧を、所定の電圧(例えば5V)に降圧して制御回路21に出力する。さらに、電源回路23は、ダイオードD4を介して入力される第2補助電源3の出力電圧を、所定の電圧(例えば5V)に降圧して制御回路21に出力する。制御回路21は、電源回路23の出力電力によって動作可能になる。
(2.3) Power supply circuit The power supply circuit 23 is a circuit that generates an operating voltage of the control circuit 21. The power supply circuit 23 steps down the output voltage of the main power supply 4 input via the input terminals T1 and the diodes D1 and D3 to a predetermined voltage (for example, 5V) and outputs the output voltage to the control circuit 21. Further, the power supply circuit 23 steps down the output voltage of the first auxiliary power supply 22 input via the diode D2 to a predetermined voltage (for example, 5V) and outputs the output voltage to the control circuit 21. Further, the power supply circuit 23 steps down the output voltage of the second auxiliary power supply 3 input via the diode D4 to a predetermined voltage (for example, 5V) and outputs the output voltage to the control circuit 21. The control circuit 21 can be operated by the output power of the power supply circuit 23.
 (2.4)駆動回路
 第1駆動回路24は、2つのスイッチSW1,SW2をまとめて駆動するように構成されている。具体的には、第1駆動回路24は、比較回路28の出力信号に従って、スイッチSW1,SW2をオン(導通)/オフ(遮断)するための駆動信号を作成し、作成した第2駆動信号をスイッチSW1,SW2に出力する。スイッチSW1,SW2は、第1駆動回路24からの駆動信号に従ってオン/オフする。
(2.4) Drive Circuit The first drive circuit 24 is configured to drive two switches SW1 and SW2 together. Specifically, the first drive circuit 24 creates a drive signal for turning on (conducting) / off (cutting off) the switches SW1 and SW2 according to the output signal of the comparison circuit 28, and uses the created second drive signal. Output to switches SW1 and SW2. The switches SW1 and SW2 are turned on / off according to the drive signal from the first drive circuit 24.
 第2駆動回路25は、2つのスイッチSW3~SW5を各別に制御するように構成されている。具体的には、第2駆動回路25は、制御回路21からの第3~第5制御信号に従って、スイッチSW3~SW5をオン(導通)/オフ(遮断)するための第3~第5駆動信号を作成し、作成した第3~第5駆動信号をスイッチSW3~SW5に出力する。スイッチSW3~SW5は、第2駆動回路25からの第3~第5駆動信号に従ってオン/オフする。 The second drive circuit 25 is configured to control the two switches SW3 to SW5 separately. Specifically, the second drive circuit 25 is a third to fifth drive signal for turning on (conducting) / turning off (cutting off) the switches SW3 to SW5 according to the third to fifth control signals from the control circuit 21. Is created, and the created third to fifth drive signals are output to the switches SW3 to SW5. The switches SW3 to SW5 are turned on / off according to the third to fifth drive signals from the second drive circuit 25.
 (2.5)ラッチ回路
 ラッチ回路31は、第1駆動回路24によるスイッチSW1,SW2のチャタリング等を防止するための回路である。ラッチ回路31は、制御回路21からの制御に従って(すなわちソフトウエア的に)、比較回路28から第1駆動回路24に入力される信号を制御する。制御回路21は、比較回路28の出力信号(すなわちHレベル信号又はLレベル信号)を監視する。より詳細には、制御回路21は、比較回路28の出力信号が変動したとき、その変動が短時間内での変動である場合は、ラッチ回路によって、比較回路28から第1駆動回路24に入力される信号を変動前の信号に維持(ラッチ)する。これにより、スイッチSW1,SW2のチャタリングが防止される。また、制御回路21は、比較回路28の出力信号が変動したとき、その変動が短時間内の変動でない場合は、比較回路28から第1駆動回路24に入力される信号を維持しない。これにより、第1駆動回路24は、比較回路28の出力信号に従ってスイッチSW1,SW2を駆動することが可能となる。
(2.5) Latch Circuit The latch circuit 31 is a circuit for preventing chattering of switches SW1 and SW2 by the first drive circuit 24. The latch circuit 31 controls the signal input from the comparison circuit 28 to the first drive circuit 24 according to the control from the control circuit 21 (that is, in terms of software). The control circuit 21 monitors the output signal (that is, the H level signal or the L level signal) of the comparison circuit 28. More specifically, when the output signal of the comparison circuit 28 fluctuates, the control circuit 21 inputs the fluctuation from the comparison circuit 28 to the first drive circuit 24 by the latch circuit if the fluctuation is within a short time. The signal to be generated is maintained (latched) to the signal before the fluctuation. This prevents chattering of the switches SW1 and SW2. Further, when the output signal of the comparison circuit 28 fluctuates, the control circuit 21 does not maintain the signal input from the comparison circuit 28 to the first drive circuit 24 unless the fluctuation is within a short period of time. As a result, the first drive circuit 24 can drive the switches SW1 and SW2 according to the output signal of the comparison circuit 28.
 (2.6)スイッチ
 複数のスイッチSW1~SW5の各々は、例えば、エンハンスメント型のPチャネルMOSFET(Metal Oxide Semiconductor Field Effect Transistor)である。複数のスイッチSW1~SW5は、第1駆動回路24又は第2駆動回路25から出力される駆動信号に従ってオン(導通)/オフ(遮断)する。
(2.6) Switch Each of the plurality of switches SW1 to SW5 is, for example, an enhancement type P-channel MOSFET (Metal Oxide Semiconductor Field Effect Transistor). The plurality of switches SW1 to SW5 are turned on (conducting) / off (disconnecting) according to the drive signal output from the first drive circuit 24 or the second drive circuit 25.
 スイッチSW1,SW2は、入力端子T1と出力端子T3とを結ぶ給電路101のうち、第1補助電源22と出力端子T3との間に設けられている。なお、給電路101は、主電源4と第1負荷5とを繋ぐ第1給電路L1の一部を構成する。スイッチSW1,SW2は、給電路101において互いに直列に接続されている。スイッチSW1のソースは、第1補助電源22に接続され、スイッチSW1のドレインは、スイッチSW2のドレインに接続されている。また、スイッチSW2のソースは、出力端子T3に接続されている。そして、スイッチSW1,SW2を共にオンすることで、第1補助電源22に蓄えられた電力をスイッチSW1,SW2を介してブレーキシステム5に供給することができる。 The switches SW1 and SW2 are provided between the first auxiliary power supply 22 and the output terminal T3 in the power supply path 101 connecting the input terminal T1 and the output terminal T3. The power supply path 101 constitutes a part of the first power supply path L1 that connects the main power supply 4 and the first load 5. The switches SW1 and SW2 are connected in series with each other in the power supply path 101. The source of the switch SW1 is connected to the first auxiliary power supply 22, and the drain of the switch SW1 is connected to the drain of the switch SW2. Further, the source of the switch SW2 is connected to the output terminal T3. Then, by turning on the switches SW1 and SW2 together, the electric power stored in the first auxiliary power supply 22 can be supplied to the brake system 5 via the switches SW1 and SW2.
 スイッチSW3,SW4は、入力端子T2と出力端子T3とを結ぶ給電路102に設けられている。なお、給電路102は、第2補助電源3と第1負荷5とを繋ぐ第2給電路L2の一部を構成する。スイッチSW3,SW4は、給電路102において互いに直列に接続されている。スイッチSW4のソースは、入力端子T2に接続され、スイッチSW4のドレインは、スイッチSW3のドレインに接続されている。また、スイッチSW3のソースは、出力端子T3に接続されている。そして、スイッチSW3,SW4を共にオンすることで、第2補助電源3に蓄えられた電力をスイッチSW3,SW4を介してブレーキシステム5に供給することができる。 The switches SW3 and SW4 are provided in the power supply path 102 connecting the input terminal T2 and the output terminal T3. The power supply path 102 constitutes a part of the second power supply path L2 that connects the second auxiliary power supply 3 and the first load 5. The switches SW3 and SW4 are connected in series with each other in the power supply path 102. The source of the switch SW4 is connected to the input terminal T2, and the drain of the switch SW4 is connected to the drain of the switch SW3. Further, the source of the switch SW3 is connected to the output terminal T3. Then, by turning on the switches SW3 and SW4 together, the electric power stored in the second auxiliary power source 3 can be supplied to the brake system 5 via the switches SW3 and SW4.
 ここで、本実施形態に係るバックアップ電源システム1では、第1補助電源22及び第2補助電源3のうち一方の補助電源からブレーキシステム5に電力を供給するように構成されている。したがって、スイッチSW1,SW2をオンして第1補助電源22からブレーキシステム5に電力を供給している場合には、スイッチSW3,SW4をオフして第2補助電源3からの給電を停止している。また、スイッチSW3,SW4をオンして第2補助電源3からブレーキシステム5に電力を供給している場合には、スイッチSW1,SW2をオフして第1補助電源22からの給電を停止している。 Here, the backup power supply system 1 according to the present embodiment is configured to supply power to the brake system 5 from one of the auxiliary power supplies 22 of the first auxiliary power supply 22 and the second auxiliary power supply 3. Therefore, when the switches SW1 and SW2 are turned on to supply power to the brake system 5 from the first auxiliary power supply 22, the switches SW3 and SW4 are turned off to stop the power supply from the second auxiliary power supply 3. There is. When the switches SW3 and SW4 are turned on to supply power to the brake system 5 from the second auxiliary power supply 3, the switches SW1 and SW2 are turned off to stop the power supply from the first auxiliary power supply 22. There is.
 本実施形態に係るバックアップ電源システム1では、スイッチSW1,SW2により第1スイッチ回路26が構成され、スイッチSW3,SW4により第2スイッチ回路27が構成されている。つまり、本実施形態に係るバックアップ電源システム1は、第1給電路L1を導通及び遮断する第1スイッチ回路26と、第2給電路L2を導通及び遮断する第2スイッチ回路27とを更に備える。第1スイッチ回路26は、スイッチSW1,SW2が共にオン(導通)することでオン(導通)し、スイッチSW1,SW2の少なくとも一方がオフ(遮断)することでオフ(遮断)する。第2スイッチ回路27は、スイッチSW3,SW4が共にオン(導通)することでオン(導通)し、スイッチSW3,SW4の少なくとも一方がオフ(遮断)することでオフ(遮断)する。 In the backup power supply system 1 according to the present embodiment, the first switch circuit 26 is configured by the switches SW1 and SW2, and the second switch circuit 27 is configured by the switches SW3 and SW4. That is, the backup power supply system 1 according to the present embodiment further includes a first switch circuit 26 that conducts and cuts off the first power supply path L1 and a second switch circuit 27 that conducts and cuts off the second power supply path L2. The first switch circuit 26 is turned on (conducting) when both switches SW1 and SW2 are turned on (conducting), and is turned off (cutting off) when at least one of the switches SW1 and SW2 is turned off (cutting off). The second switch circuit 27 is turned on (conducting) when both the switches SW3 and SW4 are turned on (conducting), and is turned off (cutting off) when at least one of the switches SW3 and SW4 is turned off (cutting off).
 スイッチSW5は、入力端子T1と出力端子T3とを結ぶ給電路101のうち、入力端子T1と第1補助電源22との間に設けられている。スイッチSW5のソースは、ダイオードD1を介して入力端子T1に接続され、スイッチSW5のドレインは、第1補助電源22に接続されている。本実施形態に係るバックアップ電源システム1では、イグニッションスイッチ8がオンで、かつスイッチSW5がオンになることで、第1補助電源22を充電することができる。したがって、イグニッションスイッチ8がオンであっても、スイッチSW5がオフになっていれば、第1補助電源22は充電されない。 The switch SW5 is provided between the input terminal T1 and the first auxiliary power supply 22 in the power supply path 101 connecting the input terminal T1 and the output terminal T3. The source of the switch SW5 is connected to the input terminal T1 via the diode D1, and the drain of the switch SW5 is connected to the first auxiliary power supply 22. In the backup power supply system 1 according to the present embodiment, the first auxiliary power supply 22 can be charged by turning on the ignition switch 8 and turning on the switch SW5. Therefore, even if the ignition switch 8 is on, if the switch SW5 is off, the first auxiliary power supply 22 is not charged.
 (2.7)比較回路
 比較回路28は、給電路101の分圧と基準電圧Vrefとを比較し、比較結果に応じて第1駆動回路24を制御することでスイッチSW1,SW2のオン(導通)/オフ(遮断)を制御する。これにより、主電源4の失陥時に、比較回路28の制御によって(すなわちハードウエア的に)第1補助電源22から第1負荷5に電力の供給が可能になる。比較回路28は、給電路101の分圧と基準電圧Vrefとを比較することで、主電源4の失陥及び復旧を監視している。スイッチSW1、SW2は第1スイッチ回路26を構成するため、第1スイッチ回路26は、比較回路28の制御に応じて(換言すれば主電源4の失陥及び/又は復旧に応じて)制御される。
(2.7) Comparison circuit The comparison circuit 28 compares the divided voltage of the power supply path 101 with the reference voltage Vref, and controls the first drive circuit 24 according to the comparison result to turn on (conduct) the switches SW1 and SW2. ) / Off (block) is controlled. As a result, when the main power supply 4 fails, power can be supplied from the first auxiliary power supply 22 to the first load 5 under the control of the comparison circuit 28 (that is, in terms of hardware). The comparison circuit 28 monitors the failure and restoration of the main power supply 4 by comparing the divided voltage of the power supply path 101 with the reference voltage Vref. Since the switches SW1 and SW2 constitute the first switch circuit 26, the first switch circuit 26 is controlled according to the control of the comparison circuit 28 (in other words, according to the failure and / or restoration of the main power supply 4). NS.
 より詳細には、比較回路28は、給電路101の分圧が基準電圧Vref以上である場合は、主電源4には失陥が発生していないと判定して、Hレベル信号を第1駆動回路24に出力することでスイッチSW1,SW2を共にオンする。また、比較回路28は、給電路101の分圧が基準電圧Vref未満である場合は、主電源4に失陥が発生していると判定して、Lレベル信号を第1駆動回路24に出力することでスイッチSW1,SW2を共にオフにする。 More specifically, when the partial pressure of the power supply path 101 is equal to or higher than the reference voltage Vref, the comparison circuit 28 determines that the main power supply 4 has not failed, and drives the H level signal first. By outputting to the circuit 24, both switches SW1 and SW2 are turned on. Further, when the partial pressure of the power supply path 101 is less than the reference voltage Vref, the comparison circuit 28 determines that the main power supply 4 has failed and outputs the L level signal to the first drive circuit 24. By doing so, both switches SW1 and SW2 are turned off.
 比較回路28は、第1入力部(すなわち+側の入力部)と、第2入力部(すなわち-側の入力部)と、出力部とを有する。第1入力部には、基準電圧Vrefが入力される。第2入力部には、分圧回路30を介して給電路101の分岐点N1に接続される。分岐点N1は、給電路101における第1補助電源22と第1スイッチ回路26との間に位置している。分圧回路30は、2つの電気抵抗部品R1,R2を有する。2つの電気抵抗部品R1,R2は、分岐点N1と接地点との間において直列に並んで接続されている。比較回路28の第2入力部は、2つの電気抵抗部品R1,R2の間に接続されている。比較回路28の出力部は、第1駆動回路24に接続されており、上記のHレベル信号及びLレベル信号を出力する。 The comparison circuit 28 has a first input unit (that is, an input unit on the + side), a second input unit (that is, an input unit on the − side), and an output unit. The reference voltage Vref is input to the first input unit. The second input unit is connected to the branch point N1 of the power supply path 101 via the voltage dividing circuit 30. The branch point N1 is located between the first auxiliary power supply 22 and the first switch circuit 26 in the power supply path 101. The voltage dividing circuit 30 has two electric resistance components R1 and R2. The two electrical resistance components R1 and R2 are connected side by side in series between the branch point N1 and the grounding point. The second input portion of the comparison circuit 28 is connected between the two electrical resistance components R1 and R2. The output unit of the comparison circuit 28 is connected to the first drive circuit 24 and outputs the above H level signal and L level signal.
 (2.8)強制回路
 強制回路29は、制御回路21からの制御に従って(すなわちソフトウエア的に)、第1駆動回路24を介してスイッチSW1,SW2を強制的にオン(導通)/オフ(遮断)にする。これにより、スイッチSW1,SW2とスイッチSW3,SW4とが共にオンになるときに、強制回路29によって、スイッチSW1,SW2を強制的にオフにすることで、スイッチSW1,SW2とスイッチSW3,SW4とが共にオンになることを回避できる。この結果、第1補助電源22と第2補助電源3の間を各スイッチSW1~SW4を経由して貫通電流が流れることを抑制できる。なお、上記の「強制的」とは、比較回路28による第1駆動回路24の制御と、強制回路29による第1駆動回路24の制御とが重なった場合、強制回路29による第1駆動回路24の制御が優先されるという意味である。
(2.8) Forced circuit The forced circuit 29 forcibly turns on (conducts) / turns off (conducts) switches SW1 and SW2 via the first drive circuit 24 according to the control from the control circuit 21 (that is, in terms of software). Shut off). As a result, when the switches SW1 and SW2 and the switches SW3 and SW4 are both turned on, the switch SW1 and SW2 are forcibly turned off by the forced circuit 29, so that the switches SW1 and SW2 and the switches SW3 and SW4 become Can be avoided from being turned on together. As a result, it is possible to suppress the flow of a through current between the first auxiliary power supply 22 and the second auxiliary power supply 3 via the switches SW1 to SW4. The above-mentioned "forced" means that when the control of the first drive circuit 24 by the comparison circuit 28 and the control of the first drive circuit 24 by the forced circuit 29 overlap, the first drive circuit 24 by the forced circuit 29 It means that the control of is prioritized.
 例えば、制御回路21が、車両側(例えばECU7)からの要求によって第2補助電源3からの電力を第1負荷5に供給するためにスイッチSW3,SW4をオンにするときに、主電源4に失陥が発生した場合を想定する。この場合は、強制回路29が無ければ、制御回路21は、車両側からの要求によってSW3,SW4をオンにし、更に、主電源4の失陥を検出した比較回路28によって(すなわちハードウエア的に)スイッチSW1,SW2がオンにされる。すなわち、スイッチSW1~SW4が共にオンになる。しかし、本実施形態では、強制回路29を備えるため、上記の場合のようにスイッチSW1~SW4が共にオンになる場合は、強制回路29によってスイッチSW1,SW2が強制的にオフされる。この結果、スイッチSW1,SW2とスイッチSW3,SW4とが共にオンになることが抑制される。 For example, when the control circuit 21 turns on the switches SW3 and SW4 to supply the electric power from the second auxiliary power source 3 to the first load 5 at the request from the vehicle side (for example, ECU 7), the main power source 4 is turned on. Suppose a failure occurs. In this case, if there is no compulsory circuit 29, the control circuit 21 turns on the SW3 and SW4 at the request of the vehicle side, and further, by the comparison circuit 28 that detects the failure of the main power supply 4 (that is, in terms of hardware). ) Switches SW1 and SW2 are turned on. That is, the switches SW1 to SW4 are both turned on. However, in the present embodiment, since the compulsory circuit 29 is provided, when the switches SW1 to SW4 are both turned on as in the above case, the compulsory circuit 29 forcibly turns off the switches SW1 and SW2. As a result, it is suppressed that the switches SW1 and SW2 and the switches SW3 and SW4 are both turned on.
 (2.9)制御回路
 制御回路21は、例えば、プロセッサ及びメモリを有するマイクロコンピュータで構成されている。つまり、制御回路21は、プロセッサ及びメモリを有するコンピュータシステムで実現されている。そして、プロセッサが適宜のプログラムを実行することにより、コンピュータシステムが制御回路21として機能する。プログラムは、メモリに予め記録されていてもよいし、インターネット等の電気通信回線を通じて、又はメモリカード等の非一時的記録媒体に記録されて提供されてもよい。
(2.9) Control circuit The control circuit 21 is composed of, for example, a microcomputer having a processor and a memory. That is, the control circuit 21 is realized in a computer system having a processor and a memory. Then, when the processor executes an appropriate program, the computer system functions as the control circuit 21. The program may be pre-recorded in a memory, may be recorded through a telecommunication line such as the Internet, or may be recorded and provided on a non-temporary recording medium such as a memory card.
 制御回路21は、第1駆動回路24、第2駆動回路25、ラッチ回路31、強制回路29を制御する。この制御により、制御回路21は、スイッチSW1~SW5を制御する。 The control circuit 21 controls the first drive circuit 24, the second drive circuit 25, the latch circuit 31, and the compulsory circuit 29. By this control, the control circuit 21 controls the switches SW1 to SW5.
 より詳細には、制御回路21は、車両側(例えばECU7)からの信号に従って、第2駆動回路25を介してスイッチSW3,SW4のオン/オフを制御する。ECU7は、「外部装置」の一例である。その際、制御回路21は、第2駆動回路25を介してスイッチSW3,SW4をオンに制御するときは、先に強制回路29を介して第1駆動回路24を制御することでスイッチS1,SW2を強制的にオフにする。その後、制御回路21は、第2駆動回路25を介してスイッチSW3,SW4をオンにする。これにより、スイッチSW1~SW4が同時にオンになる期間が発生することを抑制できる。この結果、第1補助電源22と第2補助電源3との間で貫通電流が発生することを抑制できる。 More specifically, the control circuit 21 controls the on / off of the switches SW3 and SW4 via the second drive circuit 25 according to a signal from the vehicle side (for example, the ECU 7). The ECU 7 is an example of an “external device”. At that time, when the control circuit 21 controls the switches SW3 and SW4 to be turned on via the second drive circuit 25, the control circuit 21 first controls the first drive circuit 24 via the forced circuit 29 to control the switches S1 and SW2. Forcibly turn off. After that, the control circuit 21 turns on the switches SW3 and SW4 via the second drive circuit 25. As a result, it is possible to suppress the occurrence of a period in which the switches SW1 to SW4 are turned on at the same time. As a result, it is possible to suppress the generation of a through current between the first auxiliary power supply 22 and the second auxiliary power supply 3.
 また、制御回路21は、第2駆動回路25を介してスイッチSW3,SW4をオフに制御すべきときに、主電源4に失陥が発生しており且つ第1補助電源22が十分に充電されていない場合は、強制回路29による第1駆動回路24の制御によってスイッチSW1,SW2を強制的にオフにする状態を維持すると共に第2駆動回路25を介してスイッチSW3,SW4をオンにする制御を継続する。これにより、第1負荷5に電力が供給されなくなることを抑制する。 Further, in the control circuit 21, when the switches SW3 and SW4 should be controlled to be turned off via the second drive circuit 25, the main power supply 4 has failed and the first auxiliary power supply 22 is sufficiently charged. If not, the switch SW1 and SW2 are forcibly turned off by the control of the first drive circuit 24 by the forced circuit 29, and the switches SW3 and SW4 are turned on via the second drive circuit 25. To continue. As a result, it is possible to prevent the power from being supplied to the first load 5 from being supplied.
 そして、制御回路21は、主電源4の失陥が復旧するか又は第1補助電源22が十分に充電されると、第2駆動回路25を介してスイッチSW3,SW4をオフに制御し、その後、強制回路29による第1駆動回路24の強制的な制御を解除する。 Then, when the failure of the main power supply 4 is recovered or the first auxiliary power supply 22 is sufficiently charged, the control circuit 21 controls the switches SW3 and SW4 to be turned off via the second drive circuit 25, and then controls the switches SW3 and SW4 to be off. , The forced control of the first drive circuit 24 by the forced circuit 29 is released.
 また、制御回路21は、主電源4に失陥が発生していない又は第1補助電源22が十分に充電されている場合は、第2駆動回路25を介してスイッチSW3,SW4をオフにする。その後に、制御回路21は、強制回路29による第1駆動回路24の強制的な制御を解除する。 Further, the control circuit 21 turns off the switches SW3 and SW4 via the second drive circuit 25 when the main power supply 4 has not failed or the first auxiliary power supply 22 is sufficiently charged. .. After that, the control circuit 21 releases the forced control of the first drive circuit 24 by the forced circuit 29.
 なお、制御回路21は、主電源4の出力電圧及び第1補助電源22の出力電圧を監視している。これにより、制御回路21は、主電源4に失陥が発生しているか否か、及び、第1補助電源22が十分に充電されているか否かを監視している。なお、第1補助電源22が十分に充電されているとは、第1補助電源22の充電電圧(出力電圧)が所定の充電電圧以上であることである。 The control circuit 21 monitors the output voltage of the main power supply 4 and the output voltage of the first auxiliary power supply 22. As a result, the control circuit 21 monitors whether or not the main power supply 4 has failed and whether or not the first auxiliary power supply 22 is sufficiently charged. The fact that the first auxiliary power supply 22 is sufficiently charged means that the charging voltage (output voltage) of the first auxiliary power supply 22 is equal to or higher than a predetermined charging voltage.
 また、制御回路21は、第2スイッチ回路27の故障を診断する機能を有する。制御回路21は、第2補助電源3の出力電圧を利用して第2スイッチ回路27の故障を診断する。このため、制御回路21は、第2補助電源3から電力が供給される給電期間に、第2スイッチ回路27の故障を診断する。換言すれば、制御回路21は、第2補助電源3から電力が供給される給電期間に、第2スイッチ回路27の故障を診断する診断モードを有する。 Further, the control circuit 21 has a function of diagnosing a failure of the second switch circuit 27. The control circuit 21 uses the output voltage of the second auxiliary power supply 3 to diagnose a failure of the second switch circuit 27. Therefore, the control circuit 21 diagnoses the failure of the second switch circuit 27 during the power supply period in which the power is supplied from the second auxiliary power supply 3. In other words, the control circuit 21 has a diagnostic mode for diagnosing a failure of the second switch circuit 27 during the power supply period in which power is supplied from the second auxiliary power source 3.
 なお、上記の給電期間は、一定期間であることが望ましい。上記の給電期間が一定期間であることで、診断モードのために第2補助電源3から電力を供給する給電期間を制限できる。これにより、第2補助電源3の浪費を抑制できる。 It is desirable that the above power supply period is a fixed period. When the above power supply period is a fixed period, the power supply period for supplying power from the second auxiliary power source 3 can be limited for the diagnostic mode. As a result, waste of the second auxiliary power supply 3 can be suppressed.
 本実施形態では、制御回路21は、第2スイッチ回路27の故障診断では、スイッチSW4の故障(例えばオープン故障及びショート故障)を診断する。より詳細には、オープン故障の診断は下記のように行われる。すなわち、制御回路21は、第2補助電源3の給電期間において、第2駆動回路25を介してスイッチSW3をオフにした状態でスイッチSW4をオンになるように制御し、この制御状態でスイッチSW4の両端の電圧を検出する。この検出の結果、制御回路21は、スイッチSW4の両端の電圧が同電圧である場合は、スイッチSW4はオープン故障でないと判定し、スイッチSW4の両端の電圧に電圧差が有る場合は、スイッチSW4はオープン故障であると判定する。 In the present embodiment, the control circuit 21 diagnoses a failure of the switch SW4 (for example, an open failure and a short failure) in the failure diagnosis of the second switch circuit 27. More specifically, the diagnosis of open failure is performed as follows. That is, the control circuit 21 controls the switch SW4 to be turned on with the switch SW3 turned off via the second drive circuit 25 during the power supply period of the second auxiliary power supply 3, and the switch SW4 is turned on in this control state. Detects the voltage across. As a result of this detection, the control circuit 21 determines that the switch SW4 is not an open failure when the voltages across the switch SW4 are the same, and when there is a voltage difference between the voltages across the switch SW4, the switch SW4 Is determined to be an open failure.
 また、ショート故障の診断は下記のように行われる。すなわち、制御回路21は、第2補助電源3の給電期間において、第2駆動回路25を介してスイッチSW3をオフにした状態でスイッチSW4をオフになるように制御し、この制御状態でスイッチSW4の両端の電圧を検出する。この検出の結果、制御回路21は、スイッチSW4の両端の電圧に電圧差が有る場合は、スイッチSW4はショート故障でないと判定し、スイッチSW4の両端の電圧に同電圧である場合は、スイッチSW4はショート故障であると判定する。 In addition, the diagnosis of short failure is performed as follows. That is, the control circuit 21 controls the switch SW4 to be turned off while the switch SW3 is turned off via the second drive circuit 25 during the power supply period of the second auxiliary power supply 3, and the switch SW4 is turned off in this control state. Detects the voltage across. As a result of this detection, the control circuit 21 determines that the switch SW4 is not a short-circuit failure when there is a voltage difference between the voltages across the switch SW4, and when the voltages across the switch SW4 are the same, the switch SW4 Is determined to be a short-circuit failure.
 本実施形態では、第2補助電源3は、制御回路21以外の装置(例えばECU7)によって制御される。第2補助電源3は、第2スイッチ回路27の故障診断のために、ECU7の制御によって、制御回路21の起動時から一定時間、電圧(すなわち電力)を出力する。制御回路21は、この一定時間に合わせて第2スイッチ回路27の故障診断を行う。これにより、容易に、第2スイッチ回路27の故障診断を第2補助電源3の給電期間に合わせることができる。 In the present embodiment, the second auxiliary power supply 3 is controlled by a device (for example, ECU 7) other than the control circuit 21. The second auxiliary power supply 3 outputs a voltage (that is, electric power) for a certain period of time from the start of the control circuit 21 under the control of the ECU 7 for the failure diagnosis of the second switch circuit 27. The control circuit 21 performs a failure diagnosis of the second switch circuit 27 in accordance with this fixed time. As a result, the failure diagnosis of the second switch circuit 27 can be easily adjusted to the power supply period of the second auxiliary power supply 3.
 また、制御回路21は、外部装置(例えばECU7)からの信号に基づいて、第2スイッチ回路27の故障診断を行う(すなわち診断モードを実行する)。すなわち、制御回路21は、外部装置からの信号によって、第2補助電源3が電力を供給するタイミングに関する情報を取得し、そのタイミングに合わせて第2スイッチ回路27の故障診断を行う。上記の「外部装置からの信号」は、例えば、車両9をリモート駐車させる旨の信号(例えば後述のリモート駐車の実施を要求する要求信号)である。車両9をリモート駐車させる場合は、第2補助電源3からの電力によって第1負荷5を動作させるために、第2補助電源3から電力が出力される。制御回路21は、この電力が出力される期間を利用するために、外部装置(例えばECU7)からの信号に基づいて、第2スイッチ回路27の故障診断を行う。 Further, the control circuit 21 performs a failure diagnosis of the second switch circuit 27 (that is, executes a diagnosis mode) based on a signal from an external device (for example, the ECU 7). That is, the control circuit 21 acquires information regarding the timing at which the second auxiliary power supply 3 supplies electric power by a signal from the external device, and performs a failure diagnosis of the second switch circuit 27 according to the timing. The above-mentioned "signal from an external device" is, for example, a signal for remotely parking the vehicle 9 (for example, a request signal for requesting the implementation of remote parking described later). When the vehicle 9 is remotely parked, electric power is output from the second auxiliary power source 3 in order to operate the first load 5 by the electric power from the second auxiliary power source 3. The control circuit 21 performs a failure diagnosis of the second switch circuit 27 based on a signal from an external device (for example, the ECU 7) in order to utilize the period in which this electric power is output.
 すなわち、本実施形態では、制御回路21の起動時からの一定期間と、その後の外部装置からの信号に基づいた期間との何れかの期間において、第2スイッチ回路27の故障診断が可能である。なお、制御回路21は、第2補助電源3の電圧出力(電力供給)の有無を監視し、第2補助電源3から電圧が出力されていることを確認した後に、第2スイッチ回路27の故障診断を行う。 That is, in the present embodiment, the failure diagnosis of the second switch circuit 27 is possible in any period of a certain period from the start of the control circuit 21 and a period based on the signal from the external device thereafter. .. The control circuit 21 monitors the presence or absence of the voltage output (power supply) of the second auxiliary power supply 3, and after confirming that the voltage is output from the second auxiliary power supply 3, the second switch circuit 27 fails. Make a diagnosis.
 (2.10)ダイオード
 ダイオードD1は、入力端子T1と出力端子T3とを結ぶ給電路101のうち、入力端子T1とスイッチSW5との間に設けられている。ダイオードD1のアノードは、入力端子T1に接続され、ダイオードD1のカソードは、スイッチSW5のソースに接続されている。
(2.10) Diode The diode D1 is provided between the input terminal T1 and the switch SW5 in the power supply path 101 connecting the input terminal T1 and the output terminal T3. The anode of the diode D1 is connected to the input terminal T1, and the cathode of the diode D1 is connected to the source of the switch SW5.
 ダイオードD2は、第1補助電源22と電源回路23との間に設けられている。ダイオードD2のアノードは、第1補助電源22に接続され、ダイオードD2のカソードは、電源回路23に接続されている。 The diode D2 is provided between the first auxiliary power supply 22 and the power supply circuit 23. The anode of the diode D2 is connected to the first auxiliary power supply 22, and the cathode of the diode D2 is connected to the power supply circuit 23.
 ダイオードD3は、ダイオードD1及びスイッチSW5の接続点と電源回路23との間に設けられている。ダイオードD3のアノードは、ダイオードD1及びスイッチSW5の接続点に接続され、ダイオードD3のカソードは、電源回路23に接続されている。 The diode D3 is provided between the connection point of the diode D1 and the switch SW5 and the power supply circuit 23. The anode of the diode D3 is connected to the connection point of the diode D1 and the switch SW5, and the cathode of the diode D3 is connected to the power supply circuit 23.
 ダイオードD4は、入力端子T2と電源回路23との間に設けられている。ダイオードD4のアノードは、入力端子T2に接続され、ダイオードD4のカソードは、電源回路23に接続されている。 The diode D4 is provided between the input terminal T2 and the power supply circuit 23. The anode of the diode D4 is connected to the input terminal T2, and the cathode of the diode D4 is connected to the power supply circuit 23.
 ここで、主電源4の出力電圧が第1補助電源22及び第2補助電源3の出力電圧よりも高い場合、ダイオードD1,D3が導通し、かつダイオードD2,D4が非導通となり、主電源4の出力電圧がダイオードD1,D3を介して電源回路23に入力される。そして、電源回路23は、入力された主電源4の出力電圧を、所定の電圧(例えば5V)に降圧して制御回路21に出力する。 Here, when the output voltage of the main power supply 4 is higher than the output voltages of the first auxiliary power supply 22 and the second auxiliary power supply 3, the diodes D1 and D3 are conductive and the diodes D2 and D4 are non-conducting, so that the main power supply 4 The output voltage of is input to the power supply circuit 23 via the diodes D1 and D3. Then, the power supply circuit 23 steps down the input output voltage of the main power supply 4 to a predetermined voltage (for example, 5V) and outputs it to the control circuit 21.
 また、第1補助電源22の出力電圧が主電源4及び第2補助電源3の出力電圧よりも高い場合、ダイオードD2が導通し、かつダイオードD1,D3,D4が非導通となり、第1補助電源22の出力電圧がダイオードD2を介して電源回路23に入力される。そして、電源回路23は、入力された第1補助電源22の出力電圧を、所定の電圧(例えば5V)に降圧して制御回路21に出力する。 When the output voltage of the first auxiliary power supply 22 is higher than the output voltages of the main power supply 4 and the second auxiliary power supply 3, the diodes D2 are conductive and the diodes D1, D3, and D4 are non-conducting, so that the first auxiliary power supply is non-conducting. The output voltage of 22 is input to the power supply circuit 23 via the diode D2. Then, the power supply circuit 23 steps down the input output voltage of the first auxiliary power supply 22 to a predetermined voltage (for example, 5V) and outputs it to the control circuit 21.
 さらに、第2補助電源3の出力電圧が主電源4及び第1補助電源22の出力電圧よりも高い場合、ダイオードD4が導通し、かつダイオードD1,D2,D3が非導通となり、第2補助電源3の出力電圧がダイオードD4を介して電源回路23に入力される。そして、電源回路23は、入力された第2補助電源3の出力電圧を、所定の電圧(例えば5V)に降圧して制御回路21に出力する。 Further, when the output voltage of the second auxiliary power supply 3 is higher than the output voltages of the main power supply 4 and the first auxiliary power supply 22, the diodes D4 become conductive and the diodes D1, D2, D3 become non-conducting, so that the second auxiliary power supply becomes non-conducting. The output voltage of 3 is input to the power supply circuit 23 via the diode D4. Then, the power supply circuit 23 steps down the input output voltage of the second auxiliary power supply 3 to a predetermined voltage (for example, 5V) and outputs it to the control circuit 21.
 (3)動作
 図3~図5を参照して、バックアップ電源システム1の動作を説明する。
(3) Operation The operation of the backup power supply system 1 will be described with reference to FIGS. 3 to 5.
 (3.1)動作例1
 図3を参照して、バックアップ電源システム1の動作例1を説明する。
(3.1) Operation example 1
An operation example 1 of the backup power supply system 1 will be described with reference to FIG.
 なお、図3において、「F1」は、第2補助電源3の出力状態を示す出力フラグである。「F2」は、第2補助電源3からの出力を要求する要求フラグである。「F3」は、リモート駐車を許可するか否かを示す許可フラグである。「F4」は、リモート駐車を禁止するか否かを示す禁止フラグである。「F5」は、第1補助電源22に対する充電を許可するか否かを示す充電許可フラグである。以下では、主電源4が失陥していないことを前提に説明する。 In FIG. 3, "F1" is an output flag indicating the output state of the second auxiliary power supply 3. "F2" is a request flag that requests an output from the second auxiliary power supply 3. "F3" is a permission flag indicating whether or not remote parking is permitted. "F4" is a prohibition flag indicating whether or not remote parking is prohibited. “F5” is a charging permission flag indicating whether or not charging of the first auxiliary power source 22 is permitted. Hereinafter, the description will be made on the premise that the main power supply 4 has not failed.
 以下では、リモート駐車によって車両9を駐車場から自動的に出庫する場合を例に説明する。この場合、駐車場から出庫した車両9を停止させるために、例えば第2補助電源3からブレーキシステム5に電力が供給される。 In the following, the case where the vehicle 9 is automatically discharged from the parking lot by remote parking will be described as an example. In this case, power is supplied to the brake system 5 from, for example, the second auxiliary power source 3 in order to stop the vehicle 9 leaving the parking lot.
 車両9のユーザ(運転者又は同乗者)は、例えば、専用のリモコンを用いて車両9のECU7に対してリモート駐車の指示を行う。ここで、ECU7に対してリモート駐車の指示がない場合には、イグニッションスイッチ8がオフである。そのため、この場合には、主電源4から第1補助電源22及び第2補助電源3に対して電力が供給されず、第1補助電源22及び第2補助電源3は充電されない。また、イグニッションスイッチ8がオフの状態では、第1補助電源22及び第2補助電源3に蓄えられた電力が放電されるため、第1補助電源22及び第2補助電源3は未充電の状態である。 The user (driver or passenger) of the vehicle 9 gives an instruction for remote parking to the ECU 7 of the vehicle 9 using, for example, a dedicated remote controller. Here, when there is no instruction for remote parking to the ECU 7, the ignition switch 8 is off. Therefore, in this case, power is not supplied from the main power supply 4 to the first auxiliary power supply 22 and the second auxiliary power supply 3, and the first auxiliary power supply 22 and the second auxiliary power supply 3 are not charged. Further, when the ignition switch 8 is off, the electric power stored in the first auxiliary power supply 22 and the second auxiliary power supply 3 is discharged, so that the first auxiliary power supply 22 and the second auxiliary power supply 3 are in an uncharged state. be.
 ECU7に対してリモート駐車の指示が行われると、ECU7は、イグニッションスイッチ8をオンして第2補助電源3の充電を開始する。また、イグニッションスイッチ8がオンになると、主電源4から電源回路23に電力が供給され、電源回路23の出力電力によって制御回路21が起動する。このとき、許可フラグB2はオフになっており、リモート駐車を行うことはできない。またこのとき、スイッチSW1~SW5のすべてがオフである。この状態では、第1補助電源22は充電されず、第2補助電源3のみが充電される。つまり、第2補助電源3は、主電源4から供給される電力により第1補助電源22よりも優先的に充電される。また、ECU7は、リモート駐車の実施を要求する要求信号Sig1を制御回路21に出力する。制御回路21は、ECU7からの要求信号Sig1を受信すると、リモート駐車を行うために、以下に示す各種処理を実行する。本実施形態では、車両9のECU7が外部システムである。 When the remote parking instruction is given to the ECU 7, the ECU 7 turns on the ignition switch 8 and starts charging the second auxiliary power source 3. When the ignition switch 8 is turned on, power is supplied from the main power supply 4 to the power supply circuit 23, and the control circuit 21 is activated by the output power of the power supply circuit 23. At this time, the permission flag B2 is turned off, and remote parking cannot be performed. At this time, all of the switches SW1 to SW5 are off. In this state, the first auxiliary power supply 22 is not charged, and only the second auxiliary power supply 3 is charged. That is, the second auxiliary power supply 3 is charged with priority over the first auxiliary power supply 22 by the electric power supplied from the main power supply 4. Further, the ECU 7 outputs a request signal Sigma 1 requesting the execution of remote parking to the control circuit 21. Upon receiving the request signal Sigma1 from the ECU 7, the control circuit 21 executes various processes shown below in order to perform remote parking. In this embodiment, the ECU 7 of the vehicle 9 is an external system.
 制御回路21は、時刻t1以前に、スイッチSW2,SW3の短絡(ショート故障)を検出する。このとき、制御回路21は、スイッチSW1~SW4がオフ状態で、スイッチSW1,SW2間の中点の電圧を計測することでスイッチSW2の短絡を検出し、スイッチSW3,SW4間の中点P2の電圧を計測することでスイッチSW3の短絡を検出する。また、制御回路21は、時刻t1のときに、スイッチSW3をオンし、スイッチSW3,SW4間の電圧を計測することでスイッチSW3の開放(オープン故障)を検出する。制御回路21は、時刻t2のときに、スイッチSW3をオフする。 The control circuit 21 detects a short circuit (short circuit failure) of the switches SW2 and SW3 before the time t1. At this time, the control circuit 21 detects a short circuit of the switch SW2 by measuring the voltage at the midpoint between the switches SW1 and SW2 while the switches SW1 to SW4 are off, and detects the short circuit of the switch SW2 and the midpoint P2 between the switches SW3 and SW4. A short circuit of the switch SW3 is detected by measuring the voltage. Further, the control circuit 21 turns on the switch SW3 at time t1 and measures the voltage between the switches SW3 and SW4 to detect the opening (open failure) of the switch SW3. The control circuit 21 turns off the switch SW3 at the time t2.
 制御回路21は、スイッチSW3が短絡しておらず、かつ開放していなければ、時刻t2のときに、要求フラグF2をオンにする。制御回路21は、中点P1の電圧を計測し、この電圧が第1電圧以上であれば、第2補助電源3から電力が出力されていると判定する。そして、制御回路21は、出力フラグF1をオンにする(図4参照)。このとき、スイッチSW3,SW4がオフであるため、第2補助電源3の出力電力は、シフトバイワイヤシステム6には供給されるが、ブレーキシステム5には供給されない。 The control circuit 21 turns on the request flag F2 at time t2 if the switch SW3 is not short-circuited and is not open. The control circuit 21 measures the voltage at the midpoint P1, and if this voltage is equal to or higher than the first voltage, it determines that power is being output from the second auxiliary power supply 3. Then, the control circuit 21 turns on the output flag F1 (see FIG. 4). At this time, since the switches SW3 and SW4 are off, the output power of the second auxiliary power supply 3 is supplied to the shift-by-wire system 6, but not to the brake system 5.
 制御回路21は、時刻t2から時刻t3までの期間において(すなわち第2補助電源3の給電期間を利用して)、スイッチSW4の故障診断を行う。まず、制御回路21は、スイッチSW4の短絡(ショート故障)を検出する。より詳細には、制御回路21は、スイッチSW4をオフにした状態で、スイッチSW4の両端電圧を計測することでスイッチSW4の短絡を検出する。更に詳細には、制御回路21は、スイッチSW4の両端電圧に電圧差があれば、スイッチSW4は短絡していないと判定し、スイッチSW4の両端電圧が同電圧であれば、スイッチSW4は短絡していると判定する。次に、制御回路21は、スイッチSW4が短絡していなければ、スイッチSW4をオンすることでスイッチSW4の開放(オープン故障)を検出する。より詳細には、制御回路21は、スイッチSW4をオフにした状態で、スイッチSW4の両端電圧を計測することでスイッチSW4の開放を検出する。更に詳細には、制御回路21は、スイッチSW4の両端電圧が同電圧であれば、スイッチSW4は開放していないと判定し、スイッチSW4の両端電圧に同電圧差があれば、スイッチSW4は開放していると判定する。 The control circuit 21 performs a failure diagnosis of the switch SW4 in the period from the time t2 to the time t3 (that is, using the power supply period of the second auxiliary power supply 3). First, the control circuit 21 detects a short circuit (short circuit failure) of the switch SW4. More specifically, the control circuit 21 detects a short circuit of the switch SW4 by measuring the voltage across the switch SW4 with the switch SW4 turned off. More specifically, the control circuit 21 determines that the switch SW4 is not short-circuited if there is a voltage difference across the switch SW4, and if the voltage across the switch SW4 is the same voltage, the switch SW4 is short-circuited. It is determined that it is. Next, if the switch SW4 is not short-circuited, the control circuit 21 detects the opening (open failure) of the switch SW4 by turning on the switch SW4. More specifically, the control circuit 21 detects the opening of the switch SW4 by measuring the voltage across the switch SW4 with the switch SW4 turned off. More specifically, the control circuit 21 determines that the switch SW4 is not open if the voltage across the switch SW4 is the same, and opens the switch SW4 if the voltage across the switch SW4 has the same voltage difference. Judge that it is.
 このように、動作例1では、スイッチSW4の故障診断は、時刻t3~t4の期間で行われるが、この期間は、起動時からの一定期間の一例である。すなわち、動作例1では、スイッチSW4の故障診断は、制御回路21の起動時から一定期間内に行われる。ただし、スイッチSW4の故障診断は、制御回路21の起動時(すなわち起動と同時)に行われてもよい。 As described above, in the operation example 1, the failure diagnosis of the switch SW4 is performed in the period from time t3 to t4, and this period is an example of a fixed period from the time of startup. That is, in the operation example 1, the failure diagnosis of the switch SW4 is performed within a certain period from the time when the control circuit 21 is started. However, the failure diagnosis of the switch SW4 may be performed at the time of starting the control circuit 21 (that is, at the same time as starting the control circuit 21).
 また、スイッチSW4に対する上記の故障診断は、スイッチSW3に行われてもよいし、スイッチSW3,SW4の両方に行われてもよい。すなわち、スイッチSW4に対する上記の故障診断は、スイッチSW3,SW4のうちの少なくとも一方のスイッチに行われてもよい。 Further, the above-mentioned failure diagnosis for the switch SW4 may be performed on the switch SW3 or on both the switches SW3 and SW4. That is, the above-mentioned failure diagnosis for the switch SW4 may be performed on at least one of the switches SW3 and SW4.
 制御回路21は、スイッチSW4が短絡しておらず、かつ開放していなければ、時刻t4のときにスイッチSW3をオンする。このとき、制御回路21は、要求フラグF2をオフにする。またこのとき、スイッチSW3,SW4が共にオンになっているため、第2補助電源3の出力電力はブレーキシステム5及びシフトバイワイヤシステム6の両方に供給される。 The control circuit 21 turns on the switch SW3 at time t4 if the switch SW4 is not short-circuited and is not open. At this time, the control circuit 21 turns off the request flag F2. At this time, since the switches SW3 and SW4 are both turned on, the output power of the second auxiliary power source 3 is supplied to both the brake system 5 and the shift-by-wire system 6.
 制御回路21は、第2補助電源3がブレーキシステム(第1負荷)5に対して電力を供給可能な状態にあり、かつリモート駐車を行うことができる状態にあるため、許可フラグF3をオンにすると共に、ECU7に対して許可信号を出力する。ECU7は、制御回路21からの許可信号を受信すると、リモート駐車が可能であることを示す動作可能信号を上記リモコンに対して送信する。動作可能信号を受信した上記リモコンに対してユーザが特定操作(リモート駐車を実施するための操作)を行うことで、リモート駐車が開始される。 In the control circuit 21, the permission flag F3 is turned on because the second auxiliary power supply 3 is in a state where power can be supplied to the brake system (first load) 5 and remote parking is possible. At the same time, an authorization signal is output to the ECU 7. Upon receiving the permission signal from the control circuit 21, the ECU 7 transmits an operable signal indicating that remote parking is possible to the remote controller. Remote parking is started when the user performs a specific operation (operation for performing remote parking) on the remote controller that has received the operable signal.
 制御回路21は、時刻t5のときに、充電許可フラグF5をオンにすると共に、スイッチSW5をオンして第1補助電源22の充電を開始する。 At time t5, the control circuit 21 turns on the charge permission flag F5 and turns on the switch SW5 to start charging the first auxiliary power supply 22.
 制御回路21は、時刻t6のときに、第2補助電源3の出力電圧が第1電圧以下になっていることから、出力フラグF1をオフにする。制御回路21は、時刻t7のときに、第2補助電源3の出力電圧が第1電圧以下になっており、ブレーキシステム5に対して電力を供給できる状態にないため、許可フラグF3をオフにする。また、制御回路21は、時刻t8のときに、許可フラグF3がオンからオフになっていることをもって、禁止フラグF4をオンにする。制御回路21は、時刻t9のときに、スイッチSW3,SW4をオフし、第2補助電源3からブレーキシステム5への給電を停止する。 The control circuit 21 turns off the output flag F1 because the output voltage of the second auxiliary power supply 3 is equal to or lower than the first voltage at time t6. At time t7, the control circuit 21 turns off the permission flag F3 because the output voltage of the second auxiliary power supply 3 is equal to or lower than the first voltage and is not in a state where power can be supplied to the brake system 5. do. Further, the control circuit 21 turns on the prohibition flag F4 when the permission flag F3 is turned from on to off at the time t8. The control circuit 21 turns off the switches SW3 and SW4 at time t9, and stops the power supply from the second auxiliary power supply 3 to the brake system 5.
 制御回路21は、時刻t9から時刻t10までの期間において、スイッチSW1の短絡(ショート)を検出する。制御回路21は、スイッチSW1,SW2がオフ状態で、スイッチSW1,SW2間の第3中点の電圧を計測することでスイッチSW1の短絡を検出する。制御回路21は、スイッチSW1,SW2が短絡していなければ、スイッチSW1,SW2の開放(オープン)を検出する。制御回路21は、時刻t10のときに、スイッチSW1,SW2をオンし、スイッチSW1,SW2間の第3中点の電圧を計測することでスイッチSW1,SW2の開放を検出する。 The control circuit 21 detects a short circuit of the switch SW1 in the period from time t9 to time t10. The control circuit 21 detects a short circuit of the switch SW1 by measuring the voltage at the third midpoint between the switches SW1 and SW2 while the switches SW1 and SW2 are off. The control circuit 21 detects that the switches SW1 and SW2 are open if the switches SW1 and SW2 are not short-circuited. The control circuit 21 turns on the switches SW1 and SW2 at time t10 and measures the voltage at the third midpoint between the switches SW1 and SW2 to detect the opening of the switches SW1 and SW2.
 制御回路21は、時刻t11のときに、スイッチSW1,SW2をオフし、かつスイッチSW3,SW4をオンする。そして、制御回路21は、時刻t12のときに、第2補助電源3の出力電圧が第1電圧以上になっており、ブレーキシステム5に対して電力を供給可能な状態になっているため、出力フラグF1をオンにすると共に、許可フラグF3をオンにする。 The control circuit 21 turns off the switches SW1 and SW2 and turns on the switches SW3 and SW4 at time t11. Then, at time t12, the control circuit 21 outputs because the output voltage of the second auxiliary power supply 3 is equal to or higher than the first voltage and is in a state where power can be supplied to the brake system 5. The flag F1 is turned on and the permission flag F3 is turned on.
 制御回路21は、時刻t13のときに、第1補助電源22の充電が完了していることから、第2補助電源3からブレーキシステム5への給電を停止するために、スイッチSW3,SW4をオフする。これにより、第2補助電源3からブレーキシステム5への給電が停止される。そして、時刻t13以降においては、第1補助電源22がブレーキシステム5に対して電力を供給可能な状態になっているため、制御回路21は、スイッチSW1,SW2をオンして第1補助電源22からブレーキシステム5に電力を供給させる。 Since the first auxiliary power supply 22 has been charged at the time t13, the control circuit 21 turns off the switches SW3 and SW4 in order to stop the power supply from the second auxiliary power supply 3 to the brake system 5. do. As a result, the power supply from the second auxiliary power supply 3 to the brake system 5 is stopped. Then, after time t13, since the first auxiliary power supply 22 is in a state where power can be supplied to the brake system 5, the control circuit 21 turns on the switches SW1 and SW2 to turn on the first auxiliary power supply 22. Power is supplied to the brake system 5.
 ここで、バックアップ電源システム1では、スイッチSW3,SW4がオンでかつ出力フラグF1がオンである期間(時刻t4~t6の期間、及び時刻t12~t13の期間)において、第2補助電源3からの電力によってリモート駐車を行うことができる。 Here, in the backup power supply system 1, the second auxiliary power supply 3 is used during the period when the switches SW3 and SW4 are on and the output flag F1 is on (the period from time t4 to t6 and the period from time t12 to t13). Remote parking can be done by electric power.
 (3.2)動作例2
 次に図4を参照して、リモート駐車を実施するときのより詳細な動作を説明する。以下の説明では、第1補助電源22が充電未完了の状態で主電源4に失陥が発生する場合を想定する。
(3.2) Operation example 2
Next, with reference to FIG. 4, a more detailed operation when performing remote parking will be described. In the following description, it is assumed that the main power supply 4 fails when the first auxiliary power supply 22 is incompletely charged.
 なお、図4において、「Bin」は、主電源4に失陥が発生しているか否かを示すフラグである。主電源4に失陥が発生していない場合は、フラグBinはオフになり、主電源4に失陥が発生した場合は、フラグBinはオンになる。「B0」は、制御回路21がECU7からリモート駐車実施信号を受信したか、又は制御回路21がECU7からリモート駐車終了信号を受信したかを示すフラグである。制御回路21がECU7からリモート駐車実施信号を受信した場合は、フラグB0はオンになり、制御回路21がECU7からリモート駐車終了信号を受信した場合は、フラグB0はオフになる。リモート駐車実施信号とは、リモート駐車の実施を要求する信号であり、リモート駐車終了信号とは、リモート駐車の終了を要求する信号である。「B1」は、第2補助電源3が充電完了状態であるか否か示すブラフであり、充電完了状態である場合はフラグB1はオンになり、充電未完状態である場合はフラグB1はオフになる。「B2」は、リモート駐車を許可するか否かを示す許可フラグである。「B3」は、バックアップ電源システム1が第1補助電源22から電力を出力する第1補助電源モードになっているか否かを示すフラグである。「B4」は、出力端子T3が第1補助電源22及び第2補助電源3の何れからの電力を出力しているか否かを示すフラグである。「B5」は、比較回路28が主電源4の失陥を検出しているか否かを示すフラグである。「B6」は、強制回路29によってスイッチSW1,SW2が強制的にオフにされているか否かを示すフラグである。「B7」は、ラッチ回路31がスイッチSW1,SW2をラッチしているか否かを示すフラグである。「SW1」~「SW4」はそれぞれ、スイッチSW1~SW4がオンされているかオフされているかを示す。 Note that, in FIG. 4, "Bin" is a flag indicating whether or not a failure has occurred in the main power supply 4. If the main power supply 4 has not failed, the flag Bin is turned off, and if the main power supply 4 has failed, the flag Bin is turned on. “B0” is a flag indicating whether the control circuit 21 has received the remote parking execution signal from the ECU 7 or the control circuit 21 has received the remote parking end signal from the ECU 7. When the control circuit 21 receives the remote parking execution signal from the ECU 7, the flag B0 is turned on, and when the control circuit 21 receives the remote parking end signal from the ECU 7, the flag B0 is turned off. The remote parking execution signal is a signal requesting the execution of remote parking, and the remote parking end signal is a signal requesting the end of remote parking. “B1” is a bluff indicating whether or not the second auxiliary power source 3 is in the fully charged state. If the second auxiliary power source 3 is in the fully charged state, the flag B1 is turned on, and if the second auxiliary power source 3 is in the incompletely charged state, the flag B1 is turned off. Become. "B2" is a permission flag indicating whether or not remote parking is permitted. “B3” is a flag indicating whether or not the backup power supply system 1 is in the first auxiliary power supply mode for outputting power from the first auxiliary power supply 22. “B4” is a flag indicating whether or not the output terminal T3 is outputting power from the first auxiliary power supply 22 or the second auxiliary power supply 3. “B5” is a flag indicating whether or not the comparison circuit 28 has detected the failure of the main power supply 4. “B6” is a flag indicating whether or not the switches SW1 and SW2 are forcibly turned off by the forced circuit 29. “B7” is a flag indicating whether or not the latch circuit 31 latches the switches SW1 and SW2. “SW1” to “SW4” indicate whether the switches SW1 to SW4 are turned on or off, respectively.
 まず、図4の実線のグラフに示す動作を説明する。時刻t21以前では、各フラグB1~B7はオフであり、各スイッチSW1~SW4はオフであり、スイッチSW5はオンであり、主電源4に失陥は発生していない。 First, the operation shown in the solid line graph in FIG. 4 will be described. Before the time t21, the flags B1 to B7 are off, the switches SW1 to SW4 are off, the switch SW5 is on, and the main power supply 4 has not failed.
 時刻t21で、制御回路21がECU7からリモート駐車実施信号を受信すると(フラグB0のオン)、時刻t22で、制御回路21が強制回路29を介してスイッチSW1,SW2を強制的にオフにする(フラグB6のオン)。その後、時刻t23で、制御回路21がスイッチSW3,SW4をオンにする。これにより、時刻t23で、第2補助電源3からの電力が、スイッチSW3,SW4を経由して出力端子T3から第1負荷5に供給される(フラグB4のオン)。この電力供給により、時刻t23に、リモート駐車が実施可能になる(フラグB2のオン)。なお、本実施形態では、時刻t21からスイッチSW1,SW2はオフであるため、時刻t22ではスイッチSW1,SW2の強制的なオフの状態が維持される。 When the control circuit 21 receives the remote parking execution signal from the ECU 7 at the time t21 (flag B0 is turned on), the control circuit 21 forcibly turns off the switches SW1 and SW2 via the forced circuit 29 at the time t22 (the flag B0 is turned on). Flag B6 on). After that, at time t23, the control circuit 21 turns on the switches SW3 and SW4. As a result, at time t23, the electric power from the second auxiliary power source 3 is supplied from the output terminal T3 to the first load 5 via the switches SW3 and SW4 (flag B4 is turned on). With this power supply, remote parking can be performed at time t23 (flag B2 is turned on). In the present embodiment, since the switches SW1 and SW2 are turned off from the time t21, the forced off state of the switches SW1 and SW2 is maintained at the time t22.
 そして、時刻t24で主電源4に失陥が発生し(フラグBinのオン)、時刻t25で比較回路28が主電源4の失陥を検出する(フラグ7B5のオン)。しかし、強制回路29がスイッチSW1,SW2を強制的にオフにしているため、スイッチSW1,SW2は、比較回路28によってオンにされずオフのままである。 Then, a failure occurs in the main power supply 4 at time t24 (flag Bin is turned on), and the comparison circuit 28 detects the failure of the main power supply 4 at time t25 (flag 7B5 is turned on). However, since the forced circuit 29 forcibly turns off the switches SW1 and SW2, the switches SW1 and SW2 are not turned on by the comparison circuit 28 and remain off.
 そして、時刻t26で、制御回路21がECU7からリモート駐車終了信号を受信する(フラグB0のオフ)。この場合は、主電源4に失陥が発生し且つ第1補助電源22が充電未完了であるため、制御回路21は、ECU7からリモート駐車終了信号を受信しても、スイッチSW3,SW4のオンを継続する。これにより、出力端子T3から第1負荷5に対して第2補助電源からの電力が途切れることなく供給され続ける(すなわちフラグB4のオンが継続する)。 Then, at time t26, the control circuit 21 receives the remote parking end signal from the ECU 7 (flag B0 is off). In this case, since the main power supply 4 has failed and the first auxiliary power supply 22 has not been charged, the control circuit 21 turns on the switches SW3 and SW4 even if the remote parking end signal is received from the ECU 7. To continue. As a result, the power from the second auxiliary power source continues to be supplied from the output terminal T3 to the first load 5 without interruption (that is, the flag B4 continues to be turned on).
 そして、時刻t30で主電源4が復旧すると(フラグBinのオフ)、比較回路28がその復旧を検出し(フラグB5のオフ)、また、主電源4の電力が第1負荷5に供給される。主電源4が復旧することで、時刻t31で、制御回路21がスイッチSW3,SW4をオフにする。この結果、時刻t32で、出力端子T3から第1負荷5への第2補助電源3の電力の供給が停止される(フラグB4のオフ)。これにより、時刻t32で、リモート駐車が実施不可能になる(フラグB2のオフ)。主電源4が復旧することで、時刻t32で第1補助電源モードがオフになる(フラグB3のオフ)。また、時刻t31でスイッチSW3,SW4がオフになることで、時刻t32でバックアップ電源システム1の第1補助電源モードが解除される(フラグB3のオフ)。また、時刻t31でスイッチSW3,SW4がオフになることで、その後の時刻t32で強制回路29によるスイッチSW1,SW2の強制的なオフが解除される(フラグB6のオフ)。 Then, when the main power supply 4 is restored at time t30 (flag Bin is off), the comparison circuit 28 detects the restoration (flag B5 is off), and the power of the main power supply 4 is supplied to the first load 5. .. When the main power supply 4 is restored, the control circuit 21 turns off the switches SW3 and SW4 at time t31. As a result, at time t32, the power supply of the second auxiliary power supply 3 from the output terminal T3 to the first load 5 is stopped (flag B4 is turned off). As a result, remote parking becomes impossible at time t32 (flag B2 is off). When the main power supply 4 is restored, the first auxiliary power supply mode is turned off at time t32 (flag B3 is turned off). Further, when the switches SW3 and SW4 are turned off at time t31, the first auxiliary power supply mode of the backup power supply system 1 is released at time t32 (flag B3 is turned off). Further, when the switches SW3 and SW4 are turned off at the time t31, the forced off of the switches SW1 and SW2 by the forced circuit 29 is released at the subsequent time t32 (flag B6 is turned off).
 上記の説明では、制御回路21がECU7からリモート駐車終了信号を受信したとき(時刻t26)、スイッチSW3,SW4のオンが継続される場合を説明した。以下では、参考例として、スイッチSW3,SW4のオンが継続される代わりに、スイッチSW3,SW4がオフにされる場合の動作(図4の点線のグラフ)を説明する。 In the above description, when the control circuit 21 receives the remote parking end signal from the ECU 7 (time t26), the switches SW3 and SW4 are continuously turned on. In the following, as a reference example, the operation (dotted line graph in FIG. 4) when the switches SW3 and SW4 are turned off instead of the switches SW3 and SW4 being continuously turned on will be described.
 この場合、時刻t26で、制御回路21がECU7からリモート駐車終了信号を受信すると(フラグB0のオフ)、時刻t27で、制御回路21がスイッチSW3,SW4がオフにする。これにより、時刻t27で、出力端子T3からの第2補助電源3の電力の供給が止まる(フラグB4のオフ)。これにより、時刻t27で、リモート駐車が実施不可能になる(フラグB2のオフ)。また、スイッチSW3,SW4がオフになると、その後の時刻t28で、強制回路29によるスイッチSW1,SW2の強制的なオフが解除される(フラグB6のオフ)。この解除時点で、主電源4に失陥が発生しているため、時刻t28で、比較回路28によってスイッチSW1,SW3がオンにされる。これにより、時刻t28で、充電未完了の第1補助電源22からの電力が出力端子T3から供給される(フラグB4のオン)。時刻t28でスイッチSW1,SW2がオンになることで、時刻t29でラッチ回路31がスイッチSW1,SW2のオンをラッチする(フラグB7のオン)。そして、時刻t30で、主電源4が復旧すると(フラグBinのオン)、比較回路28がその復旧を検出するが(フラグB5のオフ)、ラッチ回路31がオン状態のため(フラグB7のオン状態)、スイッチSW1,SW2はオン状態を継続する。時刻t31で、ラッチ回路31がオフ状態になると(フラグB7のオフ)、これにより、時刻t31で、出力端子T3からの第1補助電源22の電力の供給が止まる(フラグB4のオフ)。 In this case, when the control circuit 21 receives the remote parking end signal from the ECU 7 at time t26 (flag B0 is turned off), the control circuit 21 turns off the switches SW3 and SW4 at time t27. As a result, at time t27, the power supply of the second auxiliary power supply 3 from the output terminal T3 is stopped (flag B4 is turned off). As a result, remote parking becomes impossible at time t27 (flag B2 is off). Further, when the switches SW3 and SW4 are turned off, the forced off of the switches SW1 and SW2 by the forced circuit 29 is released at the subsequent time t28 (flag B6 is turned off). At the time of this release, since the main power supply 4 has failed, the switches SW1 and SW3 are turned on by the comparison circuit 28 at time t28. As a result, at time t28, power from the first auxiliary power supply 22 that has not been charged is supplied from the output terminal T3 (flag B4 is turned on). When the switches SW1 and SW2 are turned on at the time t28, the latch circuit 31 latches the on of the switches SW1 and SW2 at the time t29 (flag B7 is turned on). Then, at time t30, when the main power supply 4 is restored (flag Bin is on), the comparison circuit 28 detects the restoration (flag B5 is off), but the latch circuit 31 is in the on state (flag B7 is on). ), Switches SW1 and SW2 continue to be on. When the latch circuit 31 is turned off at time t31 (flag B7 is turned off), the power supply of the first auxiliary power supply 22 from the output terminal T3 is stopped at time t31 (flag B4 is turned off).
 上記の参考例(図4の点線のグラフ)のように、主電源4の失陥中に制御回路21がリモート駐車終了信号を受信したとき(時刻t26)にスイッチSW3,SW4がオフにされると(時刻t27)、出力端子T3からの電力の供給が停止される期間(時刻t27~t28)が発生する。このため、本実施形態(図4の実践のグラフ)では、主電源4の失陥中に制御回路21がリモート駐車終了信号を受信したときに(時刻t26)、スイッチSW3,SW4のオンが継続されることで、時刻t27~t28の期間で、出力端子T3からの電力の供給が途切れなることが防止される。 As shown in the above reference example (dotted line graph in FIG. 4), the switches SW3 and SW4 are turned off when the control circuit 21 receives the remote parking end signal (time t26) during the failure of the main power supply 4. (Time t27), a period (time t27 to t28) in which the power supply from the output terminal T3 is stopped occurs. Therefore, in the present embodiment (graph of practice in FIG. 4), when the control circuit 21 receives the remote parking end signal (time t26) during the failure of the main power supply 4, the switches SW3 and SW4 are continuously turned on. By doing so, it is possible to prevent the power supply from the output terminal T3 from being interrupted during the period from time t27 to t28.
 (3.3)動作例3
 動作例2では、リモート駐車が終了した後に主電源4が復旧する場合の動作を例示した。次に図5を参照して、主電源4が復旧した後にリモート駐車が終了する場合の動作を例示する。
(3.3) Operation example 3
In the operation example 2, the operation when the main power supply 4 is restored after the remote parking is completed is illustrated. Next, with reference to FIG. 5, an operation when remote parking ends after the main power supply 4 is restored will be illustrated.
 時刻t41以前では、各フラグB1~B7はオフであり、各スイッチSW1~SW4はオフであり、スイッチSW5はオンであり、主電源4に失陥は発生していない。 Before time t41, the flags B1 to B7 are off, the switches SW1 to SW4 are off, the switch SW5 is on, and the main power supply 4 has not failed.
 時刻t41で、制御回路21がECU7からリモート駐車実施信号を受信すると(フラグB0のオン)、時刻t42で、制御回路21が強制回路29を介してスイッチSW1,SW2を強制的にオフにする(フラグB6のオン)。その後、時刻t43で、制御回路21がスイッチSW3,SW4をオンにする。これにより、時刻t43で、第2補助電源3からの電力が、スイッチSW3,SW4を経由して出力端子T43から第1負荷5に供給される(フラグB4のオン)。この電力供給により、時刻t43に、リモート駐車が実施可能になる(フラグB2のオン)。なお、本実施形態では、時刻t41からスイッチSW1,SW2はオフであるため、時刻t42ではスイッチSW1,SW2の強制的なオフの状態が維持される。 When the control circuit 21 receives the remote parking execution signal from the ECU 7 at the time t41 (flag B0 is turned on), the control circuit 21 forcibly turns off the switches SW1 and SW2 via the forced circuit 29 at the time t42 (the flag B0 is turned on). Flag B6 on). After that, at time t43, the control circuit 21 turns on the switches SW3 and SW4. As a result, at time t43, the electric power from the second auxiliary power source 3 is supplied from the output terminal T43 to the first load 5 via the switches SW3 and SW4 (flag B4 is turned on). With this power supply, remote parking can be performed at time t43 (flag B2 is turned on). In the present embodiment, since the switches SW1 and SW2 are off from the time t41, the forced off state of the switches SW1 and SW2 is maintained at the time t42.
 そして、時刻t44で主電源4に失陥が発生し(フラグBinのオン)、時刻t45で比較回路28が主電源4の失陥を検出する(フラグ7B5のオン)。しかし、強制回路29がスイッチSW1,SW2を強制的にオフにしているため、スイッチSW1,SW2は、比較回路28によってオンにされずオフのままである。 Then, a failure occurs in the main power supply 4 at time t44 (flag Bin is turned on), and the comparison circuit 28 detects the failure of the main power supply 4 at time t45 (flag 7B5 is turned on). However, since the forced circuit 29 forcibly turns off the switches SW1 and SW2, the switches SW1 and SW2 are not turned on by the comparison circuit 28 and remain off.
 そして、時刻t46で主電源4が復旧すると(フラグBinのオフ)、比較回路28がその復旧を検出し(フラグB5のオフ)、また、主電源4の電力が第1負荷5に供給される。そして、時刻t46で主電源4が復旧することで、時刻t47で第1補助電源モードがオフになる(フラグB3のオフ)。 Then, when the main power supply 4 is restored at time t46 (flag Bin is off), the comparison circuit 28 detects the restoration (flag B5 is off), and the power of the main power supply 4 is supplied to the first load 5. .. Then, when the main power supply 4 is restored at time t46, the first auxiliary power supply mode is turned off at time t47 (flag B3 is turned off).
 そして、時刻t48で制御回路21がECU7からリモート駐車終了信号を受信すると(フラグB0のオフ)、時刻t49で、制御回路21はスイッチSW3,SW4をオフにする。これにより、時刻t49で、出力端子T43からの第2補助電源の電力の供給が停止され(フラグB4のオフ)、且つリモート駐車が不可能になる(フラグB2のオフ)。また、スイッチSW3,SW4がオフにされることで、その後の時刻t50で、強制回路29によるスイッチSW1,SW2の強制的なオフが解除される(フラグB6のオフ)。 Then, when the control circuit 21 receives the remote parking end signal from the ECU 7 at time t48 (flag B0 is turned off), the control circuit 21 turns off the switches SW3 and SW4 at time t49. As a result, at time t49, the power supply of the second auxiliary power source from the output terminal T43 is stopped (flag B4 is turned off), and remote parking becomes impossible (flag B2 is turned off). Further, when the switches SW3 and SW4 are turned off, the forced off of the switches SW1 and SW2 by the forced circuit 29 is released at the subsequent time t50 (flag B6 is turned off).
 このように、本実施形態の動作例2,3では、第1条件と第2条件との両方を満たすが、第1条件と第2条件の少なくとも一方の条件を満たせばよい。第1条件は、第1スイッチ回路26(すなわちスイッチSW1,SW2)が強制的にオフ(遮断)された後に第2スイッチ回路27(すなわちスイッチSW3,SW4)がオン(導通)に制御されるという条件である。第2条件は、第2スイッチ回路27がオフ(遮断)された後に第1スイッチ回路26の強制的な遮断(オフ)が解除されるという条件である。 As described above, in the operation examples 2 and 3 of the present embodiment, both the first condition and the second condition are satisfied, but at least one of the first condition and the second condition may be satisfied. The first condition is that the second switch circuit 27 (that is, switches SW3 and SW4) is controlled to be turned on (conducting) after the first switch circuit 26 (that is, switches SW1 and SW2) is forcibly turned off (disconnected). It is a condition. The second condition is that the forced cutoff (off) of the first switch circuit 26 is released after the second switch circuit 27 is turned off (cut off).
 (4)主要な効果
 以上に説明したバックアップ電源システム1は、第1補助電源22及び第2補助電源3と、第1スイッチ回路26と、第2スイッチ回路27と、を備える。第1補助電源22及び第2補助電源3は、主電源4の失陥時に第1負荷5(負荷)への電力の供給が可能である。第1スイッチ回路26は、第1補助電源22と第1負荷5を繋ぐ第1給電路L1を導通及び遮断する。第2スイッチ回路27は、第2補助電源3と第1負荷5を繋ぐ第2給電路L2を導通及び遮断する。第1スイッチ回路26は、ハードウエア的に制御される。第2スイッチ回路27は、ソフトウエア的に制御される。バックアップ電源システム1は、第1スイッチ回路26を強制的に遮断させる強制回路29を更に備える。
(4) Main Effects The backup power supply system 1 described above includes a first auxiliary power supply 22, a second auxiliary power supply 3, a first switch circuit 26, and a second switch circuit 27. The first auxiliary power supply 22 and the second auxiliary power supply 3 can supply electric power to the first load 5 (load) when the main power supply 4 fails. The first switch circuit 26 conducts and cuts off the first power supply path L1 connecting the first auxiliary power supply 22 and the first load 5. The second switch circuit 27 conducts and cuts off the second power supply path L2 that connects the second auxiliary power supply 3 and the first load 5. The first switch circuit 26 is controlled by hardware. The second switch circuit 27 is controlled by software. The backup power supply system 1 further includes a compulsory circuit 29 that forcibly shuts off the first switch circuit 26.
 この構成によれば、強制回路29によって第1スイッチ回路26を強制的に遮断することができる。これにより、第1スイッチ回路26及び第2スイッチ回路27が共に導通する期間が発生することを防止できる。この結果、第1補助電源22と第2補助電源3との間で貫通電流が流れることを防止できる。 According to this configuration, the first switch circuit 26 can be forcibly cut off by the forced circuit 29. As a result, it is possible to prevent a period in which the first switch circuit 26 and the second switch circuit 27 are electrically connected to each other. As a result, it is possible to prevent a through current from flowing between the first auxiliary power supply 22 and the second auxiliary power supply 3.
 また、バックアップ電源システム1は、第1補助電源22及び第2補助電源3と、第1スイッチ回路26と、第2スイッチ回路27と、制御回路21と、を備える。第1補助電源22及び第2補助電源3は、主電源4の失陥時に第1負荷5への電力の供給が可能である。第1スイッチ回路26は、第1補助電源22と第1負荷5を繋ぐ第1給電路L1を導通及び遮断する。第2スイッチ回路27は、第2補助電源3と第1負荷5を繋ぐ第2給電路L2を導通及び遮断する。制御回路21は、第2スイッチ回路27を制御する。第2スイッチ回路27は、スイッチSW3(第1スイッチング素子)及びスイッチSW4(第2スイッチング素子)を有する。スイッチSW3及びスイッチSW4は、それぞれ第2給電路L2を導通及び遮断する。制御回路21は、第2補助電源3が電力を供給している給電期間において、スイッチSW3を遮断させ且つスイッチSW4を導通させる診断モードを有する。 Further, the backup power supply system 1 includes a first auxiliary power supply 22, a second auxiliary power supply 3, a first switch circuit 26, a second switch circuit 27, and a control circuit 21. The first auxiliary power supply 22 and the second auxiliary power supply 3 can supply electric power to the first load 5 when the main power supply 4 fails. The first switch circuit 26 conducts and cuts off the first power supply path L1 connecting the first auxiliary power supply 22 and the first load 5. The second switch circuit 27 conducts and cuts off the second power supply path L2 that connects the second auxiliary power supply 3 and the first load 5. The control circuit 21 controls the second switch circuit 27. The second switch circuit 27 has a switch SW3 (first switching element) and a switch SW4 (second switching element). The switch SW3 and the switch SW4 conduct and cut off the second power supply path L2, respectively. The control circuit 21 has a diagnostic mode in which the switch SW3 is shut off and the switch SW4 is made conductive during the power supply period in which the second auxiliary power supply 3 is supplying power.
 この構成によれば、第2補助電源3の出力を利用して、第2スイッチ回路27の故障の診断を行うことができる。 According to this configuration, the output of the second auxiliary power supply 3 can be used to diagnose the failure of the second switch circuit 27.
 (5)変形例
 上述の実施形態は、本開示の様々な実施形態の一つに過ぎない。上述の実施形態は、本開示の目的を達成できれば、設計等に応じて種々の変更が可能である。また、上述の実施形態に係るバックアップ電源システム1と同様の機能は、電源バックアップ方法、コンピュータプログラム、又はコンピュータプログラムを記録した非一時的記録媒体等で具現化されてもよい。
(5) Modified Example The above-described embodiment is only one of the various embodiments of the present disclosure. The above-described embodiment can be changed in various ways depending on the design and the like as long as the object of the present disclosure can be achieved. Further, the same function as the backup power supply system 1 according to the above-described embodiment may be realized by a power supply backup method, a computer program, a non-temporary recording medium on which the computer program is recorded, or the like.
 一態様に係る電源バックアップ方法は、主電源4の失陥時に負荷5への電力の供給が可能な第1補助電源22及び第2補助電源3を備えるバックアップ電源システム1に用いられる電源バックアップ方法である。電源バックアップ方法は、第1スイッチング工程と、第2スイッチング工程と、制御工程と、を含む。第1スイッチング工程は、第1スイッチ回路26によって第1補助電源22と負荷5を繋ぐ第1給電路L1を導通及び遮断する。第2スイッチング工程は、第2スイッチ回路27によって第2補助電源3と負荷5を繋ぐ第2給電路L2を導通及び遮断する。制御工程は、第2スイッチ回路27を制御する。第2スイッチング工程では、スイッチSW3(第1スイッチング素子)及びスイッチSW4(第2スイッチング素子)の各々によって第2給電路L2を導通及び遮断する。制御工程は、第2補助電源3が電力を供給している給電期間において、スイッチSW3を遮断させ且つスイッチSW4を導通させる診断モードを有する。 The power supply backup method according to one aspect is a power supply backup method used for a backup power supply system 1 including a first auxiliary power supply 22 and a second auxiliary power supply 3 capable of supplying power to the load 5 when the main power supply 4 fails. be. The power supply backup method includes a first switching step, a second switching step, and a control step. In the first switching step, the first power supply path L1 connecting the first auxiliary power supply 22 and the load 5 is conducted and cut off by the first switch circuit 26. In the second switching step, the second power supply path L2 connecting the second auxiliary power supply 3 and the load 5 is conducted and cut off by the second switch circuit 27. The control process controls the second switch circuit 27. In the second switching step, the switch SW3 (first switching element) and the switch SW4 (second switching element) each conduct and cut off the second power supply path L2. The control step has a diagnostic mode in which the switch SW3 is shut off and the switch SW4 is made conductive during the power supply period in which the second auxiliary power supply 3 is supplying power.
 一態様に係るプログラムは、上述の電源バックアップ方法を、1以上のプロセッサに実行させるためのプログラムである。 The program according to one aspect is a program for causing one or more processors to execute the above-mentioned power supply backup method.
 (変形例1)
 上記の実施形態では、強制回路29は、第1スイッチ回路26を強制的にオフにする。この場合は、第2スイッチ回路27がオンのときに、第1スイッチ回路26を強制的に遮断する。ただし、強制回路29は、第1スイッチ回路26の代わりに第2スイッチ回路27を強制的にオフにしてもよい。この場合は、強制回路29は、第1スイッチ回路26がオンのときに、第2スイッチ回路27を強制的に遮断するように構成されている。
(Modification example 1)
In the above embodiment, the forced circuit 29 forcibly turns off the first switch circuit 26. In this case, when the second switch circuit 27 is on, the first switch circuit 26 is forcibly cut off. However, the forced circuit 29 may forcibly turn off the second switch circuit 27 instead of the first switch circuit 26. In this case, the forced circuit 29 is configured to forcibly shut off the second switch circuit 27 when the first switch circuit 26 is on.
 (変形例2)
 上記の実施形態では、第1スイッチ回路26がハードウエア的に制御され、第2スイッチ回路27がソフトウエア的に制御されるが、第1スイッチ回路26がソフトウエア的に制御され、第2スイッチ回路27がハードウエア的に制御されてもよい。
(Modification 2)
In the above embodiment, the first switch circuit 26 is controlled by hardware and the second switch circuit 27 is controlled by software, but the first switch circuit 26 is controlled by software and the second switch. The circuit 27 may be controlled by hardware.
 (変形例3)
 上記の実施形態の動作例2,3では、例えば、ECU7が第2補助電源3の出力を制御しており、ECU7は、制御回路21の起動後、第2補助電源3が電力を常時出力するように第2補助電源3を制御してもよい。この場合は、スイッチSW4の故障診断は、制御回路21の起動後は、第2補助電源3の出力に合わせて何時でも行うことができる。
(Modification example 3)
In the operation examples 2 and 3 of the above-described embodiment, for example, the ECU 7 controls the output of the second auxiliary power supply 3, and the second auxiliary power supply 3 constantly outputs the electric power after the control circuit 21 is activated. The second auxiliary power supply 3 may be controlled as described above. In this case, the failure diagnosis of the switch SW4 can be performed at any time after the control circuit 21 is activated in accordance with the output of the second auxiliary power supply 3.
 ただし、ECU7は、出力端子T3からの電力供給のためにスイッチSW3,SW4がオンする期間を含む一定期間だけ、第2補助電源3が電力を出力するように第2補助電源3を制御してもよい。この場合は、スイッチSW4の故障診断は、制御回路21の起動後は、上記の一定期間のうちの空き時間(電力供給のためにスイッチSW3,SW4がオンされる期間以外の期間)に行うことができる。 However, the ECU 7 controls the second auxiliary power supply 3 so that the second auxiliary power supply 3 outputs power only for a certain period including the period in which the switches SW3 and SW4 are turned on to supply power from the output terminal T3. May be good. In this case, the failure diagnosis of the switch SW4 should be performed during the free time (a period other than the period in which the switches SW3 and SW4 are turned on for power supply) within the above-mentioned fixed period after the control circuit 21 is activated. Can be done.
 この場合(スイッチSW3,SW4をオンにして第2補助電源3の電力を出力端子T3から出力する場合)は、リモート駐車を実施する場合である。このため、制御回路21は、ECU7から受信するリモート駐車実施信号に基づくことで、スイッチSW4の故障診断を行うタイミングを上記の空き時間に合わせることができる。すなわち、制御回路21は、リモート駐車実施信号(すなわち外部からの信号)に基づいて、スイッチSW4の診断(すなわち診断モード)を実行することができる。 In this case (when the switches SW3 and SW4 are turned on and the power of the second auxiliary power supply 3 is output from the output terminal T3), remote parking is performed. Therefore, the control circuit 21 can adjust the timing of performing the failure diagnosis of the switch SW4 to the above-mentioned free time based on the remote parking execution signal received from the ECU 7. That is, the control circuit 21 can execute the diagnosis (that is, the diagnosis mode) of the switch SW4 based on the remote parking execution signal (that is, the signal from the outside).
 (6)まとめ
 第1の態様のバックアップ電源システム(1)は、第1補助電源(22)及び第2補助電源(3)と、第1スイッチ回路(26)と、第2スイッチ回路(27)と、を備える。第1補助電源(22)及び第2補助電源(3)は、主電源(4)の失陥時に負荷(5)への電力の供給が可能である。第1スイッチ回路(26)は、第1補助電源(22)と負荷(5)を繋ぐ第1給電路(L1)を導通及び遮断する。第2スイッチ回路(27)は、第2補助電源(3)と負荷(5)を繋ぐ第2給電路(L2)を導通及び遮断する。バックアップ電源システム(1)は、第1スイッチ回路(26)及び第2スイッチ回路(27)のうちの一方のスイッチ回路を強制的に遮断させる強制回路(29)を更に備える。
(6) Summary The backup power supply system (1) of the first aspect includes the first auxiliary power supply (22), the second auxiliary power supply (3), the first switch circuit (26), and the second switch circuit (27). And. The first auxiliary power supply (22) and the second auxiliary power supply (3) can supply electric power to the load (5) when the main power supply (4) fails. The first switch circuit (26) conducts and cuts off the first power supply path (L1) connecting the first auxiliary power supply (22) and the load (5). The second switch circuit (27) conducts and cuts off the second power supply path (L2) connecting the second auxiliary power supply (3) and the load (5). The backup power supply system (1) further includes a compulsory circuit (29) for forcibly shutting off one of the first switch circuit (26) and the second switch circuit (27).
 この構成によれば、強制回路(29)によって第1スイッチ回路(26)及び第2スイッチ回路(27)のうちの一方のスイッチ回路(例えば第1スイッチ回路26)を強制的に遮断することができる。これにより、第1スイッチ回路(26)及び第2スイッチ回路(27)が共に導通する期間が発生することを防止できる。この結果、第1補助電源(22)と第2補助電源(3)との間で貫通電流が流れることを防止できる。 According to this configuration, the forced circuit (29) can forcibly shut off one of the switch circuits (for example, the first switch circuit 26) of the first switch circuit (26) and the second switch circuit (27). can. As a result, it is possible to prevent a period in which both the first switch circuit (26) and the second switch circuit (27) are conducting with each other. As a result, it is possible to prevent a through current from flowing between the first auxiliary power supply (22) and the second auxiliary power supply (3).
 第2の態様のバックアップ電源システム(1)では、第1の態様において、第1スイッチ回路(26)は、ハードウエア的に制御される。第2スイッチ回路(27)は、ソフトウエア的に制御される。強制回路(29)は、第1スイッチ回路(26)及び第2スイッチ回路(27)のうちの他方のスイッチ回路が導通状態のときに、一方のスイッチ回路(例えば第1スイッチ回路26)を強制的に遮断する。 In the backup power supply system (1) of the second aspect, in the first aspect, the first switch circuit (26) is controlled by hardware. The second switch circuit (27) is controlled by software. The compulsory circuit (29) forcibly forces one switch circuit (for example, the first switch circuit 26) when the other switch circuit of the first switch circuit (26) and the second switch circuit (27) is in a conductive state. Shut off.
 この構成によれば、第1スイッチ回路(26)及び第2スイッチ回路(27)が共に導通することを防止できる。この結果、第1補助電源(22)と第2補助電源(3)との間で貫通電流が流れることを防止できる。 According to this configuration, it is possible to prevent both the first switch circuit (26) and the second switch circuit (27) from conducting with each other. As a result, it is possible to prevent a through current from flowing between the first auxiliary power supply (22) and the second auxiliary power supply (3).
 第3の態様のバックアップ電源システム(1)では、第1又は第2の態様において、第1条件と第2条件との少なくとも一方を満たす。第1条件は、一方のスイッチ回路(例えば第1スイッチ回路26)が強制的に遮断された後に他方のスイッチ回路(例えば第2スイッチ回路27)がオンに制御されるという条件である。第2条件は、他方のスイッチ回路が遮断された後に一方のスイッチ回路の強制的な遮断が解除されるという条件である。 In the backup power supply system (1) of the third aspect, at least one of the first condition and the second condition is satisfied in the first or second aspect. The first condition is that one switch circuit (for example, the first switch circuit 26) is forcibly shut off and then the other switch circuit (for example, the second switch circuit 27) is controlled to be turned on. The second condition is that the forced cutoff of one switch circuit is released after the other switch circuit is cut off.
 この構成によれば、第1条件及び第2条件の少なくとも一方を満たすことで、より確実に、第1スイッチ回路(26)及び第2スイッチ回路(27)が共に導通する期間が発生することを防止できる。 According to this configuration, by satisfying at least one of the first condition and the second condition, a period in which both the first switch circuit (26) and the second switch circuit (27) are electrically connected occurs more reliably. Can be prevented.
 第4の態様のバックアップ電源システム(1)では、第2又は第3の態様において、他方のスイッチ回路(例えば第2スイッチ回路27)が遮断されるべき期間に、一方のスイッチ回路(例えば第1スイッチ回路26)の強制的な遮断が維持され且つ他方のスイッチ回路の導通状態が継続される。 In the backup power supply system (1) of the fourth aspect, in the second or third aspect, one switch circuit (for example, the first switch circuit) is used during the period when the other switch circuit (for example, the second switch circuit 27) should be cut off. The forced interruption of the switch circuit 26) is maintained and the continuity of the other switch circuit is maintained.
 この構成によれば、他方のスイッチ回路が遮断されるべき期間に、主電源(4)及び第1補助電源(22)の両方から電力を十分に供給できない場合に、第1補助電源(22)と第2補助電源(3)との間で貫通電流が発生することを防止しつつ、第2補助電源(3)から電力の供給を行うことができる。 According to this configuration, the first auxiliary power supply (22) cannot be sufficiently supplied with power from both the main power supply (4) and the first auxiliary power supply (22) during the period when the other switch circuit should be cut off. Power can be supplied from the second auxiliary power source (3) while preventing a through current from being generated between the second auxiliary power source (3) and the second auxiliary power source (3).
 第5の態様のバックアップ電源システム(1)では、第1~第4の態様の何れか1つにおいて、一方のスイッチ回路(例えば第1スイッチ回路26)は、主電源(4)の失陥又は復旧に応じて制御される。 In the backup power supply system (1) of the fifth aspect, in any one of the first to fourth aspects, one switch circuit (for example, the first switch circuit 26) has a failure of the main power supply (4) or It is controlled according to the recovery.
 この構成によれば、上記の一方のスイッチ回路を、主電源(4)の失陥又は復旧に応じて制御できる。 According to this configuration, one of the above switch circuits can be controlled according to the failure or restoration of the main power supply (4).
 第6の態様のバックアップ電源システム(1)は、第1補助電源(22)及び第2補助電源(3)と、第1スイッチ回路(26)と、第2スイッチ回路(27)と、制御回路(21)と、を備える。第1補助電源(22)及び第2補助電源(3)は、主電源(4)の失陥時に負荷(5)への電力の供給が可能である。第1スイッチ回路(26)は、第1補助電源(22)と負荷(5)を繋ぐ第1給電路(L1)を導通及び遮断する。第2スイッチ回路(27)は、第2補助電源(3)と負荷(5)を繋ぐ第2給電路(L2)を導通及び遮断する。制御回路(21)は、第2スイッチ回路(27)を制御する。第2スイッチ回路(27)は、第1スイッチング素子(SW3)及び第2スイッチング素子(SW4)を有する。第1スイッチング素子(SW3)及び第2スイッチング素子(SW4)は、それぞれ第2給電路(L2)を導通及び遮断する。制御回路(21)は、第2補助電源(3)が電力を供給している給電期間において、第1スイッチング素子(SW3)を遮断させ且つ第2スイッチング素子(SW4)を導通させる診断モードを有する。 The backup power supply system (1) of the sixth aspect includes a first auxiliary power supply (22), a second auxiliary power supply (3), a first switch circuit (26), a second switch circuit (27), and a control circuit. (21) and. The first auxiliary power supply (22) and the second auxiliary power supply (3) can supply electric power to the load (5) when the main power supply (4) fails. The first switch circuit (26) conducts and cuts off the first power supply path (L1) connecting the first auxiliary power supply (22) and the load (5). The second switch circuit (27) conducts and cuts off the second power supply path (L2) connecting the second auxiliary power supply (3) and the load (5). The control circuit (21) controls the second switch circuit (27). The second switch circuit (27) has a first switching element (SW3) and a second switching element (SW4). The first switching element (SW3) and the second switching element (SW4) conduct and cut off the second power supply path (L2), respectively. The control circuit (21) has a diagnostic mode in which the first switching element (SW3) is cut off and the second switching element (SW4) is made conductive during the power supply period in which the second auxiliary power supply (3) is supplying power. ..
 この構成によれば、第2補助電源(3)の出力を利用して、第2スイッチ回路(27)(例えば第2スイッチング素子(SW4))の故障の診断を行うことができる。 According to this configuration, it is possible to diagnose a failure of the second switch circuit (27) (for example, the second switching element (SW4)) by using the output of the second auxiliary power supply (3).
 第7の態様のバックアップ電源システム(1)は、第6の態様において、制御回路(21)は、制御回路(21)の起動時に又は制御回路(21)の起動時から一定期間内に、診断モードを実行する。 The backup power supply system (1) of the seventh aspect, in the sixth aspect, the control circuit (21) is diagnosed at the time of starting the control circuit (21) or within a certain period from the time of starting the control circuit (21). Execute the mode.
 この構成によれば、制御回路(21)の起動時に又は制御回路(21)の起動時から一定期間内に診断モードを実行することで、簡単に、診断モードを第2補助電源(3)の給電期間に合わせることができる。 According to this configuration, the diagnostic mode can be easily set to the second auxiliary power supply (3) by executing the diagnostic mode within a certain period from the start of the control circuit (21) or the start of the control circuit (21). It can be adjusted to the power supply period.
 第8の態様のバックアップ電源システム(1)では、第6の態様において、制御回路(21)は、外部からの信号(例えばリモート駐車実施信号)に基づいて診断モードを実行する。 In the backup power supply system (1) of the eighth aspect, in the sixth aspect, the control circuit (21) executes the diagnostic mode based on a signal from the outside (for example, a remote parking execution signal).
 この構成によれば、外部からの信号に基づいて診断モードを実行することで、簡単に、診断モードを第2補助電源(3)の給電期間に合わせることができる。 According to this configuration, by executing the diagnostic mode based on the signal from the outside, the diagnostic mode can be easily adjusted to the power supply period of the second auxiliary power supply (3).
 第9の態様のバックアップ電源システム(1)は、第6~第8の態様の何れか1つにおいて、前記給電期間は、一定期間である。 In the backup power supply system (1) of the ninth aspect, in any one of the sixth to eighth aspects, the power supply period is a fixed period.
 この構成によれば、診断モードのために第2補助電源(3)から電力を供給する給電期間を制限できる。これにより、第2補助電源(3)の浪費を抑制できる。 According to this configuration, the power supply period for supplying power from the second auxiliary power supply (3) can be limited for the diagnostic mode. As a result, waste of the second auxiliary power supply (3) can be suppressed.
 第10の態様のバックアップ電源システム(1)では、第6~第9の態様の何れか1つにおいて、制御回路(21)は、診断モードで、第1スイッチング素子(SW3)及び第2スイッチング素子(SW4)のうちの少なくとも第2スイッチング素子(SW4)の故障を診断する。 In the backup power supply system (1) of the tenth aspect, in any one of the sixth to ninth aspects, the control circuit (21) is the first switching element (SW3) and the second switching element in the diagnostic mode. Diagnose the failure of at least the second switching element (SW4) of (SW4).
 この構成によれば、第1スイッチング素子(SW3)及び第2スイッチング素子(SW4)のうちの少なくとも第2スイッチング素子(SW4)の故障を診断できる。 According to this configuration, a failure of at least the second switching element (SW4) of the first switching element (SW3) and the second switching element (SW4) can be diagnosed.
 第11の態様の電源バックアップ方法は、主電源(4)の失陥時に負荷(5)への電力の供給が可能な第1補助電源(22)及び第2補助電源(3)を備えるバックアップ電源システム(1)に用いられる電源バックアップ方法である。電源バックアップ方法は、第1スイッチング工程と、第2スイッチング工程と、制御工程と、を含む。第1スイッチング工程は、第1スイッチ回路(26)によって第1補助電源(22)と負荷(5)を繋ぐ第1給電路(L1)を導通及び遮断する。第2スイッチング工程は、第2スイッチ回路(27)によって第2補助電源(3)と負荷(5)を繋ぐ第2給電路(L2)を導通及び遮断する。制御工程は、第2スイッチ回路(27)を制御する。第2スイッチング工程では、第1スイッチング素子(SW3)及び第2スイッチング素子(SW4)の各々によって第2給電路(L2)を導通及び遮断する。制御工程は、第2補助電源(3)が電力を供給している給電期間において、第1スイッチング素子(SW3)を遮断させ且つ第2スイッチング素子(SW4)を導通させる診断モードを有する。 The power supply backup method of the eleventh aspect is a backup power supply including a first auxiliary power supply (22) and a second auxiliary power supply (3) capable of supplying power to the load (5) when the main power supply (4) fails. This is a power supply backup method used in the system (1). The power supply backup method includes a first switching step, a second switching step, and a control step. In the first switching step, the first power supply path (L1) connecting the first auxiliary power supply (22) and the load (5) is conducted and cut off by the first switch circuit (26). In the second switching step, the second power supply path (L2) connecting the second auxiliary power supply (3) and the load (5) is conducted and cut off by the second switch circuit (27). The control step controls the second switch circuit (27). In the second switching step, each of the first switching element (SW3) and the second switching element (SW4) conducts and cuts off the second power supply path (L2). The control step has a diagnostic mode in which the first switching element (SW3) is cut off and the second switching element (SW4) is made conductive during the power supply period in which the second auxiliary power supply (3) is supplying electric power.
 この構成によれば、第2スイッチ回路(27)の診断を行うことができる。 According to this configuration, the second switch circuit (27) can be diagnosed.
 第12の態様のプログラムは、第11の態様の電源バックアップ方法を、1以上のプロセッサに実行させるためのプログラムである。 The program of the twelfth aspect is a program for causing one or more processors to execute the power supply backup method of the eleventh aspect.
 この構成によれば、電源バックアップ方法を1以上のプロセッサに実行させるためのプログラムを提供できる。 According to this configuration, it is possible to provide a program for causing one or more processors to execute the power backup method.
 1 バックアップ電源システム
 3 第2補助電源
 5 第1負荷(負荷)
 21 制御回路
 22 第1補助電源
 26 第1スイッチ回路
 27 第2スイッチ回路
 29 強制回路
 L1 第1給電路
 L2 第2給電路
 SW3 スイッチ(第1スイッチ素子)
 SW4 スイッチ(第2スイッチ素子)
1 Backup power supply system 3 2nd auxiliary power supply 5 1st load (load)
21 Control circuit 22 1st auxiliary power supply 26 1st switch circuit 27 2nd switch circuit 29 Forced circuit L1 1st power supply path L2 2nd power supply path SW3 switch (1st switch element)
SW4 switch (second switch element)

Claims (12)

  1.  主電源の失陥時に負荷への電力の供給が可能な第1補助電源及び第2補助電源と、
     前記第1補助電源と前記負荷を繋ぐ第1給電路を導通及び遮断する第1スイッチ回路と、
     前記第2補助電源と前記負荷を繋ぐ第2給電路を導通及び遮断する第2スイッチ回路と、
     前記第1スイッチ回路及び前記第2スイッチ回路のうちの一方のスイッチ回路を強制的に遮断させる強制回路と、を備える、
    バックアップ電源システム。
    The first auxiliary power supply and the second auxiliary power supply that can supply power to the load when the main power supply fails,
    A first switch circuit that conducts and cuts off the first power supply path that connects the first auxiliary power supply and the load.
    A second switch circuit that conducts and cuts off the second power supply path that connects the second auxiliary power supply and the load.
    A compulsory circuit for forcibly shutting off one of the first switch circuit and the second switch circuit is provided.
    Backup power system.
  2.  前記第1スイッチ回路は、ハードウエア的に制御され、
     前記第2スイッチ回路は、ソフトウエア的に制御され、
     前記強制回路は、前記第1スイッチ回路及び前記第2スイッチ回路のうちの他方のスイッチ回路が導通状態のときに、前記一方のスイッチ回路を強制的に遮断する、
    請求項1に記載のバックアップ電源システム。
    The first switch circuit is controlled by hardware.
    The second switch circuit is controlled by software.
    The forced circuit forcibly shuts off the one switch circuit when the other switch circuit of the first switch circuit and the second switch circuit is in a conductive state.
    The backup power supply system according to claim 1.
  3.  前記一方のスイッチ回路が強制的に遮断された後に前記他方のスイッチ回路がオンに制御されるという第1条件と、前記他方のスイッチ回路が遮断された後に前記一方のスイッチ回路の強制的な遮断が解除されるという第2条件との少なくとも一方を満たす、
    請求項1又は2に記載のバックアップ電源システム。
    The first condition that the other switch circuit is controlled to be turned on after the one switch circuit is forcibly cut off, and the forcible cutoff of the one switch circuit after the other switch circuit is cut off. Satisfies at least one of the second conditions that is released,
    The backup power supply system according to claim 1 or 2.
  4.  前記他方のスイッチ回路が遮断されるべき期間に、前記一方のスイッチ回路の強制的な遮断が維持され且つ前記他方のスイッチ回路の導通状態が継続される、
    請求項2又は3に記載のバックアップ電源システム。
    During the period when the other switch circuit should be cut off, the forced cutoff of the one switch circuit is maintained and the continuity state of the other switch circuit is continued.
    The backup power supply system according to claim 2 or 3.
  5.  前記一方のスイッチ回路は、前記主電源の失陥又は復旧に応じて制御される、
    請求項1~4の何れか1項に記載のバックアップ電源システム。
    The one switch circuit is controlled in response to the failure or recovery of the main power supply.
    The backup power supply system according to any one of claims 1 to 4.
  6.  主電源の失陥時に負荷への電力の供給が可能な第1補助電源及び第2補助電源と、
     前記第1補助電源と前記負荷を繋ぐ第1給電路を導通及び遮断する第1スイッチ回路と、
     前記第2補助電源と前記負荷を繋ぐ第2給電路を導通及び遮断する第2スイッチ回路と、
     前記第2スイッチ回路を制御する制御回路と、を備え、
     前記第2スイッチ回路は、
      それぞれ前記第2給電路を導通及び遮断する第1スイッチング素子及び第2スイッチング素子を有し、
     前記制御回路は、
      前記第2補助電源が電力を供給している給電期間において、前記第1スイッチング素子を遮断させ且つ前記第2スイッチング素子を導通させる診断モードを有する、
    バックアップ電源システム。
    The first auxiliary power supply and the second auxiliary power supply that can supply power to the load when the main power supply fails,
    A first switch circuit that conducts and cuts off the first power supply path that connects the first auxiliary power supply and the load.
    A second switch circuit that conducts and cuts off the second power supply path that connects the second auxiliary power supply and the load.
    A control circuit for controlling the second switch circuit is provided.
    The second switch circuit is
    Each has a first switching element and a second switching element that conduct and cut off the second power supply path.
    The control circuit
    It has a diagnostic mode in which the first switching element is cut off and the second switching element is made conductive during the power supply period in which the second auxiliary power supply is supplying electric power.
    Backup power system.
  7.  前記制御回路は、前記制御回路の起動時に又は前記制御回路の起動時から一定期間内に、前記診断モードを実行する、
    請求項6に記載のバックアップ電源システム。
    The control circuit executes the diagnostic mode at the time of starting the control circuit or within a certain period from the time when the control circuit is started.
    The backup power supply system according to claim 6.
  8.  前記制御回路は、外部からの信号に基づいて前記診断モードを実行する、
    請求項6に記載のバックアップ電源システム。
    The control circuit executes the diagnostic mode based on an external signal.
    The backup power supply system according to claim 6.
  9.  前記給電期間は、一定期間である、
    請求項6~8の何れか1項に記載のバックアップ電源システム。
    The power supply period is a fixed period.
    The backup power supply system according to any one of claims 6 to 8.
  10.  前記制御回路は、前記診断モードで、前記第1スイッチング素子及び前記第2スイッチング素子のうちの少なくとも前記第2スイッチング素子の故障を診断する、
    請求項6~9の何れか1項に記載のバックアップ電源システム。
    The control circuit diagnoses a failure of at least the second switching element of the first switching element and the second switching element in the diagnostic mode.
    The backup power supply system according to any one of claims 6 to 9.
  11.  主電源の失陥時に負荷への電力の供給が可能な第1補助電源及び第2補助電源を備えるバックアップ電源システムに用いられる電源バックアップ方法であって、
     第1スイッチ回路によって前記第1補助電源と前記負荷を繋ぐ第1給電路を導通及び遮断する第1スイッチング工程と、
     第2スイッチ回路によって前記第2補助電源と前記負荷を繋ぐ第2給電路を導通及び遮断する第2スイッチング工程と、
     前記第2スイッチ回路を制御する制御工程と、を含み、
     前記第2スイッチング工程では、
      第1スイッチング素子及び第2スイッチング素子の各々によって前記第2給電路を導通及び遮断し、
     前記制御工程は、
      前記第2補助電源が電力を供給している給電期間において、前記第1スイッチング素子を遮断させ且つ前記第2スイッチング素子を導通させる診断モードを有する、
    電源バックアップ方法。
    A power supply backup method used in a backup power supply system equipped with a first auxiliary power supply and a second auxiliary power supply capable of supplying power to a load when the main power supply fails.
    A first switching step of conducting and interrupting a first power supply path connecting the first auxiliary power supply and the load by a first switch circuit, and
    A second switching step of conducting and interrupting the second power supply path connecting the second auxiliary power supply and the load by the second switch circuit, and
    Including a control step for controlling the second switch circuit.
    In the second switching step,
    Each of the first switching element and the second switching element conducts and cuts off the second power supply path.
    The control step is
    It has a diagnostic mode in which the first switching element is cut off and the second switching element is made conductive during the power supply period in which the second auxiliary power supply is supplying power.
    Power backup method.
  12.  請求項11に記載の電源バックアップ方法を、1以上のプロセッサに実行させるためのプログラム。 A program for causing one or more processors to execute the power backup method according to claim 11.
PCT/JP2021/013174 2020-03-30 2021-03-29 Backup power supply system, power supply backup method, and program WO2021200774A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022512176A JPWO2021200774A1 (en) 2020-03-30 2021-03-29

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020061519 2020-03-30
JP2020-061519 2020-03-30

Publications (1)

Publication Number Publication Date
WO2021200774A1 true WO2021200774A1 (en) 2021-10-07

Family

ID=77927296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/013174 WO2021200774A1 (en) 2020-03-30 2021-03-29 Backup power supply system, power supply backup method, and program

Country Status (2)

Country Link
JP (1) JPWO2021200774A1 (en)
WO (1) WO2021200774A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022145270A1 (en) * 2020-12-28 2022-07-07 パナソニックIpマネジメント株式会社 Electricity storage device control circuit and backup power supply system using same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012135206A (en) * 2006-12-25 2012-07-12 Panasonic Corp Power storage device
JP2018191440A (en) * 2017-05-08 2018-11-29 株式会社オートネットワーク技術研究所 Power supply controller for vehicle, electric power supply for vehicle, and control circuit of power supply controller for vehicle
JP2018196203A (en) * 2017-05-15 2018-12-06 株式会社ジェイテクト Power supply device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012135206A (en) * 2006-12-25 2012-07-12 Panasonic Corp Power storage device
JP2018191440A (en) * 2017-05-08 2018-11-29 株式会社オートネットワーク技術研究所 Power supply controller for vehicle, electric power supply for vehicle, and control circuit of power supply controller for vehicle
JP2018196203A (en) * 2017-05-15 2018-12-06 株式会社ジェイテクト Power supply device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022145270A1 (en) * 2020-12-28 2022-07-07 パナソニックIpマネジメント株式会社 Electricity storage device control circuit and backup power supply system using same

Also Published As

Publication number Publication date
JPWO2021200774A1 (en) 2021-10-07

Similar Documents

Publication Publication Date Title
WO2014061137A1 (en) Power supply management system and power supply management method
US10340106B2 (en) Load driver
US11424490B2 (en) Battery control device, control method, computer-readable storage medium storing program, and vehicle
JP2008302825A (en) Power source device for vehicle
WO2021200774A1 (en) Backup power supply system, power supply backup method, and program
WO2022114197A1 (en) Back-up power source system and mobile body
CN110832729B (en) Power supply control device and battery unit
JP6969505B2 (en) In-vehicle power control device and in-vehicle power supply system
JP7182650B2 (en) Systems for controlling switches, switching arms and electrical installations
WO2018012302A1 (en) Power supply device
WO2021060220A1 (en) Backup power supply system, power supply backup method, and program
US11677262B2 (en) In-vehicle backup control apparatus and in-vehicle backup apparatus
WO2018074545A1 (en) Power supply device
JP2022072398A (en) Backup power supply system, failure diagnosis method for backup power supply system, and program
WO2024024034A1 (en) Onboard backup control device
WO2024024087A1 (en) On-vehicle backup control device
CN112368931A (en) System for controlling a switch and switch arm
US20240001875A1 (en) Power supply control device, control method, and storage medium
US20210300270A1 (en) Power storage unit control device
WO2024004193A1 (en) Vehicle-mounted backup control device
WO2021100479A1 (en) Onboard power supply control device and onboard power supply apparatus
WO2024024093A1 (en) Vehicle-mounted control device
JP7173421B1 (en) Power supply controller
US20240157916A1 (en) Power supply system
US20230411991A1 (en) System power supply structure, backup power supply device, and control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21780821

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022512176

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21780821

Country of ref document: EP

Kind code of ref document: A1