WO2021200169A1 - Steel sheet - Google Patents

Steel sheet Download PDF

Info

Publication number
WO2021200169A1
WO2021200169A1 PCT/JP2021/010890 JP2021010890W WO2021200169A1 WO 2021200169 A1 WO2021200169 A1 WO 2021200169A1 JP 2021010890 W JP2021010890 W JP 2021010890W WO 2021200169 A1 WO2021200169 A1 WO 2021200169A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
martensite
content
rolling
Prior art date
Application number
PCT/JP2021/010890
Other languages
French (fr)
Japanese (ja)
Inventor
林 宏太郎
孝彦 神武
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Publication of WO2021200169A1 publication Critical patent/WO2021200169A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to a steel sheet.
  • Patent Document 1 proposes a steel containing Mn of 2.6% or more and 4.2% or less. Since the above steel also contains a larger amount of Mn than general high-strength steel, retained austenite is easily generated, has high elongation, and exhibits excellent formability and bendability.
  • Non-Patent Document 1 since the steel sheet disclosed in Non-Patent Document 1 has a high Mn content, weldability may become a problem when it is used for parts for automobile bodies. Therefore, considering the utility as automobile parts and the like, it is desired to improve both the strength and formability of the steel sheet with a smaller Mn content. Further, in the steel sheet disclosed in Patent Document 1, the retained austenite is not isotropic and is unevenly distributed, so that the Charpy impact characteristic at room temperature is deteriorated. As described above, when the impact characteristics are lowered, the steel material used cannot be thinned, and the weight reduction of the automobile body cannot be sufficiently achieved.
  • An object of the present invention is to solve the above problems and to provide a steel sheet having high strength and excellent strength-ductility balance, bendability and impact characteristics.
  • the present invention has been made to solve the above problems, and the following steel materials are the gist of the present invention.
  • the chemical composition of the steel sheet is mass%.
  • C More than 0.18% and less than 0.30%, Si: 0.001% or more and less than 2.00%, Mn: More than 2.50% and less than 4.20%, sol. Al: 0.001% or more and less than 1.00%, P: 0.030% or less, S: 0.005% or less, N: Less than 0.050%, O: Less than 0.020%, Cr: 0 to 0.50%, Mo: 0 to 0.50%, W: 0 to 0.30%, Cu: 0 to 0.30%, Ni: 0 to 0.50%, Ti: 0 to 0.100%, Nb: 0 to 0.100%, V: 0 to 0.100%, B: 0 to 0.010%, Ca: 0 to 0.010%, Mg: 0 to 0.010%, Zr: 0 to 0.010%, REM: 0-0.010%, Sb: 0 to 0.050%, Sn: 0 to 0.050%, Bi: 0 to 0.050%, Remain
  • Residual austenite 10% or more
  • Tempering martensite 60-80%
  • Martensite less than 20%
  • the grain boundary density of small angles with a crystal orientation difference of 2 degrees or more and less than 20 degrees is 0.20 to 1.0 ⁇ m -1
  • the grain boundary density of large angles with a crystal orientation difference of 20 to 50 degrees is 0.20 to 1.0 ⁇ m -1. It is 0.30 to 0.60 ⁇ m -1 .
  • the ratio A L / A N of the particle density A N in the particle density A L and the plate thickness direction in the rolling direction of the residual austenite is 0.80 to 1.0 Steel plate.
  • the chemical composition is mass%. Cr: 0.01-0.50%, Mo: 0.01-0.50%, W: 0.01-0.30%, Cu: 0.01 to 0.30%, and Ni: 0.01 to 0.50%, Contains one or more selected from, The steel sheet according to (1) above.
  • the chemical composition is mass%. Ti: 0.005 to 0.100%, Nb: 0.005 to 0.100%, and V: 0.005 to 0.100%, Contains one or more selected from, The steel sheet according to (1) or (2) above.
  • the chemical composition is mass%.
  • the chemical composition is mass%.
  • Sb 0.0005 to 0.050%
  • Sn 0.0005 to 0.050%
  • Bi 0.0005 to 0.050%
  • a hot-dip galvanized layer is provided on the surface of the steel sheet.
  • the steel sheet according to any one of (1) to (5) above.
  • An alloyed hot-dip galvanized layer is provided on the surface of the steel sheet.
  • the steel sheet according to any one of (1) to (5) above.
  • C More than 0.18% and less than 0.30% C is an element necessary to increase the strength of steel and secure retained austenite. On the other hand, when C is excessively contained, it becomes difficult to maintain the weldability of the steel sheet. Therefore, the C content is set to more than 0.18% and less than 0.30%.
  • the C content is preferably 0.20% or more.
  • the C content is preferably 0.28% or less, more preferably 0.25% or less.
  • Si 0.001% or more and less than 2.00%
  • Si is an element effective for strengthening tempered martensite and further improving moldability. Si also has the effect of suppressing the precipitation of cementite and promoting the formation of retained austenite.
  • the Si content is set to 0.001% or more and less than 2.00%.
  • the Si content is preferably 0.020% or more, preferably 0.10% or more, 0.30% or more, or 0.50% or more. More preferred.
  • the Si content is preferably 1.80% or less, more preferably 1.60% or less.
  • Mn More than 2.50% and less than 4.20% Mn is an element that stabilizes austenite. More than 2.50% Mn is required to stabilize austenite at room temperature. On the other hand, when Mn is excessively contained, the weldability is lowered. Further, by setting the Mn content to less than 4.20%, the non-uniformity of the Mn content due to solidification segregation can be reduced, and the bendability can be improved. Therefore, the Mn content is set to more than 2.50% and less than 4.20%.
  • the Mn content is preferably more than 3.00%, more preferably more than 3.20%.
  • the Mn content is preferably less than 3.80%, more preferably less than 3.50%.
  • Al 0.001% or more and less than 1.00%
  • Al is an antacid and needs to be contained in an amount of 0.001% or more.
  • Al also has an effect of improving material stability because it widens the temperature range of the two-phase region at the time of annealing. The higher the Al content, the greater the effect, but if the Al content is excessive, it becomes difficult to maintain the surface texture, paintability, and weldability. Therefore, sol.
  • the Al content is 0.001% or more and less than 1.00%. sol.
  • the Al content is preferably 0.005% or more, more preferably 0.010% or more, and further preferably 0.020% or more.
  • sol. The Al content is preferably 0.80% or less, and more preferably 0.60% or less.
  • sol.Al means "acid-soluble Al".
  • P 0.030% or less
  • P is an impurity, and if the steel sheet contains P in excess, the weldability is impaired. Therefore, the P content is 0.030% or less.
  • the P content is preferably 0.025% or less, more preferably 0.020% or less, and even more preferably 0.015% or less. Since the steel sheet according to the present invention does not require P, the P content may be more than 0%, 0.001% or more, or 0.003% or more, but the smaller the P content, the more preferable.
  • S 0.005% or less
  • S is an impurity, and if the steel sheet contains S in excess, the weldability is impaired. Therefore, the S content is set to 0.005% or less.
  • the S content is preferably 0.003% or less, and more preferably 0.002% or less. Since the steel sheet according to the present invention does not require S, the S content may be more than 0% or 0.0003% or more, but the smaller the S content, the more preferable.
  • N Less than 0.050% N is an impurity, and if the steel sheet contains 0.050% or more of N, the low temperature toughness is reduced. Therefore, the N content is set to less than 0.050%.
  • the N content is preferably 0.030% or less, more preferably 0.010% or less, and even more preferably 0.006% or less. Since the steel sheet according to the present invention does not require N, the N content may be more than 0%, 0.001% or more, or 0.002% or more, but the smaller the N content, the more preferable.
  • O Less than 0.020% O is an impurity, and if the steel sheet contains 0.020% or more of O, the low temperature toughness is reduced. Therefore, the O content is set to less than 0.020%.
  • the O content is preferably 0.010% or less, more preferably 0.005% or less, and even more preferably 0.003% or less. Since the steel sheet according to the present invention does not require O, the O content may be more than 0% or 0.001% or more, but the smaller the O content, the more preferable.
  • the steel sheet of the present invention includes the following amounts of Cr, Mo, W, Cu, Ni, Ti, Nb, V, B, Ca, Mg, Zr, REM, Sb, Sn and It may contain one or more elements selected from Bi.
  • Cr 0 to 0.50% Mo: 0 to 0.50% W: 0 to 0.30%
  • Cu 0 to 0.30%
  • Ni 0 to 0.50% Cr, Mo, W, Cu, and Ni are elements that improve the strength of the steel sheet. Therefore, one or more selected from these elements may be contained. However, if these elements are excessively contained, surface defects are likely to occur during hot rolling, and the strength of the hot rolled steel sheet may become too high, resulting in a decrease in cold rollability. Therefore, the Cr content is 0.50% or less, the Mo content is 0.50% or less, the W content is 0.30% or less, the Cu content is 0.30% or less, and the Ni content is 0.50%. It is as follows.
  • the above-mentioned elements it is preferable to contain at least 0.01% or more of the above-mentioned elements.
  • the contents of Cr, Mo, W, Cu, and Ni are more preferably 0.05% or more, respectively.
  • Nb 0 to 0.100%
  • V 0 to 0.100% Since Ti, Nb, and V are elements that produce fine carbides, nitrides, or carbonitrides, they are effective in improving the strength of the steel sheet. Further, when the content of Nb is 0.100% or less, it has an effect of promoting the miniaturization of the structure during hot rolling. Therefore, one or more selected from these elements may be contained. However, if these elements are excessively contained, the strength of the hot-rolled steel sheet may be excessively increased, and the cold rollability may be lowered. Therefore, the Ti content is 0.100% or less, the Nb content is 0.100% or less, and the V content is 0.100% or less.
  • the contents of Ti, Nb, and V are all preferably 0.050% or less, and more preferably 0.030% or less. In order to more reliably obtain the effect of the above-mentioned actions of these elements, it is preferable to contain at least one of the above-mentioned elements in an amount of 0.005% or more.
  • the contents of Ti, Nb, and V are more preferably 0.007% or more, and further preferably 0.010% or more, respectively.
  • B 0 to 0.010% Ca: 0 to 0.010% Mg: 0 to 0.010% Zr: 0 to 0.010% REM: 0-0.010%
  • B, Ca, Mg, Zr, and REM (rare earth metals) improve the local ductility and hole expandability of steel sheets. Therefore, one or more selected from these elements may be contained. However, if these elements are excessively contained, the moldability of the steel sheet may be deteriorated. Therefore, the B content is 0.010% or less, the Ca content is 0.010% or less, the Mg content is 0.010% or less, the Zr content is 0.010% or less, and the REM content is 0.010%. It is as follows.
  • the contents of B, Ca, Mg, Zr, and REM are all preferably 0.006% or less, and more preferably 0.003% or less.
  • the total content of one or more elements selected from B, Ca, Mg, Zr, and REM may be 0.050% or less, but is preferably 0.030% or less.
  • the content of at least one of the above-mentioned elements is preferably 0.0001% or more, more preferably 0.0005% or more. It is more preferably 0.001% or more.
  • REM is a general term for 17 elements including 15 elements of lanthanoids and Y and Sc, and one or more of these elements can be contained.
  • the content of REM means the total content of these elements.
  • Sb 0 to 0.050%
  • Sn 0 to 0.050%
  • Bi 0 to 0.050%
  • Sb, Sn, and Bi suppress that easily oxidizing elements such as Mn, Si, and / or Al in the steel sheet are diffused on the surface of the steel sheet to form an oxide, and improve the surface texture and plating property of the steel sheet. Therefore, one or more selected from these elements may be contained. However, even if these elements are excessively contained, the effect is saturated. Therefore, the Sb content is 0.050% or less, the Sn content is 0.050% or less, and the Bi content is 0.050% or less.
  • the contents of Sb, Sn, and Bi are all preferably 0.030% or less, 0.010% or less, 0.006% or less, or 0.003% or less.
  • At least one of the above-mentioned elements in an amount of 0.0005% or more.
  • the contents of Sb, Sn, and Bi are more preferably 0.001% or more, respectively.
  • the balance is Fe and impurities.
  • impurity is a component mixed with raw materials such as ore and scrap, and various factors in the manufacturing process when steel is industrially manufactured, and is allowed as long as it does not adversely affect the present invention. Means something.
  • the position at a depth of 1/4 of the plate thickness also referred to as "1/4 position” from the surface.
  • the metallographic structure contains 10% or more retained austenite, 60-80% tempered martensite, and martensite is limited to less than 20%.
  • the fraction of each structure changes depending on the heat treatment conditions and affects the material of the steel sheet such as strength, elongation, bendability, and impact characteristics. The reasons for the limitation of each organization will be explained in detail.
  • Residual austenite 10% or more
  • Residual austenite is a structure that enhances the strength-ductility balance of a steel sheet by transformation-induced plasticity. In order to obtain these effects, the steel sheet according to the present invention needs to contain 10% or more of retained austenite in the metal structure.
  • the area ratio of retained austenite is preferably 13% or more, more preferably 18% or more. When the area ratio of retained austenite is 13% or more, further 18% or more, both strength and elongation are compatible, and TS ⁇ El, which will be described later, becomes higher.
  • the upper limit of the area ratio of retained austenite is not particularly specified, but is substantially 30% or less.
  • Tempering martensite 60-80% Tempered martensite is also a hard phase, but it has a structure different from that of martensite, which will be described later, and has the effect of improving impact characteristics and ensuring the strength of the steel sheet.
  • the area ratio of tempered martensite shall be 60% or more.
  • the area ratio of tempered martensite is 80% or less.
  • the area ratio of tempered martensite is preferably 63% or more, and preferably 77% or less.
  • the steel sheet of the present invention has a metal structure mainly composed of tempered martensite by being manufactured through the steps described later.
  • a metal structure mainly composed of tempered martensite by being manufactured through the steps described later.
  • the steel sheet has a hot-dip galvanized layer or an alloyed hot-dip galvanized layer, a small amount of bainite may inevitably be mixed in the plating process.
  • the tempered martensite contains bainite.
  • bainite is also measured in addition to tempered martensite. That is, it means that the total area ratio of tempered martensite and bainite is 60 to 80%.
  • Martensite less than 20% Martensite is a hard phase with many dislocations in its structure and is an effective structure for obtaining the strength of steel sheets.
  • the area ratio of martensite is set to less than 20% because the impact characteristics are significantly deteriorated.
  • the area ratio of martensite is preferably 15% or less, more preferably 10% or less, still more preferably 0%.
  • martensite means martensite which has not been tempered.
  • the rest other than retained austenite, martensite, and tempered martensite is cementite, and its area ratio is preferably 1% or less. Further, if ferrite and pearlite are mixed in the metal structure even in a small amount, it becomes difficult to increase the strength, so that the metal structure cannot be included. That is, the area ratio of ferrite and pearlite is 0%.
  • the tempered martensite and the small-angle grain boundary density at the martensite are 0.20 ⁇ m -1 or more.
  • the small-angle grain boundary density is preferably 0.30 ⁇ m -1 or more.
  • the small-angle grain boundary density means the total length ( ⁇ m) of the boundaries observed per unit area ( ⁇ m 2 ) in which the crystal orientation difference between tempered martensite and martensite is 2 degrees or more and less than 20 degrees. do.
  • the large-angle grain boundary density means the total length ( ⁇ m) of the tempered martensite and the boundary where the crystal orientation difference between martensite is 20 to 50 degrees, which is observed per unit area ( ⁇ m 2).
  • the ratio A L / A N of the particle density A N in the particle density A L and the plate thickness direction in the rolling direction of the residual austenite is 0.80 or more.
  • the upper limit of A L / A N is substantially 1.0 or less.
  • Average crystal grain size of retained austenite 2 ⁇ m or less
  • the average crystal grain size of retained austenite is not particularly limited, but from the viewpoint of ensuring high strength, it is 2 ⁇ m or less. preferable.
  • the area ratio of each structure, the small-angle grain boundary density and the large-angle grain boundary density in tempered martensite and martensite, the dispersed state of retained austenite, and the average crystal grain size of retained austenite are measured by the following methods. It shall be.
  • the area ratio of retained austenite is calculated as follows. First, a test piece 25 mm in the rolling direction and 25 mm in the rolling perpendicular direction (width direction) is cut out from the steel sheet. At this time, the thickness of the test piece is the same as the thickness of the steel plate. Then, the test piece is mechanically polished and then chemically polished to reduce the plate thickness by 1/4 to obtain a chemically polished test piece having a strain-free surface. X-ray diffraction analysis with a measurement range of 2 ⁇ of 45 to 105 degrees is performed three times on the surface of the test piece using a Co tube.
  • the integrated intensities of the peaks (111), (200), and (220) are obtained, and for the bcc phase, the integrated intensities of the peaks (110), (200), and (211) are obtained.
  • the integrated intensities are analyzed, the volume fraction of retained austenite is obtained, and the results of three X-ray diffraction analyzes are averaged to obtain the value as the area fraction of retained austenite.
  • the area ratio of tempered martensite and martensite is calculated from microstructure observation with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the L cross section obtained by cutting the steel sheet in parallel with the thickness direction and the rolling direction is mirror-polished, and then the microstructure is revealed by 3% nital. Then, at a magnification of 5000 times, a microstructure in a range of 100 ⁇ m in length (length in the plate thickness direction) ⁇ 300 ⁇ m in width (length in the rolling direction) is observed around the 1/4 position from the surface.
  • Tempered martensite is identified as a gray underlying structure, and retained austenite and martensite are identified as a white structure.
  • the area ratio of tempered martensite includes the area ratio of bainite.
  • the gray parts those having a polygonal shape and not containing cementite are judged to be ferrite, and those having a lamellar structure are judged to be pearlite, and are distinguished.
  • the area ratio of martensite is calculated by subtracting the area ratio of retained austenite measured by the X-ray diffraction method from the total area ratio of retained austenite and martensite.
  • EBSP Backscattered electron diffraction
  • the EBSP measurement is performed in the range of 160 ⁇ m in length (length in the plate thickness direction) ⁇ 80 ⁇ m in width (length in the rolling direction) centered on the 1/4 position from the surface. Then, in the above measurement range, as shown by a dotted line in FIG. 1, two lines are drawn in the horizontal direction and one line is drawn in the vertical direction, and the number of residual austenite grains crossed by each line is counted.
  • the value obtained by dividing the number of retained austenite grains crossed by the two horizontal lines by the length of the lines is the particle density AL ( ⁇ m -1 ) in the rolling direction, and the residual austenite grains crossed by the vertical lines.
  • the value obtained by dividing the number of lines by the total length of the two lines is defined as the particle density AN ( ⁇ m -1 ) in the rolling direction.
  • AL / AN is obtained from those results.
  • the average crystal grain size of the retained austenite is obtained by calculating the average value of the circle-equivalent diameters of the retained austenite grains specified by the EBSP measurement.
  • the tensile strength (TS) of the steel sheet according to the present invention is preferably 980 MPa or more, more preferably 1180 MPa or more. This is because when a steel sheet is used as a material for automobiles, the thickness is reduced by increasing the strength, which contributes to weight reduction. Further, in order to use the steel sheet according to the present invention for press molding, the elongation at break (El) is preferably 15% or more, more preferably 17% or more.
  • TS ⁇ El is preferably 22000 MPa ⁇ % or more, more preferably 24,000 MPa ⁇ % or more, and 26000 MPa ⁇ %. The above is more preferable.
  • the steel sheet according to the present invention is also excellent in bendability and Charpy impact characteristics at room temperature.
  • (A) Melting step Steel having the above-mentioned chemical composition is melted by a conventional method and cast to prepare a slab or an ingot.
  • the molten steel may be melted by a normal blast furnace method, and the raw material is a large amount of scrap like the steel produced by the electric furnace method. It may include.
  • the slab may be manufactured by a normal continuous casting process or may be manufactured by thin slab casting.
  • (B) Hot-rolling step The above-mentioned slab or steel ingot is heated and hot-rolled to obtain a hot-rolled steel sheet.
  • the heating temperature of the steel material to be subjected to hot rolling is 1100 to 1300 ° C.
  • the heating temperature By setting the heating temperature to 1100 ° C. or higher, the deformation resistance during hot rolling can be further reduced.
  • the heating temperature By setting the heating temperature to 1300 ° C. or lower, it is possible to suppress a decrease in yield due to an increase in scale loss.
  • the above heating temperature means the surface temperature of a slab or a steel ingot.
  • the time for holding in the temperature range of 1100 to 1300 ° C. before hot rolling is not particularly specified, but in order to improve the material stability, it is preferably 30 minutes or more, and more preferably 1 h or more. Further, in order to suppress excessive scale loss, it is preferably 10 hours or less, and more preferably 5 hours or less.
  • hot rolling may be performed as it is without heat treatment.
  • Hot rolling may be performed on a normal continuous hot rolling line. Further, in hot rolling, finish rolling is performed after rough rolling.
  • the starting temperature in finish rolling shall be 1000 ° C or lower. By setting the finish rolling start temperature to 1000 ° C or lower, coarsening of the structure during finish rolling is prevented, subsequent structure control becomes easy, and deterioration of the surface texture of the steel sheet due to intergranular oxidation is suppressed. ..
  • the finish rolling start temperature is preferably 750 ° C. or higher. When the finish rolling start temperature is 750 ° C. or higher, the deformation resistance during rolling can be reduced and the structure control can be easily performed.
  • Cooling step After finish rolling, allow to cool for 1.2 to 4.0 s. By allowing to cool after finish rolling, the formation of ferrite is suppressed, the structure becomes uniform, and retained austenite is isotropically dispersed. Further, by setting the cooling time to 4.0 s or less, it is possible to prevent coarsening of retained austenite.
  • the cooling rate is preferably 500 ° C./s or less.
  • the cooling rate is 500 ° C./s or less, uneven cooling is less likely to occur and cold rollability is improved.
  • the structure of the hot-rolled steel sheet can be made into a bainite single-phase or martensite single-phase, or a composite structure of bainite and martensite, and the retained austenite grains of the steel sheet according to the present invention. Can be isotropically dispersed.
  • (F) Cold-rolled steel sheet The hot-rolled steel sheet produced through the above steps is pickled by a conventional method and then cold-rolled at a reduction rate of 30 to 70% to obtain a cold-rolled steel sheet. do.
  • the rolling reduction of cold rolling is 30% or more, recrystallization occurs uniformly, retained austenite is uniformly generated, and the mixture is isotropically dispersed.
  • the rolling reduction ratio is 70% or less, fracture is less likely to occur during cold rolling.
  • the rolling reduction of cold rolling is preferably 40% or more, and preferably 60% or less. Cold rolling may be carried out on a normal continuous cold rolling line.
  • light rolling with a reduction ratio of more than 0% and 5% or less may be performed before pickling. Modifying the shape by light rolling is advantageous in terms of ensuring flatness. In addition, light rolling before pickling improves pickling properties, promotes removal of surface-concentrating elements, and has the effect of improving chemical conversion treatment properties and plating treatment properties.
  • the holding time is preferably 2.0 h or more, and more preferably 4.0 h or more.
  • the holding time is preferably 10.0 h or less, and more preferably 8.0 h or less.
  • the average rate of temperature rise from 300 ° C. to the holding temperature is preferably 0.01 ° C./s or more and 5 ° C./s or less.
  • the average cooling rate from the holding temperature to 300 ° C. is preferably 0.001 ° C./s or more and 500 ° C./s or less.
  • the holding time means the time held in the temperature range of 600 ° C. or higher and lower than Ac 3.
  • (H) Second heat treatment step Following the first heat treatment step, a second heat treatment step is performed.
  • heat treatment is performed in which the temperature is maintained at 3 points or more and Ac 3 + 80 ° C. or lower for 30 to 180 seconds, and then cooled to a temperature of 300 ° C. or lower.
  • the holding temperature By setting the holding temperature to Ac 3 points or more, the area ratio of the tempered martensite finally produced can be increased. It is also effective for miniaturizing retained austenite.
  • the holding temperature to Ac 3 + 80 ° C. or lower, the generation of block boundaries and packet boundaries can be promoted, and the large-angle grain boundary density can be increased.
  • the holding time is preferably 60 s or more, and preferably 120 s or less.
  • the metal structure is once made into a martensite single phase after the second heat treatment step. From this point of view, the average cooling rate from the holding temperature to 300 ° C. is preferably 2 ° C./s or more and 2000 ° C./s or less.
  • the holding time means the time for holding in the temperature range of 3 points or more and 3 + 80 ° C. or less of Ac.
  • a third heat treatment step is performed.
  • the third heat treatment step holding 650 ° C. or higher Ac 3 -20 ° C. point below the temperature range at 5s above. By setting the holding temperature to 650 ° C. or higher, austenite is likely to be produced. The holding temperature by below Ac 3 -20 ° C. points, to promote the production of tempered martensite, the strength - thereby improving the ductility balance.
  • the holding time is preferably 30 s or more from the viewpoint of more reliably dissolving cementite and stably ensuring good low temperature toughness. Further, from the viewpoint of productivity, the holding time is preferably 300 s or less.
  • the retention time is meant a time that is maintained at a temperature range of 3 -20 ° C. point 650 ° C. or higher Ac.
  • the average cooling rate from the holding temperature to 520 ° C. is 0.1 ° C./s or more and 100 ° C./s or less.
  • the first to third heat treatments may be performed in a batch furnace such as a box annealing furnace (BAF), or may be performed using a continuous annealing line.
  • the atmosphere of the heat treatment is not particularly limited, for example, an inert atmosphere, or may be any of a reducing atmosphere containing H 2 or the like.
  • the steel sheet is not plated after the third heat treatment step, it may be cooled to room temperature as it is.
  • plating a steel sheet it is manufactured as follows.
  • Hot-dip galvanizing step When hot-dip galvanizing the surface of a steel sheet to produce a hot-dip galvanized steel sheet, cooling after the third heat treatment is stopped in the temperature range of 430 to 500 ° C., and then the cold-rolled steel sheet is used. Is immersed in a hot-dip galvanizing bath to perform hot-dip galvanizing. The conditions of the plating bath may be within the normal range. After the plating treatment, it may be cooled to room temperature.
  • (K) Alloyed hot-dip galvanizing step When the surface of a steel sheet is subjected to alloying hot-dip galvanizing to produce an alloyed hot-dip galvanized steel sheet, the steel sheet is subjected to hot-dip galvanizing treatment and then cooled to room temperature. Before this, the hot dip galvanizing process is performed at a temperature of 450 to 620 ° C.
  • the alloying treatment conditions may be within the usual range.
  • the obtained 30 mm-thick steel piece was heated at 1250 ° C. for 1 h, and then hot-rolled under the conditions shown in Table 2. Subsequently, the winding was simulated and held at a predetermined temperature corresponding to the winding temperature for 30 minutes, and then slowly cooled to room temperature at 20 ° C./h to prepare a 2.6 mm thick hot-rolled steel sheet.
  • the example in which the winding temperature is shown as “room temperature” indicates that the sample has been cooled to room temperature depending on the conditions of the accelerated cooling step.
  • the obtained hot-rolled steel sheet was pickled and then cold-rolled under the conditions shown in Table 2 to prepare a 1.6 mm-thick cold-rolled steel sheet.
  • the obtained cold-rolled steel sheet was subjected to the first to third heat treatments under the conditions shown in Table 3.
  • the heat treatment was carried out in a reducing atmosphere of 98% nitrogen and 2% hydrogen.
  • heating is performed under the condition that the average temperature rise rate from 300 ° C. to the holding temperature is 0.5 ° C./s, and the average cooling rate from the holding temperature to 300 ° C. is 0.5 ° C./s. It was cooled to a temperature of 300 ° C. or lower under the above conditions.
  • the temperature was cooled to 300 ° C. or lower under the condition that the average cooling rate from the holding temperature to 300 ° C. was 10 ° C./s.
  • test No. 1, 3 to 10, 13 to 15, 17, 19 to 22 and 24 to 29 are heated under the condition that the average heating rate in the temperature range of 500 to 600 ° C. is 5 ° C./s. It was cooled to room temperature under the condition that the average cooling rate up to 520 ° C. was 10 ° C./s.
  • Test No. The hot-dip cold-rolled steel sheets of 2, 12, 16, 18 and 23 were heated under the condition that the average temperature rise rate in the temperature range of 500 to 600 ° C. in the third heat treatment was 5 ° C./s.
  • Cooling at an average cooling rate of 10 ° C./s is stopped at 460 ° C., the cold-rolled steel sheet is held at that temperature for 10 seconds, and immersed in a hot-dip galvanizing bath at 460 ° C. for 2 seconds to perform hot-dip galvanizing treatment. rice field.
  • the conditions of the plating bath are the same as those of the conventional one.
  • test No. 16 after the hot-dip galvanizing treatment, the mixture was cooled to room temperature at an average cooling rate of 10 ° C./s.
  • Test No. The annealed cold-rolled steel sheets of 2, 12, 18 and 23 were subjected to hot-dip galvanizing treatment, then heated to 500 ° C. at 10 ° C./s without cooling to room temperature, and held at 500 ° C. for 5 s.
  • the alloying treatment was performed, and then the mixture was cooled to room temperature at an average cooling rate of 10 ° C./s.
  • the annealed cold-rolled steel sheet thus obtained was subjected to skin pass rolling with a reduction ratio of 0.5%, and the test No. Steel sheets 1 to 29 were produced.
  • a JIS No. 5 tensile test piece was taken in the width direction of the steel sheet, and a tensile test was performed to measure the tensile strength (TS) and the elongation at break (El). The tensile test was carried out by the method specified in JIS Z 2241: 2011 using a JIS No. 5 tensile test piece.
  • the bendability was evaluated by performing a bending test. Bending test pieces having a width of 20 mm and a length of 50 mm were collected from each of the annealed steel sheets. The width direction of the bending test piece is parallel to the bending axis. The case where the width direction of the bending test piece is parallel to the rolling direction of the steel sheet is called a rolling direction bending test, and the case where the width direction of the bending test piece is parallel to the width direction of the steel sheet is called a width direction bending test. The test piece was pushed into the mold with a V-shaped punch having a punch radius of 4.8 mm and an apex angle of 90 ° of 3.2 mm.
  • the bending test was performed according to the V block method of JIS Z 2248: 2006. Observe the sample surface after the bending test, and if cracks are not observed at both the punch radius of 4.8 mm and 3.2 mm, the bendability is further improved, and if cracks are not observed only at the punch radius of 4.8 mm, bending is observed. When the property was good and cracks were observed at both the punch radii of 4.8 mm and 3.2 mm, the bendability was considered to be poor.
  • the impact characteristics were evaluated by performing a Charpy impact test.
  • a V-notch test piece was taken from each steel sheet after annealing. At this time, the length direction of the V-notch test piece was made to coincide with the rolling direction of the steel sheet. After stacking four of the test pieces and screwing them together, they were subjected to a Charpy impact test according to JIS Z 2242: 2018.
  • the impact characteristics when the impact value at 20 ° C. was 30 J / cm 2 or more, the impact characteristics were good, and when it was less than that, the impact characteristics were poor.
  • Table 4 shows the above evaluation results.
  • TS of 980 MPa or more, TS ⁇ El of 22000 MPa ⁇ % or more, good impact characteristics, and good bendability has high strength, strength-ductility balance, and bending. It was evaluated as a steel sheet with excellent properties and impact characteristics.
  • Test No. 8 since the second heat treatment step was not performed, tempered martensite was not generated and mainly became ferrite, and the small-angle grain boundary density and the large-angle grain boundary density decreased. In addition, retained austenite was also coarsened. As a result, the strength, TS ⁇ El and impact characteristics deteriorated. Test No. In No. 9, the holding temperature in the third heat treatment step was high, the area ratio of tempered martensite was low, and the area ratio of martensite was high, so that the impact characteristics deteriorated.
  • Test No. 11 since the third heat treatment step was not performed, the martensite became a single phase, and TS ⁇ El, impact characteristics, and bendability deteriorated.
  • Test No. 13 the holding time in the second heat treatment step was long, and the large-angle particle size density was lowered, so that the impact characteristics were deteriorated.
  • Test No. 15 the holding temperature in the second heat treatment step was high, and the large-angle particle size density was lowered, so that the impact characteristics were deteriorated.
  • Test No. 19 the holding time in the first heat treatment step was short, the small angle particle size density was low, and the isotropic property of the retained austenite was lowered, so that TS ⁇ El, impact characteristics, and bendability were deteriorated.
  • Test No. 22 the take-up temperature was high and the isotropic property of retained austenite was lowered, so that the impact characteristics and bendability were deteriorated.
  • Test No. 24 the holding temperature in the first heat treatment step was low, the small angle particle size density was low, and the isotropic property of the retained austenite was lowered, so that TS ⁇ El, impact characteristics, and bendability were deteriorated.
  • Test No. 26 the holding temperature in the third heat treatment step was low, and the area ratio of tempered martensite was high, so that the strength deteriorated.
  • Test No. 29 since the first heat treatment step and the second heat treatment step were not performed, tempered martensite was not generated and was mainly ferrite, and the area ratio of martensite was further increased. In addition, the small-angle grain boundary density and the large-angle grain boundary density decreased, and the isotropic property of retained austenite also decreased. As a result, TS ⁇ El, impact characteristics, and bendability deteriorated.
  • the steel sheet of the present invention exhibits excellent results not only in width direction bendability but also in rolling direction bendability because retained austenite is isotropically dispersed.
  • the steel sheet of the present invention can be used for various purposes, and is particularly preferably used for structural parts of automobiles such as side sills, and contributes to weight reduction of automobiles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

This steel sheet has a chemical composition in which, expressed in mass percentage, C is more than 0.18% and less than 0.30%; Si is at least 0.001% and less than 2.00%; Mn is more than 2.50% and less than 4.20%; sol. Al is at least 0.001% and less than 1.00%; P is 0.030% or less; S is 0.005% or less; N is less than 0.050%; O is less than 0.020%; Cr is 0-0.50%; Mo is 0-0.50%; W is 0-0.30%; Cu is 0-0.30%; Ni is 0-0.50%; Ti is 0-0.100%; Nb is 0-0.100%; V is 0-0.100%; B is 0-0.010%; Ca is 0-0.010%; Mg is 0-0.010%; Zr is 0-0.010%; REM is 0-0.010%; Sb is 0-0.050%; Sn is 0-0.050%; Bi is 0-0.050%; and the balance being Fe and impurities, wherein, in a cross section of the steel sheet, the cross section being parallel to the rolling direction and the sheet thickness direction, the metallographic structure at a position 1/4 sheet thickness from the surface includes, in terms of area percentage,10% or more of residual austenite, 60-80% of tempered martensite, less than 20% of martensite and wherein the low angle boundary density is 0.20-1.0 µm-1, the high angle boundary density is 0.30-0.60 µm-1, and AL/AN is 0.80-1.0.

Description

鋼板Steel plate
 本発明は、鋼板に関する。 The present invention relates to a steel sheet.
 一般に、鋼板を高強度化すると、伸びが低下し、鋼板の成形性が低減しうる。したがって、自動車の車体用部品として高強度鋼板を使用するためには、相反する特性である強度と成形性との両方を高める必要があり、すなわちより優れた強度-延性バランスが求められている。また、車体部品用として使用される高強度鋼板には、優れた曲げ性および衝撃特性が要求される。そのため、鋼板の機械的特性として、高い強度および優れた成形性を有しながら、さらに、優れた曲げ性および衝撃特性を有することが求められている。 In general, when the strength of a steel sheet is increased, the elongation is reduced and the formability of the steel sheet can be reduced. Therefore, in order to use a high-strength steel plate as a part for an automobile body, it is necessary to enhance both strength and formability, which are contradictory characteristics, that is, a better strength-ductility balance is required. Further, high-strength steel sheets used for vehicle body parts are required to have excellent bendability and impact characteristics. Therefore, as the mechanical properties of the steel sheet, it is required to have high strength and excellent moldability, and further have excellent bendability and impact characteristics.
 伸び、すなわち、成形性を向上させるため、これまでに、Mnを積極的に添加し、約5質量%のMnを鋼板に含有させて、残留オーステナイトを鋼中に生成させ、その変態誘起塑性を利用した、いわゆる中Mn鋼が提案されている(例えば、非特許文献1)。 So far, in order to improve elongation, that is, formability, Mn has been positively added and about 5% by mass of Mn has been contained in the steel sheet to generate retained austenite in the steel, and its transformation-induced plasticity has been increased. The so-called medium Mn steel used has been proposed (for example, Non-Patent Document 1).
 また、特許文献1には、2.6%以上4.2%以下のMnを含有させた鋼が提案されている。上記鋼も一般的な高強度鋼よりも多くのMnを含有するので、残留オーステナイトが生成されやすく、伸びが高く、優れた成形性、さらに優れた曲げ性を示す。 Further, Patent Document 1 proposes a steel containing Mn of 2.6% or more and 4.2% or less. Since the above steel also contains a larger amount of Mn than general high-strength steel, retained austenite is easily generated, has high elongation, and exhibits excellent formability and bendability.
国際公開第2017/183348号International Publication No. 2017/183348
 しかしながら、非特許文献1に開示された鋼板はMn含有量が高いため、自動車の車体用部品に用いる場合等において溶接性が問題となることがある。したがって、自動車部品等としての利用性を考慮すると、より少ないMn含有量で、鋼板の強度と成形性との両方を向上することが望まれる。また、特許文献1に開示された鋼板は残留オーステナイトが等方的でなく、不均一に分布するので、常温のシャルピー衝撃特性は低下する。このように、衝撃特性が低下すると、使用鋼材を薄肉化ができず、自動車車体の軽量化を十分に達成することができない。 However, since the steel sheet disclosed in Non-Patent Document 1 has a high Mn content, weldability may become a problem when it is used for parts for automobile bodies. Therefore, considering the utility as automobile parts and the like, it is desired to improve both the strength and formability of the steel sheet with a smaller Mn content. Further, in the steel sheet disclosed in Patent Document 1, the retained austenite is not isotropic and is unevenly distributed, so that the Charpy impact characteristic at room temperature is deteriorated. As described above, when the impact characteristics are lowered, the steel material used cannot be thinned, and the weight reduction of the automobile body cannot be sufficiently achieved.
 本発明は上記の課題を解決し、高い強度を有し、かつ強度-延性バランス、曲げ性および衝撃特性に優れる鋼板を提供することを目的とする。 An object of the present invention is to solve the above problems and to provide a steel sheet having high strength and excellent strength-ductility balance, bendability and impact characteristics.
 本発明は、上記課題を解決するためになされたものであり、下記の鋼材を要旨とする。 The present invention has been made to solve the above problems, and the following steel materials are the gist of the present invention.
 (1)鋼板の化学組成が、質量%で、
 C:0.18%超0.30%未満、
 Si:0.001%以上2.00%未満、
 Mn:2.50%超4.20%未満、
 sol.Al:0.001%以上1.00%未満、
 P:0.030%以下、
 S:0.005%以下、
 N:0.050%未満、
 O:0.020%未満、
 Cr:0~0.50%、
 Mo:0~0.50%、
 W:0~0.30%、
 Cu:0~0.30%、
 Ni:0~0.50%、
 Ti:0~0.100%、
 Nb:0~0.100%、
 V:0~0.100%、
 B:0~0.010%、
 Ca:0~0.010%、
 Mg:0~0.010%、
 Zr:0~0.010%、
 REM:0~0.010%、
 Sb:0~0.050%、
 Sn:0~0.050%、
 Bi:0~0.050%、
 残部:Feおよび不純物であり、
 前記鋼板の圧延方向および板厚方向に平行な断面において、表面から板厚の1/4深さ位置における金属組織が、面積%で、
 残留オーステナイト:10%以上、
 焼戻しマルテンサイト:60~80%、
 マルテンサイト:20%未満、であり、
 焼戻しマルテンサイトおよびマルテンサイトにおいて、結晶方位差が2度以上20度未満の小角粒界密度が0.20~1.0μm-1であり、結晶方位差が20~50度の大角粒界密度が0.30~0.60μm-1であり、
 残留オーステナイトの圧延方向における粒子密度Aと板厚方向における粒子密度Aとの比A/Aが0.80~1.0である、
 鋼板。
(1) The chemical composition of the steel sheet is mass%.
C: More than 0.18% and less than 0.30%,
Si: 0.001% or more and less than 2.00%,
Mn: More than 2.50% and less than 4.20%,
sol. Al: 0.001% or more and less than 1.00%,
P: 0.030% or less,
S: 0.005% or less,
N: Less than 0.050%,
O: Less than 0.020%,
Cr: 0 to 0.50%,
Mo: 0 to 0.50%,
W: 0 to 0.30%,
Cu: 0 to 0.30%,
Ni: 0 to 0.50%,
Ti: 0 to 0.100%,
Nb: 0 to 0.100%,
V: 0 to 0.100%,
B: 0 to 0.010%,
Ca: 0 to 0.010%,
Mg: 0 to 0.010%,
Zr: 0 to 0.010%,
REM: 0-0.010%,
Sb: 0 to 0.050%,
Sn: 0 to 0.050%,
Bi: 0 to 0.050%,
Remaining: Fe and impurities,
In the cross section parallel to the rolling direction and the plate thickness direction of the steel plate, the metal structure at a depth of 1/4 of the plate thickness from the surface is, in% area.
Residual austenite: 10% or more,
Tempering martensite: 60-80%,
Martensite: less than 20%,
In tempered martensite and martensite, the grain boundary density of small angles with a crystal orientation difference of 2 degrees or more and less than 20 degrees is 0.20 to 1.0 μm -1, and the grain boundary density of large angles with a crystal orientation difference of 20 to 50 degrees is 0.20 to 1.0 μm -1. It is 0.30 to 0.60 μm -1 .
The ratio A L / A N of the particle density A N in the particle density A L and the plate thickness direction in the rolling direction of the residual austenite is 0.80 to 1.0
Steel plate.
 (2)前記化学組成が、質量%で、
 Cr:0.01~0.50%、
 Mo:0.01~0.50%、
 W:0.01~0.30%、
 Cu:0.01~0.30%、および
 Ni:0.01~0.50%、
 から選択される1種以上を含有する、
 上記(1)に記載の鋼板。
(2) The chemical composition is mass%.
Cr: 0.01-0.50%,
Mo: 0.01-0.50%,
W: 0.01-0.30%,
Cu: 0.01 to 0.30%, and Ni: 0.01 to 0.50%,
Contains one or more selected from,
The steel sheet according to (1) above.
 (3)前記化学組成が、質量%で、
 Ti:0.005~0.100%、
 Nb:0.005~0.100%、および
 V:0.005~0.100%、
 から選択される1種以上を含有する、
 上記(1)または(2)に記載の鋼板。
(3) The chemical composition is mass%.
Ti: 0.005 to 0.100%,
Nb: 0.005 to 0.100%, and V: 0.005 to 0.100%,
Contains one or more selected from,
The steel sheet according to (1) or (2) above.
 (4)前記化学組成が、質量%で、
 B:0.0001~0.010%、
 Ca:0.0001~0.010%、
 Mg:0.0001~0.010%、
 Zr:0.0001~0.010%、および
 REM:0.0001~0.010%、
 から選択される1種以上を含有する、
 上記(1)から(3)までのいずれかに記載の鋼板。
(4) The chemical composition is mass%.
B: 0.0001 to 0.010%,
Ca: 0.0001 to 0.010%,
Mg: 0.0001 to 0.010%,
Zr: 0.0001 to 0.010%, and REM: 0.0001 to 0.010%,
Contains one or more selected from,
The steel sheet according to any one of (1) to (3) above.
 (5)前記化学組成が、質量%で、
 Sb:0.0005~0.050%、
 Sn:0.0005~0.050%、および
 Bi:0.0005~0.050%、
 から選択される1種以上を含有する、
 上記(1)から(4)までのいずれかに記載の鋼板。
(5) The chemical composition is mass%.
Sb: 0.0005 to 0.050%,
Sn: 0.0005 to 0.050%, and Bi: 0.0005 to 0.050%,
Contains one or more selected from,
The steel sheet according to any one of (1) to (4) above.
 (6)前記鋼板の表面に溶融亜鉛めっき層を有する、
 上記(1)から(5)までのいずれかに記載の鋼板。
(6) A hot-dip galvanized layer is provided on the surface of the steel sheet.
The steel sheet according to any one of (1) to (5) above.
 (7)前記鋼板の表面に合金化溶融亜鉛めっき層を有する、
 上記(1)から(5)までのいずれかに記載の鋼板。
(7) An alloyed hot-dip galvanized layer is provided on the surface of the steel sheet.
The steel sheet according to any one of (1) to (5) above.
 本発明によれば、高い強度を有し、かつ強度-延性バランス、曲げ性および衝撃特性に優れる鋼板を得ることができる。 According to the present invention, it is possible to obtain a steel sheet having high strength and excellent strength-ductility balance, bendability and impact characteristics.
残留オーステナイトの圧延方向における粒子密度Aと板厚方向における粒子密度Aとを測定する方法を説明するための図である。How to measure the particle density A N in the particle density A L and the plate thickness direction in the rolling direction of the residual austenite is a diagram for explaining the.
 以下、本発明の各要件について詳しく説明する。 Hereinafter, each requirement of the present invention will be described in detail.
 (A)化学組成
 各元素の限定理由は下記のとおりである。なお、以下の説明において含有量についての「%」は、「質量%」を意味する。
(A) Chemical composition The reasons for limiting each element are as follows. In the following description, "%" for the content means "mass%".
 C:0.18%超0.30%未満
 Cは、鋼の強度を高め、残留オーステナイトを確保するために必要な元素である。一方、Cを過剰に含有させた場合、鋼板の溶接性を維持することが難しくなる。したがって、C含有量は0.18%超0.30%未満とする。C含有量は0.20%以上であるのが好ましい。また、C含有量は0.28%以下であるのが好ましく、0.25%以下であるのがより好ましい。
C: More than 0.18% and less than 0.30% C is an element necessary to increase the strength of steel and secure retained austenite. On the other hand, when C is excessively contained, it becomes difficult to maintain the weldability of the steel sheet. Therefore, the C content is set to more than 0.18% and less than 0.30%. The C content is preferably 0.20% or more. The C content is preferably 0.28% or less, more preferably 0.25% or less.
 Si:0.001%以上2.00%未満
 Siは、焼戻しマルテンサイトを強化し、さらに、成形性を改善するのに有効な元素である。また、Siは、セメンタイトの析出を抑制し、残留オーステナイトの生成を促進する作用も有する。一方、Siを過剰に含有させた場合、鋼板のめっき性および化成処理性を維持することが難しくなる。したがって、Si含有量は0.001%以上2.00%未満とする。鋼板の強度-延性バランスをさらに向上するためには、Si含有量は0.020%以上であるのが好ましく、0.10%以上、0.30%以上または0.50%以上であるのがより好ましい。また、Si含有量は1.80%以下であるのが好ましく、1.60%以下であるのがより好ましい。
Si: 0.001% or more and less than 2.00% Si is an element effective for strengthening tempered martensite and further improving moldability. Si also has the effect of suppressing the precipitation of cementite and promoting the formation of retained austenite. On the other hand, when Si is excessively contained, it becomes difficult to maintain the plating property and the chemical conversion treatment property of the steel sheet. Therefore, the Si content is set to 0.001% or more and less than 2.00%. In order to further improve the strength-ductility balance of the steel sheet, the Si content is preferably 0.020% or more, preferably 0.10% or more, 0.30% or more, or 0.50% or more. More preferred. The Si content is preferably 1.80% or less, more preferably 1.60% or less.
 Mn:2.50%超4.20%未満
 Mnは、オーステナイトを安定化させる元素である。室温でオーステナイトを安定化させるためには、2.50%超のMnが必要である。一方、Mnを過剰に含有させた場合、溶接性が低下する。また、Mn含有量を4.20%未満とすることで、凝固偏析によるMn含有量の不均一性を軽減することができ、曲げ性を向上することができる。したがって、Mn含有量は2.50%超4.20%未満とする。Mn含有量は3.00%超であるのが好ましく、3.20%超であるのがより好ましい。また、Mn含有量は3.80%未満であるのが好ましく、3.50%未満であるのがより好ましい。
Mn: More than 2.50% and less than 4.20% Mn is an element that stabilizes austenite. More than 2.50% Mn is required to stabilize austenite at room temperature. On the other hand, when Mn is excessively contained, the weldability is lowered. Further, by setting the Mn content to less than 4.20%, the non-uniformity of the Mn content due to solidification segregation can be reduced, and the bendability can be improved. Therefore, the Mn content is set to more than 2.50% and less than 4.20%. The Mn content is preferably more than 3.00%, more preferably more than 3.20%. The Mn content is preferably less than 3.80%, more preferably less than 3.50%.
 sol.Al:0.001%以上1.00%未満
 Alは、脱酸剤であり、0.001%以上含有させる必要がある。また、Alは、焼鈍時の二相域の温度範囲を広げるため、材質安定性を高める作用も有する。Al含有量が高いほどその効果は大きくなるが、Alを過剰に含有させると、表面性状、塗装性、および溶接性を維持することが難しくなる。したがって、sol.Al含有量は0.001%以上1.00%未満とする。sol.Al含有量は、0.005%以上であるのが好ましく、0.010%以上であるのがより好ましく、0.020%以上であるのがさらに好ましい。また、sol.Al含有量は、0.80%以下であるのが好ましく、0.60%以下であるのがより好ましい。本明細書にいう「sol.Al」は、「酸可溶性Al」を意味する。
sol. Al: 0.001% or more and less than 1.00% Al is an antacid and needs to be contained in an amount of 0.001% or more. In addition, Al also has an effect of improving material stability because it widens the temperature range of the two-phase region at the time of annealing. The higher the Al content, the greater the effect, but if the Al content is excessive, it becomes difficult to maintain the surface texture, paintability, and weldability. Therefore, sol. The Al content is 0.001% or more and less than 1.00%. sol. The Al content is preferably 0.005% or more, more preferably 0.010% or more, and further preferably 0.020% or more. In addition, sol. The Al content is preferably 0.80% or less, and more preferably 0.60% or less. As used herein, "sol.Al" means "acid-soluble Al".
 P:0.030%以下
 Pは不純物であり、鋼板がPを過剰に含有すると溶接性を損なう。したがって、P含有量は0.030%以下とする。P含有量は、0.025%以下であるのが好ましく、0.020%以下であるのがより好ましく、0.015%以下であるのがさらに好ましい。本発明に係る鋼板はPを必要としないので、P含有量は0%超、0.001%以上または0.003%以上でもよいが、P含有量は少ないほど好ましい。
P: 0.030% or less P is an impurity, and if the steel sheet contains P in excess, the weldability is impaired. Therefore, the P content is 0.030% or less. The P content is preferably 0.025% or less, more preferably 0.020% or less, and even more preferably 0.015% or less. Since the steel sheet according to the present invention does not require P, the P content may be more than 0%, 0.001% or more, or 0.003% or more, but the smaller the P content, the more preferable.
 S:0.005%以下
 Sは不純物であり、鋼板がSを過剰に含有すると溶接性を損なう。したがって、S含有量は0.005%以下とする。S含有量は、0.003%以下であるのが好ましく、0.002%以下であるのがより好ましい。本発明に係る鋼板はSを必要としないので、S含有量は0%超または0.0003%以上としてもよいが、S含有量は少ないほど好ましい。
S: 0.005% or less S is an impurity, and if the steel sheet contains S in excess, the weldability is impaired. Therefore, the S content is set to 0.005% or less. The S content is preferably 0.003% or less, and more preferably 0.002% or less. Since the steel sheet according to the present invention does not require S, the S content may be more than 0% or 0.0003% or more, but the smaller the S content, the more preferable.
 N:0.050%未満
 Nは不純物であり、鋼板が0.050%以上のNを含有すると低温靭性が低減する。したがって、N含有量は0.050%未満とする。N含有量は、0.030%以下であるのが好ましく、0.010%以下であるのがより好ましく、0.006%以下であるのがさらに好ましい。本発明に係る鋼板はNを必要としないので、N含有量は0%超、0.001%以上または0.002%以上としてもよいが、N含有量は少ないほど好ましい。
N: Less than 0.050% N is an impurity, and if the steel sheet contains 0.050% or more of N, the low temperature toughness is reduced. Therefore, the N content is set to less than 0.050%. The N content is preferably 0.030% or less, more preferably 0.010% or less, and even more preferably 0.006% or less. Since the steel sheet according to the present invention does not require N, the N content may be more than 0%, 0.001% or more, or 0.002% or more, but the smaller the N content, the more preferable.
 O:0.020%未満
 Oは不純物であり、鋼板が0.020%以上のOを含有すると低温靭性が低減する。したがって、O含有量は0.020%未満とする。O含有量は、0.010%以下であるのが好ましく、0.005%以下であるのがより好ましく、0.003%以下であるのがさらに好ましい。本発明に係る鋼板はOを必要としないので、O含有量は0%超または0.001%以上としてもよいが、O含有量は少ないほど好ましい。
O: Less than 0.020% O is an impurity, and if the steel sheet contains 0.020% or more of O, the low temperature toughness is reduced. Therefore, the O content is set to less than 0.020%. The O content is preferably 0.010% or less, more preferably 0.005% or less, and even more preferably 0.003% or less. Since the steel sheet according to the present invention does not require O, the O content may be more than 0% or 0.001% or more, but the smaller the O content, the more preferable.
 本発明の鋼板には、上記の元素に加えて、さらに下記に示す量のCr、Mo、W、Cu、Ni、Ti、Nb、V、B、Ca、Mg、Zr、REM、Sb、SnおよびBiから選択される1種以上の元素を含有させてもよい。 In addition to the above elements, the steel sheet of the present invention includes the following amounts of Cr, Mo, W, Cu, Ni, Ti, Nb, V, B, Ca, Mg, Zr, REM, Sb, Sn and It may contain one or more elements selected from Bi.
 Cr:0~0.50%
 Mo:0~0.50%
 W:0~0.30%
 Cu:0~0.30%
 Ni:0~0.50%
 Cr、Mo、W、Cu、およびNiは、鋼板の強度を向上させる元素である。したがって、これらの元素から選択される1種以上を含有させてもよい。しかし、これらの元素を過剰に含有させると、熱延時の表面疵が生じやすくなり、さらには、熱延鋼板の強度が高くなりすぎて、冷間圧延性が低下する場合がある。したがって、Cr含有量は0.50%以下、Mo含有量は0.50%以下、W含有量は0.30%以下、Cu含有量は0.30%以下、Ni含有量は0.50%以下とする。これらの元素の上記作用による効果をより確実に得るためには、上記元素の少なくともいずれかを0.01%以上含有させることが好ましい。Cr、Mo、W、Cu、およびNiの含有量は、それぞれ0.05%以上であるのがより好ましい。
Cr: 0 to 0.50%
Mo: 0 to 0.50%
W: 0 to 0.30%
Cu: 0 to 0.30%
Ni: 0 to 0.50%
Cr, Mo, W, Cu, and Ni are elements that improve the strength of the steel sheet. Therefore, one or more selected from these elements may be contained. However, if these elements are excessively contained, surface defects are likely to occur during hot rolling, and the strength of the hot rolled steel sheet may become too high, resulting in a decrease in cold rollability. Therefore, the Cr content is 0.50% or less, the Mo content is 0.50% or less, the W content is 0.30% or less, the Cu content is 0.30% or less, and the Ni content is 0.50%. It is as follows. In order to more reliably obtain the effect of the above-mentioned actions of these elements, it is preferable to contain at least 0.01% or more of the above-mentioned elements. The contents of Cr, Mo, W, Cu, and Ni are more preferably 0.05% or more, respectively.
 Ti:0~0.100%
 Nb:0~0.100%
 V:0~0.100%
 Ti、Nb、およびVは、微細な炭化物、窒化物または炭窒化物を生成する元素であるので、鋼板の強度向上に有効である。またNbについては、その含有量を0.100%以下にすると、熱間圧延時の組織の微細化を促進する作用を有する。したがって、これらの元素から選択される1種以上を含有させてもよい。しかし、これらの元素を過剰に含有させると、熱延鋼板の強度が上昇しすぎて、冷間圧延性が低下する場合がある。したがって、Ti含有量は0.100%以下、Nb含有量は0.100%以下、V含有量は0.100%以下とする。Ti、Nb、およびVの含有量は、いずれも0.050%以下であるのが好ましく、0.030%以下であるのがより好ましい。これらの元素の上記作用による効果をより確実に得るためには、上記元素の少なくともいずれかを0.005%以上含有させることが好ましい。Ti、Nb、およびVの含有量は、それぞれ0.007%以上であるのがより好ましく、0.010%以上であるのがさらに好ましい。
Ti: 0 to 0.100%
Nb: 0 to 0.100%
V: 0 to 0.100%
Since Ti, Nb, and V are elements that produce fine carbides, nitrides, or carbonitrides, they are effective in improving the strength of the steel sheet. Further, when the content of Nb is 0.100% or less, it has an effect of promoting the miniaturization of the structure during hot rolling. Therefore, one or more selected from these elements may be contained. However, if these elements are excessively contained, the strength of the hot-rolled steel sheet may be excessively increased, and the cold rollability may be lowered. Therefore, the Ti content is 0.100% or less, the Nb content is 0.100% or less, and the V content is 0.100% or less. The contents of Ti, Nb, and V are all preferably 0.050% or less, and more preferably 0.030% or less. In order to more reliably obtain the effect of the above-mentioned actions of these elements, it is preferable to contain at least one of the above-mentioned elements in an amount of 0.005% or more. The contents of Ti, Nb, and V are more preferably 0.007% or more, and further preferably 0.010% or more, respectively.
 B:0~0.010%
 Ca:0~0.010%
 Mg:0~0.010%
 Zr:0~0.010%
 REM:0~0.010%
 B、Ca、Mg、Zr、およびREM(希土類金属)は、鋼板の局部延性および穴広げ性を向上させる。したがって、これらの元素から選択される1種以上を含有させてもよい。しかし、これらの元素を過剰に含有させると、鋼板の成形性を低下させるおそれがある。したがって、B含有量は0.010%以下、Ca含有量は0.010%以下、Mg含有量は0.010%以下、Zr含有量は0.010%以下、REM含有量は0.010%以下とする。B、Ca、Mg、Zr、およびREMの含有量は、いずれも0.006%以下であるのが好ましく、0.003%以下であるのがより好ましい。また、B、Ca、Mg、Zr、およびREMから選択される1種以上の元素の含有量の合計は、0.050%以下であればよいが、0.030%以下とすることが好ましい。これらの元素の上記作用による効果をより確実に得るためには、上記元素の少なくともいずれかの含有量が0.0001%以上であることが好ましく、0.0005%以上であることがより好ましく、0.001%以上であることがさらに好ましい。
B: 0 to 0.010%
Ca: 0 to 0.010%
Mg: 0 to 0.010%
Zr: 0 to 0.010%
REM: 0-0.010%
B, Ca, Mg, Zr, and REM (rare earth metals) improve the local ductility and hole expandability of steel sheets. Therefore, one or more selected from these elements may be contained. However, if these elements are excessively contained, the moldability of the steel sheet may be deteriorated. Therefore, the B content is 0.010% or less, the Ca content is 0.010% or less, the Mg content is 0.010% or less, the Zr content is 0.010% or less, and the REM content is 0.010%. It is as follows. The contents of B, Ca, Mg, Zr, and REM are all preferably 0.006% or less, and more preferably 0.003% or less. The total content of one or more elements selected from B, Ca, Mg, Zr, and REM may be 0.050% or less, but is preferably 0.030% or less. In order to more reliably obtain the effect of the above-mentioned actions of these elements, the content of at least one of the above-mentioned elements is preferably 0.0001% or more, more preferably 0.0005% or more. It is more preferably 0.001% or more.
 ここで、REMとは、ランタノイドの15元素にYおよびScをあわせた17元素の総称であり、これらの元素のうちの1種または2種以上を含有させることができる。なお、REMの含有量はこれら元素の合計含有量を意味する。 Here, REM is a general term for 17 elements including 15 elements of lanthanoids and Y and Sc, and one or more of these elements can be contained. The content of REM means the total content of these elements.
 Sb:0~0.050%
 Sn:0~0.050%
 Bi:0~0.050%
 Sb、Sn、およびBiは、鋼板中のMn、Si、および/またはAl等の易酸化性元素が鋼板表面に拡散され酸化物を形成することを抑え、鋼板の表面性状およびめっき性を高める。したがって、これらの元素から選択される1種以上を含有させてもよい。しかし、これらの元素を過剰に含有させても、その効果が飽和する。したがって、Sb含有量は0.050%以下、Sn含有量は0.050%以下、Bi含有量は0.050%以下とする。Sb、Sn、およびBiの含有量は、いずれも0.030%以下、0.010%以下、0.006%以下、または0.003%以下であるのが好ましい。これらの元素の上記作用による効果をより確実に得るためには、上記元素の少なくともいずれかを0.0005%以上含有させることが好ましい。Sb、Sn、およびBiの含有量は、それぞれ0.001%以上であるのがより好ましい。
Sb: 0 to 0.050%
Sn: 0 to 0.050%
Bi: 0 to 0.050%
Sb, Sn, and Bi suppress that easily oxidizing elements such as Mn, Si, and / or Al in the steel sheet are diffused on the surface of the steel sheet to form an oxide, and improve the surface texture and plating property of the steel sheet. Therefore, one or more selected from these elements may be contained. However, even if these elements are excessively contained, the effect is saturated. Therefore, the Sb content is 0.050% or less, the Sn content is 0.050% or less, and the Bi content is 0.050% or less. The contents of Sb, Sn, and Bi are all preferably 0.030% or less, 0.010% or less, 0.006% or less, or 0.003% or less. In order to more reliably obtain the effect of the above-mentioned actions of these elements, it is preferable to contain at least one of the above-mentioned elements in an amount of 0.0005% or more. The contents of Sb, Sn, and Bi are more preferably 0.001% or more, respectively.
 本発明の鋼板の化学組成において、残部はFeおよび不純物である。ここで「不純物」とは、鋼を工業的に製造する際に、鉱石、スクラップ等の原料、製造工程の種々の要因によって混入する成分であって、本発明に悪影響を与えない範囲で許容されるものを意味する。 In the chemical composition of the steel sheet of the present invention, the balance is Fe and impurities. Here, the "impurity" is a component mixed with raw materials such as ore and scrap, and various factors in the manufacturing process when steel is industrially manufactured, and is allowed as long as it does not adversely affect the present invention. Means something.
 (B)金属組織
 本発明に係る鋼板の金属組織について、以下に説明する。なお、以下の説明において面積率についての「%」は、「面積%」を意味する。
(B) Metal structure The metal structure of the steel sheet according to the present invention will be described below. In the following description, "%" for the area ratio means "area%".
 本発明に係る鋼板の圧延方向および板厚方向に平行な断面(「L断面」ともいう。)において、表面から板厚の1/4深さ位置(「1/4位置」ともいう。)の金属組織は、10%以上の残留オーステナイト、60~80%の焼戻しマルテンサイトを含有し、マルテンサイトは20%未満に制限される。各組織の分率は、熱処理条件によって変化し、強度、伸び、曲げ性、衝撃特性等の鋼板の材質に影響を与える。各組織の限定理由について詳しく説明する。 In the cross section parallel to the rolling direction and the plate thickness direction of the steel sheet according to the present invention (also referred to as "L cross section"), the position at a depth of 1/4 of the plate thickness (also referred to as "1/4 position") from the surface. The metallographic structure contains 10% or more retained austenite, 60-80% tempered martensite, and martensite is limited to less than 20%. The fraction of each structure changes depending on the heat treatment conditions and affects the material of the steel sheet such as strength, elongation, bendability, and impact characteristics. The reasons for the limitation of each organization will be explained in detail.
 残留オーステナイト:10%以上
 本発明に係る鋼板においては、金属組織中の残留オーステナイトの量が所定範囲にあることが重要である。残留オーステナイトは、変態誘起塑性によって鋼板の強度-延性バランスを高める組織である。これら効果を得るため、本発明に係る鋼板は、金属組織中に、10%以上の残留オーステナイトを含有する必要がある。
Residual austenite: 10% or more In the steel sheet according to the present invention, it is important that the amount of retained austenite in the metal structure is within a predetermined range. Residual austenite is a structure that enhances the strength-ductility balance of a steel sheet by transformation-induced plasticity. In order to obtain these effects, the steel sheet according to the present invention needs to contain 10% or more of retained austenite in the metal structure.
 残留オーステナイトの面積率は、好ましくは13%以上、より好ましくは18%以上である。残留オーステナイトの面積率が13%以上、さらには18%以上になると、強度と伸びとが両立し、後述するTS×Elがより高くなる。残留オーステナイトの面積率の上限は特に規定しないが、実質的には30%以下である。 The area ratio of retained austenite is preferably 13% or more, more preferably 18% or more. When the area ratio of retained austenite is 13% or more, further 18% or more, both strength and elongation are compatible, and TS × El, which will be described later, becomes higher. The upper limit of the area ratio of retained austenite is not particularly specified, but is substantially 30% or less.
 焼戻しマルテンサイト:60~80%
 焼戻しマルテンサイトも硬質相であるが、後述するマルテンサイトとは異なる組織であり、衝撃特性を向上させ、鋼板の強度を確保する効果を有する。鋼板の衝撃特性を高めるため、焼戻しマルテンサイトの面積率は60%以上とする。一方、鋼板の強度を確保するため、焼戻しマルテンサイトの面積率は80%以下とする。焼戻しマルテンサイトの面積率は63%以上であるのが好ましく、77%以下であるのが好ましい。
Tempering martensite: 60-80%
Tempered martensite is also a hard phase, but it has a structure different from that of martensite, which will be described later, and has the effect of improving impact characteristics and ensuring the strength of the steel sheet. In order to improve the impact characteristics of the steel sheet, the area ratio of tempered martensite shall be 60% or more. On the other hand, in order to secure the strength of the steel sheet, the area ratio of tempered martensite is 80% or less. The area ratio of tempered martensite is preferably 63% or more, and preferably 77% or less.
 なお、本発明の鋼板においては、後述の工程を経て製造されることにより、焼戻しマルテンサイトが主体の金属組織となる。しかしながら、鋼板が溶融亜鉛めっき層または合金化溶融亜鉛めっき層を有する場合には、めっき処理工程で不可避的にわずかな量のベイナイトが混入する場合がある。本発明においては、焼戻しマルテンサイトには、ベイナイトが含まれることとする。 The steel sheet of the present invention has a metal structure mainly composed of tempered martensite by being manufactured through the steps described later. However, when the steel sheet has a hot-dip galvanized layer or an alloyed hot-dip galvanized layer, a small amount of bainite may inevitably be mixed in the plating process. In the present invention, the tempered martensite contains bainite.
 そのため、後述する金属組織の測定方法においては、焼戻しマルテンサイトに加えてベイナイトも含めて測定する。すなわち、焼戻しマルテンサイトとベイナイトとの合計面積率が60~80%であることを意味する。 Therefore, in the method for measuring the metal structure described later, bainite is also measured in addition to tempered martensite. That is, it means that the total area ratio of tempered martensite and bainite is 60 to 80%.
 マルテンサイト:20%未満
 マルテンサイトは、その組織中に転位を多く含む硬質相であり、鋼板の強度を得るために効果的な組織である。しかしながら、衝撃特性を著しく劣化させるため、マルテンサイトの面積率は20%未満とする。曲げ性をさらに向上させる必要がある場合は、マルテンサイトの面積率は15%以下が好ましく、10%以下がより好ましく、0%がさらに好ましい。なお、マルテンサイトとは、焼戻しされていないマルテンサイトを意味する。
Martensite: less than 20% Martensite is a hard phase with many dislocations in its structure and is an effective structure for obtaining the strength of steel sheets. However, the area ratio of martensite is set to less than 20% because the impact characteristics are significantly deteriorated. When it is necessary to further improve the bendability, the area ratio of martensite is preferably 15% or less, more preferably 10% or less, still more preferably 0%. In addition, martensite means martensite which has not been tempered.
 なお、金属組織中で、残留オーステナイト、マルテンサイト、焼戻しマルテンサイト以外の残部はセメンタイトであり、その面積率は1%以下であることが好ましい。また、金属組織中にフェライトおよびパーライトがわずかにでも混入すると強度を高めることが困難になるため、含めることはできない。すなわち、フェライトおよびパーライトの面積率は0%である。 In the metallographic structure, the rest other than retained austenite, martensite, and tempered martensite is cementite, and its area ratio is preferably 1% or less. Further, if ferrite and pearlite are mixed in the metal structure even in a small amount, it becomes difficult to increase the strength, so that the metal structure cannot be included. That is, the area ratio of ferrite and pearlite is 0%.
 焼戻しマルテンサイトおよびマルテンサイトにおける小角粒界密度:0.20~1.0μm-1
 本発明の鋼板の金属組織において、焼戻しマルテンサイトおよびマルテンサイトにおける小角粒界密度は、0.20μm-1以上である。小角粒界密度を上記範囲内にすることにより、オーステナイトの変態誘起塑性が高い応力で生じ、優れた強度-延性バランスが得られる。小角粒界密度は0.30μm-1以上であるのが好ましい。一方、小角粒界密度は高ければ高いほどよいが、実質的には1.0μm-1以下である。なお、小角粒界密度とは、単位面積(μm)当たりに観察される、焼戻しマルテンサイトおよびマルテンサイトにおける結晶方位差が2度以上20度未満となる境界の合計長さ(μm)を意味する。
Small grain boundary densities at tempered martensite and martensite: 0.20 to 1.0 μm -1
In the metallographic structure of the steel sheet of the present invention, the tempered martensite and the small-angle grain boundary density at the martensite are 0.20 μm -1 or more. By setting the small-angle grain boundary density within the above range, the transformation-induced plasticity of austenite occurs under high stress, and an excellent strength-ductility balance can be obtained. The small-angle grain boundary density is preferably 0.30 μm -1 or more. On the other hand, the higher the grain boundary density is, the better, but it is substantially 1.0 μm -1 or less. The small-angle grain boundary density means the total length (μm) of the boundaries observed per unit area (μm 2 ) in which the crystal orientation difference between tempered martensite and martensite is 2 degrees or more and less than 20 degrees. do.
 焼戻しマルテンサイトおよびマルテンサイトにおける大角粒界密度:0.30~0.60μm-1
 本発明の鋼板の金属組織において、焼戻しマルテンサイトおよびマルテンサイトにおける大角粒界密度は、0.30μm-1以上である。大角粒界密度を上記範囲内にすることにより、延性破壊の進展が抑制され、優れた衝撃特性が得られる。一方、大角粒界密度は高ければ高いほどよいが、実質的には0.60μm-1以下である。なお、大角粒界密度とは、単位面積(μm)当たりに観察される、焼戻しマルテンサイトおよびマルテンサイトにおける結晶方位差が20~50度となる境界の合計長さ(μm)を意味する。
Large-angle grain boundary densities at tempered martensite and martensite: 0.30 to 0.60 μm -1
In the metallographic structure of the steel sheet of the present invention, the tempered martensite and the large-angle grain boundary density at the martensite are 0.30 μm -1 or more. By keeping the large-angle grain boundary density within the above range, the progress of ductile fracture is suppressed and excellent impact characteristics can be obtained. On the other hand, the higher the grain boundary density is, the better, but it is substantially 0.60 μm -1 or less. The large-angle grain boundary density means the total length (μm) of the tempered martensite and the boundary where the crystal orientation difference between martensite is 20 to 50 degrees, which is observed per unit area (μm 2).
 残留オーステナイトの圧延方向における粒子密度Aと板厚方向における粒子密度Aとの比A/A:0.80~1.0
 本発明の鋼板の金属組織において、残留オーステナイトの圧延方向における粒子密度Aと板厚方向における粒子密度Aとの比A/Aは0.80以上である。A/Aを上記範囲内にすることにより、残留オーステナイトが等方的に分散するようになり、優れた曲げ性、さらに、衝撃特性が得られる。一方、A/Aの上限は実質的には1.0以下である。
The ratio of the particle density A N in the particle density A L and the plate thickness direction in the rolling direction of the residual austenite A L / A N: 0.80 ~ 1.0
In the metal structure of the steel sheet of the present invention, the ratio A L / A N of the particle density A N in the particle density A L and the plate thickness direction in the rolling direction of the residual austenite is 0.80 or more. By the A L / A N in the above range, become retained austenite are dispersed isotropically excellent bendability, further impact properties. On the other hand, the upper limit of A L / A N is substantially 1.0 or less.
 残留オーステナイトの平均結晶粒径:2μm以下
 本発明の鋼板の金属組織において、残留オーステナイトの平均結晶粒径については特に制限は設けないが、高い強度を確保する観点からは、2μm以下であるのが好ましい。
Average crystal grain size of retained austenite: 2 μm or less In the metal structure of the steel sheet of the present invention, the average crystal grain size of retained austenite is not particularly limited, but from the viewpoint of ensuring high strength, it is 2 μm or less. preferable.
 なお、本発明においては、各組織の面積率、焼戻しマルテンサイトおよびマルテンサイトにおける小角粒界密度および大角粒界密度、残留オーステナイトの分散状態、ならびに残留オーステナイトの平均結晶粒径は以下の方法により測定するものとする。 In the present invention, the area ratio of each structure, the small-angle grain boundary density and the large-angle grain boundary density in tempered martensite and martensite, the dispersed state of retained austenite, and the average crystal grain size of retained austenite are measured by the following methods. It shall be.
 (残留オーステナイトの面積率の測定方法)
 残留オーステナイトの面積率は以下のように算出される。まず、鋼板から圧延方向に25mm、圧延直角方向(幅方向)に25mmの試験片を切り出す。この際、試験片の厚さは、鋼板の板厚と同じとする。そして、試験片に機械研磨を施した後に化学研磨を施して板厚1/4分を減厚し、化学研磨された歪のない表面を有する試験片を得る。該試験片の表面に対して、Co管球を用い、測定範囲2θを45~105度とするX線回折分析を3回実施する。
(Measurement method of area ratio of retained austenite)
The area ratio of retained austenite is calculated as follows. First, a test piece 25 mm in the rolling direction and 25 mm in the rolling perpendicular direction (width direction) is cut out from the steel sheet. At this time, the thickness of the test piece is the same as the thickness of the steel plate. Then, the test piece is mechanically polished and then chemically polished to reduce the plate thickness by 1/4 to obtain a chemically polished test piece having a strain-free surface. X-ray diffraction analysis with a measurement range of 2θ of 45 to 105 degrees is performed three times on the surface of the test piece using a Co tube.
 fcc相に関しては、(111)、(200)、(220)の各ピークの積分強度を求め、bcc相に関しては、(110)、(200)、(211)の各ピークの積分強度を求める。それらの積分強度を解析し、残留オーステナイトの体積率を求め、3回のX線回折分析結果を平均することで、その値を残留オーステナイトの面積率とする。 For the fcc phase, the integrated intensities of the peaks (111), (200), and (220) are obtained, and for the bcc phase, the integrated intensities of the peaks (110), (200), and (211) are obtained. The integrated intensities are analyzed, the volume fraction of retained austenite is obtained, and the results of three X-ray diffraction analyzes are averaged to obtain the value as the area fraction of retained austenite.
 (焼戻しマルテンサイト、およびマルテンサイトの面積率の測定方法)
 焼戻しマルテンサイト、およびマルテンサイトの面積率は、走査型電子顕微鏡(SEM)による組織観察から算出される。鋼板を板厚方向および圧延方向に平行に切断したL断面について、鏡面研磨を行い、次いで3%ナイタールによりミクロ組織を現出させる。そして、倍率5000倍で、表面から1/4位置を中心として縦100μm(板厚方向の長さ)×横300μm(圧延方向の長さ)の範囲のミクロ組織を観察する。
(Tempering martensite and method of measuring the area ratio of martensite)
The area ratio of tempered martensite and martensite is calculated from microstructure observation with a scanning electron microscope (SEM). The L cross section obtained by cutting the steel sheet in parallel with the thickness direction and the rolling direction is mirror-polished, and then the microstructure is revealed by 3% nital. Then, at a magnification of 5000 times, a microstructure in a range of 100 μm in length (length in the plate thickness direction) × 300 μm in width (length in the rolling direction) is observed around the 1/4 position from the surface.
 焼戻しマルテンサイトは灰色の下地組織として、残留オーステナイトおよびマルテンサイトは白色の組織として、判別する。なお、上述のように、焼戻しマルテンサイトの面積率にはベイナイトの面積率が含まれる。一方、灰色部分のうち、ポリゴナルな形状を呈しセメンタイトを含まないものをフェライト、ラメラー組織が見えるものをパーライトと判断し、区別する。さらに、残留オーステナイトとマルテンサイトとの合計面積率から、X線回折法より測定された残留オーステナイトの面積率を差し引くことによって、マルテンサイトの面積率が算出される。 Tempered martensite is identified as a gray underlying structure, and retained austenite and martensite are identified as a white structure. As described above, the area ratio of tempered martensite includes the area ratio of bainite. On the other hand, among the gray parts, those having a polygonal shape and not containing cementite are judged to be ferrite, and those having a lamellar structure are judged to be pearlite, and are distinguished. Further, the area ratio of martensite is calculated by subtracting the area ratio of retained austenite measured by the X-ray diffraction method from the total area ratio of retained austenite and martensite.
 (小角粒界密度および大角粒界密度の測定方法)
 表面から1/4位置を中心として縦160μm(板厚方向の長さ)×横80μm(圧延方向の長さ)の範囲の後方散乱電子回折(EBSP)測定を行う。そして、焼戻しマルテンサイトおよびマルテンサイトにおける結晶方位差を測定し、結晶方位差が2度以上20度未満となる境界の合計長さ(μm)および結晶方位差が20~50度となる境界の合計長さ(μm)をそれぞれ求める。それらを測定領域の面積で除することで、小角粒界密度および大角粒界密度をそれぞれ算出する。
(Measuring method of small-angle grain boundary density and large-angle grain boundary density)
Backscattered electron diffraction (EBSP) measurement is performed in the range of 160 μm (length in the plate thickness direction) × 80 μm (length in the rolling direction) centered on the 1/4 position from the surface. Then, the crystal orientation difference between tempered martensite and martensite is measured, and the total length (μm) of the boundary where the crystal orientation difference is 2 degrees or more and less than 20 degrees and the total of the boundaries where the crystal orientation difference is 20 to 50 degrees. Find the length (μm) respectively. By dividing them by the area of the measurement area, the small-angle grain boundary density and the large-angle grain boundary density are calculated, respectively.
 (残留オーステナイトの分散状態および平均結晶粒径の測定方法)
 上述と同様に、表面から1/4位置を中心として縦160μm(板厚方向の長さ)×横80μm(圧延方向の長さ)の範囲のEBSP測定を行う。そして、上記測定範囲において、図1に点線で示すように、横方向に2本、縦方向に1本の線を引き、それぞれの線が横切る残留オーステナイト粒の数を数える。そして、横方向の2本の線が横切った残留オーステナイト粒の数を線の長さで除した値を圧延方向における粒子密度A(μm-1)、縦方向の線が横切った残留オーステナイト粒の数を2本の線の合計長さで除した値を圧延方向における粒子密度A(μm-1)とする。そして、それらの結果から、A/Aを求める。
(Measuring method of dispersed state of retained austenite and average crystal grain size)
In the same manner as described above, the EBSP measurement is performed in the range of 160 μm in length (length in the plate thickness direction) × 80 μm in width (length in the rolling direction) centered on the 1/4 position from the surface. Then, in the above measurement range, as shown by a dotted line in FIG. 1, two lines are drawn in the horizontal direction and one line is drawn in the vertical direction, and the number of residual austenite grains crossed by each line is counted. Then, the value obtained by dividing the number of retained austenite grains crossed by the two horizontal lines by the length of the lines is the particle density AL (μm -1 ) in the rolling direction, and the residual austenite grains crossed by the vertical lines. The value obtained by dividing the number of lines by the total length of the two lines is defined as the particle density AN (μm -1 ) in the rolling direction. Then, AL / AN is obtained from those results.
 また、EBSP測定によって特定された残留オーステナイト粒の円相当直径の平均値を算出することによって、残留オーステナイト平均結晶粒径を求める。 Further, the average crystal grain size of the retained austenite is obtained by calculating the average value of the circle-equivalent diameters of the retained austenite grains specified by the EBSP measurement.
 (C)機械特性
 次に、本発明に係る鋼板の機械特性について説明する。
(C) Mechanical Properties Next, the mechanical properties of the steel sheet according to the present invention will be described.
 本発明に係る鋼板の引張強さ(TS)は、980MPa以上であるのが好ましく、1180MPa以上であるのがより好ましい。これは、鋼板を自動車の素材として使用する際、高強度化によって板厚を減少させ、軽量化に寄与するためである。また、本発明に係る鋼板をプレス成形に供するためには、破断伸び(El)は15%以上であるのが好ましく、17%以上であるのがより好ましい。 The tensile strength (TS) of the steel sheet according to the present invention is preferably 980 MPa or more, more preferably 1180 MPa or more. This is because when a steel sheet is used as a material for automobiles, the thickness is reduced by increasing the strength, which contributes to weight reduction. Further, in order to use the steel sheet according to the present invention for press molding, the elongation at break (El) is preferably 15% or more, more preferably 17% or more.
 さらに、強度と伸びとを両立する、すなわち強度-延性バランスを向上させる観点から、TS×Elは、22000MPa・%以上であるのが好ましく、24000MPa・%以上であるのがより好ましく、26000MPa・%以上であるのがさらに好ましい。そして、本発明に係る鋼板は、曲げ性および常温でのシャルピー衝撃特性にも優れる。 Further, from the viewpoint of achieving both strength and elongation, that is, improving the strength-ductility balance, TS × El is preferably 22000 MPa ·% or more, more preferably 24,000 MPa ·% or more, and 26000 MPa ·%. The above is more preferable. The steel sheet according to the present invention is also excellent in bendability and Charpy impact characteristics at room temperature.
 (D)製造方法
 本発明に係る鋼板の製造方法について説明する。本発明者らのこれまでの研究により、下記の製造工程によって、本発明の鋼板を製造することができることを確認している。
(D) Manufacturing Method A method for manufacturing a steel sheet according to the present invention will be described. Through previous studies by the present inventors, it has been confirmed that the steel sheet of the present invention can be manufactured by the following manufacturing process.
 (a)溶製工程
 上述の化学組成を有する鋼を常法で溶製し、鋳造してスラブまたは鋼塊を作製する。本発明に係る鋼板が上述の化学組成を有する限り、溶鋼は、通常の高炉法で溶製されたものであってもよく、電炉法で作製された鋼のように、原材料がスクラップを多量に含むものでもよい。スラブは、通常の連続鋳造プロセスで製造されたものでもよいし、薄スラブ鋳造で製造されたものでもよい。
(A) Melting step Steel having the above-mentioned chemical composition is melted by a conventional method and cast to prepare a slab or an ingot. As long as the steel sheet according to the present invention has the above-mentioned chemical composition, the molten steel may be melted by a normal blast furnace method, and the raw material is a large amount of scrap like the steel produced by the electric furnace method. It may include. The slab may be manufactured by a normal continuous casting process or may be manufactured by thin slab casting.
 (b)熱間圧延工程
 上述のスラブまたは鋼塊を加熱し、熱間圧延を行って熱延鋼板を得る。熱間圧延に供する鋼材の加熱温度は、1100~1300℃とする。加熱温度を1100℃以上にすることにより、熱間圧延時の変形抵抗をより小さくすることができる。一方、加熱温度を1300℃以下にすることにより、スケールロス増加による歩留まりの低下を抑制することができる。本願明細書において、上記の加熱温度とは、スラブまたは鋼塊の表面温度をいう。
(B) Hot-rolling step The above-mentioned slab or steel ingot is heated and hot-rolled to obtain a hot-rolled steel sheet. The heating temperature of the steel material to be subjected to hot rolling is 1100 to 1300 ° C. By setting the heating temperature to 1100 ° C. or higher, the deformation resistance during hot rolling can be further reduced. On the other hand, by setting the heating temperature to 1300 ° C. or lower, it is possible to suppress a decrease in yield due to an increase in scale loss. In the present specification, the above heating temperature means the surface temperature of a slab or a steel ingot.
 熱間圧延前に1100~1300℃の温度範囲に保持する時間は特に規定しないが、材質安定性を向上させるためには、30min間以上とすることが好ましく、1h以上にすることがより好ましい。また、過度のスケールロスを抑制するために10h以下とすることが好ましく、5h以下とすることがより好ましい。なお、直送圧延または直接圧延を行う場合であって、加熱処理を施さずにそのまま熱間圧延に供してもよい。 The time for holding in the temperature range of 1100 to 1300 ° C. before hot rolling is not particularly specified, but in order to improve the material stability, it is preferably 30 minutes or more, and more preferably 1 h or more. Further, in order to suppress excessive scale loss, it is preferably 10 hours or less, and more preferably 5 hours or less. In addition, in the case of direct rolling or direct rolling, hot rolling may be performed as it is without heat treatment.
 熱間圧延は、通常の連続熱間圧延ラインで行えばよい。また、熱間圧延においては、粗圧延に続いて、仕上圧延を行う。仕上圧延における開始温度は1000℃以下とする。仕上圧延開始温度を1000℃以下にすることにより、仕上圧延中での組織の粗大化を防ぎ、その後の組織制御が容易になることに加え、粒界酸化による鋼板の表面性状の劣化を抑制する。仕上圧延開始温度を750℃以上にすることが好ましい。仕上圧延開始温度が750℃以上であることにより、圧延時の変形抵抗を小さくし、組織制御を容易に行うことができる。 Hot rolling may be performed on a normal continuous hot rolling line. Further, in hot rolling, finish rolling is performed after rough rolling. The starting temperature in finish rolling shall be 1000 ° C or lower. By setting the finish rolling start temperature to 1000 ° C or lower, coarsening of the structure during finish rolling is prevented, subsequent structure control becomes easy, and deterioration of the surface texture of the steel sheet due to intergranular oxidation is suppressed. .. The finish rolling start temperature is preferably 750 ° C. or higher. When the finish rolling start temperature is 750 ° C. or higher, the deformation resistance during rolling can be reduced and the structure control can be easily performed.
 (c)放冷工程
 仕上圧延後には、1.2~4.0s間放冷する。仕上圧延後に放冷することによって、フェライトの形成が抑制され、組織が均一になり、残留オーステナイトが等方的に分散するようになる。また、放冷時間を4.0s以下にすることで残留オーステナイトの粗大化を防止することが可能となる。
(C) Cooling step After finish rolling, allow to cool for 1.2 to 4.0 s. By allowing to cool after finish rolling, the formation of ferrite is suppressed, the structure becomes uniform, and retained austenite is isotropically dispersed. Further, by setting the cooling time to 4.0 s or less, it is possible to prevent coarsening of retained austenite.
 (d)加速冷却工程
 放冷工程に続いて、30℃/s以上の平均冷却速度で加速冷却を行う。平均冷却速度が30℃/s以上であると、マルテンサイト変態中に、熱延鋼板のブロック境界および旧オーステナイト粒界において、セメンタイトが均一に生成する。冷却速度は、500℃/s以下とすることが好ましい。冷却速度が500℃/s以下であれば、冷却むらが生じにくく、冷間圧延性が向上する。
(D) Accelerated cooling step Following the cooling step, accelerated cooling is performed at an average cooling rate of 30 ° C./s or higher. When the average cooling rate is 30 ° C./s or higher, cementite is uniformly formed at the block boundary of the hot-rolled steel sheet and the former austenite grain boundary during the martensitic transformation. The cooling rate is preferably 500 ° C./s or less. When the cooling rate is 500 ° C./s or less, uneven cooling is less likely to occur and cold rollability is improved.
 (e)巻取工程
 加速冷却工程の後は、300℃未満の温度で巻取りを行う。300℃未満の温度で巻き取ることで、熱延鋼板の組織をベイナイト単相もしくはマルテンサイト単相、またはベイナイトとマルテンサイトとの複合組織とすることができ、本発明に係る鋼板の残留オーステナイト粒を等方的に分散させることが可能となる。
(E) Winding step After the accelerated cooling step, winding is performed at a temperature of less than 300 ° C. By winding at a temperature of less than 300 ° C., the structure of the hot-rolled steel sheet can be made into a bainite single-phase or martensite single-phase, or a composite structure of bainite and martensite, and the retained austenite grains of the steel sheet according to the present invention. Can be isotropically dispersed.
 (f)冷間圧延工程
 以上の工程を経て作製された熱延鋼板に対して、常法により酸洗を施した後に、30~70%の圧下率で冷間圧延を行い、冷延鋼板とする。冷間圧延の圧下率を30%以上とすると、再結晶が均一に生じ、残留オーステナイトが均一に生成し、等方的に分散する。また、圧下率を70%以下とすると、冷間圧延時に破断が生じにくくなる。冷間圧延の圧下率は40%以上であるのが好ましく、60%以下であるのが好ましい。冷間圧延は、通常の連続冷間圧延ラインで行えばよい。
(F) Cold-rolled steel sheet The hot-rolled steel sheet produced through the above steps is pickled by a conventional method and then cold-rolled at a reduction rate of 30 to 70% to obtain a cold-rolled steel sheet. do. When the rolling reduction of cold rolling is 30% or more, recrystallization occurs uniformly, retained austenite is uniformly generated, and the mixture is isotropically dispersed. Further, when the rolling reduction ratio is 70% or less, fracture is less likely to occur during cold rolling. The rolling reduction of cold rolling is preferably 40% or more, and preferably 60% or less. Cold rolling may be carried out on a normal continuous cold rolling line.
 また、酸洗の前に、圧下率が0%超5%以下程度の軽度の圧延を行ってもよい。軽度の圧延により形状を修正すると、平坦確保の点で有利となる。また、酸洗前に軽度の圧延を行うことより酸洗性が向上し、表面濃化元素の除去が促進され、化成処理性およびめっき処理性を向上させる効果がある。 Further, before pickling, light rolling with a reduction ratio of more than 0% and 5% or less may be performed. Modifying the shape by light rolling is advantageous in terms of ensuring flatness. In addition, light rolling before pickling improves pickling properties, promotes removal of surface-concentrating elements, and has the effect of improving chemical conversion treatment properties and plating treatment properties.
 (g)第1熱処理工程
 得られた冷延鋼板に対して、二相組織となるように600℃以上Ac未満の温度範囲で1.0h以上保持した後、300℃以下の温度まで冷却する熱処理を行う。鋼板を600℃以上Ac未満の温度範囲内で保持することにより、組織はbccの焼戻しマルテンサイトおよびオーステナイト(fcc)の二相になり、Mnがbccとオーステナイト間で分配される。それに加えて、保持時間を1.0h以上とすることにより、最終的に生成する残留オーステナイトが等方的に分散し、かつ小角粒界密度が高くなる。
(G) First Heat Treatment Step The obtained cold-rolled steel sheet is held for 1.0 h or more in a temperature range of 600 ° C. or higher and lower than Ac 3 so as to have a two-phase structure, and then cooled to a temperature of 300 ° C. or lower. Perform heat treatment. By keeping the steel sheet in the temperature range of 600 ° C. or higher and lower than Ac 3 , the structure becomes two phases of tempered martensite and austenite (fcc) of bcc, and Mn is distributed between bcc and austenite. In addition, by setting the holding time to 1.0 h or more, the finally produced retained austenite is isotropically dispersed, and the small-angle grain boundary density becomes high.
 保持時間は、2.0h以上とするのが好ましく、4.0h以上とするのがより好ましい。一方、生産性の観点から、保持時間は10.0h以下とするのが好ましく、8.0h以下とするのがより好ましい。また、Mnのオーステナイトへの分配を促進する観点からは、300℃から保持温度までの平均昇温速度は0.01℃/s以上5℃/s以下とすることが好ましい。同様に、保持温度から300℃までの平均冷却速度は0.001℃/s以上500℃/s以下とすることが好ましい。なお、第1熱処理工程において、保持時間とは、600℃以上Ac未満の温度範囲で保持されている時間を意味する。 The holding time is preferably 2.0 h or more, and more preferably 4.0 h or more. On the other hand, from the viewpoint of productivity, the holding time is preferably 10.0 h or less, and more preferably 8.0 h or less. From the viewpoint of promoting the distribution of Mn to austenite, the average rate of temperature rise from 300 ° C. to the holding temperature is preferably 0.01 ° C./s or more and 5 ° C./s or less. Similarly, the average cooling rate from the holding temperature to 300 ° C. is preferably 0.001 ° C./s or more and 500 ° C./s or less. In the first heat treatment step, the holding time means the time held in the temperature range of 600 ° C. or higher and lower than Ac 3.
 (h)第2熱処理工程
 第1熱処理工程に続いて、第2熱処理工程を行う。第2熱処理工程では、Ac点以上Ac+80℃以下の温度範囲で30~180s間保持した後、300℃以下の温度まで冷却する熱処理を行う。保持温度をAc点以上とすることで、最終的に生成する焼戻しマルテンサイトの面積率を増加させることができる。また、残留オーステナイトの微細化にも有効である。一方、保持温度をAc+80℃以下とすることにより、ブロック境界、および、パケット境界の生成を促進させ、大角粒界密度を増大させることができる。
(H) Second heat treatment step Following the first heat treatment step, a second heat treatment step is performed. In the second heat treatment step, heat treatment is performed in which the temperature is maintained at 3 points or more and Ac 3 + 80 ° C. or lower for 30 to 180 seconds, and then cooled to a temperature of 300 ° C. or lower. By setting the holding temperature to Ac 3 points or more, the area ratio of the tempered martensite finally produced can be increased. It is also effective for miniaturizing retained austenite. On the other hand, by setting the holding temperature to Ac 3 + 80 ° C. or lower, the generation of block boundaries and packet boundaries can be promoted, and the large-angle grain boundary density can be increased.
 ここで、0.5~50℃/sの加熱速度で検討した結果、Ac点として以下の式が導出された。そのため、本発明においては、下記式を用いてAc点を算出することとする。
 Ac=910-200√C+44Si-25Mn+44Al
Here, as a result of examining at a heating rate of 0.5 to 50 ° C./s, the following equation was derived as three points of Ac. Therefore, in the present invention, the Ac 3 points are calculated using the following formula.
Ac 3 = 910-200√C + 44Si-25Mn + 44Al
 また、保持時間を30s以上とすることにより、材質安定性を確保することができる。一方、保持時間を180s以下とすることにより、ブロック境界、および、パケット境界の生成を促進させ、大角粒界密度を増大させることができる。保持時間は60s以上とするのが好ましく、120s以下とすることが好ましい。さらに、第2熱処理工程後には金属組織を一度マルテンサイト単相にすることが好ましい。その観点からは保持温度から300℃までの平均冷却速度は2℃/s以上2000℃/s以下とすることが好ましい。なお、第2熱処理工程において、保持時間とは、Ac点以上Ac+80℃以下の温度範囲で保持されている時間を意味する。 Further, by setting the holding time to 30 s or more, the material stability can be ensured. On the other hand, by setting the holding time to 180 s or less, the generation of block boundaries and packet boundaries can be promoted, and the large-angle grain boundary density can be increased. The holding time is preferably 60 s or more, and preferably 120 s or less. Further, it is preferable that the metal structure is once made into a martensite single phase after the second heat treatment step. From this point of view, the average cooling rate from the holding temperature to 300 ° C. is preferably 2 ° C./s or more and 2000 ° C./s or less. In the second heat treatment step, the holding time means the time for holding in the temperature range of 3 points or more and 3 + 80 ° C. or less of Ac.
 (i)第3熱処理工程
 第2熱処理工程に続いて、第3熱処理工程を行う。第3熱処理工程では、650℃以上Ac-20℃点以下の温度範囲で5s以上保持する。保持温度を650℃以上にすることにより、オーステナイトが生成しやすくなる。保持温度をAc-20℃点以下にすることにより、焼戻しマルテンサイトの生成を促進させ、強度-延性バランスを向上することができる。
(I) Third heat treatment step Following the second heat treatment step, a third heat treatment step is performed. In the third heat treatment step, holding 650 ° C. or higher Ac 3 -20 ° C. point below the temperature range at 5s above. By setting the holding temperature to 650 ° C. or higher, austenite is likely to be produced. The holding temperature by below Ac 3 -20 ° C. points, to promote the production of tempered martensite, the strength - thereby improving the ductility balance.
 セメンタイトをより確実に溶解させ、良好な低温靭性を安定して確保する観点から、保持時間を30s以上とすることが好ましい。また、生産性の観点からは、保持時間を300s以下とすることが好ましい。なお、第3熱処理工程において、保持時間とは、650℃以上Ac-20℃点以下の温度範囲で保持されている時間を意味する。 The holding time is preferably 30 s or more from the viewpoint of more reliably dissolving cementite and stably ensuring good low temperature toughness. Further, from the viewpoint of productivity, the holding time is preferably 300 s or less. In the third heat treatment step, the retention time is meant a time that is maintained at a temperature range of 3 -20 ° C. point 650 ° C. or higher Ac.
 また、650℃以上Ac-20℃点以下の温度範囲まで加熱する際には、500~600℃の温度範囲での平均昇温速度を2~10℃/sとすることが好ましい。さらに、保持温度から520℃までの平均冷却速度を0.1℃/s以上100℃/s以下とすることが好ましい。これにより、金属組織中のセメンタイト含有量を低くすることができる。第3熱処理工程において、特に昇温速度を制御することで、金属組織中のセメンタイトの面積率を1%以下、より好ましくは0%にすることができる。 Further, upon heating to a temperature range of 650 ° C. or higher Ac 3 -20 or less ° C. point, it is preferable that the average heating rate in the temperature range of 500 ~ 600 ° C. and 2 ~ 10 ℃ / s. Further, it is preferable that the average cooling rate from the holding temperature to 520 ° C. is 0.1 ° C./s or more and 100 ° C./s or less. Thereby, the cementite content in the metal structure can be lowered. In the third heat treatment step, the area ratio of cementite in the metal structure can be reduced to 1% or less, more preferably 0%, particularly by controlling the rate of temperature rise.
 上記の第1~3熱処理は、箱焼鈍炉(BAF)等のバッチ炉で行ってもよいし、連続焼鈍ラインを用いて行ってもよい。また、熱処理の雰囲気は特に限定されず、例えば、不活性雰囲気、またはH等を含む還元雰囲気のいずれであってもよい。 The first to third heat treatments may be performed in a batch furnace such as a box annealing furnace (BAF), or may be performed using a continuous annealing line. The atmosphere of the heat treatment is not particularly limited, for example, an inert atmosphere, or may be any of a reducing atmosphere containing H 2 or the like.
 第3熱処理工程の後、鋼板にめっきしない場合には、そのまま室温まで冷却すればよい。一方、鋼板にめっきする場合には、以下のようにして製造する。 If the steel sheet is not plated after the third heat treatment step, it may be cooled to room temperature as it is. On the other hand, when plating a steel sheet, it is manufactured as follows.
 (j)溶融亜鉛めっき工程
 鋼板の表面に溶融亜鉛めっきを施して溶融亜鉛めっき鋼板を製造する場合には、第3熱処理後の冷却を430~500℃の温度範囲で停止し、次いで冷延鋼板を溶融亜鉛のめっき浴に浸漬して溶融亜鉛めっき処理を行う。めっき浴の条件は通常の範囲内とすればよい。めっき処理後は室温まで冷却すればよい。
(J) Hot-dip galvanizing step When hot-dip galvanizing the surface of a steel sheet to produce a hot-dip galvanized steel sheet, cooling after the third heat treatment is stopped in the temperature range of 430 to 500 ° C., and then the cold-rolled steel sheet is used. Is immersed in a hot-dip galvanizing bath to perform hot-dip galvanizing. The conditions of the plating bath may be within the normal range. After the plating treatment, it may be cooled to room temperature.
 (k)合金化溶融亜鉛めっき工程
 鋼板の表面に合金化溶融亜鉛めっきを施して合金化溶融亜鉛めっき鋼板を製造する場合には、鋼板に溶融亜鉛めっき処理を施した後、鋼板を室温まで冷却する前に、450~620℃の温度で溶融亜鉛めっきの合金化処理を行う。合金化処理条件は、通常の範囲内とすればよい。
(K) Alloyed hot-dip galvanizing step When the surface of a steel sheet is subjected to alloying hot-dip galvanizing to produce an alloyed hot-dip galvanized steel sheet, the steel sheet is subjected to hot-dip galvanizing treatment and then cooled to room temperature. Before this, the hot dip galvanizing process is performed at a temperature of 450 to 620 ° C. The alloying treatment conditions may be within the usual range.
 以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
 1.評価用鋼板の製造
 表1に示す化学成分を有する鋼をラボ溶解炉によって溶製し、30mm厚の鋼片を得た。
1. 1. Production of Steel Sheet for Evaluation The steel having the chemical composition shown in Table 1 was melted in a laboratory melting furnace to obtain a steel piece having a thickness of 30 mm.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 得られた30mm厚の鋼片を1250℃で1h加熱した後、表2に示す条件で熱間圧延を行った。続いて、巻き取りを模擬して巻取温度に相当する所定の温度で30min保持した後、20℃/hで室温まで徐冷し、2.6mm厚の熱延鋼板を作製した。なお、表2において、巻取温度が「室温」と示されている例については、加速冷却工程の条件によって室温まで冷却したことを示す。得られた熱延鋼板を酸洗し、次いで、表2に示す条件で冷間圧延を施して、1.6mm厚の冷延鋼板を作製した。 The obtained 30 mm-thick steel piece was heated at 1250 ° C. for 1 h, and then hot-rolled under the conditions shown in Table 2. Subsequently, the winding was simulated and held at a predetermined temperature corresponding to the winding temperature for 30 minutes, and then slowly cooled to room temperature at 20 ° C./h to prepare a 2.6 mm thick hot-rolled steel sheet. In Table 2, the example in which the winding temperature is shown as “room temperature” indicates that the sample has been cooled to room temperature depending on the conditions of the accelerated cooling step. The obtained hot-rolled steel sheet was pickled and then cold-rolled under the conditions shown in Table 2 to prepare a 1.6 mm-thick cold-rolled steel sheet.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 得られた冷延鋼板に、表3に示す条件で第1~3熱処理を行った。熱処理は、窒素98%および水素2%の還元雰囲気で行った。なお、第1熱処理では、300℃から保持温度までの平均昇温速度が0.5℃/sとなる条件で加熱し、保持温度から300℃までの平均冷却速度が0.5℃/sとなる条件で300℃以下の温度まで冷却した。また、第2熱処理では、保持温度から300℃までの平均冷却速度が10℃/sとなる条件で300℃以下の温度まで冷却した。 The obtained cold-rolled steel sheet was subjected to the first to third heat treatments under the conditions shown in Table 3. The heat treatment was carried out in a reducing atmosphere of 98% nitrogen and 2% hydrogen. In the first heat treatment, heating is performed under the condition that the average temperature rise rate from 300 ° C. to the holding temperature is 0.5 ° C./s, and the average cooling rate from the holding temperature to 300 ° C. is 0.5 ° C./s. It was cooled to a temperature of 300 ° C. or lower under the above conditions. Further, in the second heat treatment, the temperature was cooled to 300 ° C. or lower under the condition that the average cooling rate from the holding temperature to 300 ° C. was 10 ° C./s.
 また、第3熱処理では、試験No.1、3~10、13~15、17、19~22および24~29については、500~600℃の温度範囲での平均昇温速度が5℃/sとなる条件で加熱し、保持温度から520℃までの平均冷却速度が10℃/sとなる条件で室温まで冷却した。一方、試験No.2、12、16、18および23の焼鈍冷延鋼板については、第3熱処理における、500~600℃の温度範囲での平均昇温速度が5℃/sとなる条件で加熱し、保持温度から10℃/sの平均冷却速度での冷却を460℃で停止し、冷延鋼板をその温度で10s保持し、460℃の溶融亜鉛のめっき浴に2s間浸漬して、溶融亜鉛めっき処理を行った。めっき浴の条件は従来のものと同じである。 Also, in the third heat treatment, the test No. 1, 3 to 10, 13 to 15, 17, 19 to 22 and 24 to 29 are heated under the condition that the average heating rate in the temperature range of 500 to 600 ° C. is 5 ° C./s. It was cooled to room temperature under the condition that the average cooling rate up to 520 ° C. was 10 ° C./s. On the other hand, Test No. The hot-dip cold-rolled steel sheets of 2, 12, 16, 18 and 23 were heated under the condition that the average temperature rise rate in the temperature range of 500 to 600 ° C. in the third heat treatment was 5 ° C./s. Cooling at an average cooling rate of 10 ° C./s is stopped at 460 ° C., the cold-rolled steel sheet is held at that temperature for 10 seconds, and immersed in a hot-dip galvanizing bath at 460 ° C. for 2 seconds to perform hot-dip galvanizing treatment. rice field. The conditions of the plating bath are the same as those of the conventional one.
 そのうち、試験No.16については、溶融亜鉛めっき処理後に、10℃/sの平均冷却速度で室温まで冷却した。試験No.2、12、18および23の焼鈍冷延鋼板については、溶融亜鉛めっき処理を行った後に、室温に冷却せずに、500℃まで10℃/sで加熱し、500℃で5s間保持して合金化処理を行い、その後、10℃/sの平均冷却速度で室温まで冷却した。 Among them, test No. For No. 16, after the hot-dip galvanizing treatment, the mixture was cooled to room temperature at an average cooling rate of 10 ° C./s. Test No. The annealed cold-rolled steel sheets of 2, 12, 18 and 23 were subjected to hot-dip galvanizing treatment, then heated to 500 ° C. at 10 ° C./s without cooling to room temperature, and held at 500 ° C. for 5 s. The alloying treatment was performed, and then the mixture was cooled to room temperature at an average cooling rate of 10 ° C./s.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 このようにして得られた焼鈍冷延鋼板に、圧下率が0.5%のスキンパス圧延を施して、試験No.1~29の鋼板を作製した。 The annealed cold-rolled steel sheet thus obtained was subjected to skin pass rolling with a reduction ratio of 0.5%, and the test No. Steel sheets 1 to 29 were produced.
 2.評価方法
 得られた鋼板について、X線回折測定、ミクロ組織観察、引張試験、曲げ試験、およびシャルピー衝撃試験を実施して、残留オーステナイト(γ)、焼戻しマルテンサイト(T.M)およびマルテンサイト(F.M)の面積率、焼戻しマルテンサイトおよびマルテンサイトにおける小角粒界密度および大角粒界密度、残留オーステナイトの圧延方向における粒子密度Aと板厚方向における粒子密度Aとの比A/A、引張強さ(TS)、破断伸び(El)、TS×El、衝撃特性および曲げ性を評価した。各評価の方法は、上記に記載のとおりである。
2. Evaluation method X-ray diffraction measurement, microstructure observation, tensile test, bending test, and Charpy impact test were carried out on the obtained steel sheet, and retained austenite (γ), tempered martensite (TM) and martensite ( F.M) area ratio of tempered martensite and small-angle grain boundary density and large angle grain boundary density in the martensite, particle density in the particle density a L and the plate thickness direction in the rolling direction of the residual austenite a N and the ratio a L / AN , tensile strength (TS), elongation at break (El), TS × El, impact characteristics and bendability were evaluated. The method of each evaluation is as described above.
 (機械的性質の試験方法)
 鋼板の幅方向にJIS5号引張試験片を採取し、引張試験を行って引張強さ(TS)および破断伸び(El)を測定した。引張試験は、JIS5号引張試験片を用いたJIS Z 2241:2011に規定される方法で行った。
(Test method for mechanical properties)
A JIS No. 5 tensile test piece was taken in the width direction of the steel sheet, and a tensile test was performed to measure the tensile strength (TS) and the elongation at break (El). The tensile test was carried out by the method specified in JIS Z 2241: 2011 using a JIS No. 5 tensile test piece.
 曲げ性は曲げ試験を行って評価した。
 焼鈍後の各鋼板を、幅20mm、長さ50mmの曲げ試験片を採取した。曲げ試験片の幅方向が曲げ軸と平行になる。曲げ試験片の幅方向が鋼板の圧延方向に平行となる場合を圧延方向曲げ試験、曲げ試験片の幅方向が鋼板の幅方向に平行となる場合を幅方向曲げ試験と呼ぶ。その試験片をポンチ半径4.8mm、および、3.2mmの頂角90°のV型ポンチで型に押し込んだ。なお、曲げ試験は、JIS Z 2248:2006のVブロック法に準じて行った。曲げ試験後の試料表面を観察し、ポンチ半径4.8mmと3.2mmの両方で割れが認められない場合、曲げ性をさらに良好、ポンチ半径4.8mmにおいてのみ割れが認められない場合、曲げ性を良好、ポンチ半径4.8mmと3.2mmの両方で割れが認められる場合、曲げ性を不良とした。
The bendability was evaluated by performing a bending test.
Bending test pieces having a width of 20 mm and a length of 50 mm were collected from each of the annealed steel sheets. The width direction of the bending test piece is parallel to the bending axis. The case where the width direction of the bending test piece is parallel to the rolling direction of the steel sheet is called a rolling direction bending test, and the case where the width direction of the bending test piece is parallel to the width direction of the steel sheet is called a width direction bending test. The test piece was pushed into the mold with a V-shaped punch having a punch radius of 4.8 mm and an apex angle of 90 ° of 3.2 mm. The bending test was performed according to the V block method of JIS Z 2248: 2006. Observe the sample surface after the bending test, and if cracks are not observed at both the punch radius of 4.8 mm and 3.2 mm, the bendability is further improved, and if cracks are not observed only at the punch radius of 4.8 mm, bending is observed. When the property was good and cracks were observed at both the punch radii of 4.8 mm and 3.2 mm, the bendability was considered to be poor.
 衝撃特性はシャルピー衝撃試験を行って評価した。
 焼鈍後の各鋼板から、Vノッチ試験片を採取した。この際、Vノッチ試験片の長さ方向が鋼板の圧延方向と一致するようにした。その試験片を4枚積層してねじ止めした後、JIS Z 2242:2018に準じてシャルピー衝撃試験に供した。衝撃特性は、20℃での衝撃値が30J/cm以上の場合、衝撃特性を良好とし、それ未満である場合を、衝撃特性を不良とした。
The impact characteristics were evaluated by performing a Charpy impact test.
A V-notch test piece was taken from each steel sheet after annealing. At this time, the length direction of the V-notch test piece was made to coincide with the rolling direction of the steel sheet. After stacking four of the test pieces and screwing them together, they were subjected to a Charpy impact test according to JIS Z 2242: 2018. As for the impact characteristics, when the impact value at 20 ° C. was 30 J / cm 2 or more, the impact characteristics were good, and when it was less than that, the impact characteristics were poor.
 3.評価結果
 以上の評価結果を表4に示す。本実施例においては、980MPa以上のTS、22000MPa・%以上のTS×El、良好な衝撃特性、および良好な曲げ性が得られた例を、高い強度を有し、かつ強度-延性バランス、曲げ性および衝撃特性に優れる鋼板として評価した。
3. 3. Evaluation Results Table 4 shows the above evaluation results. In this example, an example in which TS of 980 MPa or more, TS × El of 22000 MPa ·% or more, good impact characteristics, and good bendability are obtained has high strength, strength-ductility balance, and bending. It was evaluated as a steel sheet with excellent properties and impact characteristics.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4から分かるように、本発明の規定を満足しない比較例では、機械特性のいずれかが劣る結果となった。具体的には、試験No.3では、第2熱処理工程での保持温度が低く、フェライトが生成し、焼戻しマルテンサイトの面積率が低かったため、強度および衝撃特性が悪化した。試験No.4では、第1熱処理工程での保持温度が高く、小角粒度密度が低くなり、残留オーステナイトの等方性が低下したため、TS×El、衝撃特性、曲げ性が悪化した。 As can be seen from Table 4, in the comparative example which does not satisfy the provisions of the present invention, one of the mechanical properties was inferior. Specifically, the test No. In No. 3, the holding temperature in the second heat treatment step was low, ferrite was formed, and the area ratio of tempered martensite was low, so that the strength and impact characteristics deteriorated. Test No. In No. 4, the holding temperature in the first heat treatment step was high, the small-angle particle size density was low, and the isotropic property of the retained austenite was lowered, so that TS × El, impact characteristics, and bendability were deteriorated.
 試験No.5では、Mn含有量が規定値未満であり、試験No.6では、C含有量が規定値未満であった。その結果、いずれの例でも残留オーステナイトの面積率が低かったため、TS×Elが悪化した。また試験No.6では、強度も不十分となった。 Test No. In No. 5, the Mn content was less than the specified value, and Test No. In No. 6, the C content was less than the specified value. As a result, TS × El deteriorated because the area ratio of retained austenite was low in all cases. In addition, the test No. At 6, the strength was also insufficient.
 試験No.8では、第2熱処理工程を行わなかったため、焼戻しマルテンサイトが生成せずにフェライト主体となり、また、小角粒界密度および大角粒界密度が低下した。加えて、残留オーステナイトも粗大化した。その結果、強度、TS×Elおよび衝撃特性が悪化した。試験No.9では、第3熱処理工程での保持温度が高く、焼戻しマルテンサイトの面積率が低く、マルテンサイトの面積率が高くなったため、衝撃特性が悪化した。 Test No. In No. 8, since the second heat treatment step was not performed, tempered martensite was not generated and mainly became ferrite, and the small-angle grain boundary density and the large-angle grain boundary density decreased. In addition, retained austenite was also coarsened. As a result, the strength, TS × El and impact characteristics deteriorated. Test No. In No. 9, the holding temperature in the third heat treatment step was high, the area ratio of tempered martensite was low, and the area ratio of martensite was high, so that the impact characteristics deteriorated.
 試験No.11では、第3熱処理工程を行わなかったため、マルテンサイト単相となり、TS×El、衝撃特性、曲げ性が悪化した。試験No.13では、第2熱処理工程での保持時間が長く、大角粒度密度が低下したため、衝撃特性が悪化した。試験No.15では、第2熱処理工程での保持温度が高く、大角粒度密度が低下したため、衝撃特性が悪化した。 Test No. In No. 11, since the third heat treatment step was not performed, the martensite became a single phase, and TS × El, impact characteristics, and bendability deteriorated. Test No. In No. 13, the holding time in the second heat treatment step was long, and the large-angle particle size density was lowered, so that the impact characteristics were deteriorated. Test No. In No. 15, the holding temperature in the second heat treatment step was high, and the large-angle particle size density was lowered, so that the impact characteristics were deteriorated.
 試験No.19では、第1熱処理工程での保持時間が短く、小角粒度密度が低くなり、残留オーステナイトの等方性が低下したため、TS×El、衝撃特性、曲げ性が悪化した。試験No.22では、巻取温度が高く、残留オーステナイトの等方性が低下したため、衝撃特性、曲げ性が悪化した。試験No.24では、第1熱処理工程での保持温度が低く、小角粒度密度が低くなり、残留オーステナイトの等方性が低下したため、TS×El、衝撃特性、曲げ性が悪化した。 Test No. In No. 19, the holding time in the first heat treatment step was short, the small angle particle size density was low, and the isotropic property of the retained austenite was lowered, so that TS × El, impact characteristics, and bendability were deteriorated. Test No. In No. 22, the take-up temperature was high and the isotropic property of retained austenite was lowered, so that the impact characteristics and bendability were deteriorated. Test No. In No. 24, the holding temperature in the first heat treatment step was low, the small angle particle size density was low, and the isotropic property of the retained austenite was lowered, so that TS × El, impact characteristics, and bendability were deteriorated.
 試験No.26では、第3熱処理工程での保持温度が低く、焼戻しマルテンサイトの面積率が高くなったため、強度が悪化した。試験No.29では、第1熱処理工程および第2熱処理工程を行わなかったため、焼戻しマルテンサイトが生成せずにフェライト主体となり、さらにマルテンサイトの面積率が高くなった。また、小角粒界密度および大角粒界密度が低下し、残留オーステナイトの等方性も低下した。その結果、TS×El、衝撃特性、曲げ性が悪化した。 Test No. In No. 26, the holding temperature in the third heat treatment step was low, and the area ratio of tempered martensite was high, so that the strength deteriorated. Test No. In No. 29, since the first heat treatment step and the second heat treatment step were not performed, tempered martensite was not generated and was mainly ferrite, and the area ratio of martensite was further increased. In addition, the small-angle grain boundary density and the large-angle grain boundary density decreased, and the isotropic property of retained austenite also decreased. As a result, TS × El, impact characteristics, and bendability deteriorated.
 これらに対して、本発明例では、980MPa以上のTS、22000MPa・%以上のTS×El、「良好」な衝撃特性、および「良好」または「さらに良好」な曲げ性を示す鋼板が得られた。特に、本発明の鋼板は、残留オーステナイトが等方的に分散しているため、幅方向曲げ性だけでなく、圧延方向曲げ性においても優れた結果を示すことが分かる。 On the other hand, in the example of the present invention, a steel sheet exhibiting TS of 980 MPa or more, TS × El of 22000 MPa ·% or more, “good” impact characteristics, and “good” or “even better” bendability was obtained. .. In particular, it can be seen that the steel sheet of the present invention exhibits excellent results not only in width direction bendability but also in rolling direction bendability because retained austenite is isotropically dispersed.
 本発明によれば、高い強度を有し、かつ強度-延性バランス、曲げ性および衝撃特性に優れる鋼板を得ることができる。そのため、本発明の鋼板は様々な用途に用いることができ、特にサイドシルなどの自動車の構造部品用途に好適に用いられ自動車の軽量化にも寄与する。 According to the present invention, it is possible to obtain a steel sheet having high strength and excellent strength-ductility balance, bendability and impact characteristics. Therefore, the steel sheet of the present invention can be used for various purposes, and is particularly preferably used for structural parts of automobiles such as side sills, and contributes to weight reduction of automobiles.

Claims (7)

  1.  鋼板の化学組成が、質量%で、
     C:0.18%超0.30%未満、
     Si:0.001%以上2.00%未満、
     Mn:2.50%超4.20%未満、
     sol.Al:0.001%以上1.00%未満、
     P:0.030%以下、
     S:0.005%以下、
     N:0.050%未満、
     O:0.020%未満、
     Cr:0~0.50%、
     Mo:0~0.50%、
     W:0~0.30%、
     Cu:0~0.30%、
     Ni:0~0.50%、
     Ti:0~0.100%、
     Nb:0~0.100%、
     V:0~0.100%、
     B:0~0.010%、
     Ca:0~0.010%、
     Mg:0~0.010%、
     Zr:0~0.010%、
     REM:0~0.010%、
     Sb:0~0.050%、
     Sn:0~0.050%、
     Bi:0~0.050%、
     残部:Feおよび不純物であり、
     前記鋼板の圧延方向および板厚方向に平行な断面において、表面から板厚の1/4深さ位置における金属組織が、面積%で、
     残留オーステナイト:10%以上、
     焼戻しマルテンサイト:60~80%、
     マルテンサイト:20%未満、であり、
     焼戻しマルテンサイトおよびマルテンサイトにおいて、結晶方位差が2度以上20度未満の小角粒界密度が0.20~1.0μm-1であり、結晶方位差が20~50度の大角粒界密度が0.30~0.60μm-1であり、
     残留オーステナイトの圧延方向における粒子密度Aと板厚方向における粒子密度Aとの比A/Aが0.80~1.0である、
     鋼板。
    The chemical composition of the steel sheet is mass%,
    C: More than 0.18% and less than 0.30%,
    Si: 0.001% or more and less than 2.00%,
    Mn: More than 2.50% and less than 4.20%,
    sol. Al: 0.001% or more and less than 1.00%,
    P: 0.030% or less,
    S: 0.005% or less,
    N: Less than 0.050%,
    O: Less than 0.020%,
    Cr: 0 to 0.50%,
    Mo: 0 to 0.50%,
    W: 0 to 0.30%,
    Cu: 0 to 0.30%,
    Ni: 0 to 0.50%,
    Ti: 0 to 0.100%,
    Nb: 0 to 0.100%,
    V: 0 to 0.100%,
    B: 0 to 0.010%,
    Ca: 0 to 0.010%,
    Mg: 0 to 0.010%,
    Zr: 0 to 0.010%,
    REM: 0-0.010%,
    Sb: 0 to 0.050%,
    Sn: 0 to 0.050%,
    Bi: 0 to 0.050%,
    Remaining: Fe and impurities,
    In the cross section parallel to the rolling direction and the plate thickness direction of the steel plate, the metal structure at a depth of 1/4 of the plate thickness from the surface is, in% area.
    Residual austenite: 10% or more,
    Tempering martensite: 60-80%,
    Martensite: less than 20%,
    In tempered martensite and martensite, the grain boundary density of small angles with a crystal orientation difference of 2 degrees or more and less than 20 degrees is 0.20 to 1.0 μm -1, and the grain boundary density of large angles with a crystal orientation difference of 20 to 50 degrees is 0.20 to 1.0 μm -1. It is 0.30 to 0.60 μm -1 .
    The ratio A L / A N of the particle density A N in the particle density A L and the plate thickness direction in the rolling direction of the residual austenite is 0.80 to 1.0
    Steel plate.
  2.  前記化学組成が、質量%で、
     Cr:0.01~0.50%、
     Mo:0.01~0.50%、
     W:0.01~0.30%、
     Cu:0.01~0.30%、および
     Ni:0.01~0.50%、
     から選択される1種以上を含有する、
     請求項1に記載の鋼板。
    When the chemical composition is mass%,
    Cr: 0.01-0.50%,
    Mo: 0.01-0.50%,
    W: 0.01-0.30%,
    Cu: 0.01 to 0.30%, and Ni: 0.01 to 0.50%,
    Contains one or more selected from,
    The steel plate according to claim 1.
  3.  前記化学組成が、質量%で、
     Ti:0.005~0.100%、
     Nb:0.005~0.100%、および
     V:0.005~0.100%、
     から選択される1種以上を含有する、
     請求項1または請求項2に記載の鋼板。
    When the chemical composition is mass%,
    Ti: 0.005 to 0.100%,
    Nb: 0.005 to 0.100%, and V: 0.005 to 0.100%,
    Contains one or more selected from,
    The steel sheet according to claim 1 or 2.
  4.  前記化学組成が、質量%で、
     B:0.0001~0.010%、
     Ca:0.0001~0.010%、
     Mg:0.0001~0.010%、
     Zr:0.0001~0.010%、および
     REM:0.0001~0.010%、
     から選択される1種以上を含有する、
     請求項1から請求項3までのいずれかに記載の鋼板。
    When the chemical composition is mass%,
    B: 0.0001 to 0.010%,
    Ca: 0.0001 to 0.010%,
    Mg: 0.0001 to 0.010%,
    Zr: 0.0001 to 0.010%, and REM: 0.0001 to 0.010%,
    Contains one or more selected from,
    The steel sheet according to any one of claims 1 to 3.
  5.  前記化学組成が、質量%で、
     Sb:0.0005~0.050%、
     Sn:0.0005~0.050%、および
     Bi:0.0005~0.050%、
     から選択される1種以上を含有する、
     請求項1から請求項4までのいずれかに記載の鋼板。
    When the chemical composition is mass%,
    Sb: 0.0005 to 0.050%,
    Sn: 0.0005 to 0.050%, and Bi: 0.0005 to 0.050%,
    Contains one or more selected from,
    The steel plate according to any one of claims 1 to 4.
  6.  前記鋼板の表面に溶融亜鉛めっき層を有する、
     請求項1から請求項5までのいずれかに記載の鋼板。
    A hot-dip galvanized layer is provided on the surface of the steel sheet.
    The steel sheet according to any one of claims 1 to 5.
  7.  前記鋼板の表面に合金化溶融亜鉛めっき層を有する、
     請求項1から請求項5までのいずれかに記載の鋼板。
    Having an alloyed hot-dip galvanized layer on the surface of the steel sheet.
    The steel sheet according to any one of claims 1 to 5.
PCT/JP2021/010890 2020-04-02 2021-03-17 Steel sheet WO2021200169A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-067085 2020-04-02
JP2020067085 2020-04-02

Publications (1)

Publication Number Publication Date
WO2021200169A1 true WO2021200169A1 (en) 2021-10-07

Family

ID=77928195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/010890 WO2021200169A1 (en) 2020-04-02 2021-03-17 Steel sheet

Country Status (1)

Country Link
WO (1) WO2021200169A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014020640A1 (en) * 2012-07-31 2014-02-06 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet having excellent moldability and shape fixability, and method for manufacturing same
WO2017208762A1 (en) * 2016-05-30 2017-12-07 株式会社神戸製鋼所 High-strength steel sheet and method for producing same
WO2018105003A1 (en) * 2016-12-05 2018-06-14 新日鐵住金株式会社 High strength steel sheet
WO2018116155A1 (en) * 2016-12-21 2018-06-28 Arcelormittal High-strength cold rolled steel sheet having high formability and a method of manufacturing thereof
WO2018147400A1 (en) * 2017-02-13 2018-08-16 Jfeスチール株式会社 High-strength steel plate and manufacturing method therefor
WO2019131188A1 (en) * 2017-12-26 2019-07-04 Jfeスチール株式会社 High-strength cold rolled steel sheet and method for manufacturing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014020640A1 (en) * 2012-07-31 2014-02-06 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet having excellent moldability and shape fixability, and method for manufacturing same
WO2017208762A1 (en) * 2016-05-30 2017-12-07 株式会社神戸製鋼所 High-strength steel sheet and method for producing same
WO2018105003A1 (en) * 2016-12-05 2018-06-14 新日鐵住金株式会社 High strength steel sheet
WO2018116155A1 (en) * 2016-12-21 2018-06-28 Arcelormittal High-strength cold rolled steel sheet having high formability and a method of manufacturing thereof
WO2018147400A1 (en) * 2017-02-13 2018-08-16 Jfeスチール株式会社 High-strength steel plate and manufacturing method therefor
WO2019131188A1 (en) * 2017-12-26 2019-07-04 Jfeスチール株式会社 High-strength cold rolled steel sheet and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP6844627B2 (en) Steel plate and its manufacturing method
JP4635525B2 (en) High-strength steel sheet excellent in deep drawability and manufacturing method thereof
JP5488129B2 (en) Cold rolled steel sheet and method for producing the same
WO2013046476A1 (en) High strength steel plate and manufacturing method thereof
JPWO2012026419A1 (en) Cold rolled steel sheet and method for producing the same
CN117178069A (en) Steel sheet, component, and method for producing same
WO2017168957A1 (en) Thin steel sheet, plated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full hard steel sheet, method for producing thin steel sheet, and method for producing plated steel sheet
WO2020026594A1 (en) High-strength hot-rolled plated steel sheet
JP7036274B2 (en) Steel plate
CN111868282B (en) Steel plate
JP7216933B2 (en) Steel plate and its manufacturing method
JP6744003B1 (en) Steel plate
JP6683291B2 (en) Steel plate and method for manufacturing steel plate
JP2012031466A (en) High strength steel sheet, and method of manufacturing the same
WO2017131052A1 (en) High-strength steel sheet for warm working, and method for producing same
WO2019194250A1 (en) Steel sheet and method for producing steel sheet
JP2018003114A (en) High strength steel sheet and manufacturing method therefor
CN111868283B (en) Steel plate
JP6760543B1 (en) Steel plate and steel plate manufacturing method
WO2021200169A1 (en) Steel sheet
JP2018003115A (en) High strength steel sheet and manufacturing method therefor
JP7364963B2 (en) Steel plate and its manufacturing method
JP7417169B2 (en) Steel plate and its manufacturing method
WO2022209520A1 (en) Steel sheet, member, method for producing said steel sheet, and method for producing said member
JP6687171B1 (en) steel sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21782321

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21782321

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP