WO2021200746A1 - Ferrite powder, ferrite resin composition, resin molded body, electronic component, electronic equipment, or electronic equipment housing - Google Patents

Ferrite powder, ferrite resin composition, resin molded body, electronic component, electronic equipment, or electronic equipment housing Download PDF

Info

Publication number
WO2021200746A1
WO2021200746A1 PCT/JP2021/013107 JP2021013107W WO2021200746A1 WO 2021200746 A1 WO2021200746 A1 WO 2021200746A1 JP 2021013107 W JP2021013107 W JP 2021013107W WO 2021200746 A1 WO2021200746 A1 WO 2021200746A1
Authority
WO
WIPO (PCT)
Prior art keywords
ferrite
ferrite powder
mass
zinc
powder
Prior art date
Application number
PCT/JP2021/013107
Other languages
French (fr)
Japanese (ja)
Inventor
康二 安賀
小島 隆志
忠志 續
曉美 近野
翔 桑原
隆男 杉浦
Original Assignee
パウダーテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パウダーテック株式会社 filed Critical パウダーテック株式会社
Publication of WO2021200746A1 publication Critical patent/WO2021200746A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • the present invention relates to a ferrite powder, a ferrite resin composition, a resin molded body, an electronic component, an electronic device, or an electronic device housing.
  • Ferrite resin compositions composed of ferrite powder and resin are widely used in various applications such as electromagnetic wave shielding materials.
  • the resin composition is produced by kneading the ferrite powder as a filler with the resin, and is molded into a shape such as a sheet to form a molded body (complex).
  • the shape of the particles constituting the ferrite powder is close to a sphere, the fluidity at the time of molding becomes high, and the filling rate of the ferrite powder in the resin composition becomes high. Therefore, the moldability is improved and the characteristics such as electromagnetic wave shielding performance are excellent.
  • ferrite powder composed of spherical particles has attracted attention, and it has been proposed to prepare such spherical particles by a thermal spraying method.
  • Patent Document 1 International Publication No. 2017/212997 contains substantially no Zn, 3 to 25% by weight of Mn, and 43 to 65% by weight of Fe, and has an average particle size of 1.
  • a ferrite particle which is a single crystal having a diameter of about 2000 nm and has a spherical particle shape is disclosed (claim 1 of Patent Document 1).
  • Patent Document 1 states that a granulated product made of a ferrite raw material is sprayed in the air to be ferrite, and then rapidly cooled and solidified, and then only particles having a particle size within a predetermined range are recovered for production. It is described that when used as an electromagnetic wave shielding material for an apparatus, electromagnetic waves in a wide frequency band can be stably shielded regardless of the frequency (Patent Documents 1 [0039] and [0078]).
  • Patent Document 2 International Publication No. 2016/043051
  • ferrite obtained by adjusting a predetermined ratio of ferrite composition with respect to Mn-Mg-based ferrite particles having an average particle size of 1 to 2000 nm and being spherical. It is described that the raw material is sprayed in the air to be ferrite, and then rapidly cooled and solidified to be produced, and that it is particularly preferably used as a filler or a magnetic fluid for a resin composition for electromagnetic wave shielding (Patent Document 2 []. 0036] and [0077]).
  • the ferrites proposed in Patent Documents 1 and 2 are manganese (Mn) -based ferrites containing manganese (Mn) as a main component and having a spinel-type structure.
  • Manganese-based ferrite has excellent magnetic properties such as magnetic permeability, and is used in various applications.
  • spinel type ferrite various ferrites other than manganese-based ferrite are known, and among them, zinc ferrite having zinc (Zn) as a main component is included.
  • Zinc ferrite shows antiferromagnetism in stoichiometric composition and has no magnetism when viewed macroscopically. However, zinc ferrite becomes ferromagnetic when an excessive amount of iron (Fe) is added to it, and the magnetization and magnetic permeability become high.
  • Patent Documents 3 to 5 are examples of documents that disclose ferromagnetic zinc ferrite and a method for producing the same.
  • Patent Document 3 Japanese Unexamined Patent Publication No. 55-65406
  • 99.9 to 51 mol% of iron oxide is converted into Fe 2 O 3 and 0.1 is converted into MO (M is Zn, etc.).
  • MO Mo is Zn, etc.
  • Patent Document 3 A ferrite powder for electrophotographic magnetic toner having a spinel-type structure composed of up to 49 mol% of zinc oxide or the like is disclosed (Patent Document 3, claim 1).
  • Patent Document 3 in Example 2, after blending Fe 2 O 3 to 80 mol% and Zn O to 20 mol%, granulation and firing were performed, and the obtained fired body was crushed, dried and baked.
  • the average particle size of the obtained powder is 0.45 ⁇ m
  • the specific surface area is 17.2 m 2 / g
  • the ⁇ m (maximum magnetization force) under an external magnetic field of 1000 Oe is It is described that 65 emu / g and Hc (coercive force) are 185 Oe (upper left column on page 7 of Patent Document 3).
  • Patent Document 4 Japanese Unexamined Patent Publication No. 8-346166 describes a method for producing zinc ferrite powder, which is a solid solution of magnetite and zinc ferrite, and describes a mixed material containing metal chloride and metal oxide and composed of zinc and iron. It is described that the roasting step is performed in an atmosphere in which steam is present as a starting material (Patent Document 4, claim 1). Further, Patent Document 4 states that the saturation magnetization is 85 to 96 emu / g, the coercive force is 90 to 210 Oe, and the specific surface area is 1 to 5 m 2 / g when the applied magnetic field is 5000 Oe. It is described that it can be preferably used for magnetic toner and the like (Patent Document 4, claim 5 and [0023]).
  • Patent Document 5 Japanese Unexamined Patent Publication No. 6-310318 proposes to produce granular magnetite particle powder coated with zinc ferrite by wet synthesis. Specifically, 0 for a granular magnetite particles the particle surface is coated with a Zn x Fe 2 + y O z , the Zn x Fe 2 + y O Zn amount in z is the total Fe in the granular magnetite particles Granular magnetite particle powder having a content of 5.5 to 4.0 mol% is disclosed, and a ferrous salt aqueous solution and an alkali hydroxide aqueous solution are added and mixed in an aqueous dispersion containing the granular magnetite particle powder. after adjusting the OH group concentration and, by passing an oxygen-containing gas, (claims 1 and 2 of Patent Document 5) the granular magnetite particles surface Zn x Fe 2 + y that the coating with O z is described.
  • manganese-based ferrite contains manganese as a main component, but it has been reported that inhalation of a large amount of manganese by inhalation exposure causes health hazards to the nervous system. Therefore, manganese and its compounds are classified as substances subject to the Industrial Safety and Health Act Specified Chemical Substance Hazard Prevention Regulations (Control Class 2 substances). For this reason, dustproof treatment for preventing the scattering of manganese raw materials is indispensable during the production of manganese-based ferrite, which has been a cause of an increase in production cost.
  • Patent Documents 3 to 5 Although zinc ferrite powders are proposed in Patent Documents 3 to 5, these powders do not consist of spherical particles. Therefore, when applied to a filler of a resin composition, there are problems in terms of moldability, fluidity and filling property. Further, although Patent Documents 3 to 5 show static magnetic field characteristics such as saturation magnetization and coercive force with respect to the characteristics of zinc ferrite powder, there is no description regarding high frequency characteristics, and there is no description of specific uses other than electrophotographic toner. .. Therefore, it is unclear whether these zinc ferrite powders are applied to high frequency applications such as electromagnetic wave shielding materials.
  • the present inventors have conducted diligent studies in view of such problems.
  • the specific zinc ferrite powder composed of spherical or polyhedral particles is excellent in magnetic properties, especially magnetic permeability in the high frequency region, even though it does not contain manganese, and further, moldability, fluidity and It was found that the filling property is good.
  • the present invention includes the following aspects (1) to (8).
  • the expression "-" includes the numerical values at both ends thereof. That is, "X to Y” is synonymous with “X or more and Y or less”.
  • Ferrite powder composed of spherical or polyhedral ferrite particles.
  • the ferrite powder contains 5.0 to 10.0% by mass of zinc (Zn) and 55.0 to 65.0% by mass of iron (Fe), has a composition of residual oxygen (O) and unavoidable impurities, and is crystalline.
  • a zinc ferrite powder which is excellent in magnetic properties even though it does not contain manganese and has good moldability, fluidity and filling property. Further, a ferrite resin composition containing such zinc ferrite powder, a resin molded body, an electronic component, an electronic device, or an electronic device housing is provided.
  • An example of the SEM image of the ferrite powder produced by the thermal spraying method is shown.
  • An example of the SEM image of the ferrite powder produced by the thermal spraying method is shown.
  • An example of the SEM image of the ferrite powder produced by the electric furnace firing method is shown.
  • An example of the SEM image of the ferrite powder produced by the electric furnace firing method is shown.
  • the present embodiment A specific embodiment of the present invention (hereinafter referred to as "the present embodiment") will be described.
  • the present invention is not limited to the following embodiments, and various modifications can be made without changing the gist of the present invention.
  • the ferrite powder of this embodiment is composed of spherical or polyhedral ferrite particles. Further, this ferrite powder contains 5.0 to 10.0% by mass of zinc (Zn) and 55.0 to 65.0% by mass of iron (Fe), and has a composition of residual oxygen (O) and unavoidable impurities. Further, the crystallite diameter is in the range of 8.0 to 15.0 ⁇ , and the content of divalent iron ion (Fe 2+ ) is 0.5 to 10.0% by mass.
  • the ferrite powder of this embodiment is composed of spherical or polyhedral ferrite particles. That is, the ferrite powder contains a large number of spherical or polyhedral ferrite particles. By being composed of such ferrite particles, the ferrite powder becomes excellent in moldability and filling property when it is applied to a resin composition (ferrite resin composite material) as a filler. Spherical or polyhedral particles smoothly avoid contact with other particles during molding. Therefore, the fluidity at the time of molding is improved and the mixture is densely packed. On the other hand, particles having an anisotropic shape (indefinite shape) such as a plate shape or a needle shape are inferior in moldability and filling property. In the present specification, the amorphous particle includes an anisotropic particle and is used in comparison with a spherical particle or the like.
  • the shape of the particles constituting the ferrite powder may be spherical or polyhedral.
  • the ferrite powder of the present embodiment contains zinc (Zn) having a high saturated vapor pressure, and the particles tend to be polyhedral. This is a high-temperature heating (spraying) process during the production of ferrite powder, in which components with high saturated vapor pressure move from the inside to the outside of the particles and function as flux, which causes the particles to grow into a polyhedron that reflects the crystal structure. It is thought to be easier.
  • Polyhedral particles basically have a shape in which a plurality of polygons are three-dimensionally combined.
  • the polygons that make up a polyhedron typically consist of triangles, quadrilaterals, hexagons, octagons, decagons, or combinations thereof. Examples of such a polyhedron include a truncated cuboctahedron composed of a combination of a quadrangle, a hexagon, and an octagon.
  • a polyhedron is closer to a sphere as the number of faces increases. Therefore, the polyhedral particles preferably have a shape of a tetradecahedron or more, more preferably a dodecahedron or more, and even more preferably a tetradecahedron or more.
  • the polyhedral particles typically have a shape of 100 faces or less, more typically 72 faces or less, and more typically 24 faces or less.
  • the ferrite powder contains 5.0 to 10.0% by mass of zinc (Zn) and 55.0 to 65.0% by mass of iron (Fe), and has a composition of residual oxygen (O) and unavoidable impurities.
  • This ferrite powder has a zinc ferrite composition and does not contain metal components other than zinc (Zn) and iron (Fe) in excess of the amount of unavoidable impurities.
  • the unavoidable impurity is a component that is inevitably mixed in during the manufacturing process, and refers to a component having a content of 5000 ppm or less.
  • Inevitable impurities typically include silicon (Si), aluminum (Al), calcium (Ca), chlorine (Cl), boron (B), zirconium (Zr) and chromium (Cr).
  • Zinc ferrite is a type of spinel ferrite.
  • Spinel ferrite is an oxide represented by the molecular formula of MO ⁇ Fe 2 O 3 (M is a divalent metal such as Mn, Ni, Zn), and most of them exhibit ferromagnetism.
  • M is a divalent metal such as Mn, Ni, Zn
  • Spinel ferrite has an A site that occupies a tetrahedral position surrounded by four oxygen ions (O 2- ) in the crystal structure and a B site that occupies an octahedral position surrounded by six oxygen ions. Have.
  • Zinc ferrite belongs to positive spinel in the chemical composition, divalent zinc ion (Zn 2+ ) which is a non-magnetic ion occupies A site, and trivalent iron ion (Fe 3+ ) which is a magnetic ion occupies B site. Occupy. Half of the iron ions (Fe 3+ ) that occupy the B site have an upward magnetic moment (spin), and the other half have a downward magnetic moment. Since the magnetic moment of iron ions cancels out at temperatures below the nail point, zinc ferrite (ZnO ⁇ Fe 2 O 3 ) having a chemical composition is an antiferromagnetic material and does not exhibit magnetism.
  • the stoichiometric composition of zinc ferrite has a zinc content of 27.1% by mass and an iron content of 46.3% by mass.
  • zinc ferrite containing an excess amount of iron is a ferromagnet. That is, the surplus iron becomes divalent and trivalent iron ions (Fe 2+ , Fe 3+ ), which occupy the A and B sites in the spinel structure. Specifically, occupy A site trivalent iron ions (Fe 3+) together with divalent zinc ions (Zn 2+), divalent iron ions (Fe 2+) together with trivalent iron ions (Fe 2+) Occupies B site.
  • Zinc ferrite containing an excess amount of iron can be regarded as a solid solution of zinc ferrite (ZnO ⁇ Fe 2 O 3 ) and magnetite (FeO ⁇ Fe 2 O 3) having a stoichiometric composition.
  • the molecular formula of this ferrite is represented by (Zn 2+ , Fe 3+ ) O ⁇ [Fe 3+ , Fe 2+ ] 2 O 3 .
  • the ions in parentheses () are A-site ions
  • the ions in square brackets [] are B-site ions.
  • the trivalent iron ion (Fe 3+ ) enters the A site and the divalent iron ion (Fe 2+ ) enters the B site, so that the zinc ferrite exhibits ferromagnetism as a whole.
  • the ferrite powder of this embodiment has a composition of zinc ferrite containing excess iron and exhibits ferromagnetism. Therefore, the saturation magnetization ( ⁇ s) is large. Further, this ferrite powder has a soft magnetic property, has a small coercive force (Hc) and a small remanent magnetization ( ⁇ r), and has a high magnetic permeability ( ⁇ ). Therefore, this ferrite powder is suitable for applications that require soft magnetic properties, such as inductors, transformers, electromagnetic wave shielding materials, and filters.
  • the ferrite powder of the present embodiment has a high magnetic permeability ( ⁇ ) at high frequencies and exhibits excellent moldability and filling property when applied to a ferrite resin composition as a filler. Therefore, when applied to an electromagnetic wave shielding material, it is possible to obtain excellent electromagnetic wave shielding performance.
  • the composition of the ferrite powder becomes close to magnetite (FeO / Fe 2 O 3 ), which is not preferable. Magnetite tends to destabilize its saturation magnetization ( ⁇ s) due to oxidation. In addition, the coercive force (Hc) is high and the magnetic permeability is relatively small.
  • the zinc content is limited to 5.0% by mass or more and the iron content is limited to 65.0% by mass or less.
  • the zinc content may be 6.0% by mass or more, 7.0% by mass or more, and 8.0% by mass or more.
  • the iron content may be 64.0% by mass or less, 63.0% by mass or less, 62.0% by mass or less, or 61.0% by mass or less.
  • the zinc content is more than 10.0% by mass and / or the iron content is less than 55.0% by mass, the composition of the ferrite powder becomes close to that of zinc ferrite having a stoichiometric composition. Therefore, the saturation magnetization ( ⁇ s) and the magnetic permeability ( ⁇ ) may decrease, which is not preferable.
  • the zinc content is limited to 10.0% by mass or less and the iron content is limited to 55.0% by mass or more.
  • the zinc content may be 9.0% by mass or less, 8.0% by mass or less, or 7.0% by mass or less.
  • the iron content may be 58.0% by mass or more, 59.0% by mass or more, 60.0% by mass or more, 61.0% by mass or more, 62. It may be 0.0% by mass or more, and may be 63.0% by mass or more.
  • the ferrite powder of this embodiment has a crystallite diameter of 8.0 to 15.0 ⁇ . Crystallets are the largest collection of single crystals that make up the particles in a powder, and each particle is generally made up of a plurality of single crystals. By limiting the crystallite diameter within the above numerical range, the magnetic permeability in the high frequency range becomes high. The detailed reason for this is not certain, but as described above, the correlation (length) of the magnetic moment inside the ferrite particles is moderately suppressed by having an appropriately sized crystallite diameter, so that the magnetic moment is appropriately suppressed with respect to the externally applied magnetic field.
  • the crystallite diameter is preferably 9.0 to 13.0 ⁇ .
  • the crystallite diameter can be determined by the X-ray diffraction method. Specifically, an X-ray profile of the ferrite powder is obtained by an X-ray diffraction method. Focusing on a specific diffraction peak in the profile, the full width at half maximum (FWHM) ⁇ is obtained. From the obtained full width at half maximum ⁇ , the crystallite diameter D is obtained according to Scherrer's equation shown in the following equation (1).
  • K is the Scheller constant
  • is the wavelength of the X-ray used
  • is the Bragg angle of the diffraction peak.
  • the ferrite powder of this embodiment has a divalent iron ion (Fe 2+ ) content of 0.5 to 10.0% by mass.
  • a divalent iron ion (Fe 2+ ) content of 0.5 to 10.0% by mass.
  • the amount of ferrous ion may be 1.0% by mass or more, 2.0% by mass or more, 3.0% by mass or more, 4.0% by mass or more, and may be 4.0% by mass or more. It may be 5.0% by mass or more.
  • the particles constituting the ferrite powder may be oxidized when the ferrite powder mixed with the resin is heat-cured or when treated with a chemical solution such as acid or alkali. There is. Oxidation of such particles is not preferable because the magnetic properties are impaired.
  • the amount of divalent iron ions may be 8.0% by mass or less, 7.0% by mass or less, 6.0% by mass or less, 5.0% by mass or less, and may be 5.0% by mass or less. It may be 4.0% by mass or less, and may be 3.0% by mass or less.
  • the amount of divalent iron ions can be determined, for example, by redox titration.
  • Ferrite powder mainly contains a spinel phase.
  • the content ratio of the spinel phase is preferably 90.0% by mass or more. Since the spinel phase exhibits ferromagnetism, the higher the content ratio, the higher the saturation magnetization ( ⁇ s) and magnetic permeability ( ⁇ ).
  • the content ratio of the spinel phase may be 95.0% by mass or more, 99.0% by mass or more, or 99.5% by mass or more.
  • the ferrite powder may contain phases other than the spinel phase and unavoidable impurities. Examples of other phases include excess zinc oxide (ZnO) and iron oxides other than spinel ( ⁇ -Fe 2 O 3 , FeO, etc.).
  • the content ratio of the other phases is small.
  • the content ratio of the other phase may be 10.0% by mass or less, 5.0% by mass or less, 1.0% by mass or less, and 0.5% by mass or less. ..
  • the ferrite powder does not have to contain other phases.
  • the unavoidable impurities are components having a content of 5000 ppm or less as described above.
  • the ferrite powder may contain hematite ( ⁇ -Fe 2 O 3 ) as long as the magnetic properties are not excessively deteriorated.
  • hematite ⁇ -Fe 2 O 3
  • the content of hematite may be 0.1% by mass or more, 0.5% by mass or more, 1.0% by mass or more, or 3.0% by mass or more.
  • the content of hematite may be 7.0% by mass or less, 6.0% by mass or less, 5.0% by mass or less, 4.0% by mass or less, and 3. It may be 0% by mass or less.
  • the saturation magnetization ( ⁇ s) of the ferrite powder is preferably 80.0 emu / g or more.
  • the saturation magnetization may be 82.0 emu / g or more, 84.0 emu / g or more, or 86.0 emu / g or more.
  • the upper limit of saturation magnetization is limited by the composition of the ferrite powder and is typically 96.0 emu / g or less.
  • the residual magnetization ( ⁇ r) of the ferrite powder is preferably 5.0 emu / g or less.
  • the remanent magnetization may be 4.0 emu / g or less, 3.5 emu / g or less, or 3.0 emu / g or less.
  • the lower limit of the remanent magnetization is not particularly limited. However, it is typically 0.5 emu / g or higher.
  • the coercive force (Hc) of the ferrite powder is preferably 100 Oe or less.
  • the coercive force By reducing the coercive force, the real magnetic permeability ( ⁇ ') can be increased, and magnetic characteristics such as electromagnetic wave shielding performance can be improved. Further, by lowering the coercive force, magnetic aggregation can be prevented, and as a result, moldability, filling property and dispersibility can be improved.
  • the coercive force may be 80 Oe or less, 60 Oe or less, 50 Oe or less, and 40 Oe or less.
  • the lower limit of the coercive force is not particularly limited. However, it is typically 10 Oe or more.
  • the ferrite powder has a magnetic permeability real part ( ⁇ ') at 100 MHz measured in the state of the ferrite resin molded body, preferably 6.00 or more.
  • the ferrite resin molded product is a molded product obtained by molding a ferrite resin composition containing a ferrite powder and a resin as described later.
  • the actual magnetic permeability portion may be 6.50 or more, 7.00 or more, 7.50 or more, or 8.00 or more.
  • the upper limit of the actual magnetic permeability portion is not particularly limited. However, it is typically 12.00 or less, and more typically 10.00 or less.
  • the ferrite powder has a loss coefficient (tan ⁇ ) at 100 MHz measured in the state of the ferrite resin molded body, preferably 0.15 or less. This makes it possible to suppress loss.
  • the loss coefficient may be 0.12 or less, 0.10 or less, 0.08 or less, 0.06 or less, or 0.04 or less.
  • the loss coefficient (tan ⁇ ) can be calculated from the real part ( ⁇ ′′) and the imaginary part ( ⁇ ′′) of the complex magnetic permeability at a frequency of 100 MHz according to the following equation (2).
  • the ferrite powder has a relative density ratio ( ⁇ '/ d) of the actual magnetic permeability portion at 100 MHz, preferably 2.00 or more.
  • the relative density ratio of the actual magnetic permeability is the density (d, unit: g / cm 3 ) of the sample for measurement, which is the actual magnetic permeability ( ⁇ ') measured in the state of the ferrite resin molded body (measurement sample). It is a value divided by) and is calculated according to the following equation (3).
  • the magnetic permeability is calculated in consideration of the influence of the sample shape (thickness, inner diameter, outer diameter). Therefore, the influence of the sample shape is excluded from the calculated magnetic permeability.
  • the calculated magnetic permeability includes the influence of the dispersion / filling state of the filler in the sample and the voids. .. In evaluating the magnetic permeability of the ferrite powder alone, it is desirable to eliminate the influence of the filler dispersion / filling state and voids. This effect can be minimized by finding the relative density ratio of the real magnetic permeability part.
  • the relative density ratio of the actual magnetic permeability portion represents the actual magnetic permeability portion of the ferrite powder alone, excluding the influence of the filler dispersion / filling state and the like.
  • the relative density ratio of the real part of the magnetic permeability may be 2.20 or more, 2.40 or more, or 2.60 or more.
  • the shape of the sample for measurement is not limited as long as the magnetic permeability can be measured in determining the relative density ratio of the real part.
  • An example is the toroidal shape.
  • the measurement sample is a toroidal having an outer diameter ⁇ o (unit: cm), an inner diameter ⁇ i (unit: cm), a thickness t (unit: cm), and a mass m (unit: g)
  • the measurement sample density d (unit: g / cm 3 ) is obtained according to the following equation (4).
  • the average shape coefficient SF-1 of the ferrite powder is preferably 100 to 105.
  • the average shape coefficient SF-1 of the powder is an average value of the shape coefficients of individual particles.
  • the shape coefficient SF-1 of the particle is an index of the sphericity of the particle, and is 100 for a perfect sphere, and increases as the distance from the sphere increases.
  • SF-1 may be 103 or less, and may be 101 or less.
  • the average shape coefficient SF-1 of the ferrite powder is obtained by obtaining the shape coefficient SF-1 of each particle for a plurality of ferrite particles and calculating the average value thereof.
  • the ferrite particle SF-1 measures the horizontal ferret diameter R (unit: ⁇ m), projected peripheral length L (unit: ⁇ m), and projected area S (unit: ⁇ m 2 ) of the particle, and uses the following equation (5). Therefore, it can be obtained.
  • the volume average particle size (D50) of the ferrite powder is preferably 0.1 to 10.0 ⁇ m.
  • the volume average particle diameter is a 50% cumulative diameter in the volume particle size distribution of the ferrite powder.
  • the volume average particle diameter may be 0.2 ⁇ m or more, and may be 0.4 ⁇ m or more.
  • the loss coefficient (tan ⁇ ) can be made smaller by setting the volume average particle size to 10.0 ⁇ m or less.
  • the volume average particle size may be 7.5 ⁇ m or less, and may be 5.0 ⁇ m or less.
  • the particle size distribution may have two or more peaks.
  • having two or more peaks means that when the volume particle size distribution is viewed as a function of the logarithmic particle size, the derivative (differential coefficient) of the function or the value of the derivative twice or more becomes 0. It means that there are two or more points (maximum points, inflection points, saddle points, etc.).
  • the particle size distribution ratio ((D90-D10) / D50) of the ferrite powder is preferably 0.1 to 30.0.
  • the particle size distribution ratio is an index of particle size variation, and the higher the particle size distribution ratio, the larger the particle size variation.
  • the particle size distribution ratio may be 1.0 or more, 6.0 or more, or 10.0 or more.
  • the particle size distribution ratio is excessively high, the proportion of fine particles and coarse particles increases, which may reduce the fluidity and moldability of the ferrite powder.
  • the particle size distribution ratio may be 20.0 or less, 10.0 or less, or 5.0 or less.
  • the particle size distribution ratio can be determined according to the following equation (6) using the 10% cumulative diameter (D10), 50% cumulative diameter (D50), and 90% cumulative diameter (D90) in the volumetric particle size distribution of the ferrite powder. can.
  • the BET specific surface area of the ferrite powder is preferably 0.1 to 10.0 m 2 / g.
  • the BET specific surface area may be at 0.2 m 2 / g or more, may be 0.4 m 2 / g or more.
  • the BET specific surface area may be 10.0 m 2 / g or less, the aggregation of the ferrite powder can be suppressed, and the moldability and the filling property become more excellent.
  • BET specific surface area may be less than or equal 8.5 m 2 / g, may be not more than 6.5m 2 / g.
  • the true specific gravity (true density) of the ferrite powder is preferably 5.00 g / cm 3 or more. As a result, the saturation magnetization and magnetic permeability of the ferrite powder become even higher. True specific gravity may be at 5.10 g / cm 3 or more, may be at 5.20 g / cm 3 or more, may be at 5.30 g / cm 3 or more, even 5.40 g / cm 3 or more good.
  • the upper limit of the true specific density is not particularly limited. However, it is difficult to make the true specific density of ferrite more than 6.00 g / cm 3. Therefore, the true specific density is typically 6.00 g / cm 3 or less.
  • the tap density of the ferrite powder is preferably 0.01 to 3.50 g / cm 3 .
  • the tap density can be increased by mixing the small particle size particles and the large particle size particles, and as a result, the filling property of the ferrite powder when applied to the resin composition becomes better as a whole.
  • the tap density may be at 0.10 g / cm 3 or more, may be 1.00 g / cm 3 or more.
  • the tap density ratio of the ferrite powder is preferably 0.15 to 0.60. As a result, the filling property of the ferrite powder when applied to the resin composition is improved.
  • the tap density ratio may be 0.20 to 0.59.
  • the tap density ratio is the ratio of the tap density to the true specific gravity, and can be obtained according to the following equation (7).
  • the lattice constant of the ferrite powder is preferably 8.350 to 8.402 ⁇ .
  • the method for producing the ferrite powder of the present embodiment is not particularly limited. However, it is preferably produced by the thermal spraying method.
  • the production method of a preferred embodiment is as follows: a step of mixing a zinc (Zn) raw material and an iron (Fe) raw material to form a raw material mixture (raw material mixing step), and a calcined product by calcining the obtained raw material mixture. (Temporary firing process), crushing and granulating the obtained temporary baked product to make a granulated product (granulation process), and spraying the obtained granulated product into a molten product. Has (spraying process).
  • the raw material supply rate is set to 3 to 20 kg / hour
  • the combustion gas flow rate is set to 3 to 15 m 3 / hour
  • the oxygen flow rate is set to 15 to 120 m 3 / hour. Details of each step will be described below.
  • a zinc (Zn) raw material and an iron (Fe) raw material are mixed to form a raw material mixture.
  • known ferrite raw materials such as oxides, carbonates, hydroxides and / or chlorides may be used.
  • zinc oxide (ZnO), zinc carbonate (ZnCO 3 ), and zinc hydroxide (Zn (OH) 2 ) can be used as the zinc raw material.
  • iron raw materials iron oxide (Fe 2 O 3 , FeO, Fe 3 O 4 ), iron carbonate (FeCO 3 ), iron hydroxide (Fe (OH) 2 , Fe (OH) 3 ), iron oxide hydroxide ( FeO (OH)) can be used.
  • the mixing ratio of the raw materials may be adjusted so that a ferrite powder having a desired composition can be obtained.
  • the raw materials may be mixed using a known mixer such as a Henschel mixer, and either dry or wet may be used. Further, the raw material mixture may be granulated (temporarily granulated) using a granulation device such as a roller compactor.
  • Temporary firing may be performed by a known method.
  • a furnace such as a rotary kiln, a continuous furnace, or a batch furnace may be used.
  • the tentative firing conditions may also be known conditions. For example, a condition of holding at 700 to 1300 ° C. for 0.5 to 12 hours in an atmosphere such as air can be mentioned.
  • the obtained calcined product is crushed and granulated (main granulation) to obtain a granulated product (main granulated product).
  • the crushing method is not particularly limited.
  • a known crusher such as a vibration mill, a ball mill or a bead mill may be used, and either the dry type or the wet type or both may be performed.
  • the granulation method may be a known method.
  • water and, if necessary, an additive such as a binder resin such as polyvinyl alcohol (PVA), a dispersant and / or an antifoaming agent are added to the pulverized temporary baked product to adjust the viscosity, and then the viscosity is adjusted.
  • Granulation may be performed using a granulator such as a spray dryer.
  • the thermal spraying process the granulated material is sprayed into a thermal spray.
  • a mixed gas of combustion gas and oxygen is used as a flammable gas combustion flame source.
  • Granulated products which are the raw materials for thermal spraying, pass through a high-temperature combustion flame. At that time, a ferrite reaction occurs, and a part of the granulated product melts into spherical ferrite particles.
  • the combustion gas flammable gas such as propane gas, propylene gas, and acetylene gas can be used, and among them, propane gas is preferably used.
  • the present embodiment defines the supply rate of the thermal spraying raw material. By setting the supply rate within the above range, it becomes possible to efficiently obtain a ferrite powder having a high sphericity and excellent magnetic properties.
  • the feeding rate may be 4-10 kg / hour.
  • the combustion gas flow rate is set to 3 to 15 m 3 / hour and the oxygen flow rate is set to 15 to 120 m 3 / hour.
  • Oxygen used in thermal spraying also has the function of transporting the raw material to the thermal spray flame.
  • the oxygen is the combustion oxygen directly used for the flame and the raw material supply oxygen that is burned after the raw material is transported to the central part of the thermal spray source. Therefore, total oxygen can be represented by combustion oxygen + raw material supply oxygen.
  • the amount of carbon contained in the ferrite powder after thermal spraying can be controlled by the ratio of the volumes of combustion oxygen and raw material supply oxygen.
  • the ratio of combustion oxygen becomes larger than 95 (approaches 100), the raw material supply capacity may decrease and the raw material may be blocked in the raw material supply pipe.
  • the ratio of combustion oxygen is smaller than 80 (less than 80)
  • the raw material is spread and supplied to a portion outside the central portion of the flame, which has the highest temperature. Therefore, the ferrite formation reaction cannot be sufficiently advanced to the inside of the particles, and as a result, the amount of ⁇ -Fe 2 O 3 contained in the ferrite powder after thermal spraying may increase.
  • combustion oxygen: raw material supply oxygen 92.5: 7.5 to 81.5: 18.5 is more preferable
  • the amount of combustion oxygen is preferably 0.85 times or more the capacity (equivalent) required for complete combustion of the combustion gas.
  • the capacity of combustion oxygen is preferably 4.25 times or more that of propane gas.
  • the combustion gas amount ratio is preferably 1.05 or more and 2.00 or less.
  • the combustion gas amount ratio is the ratio of the combustion gas amount (Nm 3 / hour) used for net combustion to the raw material supply amount (kg / hour), and is calculated according to the following equation (8).
  • the amount of combustion gas (Nm 3 / hour) used for net combustion is calculated according to the following equation (9) or the following equation (10).
  • Particles ferriteified by thermal spraying are rapidly cooled and solidified in an atmospheric atmosphere, and these are recovered by a cyclone or a filter to obtain a thermal spray.
  • a diluting gas it is preferable to introduce a diluting gas to quench the sprayed material (particles) and recover the sprayed material (particles) that has been rapidly cooled by the cyclone.
  • ferrite particles (powder) with minimal composition deviation can be obtained. That is, zinc (Zn) has a high saturated vapor pressure and easily volatilizes in a high-temperature sprayed flame.
  • the obtained particles may have a large composition deviation from the raw material and the characteristics may deteriorate.
  • a diluting gas to quench the particles, it becomes possible to minimize the composition deviation.
  • the gas is not particularly limited as long as it can rapidly cool the particles as the dilution gas.
  • One example is air.
  • the obtained sprayed material may be classified.
  • the particle size may be adjusted to a desired particle size by using a known method such as wind power classification (air flow classification), mesh classification, or sieve (sieve) classification. It is also possible to separate and recover particles having a large particle size and particles having a small particle size in one step by airflow classification such as a cyclone. In this way, the ferrite powder can be obtained.
  • the ferrite powder of the present embodiment thus obtained has good moldability, fluidity and filling property because the particles constituting the ferrite powder have the shape of a sphere or a polyhedron. Further, this ferrite powder is excellent in magnetic properties even though it does not contain manganese. In particular, this ferrite powder maintains high magnetic permeability even at a high frequency of 100 MHz. Further, since this ferrite powder is composed of zinc ferrite containing no manganese, dustproof treatment for preventing scattering of the manganese raw material becomes unnecessary at the time of its production, and it becomes possible to reduce the production cost.
  • the spherical particles made of manganese-based ferrite proposed in Patent Documents 1 and 2 have excellent magnetic properties and are useful for applications such as electromagnetic wave shielding materials, but manganese is an essential component. Therefore, dustproof treatment is required to prevent the scattering of manganese raw materials during manufacturing.
  • manganese manganese
  • the true specific gravity does not increase. Zinc has a larger atomic weight and a larger ionic radius than manganese. Therefore, the ferrite powder containing zinc does not always have a high true specific gravity.
  • the zinc ferrite powder of the present embodiment can have a higher true specific gravity by making the lattice constant smaller than that of manganese ferrite and by containing a certain amount of zinc. Further, the zinc ferrite powder of the present embodiment has a high true specific gravity, and the resin molded body produced by using the zinc ferrite powder has an increased amount of magnetic material per unit volume, so that the magnetic characteristics are improved.
  • a technique for producing zinc ferrite powder by firing and crushing a raw material has also been conventionally known, but the calcined zinc ferrite powder has a large crystallite diameter and is a pair of a magnetic permeability real part ( ⁇ ') and a magnetic permeability real part.
  • the density ratio ( ⁇ '/ d) is inferior.
  • the zinc ferrite powder crushed after firing has a further inferior density ratio between the actual magnetic permeability portion and the actual magnetic permeability portion due to the pulverization stress. Therefore, the conventional zinc ferrite powder produced by the firing method is inferior to the zinc ferrite powder of the present embodiment.
  • Patent Documents 3 and 4 do not consist of spherical particles, and have problems in terms of moldability, fluidity, and filling property. Further, Patent Documents 3 and 4 only show static magnetic field characteristics such as saturation magnetization and coercive force with respect to the characteristics of zinc ferrite powder, and there is no description regarding specific uses other than electrophotographic toner. Therefore, it is unclear whether these zinc ferrite powders can be applied to high frequency applications such as electromagnetic wave shielding materials.
  • the zinc ferrite powder (ferrite B) of Patent Document 3 has a high holding power (coercive force) Hc of 185 Oe
  • the zinc ferrite powder of Patent Document 4 has the lowest coercive force Hc of 92 Oe (Patent Document 3).
  • the thermal decomposition reaction and the solid phase reaction of the raw material mixture are simultaneously performed in the roasting step (claim 1 of Patent Document 4), but this roasting step is different from the spraying step of the present embodiment. .. That is, in Patent Document 4, roasting is performed at 750 ° C. in Examples, but the raw material does not melt at such a low temperature.
  • Patent Document 5 proposes a granular magnetite particle powder coated with Zn x Fe 2 + yOz (zinc ferrite), but the component composition of this powder is different from that of the ferrite powder of the present embodiment. That is, the powder of Patent Document 5 has a Zn amount of 0.5 to 4.0 mol% with respect to the total Fe (claim 1 of Patent Document 5), and the mass ratio of Zn with respect to Fe is 0.047 or less in terms of this. be. On the other hand, in the ferrite powder of the present embodiment in which the amount of Zn is 5.0% by mass or more and the amount of Fe is 65.0% by mass or less, the mass ratio of Zn to Fe is 0.077 or more.
  • the powder of Patent Document 5 has a smaller amount of zinc (Zn) than the ferrite powder of the present embodiment. Moreover, it is unclear whether the powder of Patent Document 5 can be applied to high frequency applications such as electromagnetic wave shielding materials.
  • the powder of the example of Patent Document 5 has an Fe 2+ content of 20.1 wt% or more, a residual magnetization of 4.8 emu / g or more, and a coercive force of 58 Oe or more (Table 3 of Patent Document 5). It is considered that the powder containing a large amount of ferrous iron (Fe 2+ ) and having high residual magnetization and coercive force is inferior in magnetic permeability.
  • Ferrite resin composition >> The ferrite powder of this embodiment can be applied to a ferrite resin composition (composite material) as a filler.
  • the ferrite resin composition contains a ferrite powder and a resin.
  • the resin constituting the resin composition examples include epoxy resin, urethane resin, acrylic resin, silicone resin, polyamide resin, polyimide resin, polyamideimide resin, fluororesin and / or a combination thereof.
  • the silicone resin may be a modified silicone resin modified with acrylic, urethane, epoxy and / or fluorine or the like.
  • the ratio of the ferrite powder to the total solid content in the resin composition is preferably 50 to 95% by mass, more preferably 80 to 95% by mass.
  • the ratio of the resin to the total solid content in the resin composition is preferably 5 to 50% by mass, more preferably 5 to 20% by mass.
  • the resin composition may contain a ferrite powder and other components other than the resin.
  • components include solvents, fillers (organic fillers, inorganic fillers), plasticizers, antioxidants, dispersants, colorants such as content, and thermally conductive particles.
  • the ferrite resin molded body of the present embodiment is made of a ferrite resin composition. That is, a ferrite resin molded product can be obtained by molding the resin composition.
  • the molding method is not particularly limited. For example, compression molding, extrusion molding, injection molding, blow molding or calendar molding can be mentioned. Further, a method of forming a coating film of the resin composition on the substrate may be used. Further, heat curing treatment may be performed after molding.
  • the ferrite resin molded body has a magnetic permeability real part ( ⁇ ') at 100 MHz, preferably 6.00 or more.
  • ⁇ ' magnetic permeability real part
  • the actual magnetic permeability portion may be 6.50 or more, 7.00 or more, 7.50 or more, or 8.00 or more.
  • the upper limit of the actual magnetic permeability portion is not particularly limited. However, it is typically 12.00 or less, and more typically 10.00 or less.
  • the ferrite resin molded body has a loss coefficient (tan ⁇ ) at 100 MHz, preferably 0.15 or less. This makes it possible to suppress loss.
  • the loss coefficient may be 0.12 or less, 0.10 or less, 0.08 or less, 0.06 or less, or 0.04 or less.
  • the electronic component, electronic device, or electronic device housing of the present embodiment includes a ferrite resin molded body.
  • the electronic component is a component provided with a ferrite resin molded body as an inductor, a transformer, an electromagnetic wave shielding material, or a filter.
  • a ferrite resin molded body that acts as an electromagnetic wave shielding material may be provided on an element provided with a passive component such as a capacitor or an active component such as an IC.
  • the electronic component includes a ferrite resin molded body, its mode is not limited.
  • Electronic devices are devices equipped with electronic components.
  • a mobile phone equipped with an inductor, a computer, and the like can be mentioned.
  • the electronic device housing is a housing used for electronic devices.
  • the mode in which the ferrite resin molded body is applied to the housing is not particularly limited.
  • the molded body may be attached to the housing body, or the ferrite resin composition may be applied and cured on the housing body to form a molded body.
  • Example 1 a zinc (Zn) ferrite powder was prepared by a thermal spraying method. The specific production procedure is as shown below.
  • ⁇ Calcination process> The temporarily granulated raw material mixture (temporarily granulated product) was calcined to obtain a calcined product.
  • the calcining was carried out using a rotary kiln under the conditions of 900 ° C. for 1 hour in the air.
  • the obtained calcined product was crushed and granulated to obtain a granulated product (main granulated product).
  • the obtained calcined product is roughly pulverized using a dry bead mill (3/16 inch ⁇ steel ball beads), then water is added, and finely pulverized using a wet bead mill (0.65 mm ⁇ zirconia beads). bottom.
  • the obtained slurry had a solid content concentration of 50% by mass. Then, the obtained slurry was supplied to a spray dryer for granulation.
  • the obtained granulated product was sprayed and rapidly cooled in a flammable gas combustion flame.
  • the cooled particles were recovered by a cyclone provided on the downstream side of the air flow to obtain a thermal spray.
  • air was introduced as a dilution (quenching) gas immediately after the thermal spraying to quench the particles.
  • the obtained sprayed material was subjected to a rating treatment for removing coarse powder using a mesh (sieve). As a result, a ferrite powder was produced.
  • Example 2 In the thermal spraying step, the cooled particles were recovered using a bag filter. In addition, no classification treatment was performed after thermal spraying. A ferrite powder was prepared in the same manner as in Example 1 except for the above.
  • a ferrite powder was prepared in the same manner as in Example 1 except for the above. As in Example 1, immediately after the thermal spraying, air was introduced as a dilution (quenching) gas to quench the particles.
  • Example 4 In the thermal spraying step, the cooled particles were recovered using a bag filter. In addition, no classification treatment was performed after thermal spraying. A ferrite powder was prepared in the same manner as in Example 3 except for the above.
  • Comparative Example 1 zinc (Zn) ferrite powder was prepared by an electric furnace firing method. The specific production procedure is as shown below.
  • ⁇ Calcination process> The temporarily granulated raw material mixture (temporarily granulated product) was calcined to obtain a calcined product.
  • the calcining was carried out using a rotary kiln under the condition of 800 ° C. for 1 hour in the air.
  • the obtained calcined product was crushed and granulated to obtain a granulated product (main granulated product).
  • the obtained calcined product is roughly pulverized using a dry bead mill (3/16 inch ⁇ steel ball beads), then water is added, and finely pulverized using a wet bead mill (0.65 mm ⁇ zirconia beads). bottom.
  • the obtained slurry had a solid content concentration of 50% by mass. Then, the obtained slurry was supplied to a spray dryer for granulation.
  • ⁇ De-binder and main firing process> The obtained granulated product was debindered and further fired.
  • the debinder treatment was carried out under the condition of 800 ° C. for 2 hours in an atmosphere having an oxygen concentration of 0 vol%.
  • the main firing was carried out in an atmosphere of 0 vol% oxygen concentration using an electric furnace under the condition of 1300 ° C. ⁇ 4 hours.
  • the obtained fired product was finely pulverized using a wet bead mill (zirconia beads having a diameter of 0.65 mm).
  • the obtained slurry was solid-liquid separated using a filter paper to obtain a pulverized product, and then dried at 120 ° C. using a dryer (Airbus).
  • the dried pulverized product was pulverized with a sample mill to obtain a ferrite powder.
  • Comparative Example 4 The classification conditions for crushed material were changed. A ferrite powder was prepared in the same manner as in Comparative Example 3 except for the above.
  • Comparative Example 5 a manganese (Mn) ferrite powder was prepared by a thermal spraying method. The specific production procedure is as shown below.
  • the obtained calcined product was crushed and granulated to obtain a granulated product (main granulated product).
  • the obtained calcined product is roughly pulverized using a dry bead mill (3/16 inch steel ball beads), then water is added and finely pulverized using a wet bead mill (0.65 mm zirconia beads). bottom.
  • the particle size of the pulverized powder was 2.26 ⁇ m.
  • polyvinyl alcohol (PVA, 10% aqueous solution) as a binder was added to the obtained slurry in an amount of 0.017% by mass in terms of solid content. Then, the slurry to which the binder was added was granulated using a spray dryer.
  • the obtained granulated product was sprayed and rapidly cooled in a flammable gas combustion flame.
  • Thermal spraying was carried out under the conditions of a propane gas flow rate of 7 m 3 / hour, an oxygen flow rate of 38 m 3 / hour, and a raw material supply rate of 6.5 kg / hour.
  • the cooled particles were recovered by a cyclone provided on the downstream side of the air flow to obtain a thermal spray.
  • Coarse powder was removed from the obtained sprayed product using a sieve, and fine powder was further removed by air flow classification to obtain manganese ferrite powder.
  • the metal component content of the ferrite powder was determined by chemical analysis (ICP). First, 0.2 g of a sample (ferrite powder) was weighed, 60 ml of pure water, 20 ml of 1N hydrochloric acid and 20 ml of 1N nitric acid were added thereto, and then heated to prepare an aqueous solution in which the sample was completely dissolved. The obtained aqueous solution was set in an ICP analyzer (Shimadzu Corporation, ICPS-10001V), and the metal component content was measured.
  • ICP analyzer Shiadzu Corporation, ICPS-10001V
  • ⁇ Crystal structure analysis> The ferrite powder was analyzed by an X-ray diffraction method to analyze the crystal phase and crystal structure. Specifically, the analysis was performed under the following conditions.
  • -X-ray diffractometer PANalytical X'pert MPD (including high-speed detector) -Radioactive source: Co-K ⁇ -Tube voltage: 45kV -Tube current: 40mA -Scan speed: 0.002 ° / sec (continuous scan) -Scan range (2 ⁇ ): 15-90 °
  • the analysis results were analyzed to determine the proportions of the spinel phase, hematite phase ( ⁇ -Fe 2 O 3 ) and wustite phase (FeO) among the crystal phases of the ferrite powder.
  • the analysis was performed as follows. That is, after removing the background and peaks of Co-K ⁇ rays using analysis software (PANalytical, HighScorePlus3.0), the peak of the profile was automatically detected. The full width at half maximum and the position of each detected peak were optimized (refined) by Rietveld analysis, and the ratio of each phase and the lattice constant of each phase were obtained based on the obtained results. The ratio of each phase and the lattice constant were obtained by automatic calculation of analysis software.
  • the above analysis result was analyzed to determine the crystallite diameter of ferrite. Specifically, focusing on the (311) diffraction peak in the X-ray profile, the full width at half maximum (FWHM) ⁇ of this diffraction peak was determined. From the obtained full width at half maximum ⁇ , the crystallite diameter D was determined according to Scherrer's equation shown in the following equation (1).
  • K is the Scheller constant (0.9)
  • is the wavelength of the X-ray used (1.78901 ⁇ )
  • is the Bragg angle (about 41.3 °) of the (311) diffraction peak. ..
  • ⁇ Particle shape-SEM observation> The shape of the particles in the ferrite powder was evaluated by observing with a scanning electron microscope (SEM). The observation was carried out using a scanning electron microscope (Hitachi High-Technologies Corporation, SU-8020) under the conditions of a magnification of 1000 to 100,000 times.
  • ⁇ Particle shape-SF-1> The measurement of the average shape coefficient (SF-1) of the ferrite powder was carried out separately for the case where the volume average particle diameter (D50) of the ferrite powder was 1 ⁇ m or more and the case where it was less than 1 ⁇ m.
  • SF-1 was determined as follows. Ferrite powder was analyzed using a particle image analyzer (Malvern Panasonic, Moforogi G3). At the time of analysis, image analysis for each particle of 30,000 particles in the powder was performed with the magnification of the objective lens set to 50 times, and the maximum length R (horizontal ferret diameter, unit: ⁇ m) and projection peripheral length L (unit: ⁇ m). And the projected area S (unit: ⁇ m 2 ) was automatically measured. Next, SF-1 was calculated for each particle according to the following equation (5), and the average value was taken as SF-1 of the ferrite powder.
  • SF-1 was determined as follows. A resin molded body was produced in the same manner as the resin molded body for measuring magnetic permeability, which will be described later, and cross-section processing was performed with an ion milling device. Then, the particle cross section was photographed in a plurality of fields with a field emission scanning electron microscope (FE-SEM; Hitachi High-Tech Technologies Corporation, SU-8020). The shooting was performed at a magnification of 50,000 times. In the obtained SEM image, the ferrite powder was analyzed using image analysis software (Media Cybernetics, ImageProPlus).
  • ⁇ Particle size distribution> The particle size distribution of the ferrite powder was measured. First, 10 g of a sample and 80 ml of water were placed in a 100 ml beaker, and 2 drops of sodium hexametaphosphate was added as a dispersant. Then, dispersion was performed using an ultrasonic homogenizer (SMT Co., Ltd., UH-150 type). At this time, the output level of the ultrasonic homogenizer was set to 4, and dispersion was performed for 20 seconds. Then, the bubbles formed on the surface of the peaker were removed and introduced into a laser diffraction type particle size distribution measuring device (Shimadzu Corporation, SALD-7500 nano) for measurement.
  • SMT Co., Ltd., UH-150 type an ultrasonic homogenizer
  • 10% diameter (D10), 50% diameter (volume average particle diameter, D50), 90% diameter (D90) and maximum diameter (Dmax) in the volume particle size distribution were determined.
  • the measurement conditions were a pump speed of 7, a built-in ultrasonic irradiation time of 30, and a refractive index of 1.70-050i.
  • the BET specific surface area ( SBET ) of the ferrite powder was measured using a specific surface area measuring device (Mountech Co., Ltd., Macsorb HM model-1208). First, about 10 g of the obtained ferrite powder was placed on a medicine wrapping paper and degassed with a vacuum dryer to confirm that the degree of vacuum was ⁇ 0.1 MPa or less. Then, by heating at 200 ° C. for 2 hours, the water adhering to the particle surface was removed. Approximately 0.5 to 4 g of the water-removed ferrite powder was placed in a standard sample cell dedicated to the measuring device and weighed accurately with a precision balance. Next, the weighed ferrite particles were set in the measuring port of the measuring device and measured. The measurement was performed by the one-point method. The measurement atmosphere was a temperature of 10 to 30 ° C. and a relative humidity of 20 to 80% (no condensation).
  • ⁇ True Relative Density> The true specific gravity of the ferrite powder was measured using the gas replacement method according to JIS Z8807: 2012. Specifically, the measurement was performed using a fully automatic true density measuring device (Mountech Co., Ltd., Macpycno).
  • ⁇ Tap density> The tap density of the ferrite powder was measured according to JIS Z 2512-2012 using a USP tap density measuring device (Hosokawa Micron Co., Ltd., Powder Tester PT-X). In addition, the tap density ratio (tap density / true specific gravity) was determined using the values of tap density and true specific gravity.
  • the magnetic properties (saturation magnetization, residual magnetization and coercive force) of the ferrite powder were measured as follows. First, the sample was packed in a cell having an inner diameter of 5 mm and a height of 2 mm, and set in a vibration sample type magnetic measuring device (Toei Kogyo Co., Ltd., VSM-C7-10A). An applied magnetic field was applied and swept to 5 kOe, then the applied magnetic field was reduced to draw a hysteresis curve. From the obtained curve data, the saturation magnetization ( ⁇ s), residual magnetization ( ⁇ r) and coercive force (Hc) of the sample were determined.
  • ⁇ s saturation magnetization
  • ⁇ r residual magnetization
  • Hc coercive force
  • the magnetic permeability of the ferrite powder was measured using an RF impedance / material analyzer (Agilent Technologies, Inc., E4991A) and a magnetic material measuring electrode (16454A).
  • RF impedance / material analyzer Align Technologies, Inc., E4991A
  • a magnetic material measuring electrode 16454A.
  • the density (d) of the sample is calculated from the outer diameter ( ⁇ o), inner diameter ( ⁇ i), thickness (t), and mass (m) of the measurement sample, and this is used to calculate the density ratio of the actual magnetic permeability part. ( ⁇ '/ d) was determined.
  • FIGS. 1 and 2 Results SEM images of the ferrite powders obtained in Examples 1 and 2 are shown in FIGS. 1 and 2, respectively.
  • the SEM images of the ferrite powders obtained in Comparative Examples 3 and 4 are shown in FIGS. 3 and 4, respectively.
  • FIGS. 1, 3 and 4 are SEM images taken at a magnification of 1000 times
  • FIG. 2 is an SEM image taken at a magnification of 100,000 times.
  • the particles had a spherical or polyhedral shape.
  • the shape of the particles was granular.
  • Example 1 to 4 and Comparative Examples 1 to 5 are shown in Tables 1-1 to 1-3.
  • the ferrite powders of Comparative Examples 1 to 4 produced by the electric furnace firing method had a large average shape coefficient SF-1 of 106 or more. These powders are considered to be inferior in fluidity, moldability and filling property.
  • the ferrite powders of Comparative Examples 1 and 2 had large residual magnetization ( ⁇ r) and coercive force (Hc) despite their low saturation magnetization ( ⁇ s).
  • the actual magnetic permeability ( ⁇ ') at 100 MHz when formed into a molded body was small. Therefore, it was found that the magnetic characteristics were inferior.
  • These ferrite powders are obtained by pulverizing the fired product after the main firing in order to adjust the particle size. It is considered that the surface of the particles is oxidized during crushing and the crystal strain increases due to the impact force applied during crushing, resulting in deterioration of magnetic properties ( ⁇ s, ⁇ r, Hc, ⁇ ').
  • the ferrite powders of Comparative Examples 3 and 4 had a large crystallite diameter, and the actual magnetic permeability ( ⁇ ') at 100 MHz when formed into a molded product was small. These ferrite powders are obtained by performing crushing and classification treatment instead of crushing to adjust the particle size. It is speculated that the crystallite diameter becomes excessive as the crushing stress decreases, which leads to a decrease in magnetic permeability. Further, in Comparative Examples 3 and 4, a non-magnetic wustite phase (FeO) was generated, which is considered to have caused deterioration of magnetic characteristics.
  • FeO non-magnetic wustite phase
  • the ferrite powder of Comparative Example 5 is made of manganese ferrite. This ferrite powder was spherical, and SF-1 was as small as 101. Furthermore, the saturation magnetization ( ⁇ s) was relatively high, and the residual magnetization ( ⁇ r) and coercive force (Hc) were small. The magnetic permeability real part ( ⁇ ') was also high as compared with the examples, and the result was good. However, the relative density ratio ( ⁇ '/ d) of the actual magnetic permeability portion is inferior, and there is a possibility that the magnetic permeability will not be sufficiently high when actually used as a filler for a resin molded body. Further, Comparative Example 5 contains manganese, which is considered to have a health hazard, as a main component, and can be said to be less preferable than zinc ferrite from the viewpoint of manufacturing cost.
  • the ferrite powders of Examples 1 to 4 were made of zinc ferrite and had a spherical or polyhedral shape close to a spherical shape. Moreover, these ferrite powders were excellent in magnetic properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

