WO2021200400A1 - Blade tip exchangeable cutting tool and tool body - Google Patents

Blade tip exchangeable cutting tool and tool body Download PDF

Info

Publication number
WO2021200400A1
WO2021200400A1 PCT/JP2021/011999 JP2021011999W WO2021200400A1 WO 2021200400 A1 WO2021200400 A1 WO 2021200400A1 JP 2021011999 W JP2021011999 W JP 2021011999W WO 2021200400 A1 WO2021200400 A1 WO 2021200400A1
Authority
WO
WIPO (PCT)
Prior art keywords
tool
flow path
coolant
wall surface
main body
Prior art date
Application number
PCT/JP2021/011999
Other languages
French (fr)
Japanese (ja)
Inventor
正史 神原
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Publication of WO2021200400A1 publication Critical patent/WO2021200400A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/06Face-milling cutters, i.e. having only or primarily a substantially flat cutting surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/28Features relating to lubricating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/28Making specific metal objects by operations not covered by a single other subclass or a group in this subclass cutting tools
    • B23P15/34Making specific metal objects by operations not covered by a single other subclass or a group in this subclass cutting tools milling cutters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing

Definitions

  • the present invention relates to a cutting tool with a replaceable cutting edge and a tool body.
  • the present application claims priority based on Japanese Patent Application No. 2020-664868 filed in Japan on March 31, 2020, the contents of which are incorporated herein by reference.
  • Patent Document 1 discloses that a plurality of openings for injecting coolant toward the tip of a cutting insert are provided.
  • One aspect of the present invention has been made in view of the above-mentioned problems of the prior art, and is a cutting tool and a tool having a replaceable cutting edge, which can simultaneously improve the processability of chips and the cooling property of a cutting insert.
  • the purpose is to provide the main body.
  • the tool body of the cutting tool with a replaceable cutting edge of the present invention rotates around the axis of the central axis to cut the object to be cut.
  • the main body has a coolant flow path that allows coolant to flow in from the tool base end side of the main body and injects the coolant from the vicinity of the insert mounting seat, and the coolant flow path is the main body.
  • An inlet flow path located at the base end portion of the portion, a coolant pool portion connected to the tool tip side of the inlet flow path and having a flow path diameter larger than that of the inlet flow path, and an insert mounting seat from the coolant pool portion.
  • the coolant pool portion has a plurality of injection flow paths extending toward the inside of the tool, and the injection flow path is opened in the inclined wall surface. It is characterized by being.
  • the coolant pool portion has an inclined wall surface that is radially inward toward the tool tip side, so that the tool is obliquely outward from the inclined wall surface and toward the tool tip side. It is easy to secure the meat of the main body, and it is easy to arrange the insert mounting seat at this position. Then, the jet flow path can be shortened by extending the jet flow path from the sloped wall surface to the insert mounting seat located on the radial side of the inclined wall surface and diagonally toward the tool tip side. Since the flow path resistance of the jet flow path acting on the coolant is reduced, jetting can be performed without lowering the pressure of the coolant.
  • the jet flow path can be connected to the inclined wall surface from the front, the range in which the direction in which the jet flow path extends from the coolant pool portion can be adjusted becomes large. Thereby, the injection direction of the coolant can be easily adjusted without bending the injection flow path. Since the coolant can be accurately supplied to the cutting insert with sufficient pressure, chips can be efficiently removed and the cooling performance of the cutting insert can be improved.
  • the coolant pool portion is formed around the central axis around the central axis, and the wall surface region gradually reduces in diameter from the tool base end side toward the tool tip side.
  • the inclined wall surface having the above and the injection flow path opens may be configured to be located in the wall surface region.
  • the jet flow path described above is provided at a position close to each insert mounting seat. Can be formed. Since the plurality of jet flow paths toward the respective insert mounting seats are jet flow paths having the same jet performance as each other, the coolant can be supplied to the plurality of cutting inserts at an equal pressure.
  • the coolant pool portion has a first wall surface area whose diameter gradually increases from the tool base end side toward the tool tip side and a tool tip side of the first wall surface area.
  • the inclined wall surface having a second wall surface region in which the diameter is gradually reduced from the end portion of the tool toward the tip end side of the tool and the injection flow path opens is also configured to be located in the second wall surface region. good.
  • the coolant pool has the largest diameter in a part (center) in the axial direction.
  • the jet flow path may be configured to extend from the connection portion with the coolant pool portion to the rear side in the tool rotation direction.
  • the jet flow path may be configured to extend linearly from the inclined wall surface toward the outer peripheral surface of the main body portion.
  • the coolant can be accurately supplied at a sufficient pressure without lowering the injection pressure.
  • the main body portion has a plurality of recesses on the outer peripheral portion on the tool tip side, and the insert mounting seat is formed on a part of the inner wall surface of each recess.
  • the jet flow path may be opened on the inner wall surface on the front side in the tool rotation direction with respect to the insert mounting seat.
  • the coolant can be injected toward the chips generated in front of the cutting insert in the tool rotation direction, so that the generated chips can be quickly removed. Can be done.
  • the main body portion may be configured to be manufactured by a 3D printer.
  • the main body has a plurality of jet flow paths extending from the coolant pool to the outer peripheral surface, by using a 3D printer, a complicated shape can be easily formed as compared with the case of manufacturing by injection molding or cutting. Can be made.
  • the cutting tool with a replaceable cutting edge of the present invention is characterized by including the tool body and a plurality of cutting inserts that are detachably attached to the tool body. According to the cutting tool with a replaceable cutting edge provided with the tool body described above, it is possible to improve the processability of chips generated by the cutting insert and to improve the cooling efficiency of the cutting insert.
  • a cutting tool with a replaceable cutting edge and a tool body capable of improving the processability of chips and the cooling efficiency of a cutting insert.
  • FIG. 1 is a perspective view showing an embodiment of a cutting tool with a replaceable cutting edge of the present invention.
  • FIG. 2 is a side view showing the configuration of a cutting tool with a replaceable cutting edge.
  • FIG. 3 is a perspective view showing a configuration of a cutting insert of the cutting tool with a replaceable cutting edge of the present invention.
  • FIG. 4 is a plan view of the cutting tool with a replaceable cutting edge of the present invention as viewed from the tip side.
  • FIG. 5 is a cross-sectional view showing the configuration of a cutting tool with a replaceable cutting edge.
  • FIG. 6 is a perspective view showing the position of the jet flow path formed in the tool body in the vicinity of the cutting insert.
  • FIG. 7 is a side view showing the shape of the jet flow path.
  • FIG. 8 is a view of the jet flow path viewed from the inlet opening side.
  • FIG. 9 is a diagram showing how coolant is injected from the tool body toward the cutting insert.
  • FIG. 1 is a perspective view showing an embodiment of the cutting tool 100 with a replaceable cutting edge of the present invention.
  • FIG. 2 is a side view showing the configuration of the cutting tool 100 with a replaceable cutting edge of the present invention.
  • FIG. 3 is a perspective view showing the configuration of the cutting insert 10 of the cutting tool 100 with a replaceable cutting edge of the present invention.
  • FIG. 4 is a plan view of the cutting tool 100 with a replaceable cutting edge as viewed from the tip side.
  • FIG. 5 is a cross-sectional view showing the configuration of the cutting tool 100 with a replaceable cutting edge.
  • FIG. 6 is a perspective view showing the position of the jet flow path 19 formed in the tool body 11 in the vicinity of the cutting insert 10.
  • FIG. 7 is a side view showing the shape of the jet flow path 19.
  • FIG. 8 is a view of the jet flow path 19 as viewed from the inlet opening 19a side.
  • FIG. 9 is a diagram showing how the coolant 25 is injected from the tool body 11 toward the cutting insert 10.
  • the cutting tool 100 having a replaceable cutting edge includes a tool body 11 and a plurality of cutting inserts 10.
  • the plurality of cutting inserts 10 are detachably attached to the plurality of insert mounting seats 12 formed on the outer peripheral portion on the tip end side of the tool body 11 by mounting bolts 13, respectively.
  • the base end side (upper side in FIG. 1) of the tool body 11 is connected to the spindle of the tool machine.
  • the cutting tool 100 with a replaceable cutting edge rotates around the central axis O shown in FIG. 1 in the tool rotation direction T, so that the object to be cut is cut by a plurality of cutting inserts 10.
  • the tool main body 11 has a main body portion 110 that can rotate around the central axis O, and a plurality of insert mounting seats 12 located on the outer peripheral portion of the main body portion 110.
  • the tool body 11 of the present embodiment is manufactured by using a 3D printer, and is manufactured by laminating while melting and laminating the powder material of the raw material metal of the tool body 11.
  • the material and manufacturing method of the tool body 11 are not limited to those described above, and the tool body 11 may be manufactured by cutting or injection molding.
  • the main body 110 has a larger diameter at the tool tip side (lower side in FIG. 1) than at the tool base end side, and has a substantially outer shape centered on the central axis O. It is formed in a disk shape.
  • the surface on the tool base end side is referred to as the base end surface 11b
  • the surface on the tool tip side is referred to as the tip surface 11a.
  • a plurality of tip pockets (recesses) 14 recessed inward in the radial direction of the main body 110 are formed on the outer peripheral portion of the main body 110 on the tool tip side at intervals in the circumferential direction. As shown in FIG.
  • the tip pocket 14 has a first recess 14A extending from the tool tip side toward the tool base end side, and a second recess 14B communicating with the tool tip side of the first recess 14A.
  • the inner wall surface (wall surface) 14b of the second recess 14B facing the tool rotation direction T is formed with an insert mounting seat 12 to which the cutting insert 10 is mounted.
  • a plurality of (four) chip pockets 14 are formed in the main body 110 at equal intervals in the circumferential direction.
  • One insert mounting seat 12 is formed in each of the second recesses 14B of the four chip pockets 14.
  • FIG. 3 is a perspective view showing the configuration of the cutting insert 10 in the present embodiment.
  • the cutting insert 10 is formed in a polygonal plate shape by a hard material such as cemented carbide. In the case of the present embodiment, it is formed in the shape of a hexagonal plate in which acute-angled angles and obtuse-angled angles are alternately arranged around the insert central axis C.
  • the cutting insert 10 includes two hexagonal surfaces 2 facing opposite sides and six side surfaces 3 arranged around the two hexagonal surfaces 2. The lengths of each side of the hexagonal surface 2 when viewed from the axial direction of the insert central axis C are substantially equal.
  • the cutting insert 10 of the present embodiment is a negative type cutting insert, and the plurality of side surfaces 3 have a flat shape parallel to the insert central axis C.
  • the axial direction of the insert central axis C refers to the direction from one hexagonal surface 2 to the other hexagonal surface 2 along the insert central axis C.
  • a mounting hole 4 is formed in the center of the cutting insert 10 so as to penetrate the cutting insert 10 in the axial direction of the insert central axis C.
  • the mounting holes 4 are opened in a pair of hexagonal surfaces 2 perpendicular to the insert central axis C, respectively.
  • a mounting bolt 13 for mounting the cutting insert 10 to the insert mounting seat 12 on the tool body 11 side is inserted into the mounting hole 4.
  • an annular flat surface portion 2a perpendicular to the insert central axis C is formed around the opening of the mounting hole 4.
  • a curved surface portion 5A is formed around the flat surface portion 2a viewed from the axial direction of the insert central axis C.
  • the flat surface portion 2a is located closer to the central portion in the axial direction of the insert central axis C than the curved surface portion 5A. That is, on the hexagonal surface 2 of the cutting insert 10, the flat surface portion 2a is located at a position lower than the curved surface portion 5A.
  • the cutting insert 10 has a plurality of (six) corner portions C1 and C2 on the outer peripheral portion thereof.
  • the first corner portion C1 and the second corner portion C2 are alternately arranged in the circumferential direction of the cutting insert 10.
  • the sandwiching angle of the first corner portion C1 seen from the axial direction of the insert central axis C is smaller than the sandwiching angle of the second corner portion C2.
  • three cutting blades 5 are formed on each of the two hexagonal surfaces 2.
  • the cutting edge 5 has a concave rake face 5a.
  • the rake face 5a is a part of the curved surface portion 5A formed around the flat surface portion 2a of the hexagonal surface 2 and is composed of a portion corresponding to the first corner portion C1.
  • the rake face 5a has a concave curved surface in which the first corner portion C1 side located on the outer peripheral portion of the cutting insert 10 protrudes most outward in the axial direction and dents inward in the axial direction toward the insert central axis C side. There is. Therefore, the rake face 5a of the cutting edge 5 can curl the tip of the chip 30 generated by scooping up the object to be cut. As a result, it is possible to prevent the chips 30 from coming into contact with the cutting surface of the work piece and the chips 30 from being sandwiched between the cutting insert 10 and the cutting surface of the work piece.
  • the cutting insert 10 is fixed to the insert mounting seat 12 of the tool body 11 by screwing the mounting bolt 13 inserted through the mounting hole 4 into the screw hole provided in the insert mounting seat 12.
  • the cutting insert 10 is attached to the tool body 11 with one of the pair of hexagonal surfaces 2 facing forward in the tool rotation direction T.
  • the cutting insert 10 is attached to the tool body 11 in a posture in which the front and back hexagonal surfaces 2 are parallel to the radial direction of the tool body 11.
  • the tool body 11 of the present embodiment has a plurality of keyways 1A provided so as to open in the base end surface 11b.
  • the tool body 11 has a coolant flow path 7 inside the tool body 11.
  • the tool body 11 has a clamp bolt insertion hole 8 that opens in the tip surface 11a and extends in the axial direction of the central axis O.
  • the coolant flow path 7 and the clamp bolt insertion hole 8 are connected to each other in the axial direction of the central axis O inside the tool body 11.
  • the center of the tool body 11 has a shape penetrated by a coolant flow path 7 communicating with the central axis O in the axial direction and a clamp bolt insertion hole 8.
  • the axial direction of the central axis O refers to the direction from the distal end surface 11a to the proximal end surface 11b along the central axis O, or the direction from the proximal end surface 11b to the distal end surface 11a along the central axis O.
  • the key groove 1A is a concave groove that opens in the base end surface 11b and extends in the radial direction that intersects the central axis O.
  • the tool body 11 has four keyways 1A.
  • the four keyways 1A are arranged radially around the central axis O at equal angles to each other.
  • the radial inner end of each keyway 1A communicates with the coolant flow path 7 that opens in the center of the base end surface 11b.
  • the radial outer end of the keyway 1A is open to the outer peripheral surface 110a of the main body 110.
  • a key at the tip of an arbor (not shown) is fitted into the key groove 1A.
  • the tool body 11 is attached to the tip of the arbor by screwing the clamp bolt 9 (FIG. 5) inserted from the clamp bolt insertion hole 8 on the tool tip side into the tip of the arbor.
  • the tool body 11 is attached to the spindle of the machine tool via an arbor.
  • the coolant flow path 7 includes an inlet flow path 15 that opens to the base end surface 11b of the main body 110, a coolant pool 16 that connects to the tool tip side of the inlet flow path 15, and a coolant pool 16. It has a plurality of jet flow paths 19 that communicate with each other.
  • the coolant flow path 7 is a flow path for injecting the coolant flowing in from the tool base end side of the main body 110 from the vicinity of the insert mounting seat 12.
  • the inlet flow path 15 extends in the axial direction of the central axis O with the central axis O as the center. One end side of the inlet flow path 15 opens in the center of the base end surface 11b, and the other end side is connected to the coolant pool portion 16.
  • the inlet flow path 15 penetrates the portion of the main body 110 on the tool base end side in the axial direction of the central axis O.
  • the inlet flow path 15 opens circularly in the center of the base end surface 11b and extends in the axial direction of the central axis O with a uniform inner diameter toward the tool tip side.
  • a radial inner opening 15a of the keyway 1A opens on the inner peripheral surface of the inlet flow path 15 located on the tool base end side.
  • the coolant reservoir 16 has a shape that is rotationally symmetric with respect to the central axis O.
  • the coolant collecting portion 16 has a coolant accommodating space K for storing the coolant supplied toward the cutting insert 10.
  • the coolant collecting portion 16 has a diameter (flow path diameter) larger than that of the portion 15b located on the tool tip side of the key groove 1A of the inlet flow path 15. With this configuration, the coolant reservoir 16 can secure a sufficient volume.
  • the inner wall surface of the coolant reservoir 16 has a substantially bicone shape in which the maximum diameter side of two substantially cones having the same shape are opposed to each other in the axial direction of the central axis O.
  • the inner wall surface of the coolant pool portion 16 has a shape in which the diameter is reduced from the central portion of the central axis O having the maximum diameter in the axial direction toward the tool tip side and the tool base end side, respectively.
  • the central portion in the axial direction of the central axis O means a portion corresponding to the center in the length along the axial direction of the central axis O of the tool body 11.
  • the coolant collecting portion 16 has a first wall surface region R1 whose diameter gradually increases from the base end surface 11b side toward the tip end surface 11a side, and a base end surface 11b from the end portion of the first wall surface region R1 on the base end surface 11b side. It has a second wall surface region R2 that gradually shrinks in diameter toward the side.
  • the coolant pool 16 has a base end side peripheral wall surface 16a, a tip end side peripheral wall surface 16b, and a bottom surface 16c that partition the coolant accommodating space K in the axial direction of the central axis O.
  • the coolant pool portion 16 has the maximum diameter at the top portion 16d formed by intersecting the proximal end side peripheral wall surface 16a and the distal end side peripheral wall surface 16b at the central position in the axial direction of the central axis O.
  • the peripheral wall surface 16a on the base end side is connected to the end portion on the tool tip side of the inlet flow path 15 at the end portion on the tool base end side.
  • the base end side peripheral wall surface 16a is located in the first wall surface region R1 whose diameter increases from the tool base end side toward the tip end surface 11a (top 16d) side.
  • the tip side peripheral wall surface 16b is connected to the tool tip side end portion (top 16d) of the base end side peripheral wall surface 16a at the end portion on the tool base end side.
  • the peripheral wall surface 16b on the tip end side is located in the second wall surface region R2 whose diameter decreases from the base end side of the tool toward the tip end surface 11a side.
  • the bottom surface 16c extends inward in the radial direction of the main body 110 from the tool tip side end of the tip side peripheral wall surface 16b.
  • the bottom surface 16c is annular when viewed from the axial direction of the central axis O.
  • the bottom surface 16c is inclined toward the tool base end side in the radial direction of the main body portion 110 (toward the central axis O) from the end portion connected to the front end side peripheral wall surface 16b.
  • the diameter of the bottom surface 16c is reduced toward the base end surface 11b side.
  • the bottom surface 16c is arranged at a position overlapping the front end side peripheral wall surface 16b when viewed from the radial direction of the main body 110.
  • the coolant pool portion 16 has the deepest depth from the connection position with the inlet flow path 15 at the connection position 16g between the front end side peripheral wall surface 16b and the bottom surface 16c.
  • a clamp bolt insertion hole 8 opens in the center of the bottom surface 16c.
  • a plurality of jet flow paths 19 extending linearly from the coolant collecting portion 16 toward the insert mounting seat 12 are formed in the vicinity of each insert mounting seat 12 formed on the outer peripheral portion.
  • the coolant pool portion 16 has an inclined wall surface 16f that is radially inward toward the tool tip side, so that the coolant pool portion 16 is radially outward and toward the tool tip side from the inclined wall surface 16f. It is easy to secure the meat of the tool body in the oblique direction, and it is easy to arrange the insert mounting seat 12 at this position.
  • the jet flow path 19 can be shortened by extending the jet flow path 19 from the sloped wall surface 16f to the insert mounting seat 12 located on the radial side of the inclined wall surface 16f and diagonally toward the tool tip side.
  • the flow path resistance of the injection flow path 19 acting on the coolant is reduced, so that the coolant can be injected without lowering the pressure.
  • the jet flow path 19 can be connected to the inclined wall surface 16f from the front, the range in which the direction in which the jet flow path 19 extends from the coolant pool portion 16 can be adjusted becomes large. Thereby, the injection direction of the coolant can be easily adjusted without bending the injection flow path 19. Since the coolant can be accurately supplied to the cutting insert 10 with sufficient pressure, chips can be efficiently removed and the cooling performance of the cutting insert can be improved.
  • the coolant pool portion 16 is formed around the central axis O, and has a second wall surface region R2 whose diameter gradually decreases from the tool base end side toward the tool tip side.
  • the inclined wall surface 16f through which the jet flow path 19 opens is located in the second wall surface region R2.
  • the inner wall surface of the coolant reservoir 16 on the tool tip side has a substantially conical shape, and in the tool body 11 in which a plurality of insert mounting seats 12 are lined up in the circumferential direction, the above-mentioned position is close to each insert mounting seat 12.
  • the jet flow path 19 can be formed. Since the plurality of jet flow paths 19 toward the respective insert mounting seats 12 are jet flow paths having the same jet performance as each other, the coolant can be supplied to the plurality of cutting inserts 10 with uniform pressure.
  • the intersection angle between the normal line of the inclined wall surface 16f and the center line of the jet flow path 19 is 45 ° or less. May be good. According to this configuration, since the jet flow path is connected from the front direction of the inclined wall surface 16f, the range in which the direction in which the jet flow path 19 extends from the coolant pool portion 16 can be adjusted becomes large. Thereby, the injection direction of the coolant can be easily adjusted without bending the injection flow path 19.
  • each chip pocket 14 has a first opening row 20A in which five outlet openings 19b are arranged in a row, and a second opening row 20B in which four outlet openings 19b are arranged in a row.
  • first opening row 20A and the second opening row 20B are not particularly distinguished, they are referred to as "opening row 20". That is, each chip pocket 14 has two rows of opening rows 20 in which the outlet openings 19b of the plurality of jet flow paths 19 are lined up in a row.
  • the first opening row 20A and the second opening row 20B inject coolant 25 in different directions (FIG. 9).
  • the first opening row 20A comprises five outlet openings 19b of the first jet flow path 19A, and injects coolant 25 toward the cutting insert 10 fixed to the insert mounting seat 12.
  • the plurality of first jet flow paths 19A constituting the first opening row 20A are flow paths for supplying the coolant 25 toward the rake face 5a in the vicinity of the cutting edge 5 of the cutting insert 10. ..
  • the second opening row 20B is composed of four outlet openings 19b of the second jet flow path 19B.
  • the second opening row 20B supplies the coolant 25 toward the front side in the tool rotation direction T with respect to the cutting insert 10 fixed to the insert mounting seat 12.
  • the second jet flow path 19B is a flow path that supplies the coolant 25 toward the chips 30 of the work piece cut by the cutting insert 10.
  • each outlet opening 19b of the plurality of jet flow paths 19A and 19B constituting the opening rows 20A and 20B has a first recess 14A inclined at a predetermined angle with respect to the central axis O.
  • the inner wall surface 14a is arranged along the inclination of the inner wall surface 14a, and is arranged in a line substantially in the axial direction of the central axis O when viewed from the radial direction of the main body 110.
  • the direction in which the plurality of outlet openings 19b are lined up is substantially parallel to the extending direction of the outer peripheral blade of the cutting insert 10.
  • the first opening row 20A and the second opening row 20B are arranged substantially parallel to each other on the inner wall surface 14a of the first recess 14A in the chip pocket 14 at intervals in the tool rotation direction T.
  • the first opening row 20A is formed in the vicinity of the second recess 14B to which the cutting insert 10 is attached, and the second opening row 20B is formed on the front side in the tool rotation direction T with respect to the first opening row 20A. ing.
  • the number of outlet openings 19b of the jet flow paths 19 constituting the opening rows 20A and 20B may be different between the first opening row 20A and the second opening row 20B.
  • the first opening row 20A that supplies the coolant 25 toward the cutting insert 10 is in the jet flow path 19 more than the second opening row 20B that supplies the coolant 25 toward the chips 30. a lot.
  • the first opening row 20A is composed of the outlet openings 19b of the five jet channels 19A
  • the second opening row 20B is composed of the outlet openings 19b of the four jet channels 19B.
  • the number of openings in the jet flow path 19 constituting the opening rows 20A and 20B is not limited to the number described above, and can be changed as appropriate.
  • the number of jet flow paths 19 provided in the main body 110 is increased or decreased according to the size of the cutting insert 10 and the size and amount of chips 30, and the jet flow paths 19 constituting the opening rows 20A and 20B are formed.
  • the number of openings may be changed.
  • the number of jet flow paths 19 in each of the opening rows 20A and 20B is at least three or more.
  • the main body 110 of the present embodiment has two or more opening rows 20 for each chip pocket 14, three or more rows may be formed.
  • the number of outlet openings 19b constituting the rows of openings 20 may be the same in a plurality of rows of openings, or may be different for each row of openings.
  • the flow path diameters (opening diameters of the outlet openings 19b) of the plurality of jet flow paths 19A and 19B that form the first opening row 20A and the second opening row 20B, respectively, may be different from each other. Further, even within the opening rows 20A and 20B, the flow path diameters (opening diameters of the outlet openings 19b) of the plurality of jet flow paths 19 constituting the opening rows 20A and 20B may be different.
  • a large coolant pool 16 is provided in the center of the main body 110, and the coolant pool 16 is directed toward each cutting insert 10 in the vicinity of the plurality of cutting inserts 10 provided on the outer periphery of the main body 110.
  • a plurality of jet flow paths 19 are extended. Each jet flow path 19 extends linearly from the coolant pool portion 16 toward the inner wall surface 14a of the chip pocket 14 without branching in the middle.
  • the narrow flow path is not branched, the pressure of the coolant 25 is unlikely to drop in the injection flow path 19, and the coolant 25 is vigorously injected from the outlet opening 19b.
  • all the jet flow paths 19 provided in the main body 110 have substantially the same shape as each other. By making the shape and length of each jet flow path 19 uniform, it is possible to suppress variations in flow path resistance for each jet flow path 19, and to make the jet pressure from each outlet opening 19b uniform.
  • the jet flow path 19 has a tapered shape (FIG. 7) in which the diameter is gradually reduced from the coolant pool portion 16 toward the insert mounting seat 12.
  • the outlet opening has a reduced diameter taper shape in which the opening diameter of the outlet opening 19b on the other end side communicating with the chip pocket 14 is smaller than the opening diameter of the inlet opening 19a on one end side communicating with the coolant reservoir 16.
  • the flow velocity of the coolant 25 ejected from the 19b side can be increased. In the present embodiment, the flow velocity of the injected coolant 25 is about 7 to 9 m / s.
  • a spiral groove 19d is formed on the inner inner peripheral surface of the jet flow path 19.
  • a plurality of (4) spiral grooves 19d exist in the circumferential direction of the injection flow path 19, and each spiral groove 19d draws a spiral from the inlet opening 19a side of the injection flow path 19 to the outlet opening 19b. Is formed in.
  • the widths and depths of the four spiral grooves 19d are substantially the same as each other.
  • the four spiral grooves 19d are arranged at substantially equal intervals in the circumferential direction of the inner peripheral surface of the jet flow path 19.
  • Each spiral groove 19d is formed to have a uniform width and depth in the direction in which each spiral groove 19d extends.
  • the jet flow path 19 of the present embodiment is viewed from the axial direction of the central axis O shown in FIG. 4, and the extending direction of the jet flow path 19 is a direction intersecting the radial direction of the main body 110.
  • the angle ⁇ 1 is the intersection of the straight line S1 extending in the radial direction of the main body 110 through the inlet opening 19a of the jet flow path 19A belonging to the first opening row 20A and the center line N1 of the jet flow path 19A. The angle.
  • the angle ⁇ 2 is the intersection angle between the straight line S2 extending in the radial direction of the main body 110 through the inlet opening 19a of the jet flow path 19B belonging to the second opening row 20B and the center line N2 of the jet flow path 19B.
  • the angle ⁇ 1 and the angle ⁇ 2 are different from each other, and both are 45 ° or less.
  • the center lines N1 and N2 of the jet flow paths 19A and 19B are both behind the straight lines S1 and S2 extending in the radial direction of the main body 110. It extends toward the side.
  • the linear jet flow paths 19A and 19B can be arranged in the direction from the front side of the tool rotation direction T toward the cutting insert 10.
  • the coolant 25 can be injected from each outlet opening 19b toward the cutting insert 10 side without forming the injection flow paths 19A and 19B in a curved shape.
  • the injection directions of the coolant 25 to be injected from the first opening row 20A and the second opening row 20B can be optimized by making the angle ⁇ 1 and the angle ⁇ 2 different from each other.
  • the angle ⁇ 1 is larger than the angle ⁇ 2
  • the jet flow path 19A is more inclined to the rear side of the tool rotation direction T with respect to the radial direction of the main body 110 than the jet flow path 19B. ing. This makes it easier for the coolant 25 jetted from the jet flow path 19A to face the rake face 5a of the cutting insert 10.
  • the clamp bolt insertion hole 8 is a bolt hole into which a clamp bolt 9 for connecting the tool body 11 to the tool machine is inserted.
  • One end side of the clamp bolt insertion hole 8 opens in the center of the bottom surface 16c of the coolant pool portion 16, and the other end side opens in the tip surface 11a.
  • the clamp bolt insertion hole 8 is a through hole in which a first through hole 81 and a second through hole 82 having different diameters are connected in the axial direction of the central axis O.
  • the first through hole 81 and the second through hole 82 are coaxial positions with respect to the central axis O. Both the first through hole 81 and the second through hole 82 have a diameter smaller than that of the inlet flow path 15 constituting the coolant flow path 7.
  • the first through hole 81 communicates with the coolant pool portion 16 and opens in the center of the bottom surface 16c thereof.
  • the tool base end side of the second through hole 82 communicates with the first through hole 81, and the tool tip side opens in the center of the tip surface 11a.
  • the clamp bolt 9 is inserted into the clamp bolt insertion hole 8 from the tip surface 11a side of the main body 110.
  • the shaft portion 9b of the clamp bolt 9 is passed through the first through hole 81, and the head portion 9a of the clamp bolt 9 is inserted into the second through hole.
  • the clamp bolt 9 has a coolant flow path 91 formed in the center of the shaft portion 9b along the central shaft O.
  • the coolant flow path 91 is composed of a main flow path 91a whose one end side opens to the bolt tip surface and a plurality of branch flow paths 91b communicating with the other end side of the main flow path 91a.
  • Each branch flow path 91b opens on the outer peripheral surface of the shaft portion 9b and communicates with the coolant pool portion 16.
  • the cutting edge exchangeable cutting tool 100 composed of the tool body 11 and the plurality of cutting inserts 10 is attached to the spindle of the tool machine 200 via an arbor (not shown) attached to the rear end side of the tool body 11.
  • the inlet flow path 15 of the coolant flow path 7 formed in the main body 110 is closed by an arbor.
  • the coolant flow path of the arbor is connected to the coolant flow path 91 of the clamp bolt 9.
  • the coolant flow path 91 of the clamp bolt 9 is connected to the coolant pool portion 16 of the main body portion 110.
  • the coolant 25 is supplied from the coolant flow path of the arbor to the coolant pool portion 16 of the main body 110 through the coolant flow path 91 of the clamp bolt 9.
  • the coolant 25 flowing into the coolant flow path 7 through the clamp bolt 9 fills the coolant accommodating space K in the coolant reservoir 16.
  • the coolant 25 filled in the coolant accommodating space K passes through the plurality of jet passages 19A and 19B and has a diameter from the first opening row 20A and the second opening row 20B that open to the inner wall surface 14a of each chip pocket 14. It is jetted outward in the direction. As shown in FIG. 9, the injected coolant 25 is injected toward the periphery of the cutting edge 5 of the cutting insert 10.
  • the coolant 25 is different from each other. It is injected in two directions that are offset back and forth in the tool rotation direction.
  • the coolant 25 is injected from the first opening row 20A toward the rake face 5a of the cutting insert 10. Further, since the outlet openings 19b of the first opening row 20A are lined up along the direction in which the cutting edge 5 extends, the coolant 25 is sprayed in a wide shape in the direction in which the cutting edge 5 extends. Since the coolant 25 can be supplied to a wide range of the rake face 5a, the cutting edge 5 that becomes hot by cutting the work piece can be quickly cooled. Further, since the coolant 25 enters between the chip 30 and the rake face 5a, the chip 30 can be easily curled into a small size. It becomes difficult for the chips 30 to enter between the object to be cut and the cutting insert 10.
  • Coolant 25 is injected from the second opening row 20B toward the front side in the tool rotation direction T from the cutting insert 10.
  • the chips 30 carved by the cutting edge 5 extend toward the tool base end side while being curled on the front side of the rake face 5a in the tool rotation direction T.
  • the coolant 25 injected from the second opening row 20B aims at the chips 30 located on the front side of the rake face 5a.
  • the generated chips 30 can be subjected to a bending force toward the outer peripheral side to break the chips 30. Therefore, the chips 30 can be quickly flicked while being divided into small pieces. It is possible to prevent the chips 30 from entering between the cutting insert 10 and the object to be cut.
  • the coolant 25 is injected in a wide shape when viewed from the axial direction of the central axis O. Therefore, almost all of the coolant 25 injected from the second opening row 20B can be applied to the chips 30. The chips 30 can be accurately blown off with a small amount of coolant 25.
  • each chip pocket 14 is provided with two-stage opening rows 20A and 20B, and these opening positions are shifted in the tool rotation direction T.
  • This makes it possible to simultaneously inject the coolant 25 toward both the cutting edge 5 of the cutting insert 10 and the chip 30 generated by the cutting edge 5. Therefore, the processability of the chips 30 and the cooling effect of the cutting edge 5 can be improved at the same time. Further, even when a difficult-to-cut material is machined, it is possible to prevent the sharpness of the cutting insert 10 from deteriorating, and it is expected that the tool life will be extended.
  • the injection flow path 19 of the present embodiment has a tapered shape in which the diameter is gradually reduced from the coolant collecting portion 16 toward the inner wall surface 14a (insert mounting seat 12) of the chip pocket 14, an orifice component is used. It is possible to increase the flow velocity of the coolant 25 to be injected without any problems, and it is possible to further improve the cooling efficiency of the cutting insert 10 and the processing efficiency of the chips 30.
  • a spiral spiral groove 19d is formed on the inner peripheral surface of the jet flow path 19.
  • the coolant 25 injected from the injection flow path 19 is jetted as a swirling flow by the spiral groove 19d.
  • a swirling flow can be efficiently generated.
  • the straightness of the coolant 25 in the injection direction and the flow velocity are increased, and it becomes difficult for the coolant 25 to spread on the tip side in the injection direction.
  • the plurality of jet flow paths 19A and 19B constituting the opening rows 20A and 20B are arranged side by side in the direction along the central axis O. According to this configuration, the coolant 25 can be evenly sprayed over a wide range along the outer peripheral blade of the cutting insert 10, and the generated chips 30 can be sprayed over a wide range along the direction in which the chips 30 extend. Coolant 25 can be injected. As a result, the cooling efficiency of the cutting insert 10 and the removal efficiency of the chips 30 can be further improved.
  • each jet flow path 19 is open to the inclined wall surface 16f near the chip pocket 14 in the coolant collecting portion 16. Since the inclined wall surface 16f is inclined along the inner wall surface 14a of the chip pocket 14, the length of the jet flow path extending from the coolant collecting portion 16 toward the insert mounting seat 12 can be shortened, and the jet flow path can be shortened. It can be jetted inside without reducing the pressure of the coolant. Further, by providing the jet flow path 19 on the inclined wall surface 16f, the direction in which the jet flow path 19 extends can be adjusted. Therefore, the injection direction of the coolant 25 can be easily controlled, and the coolant 25 can be accurately supplied to the cutting insert 10 with sufficient pressure.
  • the flow path resistance of each jet flow path 19 can be made uniform.
  • the pressure of the injected coolant 25 can be made uniform, the chips 30 can be efficiently removed, and the cooling performance of the cutting insert 10 can be improved.
  • the tool main body 11 has a plurality of injection flow paths 19 having a small diameter extending from the coolant collecting portion 16 toward the outer peripheral surface 110a in the main body portion 110, injection molding is performed by using a 3D printer. It is possible to easily produce a complicated shape as compared with the case of producing by cutting or cutting.

Abstract

This tool body comprises a main body section that is rotatable about a center axis, and an insert attachment seat that is located on an outer circumference section of the main body section and to which can be attached a cutting insert for cutting a workpiece. The main body section has a coolant flow path that causes a coolant to flow therein from the tool base end side of the main body section and that jets the coolant from a location near the insert attachment seat. The coolant flow path has: an inlet flow path that is located at a base end section of the main body section; a coolant pooling section that is joined to the tool tip side of the inlet flow path and that has a flow path diameter greater than that of the inlet flow path; and a plurality of jetting flow paths that extend from the coolant pooling section toward the insert attachment seat. The coolant pooling section has an inclined wall surface that is inclined further toward the inside in the radial direction as the inclined wall surface advances toward the tool tip side, and the jetting flow paths are open in the inclined wall surface.

Description

刃先交換式切削工具および工具本体Cutting tool with replaceable cutting edge and tool body
 本発明は、刃先交換式切削工具および工具本体に関するものである。
 本願は、2020年3月31日に、日本に出願された特願2020-064868号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a cutting tool with a replaceable cutting edge and a tool body.
The present application claims priority based on Japanese Patent Application No. 2020-664868 filed in Japan on March 31, 2020, the contents of which are incorporated herein by reference.
 ステンレスや難削材加工において、切削工具の寿命を延長するためには、切屑の処理と切刃(切削インサート)の冷却が重要である。そこで、切削インサートへ向けてクーラントを噴射させる構成が知られている。例えば、特許文献1には、切削インサートの先端部に向けてクーラントを噴射する複数の開口を設けることが開示されている。 In the machining of stainless steel and difficult-to-cut materials, it is important to process chips and cool the cutting edge (cutting insert) in order to extend the life of the cutting tool. Therefore, a configuration is known in which coolant is injected toward the cutting insert. For example, Patent Document 1 discloses that a plurality of openings for injecting coolant toward the tip of a cutting insert are provided.
特表2017-526544号公報Special Table 2017-526544
 しかし、切削インサートの近傍に複数の開口を設置するために、特許文献1に記載のように工具本体の内部でクーラント流路を分岐させると、分岐によってクーラントの圧力が低下し、かつ複数の開口から噴射されるクーラントの圧力が不均一になりやすい。そのため、切削インサートの先端部に十分な圧力で正確にクーラントを供給することが難しかった。 However, when the coolant flow path is branched inside the tool body as described in Patent Document 1 in order to install a plurality of openings in the vicinity of the cutting insert, the coolant pressure is reduced by the branching and the plurality of openings are formed. The pressure of the coolant injected from is likely to be uneven. Therefore, it is difficult to accurately supply the coolant to the tip of the cutting insert with sufficient pressure.
 本発明の一つの態様は、上記従来技術の問題点に鑑み成されたものであって、切屑の処理性と切削インサートの冷却性とを同時に向上させることのできる、刃先交換式切削工具および工具本体を提供することを目的とする。 One aspect of the present invention has been made in view of the above-mentioned problems of the prior art, and is a cutting tool and a tool having a replaceable cutting edge, which can simultaneously improve the processability of chips and the cooling property of a cutting insert. The purpose is to provide the main body.
 上記課題を解決して、このような目的を達成するために、本発明の刃先交換式切削工具の工具本体は、中心軸の軸周りに回転して被切削物を切削する刃先交換式切削工具に用いられる工具本体であって、中心軸の軸周りに回転可能な本体部と、前記本体部の外周部に位置するとともに被切削物を切削するための切削インサートを取り付け可能なインサート取付座と、を備え、前記本体部は、前記本体部の工具基端側からクーラントを流入させ、前記インサート取付座の近傍から前記クーラントを噴射するクーラント流路を有し、前記クーラント流路は、前記本体部の前記基端部に位置する入口流路と、前記入口流路の工具先端側に繋がり、前記入口流路よりも大きい流路径を有するクーラント溜まり部と、前記クーラント溜まり部から前記インサート取付座に向かって延びる複数の噴射流路と、を有し、前記クーラント溜まり部は、工具先端側へ行くに従って径方向内側に向かう傾斜壁面を有し、前記傾斜壁面に前記噴射流路が開口していることを特徴とする。 In order to solve the above problems and achieve such an object, the tool body of the cutting tool with a replaceable cutting edge of the present invention rotates around the axis of the central axis to cut the object to be cut. A main body that can rotate around the central axis, and an insert mounting seat that is located on the outer periphery of the main body and can be attached with a cutting insert for cutting the object to be cut. The main body has a coolant flow path that allows coolant to flow in from the tool base end side of the main body and injects the coolant from the vicinity of the insert mounting seat, and the coolant flow path is the main body. An inlet flow path located at the base end portion of the portion, a coolant pool portion connected to the tool tip side of the inlet flow path and having a flow path diameter larger than that of the inlet flow path, and an insert mounting seat from the coolant pool portion. The coolant pool portion has a plurality of injection flow paths extending toward the inside of the tool, and the injection flow path is opened in the inclined wall surface. It is characterized by being.
 上記構成の工具本体では、クーラント溜まり部が、工具先端側へ行くに従って径方向内側に向かう傾斜壁面を有していることで、傾斜壁面から径方向外側かつ工具先端側に向かう斜め方向に、工具本体の肉を確保しやすく、この位置にインサート取付座を配置しやすい。そして、傾斜壁面の径方向外側かつ工具先端側に向かう斜め方向に位置するインサート取付座に、傾斜壁面から噴射流路を延ばすことで、噴射流路を短くすることができる。クーラントに作用する噴射流路の流路抵抗が少なくなるので、クーラントの圧力を低下させることなく噴射することができる。
 また、傾斜壁面に対して、噴射流路を概ね正面から接続することができるため、クーラント溜まり部から噴射流路が延びる方向を調整できる範囲が大きくなる。これにより、噴射流路を曲げることなくクーラントの噴射方向を容易に調整できる。切削インサートに向けて十分な圧力で正確にクーラントを供給することができるので、切屑を効率よく除去することができるとともに切削インサートの冷却性を高めることができる。
In the tool body having the above configuration, the coolant pool portion has an inclined wall surface that is radially inward toward the tool tip side, so that the tool is obliquely outward from the inclined wall surface and toward the tool tip side. It is easy to secure the meat of the main body, and it is easy to arrange the insert mounting seat at this position. Then, the jet flow path can be shortened by extending the jet flow path from the sloped wall surface to the insert mounting seat located on the radial side of the inclined wall surface and diagonally toward the tool tip side. Since the flow path resistance of the jet flow path acting on the coolant is reduced, jetting can be performed without lowering the pressure of the coolant.
Further, since the jet flow path can be connected to the inclined wall surface from the front, the range in which the direction in which the jet flow path extends from the coolant pool portion can be adjusted becomes large. Thereby, the injection direction of the coolant can be easily adjusted without bending the injection flow path. Since the coolant can be accurately supplied to the cutting insert with sufficient pressure, chips can be efficiently removed and the cooling performance of the cutting insert can be improved.
 また、本発明の一形態における工具本体において、前記クーラント溜まり部は、前記中心軸を中心としてその軸回りに形成されており、工具基端側から工具先端側に向かって漸次縮径する壁面領域を有し、前記噴射流路が開口する前記傾斜壁面は、前記壁面領域内に位置する構成としてもよい。 Further, in the tool body according to one embodiment of the present invention, the coolant pool portion is formed around the central axis around the central axis, and the wall surface region gradually reduces in diameter from the tool base end side toward the tool tip side. The inclined wall surface having the above and the injection flow path opens may be configured to be located in the wall surface region.
 この構成によれば、クーラント溜まり部の工具先端側の内壁面が略円錐形状となり、周方向に複数のインサート取付座が並ぶ工具本体において、各インサート取付座に近い位置に上記した噴射流路を形成することができる。それぞれのインサート取付座に向かう複数の噴射流路は、互いに同等の噴射性能を有する噴射流路となるので、複数の切削インサートに対して均等な圧力でクーラントを供給できる。 According to this configuration, in the tool body in which the inner wall surface of the coolant pool portion on the tool tip side has a substantially conical shape and a plurality of insert mounting seats are lined up in the circumferential direction, the jet flow path described above is provided at a position close to each insert mounting seat. Can be formed. Since the plurality of jet flow paths toward the respective insert mounting seats are jet flow paths having the same jet performance as each other, the coolant can be supplied to the plurality of cutting inserts at an equal pressure.
 また、本発明の一形態における工具本体において、前記クーラント溜まり部は、工具基端側から工具先端側に向かって漸次拡径する第1の壁面領域と、前記第1の壁面領域の工具先端側の端部から工具先端側に向かって漸次縮径する第2の壁面領域と、を有し、前記噴射流路が開口する前記傾斜壁面は、前記第2の壁面領域内に位置する構成としてもよい。 Further, in the tool body according to the embodiment of the present invention, the coolant pool portion has a first wall surface area whose diameter gradually increases from the tool base end side toward the tool tip side and a tool tip side of the first wall surface area. The inclined wall surface having a second wall surface region in which the diameter is gradually reduced from the end portion of the tool toward the tip end side of the tool and the injection flow path opens is also configured to be located in the second wall surface region. good.
 この構成によれば、軸方向の一部(中央)の直径が最も大きい形状のクーラント溜まり部となる。第1の壁面領域を有することで、クーラント溜まり部の容積を確保しつつ、工具本体の基端側の肉厚を確保できる。工具本体の基端側における剛性の不足を抑制しながら、クーラント溜まり部の容積を大きくできる。 According to this configuration, the coolant pool has the largest diameter in a part (center) in the axial direction. By having the first wall surface region, it is possible to secure the wall thickness on the base end side of the tool body while securing the volume of the coolant pool portion. The volume of the coolant pool can be increased while suppressing the lack of rigidity on the base end side of the tool body.
 また、本発明の一形態における工具本体において、前記噴射流路は、前記クーラント溜まり部との接続部から工具回転方向の後方側へ延びる構成としてもよい。 Further, in the tool body according to the embodiment of the present invention, the jet flow path may be configured to extend from the connection portion with the coolant pool portion to the rear side in the tool rotation direction.
 この構成によれば、切削インサートに対して工具回転方向の前方側からクーラントを噴射しやすくなる。 According to this configuration, it becomes easy to inject coolant from the front side in the tool rotation direction with respect to the cutting insert.
 また、本発明の一形態における工具本体において、前記噴射流路は、前記傾斜壁面から前記本体部の外周面に向かって直線状に延びる構成としてもよい。 Further, in the tool main body according to the embodiment of the present invention, the jet flow path may be configured to extend linearly from the inclined wall surface toward the outer peripheral surface of the main body portion.
 この構成によれば、噴射圧力を低下させることなく、十分な圧力で正確にクーラントを供給することができる。 According to this configuration, the coolant can be accurately supplied at a sufficient pressure without lowering the injection pressure.
 また、本発明の一形態における工具本体において、前記本体部は、前記工具先端側の外周部に複数の凹部を有し、各々の前記凹部の内壁面の一部に前記インサート取付座が形成されているとともに、前記内壁面のうち前記インサート取付座よりも工具回転方向の前方側の壁面に前記噴射流路が開口している構成としてもよい。 Further, in the tool main body according to one embodiment of the present invention, the main body portion has a plurality of recesses on the outer peripheral portion on the tool tip side, and the insert mounting seat is formed on a part of the inner wall surface of each recess. In addition, the jet flow path may be opened on the inner wall surface on the front side in the tool rotation direction with respect to the insert mounting seat.
 これにより、切削インサートによって被切削物を切削した際に、切削インサートよりも工具回転方向の前方に生成される切屑に向けてクーラントを噴射することができるので、生成された切屑を素早く除去することができる。 As a result, when the object to be cut is cut by the cutting insert, the coolant can be injected toward the chips generated in front of the cutting insert in the tool rotation direction, so that the generated chips can be quickly removed. Can be done.
 また、本発明の一形態における工具本体において、前記本体部は、3Dプリンタによって作製される構成としてもよい。 Further, in the tool main body according to one embodiment of the present invention, the main body portion may be configured to be manufactured by a 3D printer.
 本願発明では、本体部にクーラント溜まり部から外周面に延びる複数の噴射流路を有することから、3Dプリンタを用いることで、射出成形や切削加工によって作製する場合に比べて複雑な形状を容易に作製することができる。 In the present invention, since the main body has a plurality of jet flow paths extending from the coolant pool to the outer peripheral surface, by using a 3D printer, a complicated shape can be easily formed as compared with the case of manufacturing by injection molding or cutting. Can be made.
 本発明の刃先交換式切削工具は、上記の工具本体と、前記工具本体に対して着脱可能に取り付けられる複数の前記切削インサートと、を備えることを特徴とする。
 上述した工具本体を備える刃先交換式切削工具によれば、切削インサートによって生成された切屑の処理性を高めるとともに、切削インサートの冷却効率を高めることができる。
The cutting tool with a replaceable cutting edge of the present invention is characterized by including the tool body and a plurality of cutting inserts that are detachably attached to the tool body.
According to the cutting tool with a replaceable cutting edge provided with the tool body described above, it is possible to improve the processability of chips generated by the cutting insert and to improve the cooling efficiency of the cutting insert.
 本発明によれば、切屑の処理性と切削インサートの冷却効率を高めることができる刃先交換式切削工具および工具本体を提供することができる。 According to the present invention, it is possible to provide a cutting tool with a replaceable cutting edge and a tool body capable of improving the processability of chips and the cooling efficiency of a cutting insert.
図1は、本発明の刃先交換式切削工具の一実施形態を示す斜視図である。FIG. 1 is a perspective view showing an embodiment of a cutting tool with a replaceable cutting edge of the present invention. 図2は、刃先交換式切削工具の構成を示す側面図である。FIG. 2 is a side view showing the configuration of a cutting tool with a replaceable cutting edge. 図3は、本発明の刃先交換式切削工具の切削インサートの構成を示す斜視図である。FIG. 3 is a perspective view showing a configuration of a cutting insert of the cutting tool with a replaceable cutting edge of the present invention. 図4は、本発明の刃先交換式切削工具を先端側から見た平面図である。FIG. 4 is a plan view of the cutting tool with a replaceable cutting edge of the present invention as viewed from the tip side. 図5は、刃先交換式切削工具の構成を示す断面図である。FIG. 5 is a cross-sectional view showing the configuration of a cutting tool with a replaceable cutting edge. 図6は、切削インサートの近傍の工具本体に形成された噴射流路の位置を示す斜視図である。FIG. 6 is a perspective view showing the position of the jet flow path formed in the tool body in the vicinity of the cutting insert. 図7は、噴射流路の形状を示す側面図である。FIG. 7 is a side view showing the shape of the jet flow path. 図8は、噴射流路を入口開口側から見た図である。FIG. 8 is a view of the jet flow path viewed from the inlet opening side. 図9は、工具本体から切削インサートに向けてクーラントが噴射される様子を示す図である。FIG. 9 is a diagram showing how coolant is injected from the tool body toward the cutting insert.
 以下、本発明の一実施形態における刃先交換式切削工具について説明する。
 なお、以下の各図面においては、各構成要素を見やすくするため、構成要素によって寸法の縮尺を異ならせて示すことがある。
Hereinafter, a cutting tool with a replaceable cutting edge according to an embodiment of the present invention will be described.
In each of the following drawings, in order to make each component easy to see, the scale of the dimensions may be different depending on the component.
(刃先交換式切削工具)
 図1は、本発明の刃先交換式切削工具100の一実施形態を示す斜視図である。図2は、本発明の刃先交換式切削工具100の構成を示す側面図である。図3は、本発明の刃先交換式切削工具100の切削インサート10の構成を示す斜視図である。図4は、刃先交換式切削工具100を先端側から見た平面図である。図5は、刃先交換式切削工具100の構成を示す断面図である。図6は、切削インサート10の近傍の工具本体11に形成された噴射流路19の位置を示す斜視図である。図7は、噴射流路19の形状を示す側面図である。図8は、噴射流路19を入口開口19a側から見た図である。図9は、工具本体11から切削インサート10に向けてクーラント25が噴射される様子を示す図である。
(Replaceable cutting tool)
FIG. 1 is a perspective view showing an embodiment of the cutting tool 100 with a replaceable cutting edge of the present invention. FIG. 2 is a side view showing the configuration of the cutting tool 100 with a replaceable cutting edge of the present invention. FIG. 3 is a perspective view showing the configuration of the cutting insert 10 of the cutting tool 100 with a replaceable cutting edge of the present invention. FIG. 4 is a plan view of the cutting tool 100 with a replaceable cutting edge as viewed from the tip side. FIG. 5 is a cross-sectional view showing the configuration of the cutting tool 100 with a replaceable cutting edge. FIG. 6 is a perspective view showing the position of the jet flow path 19 formed in the tool body 11 in the vicinity of the cutting insert 10. FIG. 7 is a side view showing the shape of the jet flow path 19. FIG. 8 is a view of the jet flow path 19 as viewed from the inlet opening 19a side. FIG. 9 is a diagram showing how the coolant 25 is injected from the tool body 11 toward the cutting insert 10.
 刃先交換式切削工具100は、図1から図5に示すように、工具本体11と、複数の切削インサート10と、を備えている。複数の切削インサート10は、工具本体11の先端側の外周部に形成された複数のインサート取付座12に対して、それぞれ取付ボルト13によって着脱可能に取り付けられている。 As shown in FIGS. 1 to 5, the cutting tool 100 having a replaceable cutting edge includes a tool body 11 and a plurality of cutting inserts 10. The plurality of cutting inserts 10 are detachably attached to the plurality of insert mounting seats 12 formed on the outer peripheral portion on the tip end side of the tool body 11 by mounting bolts 13, respectively.
 刃先交換式切削工具100は、工具本体11の基端側(図1における上側)が工具機械の主軸に接続される。刃先交換式切削工具100は、図1に示す中心軸Oの軸回りに工具回転方向Tに回転することにより、被切削物に対して複数の切削インサート10によって切削加工を行う。 In the cutting tool 100 with a replaceable cutting edge, the base end side (upper side in FIG. 1) of the tool body 11 is connected to the spindle of the tool machine. The cutting tool 100 with a replaceable cutting edge rotates around the central axis O shown in FIG. 1 in the tool rotation direction T, so that the object to be cut is cut by a plurality of cutting inserts 10.
(工具本体)
 工具本体11は、図1および図2に示すように、中心軸Oの軸回りに回転可能な本体部110と、本体部110の外周部に位置する複数のインサート取付座12とを有する。本実施形態の工具本体11は、3Dプリンタを用いて作製されたもので、工具本体11の原料金属の粉末材料を溶融させながら積層させる積層加工によって作製されている。
 なお、工具本体11の材質や作製方法については上述したものに限られず、工具本体11を切削加工あるいは射出成形で作製してもよい。
(Tool body)
As shown in FIGS. 1 and 2, the tool main body 11 has a main body portion 110 that can rotate around the central axis O, and a plurality of insert mounting seats 12 located on the outer peripheral portion of the main body portion 110. The tool body 11 of the present embodiment is manufactured by using a 3D printer, and is manufactured by laminating while melting and laminating the powder material of the raw material metal of the tool body 11.
The material and manufacturing method of the tool body 11 are not limited to those described above, and the tool body 11 may be manufactured by cutting or injection molding.
 本体部110は、図1および図2に示すように、工具基端側の部分よりも工具先端側(図1における下側)の部分が大径とされ、中心軸Oを中心とした外形略円盤状に形成されている。外形略円盤状の本体部110において、工具基端側の面を基端面11bとし、工具先端側の面を先端面11aとする。本体部110の工具先端側の外周部には、本体部110の径方向内側に凹むチップポケット(凹部)14が周方向に間隔をあけて複数形成されている。チップポケット14は、図2に示すように、工具先端側から工具基端側に向かって延びる第1凹部14Aと、第1凹部14Aの工具先端側に連通する第2凹部14Bと、を有する。チップポケット14の内壁面のうち、工具回転方向Tを向く第2凹部14Bの内壁面(壁面)14bには、切削インサート10が取り付けられるインサート取付座12が形成されている。 As shown in FIGS. 1 and 2, the main body 110 has a larger diameter at the tool tip side (lower side in FIG. 1) than at the tool base end side, and has a substantially outer shape centered on the central axis O. It is formed in a disk shape. In the substantially disk-shaped main body 110, the surface on the tool base end side is referred to as the base end surface 11b, and the surface on the tool tip side is referred to as the tip surface 11a. A plurality of tip pockets (recesses) 14 recessed inward in the radial direction of the main body 110 are formed on the outer peripheral portion of the main body 110 on the tool tip side at intervals in the circumferential direction. As shown in FIG. 2, the tip pocket 14 has a first recess 14A extending from the tool tip side toward the tool base end side, and a second recess 14B communicating with the tool tip side of the first recess 14A. Of the inner wall surface of the tip pocket 14, the inner wall surface (wall surface) 14b of the second recess 14B facing the tool rotation direction T is formed with an insert mounting seat 12 to which the cutting insert 10 is mounted.
 本実施形態では、本体部110に、複数(4つ)のチップポケット14が周方向に等間隔に形成されている。4つのチップポケット14の第2凹部14Bのそれぞれに、インサート取付座12が1つずつ形成されている。 In the present embodiment, a plurality of (four) chip pockets 14 are formed in the main body 110 at equal intervals in the circumferential direction. One insert mounting seat 12 is formed in each of the second recesses 14B of the four chip pockets 14.
(切削インサート)
 図3は、本実施形態における切削インサート10の構成を示す斜視図である。
 切削インサート10は、図3に示すように、超硬合金等の硬質材料により多角形の板状に形成される。本実施形態の場合、インサート中心軸C周りに鋭角の角と鈍角の角が交互に並ぶ六角形の板状に形成される。切削インサート10は、互いに反対側を向く2つの六角形面2と、2つの六角形面2の周囲に配置される6つの側面3とを備えている。インサート中心軸Cの軸方向から見たときの六角形面2の各辺の長さは略等しい。本実施形態の切削インサート10はネガティブタイプの切削インサートであり、複数の側面3は、インサート中心軸Cに平行な平面状とされている。
 ここで、インサート中心軸Cの軸方向はインサート中心軸Cに沿って、一方の六角形面2から他方の六角形面2に向かう方向をいう。
(Cutting insert)
FIG. 3 is a perspective view showing the configuration of the cutting insert 10 in the present embodiment.
As shown in FIG. 3, the cutting insert 10 is formed in a polygonal plate shape by a hard material such as cemented carbide. In the case of the present embodiment, it is formed in the shape of a hexagonal plate in which acute-angled angles and obtuse-angled angles are alternately arranged around the insert central axis C. The cutting insert 10 includes two hexagonal surfaces 2 facing opposite sides and six side surfaces 3 arranged around the two hexagonal surfaces 2. The lengths of each side of the hexagonal surface 2 when viewed from the axial direction of the insert central axis C are substantially equal. The cutting insert 10 of the present embodiment is a negative type cutting insert, and the plurality of side surfaces 3 have a flat shape parallel to the insert central axis C.
Here, the axial direction of the insert central axis C refers to the direction from one hexagonal surface 2 to the other hexagonal surface 2 along the insert central axis C.
 切削インサート10の中央には、インサート中心軸Cの軸方向に切削インサート10を貫通する取付孔4が形成されている。取付孔4は、インサート中心軸Cに対して垂直な一対の六角形面2にそれぞれ開口する。取付孔4には、切削インサート10を工具本体11側のインサート取付座12に取り付けるための取付ボルト13が挿入される。 A mounting hole 4 is formed in the center of the cutting insert 10 so as to penetrate the cutting insert 10 in the axial direction of the insert central axis C. The mounting holes 4 are opened in a pair of hexagonal surfaces 2 perpendicular to the insert central axis C, respectively. A mounting bolt 13 for mounting the cutting insert 10 to the insert mounting seat 12 on the tool body 11 side is inserted into the mounting hole 4.
 六角形面2には、取付孔4の開口の周りにインサート中心軸Cに垂直な円環状の平面部2aが形成されている。インサート中心軸Cの軸方向から見た平面部2aの周囲には曲面部5Aが形成されている。平面部2aは曲面部5Aよりもインサート中心軸Cの軸方向の中央部側に位置している。すなわち、切削インサート10の六角形面2において、平面部2aは、曲面部5Aよりも低い位置に位置する。 On the hexagonal surface 2, an annular flat surface portion 2a perpendicular to the insert central axis C is formed around the opening of the mounting hole 4. A curved surface portion 5A is formed around the flat surface portion 2a viewed from the axial direction of the insert central axis C. The flat surface portion 2a is located closer to the central portion in the axial direction of the insert central axis C than the curved surface portion 5A. That is, on the hexagonal surface 2 of the cutting insert 10, the flat surface portion 2a is located at a position lower than the curved surface portion 5A.
 切削インサート10は、その外周部に複数(6つ)のコーナ部C1,C2を有する。切削インサート10の周方向に、第1のコーナ部C1と、第2のコーナ部C2とが交互に配置される。インサート中心軸Cの軸方向から見た第1のコーナ部C1の挟角は、第2のコーナ部C2の挟角よりも小さい。2つの六角形面2において、各々の第1のコーナ部C1に対応する位置には、切刃5がそれぞれ形成されている。具体的には、2つの六角形面2に切刃5がそれぞれ3つずつ形成されている。切刃5は、凹面形状のすくい面5aを有する。すくい面5aは、六角形面2の平面部2aの周囲に形成された曲面部5Aの一部であって第1のコーナ部C1に対応する部分からなる。 The cutting insert 10 has a plurality of (six) corner portions C1 and C2 on the outer peripheral portion thereof. The first corner portion C1 and the second corner portion C2 are alternately arranged in the circumferential direction of the cutting insert 10. The sandwiching angle of the first corner portion C1 seen from the axial direction of the insert central axis C is smaller than the sandwiching angle of the second corner portion C2. On the two hexagonal surfaces 2, a cutting edge 5 is formed at a position corresponding to each first corner portion C1. Specifically, three cutting blades 5 are formed on each of the two hexagonal surfaces 2. The cutting edge 5 has a concave rake face 5a. The rake face 5a is a part of the curved surface portion 5A formed around the flat surface portion 2a of the hexagonal surface 2 and is composed of a portion corresponding to the first corner portion C1.
 すくい面5aは、切削インサート10の外周部に位置する第1のコーナ部C1側が軸方向外側へ最も突出しており、インサート中心軸C側へ行くに従って軸方向内側へと凹む凹状の曲面とされている。このため、切刃5のすくい面5aによって、被切削物がすくい上げられることで生成される切屑30の先端をカールさせることができる。これにより、被切削物の切削面に切屑30が接触したり、切削インサート10と被切削物の切削面との間に切屑30が挟み込まれたりするのを避けることができる。 The rake face 5a has a concave curved surface in which the first corner portion C1 side located on the outer peripheral portion of the cutting insert 10 protrudes most outward in the axial direction and dents inward in the axial direction toward the insert central axis C side. There is. Therefore, the rake face 5a of the cutting edge 5 can curl the tip of the chip 30 generated by scooping up the object to be cut. As a result, it is possible to prevent the chips 30 from coming into contact with the cutting surface of the work piece and the chips 30 from being sandwiched between the cutting insert 10 and the cutting surface of the work piece.
 切削インサート10は、取付孔4に挿通された取付ボルト13がインサート取付座12に備えられたネジ孔にねじ込まれることにより、工具本体11のインサート取付座12に固定される。切削インサート10は、一対の六角形面2のうちの一方を工具回転方向Tの前方側に向けた状態で工具本体11に取り付けられる。切削インサート10は、表裏の六角形面2が工具本体11の径方向に平行した姿勢で工具本体11に取り付けられる。 The cutting insert 10 is fixed to the insert mounting seat 12 of the tool body 11 by screwing the mounting bolt 13 inserted through the mounting hole 4 into the screw hole provided in the insert mounting seat 12. The cutting insert 10 is attached to the tool body 11 with one of the pair of hexagonal surfaces 2 facing forward in the tool rotation direction T. The cutting insert 10 is attached to the tool body 11 in a posture in which the front and back hexagonal surfaces 2 are parallel to the radial direction of the tool body 11.
(工具本体)
 次に、工具本体11の構成について詳しく説明する。
 図1および図5に示すように、本実施形態の工具本体11は、基端面11bに開口するように設けられる複数のキー溝1Aを有する。工具本体11は、工具本体11の内部にクーラント流路7を有する。工具本体11は、先端面11aに開口し、中心軸Oの軸方向に延びるクランプボルト挿入孔8を有する。クーラント流路7とクランプボルト挿入孔8とは、工具本体11の内部で中心軸Oの軸方向に繋がる。工具本体11の中央は、中心軸Oの軸方向に連通するクーラント流路7とクランプボルト挿入孔8とによって貫通した形状となっている。
 ここで、中心軸Oの軸方向は中心軸Oに沿って先端面11aから基端面11bに向かう方向、又は中心軸Oに沿って基端面11bから先端面11aに向かう方向はをいう。
(Tool body)
Next, the configuration of the tool body 11 will be described in detail.
As shown in FIGS. 1 and 5, the tool body 11 of the present embodiment has a plurality of keyways 1A provided so as to open in the base end surface 11b. The tool body 11 has a coolant flow path 7 inside the tool body 11. The tool body 11 has a clamp bolt insertion hole 8 that opens in the tip surface 11a and extends in the axial direction of the central axis O. The coolant flow path 7 and the clamp bolt insertion hole 8 are connected to each other in the axial direction of the central axis O inside the tool body 11. The center of the tool body 11 has a shape penetrated by a coolant flow path 7 communicating with the central axis O in the axial direction and a clamp bolt insertion hole 8.
Here, the axial direction of the central axis O refers to the direction from the distal end surface 11a to the proximal end surface 11b along the central axis O, or the direction from the proximal end surface 11b to the distal end surface 11a along the central axis O.
(キー溝)
 キー溝1Aは、図1および図2に示すように、基端面11bに開口するとともに中心軸Oに交差する径方向に延在する凹状の溝である。本実施形態では、工具本体11は4本のキー溝1Aを有する。4本のキー溝1Aは、中心軸Oの軸回りに互いに等しい角度で放射状に並ぶ。各々のキー溝1Aの径方向内側の端部が基端面11bの中央に開口するクーラント流路7に連通する。キー溝1Aの径方向外側の端部は本体部110の外周面110aに開口している。
(Key groove)
As shown in FIGS. 1 and 2, the key groove 1A is a concave groove that opens in the base end surface 11b and extends in the radial direction that intersects the central axis O. In this embodiment, the tool body 11 has four keyways 1A. The four keyways 1A are arranged radially around the central axis O at equal angles to each other. The radial inner end of each keyway 1A communicates with the coolant flow path 7 that opens in the center of the base end surface 11b. The radial outer end of the keyway 1A is open to the outer peripheral surface 110a of the main body 110.
 キー溝1Aには、図示しないアーバーの先端部のキーが嵌め入れられる。工具先端側のクランプボルト挿入孔8から挿入されたクランプボルト9(図5)がアーバーの先端部にねじ込まれることにより、工具本体11がアーバーの先端部に取り付けられる。工具本体11は、アーバーを介して工作機械の主軸に装着される。 A key at the tip of an arbor (not shown) is fitted into the key groove 1A. The tool body 11 is attached to the tip of the arbor by screwing the clamp bolt 9 (FIG. 5) inserted from the clamp bolt insertion hole 8 on the tool tip side into the tip of the arbor. The tool body 11 is attached to the spindle of the machine tool via an arbor.
(クーラント流路)
 図5に示すように、クーラント流路7は、本体部110の基端面11bに開口する入口流路15と、入口流路15の工具先端側に繋がるクーラント溜まり部16と、クーラント溜まり部16に連通する複数の噴射流路19と、を有する。クーラント流路7は、本体部110の工具基端側から流入するクーラントを、インサート取付座12の近傍から噴射する流路である。
(Coolant flow path)
As shown in FIG. 5, the coolant flow path 7 includes an inlet flow path 15 that opens to the base end surface 11b of the main body 110, a coolant pool 16 that connects to the tool tip side of the inlet flow path 15, and a coolant pool 16. It has a plurality of jet flow paths 19 that communicate with each other. The coolant flow path 7 is a flow path for injecting the coolant flowing in from the tool base end side of the main body 110 from the vicinity of the insert mounting seat 12.
 入口流路15は、中心軸Oを中心として中心軸Oの軸方向に延びる。入口流路15は、一端側が基端面11bの中央に開口し、他端側がクーラント溜まり部16に繋がっている。
 入口流路15は、本体部110の工具基端側の部分を中心軸Oの軸方向に貫通する。入口流路15は、基端面11bの中央に円形に開口し、工具先端側へ向かって一様な内径で中心軸Oの軸方向に延びる。入口流路15の工具基端側に位置する内周面に、キー溝1Aの径方向内側の開口部15aが開口する。
The inlet flow path 15 extends in the axial direction of the central axis O with the central axis O as the center. One end side of the inlet flow path 15 opens in the center of the base end surface 11b, and the other end side is connected to the coolant pool portion 16.
The inlet flow path 15 penetrates the portion of the main body 110 on the tool base end side in the axial direction of the central axis O. The inlet flow path 15 opens circularly in the center of the base end surface 11b and extends in the axial direction of the central axis O with a uniform inner diameter toward the tool tip side. A radial inner opening 15a of the keyway 1A opens on the inner peripheral surface of the inlet flow path 15 located on the tool base end side.
 クーラント溜まり部16は、中心軸Oを中心にしてその軸回りに回転対称の形状を有する。クーラント溜まり部16は、切削インサート10に向けて供給するクーラントを貯留するクーラント収容空間Kを内部に有する。クーラント溜まり部16は、入口流路15のキー溝1Aよりも工具先端側に位置する部位15bよりも大きい直径(流路径)を有する。この構成により、クーラント溜まり部16が十分な容積を確保できる。 The coolant reservoir 16 has a shape that is rotationally symmetric with respect to the central axis O. The coolant collecting portion 16 has a coolant accommodating space K for storing the coolant supplied toward the cutting insert 10. The coolant collecting portion 16 has a diameter (flow path diameter) larger than that of the portion 15b located on the tool tip side of the key groove 1A of the inlet flow path 15. With this configuration, the coolant reservoir 16 can secure a sufficient volume.
 クーラント溜まり部16の内壁面は、形状の等しい2つの略円錐の最大径側を中心軸Oの軸方向に対向させた略双円錐形状である。クーラント溜まり部16の内壁面は、最大径を有する中心軸Oの軸方向中央の部位から工具先端側および工具基端側に向かってそれぞれ縮径する形状を有する。
 中心軸Oの軸方向中央の部位とは、工具本体11の中心軸Oの軸方向に沿った長さにおける中央に対応する部位をいう。
The inner wall surface of the coolant reservoir 16 has a substantially bicone shape in which the maximum diameter side of two substantially cones having the same shape are opposed to each other in the axial direction of the central axis O. The inner wall surface of the coolant pool portion 16 has a shape in which the diameter is reduced from the central portion of the central axis O having the maximum diameter in the axial direction toward the tool tip side and the tool base end side, respectively.
The central portion in the axial direction of the central axis O means a portion corresponding to the center in the length along the axial direction of the central axis O of the tool body 11.
 すなわち、クーラント溜まり部16は、基端面11b側から先端面11a側に向かって漸次拡径する第1の壁面領域R1と、第1の壁面領域R1の基端面11b側の端部から基端面11b側に向かって漸次縮径する第2の壁面領域R2とを有する。 That is, the coolant collecting portion 16 has a first wall surface region R1 whose diameter gradually increases from the base end surface 11b side toward the tip end surface 11a side, and a base end surface 11b from the end portion of the first wall surface region R1 on the base end surface 11b side. It has a second wall surface region R2 that gradually shrinks in diameter toward the side.
 クーラント溜まり部16は、クーラント収容空間Kを中心軸Oの軸方向に区画形成する基端側周壁面16a、先端側周壁面16bおよび底面16cを有する。クーラント溜まり部16は、中心軸Oの軸方向の中央位置において基端側周壁面16aと先端側周壁面16bとが交差して形成される頂部16dで直径が最大となる。 The coolant pool 16 has a base end side peripheral wall surface 16a, a tip end side peripheral wall surface 16b, and a bottom surface 16c that partition the coolant accommodating space K in the axial direction of the central axis O. The coolant pool portion 16 has the maximum diameter at the top portion 16d formed by intersecting the proximal end side peripheral wall surface 16a and the distal end side peripheral wall surface 16b at the central position in the axial direction of the central axis O.
 基端側周壁面16aは、工具基端側の端部において入口流路15の工具先端側の端部に接続されている。基端側周壁面16aは、工具基端側から先端面11a(頂部16d)側へ行くに従って拡径する第1の壁面領域R1内に位置する。 The peripheral wall surface 16a on the base end side is connected to the end portion on the tool tip side of the inlet flow path 15 at the end portion on the tool base end side. The base end side peripheral wall surface 16a is located in the first wall surface region R1 whose diameter increases from the tool base end side toward the tip end surface 11a (top 16d) side.
 先端側周壁面16bは、工具基端側の端部において基端側周壁面16aの工具先端側の端部(頂部16d)に接続されている。先端側周壁面16bは、工具基端側から先端面11a側へ行くに従って縮径する第2の壁面領域R2内に位置する。 The tip side peripheral wall surface 16b is connected to the tool tip side end portion (top 16d) of the base end side peripheral wall surface 16a at the end portion on the tool base end side. The peripheral wall surface 16b on the tip end side is located in the second wall surface region R2 whose diameter decreases from the base end side of the tool toward the tip end surface 11a side.
 底面16cは、先端側周壁面16bの工具先端側の端部から、本体部110の径方向内側へ広がる。底面16cは中心軸Oの軸方向から見て円環状である。底面16cは、先端側周壁面16bと接続する端部から本体部110の径方向内側に向かって(中心軸Oに向かって)工具基端側へ傾斜する。底面16cは、基端面11b側へ行くに従って縮径している。底面16cは、本体部110の径方向から見て、先端側周壁面16bと重なる位置に配置される。 The bottom surface 16c extends inward in the radial direction of the main body 110 from the tool tip side end of the tip side peripheral wall surface 16b. The bottom surface 16c is annular when viewed from the axial direction of the central axis O. The bottom surface 16c is inclined toward the tool base end side in the radial direction of the main body portion 110 (toward the central axis O) from the end portion connected to the front end side peripheral wall surface 16b. The diameter of the bottom surface 16c is reduced toward the base end surface 11b side. The bottom surface 16c is arranged at a position overlapping the front end side peripheral wall surface 16b when viewed from the radial direction of the main body 110.
 上記構成により、クーラント溜まり部16は、先端側周壁面16bと底面16cとの接続位置16gにおいて、入口流路15との接続位置からの深さが最も深くなっている。底面16cの中央には、クランプボルト挿入孔8が開口する。 With the above configuration, the coolant pool portion 16 has the deepest depth from the connection position with the inlet flow path 15 at the connection position 16g between the front end side peripheral wall surface 16b and the bottom surface 16c. A clamp bolt insertion hole 8 opens in the center of the bottom surface 16c.
 本実施形態の本体部110には、外周部に形成された各インサート取付座12の近傍に、クーラント溜まり部16からインサート取付座12に向かって直線状に延びる噴射流路19が複数形成されている。 In the main body 110 of the present embodiment, a plurality of jet flow paths 19 extending linearly from the coolant collecting portion 16 toward the insert mounting seat 12 are formed in the vicinity of each insert mounting seat 12 formed on the outer peripheral portion. There is.
 噴射流路19の一端側は、クーラント溜まり部16の先端側周壁面16bのうち、各インサート取付座12に最も近い傾斜壁面16fに開口する。噴射流路19の他端側は、本体部110の外周面110aであってチップポケット14の内壁面14aに開口する。
 本実施形態の工具本体11では、クーラント溜まり部16が、工具先端側へ行くに従って径方向内側に向かう傾斜壁面16fを有していることで、傾斜壁面16fから径方向外側かつ工具先端側に向かう斜め方向に、工具本体の肉を確保しやすく、この位置にインサート取付座12を配置しやすい。そして、傾斜壁面16fの径方向外側かつ工具先端側に向かう斜め方向に位置するインサート取付座12に、傾斜壁面16fから噴射流路19を延ばすことで、噴射流路19を短くすることができる。これにより、クーラントに作用する噴射流路19の流路抵抗が少なくなるので、クーラントの圧力を低下させることなく噴射することができる。
One end side of the jet flow path 19 opens to the inclined wall surface 16f closest to each insert mounting seat 12 among the peripheral wall surface 16b on the tip end side of the coolant pool portion 16. The other end side of the jet flow path 19 is the outer peripheral surface 110a of the main body 110 and opens to the inner wall surface 14a of the chip pocket 14.
In the tool body 11 of the present embodiment, the coolant pool portion 16 has an inclined wall surface 16f that is radially inward toward the tool tip side, so that the coolant pool portion 16 is radially outward and toward the tool tip side from the inclined wall surface 16f. It is easy to secure the meat of the tool body in the oblique direction, and it is easy to arrange the insert mounting seat 12 at this position. Then, the jet flow path 19 can be shortened by extending the jet flow path 19 from the sloped wall surface 16f to the insert mounting seat 12 located on the radial side of the inclined wall surface 16f and diagonally toward the tool tip side. As a result, the flow path resistance of the injection flow path 19 acting on the coolant is reduced, so that the coolant can be injected without lowering the pressure.
 また、傾斜壁面16fに対して、噴射流路19を概ね正面から接続することができるため、クーラント溜まり部16から噴射流路19が延びる方向を調整できる範囲が大きくなる。これにより、噴射流路19を曲げることなくクーラントの噴射方向を容易に調整できる。切削インサート10に向けて十分な圧力で正確にクーラントを供給することができるので、切屑を効率よく除去することができるとともに切削インサートの冷却性を高めることができる。 Further, since the jet flow path 19 can be connected to the inclined wall surface 16f from the front, the range in which the direction in which the jet flow path 19 extends from the coolant pool portion 16 can be adjusted becomes large. Thereby, the injection direction of the coolant can be easily adjusted without bending the injection flow path 19. Since the coolant can be accurately supplied to the cutting insert 10 with sufficient pressure, chips can be efficiently removed and the cooling performance of the cutting insert can be improved.
 本実施形態では、クーラント溜まり部16は、中心軸Oを中心としてその軸回りに形成されており、工具基端側から工具先端側に向かって漸次縮径する第2の壁面領域R2を有し、噴射流路19が開口する傾斜壁面16fは、第2の壁面領域R2内に位置する。
 この構成によれば、クーラント溜まり部16の工具先端側の内壁面が略円錐形状となり、周方向に複数のインサート取付座12が並ぶ工具本体11において、各インサート取付座12に近い位置に上記した噴射流路19を形成することができる。それぞれのインサート取付座12に向かう複数の噴射流路19は、互いに同等の噴射性能を有する噴射流路となるので、複数の切削インサート10に対して均等な圧力でクーラントを供給できる。
In the present embodiment, the coolant pool portion 16 is formed around the central axis O, and has a second wall surface region R2 whose diameter gradually decreases from the tool base end side toward the tool tip side. The inclined wall surface 16f through which the jet flow path 19 opens is located in the second wall surface region R2.
According to this configuration, the inner wall surface of the coolant reservoir 16 on the tool tip side has a substantially conical shape, and in the tool body 11 in which a plurality of insert mounting seats 12 are lined up in the circumferential direction, the above-mentioned position is close to each insert mounting seat 12. The jet flow path 19 can be formed. Since the plurality of jet flow paths 19 toward the respective insert mounting seats 12 are jet flow paths having the same jet performance as each other, the coolant can be supplied to the plurality of cutting inserts 10 with uniform pressure.
 本実施形態の工具本体11において、噴射流路19とクーラント溜まり部16との接続部において、傾斜壁面16fの法線と噴射流路19の中心線との交差角度が45°以下である構成としてもよい。この構成によれば、傾斜壁面16fの正面方向から噴射流路が接続されるので、クーラント溜まり部16から噴射流路19が延びる方向を調整できる範囲が大きくなる。これにより、噴射流路19を曲げることなくクーラントの噴射方向を容易に調整できる。 In the tool body 11 of the present embodiment, at the connection portion between the jet flow path 19 and the coolant pool portion 16, the intersection angle between the normal line of the inclined wall surface 16f and the center line of the jet flow path 19 is 45 ° or less. May be good. According to this configuration, since the jet flow path is connected from the front direction of the inclined wall surface 16f, the range in which the direction in which the jet flow path 19 extends from the coolant pool portion 16 can be adjusted becomes large. Thereby, the injection direction of the coolant can be easily adjusted without bending the injection flow path 19.
 各チップポケット14には、図6に示すように、噴射流路19の出口開口19bが9個配置されている。より詳細には、5個の出口開口19bが一列に並んだ第1の開口列20Aと、4個の出口開口19bが一列に並んだ第2の開口列20Bとを有する。なお、以下の説明で、第1の開口列20Aと第2の開口列20Bとを特に区別しない場合には、「開口列20」と称する。すなわち、各チップポケット14は、複数の噴射流路19の出口開口19bが一列に並んだ開口列20を2列ずつ有する。 As shown in FIG. 6, nine outlet openings 19b of the jet flow path 19 are arranged in each chip pocket 14. More specifically, it has a first opening row 20A in which five outlet openings 19b are arranged in a row, and a second opening row 20B in which four outlet openings 19b are arranged in a row. In the following description, when the first opening row 20A and the second opening row 20B are not particularly distinguished, they are referred to as "opening row 20". That is, each chip pocket 14 has two rows of opening rows 20 in which the outlet openings 19b of the plurality of jet flow paths 19 are lined up in a row.
 第1の開口列20Aと第2の開口列20Bとは、互いに異なる方向へ向かってクーラント25を噴射する(図9)。
 第1の開口列20Aは、5本の第1の噴射流路19Aの出口開口19bからなり、インサート取付座12に固定された切削インサート10に向けてクーラント25を噴射する。本実施形態において、第1の開口列20Aを構成する複数の第1の噴射流路19Aは、切削インサート10の切刃5の近傍のすくい面5aに向けてクーラント25を供給する流路である。
The first opening row 20A and the second opening row 20B inject coolant 25 in different directions (FIG. 9).
The first opening row 20A comprises five outlet openings 19b of the first jet flow path 19A, and injects coolant 25 toward the cutting insert 10 fixed to the insert mounting seat 12. In the present embodiment, the plurality of first jet flow paths 19A constituting the first opening row 20A are flow paths for supplying the coolant 25 toward the rake face 5a in the vicinity of the cutting edge 5 of the cutting insert 10. ..
 第2の開口列20Bは、4本の第2の噴射流路19Bの出口開口19bからなる。第2の開口列20Bは、インサート取付座12に固定された切削インサート10よりも工具回転方向Tの前方側に向けてクーラント25を供給する。本実施形態において、第2の噴射流路19Bは、切削インサート10によって切削された被切削物の切屑30に向けてクーラント25を供給する流路である。 The second opening row 20B is composed of four outlet openings 19b of the second jet flow path 19B. The second opening row 20B supplies the coolant 25 toward the front side in the tool rotation direction T with respect to the cutting insert 10 fixed to the insert mounting seat 12. In the present embodiment, the second jet flow path 19B is a flow path that supplies the coolant 25 toward the chips 30 of the work piece cut by the cutting insert 10.
 図4および図5に示すように、各開口列20A,20Bを構成する複数の噴射流路19A,19Bの各出口開口19bは、中心軸Oに対して所定の角度で傾斜する第1凹部14Aの内壁面14aの傾斜に沿って配列されているとともに、本体部110の径方向から見てほぼ中心軸Oの軸方向に一列に並んで配列されている。開口列20A、20Bにおいて、複数の出口開口19bが並ぶ方向は、切削インサート10の外周刃の延びる方向と概ね平行である。 As shown in FIGS. 4 and 5, each outlet opening 19b of the plurality of jet flow paths 19A and 19B constituting the opening rows 20A and 20B has a first recess 14A inclined at a predetermined angle with respect to the central axis O. The inner wall surface 14a is arranged along the inclination of the inner wall surface 14a, and is arranged in a line substantially in the axial direction of the central axis O when viewed from the radial direction of the main body 110. In the opening rows 20A and 20B, the direction in which the plurality of outlet openings 19b are lined up is substantially parallel to the extending direction of the outer peripheral blade of the cutting insert 10.
 第1の開口列20Aおよび第2の開口列20Bは、チップポケット14における第1凹部14Aの内壁面14aにおいて、工具回転方向Tに間隔をおいて互いにほぼ平行に配置される。第1の開口列20Aは、切削インサート10が取り付けられる第2凹部14Bの近傍に形成され、第2の開口列20Bは、第1の開口列20Aよりも工具回転方向Tの前方側に形成されている。 The first opening row 20A and the second opening row 20B are arranged substantially parallel to each other on the inner wall surface 14a of the first recess 14A in the chip pocket 14 at intervals in the tool rotation direction T. The first opening row 20A is formed in the vicinity of the second recess 14B to which the cutting insert 10 is attached, and the second opening row 20B is formed on the front side in the tool rotation direction T with respect to the first opening row 20A. ing.
 第1の開口列20Aと第2の開口列20Bとでは、各開口列20A,20Bを構成する噴射流路19の出口開口19bの数が異なっていてもよい。本実施形態の場合、切削インサート10に向けてクーラント25を供給する第1の開口列20Aの方が、切屑30に向けてクーラント25を供給する第2の開口列20Bよりも噴射流路19の数が多い。第1の開口列20Aは5つの噴射流路19Aの出口開口19bからなり、第2の開口列20Bは4つの噴射流路19Bの出口開口19bからなる。 The number of outlet openings 19b of the jet flow paths 19 constituting the opening rows 20A and 20B may be different between the first opening row 20A and the second opening row 20B. In the case of the present embodiment, the first opening row 20A that supplies the coolant 25 toward the cutting insert 10 is in the jet flow path 19 more than the second opening row 20B that supplies the coolant 25 toward the chips 30. a lot. The first opening row 20A is composed of the outlet openings 19b of the five jet channels 19A, and the second opening row 20B is composed of the outlet openings 19b of the four jet channels 19B.
 なお、開口列20A,20Bを構成する噴射流路19の開口の数は、上述した数に限られず、適宜変更が可能である。例えば、切削インサート10の大きさや切屑30の大きさおよび量等に応じて、本体部110に設ける噴射流路19の数を増減させて、各開口列20A,20Bを構成する噴射流路19の開口の数を変えてもよい。各開口列20A,20Bにおける噴射流路19の数は、少なくとも3つ以上である。 The number of openings in the jet flow path 19 constituting the opening rows 20A and 20B is not limited to the number described above, and can be changed as appropriate. For example, the number of jet flow paths 19 provided in the main body 110 is increased or decreased according to the size of the cutting insert 10 and the size and amount of chips 30, and the jet flow paths 19 constituting the opening rows 20A and 20B are formed. The number of openings may be changed. The number of jet flow paths 19 in each of the opening rows 20A and 20B is at least three or more.
 また、本実施形態の本体部110には、チップポケット14ごとに開口列20が2列以上形成されているが、3列以上形成されていてもよい。3列以上の開口列20が配置される場合に、開口列20を構成する出口開口19bの数を複数の開口列で揃えてもよく、開口列ごとに異ならせてもよい。 Further, although the main body 110 of the present embodiment has two or more opening rows 20 for each chip pocket 14, three or more rows may be formed. When three or more rows of openings 20 are arranged, the number of outlet openings 19b constituting the rows of openings 20 may be the same in a plurality of rows of openings, or may be different for each row of openings.
 なお、第1の開口列20Aと第2の開口列20Bとでそれぞれを構成する複数の噴射流路19A,19Bの流路径(出口開口19bの開口径)が互いに異なっていてもよい。また、各開口列20A,20B内においても、各開口列20A,20Bを構成する複数の噴射流路19の流路径(出口開口19bの開口径)がそれぞれ異なっていてもよい。 The flow path diameters (opening diameters of the outlet openings 19b) of the plurality of jet flow paths 19A and 19B that form the first opening row 20A and the second opening row 20B, respectively, may be different from each other. Further, even within the opening rows 20A and 20B, the flow path diameters (opening diameters of the outlet openings 19b) of the plurality of jet flow paths 19 constituting the opening rows 20A and 20B may be different.
 本実施形態では、本体部110の中央に大きなクーラント溜まり部16を設け、本体部110の外周部に設けられた複数の切削インサート10の近傍に、クーラント溜まり部16から各切削インサート10に向かって複数の噴射流路19を延ばしている。各噴射流路19は、クーラント溜まり部16からチップポケット14の内壁面14aに向かって途中で分岐することなく直線状に延びている。本実施形態では細い流路を分岐しない構成のため、噴射流路19内でクーラント25の圧力低下が生じにくく、出口開口19bからクーラント25が勢いよく噴射される。本実施形態では、本体部110に設けられたすべての噴射流路19は互いに概ね同じ形状となっている。各噴射流路19の形状、長さを揃えることで、噴射流路19ごとの流路抵抗のばらつきを抑制でき、各出口開口19bからの噴射圧力を均一化できる。 In the present embodiment, a large coolant pool 16 is provided in the center of the main body 110, and the coolant pool 16 is directed toward each cutting insert 10 in the vicinity of the plurality of cutting inserts 10 provided on the outer periphery of the main body 110. A plurality of jet flow paths 19 are extended. Each jet flow path 19 extends linearly from the coolant pool portion 16 toward the inner wall surface 14a of the chip pocket 14 without branching in the middle. In the present embodiment, since the narrow flow path is not branched, the pressure of the coolant 25 is unlikely to drop in the injection flow path 19, and the coolant 25 is vigorously injected from the outlet opening 19b. In the present embodiment, all the jet flow paths 19 provided in the main body 110 have substantially the same shape as each other. By making the shape and length of each jet flow path 19 uniform, it is possible to suppress variations in flow path resistance for each jet flow path 19, and to make the jet pressure from each outlet opening 19b uniform.
 噴射流路19は、クーラント溜まり部16からインサート取付座12に向かって漸次縮径したテーパー形状(図7)とされている。クーラント溜まり部16に連通する一端側の入口開口19aの開口径よりも、チップポケット14に連通する他端側の出口開口19bの開口径の方が小さい縮径テーパー形状をなすことで、出口開口19b側から噴出されるクーラント25の流速を高めることができる。本実施形態では、噴射されるクーラント25の流速は、約7~9m/sである。 The jet flow path 19 has a tapered shape (FIG. 7) in which the diameter is gradually reduced from the coolant pool portion 16 toward the insert mounting seat 12. The outlet opening has a reduced diameter taper shape in which the opening diameter of the outlet opening 19b on the other end side communicating with the chip pocket 14 is smaller than the opening diameter of the inlet opening 19a on one end side communicating with the coolant reservoir 16. The flow velocity of the coolant 25 ejected from the 19b side can be increased. In the present embodiment, the flow velocity of the injected coolant 25 is about 7 to 9 m / s.
 噴射流路19には、図7および図8に示すように、内側の内周面に螺旋形状の螺旋溝19dが形成されている。本実施形態では、噴射流路19の周方向に複数(4本)の螺旋溝19dが存在し、いずれの螺旋溝19dも噴射流路19の入口開口19a側から出口開口19bにかけて螺旋を描くように形成されている。 As shown in FIGS. 7 and 8, a spiral groove 19d is formed on the inner inner peripheral surface of the jet flow path 19. In the present embodiment, a plurality of (4) spiral grooves 19d exist in the circumferential direction of the injection flow path 19, and each spiral groove 19d draws a spiral from the inlet opening 19a side of the injection flow path 19 to the outlet opening 19b. Is formed in.
 本実施形態では、4本の螺旋溝19dの幅および深さは、互いにほぼ同じである。4本の螺旋溝19dは、噴射流路19の内周面の周方向においてほぼ等間隔に配置される。各螺旋溝19dは、それぞれの螺旋溝19dが延びる方向において一様な幅および深さに形成される。これらの構成とすることで、螺旋溝19dを形成することによる流路抵抗の上昇を抑制できる。噴射圧力の低下を抑えつつ、噴射されるクーラントの直進性を高めることができる。 In the present embodiment, the widths and depths of the four spiral grooves 19d are substantially the same as each other. The four spiral grooves 19d are arranged at substantially equal intervals in the circumferential direction of the inner peripheral surface of the jet flow path 19. Each spiral groove 19d is formed to have a uniform width and depth in the direction in which each spiral groove 19d extends. With these configurations, an increase in flow path resistance due to the formation of the spiral groove 19d can be suppressed. It is possible to improve the straightness of the injected coolant while suppressing the decrease in the injection pressure.
 ここで、本実施形態の噴射流路19は、図4に示す中心軸Oの軸方向から見ると、噴射流路19の延在方向は、本体部110の径方向に対して交差する方向である。図4において、角度θ1は、第1の開口列20Aに属する噴射流路19Aの入口開口19aを通って本体部110の径方向に延びる直線S1と、噴射流路19Aの中心線N1との交差角度である。角度θ2は、第2の開口列20Bに属する噴射流路19Bの入口開口19aを通って本体部110の径方向に延びる直線S2と、噴射流路19Bの中心線N2との交差角度である。本実施形態では、角度θ1と角度θ2とは互いに異なる角度であり、いずれも45°以下である。 Here, the jet flow path 19 of the present embodiment is viewed from the axial direction of the central axis O shown in FIG. 4, and the extending direction of the jet flow path 19 is a direction intersecting the radial direction of the main body 110. be. In FIG. 4, the angle θ1 is the intersection of the straight line S1 extending in the radial direction of the main body 110 through the inlet opening 19a of the jet flow path 19A belonging to the first opening row 20A and the center line N1 of the jet flow path 19A. The angle. The angle θ2 is the intersection angle between the straight line S2 extending in the radial direction of the main body 110 through the inlet opening 19a of the jet flow path 19B belonging to the second opening row 20B and the center line N2 of the jet flow path 19B. In the present embodiment, the angle θ1 and the angle θ2 are different from each other, and both are 45 ° or less.
 工具本体11の工具回転方向T(図4では反時計回り方向)において、噴射流路19A,19Bの中心線N1,N2は、いずれも本体部110の径方向に延びる直線S1,S2よりも後方側へ向かって延びている。この構成によれば、直線状の噴射流路19A,19Bを、工具回転方向Tの前方側から切削インサート10に向かう方向に配置できる。噴射流路19A、19Bを曲線形状とすることなく、各出口開口19bから切削インサート10側へ向けてそれぞれクーラント25を噴射させることができる。 In the tool rotation direction T (counterclockwise direction in FIG. 4) of the tool body 11, the center lines N1 and N2 of the jet flow paths 19A and 19B are both behind the straight lines S1 and S2 extending in the radial direction of the main body 110. It extends toward the side. According to this configuration, the linear jet flow paths 19A and 19B can be arranged in the direction from the front side of the tool rotation direction T toward the cutting insert 10. The coolant 25 can be injected from each outlet opening 19b toward the cutting insert 10 side without forming the injection flow paths 19A and 19B in a curved shape.
 本実施形態では、角度θ1と角度θ2とを異ならせることによって、第1の開口列20Aおよび第2の開口列20Bから噴射させるクーラント25の噴射方向をそれぞれ最適化することができる。本実施形態の場合、角度θ2よりも角度θ1の方が大きく、噴射流路19Bよりも噴射流路19Aの方が、本体部110の径方向に対して工具回転方向Tの後方側へより傾いている。これにより、噴射流路19Aから噴射するクーラント25を切削インサート10のすくい面5aに向かわせやすくしている。 In the present embodiment, the injection directions of the coolant 25 to be injected from the first opening row 20A and the second opening row 20B can be optimized by making the angle θ1 and the angle θ2 different from each other. In the case of the present embodiment, the angle θ1 is larger than the angle θ2, and the jet flow path 19A is more inclined to the rear side of the tool rotation direction T with respect to the radial direction of the main body 110 than the jet flow path 19B. ing. This makes it easier for the coolant 25 jetted from the jet flow path 19A to face the rake face 5a of the cutting insert 10.
 クランプボルト挿入孔8は、工具本体11を工具機械に接続するためのクランプボルト9が挿入されるボルト孔である。クランプボルト挿入孔8は、一端側がクーラント溜まり部16の底面16cの中央に開口し、他端側が先端面11aに開口している。クランプボルト挿入孔8は、互いに径の異なる第1貫通孔81および第2貫通孔82が中心軸Oの軸方向に繋がった貫通孔である。第1貫通孔81および第2貫通孔82は、中心軸Oを中心とする同軸位置にある。第1貫通孔81および第2貫通孔82は、いずれも、クーラント流路7を構成する入口流路15よりも小さい径を有する。 The clamp bolt insertion hole 8 is a bolt hole into which a clamp bolt 9 for connecting the tool body 11 to the tool machine is inserted. One end side of the clamp bolt insertion hole 8 opens in the center of the bottom surface 16c of the coolant pool portion 16, and the other end side opens in the tip surface 11a. The clamp bolt insertion hole 8 is a through hole in which a first through hole 81 and a second through hole 82 having different diameters are connected in the axial direction of the central axis O. The first through hole 81 and the second through hole 82 are coaxial positions with respect to the central axis O. Both the first through hole 81 and the second through hole 82 have a diameter smaller than that of the inlet flow path 15 constituting the coolant flow path 7.
 第1貫通孔81は、クーラント溜まり部16に連通するとともにその底面16cの中央に開口する。第2貫通孔82は、工具基端側が第1貫通孔81に連通するとともに、工具先端側が先端面11aの中央に開口する。クランプボルト挿入孔8内には、本体部110の先端面11a側からクランプボルト9が挿入される。第1貫通孔81にクランプボルト9の軸部9bが通され、第2貫通孔にクランプボルト9の頭部9aが挿入される。 The first through hole 81 communicates with the coolant pool portion 16 and opens in the center of the bottom surface 16c thereof. The tool base end side of the second through hole 82 communicates with the first through hole 81, and the tool tip side opens in the center of the tip surface 11a. The clamp bolt 9 is inserted into the clamp bolt insertion hole 8 from the tip surface 11a side of the main body 110. The shaft portion 9b of the clamp bolt 9 is passed through the first through hole 81, and the head portion 9a of the clamp bolt 9 is inserted into the second through hole.
 クランプボルト9は、中心軸Oに沿って軸部9bの中央に形成されたクーラント流路91を有している。クーラント流路91は、一端側がボルト先端面に開口する主流路91aと、主流路91aの他端側に連通する複数の分岐流路91bとにより構成される。各分岐流路91bは、軸部9bの外周面に開口しており、クーラント溜まり部16に連通する。 The clamp bolt 9 has a coolant flow path 91 formed in the center of the shaft portion 9b along the central shaft O. The coolant flow path 91 is composed of a main flow path 91a whose one end side opens to the bolt tip surface and a plurality of branch flow paths 91b communicating with the other end side of the main flow path 91a. Each branch flow path 91b opens on the outer peripheral surface of the shaft portion 9b and communicates with the coolant pool portion 16.
 工具本体11と複数の切削インサート10とによって構成される刃先交換式切削工具100は、工具本体11の後端側に取り付けられる図示しないアーバーを介して工具機械200の主軸に取り付けられる。本体部110に形成されたクーラント流路7の入口流路15は、アーバーによって塞がれる。アーバーのクーラント流路は、クランプボルト9のクーラント流路91に繋がる。クランプボルト9のクーラント流路91は、本体部110のクーラント溜まり部16に繋がる。アーバーのクーラント流路からクランプボルト9のクーラント流路91を通じて、本体部110のクーラント溜まり部16にクーラント25が供給される。 The cutting edge exchangeable cutting tool 100 composed of the tool body 11 and the plurality of cutting inserts 10 is attached to the spindle of the tool machine 200 via an arbor (not shown) attached to the rear end side of the tool body 11. The inlet flow path 15 of the coolant flow path 7 formed in the main body 110 is closed by an arbor. The coolant flow path of the arbor is connected to the coolant flow path 91 of the clamp bolt 9. The coolant flow path 91 of the clamp bolt 9 is connected to the coolant pool portion 16 of the main body portion 110. The coolant 25 is supplied from the coolant flow path of the arbor to the coolant pool portion 16 of the main body 110 through the coolant flow path 91 of the clamp bolt 9.
 本実施形態の刃先交換式切削工具100では、クランプボルト9を通ってクーラント流路7内に流入したクーラント25は、クーラント溜まり部16内のクーラント収容空間Kを満たす。クーラント収容空間Kに満たされたクーラント25が、複数の噴射流路19A,19Bを通って、各チップポケット14の内壁面14aに開口する第1の開口列20Aおよび第2の開口列20Bから径方向外側へ噴射される。噴射されたクーラント25は、図9に示すように、切削インサート10の切刃5の周辺に向けて噴射される。本実施形態では、第1の開口列20Aと第2の開口列20Bとで、各チップポケット14の内壁面14aに開口する位置が工具回転方向Tで互いに異なっていることから、クーラント25は、工具回転方向の前後にずれた2方向に噴射される。 In the cutting tool 100 with a replaceable cutting edge of the present embodiment, the coolant 25 flowing into the coolant flow path 7 through the clamp bolt 9 fills the coolant accommodating space K in the coolant reservoir 16. The coolant 25 filled in the coolant accommodating space K passes through the plurality of jet passages 19A and 19B and has a diameter from the first opening row 20A and the second opening row 20B that open to the inner wall surface 14a of each chip pocket 14. It is jetted outward in the direction. As shown in FIG. 9, the injected coolant 25 is injected toward the periphery of the cutting edge 5 of the cutting insert 10. In the present embodiment, since the positions of the first opening row 20A and the second opening row 20B that open to the inner wall surface 14a of each chip pocket 14 are different from each other in the tool rotation direction T, the coolant 25 is different from each other. It is injected in two directions that are offset back and forth in the tool rotation direction.
 図9に示すように、第1の開口列20Aからは切削インサート10のすくい面5aに向けてクーラント25が噴射される。さらに、第1の開口列20Aの出口開口19bは切刃5が延びる方向に沿って並んでいるため、クーラント25は切刃5が延びる方向に幅広い形状で噴射される。すくい面5aの広い範囲にクーラント25を供給できるため、被切削物を切削することで高温になる切刃5を素早く冷却することができる。また、クーラント25が切屑30とすくい面5aとの間に入り込むので、切屑30を小さくカールさせやすい。切屑30が被切削物と切削インサート10との間に入り込みにくくなる。 As shown in FIG. 9, the coolant 25 is injected from the first opening row 20A toward the rake face 5a of the cutting insert 10. Further, since the outlet openings 19b of the first opening row 20A are lined up along the direction in which the cutting edge 5 extends, the coolant 25 is sprayed in a wide shape in the direction in which the cutting edge 5 extends. Since the coolant 25 can be supplied to a wide range of the rake face 5a, the cutting edge 5 that becomes hot by cutting the work piece can be quickly cooled. Further, since the coolant 25 enters between the chip 30 and the rake face 5a, the chip 30 can be easily curled into a small size. It becomes difficult for the chips 30 to enter between the object to be cut and the cutting insert 10.
 第2の開口列20Bからは切削インサート10よりも工具回転方向Tの前方側に向けてクーラント25が噴射される。図9に示すように、切刃5によって削り出された切屑30は、すくい面5aの工具回転方向Tの前方側でカールされながら工具基端側へ延びる。本実施形態では、第2の開口列20Bから噴射されるクーラント25により、すくい面5aの前方側に位置する切屑30を狙い撃ちする。これにより、生成された切屑30に対して、外周側へ折り曲げる力を作用させ、切屑30を折り取ることができる。従って、切屑30を細かく分断しながら素早く弾き飛ばすことができる。切削インサート10と被切削物との間に切屑30が入り込むのを抑制できる。第2の開口列20Bの出口開口19bも切刃5が延びる方向に沿って並んでいるため、クーラント25は中心軸Oの軸方向からみて幅広い形状で噴射される。したがって、第2の開口列20Bから噴射されるクーラント25のほぼ全部を切屑30に対して当てることができる。少ない量のクーラント25で切屑30を正確に弾き飛ばすことができる。 Coolant 25 is injected from the second opening row 20B toward the front side in the tool rotation direction T from the cutting insert 10. As shown in FIG. 9, the chips 30 carved by the cutting edge 5 extend toward the tool base end side while being curled on the front side of the rake face 5a in the tool rotation direction T. In the present embodiment, the coolant 25 injected from the second opening row 20B aims at the chips 30 located on the front side of the rake face 5a. As a result, the generated chips 30 can be subjected to a bending force toward the outer peripheral side to break the chips 30. Therefore, the chips 30 can be quickly flicked while being divided into small pieces. It is possible to prevent the chips 30 from entering between the cutting insert 10 and the object to be cut. Since the outlet openings 19b of the second opening row 20B are also arranged along the direction in which the cutting edge 5 extends, the coolant 25 is injected in a wide shape when viewed from the axial direction of the central axis O. Therefore, almost all of the coolant 25 injected from the second opening row 20B can be applied to the chips 30. The chips 30 can be accurately blown off with a small amount of coolant 25.
 本実施形態では、各チップポケット14の内壁面14aに2段の開口列20A,20Bを設けるとともにこれらの開口位置を工具回転方向Tにずらした構成となっている。これにより、切削インサート10の切刃5と、切刃5によって生成される切屑30との双方に向かって同時にクーラント25を噴射させることが可能である。そのため、切屑30の処理性と切刃5の冷却効果を同時に向上させることができる。また、難削材の加工を行った場合であっても切削インサート10の切れ味が衰えるのを防ぐことができ、工具寿命の延長が期待できる。 In the present embodiment, the inner wall surface 14a of each chip pocket 14 is provided with two- stage opening rows 20A and 20B, and these opening positions are shifted in the tool rotation direction T. This makes it possible to simultaneously inject the coolant 25 toward both the cutting edge 5 of the cutting insert 10 and the chip 30 generated by the cutting edge 5. Therefore, the processability of the chips 30 and the cooling effect of the cutting edge 5 can be improved at the same time. Further, even when a difficult-to-cut material is machined, it is possible to prevent the sharpness of the cutting insert 10 from deteriorating, and it is expected that the tool life will be extended.
 また、本実施形態の噴射流路19は、クーラント溜まり部16からチップポケット14の内壁面14a(インサート取付座12)に向かって漸次縮径したテーパー形状とされているため、オリフィス部品を用いることなく噴射するクーラント25の流速を高めることができ、切削インサート10の冷却効率および切屑30の処理効率をより向上させることができる。 Further, since the injection flow path 19 of the present embodiment has a tapered shape in which the diameter is gradually reduced from the coolant collecting portion 16 toward the inner wall surface 14a (insert mounting seat 12) of the chip pocket 14, an orifice component is used. It is possible to increase the flow velocity of the coolant 25 to be injected without any problems, and it is possible to further improve the cooling efficiency of the cutting insert 10 and the processing efficiency of the chips 30.
 また、噴射流路19の内周面には、螺旋状の螺旋溝19dが形成されている。噴射流路19から噴射されるクーラント25は、螺旋溝19dによって旋回流となって噴射される。噴射流路19内に複数の螺旋溝19dを設けておくことで、旋回流を効率良く発生させることができる。これにより、クーラント25の噴射方向への直進性と流速が高まり、噴射方向先端側において広がりにくくなる。その結果、切削インサート10の切刃5および切屑30に対してそれぞれ狙いを定めることができ、切屑30の除去効率、切削インサート10の冷却効率を高めることができる。 Further, a spiral spiral groove 19d is formed on the inner peripheral surface of the jet flow path 19. The coolant 25 injected from the injection flow path 19 is jetted as a swirling flow by the spiral groove 19d. By providing a plurality of spiral grooves 19d in the jet flow path 19, a swirling flow can be efficiently generated. As a result, the straightness of the coolant 25 in the injection direction and the flow velocity are increased, and it becomes difficult for the coolant 25 to spread on the tip side in the injection direction. As a result, it is possible to aim at the cutting edge 5 and the chip 30 of the cutting insert 10, respectively, and it is possible to improve the efficiency of removing the chip 30 and the cooling efficiency of the cutting insert 10.
 また、工具本体11において、各開口列20A,20Bを構成する複数の噴射流路19A,19Bは、中心軸Oに沿う方向に並んで配列されている。この構成によれば、切削インサート10の外周刃に沿って広い範囲に満遍なくクーラント25を噴射することができるとともに、生成された切屑30に対しても、切屑30が延びる方向に沿って広い範囲にクーラント25を噴射することができる。これにより、切削インサート10の冷却効率と切屑30の除去効率をより一層高めることができる。 Further, in the tool body 11, the plurality of jet flow paths 19A and 19B constituting the opening rows 20A and 20B are arranged side by side in the direction along the central axis O. According to this configuration, the coolant 25 can be evenly sprayed over a wide range along the outer peripheral blade of the cutting insert 10, and the generated chips 30 can be sprayed over a wide range along the direction in which the chips 30 extend. Coolant 25 can be injected. As a result, the cooling efficiency of the cutting insert 10 and the removal efficiency of the chips 30 can be further improved.
 また、各噴射流路19は、クーラント溜まり部16のうち、チップポケット14に近い傾斜壁面16fに開口している。傾斜壁面16fは、チップポケット14の内壁面14aに沿って傾斜しているため、クーラント溜まり部16からインサート取付座12に向かって延びる噴射流路の長さを短くすることができ、噴射流路内でクーラントの圧力を低下させることなく噴射することができる。
 また、傾斜壁面16fに噴射流路19を設けることで噴射流路19が延びる方向を調整することができる。このため、クーラント25の噴射方向を容易に制御することができ、切削インサート10に向けて十分な圧力で正確にクーラント25を供給することができる。また、複数の噴射流路19の長さを揃えることで、噴射流路19ごとの流路抵抗を揃えることができる。これにより、噴射されるクーラント25の圧力を均一化することができ、切屑30を効率よく除去することができるとともに切削インサート10の冷却性を高めることができる。
Further, each jet flow path 19 is open to the inclined wall surface 16f near the chip pocket 14 in the coolant collecting portion 16. Since the inclined wall surface 16f is inclined along the inner wall surface 14a of the chip pocket 14, the length of the jet flow path extending from the coolant collecting portion 16 toward the insert mounting seat 12 can be shortened, and the jet flow path can be shortened. It can be jetted inside without reducing the pressure of the coolant.
Further, by providing the jet flow path 19 on the inclined wall surface 16f, the direction in which the jet flow path 19 extends can be adjusted. Therefore, the injection direction of the coolant 25 can be easily controlled, and the coolant 25 can be accurately supplied to the cutting insert 10 with sufficient pressure. Further, by making the lengths of the plurality of jet flow paths 19 uniform, the flow path resistance of each jet flow path 19 can be made uniform. As a result, the pressure of the injected coolant 25 can be made uniform, the chips 30 can be efficiently removed, and the cooling performance of the cutting insert 10 can be improved.
 また、工具本体11は、本体部110内にクーラント溜まり部16から外周面110aに向かって延びる径の細い複数の噴射流路19を有することから、3Dプリンタを用いて作製することによって、射出成形や切削加工によって作製する場合に比べて複雑な形状を容易に作製することができる。 Further, since the tool main body 11 has a plurality of injection flow paths 19 having a small diameter extending from the coolant collecting portion 16 toward the outer peripheral surface 110a in the main body portion 110, injection molding is performed by using a 3D printer. It is possible to easily produce a complicated shape as compared with the case of producing by cutting or cutting.
 以上、添付図面を参照しながら本発明に係る好適な実施形態について説明したが、本発明は係る例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 Although the preferred embodiments according to the present invention have been described above with reference to the accompanying drawings, it goes without saying that the present invention is not limited to such examples. It is clear that a person skilled in the art can come up with various modifications or modifications within the scope of the technical idea described in the claims, and of course, the technical scope of the present invention also includes them. It is understood that it belongs to.
 5…切刃
 5a…すくい面
 7,91…クーラント流路
 10…切削インサート
 11…工具本体
 12…インサート取付座
 14…チップポケット(凹部)
 14a…内壁面
 14b…内壁面(壁面)
 15…入口流路
 16…クーラント溜まり部
 16f…傾斜壁面
 19,19A,19B…噴射流路
 20…開口列
 20A…第1の開口列
 20B…第2の開口列
 25…クーラント
 100…刃先交換式切削工具
 110…本体部
 110a…外周面
 O…中心軸
 R1…第1の壁面領域
 R2…第2の壁面領域(壁面領域)
 T…工具回転方向
5 ... Cutting edge 5a ... Scooping surface 7,91 ... Coolant flow path 10 ... Cutting insert 11 ... Tool body 12 ... Insert mounting seat 14 ... Tip pocket (recess)
14a ... Inner wall surface 14b ... Inner wall surface (wall surface)
15 ... Inlet flow path 16 ... Coolant pool 16f ... Inclined wall surface 19, 19A, 19B ... Injection flow path 20 ... Opening row 20A ... First opening row 20B ... Second opening row 25 ... Coolant 100 ... Cutting edge replaceable cutting Tool 110 ... Main body 110a ... Outer surface O ... Central axis R1 ... First wall surface area R2 ... Second wall surface area (wall surface area)
T ... Tool rotation direction

Claims (8)

  1.  中心軸の軸周りに回転して被切削物を切削する刃先交換式切削工具に用いられる工具本体であって、
     中心軸の軸周りに回転可能な本体部と、
     前記本体部の外周部に位置するとともに被切削物を切削するための切削インサートを取り付け可能なインサート取付座と、
     を備え、
     前記本体部は、工具基端側からクーラントを流入させ、前記インサート取付座の近傍から前記クーラントを噴射するクーラント流路を有し、
     前記クーラント流路は、
      前記本体部の工具基端側に位置する入口流路と、
      前記入口流路の工具先端側に繋がり、前記入口流路よりも大きい流路径を有するクーラント溜まり部と、
      前記クーラント溜まり部から前記インサート取付座に向かって延びる複数の噴射流路と、
     を有し、
     前記クーラント溜まり部は、工具先端側へ行くに従って径方向内側に向かう傾斜壁面を有し、前記傾斜壁面に前記噴射流路が開口している、
     工具本体。
    A tool body used for cutting tools with interchangeable cutting edges that rotate around the axis of the central axis to cut the object to be cut.
    The main body that can rotate around the central axis,
    An insert mounting seat located on the outer peripheral portion of the main body and to which a cutting insert for cutting a work piece can be mounted.
    With
    The main body has a coolant flow path that allows coolant to flow in from the tool base end side and injects the coolant from the vicinity of the insert mounting seat.
    The coolant flow path is
    An inlet flow path located on the tool base end side of the main body and
    A coolant pool that is connected to the tool tip side of the inlet flow path and has a flow path diameter larger than that of the inlet flow path.
    A plurality of jet flow paths extending from the coolant reservoir toward the insert mounting seat,
    Have,
    The coolant pool portion has an inclined wall surface that goes inward in the radial direction toward the tool tip side, and the jet flow path is opened in the inclined wall surface.
    Tool body.
  2.  前記クーラント溜まり部は、前記中心軸を中心としてその軸回りに形成されており、工具基端側から工具先端側に向かって漸次縮径する壁面領域を有し、
     前記噴射流路が開口する前記傾斜壁面は、前記壁面領域内に位置する、
     請求項1に記載の工具本体。
    The coolant pool portion is formed around the central axis, and has a wall surface region whose diameter gradually decreases from the tool base end side toward the tool tip side.
    The inclined wall surface through which the jet flow path opens is located in the wall surface region.
    The tool body according to claim 1.
  3.  前記クーラント溜まり部は、工具基端側から工具先端側に向かって漸次拡径する第1の壁面領域と、
     前記第1の壁面領域の工具先端側の端部から工具先端側に向かって漸次縮径する第2の壁面領域と、
     を有し、
     前記噴射流路が開口する前記傾斜壁面は、前記第2の壁面領域内に位置する、
     請求項1または2に記載の工具本体。
    The coolant pool portion has a first wall surface area whose diameter gradually increases from the tool base end side toward the tool tip side, and a first wall surface region.
    A second wall surface region whose diameter is gradually reduced from the end of the first wall surface region on the tool tip side toward the tool tip side, and
    Have,
    The inclined wall surface through which the jet flow path opens is located in the second wall surface region.
    The tool body according to claim 1 or 2.
  4.  前記噴射流路は、前記クーラント溜まり部との接続部から工具回転方向の後方側へ延びる、
     請求項1から3のいずれか一項に記載の工具本体。
    The jet flow path extends rearward in the tool rotation direction from the connection portion with the coolant pool portion.
    The tool body according to any one of claims 1 to 3.
  5.  前記噴射流路は、前記傾斜壁面から前記本体部の外周面に向かって直線状に延びる、
     請求項1から4のいずれか1項に記載の工具本体。
    The jet flow path extends linearly from the inclined wall surface toward the outer peripheral surface of the main body portion.
    The tool body according to any one of claims 1 to 4.
  6.  前記本体部は、前記工具先端側の外周に複数の凹部を有し、
     前記凹部の内壁面の一部に前記インサート取付座が形成されているとともに、前記内壁面のうち前記インサート取付座以外の壁面に前記クーラント流路が開口している、
     請求項1から5のいずれか1項に記載の工具本体。
    The main body has a plurality of recesses on the outer circumference on the tip side of the tool.
    The insert mounting seat is formed on a part of the inner wall surface of the recess, and the coolant flow path is opened on a wall surface of the inner wall surface other than the insert mounting seat.
    The tool body according to any one of claims 1 to 5.
  7.  前記本体部は、3Dプリンタによって作製される、
     請求項1から6のいずれか1項に記載の工具本体。
    The main body is manufactured by a 3D printer.
    The tool body according to any one of claims 1 to 6.
  8.  請求項1から7のいずれか1項に記載の工具本体と、
    前記工具本体に対して着脱可能に取り付けられる複数の前記切削インサートと、を備える、
     刃先交換式切削工具。
    The tool body according to any one of claims 1 to 7.
    A plurality of the cutting inserts that are detachably attached to the tool body.
    Cutting tool with replaceable cutting edge.
PCT/JP2021/011999 2020-03-31 2021-03-23 Blade tip exchangeable cutting tool and tool body WO2021200400A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020064868A JP2021160043A (en) 2020-03-31 2020-03-31 Tip replaceable cutting tool and tool body
JP2020-064868 2020-03-31

Publications (1)

Publication Number Publication Date
WO2021200400A1 true WO2021200400A1 (en) 2021-10-07

Family

ID=77928599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/011999 WO2021200400A1 (en) 2020-03-31 2021-03-23 Blade tip exchangeable cutting tool and tool body

Country Status (2)

Country Link
JP (1) JP2021160043A (en)
WO (1) WO2021200400A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023090153A1 (en) * 2021-11-18 2023-05-25 京セラ株式会社 Holder, cutting tool, and method for manufacturing machined product

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004039263A1 (en) * 2003-09-06 2005-03-31 Tripols-Union Formenbau Gmbh Drill or other machining tool, comprising duct for pressurized water in order to avoid creation of helical chips
US20070283786A1 (en) * 2006-06-09 2007-12-13 Gregor Kappmeyer Mehod for the manufacture of a cutting tool
JP2011206887A (en) * 2010-03-30 2011-10-20 Mitsubishi Materials Corp Coolant supply hole structure of cutting tool
CN105436589A (en) * 2015-12-18 2016-03-30 株洲钻石切削刀具股份有限公司 Milling cutting tool with cooling structure
JP2016068172A (en) * 2014-09-29 2016-05-09 京セラ株式会社 Holder, cutting tool, and method for manufacturing cut product
JP2018149657A (en) * 2017-03-14 2018-09-27 三菱マテリアル株式会社 Holder for cutting edge replacement type cutting tool, and cutting edge replacement type cutting tool
JP2018149655A (en) * 2017-03-14 2018-09-27 三菱マテリアル株式会社 Holder for cutting edge replacement type cutting tool, and cutting edge replacement type cutting tool
JP2018534158A (en) * 2015-10-09 2018-11-22 サンドビック インテレクチュアル プロパティー アクティエボラーグ Slot milling disc, slot milling tool including slot milling disc, and disc for slot milling disc

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004039263A1 (en) * 2003-09-06 2005-03-31 Tripols-Union Formenbau Gmbh Drill or other machining tool, comprising duct for pressurized water in order to avoid creation of helical chips
US20070283786A1 (en) * 2006-06-09 2007-12-13 Gregor Kappmeyer Mehod for the manufacture of a cutting tool
JP2011206887A (en) * 2010-03-30 2011-10-20 Mitsubishi Materials Corp Coolant supply hole structure of cutting tool
JP2016068172A (en) * 2014-09-29 2016-05-09 京セラ株式会社 Holder, cutting tool, and method for manufacturing cut product
JP2018534158A (en) * 2015-10-09 2018-11-22 サンドビック インテレクチュアル プロパティー アクティエボラーグ Slot milling disc, slot milling tool including slot milling disc, and disc for slot milling disc
CN105436589A (en) * 2015-12-18 2016-03-30 株洲钻石切削刀具股份有限公司 Milling cutting tool with cooling structure
JP2018149657A (en) * 2017-03-14 2018-09-27 三菱マテリアル株式会社 Holder for cutting edge replacement type cutting tool, and cutting edge replacement type cutting tool
JP2018149655A (en) * 2017-03-14 2018-09-27 三菱マテリアル株式会社 Holder for cutting edge replacement type cutting tool, and cutting edge replacement type cutting tool

Also Published As

Publication number Publication date
JP2021160043A (en) 2021-10-11

Similar Documents

Publication Publication Date Title
US6626614B2 (en) Throw-away cutting tool
US9925596B2 (en) Turning tool holder and cutting tool insert
US10335871B2 (en) Replaceable face-milling head with integrally formed threaded shank-connector
JP6205726B2 (en) Cutting inserts for face milling and exchangeable face milling
WO1995025612A1 (en) Cutting tool and shank
JP2010528887A (en) Adjustable cutting edge drill
JP5310191B2 (en) Insert detachable cutting tool
JP2010094748A (en) Cutting tool
JP2021030385A (en) End mill body of cutting edge-replaceable end mill with coolant hole, and cutting edge-replaceable end mill with coolant hole
WO2021200400A1 (en) Blade tip exchangeable cutting tool and tool body
JP5954608B2 (en) Replaceable cutting edge rotary cutting tool
JP4959395B2 (en) Throw-away insert, turning tool equipped with the insert, and cutting method
JP5515958B2 (en) Coolant supply hole structure for cutting tools
KR101959189B1 (en) Cutting inserts and cutting blades
JP2021160021A (en) Tip replaceable cutting tool and tool body
JP2021160023A (en) Tip replaceable cutting tool and tool body
JP2019093497A (en) Cutting insert and blade edge replaceable type rotary cutting tool
KR20230152657A (en) metal cutting milling tools
US20220203464A1 (en) Milling tool with coolant distributing holes
JP2012206205A (en) Drill holder, and cutting-edge replaceable drill
JP2012206216A (en) Drill holder and edge exchangeable drill
JP7239864B2 (en) Cutting inserts and indexable rotary cutting tools
JP6497175B2 (en) Cutting edge rotary cutting tool and tool body
JP2021098242A (en) Cutter with coolant hole and main body of the cutter
JP4059953B2 (en) Throw-away rotary tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21779863

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21779863

Country of ref document: EP

Kind code of ref document: A1