WO2021200570A1 - Sensor device, production method for sensor device, and gas determination system - Google Patents

Sensor device, production method for sensor device, and gas determination system Download PDF

Info

Publication number
WO2021200570A1
WO2021200570A1 PCT/JP2021/012624 JP2021012624W WO2021200570A1 WO 2021200570 A1 WO2021200570 A1 WO 2021200570A1 JP 2021012624 W JP2021012624 W JP 2021012624W WO 2021200570 A1 WO2021200570 A1 WO 2021200570A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
voltage
gas
graphene layer
insulating film
Prior art date
Application number
PCT/JP2021/012624
Other languages
French (fr)
Japanese (ja)
Inventor
マノハラン ムルガナタン
ガブリエル アグボンラホール
アミット バネルジー
博 水田
恒 槇
陽介 恩田
服部 将志
賢一 下舞
Original Assignee
太陽誘電株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽誘電株式会社 filed Critical 太陽誘電株式会社
Priority to JP2022512079A priority Critical patent/JPWO2021200570A1/ja
Publication of WO2021200570A1 publication Critical patent/WO2021200570A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS

Definitions

  • the present invention relates to a sensor device, a method for manufacturing the sensor device, and a gas determination system.
  • the sensor described in Patent Document 1 has a gate electrode, an insulating film provided on the gate electrode, a graphene film provided on the insulating film, a first electrode, and a second electrode. It has an FET structure.
  • a constant voltage is applied between the first electrode and the second electrode before the measurement of the detection target, the gate voltage of the gate electrode is increased or decreased, and the current value Id is measured. After that, the same operation is performed during the measurement of the determination target. Then, the change ⁇ Vg of the gate voltage Vg at which the current value Id is minimized before and after the measurement is used for the determination evaluation of the determination target.
  • an object of the present invention is to provide a sensor device capable of increasing the detection sensitivity of gas, a method for manufacturing the sensor device, and a gas determination system.
  • the sensor device includes a gate electrode, an insulating film, a graphene layer, a source electrode and a drain electrode, and a conductive porous layer.
  • the insulating film is formed on the gate electrode.
  • the graphene layer is formed on the insulating film.
  • the source electrode and the drain electrode are arranged on the insulating film so as to face each other via the graphene layer.
  • the porous layer is formed on the graphene layer.
  • the gas determination system includes a sensor device and an information processing device.
  • the sensor device includes a gate electrode, an insulating film formed on the gate electrode, a graphene layer formed on the insulating film, and a source electrode arranged so as to face each other on the insulating film via the graphene layer. It also has a drain electrode and a conductive porous layer formed on the graphene layer.
  • the information processing apparatus determines the gas adsorbed on the porous layer based on the measurement result of the current flowing between the source electrode and the drain electrode with the control unit that controls the voltage applied to the gate electrode. It has a determination unit and a determination unit.
  • the gas detection sensitivity can be increased.
  • the amount of charge transfer between the channel layer and the gas molecule in the range of CNPD when CO 2 , C 6 H 6 , CO, NH 3 , and O 2 are used as the gas is shown.
  • FIG. 11 is a diagram showing the experimental results of the graphene sensor.
  • (A) is an experimental result of a gas sensor having a channel layer not decorated with activated carbon
  • (B) is an experimental result of a gas sensor having a channel layer decorated with activated carbon
  • (A) is an experimental result showing the detection ability for ammonia gas (5 ppb) in the presence of air in a gas sensor having a channel layer decorated with activated carbon
  • (B) is an experimental result in the presence of air in a gas sensor having a channel layer decorated with activated carbon.
  • FIG. 1 is a schematic diagram showing the configuration of a gas determination system.
  • FIG. 2 is a schematic view showing the configuration of the sensor 10 that constitutes a part of the gas determination system.
  • the gas determination system 1 includes a sensor device 2, an information processing device 4, a display device 5, and a storage unit 6.
  • the sensor device 2 includes a storage chamber 20, a sensor 10 (sensor device), a UV (ultraviolet) light source 23, and a heating unit 26.
  • the storage chamber 20 houses the sensor 10, the UV light source 23, and the heating unit 26.
  • the accommodation chamber 20 has an intake port 21 for sucking gas from the outside and an exhaust port 22 for exhausting the gas introduced into the accommodation chamber 20 from the accommodation chamber 20 to the outside.
  • the intake port 21 is provided with a valve 24 for adjusting the inflow of gas into the accommodation chamber 20, and the exhaust port 22 is provided with a valve 25 for adjusting the outflow of gas in the accommodation chamber 20 to the outside.
  • the UV light source 23 emits ultraviolet rays (UV) to irradiate the sensor 10.
  • the channel layer 15 is cleaned by irradiating the channel layer 15 of the sensor 10, which will be described later, with UV.
  • the heating unit 26 is, for example, a heater and heats the sensor 10.
  • the sensor 10 has a gate electrode 13, an insulating film 14, a source electrode 11, a drain electrode 12, and a channel layer 15.
  • the gate electrode 13 is made of highly doped conductive silicon.
  • the insulating film 14 is formed on the gate electrode 13.
  • the insulating film 14 is composed of , for example, SiO 2.
  • the source electrode 11 and the drain electrode 12 are formed on the insulating film 14 and are arranged to face each other via the channel layer 15.
  • the source electrode 11 and the drain electrode 12 are composed of, for example, a laminated structure of a Cr film and an Au film.
  • the channel layer 15 is formed on the insulating film 14 and is arranged to face the gate electrode 13 via the insulating film 14. As shown in FIG. 4, the channel layer 15 has a graphene layer 16 and a porous layer 17 formed on the graphene layer 16.
  • the graphene layer 16 is composed of a single layer film, but may be a multilayer film. Further, a part of the multilayer film may be composed of a conductive material other than graphene.
  • the porous layer 17 is formed by decorating the surface of the graphene layer 16 with activated carbon.
  • the material constituting the porous layer 17 is not limited to activated carbon, and may be more porous than the graphene layer 16 and may have conductive properties similar to the graphene layer 16.
  • the porous layer 17 functions to promote gas adsorption, the porosity increases the adsorption surface area, and since it has many dangling bonds, it can efficiently adsorb gas. Since the porous layer 17 has conductive properties, the adsorption surface area is larger and the surface has many dangling bonds as compared with the case where a film having no conductive properties is provided on the graphene layer 16 as an adsorption film. Therefore, the adsorption of gas molecules is promoted, and the shift amount of the charge neutral point becomes large.
  • the porous layer 17 is made of the same carbon-based material as the graphene layer 16.
  • a carbon-based material is a substance containing carbon as a main component.
  • the porous layer 17 is porous and is a carbon-based material, that is, activated carbon.
  • the thickness of the porous layer 17 is not particularly limited, and may be the same as the thickness of the graphene layer 16, or may be thinner or thicker than the thickness of the graphene layer 16.
  • the graphene layer 16 has a thickness of 0.35 nm and the porous layer 17 has a thickness of 30 nm.
  • the porous layer 17 is formed so as to cover the entire surface of the graphene layer 16, but is not limited to this, and may be formed so as to cover at least a part of the surface of the graphene layer 16.
  • the information processing device 4 includes an acquisition unit 41, a determination unit 42, an output unit 43, and a control unit 44.
  • the acquisition unit 41 acquires change information of the current flowing between the source electrode 11 and the drain electrode 12.
  • the current flowing between the source electrode 11 and the drain electrode 12 may be referred to as a drain current.
  • the determination unit 42 determines the type of gas by using the current change information acquired by the acquisition unit 41. Specifically, the information processing device 4 acquires current change information for each of a plurality of different types of gas in advance and stores it in the storage unit 6.
  • the determination unit 42 identifies and determines the type of gas detected by the sensor 10 with reference to the current change information stored in the storage unit 6.
  • the gas concentration can also be determined by the determination unit 42.
  • the output unit 43 outputs the current change information acquired by the acquisition unit 41 and the determination result such as the type and concentration of the gas determined by the determination unit 42 to the display device 5. As shown in FIG. 2, the control unit 44 controls the voltage applied to the gate electrode 13 of the sensor 10.
  • the display device 5 has a display unit, and displays the type and concentration of gas output from the information processing device 4 on the display unit. The user can grasp the gas determination result by checking the display unit.
  • the storage unit 6 acquires in advance current change information for each of a plurality of known gases of different types detected by the gas determination system 1 and stores them as reference data.
  • the storage unit 6 may be on a cloud server on which the information processing device 4 can communicate, or may be provided in the information processing device 4.
  • the sensor 10 is a field effect transistor type sensor device.
  • 3 (A) and 3 (B) show the channel layer 15 whose state changes depending on the voltage applied to the gate electrode 13 and the vicinity of the channel layer 15 for explaining the charge state of CO 2 as an example of the gas adsorbed on the channel layer 15. It is a partially enlarged schematic diagram.
  • Figure 3 (A) shows a case where the gate electrode 13 and the first tuning voltage V T1 as a first voltage is applied for a predetermined time.
  • the first tuning voltage V T1 is a constant voltage at a predetermined time, a -40 V.
  • the value of the first tuning voltage V T1 is not limited to -40 V, by applying a first tuning voltage V T1, the negative charge is supplied to the channel layer 15, channel layer 15 valence band Any voltage value may be used as long as it has.
  • Figure 3 (B) shows when the gate electrode 13 and the second tuning voltage V T2 of the second voltage is applied for a predetermined time.
  • the second tuning voltage VT2 is a constant voltage at a predetermined time, which is 40V.
  • the value of the second tuning voltage V T2 is not limited to 40V, by applying a second tuning voltage V T2, the positive charges are supplied to the channel layer 15, channel layer 15 has a conduction band Any voltage value like this may be used.
  • the first and second tuning voltages are set to a constant voltage, and an example in which the voltage changes in a rectangular wave shape as shown in FIG. 11 is given, but the present invention is not limited to this.
  • the voltage value may fluctuate slightly within a predetermined time, for example, the rise and fall of the voltage becomes dull, the voltage value changes with a slight gradient, and the channel layer 15 changes the valence band or the conduction band by application. It suffices as long as it has a voltage value.
  • Both the channel layer 15 when the first tuning voltage is applied and the channel layer 15 when the second tuning voltage is applied attract gas.
  • the gas molecules adsorbed on the channel layer 15, here the CO 2 molecules are the distances and bond angles from the channel layer 15.
  • the combined state is different.
  • CO 2 functions as a donor when the first tuning voltage VT1 is applied.
  • CO 2 functions as an acceptor.
  • the values of the preferred first tuning voltage VT1 and the second tuning voltage VT2 can be appropriately set depending on the thickness of the insulating film 14.
  • an insulating film 14 having a thickness of 285 nm is used, and in this case, a voltage of about ⁇ 40 V (40 V) is required so that the channel layer 15 has a valence band (conduction band).
  • a first tuning voltage V T1 and the second tuning voltage V T2 is negative, the voltage on both sides of the positive side It is preferable to shake. Further, it is more preferable to shake the voltage so that the absolute values of the negative and positive voltages are the same.
  • the application time of each of the first tuning voltage VT1 and the second tuning voltage VT2 is several seconds to several minutes.
  • FIG. 5 shows the gate electrode 13 when the sweep voltage is applied to the gate electrode 13 after the first tuning voltage VT1 is applied for a predetermined time in the gas determination system 1 and after the second tuning voltage VT2 is applied for a predetermined time. It is a graph which shows the change of the current which flows between a source electrode 11 and a drain electrode 12 when a sweep voltage is applied to.
  • the voltage applied to the gate electrode 13 is controlled by the control unit 44.
  • the sweep voltage changes in a range of a first tuning voltage and a second tuning voltage different from the first tuning voltage.
  • a sweep voltage that linearly changes the voltage from ⁇ 40 V to 40 V in about 1 minute is used, and the sweep voltage is a voltage that changes on both the positive and negative sides.
  • the drain current Id (first current) while applying the sweep voltage to the gate electrode 13 I d1 ) is measured.
  • the solid line curve 51 shown in FIG. 5 shows the change characteristic of the first current I d1.
  • the point when the first current I d1 becomes the minimum value is referred to as the first charge neutral point 31.
  • the gate voltage value when the first current I d1 becomes the minimum value is referred to as a first gate voltage.
  • the channel layer 15 has a valence band by applying the first tuning voltage VT1 to the gate electrode 13. As a result, the gas is sufficiently attracted to the channel layer 15 and the gas becomes a donor.
  • the drain current Id (second) while applying the sweep voltage to the gate electrode 13.
  • the current I d2 is measured.
  • the long broken line curve 52 shown in FIG. 5 shows the change characteristic of the second current I d2.
  • the point when the second current I d2 becomes the minimum value is referred to as the second charge neutral point 32.
  • the gate voltage value when the second current I d2 becomes the minimum value is referred to as a second gate voltage.
  • the broken line curve 50 having a short line length is a curve located at the center of the curve 51 and the curve 52 in the horizontal axis direction.
  • the point at which the current I d on the curve 50 becomes the minimum value is defined as the center point 30.
  • the curve 52 showing the characteristics of the second current I d2 with respect to the sweep voltage (gate voltage Vg) is the curve 51 showing the characteristics of the first current I d1 with respect to the sweep voltage (gate voltage Vg). It almost matches the shape moved in the horizontal axis direction.
  • V CNP indicates the gate voltage value when the charge neutrality point is taken
  • ⁇ V CNP indicates the difference between the first gate voltage and the second gate voltage.
  • the first gate voltage at the first charge neutral point 31 and the second gate voltage at the second charge neutral point 32 are unique to each type of gas adsorbed on the channel layer 15.
  • the band indicating the range from the gate voltage of 1 to the second gate voltage is different for each type of gas. It is considered that this is because the bonding state of the gas attracted to the channel layer 15 and functioning as an acceptor or donor and the channel layer 15 differs depending on the type of gas.
  • FIG. 6 is a diagram showing that the band indicating the range from the first gate voltage to the second gate voltage differs depending on the type of gas.
  • bands in a total of five types of gases CO 2 (carbon dioxide), C 6 H 6 (benzene), CO (carbon monoxide), NH 3 (ammonia), and O 2 (oxygen), are shown.
  • FIG. 6 shows the charge state of the channel layer in the range of CNPD (Charge Neutrality Point Disparity:
  • CNPD shows the difference between the first charge neutral point 31 and the second charge neutral point 32, and corresponds to the band.
  • the strip extending in the vertical direction indicates a band indicating a range from the first gate voltage to the second gate voltage.
  • the upper part of the strip corresponds to the first gate voltage at the second charge neutral point 32, and the lower part corresponds to the second gate voltage at the first charge neutral point 31.
  • the center point 30 is located at the center of a band extending in the vertical direction. In each band, the upper half of the center point 30 indicates the range in which the gas is an acceptor, and the lower half indicates the range in which the gas is a donor.
  • the first gate voltage and the second gate voltage are different depending on the type of gas, and the bandwidth and the band range are different. Therefore, the type of gas can be determined by using this band data.
  • band data of a plurality of known gases are acquired in advance and stored in the storage unit 6. Then, by referring to the data stored in the storage unit 6, the type of gas can be determined from the band data obtained for the unknown gas. In this way, it is possible to determine the type of gas by acquiring the change characteristics of the drain current corresponding to the sweep voltage after applying the two-value tuning voltage of -40V and 40V as data.
  • FIG. 7 shows the first gate voltage at the first charge neutral point 31 obtained by applying a sweep voltage after applying the first tuning voltage by varying the concentration of the gas, and sweeping after applying the second tuning voltage. It is a figure which shows the result of having measured the 2nd gate voltage at the 2nd charge neutral point 32 obtained by applying a voltage.
  • the bar graph shows the gate voltage value at the center point 30. The straight line extending in the vertical direction indicates the band from the first gate voltage to the second gate voltage.
  • FIG. 7 (A) shows the case where acetone is used as the gas
  • FIG. 7 (B) shows the case where ammonia is used, and the results of varying the concentration in the range of 1 to 200 ppm are shown.
  • the band indicating the range from the first gate voltage to the second gate voltage changes substantially linearly according to the concentration of the gas to be determined, and the determination of the gas concentration using the band is performed.
  • the data of known gas bands having different concentrations are acquired in advance and stored in the storage unit 6. Then, by referring to the data of the storage unit 6, the gas concentration can be determined from the band data obtained from the unknown gas.
  • FIG. 8 is a flow chart illustrating a schematic procedure for gas determination in the gas determination system 1.
  • FIG. 9 is a flow chart illustrating a gas determination method in the information processing apparatus 44.
  • FIG. 10 is a diagram showing signal waveforms of a first tuning voltage VT1 , a second tuning voltage VT2 , and a sweep voltage applied to the gate electrode. As shown in FIG. 10, the first tuning voltage VT1 and the second tuning voltage VT2 are step functions with respect to time.
  • gas is supplied into the accommodation chamber 20 (S1).
  • the pressure inside the containment chamber 20 is normal.
  • UV is irradiated from the UV light source 23 toward the sensor 10 and the inside of the accommodation chamber 20 for 1 minute (S2).
  • the gas is efficiently adsorbed on the channel layer. This is because O 2 , H 2 O, etc. are removed from the surface of the channel layer by UV irradiation (cleaning effect), and the movement between the adsorption of gas molecules on the surface of the channel layer and the photoexcited desorption. It is considered that this is because the equilibrium is guided and the number of effective adsorption sites for gas in the channel layer increases, and the adsorption is accelerated by the state change (ionization, etc.) of the adsorbed molecules.
  • the sensor 10 is heated by the heating unit 26 (S3).
  • the heating temperature is preferably 95 ° C. or higher.
  • the sensor 10 is heated to a heating temperature of 110 ° C.
  • the gas determination is started from a state in which a voltage of 5 to 10 mV is applied between the source electrode 11 and the drain electrode 12.
  • the voltage value applied to each electrode is controlled based on the control signal from the control unit 44.
  • the voltage applied between the source electrode 11 and the drain electrode 12 uses the linear region of the output. If the voltage applied between the source electrode 11 and the drain electrode 12 is too high or too low, noise will be generated. Therefore, it is preferable to set the voltage to 5 to 10 mV, which suppresses the generation of noise.
  • the first tuning voltage VT1 is applied to the gate electrode 13 for a predetermined time (S41).
  • the first tuning voltage V T1 of -40V is applied for several seconds to several minutes.
  • the channel layer 15 has a valence band
  • the gas is sufficiently attracted to the channel layer 15, and the gas functions as a donor.
  • the application time of the first tuning voltage VT1 is appropriately set depending on the thickness of the insulating film 14 and the like.
  • the present embodiment it is preferably 5 s (seconds) or more, more preferably 30 s or more, and preferably 120 s or less, further preferably 60 s or less, in a time sufficient for the channel layer 15 to have a valence band. All you need is. Further, the application time can be appropriately set to a preferable value depending on the heating temperature of the sensor 10 and the like.
  • a sweep voltage is applied to the gate electrode 13, and the first current I d1 flowing between the source electrode 11 and the drain electrode 12 while the sweep voltage is being applied is measured (S42).
  • the voltage is swept with a resolution of 50 mV to 100 mV, a range of 80 V, and a sweep time of 1 minute.
  • the gate voltage is gradually changed from negative to positive, such as -40V to 40V.
  • the gate voltage may be gradually changed from positive to negative, such as from 40V to ⁇ 40V.
  • the measurement result of the first current I d1 with respect to the sweep voltage is acquired by the acquisition unit 41.
  • the determination unit 42 determines the first gate voltage, which is the gate voltage value when the first current I d1 becomes the minimum value (S43). ..
  • a second tuning voltage VT2 is applied to the gate electrode 13 for a predetermined time (S44).
  • the second tuning voltage V T2 of 40V is applied for several seconds to several minutes.
  • the channel layer 15 has a conduction band
  • the gas is sufficiently attracted to the channel layer 15, and the gas functions as an acceptor.
  • the coupling state of the channel layer 15 and the gas after the application of the second tuning voltage is different from the coupling state of the channel layer 15 and the gas after the application of the first tuning voltage.
  • the application time of the second tuning voltage VT2 is appropriately set depending on the thickness of the insulating film 14 and the like.
  • the present embodiment it is preferably 5 s (seconds) or more, more preferably 30 s or more, and preferably 120 s or less, further preferably 60 s or less, and the time is sufficient for the channel layer 15 to have a conduction band. Just do it. Further, the application time can be appropriately set to a preferable value depending on the heating temperature of the sensor 10 and the like.
  • a sweep voltage is applied to the gate electrode 13, and a second current I d2 flowing between the source electrode 11 and the drain electrode 12 while the sweep voltage is being applied is measured (S45).
  • the voltage was swept with a resolution of 50 mV to 100 mV, a range of 80 V, and a sweep time of 1 minute.
  • the gate voltage is gradually changed from negative to positive, such as -40V to 40V.
  • the gate voltage may be gradually changed from positive to negative, such as from 40V to ⁇ 40V.
  • the measurement result of the second current I d2 with respect to the sweep voltage is acquired by the acquisition unit 41.
  • the determination unit 42 determines the second gate voltage, which is the gate voltage value when the second current I d2 becomes the minimum value (S46). ..
  • the determination unit 42 determines the type and concentration of the gas by referring to the data stored in the storage unit 6 based on the first gate voltage and the second gate voltage determined in S43 and S46. It is determined (S47).
  • S47 the first gate voltage and the second gate voltage determined in S43 and S46.
  • S43, S46, and S47 correspond to gas determination steps for determining gas based on the measurement results of the first current I d1 and the second current I d2.
  • a step of determining the first gate voltage V g1 at which the first current I d1 becomes the minimum value is provided. This may be performed at the step of determining the second gate voltage V g2 at which the second current I d2 of the above is the minimum value.
  • the curve 51 showing the change of the first current I d1 with respect to the sweep voltage and the curve 52 showing the change of the second current I d2 with respect to the sweep voltage are more clearly defined by performing UV irradiation and heating. Identifiable data is obtained. This enables more accurate gas determination.
  • FIG. 11 shows a series of measuring the first current I d1 while applying the first tuning voltage and the sweep voltage, applying the second tuning voltage, and measuring the second current I d2 while applying the sweep voltage. The results of measuring the change of the first current I d1 with respect to the sweep voltage and the change of the second current I d2 with respect to the sweep voltage when the above steps are repeated 5 times are shown.
  • the solid line is a curve 51 showing the characteristics of the drain current (first current) and the gate voltage obtained when the sweep voltage is applied to the gate electrode after the first tuning voltage is applied.
  • the broken line is a curve 52 showing the characteristics of the drain current (second current) and the gate voltage obtained when the sweep voltage is applied to the gate electrode after the second tuning voltage is applied.
  • FIG. 11A is an experimental result showing the change characteristic of the current flowing between the source electrode and the drain electrode with respect to the sweep voltage when the gas determination is performed without UV light irradiation and heating.
  • FIG. 11B is an experimental result showing the change characteristic of the current flowing between the source electrode and the drain electrode with respect to the sweep voltage when the gas determination is performed without UV light irradiation and heating.
  • FIG. 11C is an experimental result showing the change characteristics of the current flowing between the source electrode and the drain electrode with respect to the sweep voltage when the gas is determined with UV light irradiation and heating.
  • the curve 52 shown by the broken line has a shape in which the curve 51 shown by the solid line is moved to the right along the horizontal axis direction on the drawing.
  • the difference between the first gate voltage and the second gate voltage when the drain current I d in each curve becomes the minimum value can be taken.
  • the curve 51 shown by the solid line moves to the right along the horizontal axis direction in the drawing and slightly upward along the vertical axis direction. It is almost in the form of moving.
  • the difference between the first gate voltage and the second gate voltage when the drain current I d in each curve becomes the minimum value can be taken.
  • the curve 51 shown by the solid line moves to the right along the horizontal axis direction on the drawing and moves upward along the vertical axis direction.
  • the curve 51 and the curve 52 can be clearly distinguished from each other.
  • a curve showing the characteristics of the drain current and the gate voltage obtained when the sweep voltage is applied to the gate electrode after the first tuning voltage is applied.
  • the curve 52 showing the characteristics of the drain current and the gate voltage obtained when the sweep voltage is applied to the gate electrode after applying the 51 and the second tuning voltage has a shape deviated in the horizontal axis direction, and the first The type of gas can be determined by the gate voltage and the second gate voltage.
  • the difference between the first gate voltage and the second gate voltage in the horizontal axis direction can be further increased, and the first gate can be further increased.
  • the band indicating the range from the voltage to the second gate voltage can be made clearer. Thereby, the accuracy of determining the type of gas can be further improved.
  • the type or concentration of gas can be determined with high accuracy by using a gas sensor having a field effect transistor structure using graphene as a channel. Further, since the gas sensor can be made small, the sensor device 2 can be made small.
  • the channel layer 15 is composed of a laminate of the graphene layer 16 and the porous layer 17. Since the porous layer 17 is more porous than the graphene layer 16, the gas adsorption efficiency is high. Moreover, since the porous layer 17 is made of the same carbon-based material (activated carbon) as the graphene layer 16, the conductive properties of the channel layer 15 can be maintained satisfactorily. As a result, the accuracy of gas detection in the channel layer 15 can be improved.
  • FIG. 12 shows a comparison between the drain current characteristic when the channel layer has a single-layer structure of a graphene layer and the drain current characteristic when the channel layer has a laminated structure of a graphene layer and a porous layer.
  • .. 12 (A) and 12 (B) show the current characteristics (dashed line) between the source and drain when the gate voltage is swept under vacuum, and the gate voltage in the presence of 3 ppm of ammonia with the carrier gas as N 2. The current characteristics (solid line) between the source and drain during sweeping are shown.
  • FIG. 12 (A) shows the current characteristics when the channel layer has a single-layer structure of a graphene layer
  • FIG. 12 (B) shows the current characteristics when the channel layer has a laminated structure of a graphene layer and a porous layer. Shown.
  • the shift amount of the charge neutral point at the time of introducing the ammonia gas was about 1.5 V
  • the channel When the layer had a laminated structure of a graphene layer and a porous layer, as shown in FIG. 12 (B), the shift amount of the charge neutral point at the time of introducing the ammonia gas was about 5 V. From this, according to the sensor 10 of the present embodiment having the porous layer 17, the sensitivity to gas can be increased as compared with the sensor having no porous layer 17, so that even when the gas concentration is low. It can be detected with high accuracy.
  • FIG. 13 (A) and 13 (B) are diagrams showing the same drain current characteristics as in FIG. 12, showing the results of detecting ammonia gas in the presence of air by the sensor 10 provided with the porous layer 17 made of activated carbon. be.
  • FIG. 13A shows the drain current characteristic of the sensor 10 in an air atmosphere and the drain current characteristic of the sensor 10 in an atmosphere in which 5 ppb of ammonia is mixed with the air. A clear shift in the charge neutral point was confirmed before and after the introduction of ammonia.
  • FIG. 13A shows the drain current characteristic of the sensor 10 in an air atmosphere and the drain current characteristic of the sensor 10 in an atmosphere in which 5 ppb of ammonia is mixed with the air. A clear shift in the charge neutral point was confirmed before and after the introduction of ammonia.
  • FIG. 13A shows the drain current characteristic of the sensor 10 in an air atmosphere and the drain current characteristic of the sensor 10 in an atmosphere in which 5 ppb of ammonia is mixed with the air. A clear shift in the charge neutral point was confirmed before and after the
  • 13B shows the drain current characteristic of the sensor 10 in an air atmosphere and the drain current characteristic of the sensor 10 in an atmosphere in which 500 ppt of ammonia is mixed with the air.
  • a clear shift in the charge neutral point was detected before and after the introduction of ammonia. It is considered that these results are due to the fact that the pores of the porous layer 17 do not pass the O 2 gas having a relatively large molecule, but pass only the ammonia gas having a relatively small molecule to filter the O 2 gas. From this, it was confirmed that gas selectivity can be obtained by using the porous layer 17 which is activated carbon.
  • a graphene layer 160 is formed on the surface of the copper foil 101 by a CVD (chemical vapor deposition) method or the like.
  • the graphene layer 160 corresponds to the graphene layer 16 in the sensor 10 shown in FIG.
  • a commercially available product in which the graphene layer 160 is laminated on the copper foil 101 may be used.
  • a copper foil 101 having graphene layers 160 formed on both sides may be used.
  • only one side graphene layer 160 formed on the surface of the copper foil 101 is used, the other side graphene layer 160 formed on the surface of the copper foil 101, a copper foil 101 with O 2 plasma etching or the like Will be removed.
  • the protective layer 103 is formed on the surface of the graphene layer 160 by, for example, a spin coating method.
  • the protective layer 103 is for protecting the graphene layer 160, and can be omitted if necessary.
  • the resin constituting the protective layer 103 is not particularly limited, and for example, a photosensitive resist resin can be used. In the present embodiment, for example, polymethylmethacrylate (PMMA) is used as the protective layer 103.
  • PMMA polymethylmethacrylate
  • the laminate of the copper foil 101, the graphene layer 160, and the resist resin layer 103 is floated on the solvent 105 in the container 104 to dissolve only the copper foil 101.
  • the solvent 105 for example, ammonium peroxodisulfate or the like is used.
  • the graphene layer 160 floating on the solvent 105 is scooped up and placed on the substrate 110 to dry the graphene layer 160 and the resist resin layer 103.
  • the substrate 110 a silicon substrate having a silicon oxide film formed on its surface is used, and the graphene layer 160 is placed on the silicon oxide film.
  • the silicon substrate and the silicon oxide film correspond to the gate electrode 13 and the insulating film 14 in the sensor 10 shown in FIG. 2, respectively (see FIG. 15 (A)).
  • the protective layer 103 is melted with acetone, washed, and then annealed at a predetermined temperature to improve the adhesion between the substrate 110 and the graphene layer 160.
  • the resist resin layer 106 is formed on the graphene layer 160 by the spin coating method. Then, by exposing and developing the resist resin layer 106, the resist resin layer 106 is patterned into a predetermined shape as shown in FIG. 15 (B).
  • the exposure method of the resist resin layer 106 is not particularly limited, and an exposure method using an exposure mask, a maskless exposure method such as electron beam drawing, and the like can be adopted.
  • the graphene layer 160 exposed from the opening of the resist resin layer 106 is removed by dry etching.
  • O 2 plasma is used for the dry etching method of the graphene layer 160.
  • the first metal layer 107a is formed on the surface of the resist resin layer 106 and inside the opening thereof. Then, as shown in FIG. 15 (E), the first metal layer 107a is patterned (lifted off) by removing the resist resin layer 106, and the pattern of the first metal layer 107a adjacent to the graphene layer 160 is formed on the substrate 110. To form.
  • the first metal layer 107a may be a single layer or a multilayer structure.
  • chromium (Cr) having a thickness of about 5 nm is formed as an adhesion material
  • gold (Au) having a thickness of about 70 nm is formed on the chromium (Cr) as an electrode material.
  • the film forming method of the first metal layer 107a is not particularly limited, and may be a sputtering method or a vacuum vapor deposition method. In this embodiment, the first metal layer 107a is formed by the electron beam deposition method.
  • the first resist resin layer 108a is formed on the substrate 110, and the second resist resin layer 108b is formed on the first resist resin layer 108a.
  • a methyl methacrylate (MMA) film is used
  • PMMA polymethylmethacrylate
  • the graphene layer 160 and the metal layer 107 are formed by exposing and developing the first resist resin layer 108a and the second resist resin layer 108b using electron beam lithography technology or the like.
  • a resist pattern is formed in which the boundary portion of the surface is exposed.
  • an opening pattern in which the opening width of the first resist resin layer 108a is larger than the opening width of the second resist resin layer 108b is formed.
  • the first metal layer 107b is formed on the surface of the second resist resin layer 108b and inside the opening thereof.
  • the second metal layer 107b is patterned (lifted off) by removing the first and second resist resin layers 108a and 108b, and the graphene layer 160 and the first metal layer 107a are formed.
  • a pattern of the second metal layer 107b straddling the boundary portion of the above is formed on the substrate 110.
  • the second metal layer 107b may be a single layer or a multilayer structure.
  • chromium (Cr) having a thickness of about 5 nm is formed as an adhesion material
  • gold (Au) having a thickness of about 20 nm is formed on the chromium (Cr) as an electrode material.
  • the film forming method of the second metal layer 107b is not particularly limited, and may be a sputtering method or a vacuum vapor deposition method. In this embodiment, the second metal layer 107b is formed by the electron beam deposition method.
  • the first metal layer 107a and the second metal layer 107b form a common metal layer 107.
  • the metal layer 107 corresponds to the source electrode 11 and the drain electrode 12 in the sensor 10 shown in FIG.
  • the second metal layer 107b is less likely to come into contact with the side surface of the opening of the first resist resin layer 108a. As a result, the patterning accuracy of the second metal layer 107b at the time of lift-off can be improved.
  • a resist resin layer 121 for coating the graphene layer 160 and the metal layer 107 is formed on the substrate 10 by spin coating or the like.
  • the upper part is a cross-sectional view of the substrate 110, and the lower part is a plan view thereof (the same applies to FIGS. 17B to 17D).
  • the resist resin layer 121 is exposed and developed using electron beam lithography technology or the like, and the graphene layer 160 located between two adjacent metal layers 107 is partially formed.
  • a resist pattern to be coated is formed.
  • the graphene layer 160 not coated with the resist resin layer 121 is removed from the substrate 110 by O 2 plasma etching.
  • the etching conditions are not particularly limited, and in the present embodiment, the gas flow rate is 20 sccm, the pressure is 6 Pa, the power is RF 20 W (13.56 MHz), and the processing time is 35 seconds.
  • the thickness of the resist resin layer 121 after the etching treatment is, for example, 30 nm.
  • the resist resin layer 121 is carbonized by performing an annealing treatment of the resist resin layer 121 in vacuum.
  • the activated carbon layer 170 made of the carbon composition constituting the resist resin layer 121 is formed on the graphene layer 160.
  • the activated carbon layer 170 corresponds to the porous layer 17 in the sensor 10 shown in FIG.
  • the activated carbon layer 170 is formed on the graphene layer 160 by carbonizing the resist resin layer 121, which is a mask for patterning the graphene layer 160.
  • the annealing conditions of the resist resin layer 121 are not particularly limited, and for example, the annealing temperature is 300 ° C. and the annealing time is 3 hours and 30 minutes.
  • the thickness of the activated carbon layer 170 can be adjusted by adjusting the thickness of the resist resin layer 121. For example, when the pattern etching of the graphene layer 160, the resist resin layer 121 may be thinned to a predetermined thickness by the O 2 plasma etch. Alternatively, after the activated carbon layer 170 is formed, the thickness of the activated carbon layer 170 may be adjusted by etching again.
  • the gate electrodes to which the first and second tuning voltages and the sweep voltage are applied are common gate electrodes, but the present invention is not limited to this.
  • a gate electrode to which a sweep voltage is applied may be provided separately from the gate electrode to which the first and second tuning voltages are applied, and both gate electrodes are arranged so as to face the graphene layer via an insulating film. I just need to be there.
  • the tuning voltage (fixed voltage) is set to two values of the first tuning voltage and the second tuning voltage, but at least two values may be sufficient, and three or more values may be used. By setting the value to 3 or more, the gas information is increased, and more accurate gas determination becomes possible.
  • the gate is in the order of the negative (-40V in the above-described embodiment) first tuning voltage, the sweep voltage, the positive (40V in the above-described embodiment) second tuning voltage, and the sweep voltage.
  • the voltage may be applied to the gate electrode in the order of the positive second tuning voltage, the sweep voltage, the negative first tuning voltage, and the sweep voltage.
  • porous layer may cover the entire surface of the graphene layer or may partially cover it.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Engineering & Computer Science (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

[Problem] To provide a sensor device, a production method for the sensor device, and a gas determination system that make it possible to increase the sensitivity with which gases are detected. [Solution] The sensor device according to one embodiment of the present invention comprises a gate electrode, an insulating film, a graphene layer, a source electrode and a drain electrode, and a conductive porous layer. The insulating film is formed on the gate electrode. The graphene layer is formed on the insulating film. The source electrode and the drain electrode are arranged on the insulating film so as to be opposite each other with the graphene layer therebetween. The porous layer is formed on the graphene layer.

Description

センサデバイス、センサデバイスの製造方法およびガス判定システムSensor device, manufacturing method of sensor device and gas judgment system
 本発明は、センサデバイス、センサデバイスの製造方法およびガス判定システムに関する。 The present invention relates to a sensor device, a method for manufacturing the sensor device, and a gas determination system.
 特許文献1に記載されるセンサは、ゲート電極と、ゲート電極上に設けられた絶縁膜と、絶縁膜上に設けられたグラフェン膜と、第1の電極と、第2の電極とを有する、FET構造を有する。特許文献1に記載されるセンサでは、検出対象の測定前に、第1電極と第2電極間に一定電圧を印加し、ゲート電極のゲート電圧を増減し、電流値Idを測定する。その後、判定対象の測定中に同様の操作を行う。そして、測定前後における、電流値Idが最小となるゲート電圧Vgの変化ΔVgを判定対象の判定評価に用いている。 The sensor described in Patent Document 1 has a gate electrode, an insulating film provided on the gate electrode, a graphene film provided on the insulating film, a first electrode, and a second electrode. It has an FET structure. In the sensor described in Patent Document 1, a constant voltage is applied between the first electrode and the second electrode before the measurement of the detection target, the gate voltage of the gate electrode is increased or decreased, and the current value Id is measured. After that, the same operation is performed during the measurement of the determination target. Then, the change ΔVg of the gate voltage Vg at which the current value Id is minimized before and after the measurement is used for the determination evaluation of the determination target.
特開2018-163146号公報JP-A-2018-163146
 ガスセンサにおいて、精度高くガスの種類を判定することが望まれている。
 以上のような事情に鑑み、本発明の目的は、ガスの検出感度を高めることができるセンサデバイス、センサデバイスの製造方法およびガス判定システムを提供することにある。
It is desired that the gas sensor determines the type of gas with high accuracy.
In view of the above circumstances, an object of the present invention is to provide a sensor device capable of increasing the detection sensitivity of gas, a method for manufacturing the sensor device, and a gas determination system.
 本発明の一形態に係るセンサデバイスは、ゲート電極と、絶縁膜と、グラフェン層と、ソース電極およびドレイン電極と、導電性の多孔質層とを具備する。
 上記絶縁膜は、上記ゲート電極上に形成される。
 上記グラフェン層は、上記絶縁膜上に形成される。
 上記ソース電極およびドレイン電極は、上記絶縁膜上に上記グラフェン層を介して対向配置される。
 上記多孔質層は、上記グラフェン層上に形成される。
The sensor device according to one embodiment of the present invention includes a gate electrode, an insulating film, a graphene layer, a source electrode and a drain electrode, and a conductive porous layer.
The insulating film is formed on the gate electrode.
The graphene layer is formed on the insulating film.
The source electrode and the drain electrode are arranged on the insulating film so as to face each other via the graphene layer.
The porous layer is formed on the graphene layer.
 本発明の一形態に係るガス判定システムは、センサデバイスと、情報処理装置とを具備する。
 上記センサデバイスは、ゲート電極と、上記ゲート電極上に形成された絶縁膜と、上記絶縁膜上に形成されたグラフェン層と、上記絶縁膜上に上記グラフェン層を介して対向配置されたソース電極およびドレイン電極と、上記グラフェン層上に形成された導電性の多孔質層と、を有する。
 上記情報処理装置は、上記ゲート電極に印加する電圧を制御する制御部と、上記ソース電極と上記ドレイン電極との間に流れる電流の測定結果に基づいて上記多孔質層に吸着されるガスを判定する判定部と、を有する。
The gas determination system according to one embodiment of the present invention includes a sensor device and an information processing device.
The sensor device includes a gate electrode, an insulating film formed on the gate electrode, a graphene layer formed on the insulating film, and a source electrode arranged so as to face each other on the insulating film via the graphene layer. It also has a drain electrode and a conductive porous layer formed on the graphene layer.
The information processing apparatus determines the gas adsorbed on the porous layer based on the measurement result of the current flowing between the source electrode and the drain electrode with the control unit that controls the voltage applied to the gate electrode. It has a determination unit and a determination unit.
 本発明によれば、ガスの検出感度を高めることができる。 According to the present invention, the gas detection sensitivity can be increased.
本発明の実施形態に係るガス判定システムの構成を示す模式図である。It is a schematic diagram which shows the structure of the gas determination system which concerns on embodiment of this invention. 上記ガス判定システムの一部を構成するセンサデバイスの構成を示す概略図である。It is a schematic diagram which shows the structure of the sensor device which constitutes a part of the said gas determination system. ゲート電極に第1の電圧及び第2の電圧を印加した場合のグラフェン層及びCO分子の状態を説明するチャネル層付近の部分拡大模式図である。It is a partially enlarged schematic diagram near the channel layer explaining the state of the graphene layer and the CO 2 molecule when the first voltage and the second voltage are applied to the gate electrode. チャネル層の構成を示す概略図である。It is the schematic which shows the structure of a channel layer. 上記ガス判定システムにおける第1の電圧印加後及び第2の電圧印加後にゲート電極に掃引電圧を印加したときのソース電極とドレイン電極との間に流れる電流の変化を示すグラフである。It is a graph which shows the change of the current which flows between a source electrode and a drain electrode when a sweep voltage is applied to a gate electrode after the application of the 1st voltage and after the application of the 2nd voltage in the gas determination system. ガスとしてCO、C、CO、NH、Oそれぞれを用いた時のCNPDの範囲におけるチャネル層とガス分子間の電荷移動量を示す。The amount of charge transfer between the channel layer and the gas molecule in the range of CNPD when CO 2 , C 6 H 6 , CO, NH 3 , and O 2 are used as the gas is shown. 上記ガス判定システムを用いてガス濃度を振って、ガスとしてのアセトン及びアンモニアのCNPDの範囲を測定した結果を示すグラフである。It is a graph which shows the result of having measured the range of CNPD of acetone and ammonia as a gas by shaking a gas concentration using the said gas determination system. 上記ガス判定システムにおけるガス判定のための概略手順を説明するフロー図である。It is a flow figure explaining the schematic procedure for gas determination in the said gas determination system. ガス判定方法を説明するフロー図である。It is a flow chart explaining the gas determination method. 上記ガス判定システムのガスセンサにおける第1の電圧、第2の電圧、掃引電圧の信号波形を示す図である。It is a figure which shows the signal waveform of the 1st voltage, the 2nd voltage, and the sweep voltage in the gas sensor of the said gas determination system. 図11は、グラフェンセンサの実験結果を示す図である。FIG. 11 is a diagram showing the experimental results of the graphene sensor. (A)は活性炭で装飾してないチャネル層を有するガスセンサの実験結果であり、(B)は活性炭で装飾したチャネル層を有するガスセンサの実験結果である。(A) is an experimental result of a gas sensor having a channel layer not decorated with activated carbon, and (B) is an experimental result of a gas sensor having a channel layer decorated with activated carbon. (A)は活性炭で装飾したチャネル層を有するガスセンサにおける空気存在下のアンモニアガス(5ppb)に対する検出能力を示す実験結果であり、(B)は活性炭で装飾したチャネル層を有するガスセンサにおける空気存在下のアンモニアガス(500ppt)に対する検出能力を示す実験結果である。(A) is an experimental result showing the detection ability for ammonia gas (5 ppb) in the presence of air in a gas sensor having a channel layer decorated with activated carbon, and (B) is an experimental result in the presence of air in a gas sensor having a channel layer decorated with activated carbon. It is an experimental result which shows the detection ability with respect to ammonia gas (500 ppt). 本発明の実施形態に係るセンサデバイスの製造方法を説明する各工程の概略断面図である。It is schematic cross-sectional view of each step explaining the manufacturing method of the sensor device which concerns on embodiment of this invention. 本発明の実施形態に係るセンサデバイスの製造方法を説明する各工程の概略断面図である。It is schematic cross-sectional view of each step explaining the manufacturing method of the sensor device which concerns on embodiment of this invention. 本発明の実施形態に係るセンサデバイスの製造方法を説明する各工程の概略断面図である。It is schematic cross-sectional view of each step explaining the manufacturing method of the sensor device which concerns on embodiment of this invention. 本発明の実施形態に係るセンサデバイスの製造方法を説明する各工程の概略断面図である。It is schematic cross-sectional view of each step explaining the manufacturing method of the sensor device which concerns on embodiment of this invention.
 以下、図面を参照しながら、本発明の実施形態を説明する。
 [ガス判定システムの概要]
 図1はガス判定システムの構成を示す模式図である。図2は、ガス判定システムの一部を構成するセンサ10の構成を示す模式図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[Overview of gas judgment system]
FIG. 1 is a schematic diagram showing the configuration of a gas determination system. FIG. 2 is a schematic view showing the configuration of the sensor 10 that constitutes a part of the gas determination system.
 図1に示すように、ガス判定システム1は、センサ装置2と、情報処理装置4と、表示装置5と、記憶部6と、を備える。
 センサ装置2は、収容室20と、センサ10(センサデバイス)と、UV(紫外線)光源23と、加熱部26と、を備える。
As shown in FIG. 1, the gas determination system 1 includes a sensor device 2, an information processing device 4, a display device 5, and a storage unit 6.
The sensor device 2 includes a storage chamber 20, a sensor 10 (sensor device), a UV (ultraviolet) light source 23, and a heating unit 26.
 収容室20は、センサ10と、UV光源23と、加熱部26と、を収容する。収容室20は、外部からガスを吸気する吸気口21と、収容室20内に導入されたガスを収容室20から外部に排気する排気口22とを有する。吸気口21には収容室20内へのガスの流入を調節するバルブ24が設けられ、排気口22には収容室20内のガスの外部への流出を調節するバルブ25が設けられている。 The storage chamber 20 houses the sensor 10, the UV light source 23, and the heating unit 26. The accommodation chamber 20 has an intake port 21 for sucking gas from the outside and an exhaust port 22 for exhausting the gas introduced into the accommodation chamber 20 from the accommodation chamber 20 to the outside. The intake port 21 is provided with a valve 24 for adjusting the inflow of gas into the accommodation chamber 20, and the exhaust port 22 is provided with a valve 25 for adjusting the outflow of gas in the accommodation chamber 20 to the outside.
 UV光源23は、センサ10に対して照射する紫外線(UV)を発する。後述するセンサ10のチャネル層15にUVを照射することにより、チャネル層15のクリーニングが行われる。
 加熱部26は、例えばヒータであり、センサ10を加熱する。
The UV light source 23 emits ultraviolet rays (UV) to irradiate the sensor 10. The channel layer 15 is cleaned by irradiating the channel layer 15 of the sensor 10, which will be described later, with UV.
The heating unit 26 is, for example, a heater and heats the sensor 10.
 図2に示すように、センサ10は、ゲート電極13と、絶縁膜14と、ソース電極11と、ドレイン電極12と、チャネル層15とを有する。
 ゲート電極13は、高ドープの導電性シリコンからなる。
 絶縁膜14は、ゲート電極13上に形成される。絶縁膜14は、例えばSiOから構成される。
 ソース電極11及びドレイン電極12は、絶縁膜14上に形成され、チャネル層15を介して対向配置される。ソース電極11及びドレイン電極12は例えばCr膜とAu膜の積層構造で構成される。
As shown in FIG. 2, the sensor 10 has a gate electrode 13, an insulating film 14, a source electrode 11, a drain electrode 12, and a channel layer 15.
The gate electrode 13 is made of highly doped conductive silicon.
The insulating film 14 is formed on the gate electrode 13. The insulating film 14 is composed of , for example, SiO 2.
The source electrode 11 and the drain electrode 12 are formed on the insulating film 14 and are arranged to face each other via the channel layer 15. The source electrode 11 and the drain electrode 12 are composed of, for example, a laminated structure of a Cr film and an Au film.
 チャネル層15は、絶縁膜14上に形成され、絶縁膜14を介してゲート電極13と対向配置される。チャネル層15は、図4に示すように、グラフェン層16と、グラフェン層16上に形成された多孔質層17とを有する。 The channel layer 15 is formed on the insulating film 14 and is arranged to face the gate electrode 13 via the insulating film 14. As shown in FIG. 4, the channel layer 15 has a graphene layer 16 and a porous layer 17 formed on the graphene layer 16.
 本実施形態では、グラフェン層16は単層膜で構成されるが、多層膜であってもよい。また、多層膜の一部の層がグラフェン以外の他の導電材で構成されてもよい。 In the present embodiment, the graphene layer 16 is composed of a single layer film, but may be a multilayer film. Further, a part of the multilayer film may be composed of a conductive material other than graphene.
 多孔質層17は、グラフェン層16の表面を活性炭で装飾することで形成される。多孔質層17を構成する材料は活性炭に限られず、グラフェン層16よりも多孔性であればよく、グラフェン層16と同様に導電特性を持てばよい。多孔質層17を構成する導電性材料には、例えば、炭素系材料、導電性ポリマー、導電性セラミックス、ポーラスシリコンを用いてもよい。 The porous layer 17 is formed by decorating the surface of the graphene layer 16 with activated carbon. The material constituting the porous layer 17 is not limited to activated carbon, and may be more porous than the graphene layer 16 and may have conductive properties similar to the graphene layer 16. As the conductive material constituting the porous layer 17, for example, a carbon-based material, a conductive polymer, conductive ceramics, or porous silicon may be used.
 多孔質層17はガス吸着を促進する働きをするので、多孔性であることによって吸着表面積を大きくし、また多くのダングリングボンドを有していることから、効率よくガスを吸着できる。
 多孔質層17は導電特性を持つので、グラフェン層16上に導電特性を持たない膜を吸着膜として設けた場合に比較して、吸着表面積が大きくなる上、表面に多くのダングリングボンドを有するため、ガス分子吸着が促進され、電荷中性点のシフト量が大きくなる。
Since the porous layer 17 functions to promote gas adsorption, the porosity increases the adsorption surface area, and since it has many dangling bonds, it can efficiently adsorb gas.
Since the porous layer 17 has conductive properties, the adsorption surface area is larger and the surface has many dangling bonds as compared with the case where a film having no conductive properties is provided on the graphene layer 16 as an adsorption film. Therefore, the adsorption of gas molecules is promoted, and the shift amount of the charge neutral point becomes large.
 好ましくは、多孔質層17は、グラフェン層16と同一の炭素系材料で構成される。炭素系材料とは、炭素を主な成分とする物質である。本実施例においては、多孔質層17は、多孔質であって、炭素系材料であるので、すなわち活性炭である。
 これにより、非炭素系の材料を多孔質層17に採用する場合に比較して、電子親和力の異なる異種材料間に形成される電位障壁の形成を抑え、電荷移動を容易にするため電荷中性点の差が大きくなる。
Preferably, the porous layer 17 is made of the same carbon-based material as the graphene layer 16. A carbon-based material is a substance containing carbon as a main component. In this embodiment, the porous layer 17 is porous and is a carbon-based material, that is, activated carbon.
As a result, as compared with the case where a non-carbon material is used for the porous layer 17, the formation of a potential barrier formed between different materials having different electron affinities is suppressed, and charge neutrality is facilitated in order to facilitate charge transfer. The difference between the points becomes large.
 多孔質層17の厚みは特に限定されず、グラフェン層16の厚みと同一であってもよいし、グラフェン層16の厚みよりも薄く、あるいは、厚くてもよい。典型的には、グラフェン層16の厚みは0.35nm、多孔質層17の厚みは30nmである。
 多孔質層17は、グラフェン層16の表面全域を被覆するように形成されるが、これに限られず、グラフェン層16の表面の少なくとも一部を被覆するように形成されてもよい。
The thickness of the porous layer 17 is not particularly limited, and may be the same as the thickness of the graphene layer 16, or may be thinner or thicker than the thickness of the graphene layer 16. Typically, the graphene layer 16 has a thickness of 0.35 nm and the porous layer 17 has a thickness of 30 nm.
The porous layer 17 is formed so as to cover the entire surface of the graphene layer 16, but is not limited to this, and may be formed so as to cover at least a part of the surface of the graphene layer 16.
 図1に示すように、情報処理装置4は、取得部41と、判定部42と、出力部43と、制御部44と、を備える。
 取得部41は、ソース電極11とドレイン電極12との間に流れる電流の変化情報を取得する。以下、ソース電極11とドレイン電極12との間を流れる電流をドレイン電流と称する場合がある。
 判定部42は、取得部41で取得される電流変化情報を用いて、ガスの種類を判定する。具体的には、情報処理装置4は、予め異なる種類の複数のガス毎の電流変化情報を取得し、記憶部6に記憶しておく。判定部42は記憶部6に記憶されている電流変化情報を参照して、センサ10で検知したガスの種類を識別し判定する。また、判定部42により、ガス濃度を判定することもできる。詳細については、後述する。
 出力部43は、取得部41で取得される電流変化情報、判定部42により判定されたガスの種類や濃度といった判定結果を表示装置5へ出力する。
 図2に示すように、制御部44は、センサ10のゲート電極13に印加する電圧を制御する。
As shown in FIG. 1, the information processing device 4 includes an acquisition unit 41, a determination unit 42, an output unit 43, and a control unit 44.
The acquisition unit 41 acquires change information of the current flowing between the source electrode 11 and the drain electrode 12. Hereinafter, the current flowing between the source electrode 11 and the drain electrode 12 may be referred to as a drain current.
The determination unit 42 determines the type of gas by using the current change information acquired by the acquisition unit 41. Specifically, the information processing device 4 acquires current change information for each of a plurality of different types of gas in advance and stores it in the storage unit 6. The determination unit 42 identifies and determines the type of gas detected by the sensor 10 with reference to the current change information stored in the storage unit 6. The gas concentration can also be determined by the determination unit 42. Details will be described later.
The output unit 43 outputs the current change information acquired by the acquisition unit 41 and the determination result such as the type and concentration of the gas determined by the determination unit 42 to the display device 5.
As shown in FIG. 2, the control unit 44 controls the voltage applied to the gate electrode 13 of the sensor 10.
 表示装置5は表示部を有し、情報処理装置4から出力されたガスの種類や濃度等を表示部に表示する。ユーザは、表示部を確認することによりガス判定結果を把握することができる。
 記憶部6は、ガス判定システム1で検出された異なる種類の複数の既知のガス毎の電流変化情報を予め取得し、参照データとして記憶する。記憶部6は、情報処理装置4が通信可能なクラウドサーバ上にあってもよいし、情報処理装置4が備えていてもよい。
The display device 5 has a display unit, and displays the type and concentration of gas output from the information processing device 4 on the display unit. The user can grasp the gas determination result by checking the display unit.
The storage unit 6 acquires in advance current change information for each of a plurality of known gases of different types detected by the gas determination system 1 and stores them as reference data. The storage unit 6 may be on a cloud server on which the information processing device 4 can communicate, or may be provided in the information processing device 4.
 (センサの詳細)
 センサ10は、電界効果トランジスタ型のセンサデバイスである。
 図3(A)、(B)は、ゲート電極13に印加する電圧によって状態変化するチャネル層15及びチャネル層15に吸着するガスの一例としてのCOの電荷状態を説明するチャネル層15付近の部分拡大模式図である。
(Details of sensor)
The sensor 10 is a field effect transistor type sensor device.
3 (A) and 3 (B) show the channel layer 15 whose state changes depending on the voltage applied to the gate electrode 13 and the vicinity of the channel layer 15 for explaining the charge state of CO 2 as an example of the gas adsorbed on the channel layer 15. It is a partially enlarged schematic diagram.
 図3(A)は、ゲート電極13に第1の電圧としての第1のチューニング電圧VT1を所定時間印加したときを示す。本実施形態では、第1のチューニング電圧VT1は、所定時間において一定の電圧であり、-40Vである。第1のチューニング電圧VT1の値は-40Vに限定されることはなく、第1のチューニング電圧VT1を印加することによって、チャネル層15に負電荷が供給され、チャネル層15が価電子帯を有するような電圧値であればよい。
 図3(B)は、ゲート電極13に第2の電圧としての第2のチューニング電圧VT2を所定時間印加したときを示す。本実施形態では、第2のチューニング電圧VT2は所定時間において一定の電圧であり、40Vである。第2のチューニング電圧VT2の値は40Vに限定されることはなく、第2のチューニング電圧VT2を印加することによって、チャネル層15に正電荷が供給され、チャネル層15が伝導帯を有するような電圧値であればよい。
 尚、本実施形態では、第1及び第2のチューニング電圧を一定電圧とし、図11に示すように矩形波状に電圧が変化する例をあげたが、これに限定されない。例えば、電圧の立ち上がりや立下りがなまる、電圧値が若干勾配して変化するなど、所定時間内で電圧値が若干変動してもよく、印加によりチャネル層15が価電子帯又は伝導帯を有するような電圧値であればよい。
Figure 3 (A) shows a case where the gate electrode 13 and the first tuning voltage V T1 as a first voltage is applied for a predetermined time. In the present embodiment, the first tuning voltage V T1 is a constant voltage at a predetermined time, a -40 V. The value of the first tuning voltage V T1 is not limited to -40 V, by applying a first tuning voltage V T1, the negative charge is supplied to the channel layer 15, channel layer 15 valence band Any voltage value may be used as long as it has.
Figure 3 (B) shows when the gate electrode 13 and the second tuning voltage V T2 of the second voltage is applied for a predetermined time. In the present embodiment, the second tuning voltage VT2 is a constant voltage at a predetermined time, which is 40V. The value of the second tuning voltage V T2 is not limited to 40V, by applying a second tuning voltage V T2, the positive charges are supplied to the channel layer 15, channel layer 15 has a conduction band Any voltage value like this may be used.
In the present embodiment, the first and second tuning voltages are set to a constant voltage, and an example in which the voltage changes in a rectangular wave shape as shown in FIG. 11 is given, but the present invention is not limited to this. For example, the voltage value may fluctuate slightly within a predetermined time, for example, the rise and fall of the voltage becomes dull, the voltage value changes with a slight gradient, and the channel layer 15 changes the valence band or the conduction band by application. It suffices as long as it has a voltage value.
 第1のチューニング電圧印加時のチャネル層15と第2のチューニング電圧印加時のチャネル層15は、いずれもガスを引き付ける。図3に示すように、第1のチューニング電圧印加時と第2のチューニング電圧印加時とでは、チャネル層15に吸着するガス分子、ここではCO分子は、チャネル層15との距離や結合角といった結合状態が異なっている。これにより、第1のチューニング電圧VT1印加時ではCOはドナーとして機能する。第2のチューニング電圧VT2印加時ではCOはアクセプタとして機能する。 Both the channel layer 15 when the first tuning voltage is applied and the channel layer 15 when the second tuning voltage is applied attract gas. As shown in FIG. 3, when the first tuning voltage is applied and when the second tuning voltage is applied, the gas molecules adsorbed on the channel layer 15, here the CO 2 molecules, are the distances and bond angles from the channel layer 15. The combined state is different. As a result, CO 2 functions as a donor when the first tuning voltage VT1 is applied. When the second tuning voltage VT2 is applied, CO 2 functions as an acceptor.
 チャネル層にガスを供給した場合、ゲート電極に電圧を印加していない状態では、チャネル層には自然に吸着したガス分子が存在するものの、その数は少ないと考えられる。
 これに対して、本実施形態では、第1のチューニング電圧、第2のチューニング電圧をゲート電極に印加することで、チャネル層の近傍に来たガス分子は、図3上、矢印で示された電界によってチャネル層表面に導かれ、ガス吸着が加速される。
 更に、本実施形態では、図3に示すように、第1のチューニング電圧及び第2のチューニング電圧をそれぞれ印加することにより、チャネル層表面近傍の電界の向きを異ならせ、チャネル層へのガス分子の結合状態を変化させることができる。
When gas is supplied to the channel layer, it is considered that the number of naturally adsorbed gas molecules is small in the channel layer when no voltage is applied to the gate electrode.
On the other hand, in the present embodiment, by applying the first tuning voltage and the second tuning voltage to the gate electrode, the gas molecules that have come to the vicinity of the channel layer are indicated by arrows in FIG. It is guided to the surface of the channel layer by the electric field, and gas adsorption is accelerated.
Further, in the present embodiment, as shown in FIG. 3, by applying the first tuning voltage and the second tuning voltage, the direction of the electric field near the surface of the channel layer is changed, and the gas molecules to the channel layer are different. The binding state of can be changed.
 好ましい第1のチューニング電圧VT1及び第2のチューニング電圧VT2の値は、絶縁膜14の厚みによって適宜設定することができる。本実施形態では285nmの厚みの絶縁膜14を用いており、この場合、チャネル層15が価電子帯(伝導帯)を有するようにするために-40V(40V)程度の電圧が必要である。
 また、チャネル層15が価電子帯と伝導帯の間を切り替わるのを確認するために、第1のチューニング電圧VT1及び第2のチューニング電圧VT2は、負側、正側の両側で電圧を振ることが好ましい。更に、負側、正側の電圧の絶対値が同じとなるように電圧を振ることがより好ましい。
 また、第1のチューニング電圧VT1及び第2のチューニング電圧VT2それぞれの印加時間は数秒~数分である。
The values of the preferred first tuning voltage VT1 and the second tuning voltage VT2 can be appropriately set depending on the thickness of the insulating film 14. In this embodiment, an insulating film 14 having a thickness of 285 nm is used, and in this case, a voltage of about −40 V (40 V) is required so that the channel layer 15 has a valence band (conduction band).
Further, in order to channel layer 15 to confirm that the switching between the conduction band and the valence band, a first tuning voltage V T1 and the second tuning voltage V T2 is negative, the voltage on both sides of the positive side It is preferable to shake. Further, it is more preferable to shake the voltage so that the absolute values of the negative and positive voltages are the same.
The application time of each of the first tuning voltage VT1 and the second tuning voltage VT2 is several seconds to several minutes.
 図5は、ガス判定システム1において、第1のチューニング電圧VT1を所定時間印加後にゲート電極13に掃引電圧を印加したとき、及び、第2のチューニング電圧VT2を所定時間印加後にゲート電極13に掃引電圧を印加したときのソース電極11とドレイン電極12との間に流れる電流の変化を示すグラフである。
 ゲート電極13に印加される電圧は、制御部44によって制御される。
 掃引電圧は、第1のチューニング電圧と、第1のチューニング電圧とは異なる第2のチューニング電圧との範囲で電圧が増減して変化する。本実施形態では、1分程度で-40Vから40Vにリニアに電圧が変化する掃引電圧を用いており、掃引電圧は正負両側に変化する電圧となっている。
FIG. 5 shows the gate electrode 13 when the sweep voltage is applied to the gate electrode 13 after the first tuning voltage VT1 is applied for a predetermined time in the gas determination system 1 and after the second tuning voltage VT2 is applied for a predetermined time. It is a graph which shows the change of the current which flows between a source electrode 11 and a drain electrode 12 when a sweep voltage is applied to.
The voltage applied to the gate electrode 13 is controlled by the control unit 44.
The sweep voltage changes in a range of a first tuning voltage and a second tuning voltage different from the first tuning voltage. In this embodiment, a sweep voltage that linearly changes the voltage from −40 V to 40 V in about 1 minute is used, and the sweep voltage is a voltage that changes on both the positive and negative sides.
 本実施形態では、ガスが供給されたセンサ10のゲート電極13に第1のチューニング電圧VT1を所定時間印加した後、ゲート電極13に掃引電圧を印加しながらドレイン電流I(第1の電流Id1と称する。)を測定する。
 図5に示す実線の曲線51は、第1の電流Id1の変化特性を示す。得られる曲線51において、第1の電流Id1が最小値となるときの点を第1の電荷中性点31と称する。第1の電流Id1が最小値となるときのゲート電圧値を第1のゲート電圧と称する。
 上述したように、第1のチューニング電圧VT1をゲート電極13に印加することにより、チャネル層15は価電子帯を有する。これにより、ガスはチャネル層15に十分引き付けられ、ガスはドナーとなる。
In the present embodiment, after applying the first tuning voltage VT1 to the gate electrode 13 of the sensor 10 to which the gas is supplied for a predetermined time, the drain current Id (first current) while applying the sweep voltage to the gate electrode 13 I d1 ) is measured.
The solid line curve 51 shown in FIG. 5 shows the change characteristic of the first current I d1. In the obtained curve 51, the point when the first current I d1 becomes the minimum value is referred to as the first charge neutral point 31. The gate voltage value when the first current I d1 becomes the minimum value is referred to as a first gate voltage.
As described above, the channel layer 15 has a valence band by applying the first tuning voltage VT1 to the gate electrode 13. As a result, the gas is sufficiently attracted to the channel layer 15 and the gas becomes a donor.
 更に、本実施形態では、ガスが供給されたセンサ10のゲート電極13に第2のチューニング電圧VT2を所定時間印加した後、ゲート電極13に掃引電圧を印加しながらドレイン電流I(第2の電流Id2と称する。)を測定する。
 図5に示す線長が長い破線の曲線52は、第2の電流Id2の変化特性を示す。得られる曲線52において、第2の電流Id2が最小値となるときの点を第2の電荷中性点32と称する。第2の電流Id2が最小値となるときのゲート電圧値を第2のゲート電圧と称する。
Further, in the present embodiment, after applying the second tuning voltage VT2 to the gate electrode 13 of the sensor 10 to which the gas is supplied for a predetermined time, the drain current Id (second) while applying the sweep voltage to the gate electrode 13. The current I d2 ) is measured.
The long broken line curve 52 shown in FIG. 5 shows the change characteristic of the second current I d2. In the obtained curve 52, the point when the second current I d2 becomes the minimum value is referred to as the second charge neutral point 32. The gate voltage value when the second current I d2 becomes the minimum value is referred to as a second gate voltage.
 図5において、線長が短い破線の曲線50は、曲線51と曲線52との横軸方向における中心に位置する曲線である。曲線50における電流Iが最小値となるときの点を中心点30とする。 In FIG. 5, the broken line curve 50 having a short line length is a curve located at the center of the curve 51 and the curve 52 in the horizontal axis direction. The point at which the current I d on the curve 50 becomes the minimum value is defined as the center point 30.
 図5に示すように、掃引電圧(ゲート電圧Vg)に対する第2の電流Id2の特性を示す曲線52は、掃引電圧(ゲート電圧Vg)に対する第1の電流Id1の特性を示す曲線51を横軸方向に移動させた形状にほぼ一致する。
 図5において、VCNPは電荷中性点(Charge neutrality point)をとるときのゲート電圧値を示し、ΔVCNPは第1のゲート電圧と第2のゲート電圧との差分を示す。
As shown in FIG. 5, the curve 52 showing the characteristics of the second current I d2 with respect to the sweep voltage (gate voltage Vg) is the curve 51 showing the characteristics of the first current I d1 with respect to the sweep voltage (gate voltage Vg). It almost matches the shape moved in the horizontal axis direction.
In FIG. 5, V CNP indicates the gate voltage value when the charge neutrality point is taken, and ΔV CNP indicates the difference between the first gate voltage and the second gate voltage.
 ここで、第1の電荷中性点31における第1のゲート電圧と第2の電荷中性点32における第2のゲート電圧は、チャネル層15に吸着するガスの種類毎に固有であり、第1のゲート電圧から第2のゲート電圧までの範囲を示すバンドは、ガスの種類毎に異なる。これは、チャネル層15に引き寄せられてアクセプタ又はドナーとして機能するガスとチャネル層15との結合状態がガスの種類毎に異なるためと考えられる。 Here, the first gate voltage at the first charge neutral point 31 and the second gate voltage at the second charge neutral point 32 are unique to each type of gas adsorbed on the channel layer 15. The band indicating the range from the gate voltage of 1 to the second gate voltage is different for each type of gas. It is considered that this is because the bonding state of the gas attracted to the channel layer 15 and functioning as an acceptor or donor and the channel layer 15 differs depending on the type of gas.
 図6は、ガスの種類によって第1のゲート電圧から第2のゲート電圧までの範囲を示すバンドが異なることを示す図である。図6では、CO(二酸化炭素)、C(ベンゼン)、CO(一酸化炭素)、NH(アンモニア)、O(酸素)の計5種類のガスそれぞれにおけるバンドが示されている。図6では、CNPD(Charge Neutrality Point Disparity:図5における|ΔVCNP|である)の範囲におけるチャネル層の電荷状態を示す。CNPDは第1の電荷中性点31と第2の電荷中性点32の差を示し、バンドに対応する。 FIG. 6 is a diagram showing that the band indicating the range from the first gate voltage to the second gate voltage differs depending on the type of gas. In FIG. 6, bands in a total of five types of gases , CO 2 (carbon dioxide), C 6 H 6 (benzene), CO (carbon monoxide), NH 3 (ammonia), and O 2 (oxygen), are shown. There is. FIG. 6 shows the charge state of the channel layer in the range of CNPD (Charge Neutrality Point Disparity: | ΔVCNP | in FIG. 5). CNPD shows the difference between the first charge neutral point 31 and the second charge neutral point 32, and corresponds to the band.
 図6において、縦方向に延びる帯状体は、第1のゲート電圧から第2のゲート電圧までの範囲を示すバンドを示す。帯状体の上部が第2の電荷中性点32における第1のゲート電圧に対応し、下部が第1の電荷中性点31における第2のゲート電圧に対応する。中心点30は縦方向に延びるバンドの中心に位置する。各バンドにおいて、中心点30より上半分はガスがアクセプタとなる範囲を示し、下半分はガスがドナーとなる範囲を示す。 In FIG. 6, the strip extending in the vertical direction indicates a band indicating a range from the first gate voltage to the second gate voltage. The upper part of the strip corresponds to the first gate voltage at the second charge neutral point 32, and the lower part corresponds to the second gate voltage at the first charge neutral point 31. The center point 30 is located at the center of a band extending in the vertical direction. In each band, the upper half of the center point 30 indicates the range in which the gas is an acceptor, and the lower half indicates the range in which the gas is a donor.
 図6に示すように、ガスの種類によって、第1のゲート電圧と第2のゲート電圧は異なり、バンド幅及びバンドの範囲が異なっている。従って、このバンドデータを用いることによってガスの種類を判定することができる。
 例えば、本実施形態では、複数の既知のガスのバンドデータを予め取得して記憶部6に格納しておく。そして、記憶部6に格納されているデータを参照することにより、未知のガスで求めたバンドデータからガスの種類を判定することができる。
 このように、-40V及び40Vの2値のチューニング電圧印加後の掃引電圧に対応するドレイン電流の変化特性をデータとして取得することにより、ガスの種類の判定が可能となる。
As shown in FIG. 6, the first gate voltage and the second gate voltage are different depending on the type of gas, and the bandwidth and the band range are different. Therefore, the type of gas can be determined by using this band data.
For example, in the present embodiment, band data of a plurality of known gases are acquired in advance and stored in the storage unit 6. Then, by referring to the data stored in the storage unit 6, the type of gas can be determined from the band data obtained for the unknown gas.
In this way, it is possible to determine the type of gas by acquiring the change characteristics of the drain current corresponding to the sweep voltage after applying the two-value tuning voltage of -40V and 40V as data.
 更に、ガスの濃度の変化に応じて第1のゲート電圧から第2のゲート電圧の範囲を示すバンドがほぼリニアに変化する。図7は、ガスの濃度を振って、第1のチューニング電圧印加後に掃引電圧を印加して得られる第1の電荷中性点31における第1のゲート電圧と、第2のチューニング電圧印加後に掃引電圧を印加して得られる第2の電荷中性点32における第2のゲート電圧を測定した結果を示す図である。図中、棒グラフは中心点30におけるゲート電圧値を示す。縦方向に延びる直線は、第1のゲート電圧から第2のゲート電圧までのバンドを示す。
 図7(A)はガスとしてアセトンを用いた場合、図7(B)はアンモニアを用いた場合を示し、1~200ppmの範囲で濃度を振った結果を示す。
Further, the band indicating the range from the first gate voltage to the second gate voltage changes substantially linearly according to the change in the gas concentration. FIG. 7 shows the first gate voltage at the first charge neutral point 31 obtained by applying a sweep voltage after applying the first tuning voltage by varying the concentration of the gas, and sweeping after applying the second tuning voltage. It is a figure which shows the result of having measured the 2nd gate voltage at the 2nd charge neutral point 32 obtained by applying a voltage. In the figure, the bar graph shows the gate voltage value at the center point 30. The straight line extending in the vertical direction indicates the band from the first gate voltage to the second gate voltage.
FIG. 7 (A) shows the case where acetone is used as the gas, and FIG. 7 (B) shows the case where ammonia is used, and the results of varying the concentration in the range of 1 to 200 ppm are shown.
 図7に示すように、判定対象のガスの濃度に応じて第1のゲート電圧から第2のゲート電圧までの範囲を示すバンドはほぼリニアに変化しており、バンドを用いたガス濃度の判定が可能となる。
 例えば、本実施形態では、濃度の異なる既知のガスのバンドのデータを予め取得し記憶部6に格納しておく。そして、記憶部6のデータを参照することにより、未知のガスで求めたバンドのデータからガスの濃度を判定することができる。
As shown in FIG. 7, the band indicating the range from the first gate voltage to the second gate voltage changes substantially linearly according to the concentration of the gas to be determined, and the determination of the gas concentration using the band is performed. Is possible.
For example, in the present embodiment, the data of known gas bands having different concentrations are acquired in advance and stored in the storage unit 6. Then, by referring to the data of the storage unit 6, the gas concentration can be determined from the band data obtained from the unknown gas.
 [ガス判定方法]
 図8~図11を用いて、ガス判定システム1におけるガス判定方法について説明する。
 図8は、ガス判定システム1におけるガス判定のための概略手順を説明するフロー図で
ある。
 図9は、情報処理装置44におけるガス判定方法を説明するフロー図である。
 図10は、ゲート電極に印加する第1のチューニング電圧VT1、第2のチューニング電圧VT2、掃引電圧の信号波形を示す図である。図10に示すように、第1のチューニング電圧VT1及び第2のチューニング電圧VT2は、時間に対してステップ関数となっている。
[Gas judgment method]
The gas determination method in the gas determination system 1 will be described with reference to FIGS. 8 to 11.
FIG. 8 is a flow chart illustrating a schematic procedure for gas determination in the gas determination system 1.
FIG. 9 is a flow chart illustrating a gas determination method in the information processing apparatus 44.
FIG. 10 is a diagram showing signal waveforms of a first tuning voltage VT1 , a second tuning voltage VT2 , and a sweep voltage applied to the gate electrode. As shown in FIG. 10, the first tuning voltage VT1 and the second tuning voltage VT2 are step functions with respect to time.
 まず、図8に示すように、収容室20内にガスが供給される(S1)。収容室20内は常圧となっている。 First, as shown in FIG. 8, gas is supplied into the accommodation chamber 20 (S1). The pressure inside the containment chamber 20 is normal.
 次に、UV光源23からUVがセンサ10及び収容室20内に向かって1分間照射される(S2)。
 UV照射を行うことによりガスが効率よくチャネル層に吸着される。これは、UV照射することにより、チャネル層の表面からO、HO等が除去される(クリーニング効果)とともに、チャネル層の表面上でのガス分子の吸着と光励起脱着との間の動的平衡が導かれてチャネル層のガスの有効利用な吸着サイトが増加するため、及び、吸着分子の状態変化(イオン化など)により吸着が加速されるため、と考えられる。
Next, UV is irradiated from the UV light source 23 toward the sensor 10 and the inside of the accommodation chamber 20 for 1 minute (S2).
By performing UV irradiation, the gas is efficiently adsorbed on the channel layer. This is because O 2 , H 2 O, etc. are removed from the surface of the channel layer by UV irradiation (cleaning effect), and the movement between the adsorption of gas molecules on the surface of the channel layer and the photoexcited desorption. It is considered that this is because the equilibrium is guided and the number of effective adsorption sites for gas in the channel layer increases, and the adsorption is accelerated by the state change (ionization, etc.) of the adsorbed molecules.
 次に、加熱部26によりセンサ10が加熱される(S3)。加熱温度は、好ましくは95℃以上である。本実施形態では、センサ10は110℃の加熱温度に加熱される。
 UV照射及び加熱を行うことにより、第1のチューニング電圧VT1印加後に掃引電圧を印加して得られる、掃引電圧に対する第1の電流Id1の変化を示す曲線51と、第2のチューニング電圧VT2印加後に掃引電圧を印加して得られる、掃引電圧に対する第2の電流Id2の変化を示す曲線52とがより明確に識別可能となる。詳細については後述する。
Next, the sensor 10 is heated by the heating unit 26 (S3). The heating temperature is preferably 95 ° C. or higher. In this embodiment, the sensor 10 is heated to a heating temperature of 110 ° C.
By UV irradiation and heating, obtained by applying a sweep voltage after application first tuning voltage V T1, the curve 51 showing the variation of the first current I d1 for sweep voltage, the second tuning voltage V The curve 52 showing the change of the second current I d2 with respect to the sweep voltage obtained by applying the sweep voltage after applying T2 can be more clearly distinguished. Details will be described later.
 次に、ガス判定が行われる(S4)。ガス判定の詳細について図9及び図10を用いて以下説明する。 Next, the gas determination is performed (S4). The details of the gas determination will be described below with reference to FIGS. 9 and 10.
 ソース電極11とドレイン電極12との間に5~10mVの電圧が印加された状態からガス判定が開始される。各電極に印加される電圧値は制御部44からの制御信号に基づいて制御される。
 ソース電極11とドレイン電極12との間に印加する電圧は、出力の線形領域を用いる。ソース電極11とドレイン電極12との間に印加する電圧は高すぎても低すぎてもノイズが発生するため、ノイズの発生が抑制される5~10mVとすることが好ましい。
The gas determination is started from a state in which a voltage of 5 to 10 mV is applied between the source electrode 11 and the drain electrode 12. The voltage value applied to each electrode is controlled based on the control signal from the control unit 44.
The voltage applied between the source electrode 11 and the drain electrode 12 uses the linear region of the output. If the voltage applied between the source electrode 11 and the drain electrode 12 is too high or too low, noise will be generated. Therefore, it is preferable to set the voltage to 5 to 10 mV, which suppresses the generation of noise.
 図9及び図10に示すように、ガス判定が開始されると、ゲート電極13に第1のチューニング電圧VT1が所定時間印加される(S41)。本実施形態では、-40Vの第1のチューニング電圧VT1が数秒~数分印加される。
 これにより、チャネル層15は価電子帯を有し、ガスはチャネル層15に十分に引き付けられ、ガスはドナーとして機能する。
 第1のチューニング電圧VT1の印加時間は、絶縁膜14の厚み等によって適宜設定される。本実施形態においては、好ましくは5s(秒)以上、更に好ましくは30s以上、そして、好ましくは120s以下、更に好ましくは60s以下であり、チャネル層15が価電子帯を有するのに十分な時間であればよい。また、印加時間は、センサ10の加熱温度等によって適宜好ましい値を設定することができる。
As shown in FIGS. 9 and 10, when the gas determination is started, the first tuning voltage VT1 is applied to the gate electrode 13 for a predetermined time (S41). In the present embodiment, the first tuning voltage V T1 of -40V is applied for several seconds to several minutes.
As a result, the channel layer 15 has a valence band, the gas is sufficiently attracted to the channel layer 15, and the gas functions as a donor.
The application time of the first tuning voltage VT1 is appropriately set depending on the thickness of the insulating film 14 and the like. In the present embodiment, it is preferably 5 s (seconds) or more, more preferably 30 s or more, and preferably 120 s or less, further preferably 60 s or less, in a time sufficient for the channel layer 15 to have a valence band. All you need is. Further, the application time can be appropriately set to a preferable value depending on the heating temperature of the sensor 10 and the like.
 次に、ゲート電極13に掃引電圧が印加され、掃引電圧印加中のソース電極11とドレイン電極12との間に流れる第1の電流Id1が測定される(S42)。本実施形態では、分解能50mV~100mV、レンジ80V、掃引時間1分で電圧の掃引を行う。図10に示すように、-40Vから40Vというように負から正へ徐々にゲート電圧を変化させている。尚、40Vから-40Vというように徐々に正から負へとゲート電圧を変化させてもよい。
 掃引電圧に対する第1の電流Id1の測定結果は取得部41により取得される。
Next, a sweep voltage is applied to the gate electrode 13, and the first current I d1 flowing between the source electrode 11 and the drain electrode 12 while the sweep voltage is being applied is measured (S42). In this embodiment, the voltage is swept with a resolution of 50 mV to 100 mV, a range of 80 V, and a sweep time of 1 minute. As shown in FIG. 10, the gate voltage is gradually changed from negative to positive, such as -40V to 40V. The gate voltage may be gradually changed from positive to negative, such as from 40V to −40V.
The measurement result of the first current I d1 with respect to the sweep voltage is acquired by the acquisition unit 41.
 次に、取得部41により取得された測定結果に基づき、判定部42により、第1の電流Id1が最小値となるときのゲート電圧値である第1のゲート電圧が決定される(S43)。 Next, based on the measurement result acquired by the acquisition unit 41, the determination unit 42 determines the first gate voltage, which is the gate voltage value when the first current I d1 becomes the minimum value (S43). ..
 次に、ゲート電極13に第2のチューニング電圧VT2が所定時間印加される(S44)。本実施形態では、40Vの第2のチューニング電圧VT2が数秒~数分印加される。
 これにより、チャネル層15は伝導帯を有し、ガスはチャネル層15に十分に引き付けられ、ガスはアクセプタとして機能する。第2のチューニング電圧印加後のチャネル層15とガスとの結合状態は、第1のチューニング電圧印加後のチャネル層15とガスとの結合状態と異なっている。
 第2のチューニング電圧VT2の印加時間は、絶縁膜14の厚み等によって適宜設定される。本実施形態においては、好ましくは5s(秒)以上、更に好ましくは30s以上、そして、好ましくは120s以下、更に好ましくは60s以下であり、チャネル層15が伝導帯を有するのに十分な時間であればよい。また、印加時間は、センサ10の加熱温度等によって適宜好ましい値を設定することができる。
Next, a second tuning voltage VT2 is applied to the gate electrode 13 for a predetermined time (S44). In this embodiment, the second tuning voltage V T2 of 40V is applied for several seconds to several minutes.
As a result, the channel layer 15 has a conduction band, the gas is sufficiently attracted to the channel layer 15, and the gas functions as an acceptor. The coupling state of the channel layer 15 and the gas after the application of the second tuning voltage is different from the coupling state of the channel layer 15 and the gas after the application of the first tuning voltage.
The application time of the second tuning voltage VT2 is appropriately set depending on the thickness of the insulating film 14 and the like. In the present embodiment, it is preferably 5 s (seconds) or more, more preferably 30 s or more, and preferably 120 s or less, further preferably 60 s or less, and the time is sufficient for the channel layer 15 to have a conduction band. Just do it. Further, the application time can be appropriately set to a preferable value depending on the heating temperature of the sensor 10 and the like.
 次に、ゲート電極13に掃引電圧が印加され、掃引電圧印加中のソース電極11とドレイン電極12との間に流れる第2の電流Id2が測定される(S45)。本実施形態では、分解能50mV~100mV、レンジ80V、掃引時間1分で電圧の掃引を行った。図10に示すように、-40Vから40Vというように負から正へ徐々にゲート電圧を変化させている。尚、40Vから-40Vというように徐々に正から負へゲート電圧を変化させてもよい。
 掃引電圧に対する第2の電流Id2の測定結果は取得部41により取得される。
Next, a sweep voltage is applied to the gate electrode 13, and a second current I d2 flowing between the source electrode 11 and the drain electrode 12 while the sweep voltage is being applied is measured (S45). In this embodiment, the voltage was swept with a resolution of 50 mV to 100 mV, a range of 80 V, and a sweep time of 1 minute. As shown in FIG. 10, the gate voltage is gradually changed from negative to positive, such as -40V to 40V. The gate voltage may be gradually changed from positive to negative, such as from 40V to −40V.
The measurement result of the second current I d2 with respect to the sweep voltage is acquired by the acquisition unit 41.
 次に、取得部41により取得された測定結果に基づき、判定部42により、第2の電流Id2が最小値となるときのゲート電圧値である第2のゲート電圧が決定される(S46)。 Next, based on the measurement result acquired by the acquisition unit 41, the determination unit 42 determines the second gate voltage, which is the gate voltage value when the second current I d2 becomes the minimum value (S46). ..
 次に、判定部42により、S43及びS46で決定された第1のゲート電圧及び第2のゲート電圧に基づいて、記憶部6に記憶されているデータを参照して、ガスの種類及び濃度が判定される(S47)。尚、ここでは、ガスの種類と濃度の双方を判定する例をあげたが、いずれか一方であってもよい。 Next, the determination unit 42 determines the type and concentration of the gas by referring to the data stored in the storage unit 6 based on the first gate voltage and the second gate voltage determined in S43 and S46. It is determined (S47). In addition, although an example of determining both the type and the concentration of the gas is given here, either one may be used.
 S43、S46、S47が、第1の電流Id1と第2の電流Id2の測定結果に基づいてガスを判定するガス判定ステップに相当する。
 本実施形態では、S42の第1の電流Id1の測定後に、第1の電流Id1が最小値となる第1のゲート電圧Vg1を決定するステップを設けているが、このステップを、S46の第2の電流Id2が最小値となる第2のゲート電圧Vg2を決定するステップのときに行ってもよい。
S43, S46, and S47 correspond to gas determination steps for determining gas based on the measurement results of the first current I d1 and the second current I d2.
In the present embodiment, after the measurement of the first current I d1 of S42, a step of determining the first gate voltage V g1 at which the first current I d1 becomes the minimum value is provided. This may be performed at the step of determining the second gate voltage V g2 at which the second current I d2 of the above is the minimum value.
 本実施形態では、UV照射及び加熱を行うことにより、掃引電圧に対する第1の電流Id1の変化を示す曲線51と、掃引電圧に対する第2の電流Id2の変化を示す曲線52とがより明確に識別可能なデータが得られる。これにより、より精度の高いガス判定が可能となる。 In the present embodiment, the curve 51 showing the change of the first current I d1 with respect to the sweep voltage and the curve 52 showing the change of the second current I d2 with respect to the sweep voltage are more clearly defined by performing UV irradiation and heating. Identifiable data is obtained. This enables more accurate gas determination.
 図11は、第1のチューニング電圧印加、掃引電圧を印加しながら第1の電流Id1を測定、第2のチューニング電圧印加、掃引電圧を印加しながら第2の電流Id2を測定、という一連の工程を5回繰り返したときの、掃引電圧に対する第1の電流Id1の変化と、掃引電圧に対する第2の電流Id2の変化を測定した結果を示す。 FIG. 11 shows a series of measuring the first current I d1 while applying the first tuning voltage and the sweep voltage, applying the second tuning voltage, and measuring the second current I d2 while applying the sweep voltage. The results of measuring the change of the first current I d1 with respect to the sweep voltage and the change of the second current I d2 with respect to the sweep voltage when the above steps are repeated 5 times are shown.
 図11において、実線は、第1のチューニング電圧印加後にゲート電極に掃引電圧を印加した際に得られるドレイン電流(第1の電流)とゲート電圧との特性を示す曲線51である。破線は、第2のチューニング電圧印加後にゲート電極に掃引電圧を印加した際に得られるドレイン電流(第2の電流)とゲート電圧との特性を示す曲線52である。 In FIG. 11, the solid line is a curve 51 showing the characteristics of the drain current (first current) and the gate voltage obtained when the sweep voltage is applied to the gate electrode after the first tuning voltage is applied. The broken line is a curve 52 showing the characteristics of the drain current (second current) and the gate voltage obtained when the sweep voltage is applied to the gate electrode after the second tuning voltage is applied.
 図11(A)はUV光未照射、加熱なしでガス判定を行った場合の掃引電圧に対するソース電極とドレイン電極との間に流れる電流の変化特性を示す実験結果である。
 図11(B)はUV光照射、加熱なしでガス判定を行った場合の掃引電圧に対するソース電極とドレイン電極との間に流れる電流の変化特性を示す実験結果である。
 図11(C)はUV光照射、加熱ありでガス判定を行った場合の掃引電圧に対するソース電極とドレイン電極との間に流れる電流の変化特性を示す実験結果である。
FIG. 11A is an experimental result showing the change characteristic of the current flowing between the source electrode and the drain electrode with respect to the sweep voltage when the gas determination is performed without UV light irradiation and heating.
FIG. 11B is an experimental result showing the change characteristic of the current flowing between the source electrode and the drain electrode with respect to the sweep voltage when the gas determination is performed without UV light irradiation and heating.
FIG. 11C is an experimental result showing the change characteristics of the current flowing between the source electrode and the drain electrode with respect to the sweep voltage when the gas is determined with UV light irradiation and heating.
 図11(A)に示すように、破線で示される曲線52は、実線で示される曲線51が図面上は横軸方向に沿って右側に移動した形にほぼなっている。それぞれの曲線におけるドレイン電流Iが最小値となるときの第1のゲート電圧と第2のゲート電圧との差分をとることができる。 As shown in FIG. 11A, the curve 52 shown by the broken line has a shape in which the curve 51 shown by the solid line is moved to the right along the horizontal axis direction on the drawing. The difference between the first gate voltage and the second gate voltage when the drain current I d in each curve becomes the minimum value can be taken.
 図11(B)に示すように、破線で示される曲線52は、実線で示される曲線51が図面上は横軸方向に沿って右側に移動するとともに、縦軸方向に沿ってやや上方向に移動する形にほぼなっている。それぞれの曲線におけるドレイン電流Iが最小値となるときの第1のゲート電圧と第2のゲート電圧との差分をとることができる。 As shown in FIG. 11B, in the curve 52 shown by the broken line, the curve 51 shown by the solid line moves to the right along the horizontal axis direction in the drawing and slightly upward along the vertical axis direction. It is almost in the form of moving. The difference between the first gate voltage and the second gate voltage when the drain current I d in each curve becomes the minimum value can be taken.
 図11(C)に示すように、破線で示される曲線52は、実線で示される曲線51が図面上は横軸方向に沿って右側に移動するとともに、縦軸方向に沿って上方向に移動する形になっており、曲線51と曲線52とは明確に識別が可能となっている。 As shown in FIG. 11C, in the curve 52 shown by the broken line, the curve 51 shown by the solid line moves to the right along the horizontal axis direction on the drawing and moves upward along the vertical axis direction. The curve 51 and the curve 52 can be clearly distinguished from each other.
 このように、図11(A)~(C)のいずれの図面においても、第1のチューニング電圧印加後にゲート電極に掃引電圧を印加した際に得られるドレイン電流とゲート電圧との特性を示す曲線51と第2のチューニング電圧印加後にゲート電極に掃引電圧を印加した際に得られるドレイン電流とゲート電圧との特性を示す曲線52とは横軸方向にずれた形状となっており、第1のゲート電圧及び第2のゲート電圧によってガスの種類の判定が可能となる。
 そして、図11(C)に示すように、UV照射及び加熱をすることにより、更に第1のゲート電圧と第2のゲート電圧の横軸方向における差分を大きくとることができ、第1のゲート電圧から第2のゲート電圧までの範囲を示すバンドをより明瞭なものとすることができる。これにより、ガスの種類の判定精度をより向上させることができる。
As described above, in any of the drawings of FIGS. 11A to 11C, a curve showing the characteristics of the drain current and the gate voltage obtained when the sweep voltage is applied to the gate electrode after the first tuning voltage is applied. The curve 52 showing the characteristics of the drain current and the gate voltage obtained when the sweep voltage is applied to the gate electrode after applying the 51 and the second tuning voltage has a shape deviated in the horizontal axis direction, and the first The type of gas can be determined by the gate voltage and the second gate voltage.
Then, as shown in FIG. 11C, by UV irradiation and heating, the difference between the first gate voltage and the second gate voltage in the horizontal axis direction can be further increased, and the first gate can be further increased. The band indicating the range from the voltage to the second gate voltage can be made clearer. Thereby, the accuracy of determining the type of gas can be further improved.
 以上のように、本発明のガス判定方法では、グラフェンをチャネルとした電界効果トランジスタ構造を有するガスセンサを用いて精度高くガスの種類又は濃度を判定することができる。また、小型のガスセンサとすることができるので、センサ装置2を小型化することができる。 As described above, in the gas determination method of the present invention, the type or concentration of gas can be determined with high accuracy by using a gas sensor having a field effect transistor structure using graphene as a channel. Further, since the gas sensor can be made small, the sensor device 2 can be made small.
 さらに本実施形態においては、チャネル層15が、グラフェン層16と多孔質層17との積層体で構成される。多孔質層17は、グラフェン層16よりも多孔性が高いため、ガスの吸着効率が高い。しかも、多孔質層17はグラフェン層16と同じ炭素系の材料(活性炭)で構成されるため、チャネル層15の導電特性を良好に維持することができる。これにより、チャネル層15におけるガスの検出精度を高めることができる。 Further, in the present embodiment, the channel layer 15 is composed of a laminate of the graphene layer 16 and the porous layer 17. Since the porous layer 17 is more porous than the graphene layer 16, the gas adsorption efficiency is high. Moreover, since the porous layer 17 is made of the same carbon-based material (activated carbon) as the graphene layer 16, the conductive properties of the channel layer 15 can be maintained satisfactorily. As a result, the accuracy of gas detection in the channel layer 15 can be improved.
 ここで、図12に、チャネル層がグラフェン層の単層構造の場合におけるドレイン電流特性と、チャネル層がグラフェン層と多孔質層との積層構造である場合のドレイン電流特性とを比較して示す。
 図12(A)、(B)はそれぞれ、真空下におけるゲート電圧の掃引時におけるソース-ドレイン間の電流特性(二点鎖線)と、キャリアガスをNとする3ppmのアンモニア存在下におけるゲート電圧の掃引時のソース-ドレイン間の電流特性(実線)を示している。図12(A)は、チャネル層がグラフェン層の単層構造の場合の電流特性を、図12(B)は、チャネル層がグラフェン層と多孔質層との積層構造の場合の電流特性をそれぞれ示している。
Here, FIG. 12 shows a comparison between the drain current characteristic when the channel layer has a single-layer structure of a graphene layer and the drain current characteristic when the channel layer has a laminated structure of a graphene layer and a porous layer. ..
12 (A) and 12 (B) show the current characteristics (dashed line) between the source and drain when the gate voltage is swept under vacuum, and the gate voltage in the presence of 3 ppm of ammonia with the carrier gas as N 2. The current characteristics (solid line) between the source and drain during sweeping are shown. FIG. 12 (A) shows the current characteristics when the channel layer has a single-layer structure of a graphene layer, and FIG. 12 (B) shows the current characteristics when the channel layer has a laminated structure of a graphene layer and a porous layer. Shown.
 チャネル層がグラフェン層の単層構造の場合、図12(A)に示すように、上記アンモニアガスの導入時における電荷中性点のシフト量は約1.5Vであったのに対して、チャネル層がグラフェン層と多孔質層との積層構造の場合、図12(B)に示すように、上記アンモニアガスの導入時における電荷中性点のシフト量は約5Vであった。
 このことから、多孔質層17を有する本実施形態のセンサ10によれば、多孔質層17を有しないセンサと比較して、ガスに対する感度を増大させることができので、ガス濃度が低い場合でも高精度に検出することができる。
When the channel layer has a single-layer structure of a graphene layer, as shown in FIG. 12 (A), the shift amount of the charge neutral point at the time of introducing the ammonia gas was about 1.5 V, whereas the channel When the layer had a laminated structure of a graphene layer and a porous layer, as shown in FIG. 12 (B), the shift amount of the charge neutral point at the time of introducing the ammonia gas was about 5 V.
From this, according to the sensor 10 of the present embodiment having the porous layer 17, the sensitivity to gas can be increased as compared with the sensor having no porous layer 17, so that even when the gas concentration is low. It can be detected with high accuracy.
 さらに本実施形態によれば、チャネル層15が多孔質層17を有するため、チャネル層15に検出対象ガスの選択性をもたせることができる。図13(A),(B)は、活性炭からなる多孔質層17を備えたセンサ10により、空気存在下でアンモニアガスを検出した結果を示す、図12と同様のドレイン電流特性を示す図である。
 図13(A)は、空気雰囲気下おけるセンサ10のドレイン電流特性と、当該空気に5ppbのアンモニアを混合した雰囲気下におけるセンサ10のドレイン電流特性とを示している。アンモニア導入前後において電荷中性点の明瞭なシフトが確認された。
 同様に、図13(B)は、空気雰囲気下におけるセンサ10のドレイン電流特性と、当該空気に500pptのアンモニアを混合した雰囲気下におけるセンサ10のドレイン電流特性とを示している。この例でも、アンモニア導入前後において電荷中性点の明瞭なシフトが検出された。
 これらの結果は、多孔質層17の細孔が分子が比較的大きいOガスを通さず、分子が比較的小さいアンモニアガスのみ通すことによって、Oガスをフィルタリングしたためであると考えられる。このことから、活性炭である多孔質層17を利用することでガスの選択性が得られることが確認された。
Further, according to the present embodiment, since the channel layer 15 has the porous layer 17, the channel layer 15 can have the selectivity of the detection target gas. 13 (A) and 13 (B) are diagrams showing the same drain current characteristics as in FIG. 12, showing the results of detecting ammonia gas in the presence of air by the sensor 10 provided with the porous layer 17 made of activated carbon. be.
FIG. 13A shows the drain current characteristic of the sensor 10 in an air atmosphere and the drain current characteristic of the sensor 10 in an atmosphere in which 5 ppb of ammonia is mixed with the air. A clear shift in the charge neutral point was confirmed before and after the introduction of ammonia.
Similarly, FIG. 13B shows the drain current characteristic of the sensor 10 in an air atmosphere and the drain current characteristic of the sensor 10 in an atmosphere in which 500 ppt of ammonia is mixed with the air. In this example as well, a clear shift in the charge neutral point was detected before and after the introduction of ammonia.
It is considered that these results are due to the fact that the pores of the porous layer 17 do not pass the O 2 gas having a relatively large molecule, but pass only the ammonia gas having a relatively small molecule to filter the O 2 gas. From this, it was confirmed that gas selectivity can be obtained by using the porous layer 17 which is activated carbon.
 [センサの製造方法]
 続いて、以上のように構成される本実施形態のセンサ10の製造方法について説明する。
[Sensor manufacturing method]
Subsequently, a method of manufacturing the sensor 10 of the present embodiment configured as described above will be described.
 まず、図14(A)に示すように、銅箔101の表面にグラフェン層160をCVD(chemical vapor deposition)法などにより形成する。グラフェン層160は、図2に示したセンサ10におけるグラフェン層16に相当する。 First, as shown in FIG. 14A, a graphene layer 160 is formed on the surface of the copper foil 101 by a CVD (chemical vapor deposition) method or the like. The graphene layer 160 corresponds to the graphene layer 16 in the sensor 10 shown in FIG.
 なお、銅箔101上にグラフェン層160が積層された市販品が用いられてもよい。この場合、銅箔101の両面にグラフェン層160が形成されたものが用いられてもよい。この場合、銅箔101の一方側の面に形成されたグラフェン層160のみが使用され、銅箔101の他方側の面に形成されたグラフェン層160は、Oプラズマエッチング等で銅箔101から除去される。 A commercially available product in which the graphene layer 160 is laminated on the copper foil 101 may be used. In this case, a copper foil 101 having graphene layers 160 formed on both sides may be used. In this case, only one side graphene layer 160 formed on the surface of the copper foil 101 is used, the other side graphene layer 160 formed on the surface of the copper foil 101, a copper foil 101 with O 2 plasma etching or the like Will be removed.
 続いて、図14(B)に示すように、グラフェン層160の表面に、例えばスピンコート法等によって保護層103を形成する。保護層103は、グラフェン層160を保護するためのものであり、必要に応じて省略可能である。保護層103を構成する樹脂は特に限定されず、例えば、感光性レジスト樹脂を用いることができる。本実施形態では、保護層103として、例えば、ポリメタクリル酸メチル(poly methyl meth acrylate、PMMA)が用いられる。 Subsequently, as shown in FIG. 14 (B), the protective layer 103 is formed on the surface of the graphene layer 160 by, for example, a spin coating method. The protective layer 103 is for protecting the graphene layer 160, and can be omitted if necessary. The resin constituting the protective layer 103 is not particularly limited, and for example, a photosensitive resist resin can be used. In the present embodiment, for example, polymethylmethacrylate (PMMA) is used as the protective layer 103.
 続いて、図14(C)に示すように、銅箔101、グラフェン層160およびレジスト樹脂層103の積層体を容器104内の溶剤105に浮かべて銅箔101のみを溶解する。溶剤105には、例えば、ペルオキソ二硫酸アンモニウム等が用いられる。 Subsequently, as shown in FIG. 14C, the laminate of the copper foil 101, the graphene layer 160, and the resist resin layer 103 is floated on the solvent 105 in the container 104 to dissolve only the copper foil 101. As the solvent 105, for example, ammonium peroxodisulfate or the like is used.
 そして、図14(D)に示すように、溶剤105に浮いたグラフェン層160をすくい上げて基板110に載せ、グラフェン層160およびレジスト樹脂層103を乾燥させる。基板110は、シリコン酸化膜が表面に形成されたシリコン基板が用いられ、シリコン酸化膜上にグラフェン層160が載置される。
 なお、上記シリコン基板およびシリコン酸化膜はそれぞれ、図2に示したセンサ10におけるゲート電極13および絶縁膜14に相当する(図15(A)参照)。
Then, as shown in FIG. 14D, the graphene layer 160 floating on the solvent 105 is scooped up and placed on the substrate 110 to dry the graphene layer 160 and the resist resin layer 103. As the substrate 110, a silicon substrate having a silicon oxide film formed on its surface is used, and the graphene layer 160 is placed on the silicon oxide film.
The silicon substrate and the silicon oxide film correspond to the gate electrode 13 and the insulating film 14 in the sensor 10 shown in FIG. 2, respectively (see FIG. 15 (A)).
 その後、図14(E)に示すように、アセトンで保護層103を溶かし、洗浄を行った後、所定温度でアニール処理を行い、基板110とグラフェン層160との間の密着性を高める。 After that, as shown in FIG. 14 (E), the protective layer 103 is melted with acetone, washed, and then annealed at a predetermined temperature to improve the adhesion between the substrate 110 and the graphene layer 160.
 続いて、図15(A)に示すように、グラフェン層160上にレジスト樹脂層106をスピンコート法により形成する。そして、レジスト樹脂層106に対して露光および現像処理を施すことで、図15(B)に示すようにレジスト樹脂層106を所定形状にパターニングする。レジスト樹脂層106の露光方法は特に限定されず、露光マスクを用いた露光法、電子線描画などのマスクレス露光法などが採用可能である。 Subsequently, as shown in FIG. 15A, the resist resin layer 106 is formed on the graphene layer 160 by the spin coating method. Then, by exposing and developing the resist resin layer 106, the resist resin layer 106 is patterned into a predetermined shape as shown in FIG. 15 (B). The exposure method of the resist resin layer 106 is not particularly limited, and an exposure method using an exposure mask, a maskless exposure method such as electron beam drawing, and the like can be adopted.
 続いて、図15(C)に示すように、ドライエッチングによって、レジスト樹脂層106の開口部から露出するグラフェン層160を除去する。グラフェン層160のドライエッチング方法には、例えば、Oプラズマが用いられる。 Subsequently, as shown in FIG. 15C, the graphene layer 160 exposed from the opening of the resist resin layer 106 is removed by dry etching. For the dry etching method of the graphene layer 160, for example, O 2 plasma is used.
 続いて、図15(D)に示すように、レジスト樹脂層106の表面およびその開口部の内部に第1金属層107aを形成する。その後、図15(E)に示すように、レジスト樹脂層106を除去することで第1金属層107aをパターニングし(リフトオフ)、グラフェン層160に隣接する第1金属層107aのパターンを基板110上に形成する。 Subsequently, as shown in FIG. 15 (D), the first metal layer 107a is formed on the surface of the resist resin layer 106 and inside the opening thereof. Then, as shown in FIG. 15 (E), the first metal layer 107a is patterned (lifted off) by removing the resist resin layer 106, and the pattern of the first metal layer 107a adjacent to the graphene layer 160 is formed on the substrate 110. To form.
 第1金属層107aは単層でもよいし、多層構造であってもよい。本実施形態では、密着材料として厚さが5nm程度のクロム(Cr)が形成され、その上に電極材料として厚さが70nm程度の金(Au)が形成される。第1金属層107aの成膜方法も特に限定されず、スパッタ法でもよいし、真空蒸着法であってもよい。本実施形態では、電子ビーム蒸着法によって第1金属層107aが形成される。 The first metal layer 107a may be a single layer or a multilayer structure. In the present embodiment, chromium (Cr) having a thickness of about 5 nm is formed as an adhesion material, and gold (Au) having a thickness of about 70 nm is formed on the chromium (Cr) as an electrode material. The film forming method of the first metal layer 107a is not particularly limited, and may be a sputtering method or a vacuum vapor deposition method. In this embodiment, the first metal layer 107a is formed by the electron beam deposition method.
 続いて、図16(A)に示すように、基板110上に、第1レジスト樹脂層108aを形成し、その上に第2レジスト樹脂層108bを形成する。第1レジスト樹脂層108aには、例えばメタクリル酸メチル(methyl meth acrylate、MMA)膜が用いられ、第2レジスト樹脂層108bには、例えば、ポリメタクリル酸メチル(poly methyl meth acrylate、PMMA)膜が用いられる。 Subsequently, as shown in FIG. 16A, the first resist resin layer 108a is formed on the substrate 110, and the second resist resin layer 108b is formed on the first resist resin layer 108a. For the first resist resin layer 108a, for example, a methyl methacrylate (MMA) film is used, and for the second resist resin layer 108b, for example, a polymethylmethacrylate (PMMA) film is used. Used.
 続いて、図16(B)に示すように、電子線リソグラフィ技術などを用いて第1レジスト樹脂層108aおよび第2レジスト樹脂層108bを露光および現像することで、グラフェン層160と金属層107との境界部が露出するレジストパターンを形成する。
 本実施形態では、第1レジスト樹脂層108aの開口幅が第2レジスト樹脂層108bの開口幅よりも大きい開口パターンが形成される。
Subsequently, as shown in FIG. 16B, the graphene layer 160 and the metal layer 107 are formed by exposing and developing the first resist resin layer 108a and the second resist resin layer 108b using electron beam lithography technology or the like. A resist pattern is formed in which the boundary portion of the surface is exposed.
In the present embodiment, an opening pattern in which the opening width of the first resist resin layer 108a is larger than the opening width of the second resist resin layer 108b is formed.
 続いて、図16(C)に示すように、第2レジスト樹脂層108bの表面およびその開口部の内部に第1金属層107bを形成する。その後、図16(D)に示すように、第1および第2レジスト樹脂層108a,108bを除去することで第2金属層107bをパターニングし(リフトオフ)、グラフェン層160と第1金属層107aとの境界部に跨る第2金属層107bのパターンを基板110上に形成する。 Subsequently, as shown in FIG. 16C, the first metal layer 107b is formed on the surface of the second resist resin layer 108b and inside the opening thereof. Then, as shown in FIG. 16D, the second metal layer 107b is patterned (lifted off) by removing the first and second resist resin layers 108a and 108b, and the graphene layer 160 and the first metal layer 107a are formed. A pattern of the second metal layer 107b straddling the boundary portion of the above is formed on the substrate 110.
 第2金属層107bは単層でもよいし、多層構造であってもよい。本実施形態では、密着材料として厚さが5nm程度のクロム(Cr)が形成され、その上に電極材料として厚さが20nm程度の金(Au)が形成される。第2金属層107bの成膜方法も特に限定されず、スパッタ法でもよいし、真空蒸着法であってもよい。本実施形態では、電子ビーム蒸着法によって第2金属層107bが形成される。 The second metal layer 107b may be a single layer or a multilayer structure. In the present embodiment, chromium (Cr) having a thickness of about 5 nm is formed as an adhesion material, and gold (Au) having a thickness of about 20 nm is formed on the chromium (Cr) as an electrode material. The film forming method of the second metal layer 107b is not particularly limited, and may be a sputtering method or a vacuum vapor deposition method. In this embodiment, the second metal layer 107b is formed by the electron beam deposition method.
 第1金属層107aおよび第2金属層107bは、共通の金属層107を構成する。金属層107は、図2に示したセンサ10におけるソース電極11およびドレイン電極12に相当する。本実施形態では、第1レジスト樹脂層108aの開口幅が第2レジスト樹脂層108bの開口幅よりも大きいため、第2金属層107bは、第1レジスト樹脂層108aの開口部側面に接触しにくく、これによりリフトオフの際の第2金属層107bのパターニング精度を高めることができる。 The first metal layer 107a and the second metal layer 107b form a common metal layer 107. The metal layer 107 corresponds to the source electrode 11 and the drain electrode 12 in the sensor 10 shown in FIG. In the present embodiment, since the opening width of the first resist resin layer 108a is larger than the opening width of the second resist resin layer 108b, the second metal layer 107b is less likely to come into contact with the side surface of the opening of the first resist resin layer 108a. As a result, the patterning accuracy of the second metal layer 107b at the time of lift-off can be improved.
 続いて、図17(A)に示すように、基板10上に、グラフェン層160および金属層107を被覆するレジスト樹脂層121をスピンコーティングなどにより形成する。
 なお、図17(A)において上段は基板110の断面図、下段はその平面図である(図17(B)~(D)についても同様)。
Subsequently, as shown in FIG. 17A, a resist resin layer 121 for coating the graphene layer 160 and the metal layer 107 is formed on the substrate 10 by spin coating or the like.
In FIG. 17A, the upper part is a cross-sectional view of the substrate 110, and the lower part is a plan view thereof (the same applies to FIGS. 17B to 17D).
 続いて、図17(B)に示すように、電子線リソグラフィ技術などを用いてレジスト樹脂層121を露光および現像し、隣り合う2つの金属層107の間に位置するグラフェン層160を部分的に被覆するレジストパターンを形成する。 Subsequently, as shown in FIG. 17B, the resist resin layer 121 is exposed and developed using electron beam lithography technology or the like, and the graphene layer 160 located between two adjacent metal layers 107 is partially formed. A resist pattern to be coated is formed.
 続いて、図17(C)に示すように、レジスト樹脂層121で被覆されていないグラフェン層160をOプラズマエッチングによって基板110上から除去する。
 エッチング条件は、特に限定されず、本実施形態では、ガス流量が20sccm、圧力が6Pa、パワーがRF20W(13.56MHz)、処理時間が35秒とされる。エッチング処理後のレジスト樹脂層121の厚みは、例えば、30nmである。
Subsequently, as shown in FIG. 17C, the graphene layer 160 not coated with the resist resin layer 121 is removed from the substrate 110 by O 2 plasma etching.
The etching conditions are not particularly limited, and in the present embodiment, the gas flow rate is 20 sccm, the pressure is 6 Pa, the power is RF 20 W (13.56 MHz), and the processing time is 35 seconds. The thickness of the resist resin layer 121 after the etching treatment is, for example, 30 nm.
 続いて、図17(D)に示すように、真空中でレジスト樹脂層121のアニール処理を行うことで、レジスト樹脂層121を炭化処理する。これにより、グラフェン層160上に、レジスト樹脂層121を構成する炭素の組成物からなる活性炭層170が形成される。活性炭層170は、図2に示したセンサ10における多孔質層17に相当する。 Subsequently, as shown in FIG. 17 (D), the resist resin layer 121 is carbonized by performing an annealing treatment of the resist resin layer 121 in vacuum. As a result, the activated carbon layer 170 made of the carbon composition constituting the resist resin layer 121 is formed on the graphene layer 160. The activated carbon layer 170 corresponds to the porous layer 17 in the sensor 10 shown in FIG.
 このように、本実施形態においては、グラフェン層160のパターニング用マスクであるレジスト樹脂層121を炭化処理することで、グラフェン層160上に活性炭層170を形成する。レジスト樹脂層121のアニール条件は特に限定されず、例えば、アニール温度が300℃、アニール時間が3時間30分とされる。 As described above, in the present embodiment, the activated carbon layer 170 is formed on the graphene layer 160 by carbonizing the resist resin layer 121, which is a mask for patterning the graphene layer 160. The annealing conditions of the resist resin layer 121 are not particularly limited, and for example, the annealing temperature is 300 ° C. and the annealing time is 3 hours and 30 minutes.
 活性炭層170の厚みは、レジスト樹脂層121の厚みで調整可能である。例えば、グラフェン層160のパターンエッチングの際、Oプラズマエッチングによってレジスト樹脂層121を所定厚みに薄厚化してもよい。あるいは、活性炭層170の形成後、再度のエッチング処理によって当該活性炭層170の厚みを調整してもよい。 The thickness of the activated carbon layer 170 can be adjusted by adjusting the thickness of the resist resin layer 121. For example, when the pattern etching of the graphene layer 160, the resist resin layer 121 may be thinned to a predetermined thickness by the O 2 plasma etch. Alternatively, after the activated carbon layer 170 is formed, the thickness of the activated carbon layer 170 may be adjusted by etching again.
 以上、本発明の実施形態について説明したが、本発明は上述の実施形態にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and it goes without saying that various modifications can be made without departing from the gist of the present invention.
 例えば、上述の実施形態においては、第1及び第2のチューニング電圧と掃引電圧が印加されるゲート電極は共通のゲート電極であったが、これに限定されない。第1及び第2のチューニング電圧を印加するゲート電極とは別に掃引電圧が印加されるゲート電極が設けられてもよく、双方のゲート電極が、絶縁膜を介してグラフェン層に対向して配置されていればよい。 For example, in the above-described embodiment, the gate electrodes to which the first and second tuning voltages and the sweep voltage are applied are common gate electrodes, but the present invention is not limited to this. A gate electrode to which a sweep voltage is applied may be provided separately from the gate electrode to which the first and second tuning voltages are applied, and both gate electrodes are arranged so as to face the graphene layer via an insulating film. I just need to be there.
 また、上述の実施形態においては、チューニング電圧(固定電圧)を第1のチューニング電圧と第2のチューニング電圧の2値としたが、少なくとも2値あればよく、3値以上であってもよい。3値以上とすることにより、ガスの情報が増加し、より精度の高いガス判定が可能となる。 Further, in the above-described embodiment, the tuning voltage (fixed voltage) is set to two values of the first tuning voltage and the second tuning voltage, but at least two values may be sufficient, and three or more values may be used. By setting the value to 3 or more, the gas information is increased, and more accurate gas determination becomes possible.
 また、上述の実施形態においては、負(上述の実施形態では-40V)の第1のチューニング電圧、掃引電圧、正(上述の実施形態では40V)の第2のチューニング電圧、掃引電圧の順にゲート電極に電圧が印加される例をあげたが、正の第2のチューニング電圧、掃引電圧、負の第1のチューニング電圧、掃引電圧の順にゲート電極に電圧が印加されてもよい。 Further, in the above-described embodiment, the gate is in the order of the negative (-40V in the above-described embodiment) first tuning voltage, the sweep voltage, the positive (40V in the above-described embodiment) second tuning voltage, and the sweep voltage. Although the example in which the voltage is applied to the electrode is given, the voltage may be applied to the gate electrode in the order of the positive second tuning voltage, the sweep voltage, the negative first tuning voltage, and the sweep voltage.
 また、多孔質層はグラフェン層の全面を覆ってもよいし、部分的に覆っていてもよい。 Further, the porous layer may cover the entire surface of the graphene layer or may partially cover it.
 1…ガス判定システム
 4…情報処理装置
 10…センサ(センサデバイス)
 11…ソース電極
 12…ドレイン電極
 13…ゲート電極
 14…絶縁膜
 15…チャネル層
 16,160…グラフェン層
 17…多孔質層
 42…判定部
 44…制御部
 170…活性炭層
1 ... Gas judgment system 4 ... Information processing device 10 ... Sensor (sensor device)
11 ... Source electrode 12 ... Drain electrode 13 ... Gate electrode 14 ... Insulating film 15 ... Channel layer 16,160 ... Graphene layer 17 ... Porous layer 42 ... Judgment unit 44 ... Control unit 170 ... Activated carbon layer

Claims (5)

  1.  ゲート電極と、
     前記ゲート電極上に形成された絶縁膜と、
     前記絶縁膜上に形成されたグラフェン層と、
     前記絶縁膜上に前記グラフェン層を介して対向配置されたソース電極およびドレイン電極と、
     前記グラフェン層上に形成された導電性の多孔質層と
     を具備するセンサデバイス。
    With the gate electrode
    The insulating film formed on the gate electrode and
    The graphene layer formed on the insulating film and
    A source electrode and a drain electrode arranged to face each other on the insulating film via the graphene layer,
    A sensor device including a conductive porous layer formed on the graphene layer.
  2.  請求項1に記載のセンサデバイスであって、
     前記多孔質層は、炭素系材料である
     センサデバイス。
    The sensor device according to claim 1.
    The porous layer is a sensor device made of a carbon-based material.
  3.  ゲート電極と、前記ゲート電極上に形成された絶縁膜と、前記絶縁膜上に形成されたグラフェン層と、前記絶縁膜上に前記グラフェン層を介して対向配置されたソース電極およびドレイン電極とを準備し、
     前記グラフェン層上に樹脂層を形成し、
     前記樹脂層を炭化処理する
     センサデバイスの製造方法。
    A gate electrode, an insulating film formed on the gate electrode, a graphene layer formed on the insulating film, and a source electrode and a drain electrode arranged to face each other on the insulating film via the graphene layer. Prepare and
    A resin layer is formed on the graphene layer,
    A method for manufacturing a sensor device that carbonizes the resin layer.
  4.  請求項3に記載のセンサデバイスの製造方法であって、
     前記グラフェン層を所定形状にパターニングするドライエッチング工程をさらに有し、
     前記樹脂層は、前記グラフェン層のパターニング用マスクとして前記グラフェン層上に形成される
     センサデバイスの製造方法。
    The method for manufacturing a sensor device according to claim 3.
    Further having a dry etching step of patterning the graphene layer into a predetermined shape,
    A method for manufacturing a sensor device in which the resin layer is formed on the graphene layer as a mask for patterning the graphene layer.
  5.  ゲート電極と、前記ゲート電極上に形成された絶縁膜と、前記絶縁膜上に形成されたグラフェン層と、前記絶縁膜上に前記グラフェン層を介して対向配置されたソース電極およびドレイン電極と、前記グラフェン層上に形成された導電性の多孔質層と、を有するセンサデバイスと、
     前記ゲート電極に印加する電圧を制御する制御部と、前記ソース電極と前記ドレイン電極との間に流れる電流の測定結果に基づいて前記多孔質層に吸着されるガスを判定する判定部と、を有する情報処理装置と
     を具備するガス判定システム。
    A gate electrode, an insulating film formed on the gate electrode, a graphene layer formed on the insulating film, and a source electrode and a drain electrode arranged to face each other on the insulating film via the graphene layer. A sensor device having a conductive porous layer formed on the graphene layer, and
    A control unit that controls the voltage applied to the gate electrode and a determination unit that determines the gas adsorbed on the porous layer based on the measurement result of the current flowing between the source electrode and the drain electrode. A gas determination system including an information processing device having the same.
PCT/JP2021/012624 2020-03-31 2021-03-25 Sensor device, production method for sensor device, and gas determination system WO2021200570A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022512079A JPWO2021200570A1 (en) 2020-03-31 2021-03-25

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020063789 2020-03-31
JP2020-063789 2020-03-31

Publications (1)

Publication Number Publication Date
WO2021200570A1 true WO2021200570A1 (en) 2021-10-07

Family

ID=77928835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012624 WO2021200570A1 (en) 2020-03-31 2021-03-25 Sensor device, production method for sensor device, and gas determination system

Country Status (2)

Country Link
JP (1) JPWO2021200570A1 (en)
WO (1) WO2021200570A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016021693A1 (en) * 2014-08-08 2016-02-11 日本化薬株式会社 Field effect transistor and sensor using same
JP2019168276A (en) * 2018-03-22 2019-10-03 株式会社東芝 Molecule detection element and molecule detector
US20190313944A1 (en) * 2018-04-13 2019-10-17 Northeastern University Molecularly-Imprinted Electrochemical Sensors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016021693A1 (en) * 2014-08-08 2016-02-11 日本化薬株式会社 Field effect transistor and sensor using same
JP2019168276A (en) * 2018-03-22 2019-10-03 株式会社東芝 Molecule detection element and molecule detector
US20190313944A1 (en) * 2018-04-13 2019-10-17 Northeastern University Molecularly-Imprinted Electrochemical Sensors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AKSHAY V. SINGHAL, HEMANT CHARAYA, INDRANIL LAHIRI: "Noble Metal Decorated Graphene-Based Gas Sensors and Their Fabrication: A Review", CRITICAL REVIEWS IN SOLID STATE AND MATERIALS SCIENCES, vol. 42, no. 6, 30 November 2016 (2016-11-30), pages 499 - 526, XP009536471, ISSN: 0161-1593, DOI: 10.1080/10408436.2016.1244656 *

Also Published As

Publication number Publication date
JPWO2021200570A1 (en) 2021-10-07

Similar Documents

Publication Publication Date Title
US11385196B2 (en) Energetic pulse clearing of environmentally sensitive thin-film devices
US8736000B1 (en) Capacitive chemical sensor
Kiriakidis et al. Ultra-low gas sensing utilizing metal oxide thin films
RU2638132C2 (en) Integrated circuit with nano-conductive sensors in field transistors, manufactured by chemical method, sensor device, method of measurement and method of manufacture
Banerjee et al. Detection of benzene and volatile aromatic compounds by molecularly imprinted polymer-coated quartz crystal microbalance sensor
JPH0240973B2 (en)
Bartosik et al. Mechanism and suppression of physisorbed-water-caused hysteresis in graphene FET sensors
KR20120125906A (en) Method for preparing biosensor comprising reduced graphene oxide pattern using printing of self-assembled monolayer and biosensor prepared thereby
US8637344B2 (en) Multi-rate resist method to form organic TFT contact and contacts formed by same
JP4049250B2 (en) Semiconductor sensing device, manufacturing method thereof, and sensor having the device
WO2021200570A1 (en) Sensor device, production method for sensor device, and gas determination system
KR101608817B1 (en) Electrode structure for capacitive biosensor having interdigitated electrode, method for manufacturing the electrode structure, and capacitive biosensor having the electrode structure
JP2018004392A (en) Method for detecting volatile organic compound and detection device
CN110006975B (en) AFP-based biosensor and preparation method thereof
JP3952193B2 (en) Semiconductor sensing device
JP2015063443A (en) Surface treatment method of diamond thin film, manufacturing method of field effect transistor, and sensor element
CN111551587A (en) Gas sensor, preparation method thereof and method for regulating and controlling performance of gas sensor
US20220146451A1 (en) Two-dimensional-material-based field-effect transistor for detection of pathogens and methods for manufacturing
US12013364B2 (en) Illuminated ultra-thin chemical sensors, and systems and methods comprising same
Liu et al. A phase sensitive measurement technique for boosted response speed of graphene fet gas sensor
WO2021040050A1 (en) Gas determination device, gas determination method, and gas determination system
Choi et al. Electron-interfered field-effect transistors as a sensing platform for detecting a delicate surface chemical reaction
EA037632B1 (en) Gas sensor for detecting a gas component
Polyakov et al. Effect of various adsorbates on electronic states of the thin diamond-like carbon films
White II Electropolymerization and Characterization of Thin Film Dielectrics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21782097

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022512079

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21782097

Country of ref document: EP

Kind code of ref document: A1