Provided is a zinc ferrite powder that has exceptional magnetic properties despite not containing manganese and has excellent moldability, fluidity, and filling properties. A ferrite powder: is constituted from spherical or polyhedral ferrite particles; has a composition that contains 5.0-10.0 mass% of zinc (Zn) and 55.0-65.0 mass% of iron (Fe), the balance being oxygen (O) and unavoidable impurities; has a crystallite diameter in the range of 8.0-15.0 Å; and has a divalent iron ion (Fe2+) content of 0.5-10.0 mass%.

Description

フェライト粉末、フェライト樹脂組成物、樹脂成型体、電子部品、電子機器又は電子機器筐体Ferrite powder, ferrite resin composition, resin molded body, electronic component, electronic device or electronic device housing
 本発明は、フェライト粉末、フェライト樹脂組成物、樹脂成型体、電子部品、電子機器又は電子機器筐体に関する。 The present invention relates to a ferrite powder, a ferrite resin composition, a resin molded body, an electronic component, an electronic device, or an electronic device housing.
 フェライト粉末と樹脂とからなるフェライト樹脂組成物(複合材料)は、電磁波シールド材を始めとする様々の用途で多用されている。樹脂組成物は、フェライト粉末をフィラーとして樹脂と混練することで作製され、シートなどの形状に成形されて成型体(複合体)になる。このときフェライト粉末を構成する粒子の形状が球形に近いと、成形時の流動性が高くなり、樹脂組成物中でのフェライト粉末の充填率が高くなる。そのため成形性が良好になるとともに、電磁波遮蔽性能等の特性が優れたものになる。このような観点から、球状粒子からなるフェライト粉末が着目されており、そのような球状粒子を溶射法により作製することが提案されている。 Ferrite resin compositions (composite materials) composed of ferrite powder and resin are widely used in various applications such as electromagnetic wave shielding materials. The resin composition is produced by kneading the ferrite powder as a filler with the resin, and is molded into a shape such as a sheet to form a molded body (complex). At this time, if the shape of the particles constituting the ferrite powder is close to a sphere, the fluidity at the time of molding becomes high, and the filling rate of the ferrite powder in the resin composition becomes high. Therefore, the moldability is improved and the characteristics such as electromagnetic wave shielding performance are excellent. From this point of view, ferrite powder composed of spherical particles has attracted attention, and it has been proposed to prepare such spherical particles by a thermal spraying method.
 例えば、特許文献1(国際公開第2017/212997号)には、Znを実質的に含有せず、Mnを3~25重量%、Feを43~65重量%を含有する、平均粒径が1~2000nmの単結晶であり且つ真球状の粒子形状を備えるフェライト粒子が開示されている(特許文献1の請求項1)。また特許文献1には、フェライト原料からなる造粒物を大気中で溶射してフェライト化し、続いて急冷凝固した後に、粒径が所定範囲内の粒子のみを回収することにより製造する旨、電子機器の電磁波シールド材料として用いるときに、幅広い周波数帯域の電磁波を周波数に関係なく安定して遮蔽することができる旨が記載されている(特許文献1の[0039]及び[0078])。 For example, Patent Document 1 (International Publication No. 2017/212997) contains substantially no Zn, 3 to 25% by weight of Mn, and 43 to 65% by weight of Fe, and has an average particle size of 1. A ferrite particle which is a single crystal having a diameter of about 2000 nm and has a spherical particle shape is disclosed (claim 1 of Patent Document 1). Further, Patent Document 1 states that a granulated product made of a ferrite raw material is sprayed in the air to be ferrite, and then rapidly cooled and solidified, and then only particles having a particle size within a predetermined range are recovered for production. It is described that when used as an electromagnetic wave shielding material for an apparatus, electromagnetic waves in a wide frequency band can be stably shielded regardless of the frequency (Patent Documents 1 [0039] and [0078]).
 特許文献2(国際公開第2016/043051号)には、平均粒径が1~2000nmであり、真球状であるMn-Mg系フェライト粒子に関して、所定割合のフェライト組成を調整して得られたフェライト原料を、大気中で溶射してフェライト化し、次いで急冷凝固して製造する旨、特に電磁波シールド用樹脂組成物のフィラーや磁性流体として好適に用いられる旨が記載されている(特許文献2の[0036]及び[0077])。 According to Patent Document 2 (International Publication No. 2016/043051), ferrite obtained by adjusting a predetermined ratio of ferrite composition with respect to Mn-Mg-based ferrite particles having an average particle size of 1 to 2000 nm and being spherical. It is described that the raw material is sprayed in the air to be ferrite, and then rapidly cooled and solidified to be produced, and that it is particularly preferably used as a filler or a magnetic fluid for a resin composition for electromagnetic wave shielding (Patent Document 2 []. 0036] and [0077]).
 ところで特許文献1及び2で提案されるフェライトは、マンガン(Mn)を主成分とし、スピネル型の構造を有するマンガン(Mn)系フェライトである。マンガン系フェライトは透磁率などの磁気特性に優れており、様々な用途に用いられている。一方でスピネル型フェライトには、マンガン系フェライト以外の様々なフェライトが知られており、その中に亜鉛(Zn)を主成分とする亜鉛フェライトがある。亜鉛フェライトは、化学量論組成では反強磁性を示し、巨視的に見ると磁性をもたない。しかしながら亜鉛フェライトは、これに過剰量の鉄(Fe)を加えると強磁性を示すようになり、磁化及び透磁率が高くなる。 By the way, the ferrites proposed in Patent Documents 1 and 2 are manganese (Mn) -based ferrites containing manganese (Mn) as a main component and having a spinel-type structure. Manganese-based ferrite has excellent magnetic properties such as magnetic permeability, and is used in various applications. On the other hand, as spinel type ferrite, various ferrites other than manganese-based ferrite are known, and among them, zinc ferrite having zinc (Zn) as a main component is included. Zinc ferrite shows antiferromagnetism in stoichiometric composition and has no magnetism when viewed macroscopically. However, zinc ferrite becomes ferromagnetic when an excessive amount of iron (Fe) is added to it, and the magnetization and magnetic permeability become high.
 強磁性亜鉛フェライト及びその製造方法を開示する文献として、特許文献3~5が挙げられる。特許文献3(特開昭55-65406号公報)には、Feに換算して99.9~51モル%の酸化鉄と、MO(MはZn等)に換算して0.1~49モル%の酸化亜鉛等からなるスピネル型構造を有する電子写真磁性トナー用フェライト粉体が開示されている(特許文献3の請求項1)。また特許文献3には、実施例2において、Feを80モル%、ZnOを20モル%となるように配合した後に顆粒化および焼成を行い、得られた焼成体を粉砕、乾燥及び解砕してフェライト粉体を得る旨、得られた粉体の平均粒径は0.45μm、比表面積は17.2m/gであり、1000Oe外部磁場下でのσm(最大磁化力)は65emu/g、Hc(保磁力)は185Oeである旨が記載されている(特許文献3の第7頁左上欄)。 Patent Documents 3 to 5 are examples of documents that disclose ferromagnetic zinc ferrite and a method for producing the same. In Patent Document 3 (Japanese Unexamined Patent Publication No. 55-65406), 99.9 to 51 mol% of iron oxide is converted into Fe 2 O 3 and 0.1 is converted into MO (M is Zn, etc.). A ferrite powder for electrophotographic magnetic toner having a spinel-type structure composed of up to 49 mol% of zinc oxide or the like is disclosed (Patent Document 3, claim 1). Further, in Patent Document 3, in Example 2, after blending Fe 2 O 3 to 80 mol% and Zn O to 20 mol%, granulation and firing were performed, and the obtained fired body was crushed, dried and baked. To obtain a ferrite powder by crushing, the average particle size of the obtained powder is 0.45 μm, the specific surface area is 17.2 m 2 / g, and the σm (maximum magnetization force) under an external magnetic field of 1000 Oe is It is described that 65 emu / g and Hc (coercive force) are 185 Oe (upper left column on page 7 of Patent Document 3).
 特許文献4(特開平8-34616号公報)には、マグネタイトと亜鉛フェライトの固溶体である亜鉛フェライト粉の生成方法に関して、金属塩化物と金属酸化物とを含み、亜鉛及び鉄からなる混合材料を出発原料として、水蒸気の存在する雰囲気下で焙焼工程を行う旨が記載されている(特許文献4の請求項1)。また特許文献4には、この亜鉛フェライト粉に関して、印可磁界が5000Oeにおける飽和磁化が85~96emu/g、保磁力が90~210Oe、比表面積が1~5m/gである旨、電子写真における磁性トナー等に好ましく用いることができる旨が記載されている(特許文献4の請求項5及び[0023])。 Patent Document 4 (Japanese Unexamined Patent Publication No. 8-34616) describes a method for producing zinc ferrite powder, which is a solid solution of magnetite and zinc ferrite, and describes a mixed material containing metal chloride and metal oxide and composed of zinc and iron. It is described that the roasting step is performed in an atmosphere in which steam is present as a starting material (Patent Document 4, claim 1). Further, Patent Document 4 states that the saturation magnetization is 85 to 96 emu / g, the coercive force is 90 to 210 Oe, and the specific surface area is 1 to 5 m 2 / g when the applied magnetic field is 5000 Oe. It is described that it can be preferably used for magnetic toner and the like (Patent Document 4, claim 5 and [0023]).
 特許文献5(特開平6-310318号公報)には、亜鉛フェライトで被覆されている粒状マグネタイト粒子粉末を湿式合成により製造することが提案されている。具体的には、粒子表面がZnFe2+yで被覆されている粒状マグネタイト粒子であって、前記ZnFe2+y中のZn量が前記粒状マグネタイト粒子中の全Feに対して0.5~4.0mol%であることを特徴とする粒状マグネタイト粒子粉末が開示されるとともに、粒状マグネタイト粒子粉末を含む水分散液中に第一鉄塩水溶液と水酸化アルカリ水溶液とを添加・混合してOH基濃度を調整した後、酸素含有ガスを通気して、粒状マグネタイト粒子表面をZnFe2+yで被覆する旨が記載されている(特許文献5の請求項1及び2)。 Patent Document 5 (Japanese Unexamined Patent Publication No. 6-310318) proposes to produce granular magnetite particle powder coated with zinc ferrite by wet synthesis. Specifically, 0 for a granular magnetite particles the particle surface is coated with a Zn x Fe 2 + y O z , the Zn x Fe 2 + y O Zn amount in z is the total Fe in the granular magnetite particles Granular magnetite particle powder having a content of 5.5 to 4.0 mol% is disclosed, and a ferrous salt aqueous solution and an alkali hydroxide aqueous solution are added and mixed in an aqueous dispersion containing the granular magnetite particle powder. after adjusting the OH group concentration and, by passing an oxygen-containing gas, (claims 1 and 2 of Patent Document 5) the granular magnetite particles surface Zn x Fe 2 + y that the coating with O z is described.
国際公開第2017/212997号International Publication No. 2017/212997 国際公開第2016/043051号International Publication No. 2016/043051 特開昭55-65406号公報JP-A-55-65406 特開平8-34616号公報Japanese Unexamined Patent Publication No. 8-34616 特開平6-310318号公報Japanese Unexamined Patent Publication No. 6-310318
 特許文献1及び2で提案されるマンガン系フェライトからなる球状粒子は、磁気特性に優れ電磁波シールド材などの用途に有用ではあるものの、改良の余地があった。すなわちマンガン系フェライトはマンガンを主成分として含むが、吸入暴露により多量のマンガンを吸い込むと、神経系への健康被害のあることが報告されている。そのためマンガン及びその化合物は、労働安全衛生法特定化学物質障害予防規則の対象物質(管理第二類物質)に分類されている。このような理由で、マンガン系フェライトの製造時にはマンガン原料飛散を防ぐための防塵処理が不可欠であり、製造コスト増大の原因になっていた。 Although the spherical particles made of manganese-based ferrite proposed in Patent Documents 1 and 2 have excellent magnetic properties and are useful for applications such as electromagnetic wave shielding materials, there is room for improvement. That is, manganese-based ferrite contains manganese as a main component, but it has been reported that inhalation of a large amount of manganese by inhalation exposure causes health hazards to the nervous system. Therefore, manganese and its compounds are classified as substances subject to the Industrial Safety and Health Act Specified Chemical Substance Hazard Prevention Regulations (Control Class 2 substances). For this reason, dustproof treatment for preventing the scattering of manganese raw materials is indispensable during the production of manganese-based ferrite, which has been a cause of an increase in production cost.
 一方、特許文献3~5には亜鉛フェライト粉末が提案されているが、これらの粉末は球状粒子からなるものではない。そのため樹脂組成物のフィラーに適用すると、成形性、流動性及び充填性の点で問題がある。また特許文献3~5には亜鉛フェライト粉末の特性に関して、飽和磁化や保磁力といった静磁場特性が示されるものの、高周波特性に関する記載はなく、また電子写真用トナー以外の具体的用途の記載はない。したがって、これらの亜鉛フェライト粉末が、電磁波シールド材などの高周波用途に適用するか否かは不明である。 On the other hand, although zinc ferrite powders are proposed in Patent Documents 3 to 5, these powders do not consist of spherical particles. Therefore, when applied to a filler of a resin composition, there are problems in terms of moldability, fluidity and filling property. Further, although Patent Documents 3 to 5 show static magnetic field characteristics such as saturation magnetization and coercive force with respect to the characteristics of zinc ferrite powder, there is no description regarding high frequency characteristics, and there is no description of specific uses other than electrophotographic toner. .. Therefore, it is unclear whether these zinc ferrite powders are applied to high frequency applications such as electromagnetic wave shielding materials.
 本発明者らは、このような問題点に鑑みて鋭意検討を行った。その結果、球状又は多面体状粒子から構成される特定の亜鉛フェライト粉末は、マンガンを含有しないにもかかわらず、磁気特性、特に高周波域での透磁率に優れており、さらに成形性、流動性及び充填性が良好であるとの知見を得た。 The present inventors have conducted diligent studies in view of such problems. As a result, the specific zinc ferrite powder composed of spherical or polyhedral particles is excellent in magnetic properties, especially magnetic permeability in the high frequency region, even though it does not contain manganese, and further, moldability, fluidity and It was found that the filling property is good.
 本発明は、このような知見に基づき完成されたものであり、マンガンを含有しないにもかかわらず磁気特性に優れ、さらに成形性、流動性及び充填性が良好な亜鉛フェライト粉末の提供を課題とする。また本発明は、このような亜鉛フェライト粉末を含むフェライト樹脂組成物、樹脂成型体、電子部品、電子機器又は電子機器筐体の提供を課題とする。 The present invention has been completed based on such findings, and an object of the present invention is to provide a zinc ferrite powder which is excellent in magnetic properties even though it does not contain manganese and has good moldability, fluidity and filling property. do. Another object of the present invention is to provide a ferrite resin composition containing such zinc ferrite powder, a resin molded body, an electronic component, an electronic device, or an electronic device housing.
 本発明は、下記(1)~(8)の態様を包含する。なお、本明細書において、「~」なる表現は、その両端の数値を含む。すなわち「X~Y」は「X以上Y以下」と同義である。 The present invention includes the following aspects (1) to (8). In addition, in this specification, the expression "-" includes the numerical values at both ends thereof. That is, "X to Y" is synonymous with "X or more and Y or less".
(1)球状又は多面体状のフェライト粒子から構成されるフェライト粉末であって、
 前記フェライト粉末が、亜鉛(Zn)5.0~10.0質量%及び鉄(Fe)55.0~65.0質量%を含み、残部酸素(O)及び不可避不純物の組成を有し、結晶子径が8.0~15.0Åの範囲内にあり、2価鉄イオン(Fe2+)の含有量が0.5~10.0質量%である、フェライト粉末。
(1) Ferrite powder composed of spherical or polyhedral ferrite particles.
The ferrite powder contains 5.0 to 10.0% by mass of zinc (Zn) and 55.0 to 65.0% by mass of iron (Fe), has a composition of residual oxygen (O) and unavoidable impurities, and is crystalline. A ferrite powder having a child diameter in the range of 8.0 to 15.0 Å and a divalent iron ion (Fe 2+ ) content of 0.5 to 10.0% by mass.
(2)前記フェライト粉末の結晶子径が9.0~13.0Åである、上記(1)のフェライト粉末。 (2) The ferrite powder according to (1) above, wherein the ferrite powder has a crystallite diameter of 9.0 to 13.0 Å.
(3)2価鉄イオンの含有量が1.0~7.6質量%である、上記(1)又は(2)のフェライト粉末。 (3) The ferrite powder according to (1) or (2) above, which has a divalent iron ion content of 1.0 to 7.6% by mass.
(4)前記フェライト粉末の平均形状係数SF-1が100~105である、上記(1)~(3)のいずれかのフェライト粉末。 (4) The ferrite powder according to any one of (1) to (3) above, wherein the ferrite powder has an average shape coefficient SF-1 of 100 to 105.
(5)前記フェライト粉末の体積平均粒子径(D50)が0.1~10.0μmである、上記(1)~(4)のいずれかのフェライト粉末。 (5) The ferrite powder according to any one of (1) to (4) above, wherein the volume average particle diameter (D50) of the ferrite powder is 0.1 to 10.0 μm.
(6)上記(1)~(5)のいずれかのフェライト粉末と樹脂とを含む、フェライト樹脂組成物。 (6) A ferrite resin composition containing the ferrite powder according to any one of (1) to (5) above and a resin.
(7)上記(6)のフェライト樹脂組成物からなるフェライト樹脂成型体。 (7) A ferrite resin molded body made of the ferrite resin composition of the above (6).
(8)上記(7)のフェライト樹脂成型体を備えた、電子部品、電子機器又は電子機器筐体。 (8) An electronic component, an electronic device, or an electronic device housing provided with the ferrite resin molded body according to (7) above.
 本発明によれば、マンガンを含有しないにもかかわらず磁気特性に優れ、さらに成形性、流動性及び充填性が良好な亜鉛フェライト粉末が提供される。またこのような亜鉛フェライト粉末を含むフェライト樹脂組成物、樹脂成型体、電子部品、電子機器又は電子機器筐体が提供される。 According to the present invention, there is provided a zinc ferrite powder which is excellent in magnetic properties even though it does not contain manganese and has good moldability, fluidity and filling property. Further, a ferrite resin composition containing such zinc ferrite powder, a resin molded body, an electronic component, an electronic device, or an electronic device housing is provided.
溶射法で作製したフェライト粉末のSEM像の一例を示す。An example of the SEM image of the ferrite powder produced by the thermal spraying method is shown. 溶射法で作製したフェライト粉末のSEM像の一例を示す。An example of the SEM image of the ferrite powder produced by the thermal spraying method is shown. 電気炉焼成法で作製したフェライト粉末のSEM像の一例を示す。An example of the SEM image of the ferrite powder produced by the electric furnace firing method is shown. 電気炉焼成法で作製したフェライト粉末のSEM像の一例を示す。An example of the SEM image of the ferrite powder produced by the electric furnace firing method is shown.
 本発明の具体的な実施形態(以下、「本実施形態」という)について説明する。なお、本発明は以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲において種々の変更が可能である。 A specific embodiment of the present invention (hereinafter referred to as "the present embodiment") will be described. The present invention is not limited to the following embodiments, and various modifications can be made without changing the gist of the present invention.
<<1.フェライト粉末>>
 本実施形態のフェライト粉末は、球状又は多面体状のフェライト粒子から構成される。またこのフェライト粉末は、亜鉛(Zn)5.0~10.0質量%及び鉄(Fe)55.0~65.0質量%を含み、残部酸素(O)及び不可避不純物の組成を有する。さらに結晶子径が8.0~15.0Åの範囲内にあり、2価鉄イオン(Fe2+)の含有量が0.5~10.0質量%である。
<< 1. Ferrite powder >>
The ferrite powder of this embodiment is composed of spherical or polyhedral ferrite particles. Further, this ferrite powder contains 5.0 to 10.0% by mass of zinc (Zn) and 55.0 to 65.0% by mass of iron (Fe), and has a composition of residual oxygen (O) and unavoidable impurities. Further, the crystallite diameter is in the range of 8.0 to 15.0 Å, and the content of divalent iron ion (Fe 2+ ) is 0.5 to 10.0% by mass.
 本実施形態のフェライト粉末は球状又は多面体状のフェライト粒子で構成される。すなわちフェライト粉末は多数の球状又は多面体状のフェライト粒子を含む。このようなフェライト粒子で構成することで、フェライト粉末は、これをフィラーとして樹脂組成物(フェライト樹脂複合材料)に適用したときに、成形性及び充填性に優れたものになる。球状又は多面体状粒子は、成形時に他の粒子と接触したときに滑らかに回避する。そのため成形時の流動性が良好になるとともに密に充填される。これに対して板状又は針状といった異方形状(不定形状)を有する粒子は成形性及び充填性に劣る。なお本明細書において、不定形状粒子は異方形状粒子を包含し、球状などの定形状粒子と対比して使用される。 The ferrite powder of this embodiment is composed of spherical or polyhedral ferrite particles. That is, the ferrite powder contains a large number of spherical or polyhedral ferrite particles. By being composed of such ferrite particles, the ferrite powder becomes excellent in moldability and filling property when it is applied to a resin composition (ferrite resin composite material) as a filler. Spherical or polyhedral particles smoothly avoid contact with other particles during molding. Therefore, the fluidity at the time of molding is improved and the mixture is densely packed. On the other hand, particles having an anisotropic shape (indefinite shape) such as a plate shape or a needle shape are inferior in moldability and filling property. In the present specification, the amorphous particle includes an anisotropic particle and is used in comparison with a spherical particle or the like.
 フェライト粉末を構成する粒子の形状は球状又は多面体状のいずれであってもよい。しかしながら本実施形態のフェライト粉末は飽和蒸気圧の高い亜鉛(Zn)を含み、粒子が多面体状になり易い。これは、フェライト粉末製造時の高温加熱(溶射)工程で、飽和蒸気圧の高い成分が粒子内部から外部に移動してフラックスとして機能し、それにより粒子が結晶構造を反映した多面体状に成長しやすくなるためと考えられている。 The shape of the particles constituting the ferrite powder may be spherical or polyhedral. However, the ferrite powder of the present embodiment contains zinc (Zn) having a high saturated vapor pressure, and the particles tend to be polyhedral. This is a high-temperature heating (spraying) process during the production of ferrite powder, in which components with high saturated vapor pressure move from the inside to the outside of the particles and function as flux, which causes the particles to grow into a polyhedron that reflects the crystal structure. It is thought to be easier.
 多面体状の粒子は、基本的に複数の多角形が立体的に組み合わさった形状を有している。多面体を構成する多角形は、典型的には、三角形、四角形、六角形、八角形、十角形又はこれらの組み合わせからなる。このような多面体として、例えば四角形と六角形と八角形との組み合わせからなる斜方切頂立方八面体が挙げられる。また多面体は面の数が多いほど球に近い。したがって多面体状粒子は、好ましくは10面体以上、より好ましくは12面体以上、さらに好ましくは14面体以上の形状を有する。また多面体状粒子は、典型的には100面体以下、より典型的には72面体以下、さらに典型的には24面体以下の形状を有する。 Polyhedral particles basically have a shape in which a plurality of polygons are three-dimensionally combined. The polygons that make up a polyhedron typically consist of triangles, quadrilaterals, hexagons, octagons, decagons, or combinations thereof. Examples of such a polyhedron include a truncated cuboctahedron composed of a combination of a quadrangle, a hexagon, and an octagon. A polyhedron is closer to a sphere as the number of faces increases. Therefore, the polyhedral particles preferably have a shape of a tetradecahedron or more, more preferably a dodecahedron or more, and even more preferably a tetradecahedron or more. The polyhedral particles typically have a shape of 100 faces or less, more typically 72 faces or less, and more typically 24 faces or less.
 フェライト粉末は、亜鉛(Zn)を5.0~10.0質量%及び鉄(Fe)55.0~65.0質量%を含み、残部酸素(O)及び不可避不純物の組成を有する。このフェライト粉末は亜鉛フェライトの組成を有しており、亜鉛(Zn)及び鉄(Fe)以外の金属成分を、不可避不純物量を超えて含んでいない。ここで不可避不純物は、製造工程中に不可避的に混入する成分であり、その含有量が5000ppm以下の成分を指す。不可避不純物として、典型的にはケイ素(Si)、アルミニウム(Al)、カルシウム(Ca)、塩素(Cl)、ホウ素(B)、ジルコニウム(Zr)及びクロム(Cr)が挙げられる。 The ferrite powder contains 5.0 to 10.0% by mass of zinc (Zn) and 55.0 to 65.0% by mass of iron (Fe), and has a composition of residual oxygen (O) and unavoidable impurities. This ferrite powder has a zinc ferrite composition and does not contain metal components other than zinc (Zn) and iron (Fe) in excess of the amount of unavoidable impurities. Here, the unavoidable impurity is a component that is inevitably mixed in during the manufacturing process, and refers to a component having a content of 5000 ppm or less. Inevitable impurities typically include silicon (Si), aluminum (Al), calcium (Ca), chlorine (Cl), boron (B), zirconium (Zr) and chromium (Cr).
 亜鉛フェライトはスピネルフェライトの一種である。スピネルフェライトは、MO・Fe(MはMn、Ni、Zn等の2価金属)の分子式で表される酸化物であり、その多くが強磁性を示す。スピネルフェライトは、結晶構造中に4個の酸素イオン(O2-)で囲まれた四面体位置を占めるAサイトと、6個の酸素イオンで囲まれた八面体位置を占めるBサイトと、を有している。亜鉛フェライトは、化学量論組成では正スピネルに属し、非磁性イオンたる2価の亜鉛イオン(Zn2+)がAサイトを占め、磁性イオンたる3価の鉄のイオン(Fe3+)がBサイトを占める。Bサイトを占める鉄イオン(Fe3+)は、その半数が上向きの磁気モーメント(スピン)をもち、残りの半数が下向きの磁気モーメントをもつ。ネール点以下の温度では鉄イオンの磁気モーメントが相殺されるため、化学量論組成の亜鉛フェライト(ZnO・Fe)は反強磁性体であり、磁性を示さない。なお化学量論組成の亜鉛フェライトは、亜鉛含有量が27.1質量%、鉄含有量が46.3質量%である。 Zinc ferrite is a type of spinel ferrite. Spinel ferrite is an oxide represented by the molecular formula of MO · Fe 2 O 3 (M is a divalent metal such as Mn, Ni, Zn), and most of them exhibit ferromagnetism. Spinel ferrite has an A site that occupies a tetrahedral position surrounded by four oxygen ions (O 2- ) in the crystal structure and a B site that occupies an octahedral position surrounded by six oxygen ions. Have. Zinc ferrite belongs to positive spinel in the chemical composition, divalent zinc ion (Zn 2+ ) which is a non-magnetic ion occupies A site, and trivalent iron ion (Fe 3+ ) which is a magnetic ion occupies B site. Occupy. Half of the iron ions (Fe 3+ ) that occupy the B site have an upward magnetic moment (spin), and the other half have a downward magnetic moment. Since the magnetic moment of iron ions cancels out at temperatures below the nail point, zinc ferrite (ZnO · Fe 2 O 3 ) having a chemical composition is an antiferromagnetic material and does not exhibit magnetism. The stoichiometric composition of zinc ferrite has a zinc content of 27.1% by mass and an iron content of 46.3% by mass.
 一方で、過剰量の鉄(Fe)を含む亜鉛フェライトは強磁性体である。すなわち余剰分の鉄が2価及び3価の鉄イオン(Fe2+、Fe3+)になり、これらがスピネル構造中のAサイト及びBサイトを占める。具体的には、3価の鉄イオン(Fe3+)が2価の亜鉛イオン(Zn2+)とともにAサイトを占め、2価の鉄イオン(Fe2+)が3価の鉄イオン(Fe2+)とともにBサイトを占める。過剰量の鉄を含む亜鉛フェライトは、化学量論組成の亜鉛フェライト(ZnO・Fe)とマグネタイト(FeO・Fe)との固溶体と見なすことができる。このフェライトの分子式は、(Zn2+,Fe3+)O・[Fe3+,Fe2+で表される。ここで丸括弧()内のイオンがAサイトイオンであり、角括弧[]内のイオンがBサイトイオンである。このように3価の鉄イオン(Fe3+)がAサイトに入るとともに、2価の鉄イオン(Fe2+)がBサイトに入ることで、亜鉛フェライトは全体として強磁性を示すようになる。 On the other hand, zinc ferrite containing an excess amount of iron (Fe) is a ferromagnet. That is, the surplus iron becomes divalent and trivalent iron ions (Fe 2+ , Fe 3+ ), which occupy the A and B sites in the spinel structure. Specifically, occupy A site trivalent iron ions (Fe 3+) together with divalent zinc ions (Zn 2+), divalent iron ions (Fe 2+) together with trivalent iron ions (Fe 2+) Occupies B site. Zinc ferrite containing an excess amount of iron can be regarded as a solid solution of zinc ferrite (ZnO · Fe 2 O 3 ) and magnetite (FeO · Fe 2 O 3) having a stoichiometric composition. The molecular formula of this ferrite is represented by (Zn 2+ , Fe 3+ ) O · [Fe 3+ , Fe 2+ ] 2 O 3 . Here, the ions in parentheses () are A-site ions, and the ions in square brackets [] are B-site ions. In this way, the trivalent iron ion (Fe 3+ ) enters the A site and the divalent iron ion (Fe 2+ ) enters the B site, so that the zinc ferrite exhibits ferromagnetism as a whole.
 本実施形態のフェライト粉末は、過剰鉄を含有する亜鉛フェライトの組成を有しており、強磁性を示す。そのため飽和磁化(σs)が大きい。またこのフェライト粉末は軟磁性の性質を有しており、保磁力(Hc)及び残留磁化(σr)が小さく、透磁率(μ)が高い。そのためこのフェライト粉末は、軟磁性的性質が要求される用途、例えばインダクタ、トランス、電磁波シールド材、フィルタ等に好適である。特に本実施形態のフェライト粉末は、高周波における透磁率(μ)が高いとともに、フィラーとしてフェライト樹脂組成物に適用したときに、優れた成形性及び充填性を示す。したがって電磁波シールド材に適用すると、優れた電磁波遮蔽性能を得ることが可能である。 The ferrite powder of this embodiment has a composition of zinc ferrite containing excess iron and exhibits ferromagnetism. Therefore, the saturation magnetization (σs) is large. Further, this ferrite powder has a soft magnetic property, has a small coercive force (Hc) and a small remanent magnetization (σr), and has a high magnetic permeability (μ). Therefore, this ferrite powder is suitable for applications that require soft magnetic properties, such as inductors, transformers, electromagnetic wave shielding materials, and filters. In particular, the ferrite powder of the present embodiment has a high magnetic permeability (μ) at high frequencies and exhibits excellent moldability and filling property when applied to a ferrite resin composition as a filler. Therefore, when applied to an electromagnetic wave shielding material, it is possible to obtain excellent electromagnetic wave shielding performance.
 亜鉛含有量が5.0質量%未満及び/又は鉄含有量が65.0質量%超であると、フェライト粉末の組成がマグネタイト(FeO・Fe)に近くなり好ましくない。マグネタイトは酸化により飽和磁化(σs)が不安定化しやすい。また保磁力(Hc)が高く、透磁率が比較的に小さい。これらの理由から亜鉛含有量を5.0質量%以上及び鉄含有量を65.0質量%以下に限定する。亜鉛含有量は6.0質量%以上であってよく、7.0質量%以上であってよく、8.0質量%以上であってよい。また鉄含有量は64.0質量%以下であってよく、63.0質量%以下であってよく、62.0質量%以下であってよく、61.0質量%以下であってもよい。一方で亜鉛含有量が10.0質量%超及び/又は鉄含有量が55.0質量%未満であると、フェライト粉末の組成が化学量論組成の亜鉛フェライトに近くなる。そのため飽和磁化(σs)や透磁率(μ)が低下する恐れがあり好ましくない。この理由から亜鉛含有量を10.0質量%以下及び鉄含有量を55.0質量%以上に限定する。亜鉛含有量は9.0質量%以下であってよく、8.0質量%以下であってよく、7.0質量%以下であってもよい。また鉄含有量は58.0質量%以上であってよく、59.0質量%以上であってよく、60.0質量%以上であってよく、61.0質量%以上であってよく、62.0質量%以上であってよく、63.0質量%以上であってもよい。 When the zinc content is less than 5.0% by mass and / or the iron content is more than 65.0% by mass, the composition of the ferrite powder becomes close to magnetite (FeO / Fe 2 O 3 ), which is not preferable. Magnetite tends to destabilize its saturation magnetization (σs) due to oxidation. In addition, the coercive force (Hc) is high and the magnetic permeability is relatively small. For these reasons, the zinc content is limited to 5.0% by mass or more and the iron content is limited to 65.0% by mass or less. The zinc content may be 6.0% by mass or more, 7.0% by mass or more, and 8.0% by mass or more. The iron content may be 64.0% by mass or less, 63.0% by mass or less, 62.0% by mass or less, or 61.0% by mass or less. On the other hand, when the zinc content is more than 10.0% by mass and / or the iron content is less than 55.0% by mass, the composition of the ferrite powder becomes close to that of zinc ferrite having a stoichiometric composition. Therefore, the saturation magnetization (σs) and the magnetic permeability (μ) may decrease, which is not preferable. For this reason, the zinc content is limited to 10.0% by mass or less and the iron content is limited to 55.0% by mass or more. The zinc content may be 9.0% by mass or less, 8.0% by mass or less, or 7.0% by mass or less. The iron content may be 58.0% by mass or more, 59.0% by mass or more, 60.0% by mass or more, 61.0% by mass or more, 62. It may be 0.0% by mass or more, and may be 63.0% by mass or more.
 本実施形態のフェライト粉末は、結晶子径が8.0~15.0Åである。結晶子は、粉末中の粒子を構成する単結晶とみなされる最大の集まりであり、一般には各粒子は複数の単結晶から構成されている。結晶子径を上記数値範囲内に限定することで、高周波域での透磁率が高くなる。その詳細な理由は確かではないが、上記のように適度な大きさの結晶子径になることでフェライト粒子内部の磁気モーメントの相関(長)が適度に抑制されることで外部印加磁場に対して磁気モーメントが動きやすい状態が生成される結果、透磁率実部(μ’)の周波数特性が高周波側まで維持されると推測している。また結晶子径がある程度に小さくなることで、磁化機構における回転磁化の寄与分が大きくなり、これが透磁率に影響を与えているとも考えられる。これに対して、結晶子径が過度に大きいと渦電流損失が大きくなり、また結晶子径が過度に小さいと超常磁性発現による磁気特性劣化を無視できなくなると考えられる。結晶子径は、好ましくは9.0~13.0Åである。 The ferrite powder of this embodiment has a crystallite diameter of 8.0 to 15.0 Å. Crystallets are the largest collection of single crystals that make up the particles in a powder, and each particle is generally made up of a plurality of single crystals. By limiting the crystallite diameter within the above numerical range, the magnetic permeability in the high frequency range becomes high. The detailed reason for this is not certain, but as described above, the correlation (length) of the magnetic moment inside the ferrite particles is moderately suppressed by having an appropriately sized crystallite diameter, so that the magnetic moment is appropriately suppressed with respect to the externally applied magnetic field. As a result of creating a state in which the magnetic moment is easy to move, it is estimated that the frequency characteristics of the real magnetic permeability (μ') are maintained up to the high frequency side. Further, it is considered that the contribution of rotational magnetization in the magnetization mechanism increases as the crystallite diameter becomes smaller to some extent, which affects the magnetic permeability. On the other hand, if the crystallite diameter is excessively large, the eddy current loss becomes large, and if the crystallite diameter is excessively small, the deterioration of magnetic characteristics due to the development of superparamagnetism cannot be ignored. The crystallite diameter is preferably 9.0 to 13.0 Å.
 結晶子径はX線回折法により求めることができる。具体的には、X線回折法によりフェライト粉末のX線プロファイルを得る。プロファイル中の特定の回折ピークに着目し、その半値幅(FWHM)βを求める。得られた半値幅βから、下記(1)式に示すシェラーの式にしたがい結晶子径Dを求める。なお下記(1)式において、Kはシェラー定数、λは使用X線の波長、θは回折ピークのブラッグ角である。また測定装置の誤差を補正するため、半値幅βは補正値を用いることが好ましい。 The crystallite diameter can be determined by the X-ray diffraction method. Specifically, an X-ray profile of the ferrite powder is obtained by an X-ray diffraction method. Focusing on a specific diffraction peak in the profile, the full width at half maximum (FWHM) β is obtained. From the obtained full width at half maximum β, the crystallite diameter D is obtained according to Scherrer's equation shown in the following equation (1). In the following equation (1), K is the Scheller constant, λ is the wavelength of the X-ray used, and θ is the Bragg angle of the diffraction peak. Further, in order to correct the error of the measuring device, it is preferable to use the corrected value for the half width β.
Figure JPOXMLDOC01-appb-M000001
 
Figure JPOXMLDOC01-appb-M000001
 
 本実施形態のフェライト粉末は2価鉄イオン(Fe2+)の含有量が0.5~10.0質量%である。2価鉄イオン量を上記範囲内にすることで、粒径が小さくとも、飽和磁化及び高周波域での透磁率実部(μ’)を高いレベルに維持することが可能になる。2価鉄イオンが過度に少ないと、粉末を構成する亜鉛フェライトが強磁性を示さなくなる。また非磁性たるヘマタイト量が増えるため好ましくない。2価鉄イオン量は1.0質量%以上であってよく、2.0質量%以上であってよく、3.0質量%以上であってよく、4.0質量%以上であってよく、5.0質量%以上であってもよい。一方で2価鉄イオンが過度に多いと、樹脂と混合したフェライト粉末を加熱硬化させる際、あるいは酸・アルカリを始めとする薬液処理の際に、フェライト粉末を構成する粒子の酸化が進行する恐れがある。このような粒子の酸化は、磁気特性が損なわれるため、好ましくない。また2価鉄イオンが過度に多いと、非磁性たるウスタイト相(FeO)の量が多くなり、磁気特性劣化をもたらす恐れがある。2価鉄イオン量は8.0質量%以下であってよく、7.0質量%以下であってよく、6.0質量%以下であってよく、5.0質量%以下であってよく、4.0質量%以下であってよく、3.0質量%以下であってもよい。なお2価鉄イオン量は、例えば酸化還元滴定により求めることができる。 The ferrite powder of this embodiment has a divalent iron ion (Fe 2+ ) content of 0.5 to 10.0% by mass. By keeping the amount of divalent iron ions within the above range, it is possible to maintain the saturated magnetization and the magnetic permeability real part (μ') in the high frequency range at a high level even if the particle size is small. If the amount of ferrous ions is excessively small, the zinc ferrite constituting the powder does not exhibit ferromagnetism. Further, it is not preferable because the amount of non-magnetic hematite increases. The amount of ferrous ion may be 1.0% by mass or more, 2.0% by mass or more, 3.0% by mass or more, 4.0% by mass or more, and may be 4.0% by mass or more. It may be 5.0% by mass or more. On the other hand, if the amount of divalent iron ions is excessively large, the particles constituting the ferrite powder may be oxidized when the ferrite powder mixed with the resin is heat-cured or when treated with a chemical solution such as acid or alkali. There is. Oxidation of such particles is not preferable because the magnetic properties are impaired. Further, if the amount of divalent iron ions is excessively large, the amount of the non-magnetic wustite phase (FeO) increases, which may lead to deterioration of magnetic characteristics. The amount of divalent iron ion may be 8.0% by mass or less, 7.0% by mass or less, 6.0% by mass or less, 5.0% by mass or less, and may be 5.0% by mass or less. It may be 4.0% by mass or less, and may be 3.0% by mass or less. The amount of divalent iron ions can be determined, for example, by redox titration.
 フェライト粉末は、主としてスピネル相を含む。スピネル相の含有割合は、好ましくは90.0質量%以上である。スピネル相は強磁性を示すため、この含有割合が高いほど、飽和磁化(σs)及び透磁率(μ)が高くなる。スピネル相の含有割合は95.0質量%以上であってよく、99.0質量%以上であってよく、99.5質量%以上であってもよい。一方で、フェライト粉末はスピネル相以外の他の相や不可避不純物を含んでもよい。他の相として、例えば余剰亜鉛酸化物(ZnO)やスピネル以外の鉄酸化物(α-Fe、FeO等)が挙げられる。しかしながらスピネル相に基づく高い磁気特性を有効に活用する観点から、他の相の含有割合は少ないほど好ましい。他の相の含有割合は10.0質量%以下であってよく、5.0質量%以下であってよく、1.0質量%以下であってよく、0.5質量%以下であってよい。フェライト粉末が他の相を含まなくてもよい。また不可避不純物は、先述したように含有量5000ppm以下の成分である。 Ferrite powder mainly contains a spinel phase. The content ratio of the spinel phase is preferably 90.0% by mass or more. Since the spinel phase exhibits ferromagnetism, the higher the content ratio, the higher the saturation magnetization (σs) and magnetic permeability (μ). The content ratio of the spinel phase may be 95.0% by mass or more, 99.0% by mass or more, or 99.5% by mass or more. On the other hand, the ferrite powder may contain phases other than the spinel phase and unavoidable impurities. Examples of other phases include excess zinc oxide (ZnO) and iron oxides other than spinel (α-Fe 2 O 3 , FeO, etc.). However, from the viewpoint of effectively utilizing the high magnetic properties based on the spinel phase, it is preferable that the content ratio of the other phases is small. The content ratio of the other phase may be 10.0% by mass or less, 5.0% by mass or less, 1.0% by mass or less, and 0.5% by mass or less. .. The ferrite powder does not have to contain other phases. Further, the unavoidable impurities are components having a content of 5000 ppm or less as described above.
 フェライト粉末は、磁気特性が過度に劣化しない範囲でヘマタイト(α-Fe)を含んでもよい。ヘマタイトを含有させることで、フェライト粉末を樹脂と混合し、さらに加熱硬化させた際に、粉末を構成する粒子の酸化が抑制される。そのため加熱硬化後のフェライト粉末の磁気特性低下が抑制されると期待される。ヘマタイトの含有量は0.1質量%以上であってよく、0.5質量%以上であってよく、1.0質量%以上であってよく、3.0質量%以上であってもよい。一方で過度に多量のヘマタイトを含むと、フェライト粉末の飽和磁化及び透磁率が低くなる恐れがある。ヘマタイトの含有量は7.0質量以下であってよく、6.0質量%以下であってよく、5.0質量%以下であってよく、4.0質量%以下であってよく、3.0質量%以下であってもよい。 The ferrite powder may contain hematite (α-Fe 2 O 3 ) as long as the magnetic properties are not excessively deteriorated. By containing hematite, when the ferrite powder is mixed with the resin and further heat-cured, the oxidation of the particles constituting the powder is suppressed. Therefore, it is expected that the deterioration of the magnetic properties of the ferrite powder after heat curing is suppressed. The content of hematite may be 0.1% by mass or more, 0.5% by mass or more, 1.0% by mass or more, or 3.0% by mass or more. On the other hand, if an excessively large amount of hematite is contained, the saturation magnetization and magnetic permeability of the ferrite powder may decrease. The content of hematite may be 7.0% by mass or less, 6.0% by mass or less, 5.0% by mass or less, 4.0% by mass or less, and 3. It may be 0% by mass or less.
 フェライト粉末の飽和磁化(σs)は、好ましくは80.0emu/g以上である。飽和磁化を高めることで透磁率実部(μ’)を高めることができ、電磁波遮蔽性能などの磁気特性を優れたものにすることが可能になる。飽和磁化は82.0emu/g以上であってよく、84.0emu/g以上であってよく、86.0emu/g以上であってもよい。飽和磁化の上限は、フェライト粉末の組成により限定され、典型的には96.0emu/g以下である。 The saturation magnetization (σs) of the ferrite powder is preferably 80.0 emu / g or more. By increasing the saturation magnetization, the real magnetic permeability (μ') can be increased, and the magnetic characteristics such as electromagnetic wave shielding performance can be improved. The saturation magnetization may be 82.0 emu / g or more, 84.0 emu / g or more, or 86.0 emu / g or more. The upper limit of saturation magnetization is limited by the composition of the ferrite powder and is typically 96.0 emu / g or less.
 フェライト粉末の残留磁化(σr)は、好ましくは5.0emu/g以下である。残留磁化を小さくすることで透磁率実部(μ’)を高めることができ、電磁波遮蔽性能などの磁気特性を優れたものにすることが可能になる。また残留磁化を低くすることで磁気的凝集を防ぐことができる。そのためフィラーに適用したフェライト粉末の成形性、充填性及び分散性をより優れたものにすることができる。残留磁化は4.0emu/g以下であってよく、3.5emu/g以下であってよく、3.0emu/g以下であってもよい。残留磁化の下限は特に限定されない。しかしながら典型的には0.5emu/g以上である。 The residual magnetization (σr) of the ferrite powder is preferably 5.0 emu / g or less. By reducing the remanent magnetization, the real magnetic permeability (μ') can be increased, and magnetic characteristics such as electromagnetic wave shielding performance can be improved. Further, by lowering the residual magnetization, magnetic aggregation can be prevented. Therefore, the moldability, filling property and dispersibility of the ferrite powder applied to the filler can be made more excellent. The remanent magnetization may be 4.0 emu / g or less, 3.5 emu / g or less, or 3.0 emu / g or less. The lower limit of the remanent magnetization is not particularly limited. However, it is typically 0.5 emu / g or higher.
 フェライト粉末の保磁力(Hc)は、好ましくは100Oe以下である。保磁力を小さくすることで透磁率実部(μ’)を高めることができ、電磁波遮蔽性能などの磁気特性を優れたものにすることが可能になる。また保磁力を低くすることで磁気凝集を防ぐことができ、その結果、成形性、充填性及び分散性をより優れたものにすることができる。保磁力は80Oe以下であってよく、60Oe以下であってよく、50Oe以下であってよく、40Oe以下であってよい。保磁力の下限は特に限定されない。しかしながら典型的には10Oe以上である。 The coercive force (Hc) of the ferrite powder is preferably 100 Oe or less. By reducing the coercive force, the real magnetic permeability (μ') can be increased, and magnetic characteristics such as electromagnetic wave shielding performance can be improved. Further, by lowering the coercive force, magnetic aggregation can be prevented, and as a result, moldability, filling property and dispersibility can be improved. The coercive force may be 80 Oe or less, 60 Oe or less, 50 Oe or less, and 40 Oe or less. The lower limit of the coercive force is not particularly limited. However, it is typically 10 Oe or more.
 フェライト粉末は、フェライト樹脂成型体の状態で測定した100MHzにおける透磁率実部(μ’)が、好ましくは6.00以上である。ここでフェライト樹脂成型体は、後述するようにフェライト粉末と樹脂とを含むフェライト樹脂組成物を成形して得られた成型体のことである。このように透磁率実部を高くすることで、電磁波遮蔽性能などの磁気特性が優れたものになる。透磁率実部は6.50以上であってよく、7.00以上であってよく、7.50以上であってよく、8.00以上であってもよい。透磁率実部の上限は、特に限定されない。しかしながら典型的には12.00以下であり、より典型的には10.00以下である。 The ferrite powder has a magnetic permeability real part (μ') at 100 MHz measured in the state of the ferrite resin molded body, preferably 6.00 or more. Here, the ferrite resin molded product is a molded product obtained by molding a ferrite resin composition containing a ferrite powder and a resin as described later. By increasing the actual magnetic permeability in this way, magnetic characteristics such as electromagnetic wave shielding performance become excellent. The actual magnetic permeability portion may be 6.50 or more, 7.00 or more, 7.50 or more, or 8.00 or more. The upper limit of the actual magnetic permeability portion is not particularly limited. However, it is typically 12.00 or less, and more typically 10.00 or less.
 フェライト粉末は、フェライト樹脂成型体の状態で測定した100MHzにおける損失係数(tanδ)が、好ましくは0.15以下である。これにより損失抑制が可能になる。損失係数は0.12以下であってよく、0.10以下であってよく、0.08以下であってよく、0.06以下であってよく、0.04以下であってもよい。なお損失係数(tanδ)は周波数100MHzでの複素透磁率を求め、その実部(μ’)及び虚部(μ’’)から下記(2)式にしたがって算出することができる。 The ferrite powder has a loss coefficient (tan δ) at 100 MHz measured in the state of the ferrite resin molded body, preferably 0.15 or less. This makes it possible to suppress loss. The loss coefficient may be 0.12 or less, 0.10 or less, 0.08 or less, 0.06 or less, or 0.04 or less. The loss coefficient (tan δ) can be calculated from the real part (μ ″) and the imaginary part (μ ″) of the complex magnetic permeability at a frequency of 100 MHz according to the following equation (2).
Figure JPOXMLDOC01-appb-M000002
 
Figure JPOXMLDOC01-appb-M000002
 
 フェライト粉末は、100MHzにおける透磁率実部の対密度比(μ’/d)が、好ましくは2.00以上である。ここで透磁率実部の対密度比は、フェライト樹脂成型体(測定用サンプル)の状態で測定した透磁率実部(μ’)を、測定用サンプルの密度(d、単位:g/cm)で除した値であり、下記(3)式にしたがって算出される。 The ferrite powder has a relative density ratio (μ'/ d) of the actual magnetic permeability portion at 100 MHz, preferably 2.00 or more. Here, the relative density ratio of the actual magnetic permeability is the density (d, unit: g / cm 3 ) of the sample for measurement, which is the actual magnetic permeability (μ') measured in the state of the ferrite resin molded body (measurement sample). It is a value divided by) and is calculated according to the following equation (3).
Figure JPOXMLDOC01-appb-M000003
 
Figure JPOXMLDOC01-appb-M000003
 
 測定用サンプルが均一材質からなる場合には、サンプル形状(厚さ、内径、外径)の影響を加味して透磁率を算出する。そのため、算出された透磁率にはサンプル形状の影響が排除されている。一方でサンプルが、フィラー(フェライト粉末)と樹脂とからなる複合材料(フェライト樹脂成型体)からなる場合には、算出した透磁率はサンプル中フィラーの分散・充填状態や空隙の影響を含んでいる。フェライト粉末単味の透磁率を評価する上で、フィラー分散・充填状態や空隙の影響を排除することが望ましい。透磁率実部の対密度比を求めることで、この影響を最小限にすることが可能である。したがって透磁率実部の対密度比は、フィラー分散・充填状態等の影響を排除した、フェライト粉末単味の透磁率実部を表すと言うこともできる。透磁率実部の対密度比は、2.20以上であってよく、2.40以上であってよく、2.60以上であってもよい。 When the measurement sample is made of a uniform material, the magnetic permeability is calculated in consideration of the influence of the sample shape (thickness, inner diameter, outer diameter). Therefore, the influence of the sample shape is excluded from the calculated magnetic permeability. On the other hand, when the sample is made of a composite material (ferrite resin molded body) composed of a filler (ferrite powder) and a resin, the calculated magnetic permeability includes the influence of the dispersion / filling state of the filler in the sample and the voids. .. In evaluating the magnetic permeability of the ferrite powder alone, it is desirable to eliminate the influence of the filler dispersion / filling state and voids. This effect can be minimized by finding the relative density ratio of the real magnetic permeability part. Therefore, it can be said that the relative density ratio of the actual magnetic permeability portion represents the actual magnetic permeability portion of the ferrite powder alone, excluding the influence of the filler dispersion / filling state and the like. The relative density ratio of the real part of the magnetic permeability may be 2.20 or more, 2.40 or more, or 2.60 or more.
 透磁率実部の対密度比を求める上で、透磁率を測定できる限り、測定用サンプルの形状は限定されない。一例としてトロイダル形状が挙げられる。測定サンプルが、外径φo(単位:cm)、内径φi(単位:cm)、厚さt(単位:cm)及び質量m(単位:g)を有するトロイダルである場合には、測定用サンプル密度d(単位:g/cm)は、下記(4)式にしたがって求められる。 Permeability The shape of the sample for measurement is not limited as long as the magnetic permeability can be measured in determining the relative density ratio of the real part. An example is the toroidal shape. When the measurement sample is a toroidal having an outer diameter φo (unit: cm), an inner diameter φi (unit: cm), a thickness t (unit: cm), and a mass m (unit: g), the measurement sample density d (unit: g / cm 3 ) is obtained according to the following equation (4).
Figure JPOXMLDOC01-appb-M000004
 
Figure JPOXMLDOC01-appb-M000004
 
 フェライト粉末の平均形状係数SF-1は、好ましくは100~105である。ここで粉末の平均形状係数SF-1は、個々の粒子の形状係数の平均値である。また粒子の形状係数SF-1は、粒子の球形度の指標になるものであり、完全な球形では100となり、球形から離れるほど大きくなる。平均形状係数SF-1を105以下にすることで、粉末の流動性が高くなり、成形性及び充填性がより優れたものとなる。SF-1は103以下であってよく、101以下であってもよい。 The average shape coefficient SF-1 of the ferrite powder is preferably 100 to 105. Here, the average shape coefficient SF-1 of the powder is an average value of the shape coefficients of individual particles. Further, the shape coefficient SF-1 of the particle is an index of the sphericity of the particle, and is 100 for a perfect sphere, and increases as the distance from the sphere increases. By setting the average shape coefficient SF-1 to 105 or less, the fluidity of the powder becomes high, and the moldability and the filling property become more excellent. SF-1 may be 103 or less, and may be 101 or less.
 フェライト粉末の平均形状係数SF-1は、複数のフェライト粒子について、各粒子の形状係数SF-1を求め、その平均値を算出することで求められる。フェライト粒子のSF-1は、この粒子の水平フェレ径R(単位:μm)、投影周囲長L(単位:μm)及び投影面積S(単位:μm)を測定し、下記(5)式にしたがって求めることができる。 The average shape coefficient SF-1 of the ferrite powder is obtained by obtaining the shape coefficient SF-1 of each particle for a plurality of ferrite particles and calculating the average value thereof. The ferrite particle SF-1 measures the horizontal ferret diameter R (unit: μm), projected peripheral length L (unit: μm), and projected area S (unit: μm 2 ) of the particle, and uses the following equation (5). Therefore, it can be obtained.
Figure JPOXMLDOC01-appb-M000005
 
Figure JPOXMLDOC01-appb-M000005
 
 フェライト粉末の体積平均粒子径(D50)は、好ましくは0.1~10.0μmである。ここで体積平均粒子径は、フェライト粉末の体積粒度分布における50%累積径のことである。体積平均粒子径をある程度に大きくすることで、樹脂組成物の粘度上昇が抑えられ、フィラー充填率を高めることが可能になる。体積平均粒子径は0.2μm以上であってよく、0.4μm以上であってもよい。一方で体積平均粒子径を10.0μm以下にすることで、損失係数(tanδ)をより小さくすることができる。体積平均粒子径は7.5μm以下であってよく、5.0μm以下であってもよい。また粒度分布は2山以上のピークを持っていてもよい。ここで2山以上のピークを持つとは、対数表示した粒径の関数として体積粒度分布を見たときに、その関数の微分(微分係数)または2回以上微分の値が0となるような点(極大点・変曲点・鞍点等)が2点以上存在する場合を意味する。 The volume average particle size (D50) of the ferrite powder is preferably 0.1 to 10.0 μm. Here, the volume average particle diameter is a 50% cumulative diameter in the volume particle size distribution of the ferrite powder. By increasing the volume average particle size to some extent, it is possible to suppress an increase in the viscosity of the resin composition and increase the filler filling rate. The volume average particle diameter may be 0.2 μm or more, and may be 0.4 μm or more. On the other hand, the loss coefficient (tan δ) can be made smaller by setting the volume average particle size to 10.0 μm or less. The volume average particle size may be 7.5 μm or less, and may be 5.0 μm or less. The particle size distribution may have two or more peaks. Here, having two or more peaks means that when the volume particle size distribution is viewed as a function of the logarithmic particle size, the derivative (differential coefficient) of the function or the value of the derivative twice or more becomes 0. It means that there are two or more points (maximum points, inflection points, saddle points, etc.).
 フェライト粉末の粒度分布比((D90-D10)/D50)は、好ましくは0.1~30.0である。粒度分布比は粒子径バラツキの指標となるものであり、高いほど粒子径バラツキが大きいことを示す。粒子径バラツキを適度に大きくすることで、フィラーとしてフェライト粉末を樹脂組成物に適用したときに、組成物中でのフェライト粉末の充填性を高めることができる。粒度分布比は1.0以上であってよく、6.0以上であってよく、10.0以上であってもよい。一方で粒度分布比が過度に高いと、微細粒子や粗大粒子の割合が高くなるためフェライト粉末の流動性及び成形性が低下する恐れがある。粒度分布比は20.0以下であってよく、10.0以下であってよく、5.0以下であってもよい。なお粒度分布比は、フェライト粉末の体積粒度分布における10%累積径(D10)、50%累積径(D50)及び90%累積径(D90)を用いて、下記(6)式にしたがって求めることができる。 The particle size distribution ratio ((D90-D10) / D50) of the ferrite powder is preferably 0.1 to 30.0. The particle size distribution ratio is an index of particle size variation, and the higher the particle size distribution ratio, the larger the particle size variation. By appropriately increasing the particle size variation, when the ferrite powder is applied to the resin composition as a filler, the filling property of the ferrite powder in the composition can be improved. The particle size distribution ratio may be 1.0 or more, 6.0 or more, or 10.0 or more. On the other hand, if the particle size distribution ratio is excessively high, the proportion of fine particles and coarse particles increases, which may reduce the fluidity and moldability of the ferrite powder. The particle size distribution ratio may be 20.0 or less, 10.0 or less, or 5.0 or less. The particle size distribution ratio can be determined according to the following equation (6) using the 10% cumulative diameter (D10), 50% cumulative diameter (D50), and 90% cumulative diameter (D90) in the volumetric particle size distribution of the ferrite powder. can.
Figure JPOXMLDOC01-appb-M000006
 
Figure JPOXMLDOC01-appb-M000006
 
 フェライト粉末のBET比表面積は、好ましくは0.1~10.0m/gである。BET比表面積を0.1m/g以上にすることで、粒子間空隙の発生を抑制することができ、充填性がより優れたものとなる。BET比表面積は0.2m/g以上であってよく、0.4m/g以上であってもよい。一方でBET比表面積を10.0m/g以下にすることで、フェライト粉末の凝集を抑制することができ、成形性及び充填性がより優れたものになる。またBET比表面積を上記範囲内にすることで、フェライト粉末を複合材料や複合体に適用したときに樹脂との密着性がより良好なものになる。BET比表面積は8.5m/g以下であってよく、6.5m/g以下であってもよい。 The BET specific surface area of the ferrite powder is preferably 0.1 to 10.0 m 2 / g. By setting the BET specific surface area to 0.1 m 2 / g or more, the generation of interparticle voids can be suppressed, and the filling property becomes more excellent. BET specific surface area may be at 0.2 m 2 / g or more, may be 0.4 m 2 / g or more. On the other hand, by setting the BET specific surface area to 10.0 m 2 / g or less, the aggregation of the ferrite powder can be suppressed, and the moldability and the filling property become more excellent. Further, by setting the BET specific surface area within the above range, the adhesion to the resin becomes better when the ferrite powder is applied to a composite material or a composite. BET specific surface area may be less than or equal 8.5 m 2 / g, may be not more than 6.5m 2 / g.
 フェライト粉末の真比重(真密度)は、好ましくは5.00g/cm以上である。これによりフェライト粉末の飽和磁化及び透磁率がより一層に高くなる。真比重は5.10g/cm以上であってよく、5.20g/cm以上であってよく、5.30g/cm以上であってよく、5.40g/cm以上であってもよい。真比重の上限は特に限定されない。しなしながらフェライトの真比重を6.00g/cm超とすることは困難である。したがって真比重は典型的には6.00g/cm以下である。 The true specific gravity (true density) of the ferrite powder is preferably 5.00 g / cm 3 or more. As a result, the saturation magnetization and magnetic permeability of the ferrite powder become even higher. True specific gravity may be at 5.10 g / cm 3 or more, may be at 5.20 g / cm 3 or more, may be at 5.30 g / cm 3 or more, even 5.40 g / cm 3 or more good. The upper limit of the true specific density is not particularly limited. However, it is difficult to make the true specific density of ferrite more than 6.00 g / cm 3. Therefore, the true specific density is typically 6.00 g / cm 3 or less.
 フェライト粉末のタップ密度は、好ましくは0.01~3.50g/cmである。小粒径粒子と大粒径粒子を混在させることでタップ密度を高めることができ、その結果、樹脂組成物に適用した際のフェライト粉末の充填性が全体としてより優れたものになる。タップ密度は0.10g/cm以上であってよく、1.00g/cm以上であってもよい。 The tap density of the ferrite powder is preferably 0.01 to 3.50 g / cm 3 . The tap density can be increased by mixing the small particle size particles and the large particle size particles, and as a result, the filling property of the ferrite powder when applied to the resin composition becomes better as a whole. The tap density may be at 0.10 g / cm 3 or more, may be 1.00 g / cm 3 or more.
 フェライト粉末のタップ密度比は、好ましくは0.15~0.60である。これにより、樹脂組成物に適用した際のフェライト粉末の充填性が高くなる。タップ密度比は0.20~0.59であってもよい。なおタップ密度比は、真比重に対するタップ密度の比であり、下記(7)式にしたがって求めることができる。 The tap density ratio of the ferrite powder is preferably 0.15 to 0.60. As a result, the filling property of the ferrite powder when applied to the resin composition is improved. The tap density ratio may be 0.20 to 0.59. The tap density ratio is the ratio of the tap density to the true specific gravity, and can be obtained according to the following equation (7).
Figure JPOXMLDOC01-appb-M000007
 
Figure JPOXMLDOC01-appb-M000007
 
 フェライト粉末の格子定数は、好ましくは8.350~8.402Åである。格子定数を上記範囲内にすることで、フェライト粉末の真比重が高くなり、その結果、フェライト粉末単味の透磁率実部を表す透磁率実部の対密度比(μ’/d)が高くなる。 The lattice constant of the ferrite powder is preferably 8.350 to 8.402 Å. By keeping the lattice constant within the above range, the true specific gravity of the ferrite powder becomes high, and as a result, the relative density ratio (μ'/ d) of the real magnetic permeability part representing the real magnetic permeability part of the ferrite powder alone becomes high. Become.
<<2.フェライト粉末の製造方法>>
 本実施形態のフェライト粉末の製造方法は特に限定されない。しかしながら溶射法によって製造することが好ましい。好ましい態様の製造方法は、以下の工程;亜鉛(Zn)原料及び鉄(Fe)原料を混合して原料混合物にする工程(原料混合工程)、得られた原料混合物を仮焼して仮焼成物にする工程(仮焼工程)、得られた仮焼成物を粉砕及び造粒して造粒物にする工程(造粒工程)、及び得られた造粒物を溶射して溶射物にする工程(溶射工程)を有する。また溶射物にする工程(溶射工程)で、原料供給速度を3~20kg/時間、燃焼ガス流量を3~15m/時間、酸素流量を15~120m/時間にする。各工程の詳細について以下に説明する。
<< 2. Ferrite powder manufacturing method >>
The method for producing the ferrite powder of the present embodiment is not particularly limited. However, it is preferably produced by the thermal spraying method. The production method of a preferred embodiment is as follows: a step of mixing a zinc (Zn) raw material and an iron (Fe) raw material to form a raw material mixture (raw material mixing step), and a calcined product by calcining the obtained raw material mixture. (Temporary firing process), crushing and granulating the obtained temporary baked product to make a granulated product (granulation process), and spraying the obtained granulated product into a molten product. Has (spraying process). In the step of making a thermal spray (spraying step), the raw material supply rate is set to 3 to 20 kg / hour, the combustion gas flow rate is set to 3 to 15 m 3 / hour, and the oxygen flow rate is set to 15 to 120 m 3 / hour. Details of each step will be described below.
 <原料混合工程>
 原料混合工程では、亜鉛(Zn)原料及び鉄(Fe)原料を混合して原料混合物にする。亜鉛原料及び鉄原料として、酸化物、炭酸塩、水酸化物及び/又は塩化物などの公知のフェライト原料を使用すればよい。例えば亜鉛原料として、酸化亜鉛(ZnO)、炭酸亜鉛(ZnCO)、水酸化亜鉛(Zn(OH))を用いることができる。また鉄原料として、酸化鉄(Fe、FeO、Fe)、炭酸鉄(FeCO)、水酸化鉄(Fe(OH)、Fe(OH))、酸化水酸化鉄(FeO(OH))を用いることができる。原料の混合割合は、所望組成のフェライト粉末が得られるように行えばよい。原料の混合は、ヘンシェルミキサー等の公知の混合機を用いて行えばよく、乾式及び湿式のいずれか一方または両方で行う。またローラーコンパクター等の造粒装置を用いて原料混合物を造粒(仮造粒)してもよい。
<Ingredient mixing process>
In the raw material mixing step, a zinc (Zn) raw material and an iron (Fe) raw material are mixed to form a raw material mixture. As the zinc raw material and the iron raw material, known ferrite raw materials such as oxides, carbonates, hydroxides and / or chlorides may be used. For example, zinc oxide (ZnO), zinc carbonate (ZnCO 3 ), and zinc hydroxide (Zn (OH) 2 ) can be used as the zinc raw material. Further, as iron raw materials, iron oxide (Fe 2 O 3 , FeO, Fe 3 O 4 ), iron carbonate (FeCO 3 ), iron hydroxide (Fe (OH) 2 , Fe (OH) 3 ), iron oxide hydroxide ( FeO (OH)) can be used. The mixing ratio of the raw materials may be adjusted so that a ferrite powder having a desired composition can be obtained. The raw materials may be mixed using a known mixer such as a Henschel mixer, and either dry or wet may be used. Further, the raw material mixture may be granulated (temporarily granulated) using a granulation device such as a roller compactor.
 <仮焼成工程>
 仮焼成工程では、得られた原料混合物を仮焼成して仮焼成物にする。仮焼成は公知の手法で行えばよい。例えば、ロータリーキルン、連続炉又はバッチ炉などの炉を用いて行えばよい。仮焼成条件も公知の条件でよい。例えば、大気等の雰囲気下で700~1300℃で0.5~12時間保持する条件が挙げられる。
<Temporary firing process>
In the calcining step, the obtained raw material mixture is calcined to obtain a calcined product. Temporary firing may be performed by a known method. For example, a furnace such as a rotary kiln, a continuous furnace, or a batch furnace may be used. The tentative firing conditions may also be known conditions. For example, a condition of holding at 700 to 1300 ° C. for 0.5 to 12 hours in an atmosphere such as air can be mentioned.
 <造粒工程>
 造粒工程では、得られた仮焼成物を粉砕及び造粒(本造粒)して造粒物(本造粒物)にする。粉砕方法は特に限定されない。例えば、振動ミル、ボールミル又はビーズミルなどの公知の粉砕機を用い、乾式及び湿式のいずれか一方又は両方で行えばよい。造粒方法も公知の手法でよい。例えば粉砕後の仮焼成物に、水と、必要に応じてポリビニルアルコール(PVA)等のバインダー樹脂、分散剤及び/又は消泡剤などの添加剤と、を加えて粘度を調整し、その後、スプレードライヤー等の造粒機を用いて造粒すればよい。
<Granulation process>
In the granulation step, the obtained calcined product is crushed and granulated (main granulation) to obtain a granulated product (main granulated product). The crushing method is not particularly limited. For example, a known crusher such as a vibration mill, a ball mill or a bead mill may be used, and either the dry type or the wet type or both may be performed. The granulation method may be a known method. For example, water and, if necessary, an additive such as a binder resin such as polyvinyl alcohol (PVA), a dispersant and / or an antifoaming agent are added to the pulverized temporary baked product to adjust the viscosity, and then the viscosity is adjusted. Granulation may be performed using a granulator such as a spray dryer.
 <溶射工程>
 溶射工程では造粒物を溶射して溶射物にする。溶射では燃焼ガスと酸素との混合気体を可燃性ガス燃焼炎源として用いる。溶射原料たる造粒物は高温の燃焼炎を通過する。その際にフェライト化反応が起こるとともに、造粒物の一部が熔融して真球状のフェライト粒子になる。燃焼ガスとして、プロパンガス、プロピレンガス、アセチレンガス等の可燃性ガスを用いることができ、その中でもプロパンガスが好適に用いられる。
<Spraying process>
In the thermal spraying process, the granulated material is sprayed into a thermal spray. In thermal spraying, a mixed gas of combustion gas and oxygen is used as a flammable gas combustion flame source. Granulated products, which are the raw materials for thermal spraying, pass through a high-temperature combustion flame. At that time, a ferrite reaction occurs, and a part of the granulated product melts into spherical ferrite particles. As the combustion gas, flammable gas such as propane gas, propylene gas, and acetylene gas can be used, and among them, propane gas is preferably used.
 溶射の際に、原料供給速度を3~20kg/時間にする。供給速度が過度に高い場合には、造粒物同士が癒着しやすくなるとともに、フェライト化反応を粒子内部にまで十分に進めることが困難になる。そのため球形度の高い粒子が得られにくい、又は所望の磁気特性が得られない等の問題が生じる恐れがある。一方で供給速度が過度に低い場合には、製造コスト上昇の原因となる。これらの観点から、本実施形態では溶射原料の供給速度を規定している。供給速度を上記範囲内にすることで、球形度が高く且つ磁気特性に優れたフェライト粉末を効率よく得ることが可能になる。供給速度は4~10kg/時間であってもよい。 At the time of thermal spraying, set the raw material supply rate to 3 to 20 kg / hour. If the supply rate is excessively high, the granulated products tend to adhere to each other, and it becomes difficult to sufficiently proceed the ferrite formation reaction to the inside of the particles. Therefore, there is a possibility that it is difficult to obtain particles having a high sphericity, or problems such as not being able to obtain desired magnetic characteristics may occur. On the other hand, if the supply rate is excessively low, it causes an increase in manufacturing cost. From these viewpoints, the present embodiment defines the supply rate of the thermal spraying raw material. By setting the supply rate within the above range, it becomes possible to efficiently obtain a ferrite powder having a high sphericity and excellent magnetic properties. The feeding rate may be 4-10 kg / hour.
 また溶射の際に、燃焼ガス流量を3~15m/時間、酸素流量を15~120m/時間にする。燃焼ガス流量及び酸素流量を上記範囲内に規定することで、球形度が高く且つ磁気特性に優れたフェライト粉末を効率よく得ることが可能になる。 At the time of thermal spraying, the combustion gas flow rate is set to 3 to 15 m 3 / hour and the oxygen flow rate is set to 15 to 120 m 3 / hour. By defining the combustion gas flow rate and the oxygen flow rate within the above ranges, it becomes possible to efficiently obtain a ferrite powder having a high sphericity and excellent magnetic characteristics.
 溶射で用いられる酸素には、原料を溶射火炎まで搬送する働きもある。機能に応じて、酸素を直接火炎に使用される燃焼酸素と溶射源中央部に原料搬送した後に燃焼される原料供給酸素とに分けて考えることが可能である。そのため全酸素は、燃焼酸素+原料供給酸素で表すことができる。また溶射後のフェライト粉末に含まれる炭素量は燃焼酸素と原料供給酸素の容量の比率によって制御することができる。燃焼酸素と原料供給酸素の比率は、容量比で、燃焼酸素:原料供給酸素=95:5~80:20が好ましい。燃焼酸素の比率が95より大きくなる(100に近づく)と、原料供給能力が低下して原料供給用配管の中で原料が閉塞してしまう恐れがある。一方で燃焼酸素の比率が80より小さくなる(80を下回る)と、最も高温になる火炎中央部から外れた部分に原料が拡がって供給される。そのためフェライト化反応を粒子内部にまで十分に進めることができず、その結果、溶射後のフェライト粉末に含まれるα-Fe量が増加することがある。α-Fe量を必要以上に増加させないようにする観点から、燃焼酸素:原料供給酸素=92.5:7.5~81.5:18.5がより好ましく、燃焼酸素:原料供給酸素=91:9~81.5:18.5がさらに好ましく、燃焼酸素:原料供給酸素=91:9~84:16が特に好ましい。 Oxygen used in thermal spraying also has the function of transporting the raw material to the thermal spray flame. Depending on the function, it is possible to consider the oxygen as the combustion oxygen directly used for the flame and the raw material supply oxygen that is burned after the raw material is transported to the central part of the thermal spray source. Therefore, total oxygen can be represented by combustion oxygen + raw material supply oxygen. Further, the amount of carbon contained in the ferrite powder after thermal spraying can be controlled by the ratio of the volumes of combustion oxygen and raw material supply oxygen. The ratio of combustion oxygen to raw material supply oxygen is a volume ratio, and combustion oxygen: raw material supply oxygen = 95: 5 to 80:20 is preferable. If the ratio of combustion oxygen becomes larger than 95 (approaches 100), the raw material supply capacity may decrease and the raw material may be blocked in the raw material supply pipe. On the other hand, when the ratio of combustion oxygen is smaller than 80 (less than 80), the raw material is spread and supplied to a portion outside the central portion of the flame, which has the highest temperature. Therefore, the ferrite formation reaction cannot be sufficiently advanced to the inside of the particles, and as a result, the amount of α-Fe 2 O 3 contained in the ferrite powder after thermal spraying may increase. From the viewpoint of not increasing the amount of α-Fe 2 O 3 more than necessary, combustion oxygen: raw material supply oxygen = 92.5: 7.5 to 81.5: 18.5 is more preferable, and combustion oxygen: raw material supply. Oxygen = 91: 9 to 81.5: 18.5 is more preferable, and combustion oxygen: raw material supply oxygen = 91: 9 to 84:16 is particularly preferable.
 さらに、燃焼酸素量は、燃焼ガスを完全燃焼するのに必要な容量(当量)の0.85倍以上としておくことが好ましい。例えばプロパンガスを燃焼ガスとして使用する場合は、燃焼酸素の容量がプロパンガスの4.25倍以上であることが好ましい。このようにしておくことで、燃焼ガスを完全燃焼させるのに必要な量(当量)よりも過剰な酸素が供給されても、溶射火炎の温度低下を最小限に抑え、且つα-Feの発生を必要以上に防ぐことができる。 Further, the amount of combustion oxygen is preferably 0.85 times or more the capacity (equivalent) required for complete combustion of the combustion gas. For example, when propane gas is used as the combustion gas, the capacity of combustion oxygen is preferably 4.25 times or more that of propane gas. By doing so, even if excess oxygen is supplied than the amount (equivalent) required for complete combustion of the combustion gas, the temperature drop of the thermal spray flame is minimized, and α-Fe 2 O The occurrence of 3 can be prevented more than necessary.
 また燃焼ガス量比は1.05以上2.00以下であることが好ましい。ここで、燃焼ガス量比は、原料供給量(kg/時間)に対する正味の燃焼に使われる燃焼ガス量(Nm/時間)の比であり、下記(8)式にしたがって求められる。 The combustion gas amount ratio is preferably 1.05 or more and 2.00 or less. Here, the combustion gas amount ratio is the ratio of the combustion gas amount (Nm 3 / hour) used for net combustion to the raw material supply amount (kg / hour), and is calculated according to the following equation (8).
Figure JPOXMLDOC01-appb-M000008
 
Figure JPOXMLDOC01-appb-M000008
 
 正味の燃焼に使われる燃焼ガス量(Nm/時間)は、下記(9)式又は下記(10)式にしたがって求められる。 The amount of combustion gas (Nm 3 / hour) used for net combustion is calculated according to the following equation (9) or the following equation (10).
Figure JPOXMLDOC01-appb-M000009
 
Figure JPOXMLDOC01-appb-M000010
 
Figure JPOXMLDOC01-appb-M000009
 
Figure JPOXMLDOC01-appb-M000010
 
 溶射によりフェライト化された粒子を大気雰囲気下で急冷及び凝固し、これをサイクロン又はフィルターによって回収して溶射物を得る。なおサイクロンによって溶射物を回収する場合には、希釈用ガスを導入して溶射物(粒子)を急冷し、急冷した溶射物(粒子)をサイクロンで回収することが好ましい。これにより組成ずれを最小限に抑えたフェライト粒子(粉末)を得ることができる。すなわち亜鉛(Zn)は飽和蒸気圧が高く、高温の溶射火炎中で揮発し易い。したがって亜鉛含有フェライトを通常の溶射法で作製すると、得られた粒子は、原料からの組成ずれが大きく特性が劣化する恐れがある。これに対して希釈用ガスを導入して粒子を急冷することで、組成ずれを最小限に抑えることが可能になる。希釈用ガスとして粒子を急冷できるガスであれば特に限定されない。一例として空気が挙げられる。 Particles ferriteified by thermal spraying are rapidly cooled and solidified in an atmospheric atmosphere, and these are recovered by a cyclone or a filter to obtain a thermal spray. When the sprayed material is recovered by a cyclone, it is preferable to introduce a diluting gas to quench the sprayed material (particles) and recover the sprayed material (particles) that has been rapidly cooled by the cyclone. As a result, ferrite particles (powder) with minimal composition deviation can be obtained. That is, zinc (Zn) has a high saturated vapor pressure and easily volatilizes in a high-temperature sprayed flame. Therefore, when zinc-containing ferrite is produced by a conventional thermal spraying method, the obtained particles may have a large composition deviation from the raw material and the characteristics may deteriorate. On the other hand, by introducing a diluting gas to quench the particles, it becomes possible to minimize the composition deviation. The gas is not particularly limited as long as it can rapidly cool the particles as the dilution gas. One example is air.
 <分級工程>
 必要に応じて、得られた溶射物を分級してもよい。分級では、風力分級(気流分級)、 メッシュ分級、ふるい(篩)分級などの公知の手法を用いて、所望の粒径に粒度調整すればよい。なお、サイクロン等の気流分級で粒径の大きい粒子と粒径の小さい粒子とを1つの工程の中で分離して回収することも可能である。このようにしてフェライト粉末を得ることができる。
<Classification process>
If necessary, the obtained sprayed material may be classified. In the classification, the particle size may be adjusted to a desired particle size by using a known method such as wind power classification (air flow classification), mesh classification, or sieve (sieve) classification. It is also possible to separate and recover particles having a large particle size and particles having a small particle size in one step by airflow classification such as a cyclone. In this way, the ferrite powder can be obtained.
 このようにして得られた本実施形態のフェライト粉末は、これを構成する粒子が球又は多面体の形状を有しているため、成形性、流動性及び充填性が良好である。またこのフェライト粉末は、マンガンを含有しないにもかかわらず磁気特性に優れている。特にこのフェライト粉末は、100MHzという高周波においても高い透磁率を維持する。さらにこのフェライト粉末は、マンガンを含まない亜鉛フェライトから構成されているため、その製造時にマンガン原料飛散を防ぐための防塵処理が不要になり、製造コスト低減を図ることが可能になる。 The ferrite powder of the present embodiment thus obtained has good moldability, fluidity and filling property because the particles constituting the ferrite powder have the shape of a sphere or a polyhedron. Further, this ferrite powder is excellent in magnetic properties even though it does not contain manganese. In particular, this ferrite powder maintains high magnetic permeability even at a high frequency of 100 MHz. Further, since this ferrite powder is composed of zinc ferrite containing no manganese, dustproof treatment for preventing scattering of the manganese raw material becomes unnecessary at the time of its production, and it becomes possible to reduce the production cost.
 本発明者らの知る限り、このようなフェライト粉末及びその製造方法は従来知られていない。例えば特許文献1及び2で提案されるマンガン系フェライトからなる球状粒子は、磁気特性に優れ電磁波シールド材などの用途に有用ではあるものの、マンガンを必須成分としている。そのため製造時にマンガン原料飛散を防ぐための防塵処理が必要である。また特許文献1には真球状のマンガン(Mn)フェライトが開示されているが、マンガンを用いるため真比重が高くはならない。亜鉛はマンガンよりも原子量が大きく且つイオン半径が大きい。そのため亜鉛を含有させたフェライト粉末は、必ずしも真比重が高くなるとは限らない。本実施形態の亜鉛フェライト粉末は、格子定数をマンガンフェライトより小さくし、なおかつ亜鉛を一定量含有させることで、真比重を高くすることができる。また本実施形態の亜鉛フェライト粉末は真比重が高く、これを用いて作製した樹脂成型体は、単位体積当たりの磁性体の量が増加するので、磁気特性が向上する。 As far as the present inventors know, such a ferrite powder and a method for producing the same are not known conventionally. For example, the spherical particles made of manganese-based ferrite proposed in Patent Documents 1 and 2 have excellent magnetic properties and are useful for applications such as electromagnetic wave shielding materials, but manganese is an essential component. Therefore, dustproof treatment is required to prevent the scattering of manganese raw materials during manufacturing. Further, although true spherical manganese (Mn) ferrite is disclosed in Patent Document 1, since manganese is used, the true specific gravity does not increase. Zinc has a larger atomic weight and a larger ionic radius than manganese. Therefore, the ferrite powder containing zinc does not always have a high true specific gravity. The zinc ferrite powder of the present embodiment can have a higher true specific gravity by making the lattice constant smaller than that of manganese ferrite and by containing a certain amount of zinc. Further, the zinc ferrite powder of the present embodiment has a high true specific gravity, and the resin molded body produced by using the zinc ferrite powder has an increased amount of magnetic material per unit volume, so that the magnetic characteristics are improved.
 原料を焼成及び粉砕して亜鉛フェライト粉末を作製する技術も従来から知られているが、焼成した亜鉛フェライト粉末は結晶子径が大きく、透磁率実部(μ’)及び透磁率実部の対密度比(μ’/d)が劣る。また焼成後に粉砕した亜鉛フェライト粉末は、粉砕ストレスにより透磁率実部及び透磁率実部の対密度比がさらに劣るものになる。したがって焼成法によって作製した従来の亜鉛フェライト粉末は、本実施形態の亜鉛フェライト粉末に比べて劣るものになっている。 A technique for producing zinc ferrite powder by firing and crushing a raw material has also been conventionally known, but the calcined zinc ferrite powder has a large crystallite diameter and is a pair of a magnetic permeability real part (μ') and a magnetic permeability real part. The density ratio (μ'/ d) is inferior. Further, the zinc ferrite powder crushed after firing has a further inferior density ratio between the actual magnetic permeability portion and the actual magnetic permeability portion due to the pulverization stress. Therefore, the conventional zinc ferrite powder produced by the firing method is inferior to the zinc ferrite powder of the present embodiment.
 特許文献3及び4で提案される亜鉛フェライト粉末は、球状粒子からなるものでなく、成形性、流動性及び充填性の点で問題がある。また特許文献3及び4には亜鉛フェライト粉末の特性に関して、飽和磁化や保磁力といった静磁場特性が示されているのみであり、電子写真用トナー以外の具体的用途に関する記載はない。したがって、これらの亜鉛フェライト粉末が、電磁波シールド材などの高周波用途に適用できるか否かは不明である。実際、特許文献3の亜鉛フェライト粉末(フェライトB)は保持力(保磁力)Hcが185Oeと高く、また特許文献4の亜鉛フェライト粉末は保磁力Hcが最も低くて92Oeである(特許文献3の第1表、特許文献4の表2)。このように高い保磁力を有するフェライト粉末は、透磁率に劣ると推察される。なお特許文献4では焙焼工程で原料混合物の熱分解反応と固相反応を同時に行わせているが(特許文献4の請求項1)、この焙焼工程は本実施形態の溶射工程とは異なる。すなわち特許文献4では実施例において750℃で焙焼を行っているが、このような低い温度では原料が熔融することはない。 The zinc ferrite powders proposed in Patent Documents 3 and 4 do not consist of spherical particles, and have problems in terms of moldability, fluidity, and filling property. Further, Patent Documents 3 and 4 only show static magnetic field characteristics such as saturation magnetization and coercive force with respect to the characteristics of zinc ferrite powder, and there is no description regarding specific uses other than electrophotographic toner. Therefore, it is unclear whether these zinc ferrite powders can be applied to high frequency applications such as electromagnetic wave shielding materials. In fact, the zinc ferrite powder (ferrite B) of Patent Document 3 has a high holding power (coercive force) Hc of 185 Oe, and the zinc ferrite powder of Patent Document 4 has the lowest coercive force Hc of 92 Oe (Patent Document 3). Table 1 and Table 2) of Patent Document 4. It is presumed that the ferrite powder having such a high coercive force is inferior in magnetic permeability. In Patent Document 4, the thermal decomposition reaction and the solid phase reaction of the raw material mixture are simultaneously performed in the roasting step (claim 1 of Patent Document 4), but this roasting step is different from the spraying step of the present embodiment. .. That is, in Patent Document 4, roasting is performed at 750 ° C. in Examples, but the raw material does not melt at such a low temperature.
 特許文献5ではZnFe2+y(亜鉛フェライト)で被覆されている粒状マグネタイト粒子粉末が提案されているが、この粉末は、その成分組成が本実施形態のフェライト粉末とは異なる。すなわち特許文献5の粉末は、全Feに対するZn量が0.5~4.0mol%であり(特許文献5の請求項1)、これから換算するにFeに対するZnの質量比は0.047以下である。これに対して、Zn量5.0質量%以上且つFe量65.0質量%以下である本実施形態のフェライト粉末は、Feに対するZnの質量比が0.077以上である。したがって特許文献5の粉末は本実施形態のフェライト粉末に比べて亜鉛(Zn)量が過少と言える。その上、特許文献5の粉末が電磁波シールド材などの高周波用途に適用できるか否かは不明である。実際、特許文献5の実施例の粉末は、Fe2+含有量20.1wt%以上、残留磁化4.8emu/g以上、保磁力58Oe以上である(特許文献5の表3)。このように2価鉄(Fe2+)を多量に含み且つ残留磁化及び保磁力の高い粉末は、透磁率に劣ると考えられる。 Patent Document 5 proposes a granular magnetite particle powder coated with Zn x Fe 2 + yOz (zinc ferrite), but the component composition of this powder is different from that of the ferrite powder of the present embodiment. That is, the powder of Patent Document 5 has a Zn amount of 0.5 to 4.0 mol% with respect to the total Fe (claim 1 of Patent Document 5), and the mass ratio of Zn with respect to Fe is 0.047 or less in terms of this. be. On the other hand, in the ferrite powder of the present embodiment in which the amount of Zn is 5.0% by mass or more and the amount of Fe is 65.0% by mass or less, the mass ratio of Zn to Fe is 0.077 or more. Therefore, it can be said that the powder of Patent Document 5 has a smaller amount of zinc (Zn) than the ferrite powder of the present embodiment. Moreover, it is unclear whether the powder of Patent Document 5 can be applied to high frequency applications such as electromagnetic wave shielding materials. In fact, the powder of the example of Patent Document 5 has an Fe 2+ content of 20.1 wt% or more, a residual magnetization of 4.8 emu / g or more, and a coercive force of 58 Oe or more (Table 3 of Patent Document 5). It is considered that the powder containing a large amount of ferrous iron (Fe 2+ ) and having high residual magnetization and coercive force is inferior in magnetic permeability.
<<3.フェライト樹脂組成物>>
 本実施形態のフェライト粉末をフィラーとしてフェライト樹脂組成物(複合材料)に適用することができる。フェライト樹脂組成物はフェライト粉末と樹脂とを含む。本実施形態のフェライト粉末をフィラーとして用いることで、フィラー充填率が高くても磁気特性に優れた組成物を得ることができる。
<< 3. Ferrite resin composition >>
The ferrite powder of this embodiment can be applied to a ferrite resin composition (composite material) as a filler. The ferrite resin composition contains a ferrite powder and a resin. By using the ferrite powder of the present embodiment as a filler, a composition having excellent magnetic properties can be obtained even if the filler filling rate is high.
 樹脂組成物を構成する樹脂として、例えば、エポキシ樹脂、ウレタン樹脂、アクリル樹脂、シリコーン樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、フッ素樹脂及び/又はこれらの組み合わせなどが挙げられる。ここで、シリコーン樹脂は、アクリル、ウレタン、エポキシ及び/又はフッ素等で変性した変性シリコーン樹脂であってもよい。 Examples of the resin constituting the resin composition include epoxy resin, urethane resin, acrylic resin, silicone resin, polyamide resin, polyimide resin, polyamideimide resin, fluororesin and / or a combination thereof. Here, the silicone resin may be a modified silicone resin modified with acrylic, urethane, epoxy and / or fluorine or the like.
 樹脂組成物中の全固形分に対するフェライト粉末の割合は、50~95質量%が好ましく、80~95質量%がより好ましい。また樹脂組成物中の全固形分に対する樹脂の割合は、5~50質量%が好ましく、5~20質量%がより好ましい。フェライト粉末や樹脂の割合を上記範囲内とすることで、樹脂組成物中のフェライト粉末の分散安定性、並びに組成物の保存安定性及び成形性が優れるとともに、組成物を成形して得られる成型体の機械的強度や電磁波遮蔽性能等の特性がより優れたものとなる。 The ratio of the ferrite powder to the total solid content in the resin composition is preferably 50 to 95% by mass, more preferably 80 to 95% by mass. The ratio of the resin to the total solid content in the resin composition is preferably 5 to 50% by mass, more preferably 5 to 20% by mass. By setting the ratio of the ferrite powder or the resin within the above range, the dispersion stability of the ferrite powder in the resin composition, the storage stability and moldability of the composition are excellent, and the molding obtained by molding the composition is excellent. The mechanical strength of the body and the electromagnetic wave shielding performance will be more excellent.
 樹脂組成物は、フェライト粉末及び樹脂以外の他の成分を含んでもよい。このような成分として、例えば、溶媒、充填剤(有機充填剤、無機充填剤)、可塑剤、酸化防止剤、分散剤、含量等の着色剤、熱伝導性粒子などが挙げられる。 The resin composition may contain a ferrite powder and other components other than the resin. Examples of such components include solvents, fillers (organic fillers, inorganic fillers), plasticizers, antioxidants, dispersants, colorants such as content, and thermally conductive particles.
<<4.フェライト樹脂成型体>>
 本実施形態のフェライト樹脂成型体はフェライト樹脂組成物からなる。すなわち樹脂組成物を成形してフェライト樹脂成型体を得ることができる。成形手法は特に限定されるものではない。例えば、圧縮成形、押出成形、射出成形、ブロー成形又はカレンダー成形が挙げられる。また樹脂組成物の塗膜を基体上に形成する手法であってもよい。さらに成形後に加熱硬化処理を施してもよい。
<< 4. Ferrite resin molded body >>
The ferrite resin molded body of the present embodiment is made of a ferrite resin composition. That is, a ferrite resin molded product can be obtained by molding the resin composition. The molding method is not particularly limited. For example, compression molding, extrusion molding, injection molding, blow molding or calendar molding can be mentioned. Further, a method of forming a coating film of the resin composition on the substrate may be used. Further, heat curing treatment may be performed after molding.
 フェライト樹脂成型体は、100MHzにおける透磁率実部(μ’)が、好ましくは6.00以上である。これにより電磁波遮蔽性能などの磁気特性が優れたものになる。透磁率実部は6.50以上であってよく、7.00以上であってよく、7.50以上であってよく、8.00以上であってもよい。透磁率実部の上限は、特に限定されない。しかしながら典型的には12.00以下であり、より典型的には10.00以下である。 The ferrite resin molded body has a magnetic permeability real part (μ') at 100 MHz, preferably 6.00 or more. As a result, magnetic characteristics such as electromagnetic wave shielding performance become excellent. The actual magnetic permeability portion may be 6.50 or more, 7.00 or more, 7.50 or more, or 8.00 or more. The upper limit of the actual magnetic permeability portion is not particularly limited. However, it is typically 12.00 or less, and more typically 10.00 or less.
 フェライト樹脂成型体は、100MHzにおける損失係数(tanδ)が、好ましくは0.15以下である。これにより損失抑制が可能になる。損失係数は0.12以下であってよく、0.10以下であってよく、0.08以下であってよく、0.06以下であってよく、0.04以下であってもよい。 The ferrite resin molded body has a loss coefficient (tan δ) at 100 MHz, preferably 0.15 or less. This makes it possible to suppress loss. The loss coefficient may be 0.12 or less, 0.10 or less, 0.08 or less, 0.06 or less, or 0.04 or less.
<<5.電子部品、電子機器又は電子機器筐体>>
 本実施形態の電子部品、電子機器又は電子機器筐体はフェライト樹脂成型体を備えている。ここで電子部品は、インダクタ、トランス、電磁波シールド材又はフィルタとしてフェライト樹脂成型体を備えた部品である。例えばフェライト樹脂成型体に導電コイルを内蔵させることでインダクタになる。電子部品はこのインダクタを備えたものであってよい。またコンデンサ等の受動部品やIC等の能動部品を備えた素子に、電磁波シールド材として働くフェライト樹脂成型体を設けてもよい。これにより素子から発生する電磁波の外部への放射を遮蔽することができるとともに、外部環境下の電磁波の素子内部への侵入を抑制することが可能になる。電子部品はフェライト樹脂成型体を備える限り、その態様は制限されない。
<< 5. Electronic components, electronic devices or electronic device housings >>
The electronic component, electronic device, or electronic device housing of the present embodiment includes a ferrite resin molded body. Here, the electronic component is a component provided with a ferrite resin molded body as an inductor, a transformer, an electromagnetic wave shielding material, or a filter. For example, by incorporating a conductive coil in a ferrite resin molded body, it becomes an inductor. The electronic component may include this inductor. Further, a ferrite resin molded body that acts as an electromagnetic wave shielding material may be provided on an element provided with a passive component such as a capacitor or an active component such as an IC. As a result, it is possible to block the radiation of electromagnetic waves generated from the element to the outside, and it is possible to suppress the invasion of electromagnetic waves in the external environment into the element. As long as the electronic component includes a ferrite resin molded body, its mode is not limited.
 電子機器は、電子部品を備えた機器である。例えばインダクタを備えた携帯電話、コンピュータなどが挙げられる。電子機器筐体は電子機器に用いられる筐体である。フェライト樹脂成型体を筐体に適用することで、電磁波の内部から外部への放射又は外部から内部への侵入を抑制することが可能である。フェライト樹脂成型体を筐体に適用する態様は特に限定されない。例えば筐体本体に成型体を貼り付けてもよく、あるいは筐体本体にフェライト樹脂組成物を塗布及び硬化させて成型体にしてもよい。 Electronic devices are devices equipped with electronic components. For example, a mobile phone equipped with an inductor, a computer, and the like can be mentioned. The electronic device housing is a housing used for electronic devices. By applying the ferrite resin molded body to the housing, it is possible to suppress the radiation of electromagnetic waves from the inside to the outside or the invasion from the outside to the inside. The mode in which the ferrite resin molded body is applied to the housing is not particularly limited. For example, the molded body may be attached to the housing body, or the ferrite resin composition may be applied and cured on the housing body to form a molded body.
 本発明を、以下の実施例を用いて更に詳細に説明する。しかしながら本発明は以下の実施例に限定されるものではない。 The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to the following examples.
(1)フェライト粉末の作製
 [実施例1]
 実施例1では、溶射法により亜鉛(Zn)フェライト粉末を作製した。具体的な作製手順は以下に示すとおりにした。
(1) Preparation of Ferrite Powder [Example 1]
In Example 1, a zinc (Zn) ferrite powder was prepared by a thermal spraying method. The specific production procedure is as shown below.
 <原料混合及び仮造粒工程>
 原料として酸化鉄(Fe)と酸化亜鉛(ZnO)とを用い、鉄(Fe)と亜鉛(Zn)のモル比がFe:Zn=11.95:1になるように原料の秤量及び混合を行った。混合にはヘンシェルミキサーを用いた。得られた混合物を、ローラーコンパクターを用いて仮造粒して、仮造粒物にした。
<Ingredient mixing and temporary granulation process>
Using iron oxide (Fe 2 O 3 ) and zinc oxide (ZnO) as raw materials, weigh the raw materials so that the molar ratio of iron (Fe) to zinc (Zn) is Fe: Zn = 11.95: 1. Mixing was performed. A Henschel mixer was used for mixing. The obtained mixture was tentatively granulated using a roller compactor to obtain a tentative granulation product.
 <仮焼工程>
 仮造粒した原料混合物(仮造粒物)を仮焼して、仮焼成物にした。仮焼は、ロータリーキルンを用いて大気中900℃×1時間の条件で行った。
<Calcination process>
The temporarily granulated raw material mixture (temporarily granulated product) was calcined to obtain a calcined product. The calcining was carried out using a rotary kiln under the conditions of 900 ° C. for 1 hour in the air.
 <本造粒工程>
 得られた仮焼成物を粉砕及び造粒して造粒物(本造粒物)にした。まず得られた仮焼成物を、乾式ビーズミル(3/16インチφの鋼球ビーズ)を用いて粗粉砕した後、水を加えて、湿式ビーズミル(0.65mmφのジルコニアビーズ)を用いて微粉砕した。得られたスラリーは固形分濃度が50質量%であった。次いで、得られたスラリーをスプレードライヤーに供給して造粒した。
<Main granulation process>
The obtained calcined product was crushed and granulated to obtain a granulated product (main granulated product). First, the obtained calcined product is roughly pulverized using a dry bead mill (3/16 inch φ steel ball beads), then water is added, and finely pulverized using a wet bead mill (0.65 mmφ zirconia beads). bottom. The obtained slurry had a solid content concentration of 50% by mass. Then, the obtained slurry was supplied to a spray dryer for granulation.
 <溶射及び分級工程>
 得られた造粒物を可燃性ガス燃焼炎中で溶射及び急冷した。溶射の際、プロパンガス流量を7m/時間、酸素流量を38m/時間とし、プロパンガス7m/時間に対して原料供給速度を5kg/時間にした。続いて冷却した粒子を気流の下流側に設けたサイクロンによって回収して溶射物を得た。粒子を回収する際に、溶射直後に希釈(急冷)用ガスとして空気を導入して粒子を急冷した。さらに得られた溶射物に、メッシュ(篩)を用いて粗粉を取り除く分級処理を施した。これによりフェライト粉末を作製した。溶射に際して、容量比を、燃焼酸素:原料供給酸素=85.5:14.5とした。
<Thermal spraying and classification process>
The obtained granulated product was sprayed and rapidly cooled in a flammable gas combustion flame. During spraying, the propane gas flow rate 7m 3 / time, the oxygen flow rate set to 38m 3 / time, the raw material supply rate was 5 kg / time for propane gas 7m 3 / time. Subsequently, the cooled particles were recovered by a cyclone provided on the downstream side of the air flow to obtain a thermal spray. When recovering the particles, air was introduced as a dilution (quenching) gas immediately after the thermal spraying to quench the particles. Further, the obtained sprayed material was subjected to a rating treatment for removing coarse powder using a mesh (sieve). As a result, a ferrite powder was produced. At the time of thermal spraying, the volume ratio was set to combustion oxygen: raw material supply oxygen = 85.5: 14.5.
 [実施例2]
 溶射工程で、冷却した粒子を、バグフィルターを用いて回収した。また溶射後の分級処理を行わなかった。それ以外は実施例1と同様にしてフェライト粉末を作製した。
[Example 2]
In the thermal spraying step, the cooled particles were recovered using a bag filter. In addition, no classification treatment was performed after thermal spraying. A ferrite powder was prepared in the same manner as in Example 1 except for the above.
 [実施例3]
 原料混合工程で、鉄(Fe)と亜鉛(Zn)のモル比がFe:Zn=10:1になるように原料の秤量及び混合を行った。それ以外は実施例1と同様にしてフェライト粉末を作製した。なお実施例1と同様に、溶射直後に希釈(急冷)用ガスとして空気を導入して粒子を急冷した。
[Example 3]
In the raw material mixing step, the raw materials were weighed and mixed so that the molar ratio of iron (Fe) and zinc (Zn) was Fe: Zn = 10: 1. A ferrite powder was prepared in the same manner as in Example 1 except for the above. As in Example 1, immediately after the thermal spraying, air was introduced as a dilution (quenching) gas to quench the particles.
 [実施例4]
 溶射工程で、冷却した粒子を、バグフィルターを用いて回収した。また溶射後の分級処理を行わなかった。それ以外は実施例3と同様にしてフェライト粉末を作製した。
[Example 4]
In the thermal spraying step, the cooled particles were recovered using a bag filter. In addition, no classification treatment was performed after thermal spraying. A ferrite powder was prepared in the same manner as in Example 3 except for the above.
 [比較例1]
 比較例1では、電気炉焼成法により亜鉛(Zn)フェライト粉末を作製した。具体的な作製手順は以下に示すとおりにした。
[Comparative Example 1]
In Comparative Example 1, zinc (Zn) ferrite powder was prepared by an electric furnace firing method. The specific production procedure is as shown below.
 <原料混合及び仮造粒工程>
 原料として酸化鉄(Fe)と酸化亜鉛(ZnO)とを用い、鉄(Fe)と亜鉛(Zn)のモル比がFe:Zn=8.36:1になるように原料の秤量及び混合を行った。混合にはヘンシェルミキサーを用いた。得られた混合物を、ローラーコンパクターを用いて仮造粒して、仮造粒物にした。
<Ingredient mixing and temporary granulation process>
Using iron oxide (Fe 2 O 3 ) and zinc oxide (ZnO) as raw materials, weigh the raw materials so that the molar ratio of iron (Fe) and zinc (Zn) is Fe: Zn = 8.36: 1. Mixing was performed. A Henschel mixer was used for mixing. The obtained mixture was tentatively granulated using a roller compactor to obtain a tentative granulation product.
 <仮焼工程>
 仮造粒した原料混合物(仮造粒物)を仮焼して、仮焼成物にした。仮焼は、ロータリーキルンを用いて大気中800℃×1時間の条件で行った。
<Calcination process>
The temporarily granulated raw material mixture (temporarily granulated product) was calcined to obtain a calcined product. The calcining was carried out using a rotary kiln under the condition of 800 ° C. for 1 hour in the air.
 <本造粒工程>
 得られた仮焼成物を粉砕及び造粒して造粒物(本造粒物)にした。まず得られた仮焼成物を、乾式ビーズミル(3/16インチφの鋼球ビーズ)を用いて粗粉砕した後、水を加えて、湿式ビーズミル(0.65mmφのジルコニアビーズ)を用いて微粉砕した。得られたスラリーは固形分濃度が50質量%であった。次いで、得られたスラリーをスプレードライヤーに供給して造粒した。
<Main granulation process>
The obtained calcined product was crushed and granulated to obtain a granulated product (main granulated product). First, the obtained calcined product is roughly pulverized using a dry bead mill (3/16 inch φ steel ball beads), then water is added, and finely pulverized using a wet bead mill (0.65 mmφ zirconia beads). bottom. The obtained slurry had a solid content concentration of 50% by mass. Then, the obtained slurry was supplied to a spray dryer for granulation.
 <脱バインダー及び本焼成工程>
 得られた造粒物に脱バインダー処理を施し、さらに本焼成した。脱バインダー処理は、酸素濃度0vol%の雰囲気中で800℃×2時間の条件で行った。また本焼成は、電気炉を用いて酸素濃度0vol%の雰囲気中で1300℃×4時間の条件で行った。
<De-binder and main firing process>
The obtained granulated product was debindered and further fired. The debinder treatment was carried out under the condition of 800 ° C. for 2 hours in an atmosphere having an oxygen concentration of 0 vol%. The main firing was carried out in an atmosphere of 0 vol% oxygen concentration using an electric furnace under the condition of 1300 ° C. × 4 hours.
 <粉砕及び乾燥工程>
 湿式ビーズミル(0.65mmφのジルコニアビーズ)を用いて、得られた焼成物を微粉砕した。得られたスラリーを、ろ紙を用いて固液分離して粉砕物を得た後に、乾燥機(エアバス)を用いて120℃で乾燥した。乾燥した粉砕物をサンプルミルで粉砕して、フェライト粉末を得た。
<Grinding and drying process>
The obtained fired product was finely pulverized using a wet bead mill (zirconia beads having a diameter of 0.65 mm). The obtained slurry was solid-liquid separated using a filter paper to obtain a pulverized product, and then dried at 120 ° C. using a dryer (Airbus). The dried pulverized product was pulverized with a sample mill to obtain a ferrite powder.
 [比較例2]
 原料混合工程で、鉄(Fe)と亜鉛(Zn)のモル比がFe:Zn=11.99:1になるように原料の秤量及び混合を行った。それ以外は比較例1と同様にしてフェライト粉末を作製した。
[Comparative Example 2]
In the raw material mixing step, the raw materials were weighed and mixed so that the molar ratio of iron (Fe) and zinc (Zn) was Fe: Zn = 11.99: 1. A ferrite powder was prepared in the same manner as in Comparative Example 1 except for the above.
 [比較例3]
 本焼成後の粉砕及び乾燥を行わず、その代わり解砕処理及び分級を行った。解砕処理は、本焼成後の焼成物を、衝撃式解砕装置を用いて解砕することで行った。分級は、得られた解砕物を、気流分級装置を用いて分級することで行った。それ以外は比較例1と同様にしてフェライト粉末を作製した。
[Comparative Example 3]
After the main firing, crushing and drying were not performed, but instead crushing treatment and classification were performed. The crushing treatment was carried out by crushing the fired product after the main firing using an impact type crushing device. The classification was performed by classifying the obtained crushed product using an air flow classifier. A ferrite powder was prepared in the same manner as in Comparative Example 1 except for the above.
 [比較例4]
 解砕物の分級条件を変えた。それ以外は比較例3と同様にしてフェライト粉末を作製した。
[Comparative Example 4]
The classification conditions for crushed material were changed. A ferrite powder was prepared in the same manner as in Comparative Example 3 except for the above.
 [比較例5]
 比較例5では、溶射法によりマンガン(Mn)フェライト粉末を作製した。具体的な作製手順は以下に示すとおりにした。
[Comparative Example 5]
In Comparative Example 5, a manganese (Mn) ferrite powder was prepared by a thermal spraying method. The specific production procedure is as shown below.
 <原料混合工程>
 原料として、酸化鉄(Fe)と四酸化三マンガン(Mn)とを用い、鉄(Fe)とマンガン(Mn)のモル比が、Fe:Mn=7.8:1になるように秤量し、ヘンシェルミキサーを用いて混合した。
<Ingredient mixing process>
Iron oxide (Fe 2 O 3 ) and trimanganese tetraoxide (Mn 3 O 4 ) are used as raw materials, and the molar ratio of iron (Fe) to manganese (Mn) is set to Fe: Mn = 7.8: 1. Weighed so as to be, and mixed using a Henschel mixer.
 <仮焼成工程>
 得られた混合物を、ロータリーキルンを用いて仮焼成した。仮焼成は、混合物を大気中900℃で4時間保持することにより行った。
<Temporary firing process>
The resulting mixture was calcined using a rotary kiln. The calcination was carried out by holding the mixture in the air at 900 ° C. for 4 hours.
 <本造粒工程>
 得られた仮焼成物を粉砕及び造粒して造粒物(本造粒物)にした。まず得られた仮焼成物を、乾式ビーズミル(3/16インチの鋼球ビーズ)を用いて粗粉砕し、その後、水を加えて、湿式ビーズミル(0.65mmのジルコニアビーズ)を用いて微粉砕した。粉砕粉の粒径は、2.26μmであった。次いで、得られたスラリーに、バインダーとしてポリビニルアルコール(PVA、10%水溶液)を固形分換算で0.017質量%加えた。その後、バインダーを加えたスラリーを、スプレードライヤーを用いて造粒した。
<Main granulation process>
The obtained calcined product was crushed and granulated to obtain a granulated product (main granulated product). First, the obtained calcined product is roughly pulverized using a dry bead mill (3/16 inch steel ball beads), then water is added and finely pulverized using a wet bead mill (0.65 mm zirconia beads). bottom. The particle size of the pulverized powder was 2.26 μm. Next, polyvinyl alcohol (PVA, 10% aqueous solution) as a binder was added to the obtained slurry in an amount of 0.017% by mass in terms of solid content. Then, the slurry to which the binder was added was granulated using a spray dryer.
 <溶射及び分級工程>
 得られた造粒物を可燃性ガス燃焼炎中で溶射及び急冷した。溶射は、プロパンガス流量7m/時間、酸素流量38m/時間、原料供給速度6.5kg/時間の条件で行った。続いて、冷却した粒子を気流の下流側に設けたサイクロンによって回収して、溶射物を得た。得られた溶射物から篩を用いて粗粉を取り除き、さらに気流分級により微粉を除去して、マンガンフェライト粉末を得た。
<Thermal spraying and classification process>
The obtained granulated product was sprayed and rapidly cooled in a flammable gas combustion flame. Thermal spraying was carried out under the conditions of a propane gas flow rate of 7 m 3 / hour, an oxygen flow rate of 38 m 3 / hour, and a raw material supply rate of 6.5 kg / hour. Subsequently, the cooled particles were recovered by a cyclone provided on the downstream side of the air flow to obtain a thermal spray. Coarse powder was removed from the obtained sprayed product using a sieve, and fine powder was further removed by air flow classification to obtain manganese ferrite powder.
(2)フェライト粉末の評価
 実施例1~4及び比較例1~5で得られたフェライト粉末について、以下に示す評価を行った。
(2) Evaluation of Ferrite Powder The ferrite powders obtained in Examples 1 to 4 and Comparative Examples 1 to 5 were evaluated as shown below.
 <成分分析‐金属成分量>
 フェライト粉末の金属成分含有量を化学分析(ICP)により求めた。まず試料(フェライト粉末)0.2gを秤量し、これに純水60mlと1Nの塩酸20ml及び1Nの硝酸20mlを加えた後に加熱して、試料を完全溶解させた水溶液を準備した。得られた水溶液をICP分析装置(株式会社島津製作所、ICPS-10001V)にセットし、金属成分含有量を測定した。
<Component analysis-Amount of metal component>
The metal component content of the ferrite powder was determined by chemical analysis (ICP). First, 0.2 g of a sample (ferrite powder) was weighed, 60 ml of pure water, 20 ml of 1N hydrochloric acid and 20 ml of 1N nitric acid were added thereto, and then heated to prepare an aqueous solution in which the sample was completely dissolved. The obtained aqueous solution was set in an ICP analyzer (Shimadzu Corporation, ICPS-10001V), and the metal component content was measured.
 <成分分析‐Fe2+量>
 フェライト粉末中の2価鉄イオン(Fe2+)量を測定した。具体的にはフェライト粉末を硫酸にて溶解し、過マンガン酸カリウム標準溶液を用いて酸化還元滴定により測定を行った。
<Component analysis-Fe 2+ amount>
The amount of ferrous ion (Fe 2+ ) in the ferrite powder was measured. Specifically, the ferrite powder was dissolved in sulfuric acid, and the measurement was carried out by redox titration using a potassium permanganate standard solution.
 <結晶構造解析>
 フェライト粉末をX線回折法により分析して、結晶相及び結晶構造を解析した。具体的には以下の条件で分析を行った。
<Crystal structure analysis>
The ferrite powder was analyzed by an X-ray diffraction method to analyze the crystal phase and crystal structure. Specifically, the analysis was performed under the following conditions.
 ‐X線回折装置:パナリティカル社製X’pertMPD(高速検出器含む)
 ‐線源:Co-Kα
 ‐管電圧:45kV
 ‐管電流:40mA
 ‐スキャン速度:0.002°/sec(連続スキャン)
 ‐スキャン範囲(2θ):15~90° 
-X-ray diffractometer: PANalytical X'pert MPD (including high-speed detector)
-Radioactive source: Co-Kα
-Tube voltage: 45kV
-Tube current: 40mA
-Scan speed: 0.002 ° / sec (continuous scan)
-Scan range (2θ): 15-90 °
 次に分析結果を解析して、フェライト粉末の結晶相のうちスピネル相とヘマタイト相(α-Fe)とウスタイト相(FeO)の割合を求めた。解析は次のようにして行った。すなわち解析ソフトウエア(パナリティカル社、HighScorePlus3.0)を用いてバックグラウンドとCo-Kβ線のピークを除去したのちプロファイルのピークを自動で検出した。検出した各ピークについて半値幅と位置をリートベルト解析で最適化(精密化)し、得られた結果に基づき各相の割合及び各相の格子定数を求めた。各相の割合と格子定数は、解析ソフトウエアの自動計算により求めた。 Next, the analysis results were analyzed to determine the proportions of the spinel phase, hematite phase (α-Fe 2 O 3 ) and wustite phase (FeO) among the crystal phases of the ferrite powder. The analysis was performed as follows. That is, after removing the background and peaks of Co-Kβ rays using analysis software (PANalytical, HighScorePlus3.0), the peak of the profile was automatically detected. The full width at half maximum and the position of each detected peak were optimized (refined) by Rietveld analysis, and the ratio of each phase and the lattice constant of each phase were obtained based on the obtained results. The ratio of each phase and the lattice constant were obtained by automatic calculation of analysis software.
 さらに上記分析結果を解析して、フェライトの結晶子径を求めた。具体的には、X線プロファイルにおける(311)回折ピークに着目し、この回折ピークの半値幅(FWHM)βを求めた。得られた半値幅βから、下記(1)式に示すシェラーの式にしたがい結晶子径Dを求めた。なお下記(1)式において、Kはシェラー定数(0.9)、λは使用X線の波長(1.78901Å)、θは(311)回折ピークのブラッグ角(約41.3°)である。 Further, the above analysis result was analyzed to determine the crystallite diameter of ferrite. Specifically, focusing on the (311) diffraction peak in the X-ray profile, the full width at half maximum (FWHM) β of this diffraction peak was determined. From the obtained full width at half maximum β, the crystallite diameter D was determined according to Scherrer's equation shown in the following equation (1). In the following equation (1), K is the Scheller constant (0.9), λ is the wavelength of the X-ray used (1.78901 Å), and θ is the Bragg angle (about 41.3 °) of the (311) diffraction peak. ..
Figure JPOXMLDOC01-appb-M000011
 
Figure JPOXMLDOC01-appb-M000011
 
 <粒子形状‐SEM観察>
 フェライト粉末中粒子の形状を、走査電子顕微鏡(SEM)で観察して評価した。観察は、走査電子顕微鏡(株式会社日立ハイテクノロジーズ、SU-8020)を用いて倍率1000倍~100000倍の条件で行った。
<Particle shape-SEM observation>
The shape of the particles in the ferrite powder was evaluated by observing with a scanning electron microscope (SEM). The observation was carried out using a scanning electron microscope (Hitachi High-Technologies Corporation, SU-8020) under the conditions of a magnification of 1000 to 100,000 times.
 <粒子形状‐SF-1>
 フェライト粉末の平均形状係数(SF-1)の測定を、フェライト粉末の体積平均粒子径(D50)が1μm以上の場合と1μm未満の場合に場合分けして行った。
<Particle shape-SF-1>
The measurement of the average shape coefficient (SF-1) of the ferrite powder was carried out separately for the case where the volume average particle diameter (D50) of the ferrite powder was 1 μm or more and the case where it was less than 1 μm.
 D50が1μm以上のフェライト粉末については、SF-1を次のようにして求めた。粒子画像分析装置(Malvern Panalytical社、モフォロギG3)を用いてフェライト粉末を解析した。解析の際には粉末中30000粒子について1粒子ごとの画像解析を対物レンズの倍率を50倍にして行い、最大長R(水平フェレ径、単位:μm)、投影周囲長L(単位:μm)及び投影面積S(単位:μm)を自動測定した。次いで下記(5)式にしたがって各粒子についてのSF-1を算出し、その平均値をフェライト粉末のSF-1とした。 For ferrite powder with D50 of 1 μm or more, SF-1 was determined as follows. Ferrite powder was analyzed using a particle image analyzer (Malvern Panasonic, Moforogi G3). At the time of analysis, image analysis for each particle of 30,000 particles in the powder was performed with the magnification of the objective lens set to 50 times, and the maximum length R (horizontal ferret diameter, unit: μm) and projection peripheral length L (unit: μm). And the projected area S (unit: μm 2 ) was automatically measured. Next, SF-1 was calculated for each particle according to the following equation (5), and the average value was taken as SF-1 of the ferrite powder.
Figure JPOXMLDOC01-appb-M000012
 
Figure JPOXMLDOC01-appb-M000012
 
 D50が1μm未満のフェライト粉末については、SF-1を次のようにして求めた。後述する透磁率測定用樹脂成型体と同様の方法で樹脂成型体を作製し、イオンミリング装置で断面加工を行った。その後、粒子断面について、電界放出型走査電子顕微鏡(FE-SEM;株式会社日立ハイテクテクノロジーズ、SU-8020)で複数視野の撮影を行った。撮影は倍率50000倍で行った。得られたSEM像において、画像解析ソフトウエア(Media Cybernetics社、ImageProPlus)を用いてフェライト粉末を解析した。解析の際には粉末中300粒子について1粒子ごとの画像解析を行い、最大長R(水平フェレ径、単位:μm)、投影周囲長L(単位:μm)及び投影面積S(単位:μm)を算出した。次いで上記(5)式にしたがって各粒子についてのSF-1を算出し、その平均値をフェライト粉末のSF-1とした。 For ferrite powders with a D50 of less than 1 μm, SF-1 was determined as follows. A resin molded body was produced in the same manner as the resin molded body for measuring magnetic permeability, which will be described later, and cross-section processing was performed with an ion milling device. Then, the particle cross section was photographed in a plurality of fields with a field emission scanning electron microscope (FE-SEM; Hitachi High-Tech Technologies Corporation, SU-8020). The shooting was performed at a magnification of 50,000 times. In the obtained SEM image, the ferrite powder was analyzed using image analysis software (Media Cybernetics, ImageProPlus). At the time of analysis, image analysis is performed for each of 300 particles in the powder, and the maximum length R (horizontal ferret diameter, unit: μm), projection circumference length L (unit: μm), and projection area S (unit: μm 2) are performed. ) Was calculated. Next, SF-1 was calculated for each particle according to the above equation (5), and the average value thereof was taken as SF-1 of the ferrite powder.
 <粒度分布>
 フェライト粉末の粒度分布を測定した。まず試料10g及び水80mlを100mlのビーカーに入れ、分散剤としてヘキサメタリン酸ナトリウムを2滴添加した。次いで、超音波ホモジナイザー(株式会社エスエムテー、UH-150型)を用いて分散を行った。このとき、超音波ホモジナイザーの出力レベルを4に設定し、20秒間の分散を行った。その後、ピーカー表面にできた泡を取り除き、レーザー回折式粒度分布測定装置(島津製作所株式会社、SALD-7500nano)に導入して測定を行った。この測定により、体積粒度分布における10%径(D10)、50%径(体積平均粒子径、D50)、90%径(D90)及び最大径(Dmax)を求めた。測定条件は、ポンプスピード7、内蔵超音波照射時間30、屈折率1.70-050iとした。
<Particle size distribution>
The particle size distribution of the ferrite powder was measured. First, 10 g of a sample and 80 ml of water were placed in a 100 ml beaker, and 2 drops of sodium hexametaphosphate was added as a dispersant. Then, dispersion was performed using an ultrasonic homogenizer (SMT Co., Ltd., UH-150 type). At this time, the output level of the ultrasonic homogenizer was set to 4, and dispersion was performed for 20 seconds. Then, the bubbles formed on the surface of the peaker were removed and introduced into a laser diffraction type particle size distribution measuring device (Shimadzu Corporation, SALD-7500 nano) for measurement. By this measurement, 10% diameter (D10), 50% diameter (volume average particle diameter, D50), 90% diameter (D90) and maximum diameter (Dmax) in the volume particle size distribution were determined. The measurement conditions were a pump speed of 7, a built-in ultrasonic irradiation time of 30, and a refractive index of 1.70-050i.
 <BET比表面積>
 フェライト粉末のBET比表面積(SBET)を、比表面積測定装置(株式会社マウンテック、Macsorb HM model-1208)を用いて測定した。まず得られたフェライト粉末約10gを薬包紙に載せ、真空乾燥機で脱気して真空度が-0.1MPa以下であることを確認した。その後、200℃で2時間加熱することにより、粒子表面に付着している水分を除去した。水分除去したフェライト粉末を測定装置専用の標準サンプルセルに約0.5~4g入れ、精密天秤で正確に秤量した。次いで秤量したフェライト粒子を測定装置の測定ポートにセットして測定を行った。測定は1点法で行った。測定雰囲気は、温度10~30℃、相対湿度20~80%(結露なし)とした。
<BET specific surface area>
The BET specific surface area ( SBET ) of the ferrite powder was measured using a specific surface area measuring device (Mountech Co., Ltd., Macsorb HM model-1208). First, about 10 g of the obtained ferrite powder was placed on a medicine wrapping paper and degassed with a vacuum dryer to confirm that the degree of vacuum was −0.1 MPa or less. Then, by heating at 200 ° C. for 2 hours, the water adhering to the particle surface was removed. Approximately 0.5 to 4 g of the water-removed ferrite powder was placed in a standard sample cell dedicated to the measuring device and weighed accurately with a precision balance. Next, the weighed ferrite particles were set in the measuring port of the measuring device and measured. The measurement was performed by the one-point method. The measurement atmosphere was a temperature of 10 to 30 ° C. and a relative humidity of 20 to 80% (no condensation).
 <真比重>
 フェライト粉末の真比重を、ガス置換法を用いて、JIS  Z8807:2012に準拠して測定した。具体的には全自動真密度測定装置(株式会社マウンテック、Macpycno)を用いて測定を行った。
<True Relative Density>
The true specific gravity of the ferrite powder was measured using the gas replacement method according to JIS Z8807: 2012. Specifically, the measurement was performed using a fully automatic true density measuring device (Mountech Co., Ltd., Macpycno).
 <タップ密度>
 フェライト粉末のタップ密度を、USPタップ密度測定装置(ホソカワミクロン株式会社、パウダテスタPT-X)を用いて、JIS  Z  2512-2012に準拠して測定した。またタップ密度と真比重の値を用いてタップ密度比(タップ密度/真比重)を求めた。
<Tap density>
The tap density of the ferrite powder was measured according to JIS Z 2512-2012 using a USP tap density measuring device (Hosokawa Micron Co., Ltd., Powder Tester PT-X). In addition, the tap density ratio (tap density / true specific gravity) was determined using the values of tap density and true specific gravity.
 <磁気特性‐飽和磁化、残留磁化及び保磁力>
 フェライト粉末の磁気特性(飽和磁化、残留磁化及び保磁力)を、次のようにして測定した。まず内径5mm、高さ2mmのセルに試料を詰めて、振動試料型磁気測定装置(東英工業株式会社、VSM-C7-10A)にセットした。印加磁場を加えて5kOeまで掃引し、次いで印加磁場を減少させて、ヒステリシスカーブを描かせた。得られたカーブのデータより、試料の飽和磁化(σs)、残留磁化(σr)及び保磁力(Hc)を求めた。
<Magnetic properties-saturation magnetization, residual magnetization and coercive force>
The magnetic properties (saturation magnetization, residual magnetization and coercive force) of the ferrite powder were measured as follows. First, the sample was packed in a cell having an inner diameter of 5 mm and a height of 2 mm, and set in a vibration sample type magnetic measuring device (Toei Kogyo Co., Ltd., VSM-C7-10A). An applied magnetic field was applied and swept to 5 kOe, then the applied magnetic field was reduced to draw a hysteresis curve. From the obtained curve data, the saturation magnetization (σs), residual magnetization (σr) and coercive force (Hc) of the sample were determined.
 <磁気特性‐透磁率>
 フェライト粉末の透磁率を、RFインピーダンス/マテリアル・アナライザ(アジレントテクノロジー株式会社、E4991A)と磁性材料測定電極(16454A)を用いて測定した。まずフェライト粉末9gとバインダー樹脂(Kynar301F:ポリフッ化ビニリデン)1gをポリエチレン製容器(内容量100ml)に入れ、ボールミルを用いて、回転数100rpmの条件で撹拌及び混合を行った。得られた混合物0.6g程度をダイス(内径4.5mm、外径13mm)に充填し、プレス機を用いて40MPaの圧力で1分間の加圧を行って成形体とした。得られた成形体を、熱風乾燥機を用いて140℃で2時間の加熱硬化を行って測定用サンプルとした。得られた測定用サンプルをRFインピーダンス/マテリアル・アナライザにセットし、事前に測定しておいた測定用サンプルの外径、内径及び高さを入力した。振幅100mV、測定周波数1MHz~3GHzの範囲を対数スケールで掃引することで測定を行った。周波数100MHzでの複素透磁率の実部μ’及び虚部μ’’を求め、損失係数(tanδ)を下記(2)式にしたがって算出した。
<Magnetic characteristics-Permeability>
The magnetic permeability of the ferrite powder was measured using an RF impedance / material analyzer (Agilent Technologies, Inc., E4991A) and a magnetic material measuring electrode (16454A). First, 9 g of ferrite powder and 1 g of binder resin (Kynar301F: polyvinylidene fluoride) were placed in a polyethylene container (content volume 100 ml), and the mixture was stirred and mixed under the condition of a rotation speed of 100 rpm using a ball mill. About 0.6 g of the obtained mixture was filled in a die (inner diameter 4.5 mm, outer diameter 13 mm) and pressed with a press machine at a pressure of 40 MPa for 1 minute to obtain a molded product. The obtained molded product was heat-cured at 140 ° C. for 2 hours using a hot air dryer to prepare a sample for measurement. The obtained measurement sample was set in the RF impedance / material analyzer, and the outer diameter, inner diameter and height of the measurement sample measured in advance were input. The measurement was performed by sweeping a range of an amplitude of 100 mV and a measurement frequency of 1 MHz to 3 GHz on a logarithmic scale. The real part μ'and the imaginary part μ'' of the complex magnetic permeability at a frequency of 100 MHz were obtained, and the loss coefficient (tan δ) was calculated according to the following equation (2).
Figure JPOXMLDOC01-appb-M000013
 
Figure JPOXMLDOC01-appb-M000013
 
 さらに測定用サンプルの外径(φo)、内径(φi)、厚さ(t)及び質量(m)から、サンプルの密度(d)を算出し、これを用いて透磁率実部の対密度比(μ’/d)を求めた。 Furthermore, the density (d) of the sample is calculated from the outer diameter (φo), inner diameter (φi), thickness (t), and mass (m) of the measurement sample, and this is used to calculate the density ratio of the actual magnetic permeability part. (Μ'/ d) was determined.
(3)結果
 実施例1及び2で得られたフェライト粉末のSEM像を、それぞれ図1及び図2に示す。また比較例3及び4で得られたフェライト粉末のSEM像を、それぞれ図3及び図4に示す。なお図1、3及び4は倍率1000倍で撮影したSEM像であり、図2は倍率100000倍で撮影したSEM像である。溶射法で作製した実施例1及び2のフェライト粉末は、粒子が真球状又は多面体の形状を有していた。これに対して、電気炉焼成法で作製した比較例3及び4のフェライト粉末は、粒子の形状が粒状であった。
(3) Results SEM images of the ferrite powders obtained in Examples 1 and 2 are shown in FIGS. 1 and 2, respectively. The SEM images of the ferrite powders obtained in Comparative Examples 3 and 4 are shown in FIGS. 3 and 4, respectively. Note that FIGS. 1, 3 and 4 are SEM images taken at a magnification of 1000 times, and FIG. 2 is an SEM image taken at a magnification of 100,000 times. In the ferrite powders of Examples 1 and 2 produced by the thermal spraying method, the particles had a spherical or polyhedral shape. On the other hand, in the ferrite powders of Comparative Examples 3 and 4 produced by the electric furnace firing method, the shape of the particles was granular.
 実施例1~4及び比較例1~5について、得られた評価結果を表1-1~表1-3に示す。電気炉焼成法で作製した比較例1~4のフェライト粉末は、平均形状係数SF-1が106以上と大きかった。これらの粉末は、流動性、成形性及び充填性に劣ると考えられる。 The evaluation results obtained for Examples 1 to 4 and Comparative Examples 1 to 5 are shown in Tables 1-1 to 1-3. The ferrite powders of Comparative Examples 1 to 4 produced by the electric furnace firing method had a large average shape coefficient SF-1 of 106 or more. These powders are considered to be inferior in fluidity, moldability and filling property.
 磁気特性についてみるに、比較例1及び2のフェライト粉末は、飽和磁化(σs)が低いのにかかわらず残留磁化(σr)及び保磁力(Hc)が大きかった。また成型体にしたときの100MHzにおける透磁率実部(μ’)が小さかった。そのため磁気特性に劣ることが分かった。これらのフェライト粉末は、その粒子径を調整するために、本焼成後の焼成物を粉砕して得られたものである。粉砕時に粒子表面が酸化するとともに、粉砕時に加わる衝撃力によって結晶歪が大きくなり、その結果、磁気特性(σs、σr、Hc、μ’)の劣化につながったと考えられる。これに加えて、比較例2では亜鉛(Zn)量が少なすぎる結果、非磁性のヘマタイト相(α-Fe)及びウスタイト相(FeO)が多量に生成しており、これが磁気特性の劣化をもたらしたとも考えられる。 Looking at the magnetic properties, the ferrite powders of Comparative Examples 1 and 2 had large residual magnetization (σr) and coercive force (Hc) despite their low saturation magnetization (σs). In addition, the actual magnetic permeability (μ') at 100 MHz when formed into a molded body was small. Therefore, it was found that the magnetic characteristics were inferior. These ferrite powders are obtained by pulverizing the fired product after the main firing in order to adjust the particle size. It is considered that the surface of the particles is oxidized during crushing and the crystal strain increases due to the impact force applied during crushing, resulting in deterioration of magnetic properties (σs, σr, Hc, μ'). In addition to this, in Comparative Example 2, as a result of the amount of zinc (Zn) being too small, a large amount of non-magnetic hematite phase (α-Fe 2 O 3 ) and wustite phase (FeO) were generated, which are the magnetic characteristics. It is also considered to have caused deterioration.
 比較例3及び4のフェライト粉末は結晶子径が大きく、成型体にしたときの100MHzにおける透磁率実部(μ’)が小さかった。これらのフェライト粉末は、粉砕の代わりに解砕及び分級処理を行って粒子径を調整したものである。粉砕ストレスが小さくなることで結晶子径が過大になり、これが透磁率の低下につながったと推測している。さらに比較例3及び4では非磁性ウスタイト相(FeO)が生成しており、これが磁気特性劣化をもたらしたとも考えられる。 The ferrite powders of Comparative Examples 3 and 4 had a large crystallite diameter, and the actual magnetic permeability (μ') at 100 MHz when formed into a molded product was small. These ferrite powders are obtained by performing crushing and classification treatment instead of crushing to adjust the particle size. It is speculated that the crystallite diameter becomes excessive as the crushing stress decreases, which leads to a decrease in magnetic permeability. Further, in Comparative Examples 3 and 4, a non-magnetic wustite phase (FeO) was generated, which is considered to have caused deterioration of magnetic characteristics.
 比較例5のフェライト粉末はマンガンフェライトからなるものである。このフェライト粉末は、真球状であり、またSF-1は101と小さかった。さらに飽和磁化(σs)が比較的に高く、残留磁化(σr)及び保磁力(Hc)が小さかった。透磁率実部(μ’)も実施例と比較して高く良好な結果であった。しかしながら透磁率実部の対密度比(μ’/d)が劣っており、実際に樹脂成型体のフィラーとして使用した際に透磁率が十分高いものとはならない可能性がある。さらに比較例5は、健康被害があるとされるマンガンを主成分としており、製造コストの観点から、亜鉛フェライトに比べて好ましくないと言える。 The ferrite powder of Comparative Example 5 is made of manganese ferrite. This ferrite powder was spherical, and SF-1 was as small as 101. Furthermore, the saturation magnetization (σs) was relatively high, and the residual magnetization (σr) and coercive force (Hc) were small. The magnetic permeability real part (μ') was also high as compared with the examples, and the result was good. However, the relative density ratio (μ'/ d) of the actual magnetic permeability portion is inferior, and there is a possibility that the magnetic permeability will not be sufficiently high when actually used as a filler for a resin molded body. Further, Comparative Example 5 contains manganese, which is considered to have a health hazard, as a main component, and can be said to be less preferable than zinc ferrite from the viewpoint of manufacturing cost.
 これに対して、実施例1~4のフェライト粉末は亜鉛フェライトからなり、また真球状又は多面体状のほぼ球形に近い形状を有していた。またこれらのフェライト粉末は磁気特性に優れていた。 On the other hand, the ferrite powders of Examples 1 to 4 were made of zinc ferrite and had a spherical or polyhedral shape close to a spherical shape. Moreover, these ferrite powders were excellent in magnetic properties.
Figure JPOXMLDOC01-appb-T000014
 
Figure JPOXMLDOC01-appb-T000014
 
Figure JPOXMLDOC01-appb-T000015
 
Figure JPOXMLDOC01-appb-T000015
 
Figure JPOXMLDOC01-appb-T000016
 
Figure JPOXMLDOC01-appb-T000016
 

Claims (8)

  1.  球状又は多面体状のフェライト粒子から構成されるフェライト粉末であって、
     前記フェライト粉末が、亜鉛(Zn)5.0~10.0質量%及び鉄(Fe)55.0~65.0質量%を含み、残部酸素(O)及び不可避不純物の組成を有し、結晶子径が8.0~15.0Åの範囲内にあり、2価鉄イオン(Fe2+)の含有量が0.5~10.0質量%である、フェライト粉末。
    Ferrite powder composed of spherical or polyhedral ferrite particles.
    The ferrite powder contains 5.0 to 10.0% by mass of zinc (Zn) and 55.0 to 65.0% by mass of iron (Fe), has a composition of residual oxygen (O) and unavoidable impurities, and is crystalline. A ferrite powder having a child diameter in the range of 8.0 to 15.0 Å and a divalent iron ion (Fe 2+ ) content of 0.5 to 10.0% by mass.
  2.  前記フェライト粉末の結晶子径が9.0~13.0Åである、請求項1に記載されるフェライト粉末。 The ferrite powder according to claim 1, wherein the ferrite powder has a crystallite diameter of 9.0 to 13.0 Å.
  3.  2価鉄イオンの含有量が1.0~7.6質量%である、請求項1又は2に記載されるフェライト粉末。 The ferrite powder according to claim 1 or 2, wherein the content of divalent iron ions is 1.0 to 7.6% by mass.
  4.  前記フェライト粉末の平均形状係数SF-1が100~105である、請求項1~3のいずれか一項に記載されるフェライト粉末。 The ferrite powder according to any one of claims 1 to 3, wherein the ferrite powder has an average shape coefficient SF-1 of 100 to 105.
  5.  前記フェライト粉末の体積平均粒子径(D50)が0.1~10.0μmである、請求項1~4のいずれか一項に記載されるフェライト粉末。 The ferrite powder according to any one of claims 1 to 4, wherein the ferrite powder has a volume average particle diameter (D50) of 0.1 to 10.0 μm.
  6.  請求項1~5のいずれか一項に記載されるフェライト粉末と樹脂とを含む、フェライト樹脂組成物。 A ferrite resin composition containing the ferrite powder according to any one of claims 1 to 5 and a resin.
  7.  請求項6に記載されるフェライト樹脂組成物からなるフェライト樹脂成型体。 A ferrite resin molded body made of the ferrite resin composition according to claim 6.
  8.  請求項7に記載されるフェライト樹脂成型体を備えた、電子部品、電子機器又は電子機器筐体。

     
    An electronic component, an electronic device, or an electronic device housing provided with the ferrite resin molded body according to claim 7.

PCT/JP2021/013107 2020-03-31 2021-03-26 Ferrite powder, ferrite resin composition, resin molded body, electronic component, electronic equipment, or electronic equipment housing WO2021200746A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020065232 2020-03-31
JP2020-065232 2020-03-31

Publications (1)

Publication Number Publication Date
WO2021200746A1 true WO2021200746A1 (en) 2021-10-07

Family

ID=77929989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/013107 WO2021200746A1 (en) 2020-03-31 2021-03-26 Ferrite powder, ferrite resin composition, resin molded body, electronic component, electronic equipment, or electronic equipment housing

Country Status (1)

Country Link
WO (1) WO2021200746A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04184354A (en) * 1990-11-20 1992-07-01 Canon Inc Magnetic toner
JPH06310318A (en) * 1993-04-27 1994-11-04 Toda Kogyo Corp Granular magnetite particle powder and its manufacture
JPH0834617A (en) * 1994-07-22 1996-02-06 Toda Kogyo Corp Black magnetic iron oxide particle-shaped powder
JPH0834616A (en) * 1994-07-26 1996-02-06 Tdk Corp Formation of powdery zinc ferrite, and powdery zinc ferrite and magnetic toner obtained by this method
JPH08133745A (en) * 1994-11-01 1996-05-28 Toda Kogyo Corp Granular magnetite particle powder and its production
WO2019059259A1 (en) * 2017-09-25 2019-03-28 国立研究開発法人産業技術総合研究所 Magnetic material and method for producing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04184354A (en) * 1990-11-20 1992-07-01 Canon Inc Magnetic toner
JPH06310318A (en) * 1993-04-27 1994-11-04 Toda Kogyo Corp Granular magnetite particle powder and its manufacture
JPH0834617A (en) * 1994-07-22 1996-02-06 Toda Kogyo Corp Black magnetic iron oxide particle-shaped powder
JPH0834616A (en) * 1994-07-26 1996-02-06 Tdk Corp Formation of powdery zinc ferrite, and powdery zinc ferrite and magnetic toner obtained by this method
JPH08133745A (en) * 1994-11-01 1996-05-28 Toda Kogyo Corp Granular magnetite particle powder and its production
WO2019059259A1 (en) * 2017-09-25 2019-03-28 国立研究開発法人産業技術総合研究所 Magnetic material and method for producing same

Similar Documents

Publication Publication Date Title
JP7068703B2 (en) Ferrite particles, resin compositions and electromagnetic wave shielding materials
EP2709117B1 (en) Ferrite magnet with salt and manufacturing method of the same
CN101641651B (en) Carrier core material for electrophotographic developer and method for producing the same, carrier for electrophotographic developer, and electrophotographic developer
US11651881B2 (en) Mn—Zn ferrite particles, resin molded body, soft magnetic mixed powder, and magnetic core
WO2021070871A1 (en) Ferrite powder, ferrite resin composite material, and electromagnetic shielding material, electronic material, or electronic component
JP6393944B2 (en) Ni-Zn-Cu ferrite particles, resin composition and resin molded body
WO2021200746A1 (en) Ferrite powder, ferrite resin composition, resin molded body, electronic component, electronic equipment, or electronic equipment housing
Deraz et al. Synthesis and characterization of pure and Li2O doped ZnFe2O4 nanoparticles via glycine assisted route
JP7486774B2 (en) Ferrite powder and its manufacturing method
US20230055795A1 (en) Ferrite powder and method for producing same
WO2022209640A1 (en) Ferrite powder, ferrite resin composite material, and electromagnetic shielding material, electronic material, or electronic component
WO2021153612A1 (en) Ferrite powder and method for producing same
US20240182323A1 (en) Ferrite powder, ferrite resin composite material, and electromagnetic shielding material, electronic material, or electronic component
JP3908045B2 (en) Manufacturing method of iron oxide powder and ferrite powder for chip inductor
WO2020158519A1 (en) Ferrite composite powder, method for producing ferrite molded body, method for producing ferrite sintered body, molded body, and sintered body
JP2024016439A (en) Amorphous alloy soft magnetic powder, powder magnetic core, magnetic element and electronic device
JP2003183026A (en) Fe2O3 AND METHOD FOR PRODUCING THE SAME

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21782227

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21782227

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP