WO2019194250A1 - Steel sheet and method for producing steel sheet - Google Patents

Steel sheet and method for producing steel sheet Download PDF

Info

Publication number
WO2019194250A1
WO2019194250A1 PCT/JP2019/014877 JP2019014877W WO2019194250A1 WO 2019194250 A1 WO2019194250 A1 WO 2019194250A1 JP 2019014877 W JP2019014877 W JP 2019014877W WO 2019194250 A1 WO2019194250 A1 WO 2019194250A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
rolling
phase
hot
Prior art date
Application number
PCT/JP2019/014877
Other languages
French (fr)
Japanese (ja)
Inventor
力 岡本
林 宏太郎
武 豊田
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to JP2019543954A priority Critical patent/JP6683292B2/en
Publication of WO2019194250A1 publication Critical patent/WO2019194250A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present disclosure relates to a steel sheet having a high content of Mn and a manufacturing method thereof.
  • TRIP Transformation Induced Plasticity
  • Residual austenite is obtained by concentrating C in austenite so that austenite does not transform into another structure even at room temperature.
  • a technique for stabilizing austenite it has been proposed to contain carbide precipitation-inhibiting elements such as Si and Al in the steel sheet, and to enrich C in the austenite during the bainite transformation that occurs in the steel sheet during the manufacturing stage of the steel sheet. Yes.
  • the C content contained in the steel plate is large, austenite can be further stabilized and the amount of retained austenite can be increased.
  • a steel plate having excellent strength and elongation properties can be produced.
  • welding is often performed on the steel plate.
  • the C content in the steel plate is large, the weldability is deteriorated, so that use as a structural member is limited. Therefore, it is desired to improve both the formability and strength of the steel sheet with a smaller C content.
  • Non-patent Document 2 steel added with 3.5% or more of Mn
  • Non-patent Document 1 steel added with 3.5% or more of Mn
  • the steel contains a large amount of Mn
  • the effect of reducing the weight of the member used is also remarkable.
  • the requirement for suppressing the yield elongation (YP-El) was not clear while enhancing the elongation characteristics and improving the yield point that most affected the impact characteristics.
  • the inventors have made the austenite phase 10% or more in the steel sheet by area ratio. 10% or more of the ferrite phase, and the area ratio of non-recrystallized ferrite in the ferrite phase is 30% or more and 70% or less, and the ratio between the average Mn concentration CMn ⁇ in the austenite phase and the average Mn concentration CMn ⁇ in the ferrite phase It was found that it is effective to set CMn ⁇ / CMn ⁇ of 1.2 or more and the average dislocation density of the ferrite phase to 4.0 ⁇ 10 12 / m 2 or more.
  • the steel sheet and its manufacturing method of the present disclosure have been made on the basis of the above knowledge, and the gist thereof is as follows.
  • the gist of the present disclosure is as follows. (1) In mass%, C: more than 0.10% and less than 0.55%, Si: 0.001% or more and less than 3.50%, Mn: more than 4.00% and less than 9.00%, sol. Al: 0.001% or more and less than 3.00%, P: 0.100% or less, S: 0.010% or less, N: less than 0.050%, O: less than 0.020%, Cr: 0% or more and less than 2.00%, Mo: 0% or more and 2.00% or less, W: 0% to 2.00%, Cu: 0% or more and 2.00% or less, Ni: 0% or more and 2.00% or less, Ti: 0% or more and 0.300% or less, Nb: 0% or more and 0.300% or less, V: 0% or more and 0.300% or less, B: 0% or more and 0.010% or less, Ca: 0% or more and 0.010% or less, Mg: 0% or more and 0.010% or less, Zr: 0% or more and 0.01
  • B 0.0001% or more and 0.010% or less
  • Ca 0.0001% or more and 0.010% or less
  • Mg 0.0001% or more and 0.010% or less
  • Zr 0.0001% or more and 0.010% or less
  • REM 0.0001% or more and 0.010% or less, comprising one or more selected from the group consisting of The steel sheet according to any one of 1) to (3).
  • Sb 0.0005% or more and 0.050% or less
  • Sn 0.0005% or more and 0.050% or less
  • Bi 0.0005% or more and 0.050% or less, containing one or more selected from the group consisting of: The steel plate according to any one of 1) to (4).
  • the metal structure further includes a tempered martensite phase of 5% or more by area ratio, and the martensite phase is limited to less than 15%, according to any one of the above (1) to (5)
  • the described steel sheet (7)
  • Hot rolling the steel having the component according to any one of (1) to (5) above to obtain a hot rolled steel sheet The hot-rolled steel sheet is subjected to heat treatment for 1 hour or more in a temperature range where the austenite phase fraction is 20% to 50%, and then subjected to pickling and cold rolling to form a cold-rolled steel sheet,
  • the cold rolling rate in the cold rolling is 30% or more and 70% or less, Annealing the cold-rolled steel sheet in a temperature range where the austenite phase fraction is 20% to 50% and holding for 30 seconds to less than 15 minutes; and after the annealing, the rolling reduction is 5.0% or more Applying skin pass rolling, and maintaining the annealing temperature, cooling at an average cooling rate of 2 ° C./second to 2000 ° C./second and holding at a temperature range of 100 ° C.
  • FIG. 1 is a stress-strain curve of a steel plate.
  • FIG. 2 is a mapping result showing a distribution state of Mn in a steel sheet heat-treated in a ferrite single-phase region and a ferrite / austenite two-phase region.
  • C is an extremely important element for increasing the strength of steel and securing austenite.
  • a C content of more than 0.10% is required.
  • the upper limit of the C content is less than 0.55%.
  • the lower limit of the C content is preferably 0.15% or more, more preferably 0.20% or more.
  • the upper limit value of the C content is preferably 0.40% or less, more preferably 0.35% or less.
  • Si has the effect of suppressing the precipitation of cementite and promoting the austenite residue.
  • Si is an element effective for strengthening tempered martensite when the metal structure contains tempered martensite, homogenizing the structure, and improving workability. In order to acquire the said effect, 0.001% or more of Si content is required. On the other hand, if Si is contained excessively, the plating properties and chemical conversion properties of the steel sheet are impaired, so the upper limit of the Si content is set to less than 3.50%.
  • the lower limit of the Si content is preferably 0.005% or more, more preferably 0.010% or more. By setting the lower limit of the Si content in the above range, the elongation characteristics of the steel sheet can be further improved.
  • the upper limit of the Si content is preferably 2.00% or less, more preferably 1.00% or less.
  • Mn is an element that stabilizes austenite and improves hardenability. Moreover, in the steel plate of this indication, Mn is concentrated in austenite and austenite is stabilized more. In order to stabilize austenite at room temperature, more than 4.00% Mn is required. On the other hand, if the steel sheet contains Mn excessively, the weldability, hole expandability and ductility are impaired, so the upper limit of the Mn content is set to less than 9.00%.
  • the lower limit of the Mn content is preferably more than 4.20%, more preferably 4.50% or more, and further preferably 4.80% or more.
  • the upper limit of the Mn content is preferably 8.50% or less, more preferably 8.00% or less.
  • Al is a deoxidizer and should be contained by 0.001% or more.
  • Al has an effect of improving material stability in order to widen the two-phase temperature range during annealing. The effect increases as the Al content increases.
  • excessive addition of Al leads to deterioration of surface properties, paintability, weldability, and the like.
  • the upper limit of Al was made less than 3.00%.
  • the lower limit of the Al content is preferably 0.005% or more, more preferably 0.01% or more, and further preferably 0.02% or more. sol.
  • the upper limit of the Al content is preferably 2.00% or less, more preferably 1.00% or less. sol.
  • the upper limit of the P content is 0.100% or less.
  • the upper limit of the P content is preferably 0.050% or less, more preferably 0.030% or less, and still more preferably 0.020% or less. Since the steel plate according to this embodiment does not require P, P may not be substantially contained, and the lower limit value of the P content is 0%.
  • the lower limit of the P content may be more than 0% or 0.001% or more, but the lower the P content, the better.
  • S is an impurity, and if the steel sheet contains excessive S, MnS stretched by hot rolling is generated, which causes deterioration of formability such as bendability and hole expansibility. Therefore, the upper limit of the S content is 0.010% or less.
  • the upper limit of the S content is preferably 0.007% or less, more preferably 0.003% or less. Since the steel plate according to the present embodiment does not require S, S may not be substantially contained, and the lower limit value of the S content is 0%.
  • the lower limit of the S content may be more than 0% or 0.001% or more, but the lower the S content, the better.
  • N is an impurity, and if the steel sheet contains 0.050% or more of N, the toughness is deteriorated. Therefore, the upper limit of the N content is less than 0.050%.
  • the upper limit of the N content is preferably 0.010% or less, more preferably 0.006% or less. Since the steel plate according to the present embodiment does not require N, N may not be substantially contained, and the lower limit value of the N content is 0%.
  • the lower limit of the N content may be more than 0% or 0.005% or more, but the lower the N content, the better.
  • O is an impurity, and if the steel sheet contains 0.020% or more of O, ductility is deteriorated. Therefore, the upper limit of the O content is less than 0.020%.
  • the upper limit of the O content is preferably 0.010% or less, more preferably 0.005% or less, and still more preferably 0.003% or less. Since the steel plate according to the present embodiment does not require O, it may not substantially contain O, and the lower limit value of the O content is 0%.
  • the lower limit of the O content may be more than 0% or 0.001% or more, but the lower the O content, the better.
  • the steel plate of the present embodiment is further selected from the group consisting of Cr, Mo, W, Cu, Ni, Ti, Nb, V, B, Ca, Mg, Zr, REM, Sb, Sn, and Bi, or You may contain 2 or more types. However, the steel sheet according to the present embodiment may not contain Cr, Mo, W, Cu, Ni, Ti, Nb, V, B, Ca, Mg, Zr, REM, Sb, Sn, and Bi. The lower limit of the content may be 0%.
  • each of Cr, Mo, W, Cu, and Ni is not an essential element for the steel sheet according to the present embodiment, and thus may not be contained, and each content is 0% or more. However, since Cr, Mo, W, Cu, and Ni are elements that improve the strength of the steel sheet, they may be contained. In order to obtain the effect of improving the strength of the steel plate, the steel plate may contain 0.01% or more of each of one or more elements selected from the group consisting of Cr, Mo, W, Cu, and Ni. .
  • the steel sheet contains these elements in excess, surface flaws during hot rolling are likely to be generated, and further, the strength of the hot rolled steel sheet becomes too high and cold rolling properties may be deteriorated. Therefore, among the contents of one or more elements selected from the group consisting of Cr, Mo, W, Cu, and Ni, the upper limit value of the Cr content is less than 2.00%, and Mo , W, Cu, and Ni, the upper limit of each content shall be 2.00% or less.
  • Ti, Nb, and V do not have to be contained because they are not essential elements for the steel sheet according to the present embodiment, and each content is 0% or more.
  • the steel sheet may contain one or more elements selected from the group consisting of Ti, Nb, and V.
  • the lower limit value of the content of each of one or more elements selected from the group consisting of Ti, Nb, and V is preferably 0.005% or more.
  • Nb when the Nb content is 0.300% or less, a delay in recrystallization of the ferrite phase can be suppressed, and a desired structure can be obtained more stably. Therefore, it is preferable to set the upper limit of the content of each of one or more elements selected from the group consisting of Ti, Nb, and V to 0.300% or less.
  • B, Ca, Mg, Zr, and REM (rare earth metal) may not be contained because they are not essential elements for the steel sheet of the present disclosure, and each content is 0% or more.
  • B, Ca, Mg, Zr, and REM improve the local elongation and hole expandability of the steel sheet.
  • the lower limit of each of one or more elements selected from the group consisting of B, Ca, Mg, Zr, and REM is preferably 0.0001% or more, more preferably 0. 0.001% or more.
  • the upper limit of the content of each of these elements is 0.010% or less, and is selected from the group consisting of B, Ca, Mg, Zr, and REM.
  • the total content of one or more elements is preferably 0.030% or less.
  • REM refers to a total of 17 elements of Sc, Y, and lanthanoid
  • the REM content refers to the content when there is one REM, and the total content when there are two or more.
  • Point to. REM is also supplied as misch metal, which is generally an alloy of a plurality of types of REM. For this reason, one or more individual elements may be added so that the REM content falls within the above range. For example, the REM content may be added in the form of misch metal. You may make it contain so that it may become this range.
  • Sb, Sn, and Bi do not need to be contained because they are not essential elements for the steel sheet of the present disclosure, and each content is 0% or more.
  • Sb, Sn, and Bi suppress oxidizable elements such as Mn, Si, and / or Al in the steel sheet from diffusing into the steel sheet surface to form oxides, and improve the surface properties and plating properties of the steel sheet. Increase.
  • the lower limit of the content of each of one or more elements selected from the group consisting of Sb, Sn, and Bi is preferably 0.0005% or more, more preferably 0.001. % Or more.
  • the content of each of these elements exceeds 0.050%, the effect is saturated, so the upper limit of the content of each of these elements is preferably 0.050% or less.
  • the balance is iron and impurities. Impurities are inevitably mixed from steel raw materials or scraps and / or from the steel making process, and elements allowed within a range not impairing the characteristics of the steel sheet according to the present embodiment are exemplified.
  • the metal structure at the 1/8 position (also referred to as 1/8 t portion) of the thickness from the surface of the steel sheet according to the present embodiment includes an austenite phase of 10% or more and a ferrite phase of 10% or more in terms of area ratio.
  • the fraction of each structure varies depending on the heat treatment conditions, and affects the material such as yield point, strength, and elongation characteristics. Since the required material varies depending on, for example, parts for automobiles, heat treatment conditions may be selected as necessary to control the tissue fraction.
  • the area ratio of each structure can be measured by observing the microstructure at 1/8 position of the thickness from the surface of the steel sheet.
  • the L cross section refers to a surface cut so as to pass through the central axis of the steel plate in parallel with the plate thickness direction and the rolling direction.
  • the steel sheet according to the present embodiment it is important that the amount of austenite phase in the metal structure is in a predetermined range.
  • Austenite is a structure that increases the ductility of a steel sheet by transformation-induced plasticity. Since austenite can be transformed into martensite by stretching, drawing, stretch flange processing, or bending with tensile deformation, it contributes to improving the strength of the steel sheet. In order to obtain these effects, the steel plate according to the present embodiment needs to contain an austenite phase of 10% or more in area ratio in the metal structure.
  • the area ratio of the austenite phase is preferably 15% or more, more preferably 20% or more, and further preferably 25% or more. When the area ratio of the austenite phase is 15% or more, the elongation characteristic is maintained to a higher strength.
  • the upper limit of the area ratio of the austenite phase is not particularly defined, but is substantially 40%.
  • the area ratio of the austenite phase can be measured by backscattered electron diffraction (EBSP: Electron Back Back Scattering Pattern). It is possible to measure the area ratio of the austenite phase by measuring at least 8 visual fields in a range of at least 100 ⁇ m ⁇ 100 ⁇ m at a pitch of 0.1 ⁇ m and averaging the measured values.
  • Ferrite is an essential structure for ensuring ductility.
  • the area ratio of the ferrite phase in the metal structure is 10% or more, preferably 15% or more.
  • the upper limit of the area ratio of ferrite is not particularly specified, but is substantially less than 85%.
  • the metal structure at 1/8 position (also referred to as 1 / 8t part) of the thickness from the surface further contains a tempered martensite phase of 5% or more in area ratio,
  • the martensite phase is limited to less than 15%.
  • the tempered martensite phase is a hard phase and contributes to the improvement of the hole expansion property while ensuring the strength of the steel sheet.
  • the area ratio in the metal structure of the tempered martensite phase is preferably 5% or more.
  • the area ratio of the tempered martensite phase is preferably 10% or more, more preferably 15% or more, and further preferably 20% or more.
  • the upper limit of the area ratio of the tempered martensite phase is not specified, but is substantially less than 80%.
  • the bainite phase may be included in the metal structure, the bainite phase has the same characteristics as the tempered martensite phase, so when the bainite phase is included in the metal structure, the area ratio of the tempered martensite phase is tempered. It is measured including the bainite phase in addition to the martensite phase.
  • the martensite (also called fresh martensite) phase is a hard phase that contains a lot of dislocations in its structure, but it is a different structure from the tempered martensite phase, and the hole expandability can be degraded.
  • the area ratio in the metal structure of the martensite phase is preferably less than 15%.
  • local elongation can be improved more by making the area ratio in the metal structure of a martensite phase less than 15%.
  • the martensite phase may not be contained in the metal structure. That is, the area ratio in the metal structure of the martensite phase may be 0%.
  • the area ratio of the martensite phase is more preferably 10% or less, and further preferably 5% or less.
  • the remainder other than the austenite phase, martensite phase, tempered martensite phase (including bainite phase), and ferrite phase can be a structure such as pearlite or cementite.
  • the area ratios of the ferrite phase, the martensite phase, and the tempered martensite phase are calculated from the structure observation with a scanning electron microscope (SEM). After the L section of the steel plate is mirror-polished, it is corroded with 3% nital (3% nitric acid-ethanol solution), and the metal structure at 1/8 position from the surface is observed with a scanning electron microscope with a magnification of 5000 times.
  • the ferrite phase (including unrecrystallized ferrite) is discriminated as a gray background structure, and martensite is discriminated as a white structure. Tempered martensite appears white like martensite, but the one in which the substructure is confirmed in the crystal grains is determined to be tempered martensite.
  • the area ratio of non-recrystallized ferrite is 30% or more, preferably 40% or more.
  • the area ratio of non-recrystallized ferrite is within the above range, a steel plate having a high yield point can be obtained. If there is too much unrecrystallized ferrite, it will lead to a decrease in ductility, so the upper limit of the area ratio is 70%.
  • the upper limit of the area ratio of non-recrystallized ferrite is more preferably 60%.
  • the area ratio of unrecrystallized ferrite As for the area ratio of unrecrystallized ferrite, after discriminating ferrite phase grains as described above, EBSP measurement is performed on this area, and an area with a KAM (Kernel Average Misorientation) value of 1 ° or more is It is calculated by measuring as a crystalline ferrite structure.
  • KAM Kernel Average Misorientation
  • CMn ⁇ / CMn ⁇ which is the ratio of the average Mn concentration CMn ⁇ in the austenite phase and the average Mn concentration CMn ⁇ in the ferrite phase (all ferrite phases including unrecrystallized ferrite phase), is 1.2 or more, preferably 1.5 or more. .
  • CMn ⁇ / CMn ⁇ is within the above range, sufficient Mn distribution to concentrate Mn is obtained at the place where it was an austenite phase during heat treatment, and a stable austenite phase can be obtained even after short-time annealing. Is obtained.
  • CMn ⁇ / CMn ⁇ is less than 1.2, Mn distribution is not sufficient, and it becomes difficult to obtain an austenite phase by short-time annealing.
  • CMn ⁇ / CMn ⁇ is preferably less than 2.0.
  • CMn ⁇ / CMn ⁇ can be measured by EBSP, SEM, and electron beam microanalyzer (EMPA).
  • CMn ⁇ / CMn ⁇ can be calculated by measuring the austenite phase and ferrite phase by EBSP and SEM, and measuring CMn ⁇ and CMn ⁇ by EMPA.
  • the average dislocation density in the ferrite phase is 4.0 ⁇ 10 12 / m 2 or more.
  • the yield strength can be increased while the yield elongation is reduced, and a steel sheet having sufficient elongation can be obtained.
  • the average dislocation density in the ferrite phase is preferably 5 ⁇ 10 13 / m 2 or less.
  • the tensile strength (TS) of the steel sheet according to this embodiment is preferably 780 MPa or more, more preferably 980 MPa or more. This is because when a steel plate is used as an automobile material, the plate thickness is reduced by increasing the strength, thereby contributing to weight reduction. Moreover, in order to use the steel plate which concerns on this embodiment for press forming, it is desirable that elongation (El) is excellent. In that case, TS ⁇ El is preferably 25000 MPa ⁇ % or more, more preferably 28000 MPa ⁇ % or more.
  • the steel sheet according to this embodiment is also excellent in the yield point, and shows a stress-strain curve (SS curve) as shown as “A” in FIG.
  • SS curve stress-strain curve
  • the heat treatment of the hot-rolled steel sheet in the method of the present disclosure that is, only annealing for a short time on the cold-rolled steel sheet without performing heat treatment for 1 hour or more in the temperature range where the austenite phase fraction is 20% to 50%.
  • the steel sheet obtained by applying the stress exhibits a stress-strain curve as indicated by “C” having a small elongation.
  • the steel sheet according to the present embodiment exhibits a stress-strain curve as shown as “A” in FIG. 1 by performing skin pass rolling with a rolling reduction of 5.0% or more.
  • the stress-strain curve for a steel sheet produced under the same conditions except that skin pass rolling with a rolling reduction of 0.5% is shown as “B”.
  • a steel plate showing a stress-strain curve as shown in “A” has a high tensile strength although its yield point is slightly smaller than that of a steel plate showing a stress-strain curve as shown in “B”.
  • the yield elongation (YP-El) can be suppressed while maintaining the elongation.
  • a steel sheet exhibiting a stress-strain curve as shown as “A” can be dispersed without localizing the strain than “B”. Thereby, local deformation can be suppressed.
  • the yield ratio YR (the yield point YP is gradually lowered by the tensile strength TS) of the steel sheet according to the present embodiment is preferably 0.68 or more, more preferably 0.70 or more, and further preferably 0.75 or more. Therefore, when using the steel plate which concerns on this embodiment as a raw material of a motor vehicle, it contributes to the improvement of a collision characteristic. Further, the yield elongation (YP-El) of the steel sheet according to this embodiment is preferably less than 2.5%, more preferably less than 1.5%. Moreover, the steel plate according to the present embodiment preferably has excellent hole expansibility ( ⁇ ), and preferably exhibits a ⁇ of 18% or more, more preferably 22% or more, and further preferably 24% or more. Further, the steel sheet according to the present embodiment preferably has a local elongation of 1.5% or more, more preferably 1.7% or more, and further preferably 2.0% or more, and exhibits good formability.
  • the steel sheet of the present disclosure has a sufficiently high yield point, high tensile strength, sufficient elongation characteristics, excellent formability, and low yield elongation. Ideal for parts applications. Furthermore, since the steel sheet of the present disclosure has a high Mn concentration, it contributes to the weight reduction of automobiles, and thus the industrial contribution is extremely remarkable.
  • the steel plate according to the present embodiment is obtained by melting a steel having the above-described chemical composition by a conventional method, casting it to produce a slab or a steel ingot, heating this, and subjecting it to hot rolling.
  • the steel sheet is heat-treated in the ferrite / austenite two-phase region, pickled, cold-rolled at a cold rolling rate of 30% to 70%, and then annealed in the ferrite / austenite two-phase region for a short time. After the annealing, it is manufactured by performing skin pass rolling with a rolling reduction of 5.0% or more.
  • Hot rolling may be performed on a normal continuous hot rolling line.
  • the heat treatment of the hot-rolled steel sheet after hot rolling can be performed in a batch furnace such as a box annealing furnace (BAF) or a tunnel furnace such as a continuous annealing furnace.
  • Cold rolling may be performed by a normal continuous cold rolling line.
  • the annealing can be performed using a continuous annealing line, and thus the productivity is very excellent.
  • hot rolling conditions heat treatment conditions for hot rolled steel sheets after hot rolling
  • cold rolling conditions cold rolling conditions
  • annealing conditions annealing conditions
  • skin pass rolling It is preferable to carry out within the range shown in.
  • the molten steel may be melted by a normal blast furnace method, and the raw material contains a large amount of scrap like steel produced by the electric furnace method. May be included.
  • the slab may be manufactured by a normal continuous casting process or may be manufactured by thin slab casting.
  • the above-mentioned slab or steel ingot is heated and hot-rolled to obtain a hot-rolled steel sheet.
  • the temperature of the steel material used for hot rolling is preferably 1100 ° C. or higher and 1300 ° C. or lower.
  • the temperature of the steel material used for hot rolling is preferably 1100 ° C. or higher and 1300 ° C. or lower.
  • the time for holding in the temperature range of 1100 ° C. or higher and 1300 ° C. or lower, which is the preferable temperature range before hot rolling, is not particularly specified, but is preferably 30 minutes or longer in order to improve bendability. More preferably, the above is used. Moreover, in order to suppress an excessive scale loss, it is preferable to set it as 10 hours or less, and it is more preferable to set it as 5 hours or less. In addition, it is a case where direct feed rolling or direct rolling is performed, and it may be subjected to hot rolling as it is without performing heat treatment.
  • Finish rolling is performed in hot rolling.
  • the finish rolling start temperature is preferably 750 ° C. or higher and 1000 ° C. or lower.
  • the winding temperature is preferably less than 300 ° C.
  • the hot-rolled sheet structure can be made into a full martensite structure.
  • Mn distribution and austenite reverse transformation are efficiently performed, respectively. It is possible to wake up. That is, by performing finish rolling at the above temperature and winding at the above temperature, the tempered martensite phase having an area ratio of 5% or more is obtained while limiting the area ratio of the martensite phase to less than 15%. It is possible to obtain a steel sheet excellent in strength and hole expansibility.
  • Hot treatment of hot-rolled steel sheet Hold for 1 hour or more in a temperature range where the austenite phase fraction is 20% to 50%
  • the obtained hot-rolled steel sheet is heat-treated for 1 hour or longer in a temperature range where the austenite phase fraction is 20% to 50%.
  • Mn is distributed to the austenite to stabilize the austenite.
  • high ductility can be obtained.
  • the metal structure at the 1/8 position of the thickness from the surface in the L cross section of the steel sheet after annealing has an area ratio of 10% or more austenite.
  • Phases can be included.
  • the temperature range in which the area ratio of the austenite phase is 20% to 50% is determined from the volume change during heating by heating at a heating rate of 0.5 ° C / sec from room temperature in an offline preliminary experiment, depending on the components of the steel sheet. It can be obtained by measuring the austenite phase fraction.
  • the temperature of the heat treatment is preferably a temperature included in a temperature range where the austenite phase fraction is 25% to 40%.
  • the lower limit of the heat treatment holding time is preferably 2 hours or more, more preferably 3 hours or more.
  • the upper limit of the heat treatment holding time is preferably within 10 hours, more preferably within 8 hours.
  • FIG. 2 shows that after hot rolling, when heat treatment is performed at 650 ° C. for 6 hours in a temperature range in which the austenite phase fraction is 20% to 50% in the two-phase region, and for 15 minutes at 500 ° C. which is the single-phase region.
  • the example of the mapping result showing the distribution state of Mn in the position of 1/8 of the thickness from the surface of the L cross section of the steel sheet when the heat treatment is performed is shown.
  • Mn is discharged from ferrite and Mn is concentrated in austenite (light-colored region).
  • the Mn concentration in the portion that was ferrite at 650 ° C. becomes low.
  • the hot-rolled steel sheet is pickled by a conventional method, and then cold-rolled at a rolling reduction of 30% to 70% to obtain a cold-rolled steel sheet. If the rolling reduction of cold rolling is less than 30%, the grain size remains large and the austenite reverse transformation is delayed, so that a sufficient austenite phase cannot be obtained. On the other hand, if the rolling reduction is more than 70%, sufficient unrecrystallized ferrite cannot be obtained.
  • the lower limit value of the cold rolling reduction is preferably 40% or more.
  • the upper limit of the cold rolling reduction is preferably 60% or less.
  • the obtained cold-rolled steel sheet is annealed while being held in a temperature range where the austenite phase fraction is 20% to 50% for 30 seconds to less than 15 minutes, preferably 1 minute to 5 minutes.
  • the Mn distribution has already been completed by the heat treatment of the hot-rolled steel sheet, and Mn is concentrated in the austenite phase during the heat treatment, so this part immediately becomes an austenite phase even after short-time annealing. Easy and stable austenite can be obtained, and excellent ductility can be obtained by a short annealing treatment.
  • annealing is performed in a temperature range where the austenite phase fraction is 25% to 40%.
  • the difference between the temperature in the heat treatment before cold rolling and the temperature in the annealing after cold rolling is preferably equivalent to 15% or less, more preferably equivalent to 10% or less in terms of the difference in austenite phase fraction. Either the temperature in the heat treatment before cold rolling or the temperature in the annealing after cold rolling may be higher.
  • the austenite phase fraction in the heat treatment before cold rolling and the austenite phase in the annealing after cold rolling Since the fraction can be made closer, austenite can be generated only at the location where Mn is concentrated in the annealing after cold rolling.
  • the temperature in the heat treatment before cold rolling and the temperature in the annealing after cold rolling are substantially the maximum temperatures in the heat treatment profile.
  • the temperature is maintained at 100 ° C. to 500 ° C. for 10 seconds to 1000 seconds.
  • a temperature range of 100 ° C. or more and 500 ° C. or less martensite is generated, and the subsequent holding causes martensite self-tempering.
  • C distribution to austenite is sufficiently advanced, and austenite can be stably generated in the structure before the final heat treatment, As a result, it is possible to suppress the formation of massive austenite in the structure after the final heat treatment, and to suppress fluctuations in strength characteristics.
  • the holding time in the temperature range of 100 ° C. to 500 ° C. is 1000 seconds or less. , Preferably 300 seconds or less, more preferably 180 seconds or less.
  • the efficiency of the continuous annealing line can be improved by setting the holding temperature to 100 ° C. or higher. On the other hand, by setting the holding temperature to 500 ° C. or lower, grain boundary segregation can be suppressed and bendability can be improved.
  • the steel plate After the cooling, it is preferable to cool the steel plate to room temperature.
  • Skin pass rolling with a rolling reduction of 5.0% or more is performed on the annealed steel sheet.
  • skin pass rolling with a rolling reduction of 5.0% or more is performed on the steel plate after plating.
  • the rolling reduction is 5.0% or more.
  • the elongation and yield points are slightly lower than “B” shown as a reference, as shown by “A” in FIG. It is possible to obtain a steel sheet that exhibits a stress-strain curve with high strength and low yield elongation.
  • a steel plate having this characteristic has a large initial absorption energy at the time of collision and can absorb more energy.
  • the average dislocation density of the ferrite phase can be made 4.0 ⁇ 10 12 / m 2 or more.
  • the average dislocation density is the total dislocation density of fixed dislocations and movable dislocations in the ferrite phase (all ferrite phases including non-recrystallized ferrite phases).
  • the elongation and yield point are slightly lower than “B” as shown in FIG. 1, but high tensile strength is maintained.
  • a steel sheet exhibiting a stress-strain curve with a low yield point elongation can be obtained.
  • a steel plate having such characteristics has a large initial absorption energy and absorbs more energy because it can suppress the localization of deformation at the time of collision while keeping the yield point (YP) at a high level. Can do.
  • the reduction rate of skin pass rolling is set to 10.0% or less. Thereby, sufficient moldability can be secured.
  • the average dislocation density of the ferrite phase can be made 5 ⁇ 10 13 / m 2 or less.
  • the average dislocation density of the ferrite phase can be measured by conventional measurement using a TEM (transmission electron microscope).
  • the cooling after the annealing may be performed to room temperature as it is when the steel plate is not plated. Moreover, when plating on a steel plate, it can manufacture as follows.
  • the cooling after the annealing is stopped in a temperature range of 430 to 500 ° C., and then the cold rolled steel sheet is immersed in a hot dip galvanizing bath. Then, hot dip galvanizing is performed.
  • the conditions for the plating bath may be within the normal range. What is necessary is just to cool to room temperature after a plating process.
  • an alloyed hot dip galvanized steel sheet by subjecting the surface of the steel sheet to galvannealed steel sheet, after the hot dip galvanizing treatment is performed on the steel sheet, before the steel sheet is cooled to room temperature, the temperature is changed to 450 to 620 ° C.
  • An alloying treatment of hot dip galvanizing is performed at a temperature.
  • the alloying treatment conditions may be within a normal range.
  • the steel plate according to this embodiment can be obtained.
  • the steel sheet of the present disclosure will be described more specifically with reference to an example.
  • the following examples are examples of the steel sheet of the present disclosure and the manufacturing method thereof, and the steel sheet of the present disclosure and the manufacturing method thereof are not limited to the following examples.
  • the obtained slab was hot-rolled at a finishing temperature and a winding temperature shown in Table 2 to produce a 2.6 mm thick hot-rolled steel sheet.
  • the obtained hot-rolled steel sheet is subjected to a heat treatment at a temperature and a holding time at an austenite phase fraction shown in Table 2, then pickled, and further subjected to cold rolling at a cold rolling rate shown in Table 2, A cold rolled steel sheet having a thickness of 1.2 mm was made.
  • the heat treatment of the hot-rolled steel sheet was performed in a reducing atmosphere of 98% nitrogen and 2% hydrogen.
  • the alphabetical characters in the “Steel” column shown in Tables 2 to 7 below correspond to the steel type symbols shown in the “Steel” column of Table 1, respectively.
  • the obtained cold-rolled steel sheet was annealed at a temperature and holding time at which the austenite phase fraction shown in Table 2 was obtained.
  • the cold rolled steel sheet was annealed in a reducing atmosphere of 98% nitrogen and 2% hydrogen.
  • the heat treatment temperature of the hot-rolled steel sheet and the annealing temperature of the cold-rolled steel sheet were a temperature difference corresponding to the austenite phase fraction shown in Table 2.
  • the steel sheet After holding the annealing temperature, the steel sheet was cooled under the conditions of average cooling rate, cooling stop temperature, and holding time shown in Table 2.
  • the example which does not describe the numerical values of the cooling stop temperature and the holding time means an example of cooling after annealing, cooling is not performed in the temperature range of 100 ° C. or higher and 500 ° C. or lower, and is cooled to room temperature as it is after annealing. To do.
  • annealed cold-rolled steel sheets after annealing, cooling after annealing was stopped at 400 ° C., and the cold-rolled steel sheets were immersed in a 400 ° C. hot-dip galvanizing bath for 2 seconds to perform hot dip galvanizing treatment Went.
  • the conditions of the plating bath are the same as the conventional one.
  • the sample was cooled to room temperature at an average cooling rate of 10 ° C./second after maintaining at 400 ° C.
  • Some of the annealed cold-rolled steel sheets were hot-dip galvanized and then subjected to alloying without cooling to room temperature.
  • the mixture was heated to 500 ° C., held at 500 ° C. for 5 seconds to perform alloying treatment, and then cooled to room temperature at an average cooling rate of 10 ° C./second.
  • the annealed cold-rolled steel sheet thus obtained was subjected to skin pass rolling with a rolling reduction of 6.0% to produce a steel sheet.
  • the area ratio of the austenite phase was measured using backscattered electron diffraction (EBSP: Electron Back Scattering pattern).
  • EBSP Electron Back Scattering pattern
  • the L cross-section obtained by cutting the steel plate in parallel with the plate thickness direction and the rolling direction was subjected to mirror polishing by diamond buffing and alumina polishing, and then the microstructure was revealed with 3% nital, and 100 ⁇ m at 1/8 position from the surface.
  • the x100 ⁇ m range was measured with 8 visual fields at a pitch of 0.1 ⁇ m, and the measured values were averaged.
  • the area ratios of the ferrite phase, the tempered martensite phase, and the martensite phase were calculated from structural observation with a scanning electron microscope (SEM). About the microstructure which carried out the said mirror surface polishing and the nital processing, the range of 0.2 mm x 0.3 mm in the 1/8 position from the surface of the center of the width direction of a steel plate with a scanning electron microscope of 5000 times is carried out at intervals of 0.5 mm. Two visual fields were observed. The area ratio was calculated by measuring 400 to 500 points using the JIS-G0555 point calculation method.
  • the ferrite phase (including non-recrystallized ferrite) was identified as a gray background structure, and martensite was identified as a white structure. Tempered martensite appears white like martensite, but the one in which the substructure was confirmed in the crystal grains was judged to be tempered martensite.
  • the area ratio of non-recrystallized ferrite is determined as follows. 100 to 150 ferrite phase grains are discriminated, and EBSP measurement is performed on the discriminated crystal grains to calculate the KAM value of each crystal grain. And a region of 1 ° or more was calculated as an unrecrystallized ferrite structure.
  • CMn ⁇ / CMn ⁇ was measured by EBSP, SEM, and electron beam microanalyzer (EMPA).
  • EMPA electron beam microanalyzer
  • 10 points each of austenite phase and ferrite phase were selected using EBSP and SEM, and the average values of 10 points were measured as CMn ⁇ and CMn ⁇ , respectively, using EMPA with an acceleration voltage of 15 kV.
  • CMn ⁇ / CMn ⁇ was calculated.
  • the yield point (YP) and the yield elongation (YP-El) were measured by the methods specified in JIS-Z2241.
  • the yield point means a falling yield point when there is a yield phenomenon, and 0.2% proof stress when there is no yield phenomenon.
  • a JIS No. 5 tensile test piece was taken from the direction perpendicular to the rolling direction of the steel sheet, the tensile strength (TS) and the elongation (El) were measured, and TS ⁇ uEL was calculated.
  • the tensile test was performed by the method prescribed
  • the elongation was measured by a method defined in JIS Z2241: 2011 using a JIS No. 5 test piece having a parallel part length of 60 mm and a standard distance of 50 mm as a reference for measuring strain. Uniform elongation is the elongation (strain measured between gauge points) obtained until the maximum test strength (TS) is reached.
  • the measurement of local elongation was calculated by subtracting the value of elongation at the maximum load point (uniform elongation) from the value of elongation (total elongation) when the fractured specimens were butted.
  • Table 5 shows the evaluation results for the steel plates produced under the conditions shown in Table 2.
  • Table 6 shows the evaluation results for the steel sheets produced under the conditions shown in Table 3.
  • a steel plate (invention example) subjected to skin pass rolling at a reduction rate (SPM) of 9.0% and 12.0% is a steel plate (invention example) subjected to skin pass rolling at a reduction rate (SPM) of 6.0%.
  • SPM reduction rate
  • YP-El very low yield elongation
  • a steel plate subjected to skin pass rolling at a reduction rate (SPM) of 3.0% (comparative example) is yielded compared with a steel plate subjected to skin pass rolling at a reduction rate (SPM) of 6.0% (invention example).
  • the point (YP) and yield ratio (YR) were low, indicating a large yield elongation (YP-El).
  • Table 7 shows the evaluation results for the steel sheets produced under the conditions shown in Table 4.

Abstract

Provided is a steel sheet that has excellent production properties, a high yield point, excellent elongation characteristics, a small yield elongation, high strength, and a high concentration of Mn. The steel sheet contains, in mass%, more than 0.10% and less than 0.55% of C, 0.001% or more and less than 3.50% of Si, more than 4.00% and less than 9.00% of Mn, and 0.001% or more and less than 3.00% of soluble Al. The steel sheet is characterized in that the metal composition at a position at 1/8th of the thickness from the surface in an L cross-section contains, by area ratio, 10% or more of an austenite phase and 10% or more of a ferrite phase, the area ratio of unrecrystallized ferrite within the ferrite phase is 30-70%, the ratio CMnγ/CMnα of the average Mn concentration CMnγ in the austentite phase and the average Mn concentration CMnα in the ferrite phase is 1.2 or more, and the average dislocation density of the ferrite phase is 4×1012/m2 or more.

Description

鋼板及び鋼板の製造方法Steel plate and method for manufacturing steel plate
 本開示は、含有Mn濃度の高い鋼板及びその製造方法に関係する。 The present disclosure relates to a steel sheet having a high content of Mn and a manufacturing method thereof.
 自動車の車体及び部品等の、軽量化と衝突安全性との両方を達成するために、これらの素材である鋼板の高強度化が進められている。一般に、鋼板を高強度化すると、伸びが低下し、鋼板の成形性が損なわれる。したがって、自動車用の部材として高強度鋼板を使用するためには、相反する特性である強度と成形性との両方を高める必要がある。 In order to achieve both weight reduction and collision safety of automobile bodies and parts, etc., the strength of steel plates, which are these materials, is being increased. In general, when the strength of a steel plate is increased, the elongation is reduced and the formability of the steel plate is impaired. Therefore, in order to use a high-strength steel sheet as a member for automobiles, it is necessary to increase both strength and formability, which are contradictory properties.
 伸びを向上させるために、これまでに、残留オーステナイト(残留γ)の変態誘起塑性を利用した、いわゆるTRIP(Transformation Induced Plasticity)鋼が提案されている(例えば、特許文献1)。 In order to improve elongation, so-called TRIP (Transformation Induced Plasticity) steel using transformation-induced plasticity of retained austenite (residual γ) has been proposed so far (for example, Patent Document 1).
 残留オーステナイトは、Cをオーステナイト中に濃化させることによって、オーステナイトが室温でも他の組織に変態しないようにすることによって得られる。オーステナイトを安定化させる技術として、Si及びAl等の炭化物析出抑制元素を鋼板に含有させて、鋼板の製造段階において鋼板に生じるベイナイト変態の間にオーステナイト中にCを濃化させることが提案されている。この技術では、鋼板に含有させるC含有量が多ければ、オーステナイトがさらに安定化し、残留オーステナイト量を増やすことができ、その結果、強度と伸び特性に優れた鋼板を造ることができる。しかしながら、鋼板が構造部材に使用される場合、鋼板に溶接が行われることが多いが、鋼板中のC含有量が多いと溶接性が悪くなるため、構造部材として使用することに制限がかかる。したがって、より少ないC含有量で、鋼板の成形性と強度との両方を向上することが望まれている。 Residual austenite is obtained by concentrating C in austenite so that austenite does not transform into another structure even at room temperature. As a technique for stabilizing austenite, it has been proposed to contain carbide precipitation-inhibiting elements such as Si and Al in the steel sheet, and to enrich C in the austenite during the bainite transformation that occurs in the steel sheet during the manufacturing stage of the steel sheet. Yes. In this technique, if the C content contained in the steel plate is large, austenite can be further stabilized and the amount of retained austenite can be increased. As a result, a steel plate having excellent strength and elongation properties can be produced. However, when a steel plate is used for a structural member, welding is often performed on the steel plate. However, if the C content in the steel plate is large, the weldability is deteriorated, so that use as a structural member is limited. Therefore, it is desired to improve both the formability and strength of the steel sheet with a smaller C content.
 また、残留オーステナイト量が上記TRIP鋼よりも多く、延性が上記TRIP鋼を超える鋼板として、3.5%以上のMnを添加した鋼(特許文献2)や、4.0%超のMnを添加した鋼(非特許文献1)が提案されている。上記鋼は多量のMnを含有するので、その使用部材に対する軽量化効果も顕著である。しかしながら、伸び特性を高め、衝突特性に最も影響する降伏点を向上しつつ、降伏伸び(YP-El)を抑制する要件は明らかでなかった。 Further, as a steel sheet having a retained austenite amount larger than that of the TRIP steel and having a ductility exceeding that of the TRIP steel, steel added with 3.5% or more of Mn (Patent Document 2), or addition of Mn exceeding 4.0% Steel (Non-patent Document 1) has been proposed. Since the steel contains a large amount of Mn, the effect of reducing the weight of the member used is also remarkable. However, the requirement for suppressing the yield elongation (YP-El) was not clear while enhancing the elongation characteristics and improving the yield point that most affected the impact characteristics.
特開平5-59429号公報Japanese Patent Laid-Open No. 5-59429 特開2013-76162号公報JP 2013-76162 A
 したがって、高降伏点、優れた伸び特性、小さい降伏伸び、及び高強度を有する含有Mn濃度の高い鋼板が望まれている。 Therefore, a steel sheet with a high Mn concentration having a high yield point, excellent elongation characteristics, small yield elongation, and high strength is desired.
 含有Mn濃度の高い鋼板において、高降伏点、優れた伸び特性、小さい降伏伸び、及び高強度を確保するために、本発明者らは、鋼板中に、面積率で、オーステナイト相を10%以上及びフェライト相を10%以上含ませ、フェライト相の内、未再結晶フェライトの面積率を30%以上、70%以下とし、オーステナイト相における平均Mn濃度CMnγとフェライト相における平均Mn濃度CMnαとの比であるCMnγ/CMnαを1.2以上にし、フェライト相の平均転位密度を4.0×1012/m2以上にすることが有効であると知見した。 In order to ensure a high yield point, excellent elongation characteristics, small yield elongation, and high strength in a steel sheet having a high Mn concentration, the inventors have made the austenite phase 10% or more in the steel sheet by area ratio. 10% or more of the ferrite phase, and the area ratio of non-recrystallized ferrite in the ferrite phase is 30% or more and 70% or less, and the ratio between the average Mn concentration CMnγ in the austenite phase and the average Mn concentration CMnα in the ferrite phase It was found that it is effective to set CMnγ / CMnα of 1.2 or more and the average dislocation density of the ferrite phase to 4.0 × 10 12 / m 2 or more.
 本開示の鋼板及びその製造方法は上記知見に基づいてなされたものであり、その要旨は以下のとおりである。 The steel sheet and its manufacturing method of the present disclosure have been made on the basis of the above knowledge, and the gist thereof is as follows.
 本開示の要旨は、以下のとおりである。
 (1)質量%で、
 C:0.10%超0.55%未満、
 Si:0.001%以上3.50%未満、
 Mn:4.00%超9.00%未満、
 sol.Al:0.001%以上3.00%未満、
 P:0.100%以下、
 S:0.010%以下、
 N:0.050%未満、
 O:0.020%未満、
 Cr:0%以上2.00%未満、
 Mo:0%以上2.00%以下、
 W:0%以上2.00%以下、
 Cu:0%以上2.00%以下、
 Ni:0%以上2.00%以下、
 Ti:0%以上0.300%以下、
 Nb:0%以上0.300%以下、
 V:0%以上0.300%以下、
 B:0%以上0.010%以下、
 Ca:0%以上0.010%以下、
 Mg:0%以上0.010%以下、
 Zr:0%以上0.010%以下、
 REM:0%以上0.010%以下、
 Sb:0%以上0.050%以下、
 Sn:0%以上0.050%以下、及び
 Bi:0%以上0.050%以下
 を含有し、残部が鉄および不純物からなり、
 L断面において、表面から厚みの1/8位置における金属組織が、面積率で、10%以上のオーステナイト相及び10%以上のフェライト相を含有し、
 前記フェライト相の内、未再結晶フェライトの面積率が30%以上、70%以下であり、
 前記オーステナイト相における平均Mn濃度CMnγと前記フェライト相における平均Mn濃度CMnαとの比であるCMnγ/CMnαが1.2以上であり、
 前記フェライト相の平均転位密度が4×1012/m2以上である
 ことを特徴とする鋼板。
 (2)質量%で、
 Cr:0.01%以上2.00%未満、
 Mo:0.01%以上2.00%以下、
 W:0.01%以上2.00%以下、
 Cu:0.01%以上2.00%以下、及び
 Ni:0.01%以上2.00%以下
 からなる群から選択される1種又は2種以上を含有することを特徴とする、上記(1)に記載の鋼板。
 (3)質量%で、
 Ti:0.005%以上0.300%以下、
 Nb:0.005%以上0.300%以下、及び
 V:0.005%以上0.300%以下
 からなる群から選択される1種又は2種以上を含有することを特徴とする、上記(1)または(2)に記載の鋼板。
 (4)質量%で、
 B:0.0001%以上0.010%以下、
 Ca:0.0001%以上0.010%以下、
 Mg:0.0001%以上0.010%以下、
 Zr:0.0001%以上0.010%以下、及び
 REM:0.0001%以上0.010%以下
 からなる群から選択される1種又は2種以上を含有することを特徴とする、上記(1)~(3)のいずれかに記載の鋼板。
 (5)質量%で、
 Sb:0.0005%以上0.050%以下、
 Sn:0.0005%以上0.050%以下、及び
 Bi:0.0005%以上0.050%以下
 からなる群から選択される1種又は2種以上を含有することを特徴とする、上記(1)~(4)のいずれかに記載の鋼板。
 (6)前記金属組織が、面積率で、5%以上の焼き戻しマルテンサイト相をさらに含有し、マルテンサイト相は15%未満に制限される、上記(1)~(5)のいずれかに記載の鋼板。
 (7)前記鋼板の表面に溶融亜鉛めっき層を有することを特徴とする、上記(1)~(6)のいずれかに記載の鋼板。
 (8)前記鋼板の表面に合金化溶融亜鉛めっき層を有することを特徴とする、上記(1)~(6)のいずれかに記載の鋼板。
 (9)上記(1)~(5)のいずれかに記載の成分を有する鋼に熱間圧延を施して熱延鋼板とすること、
 前記熱延鋼板に、オーステナイト相分率が20%~50%となる温度域にて1時間以上の熱処理を行い、その後、酸洗及び冷間圧延を施して冷延鋼板とすること、
 前記冷間圧延における冷間圧延率を30%以上70%以下とすること、
 前記冷延鋼板を、オーステナイト相分率が20%~50%となる温度域にて、30秒間以上15分間未満保持して焼鈍すること、及び
 前記焼鈍後に、圧下率が5.0%以上のスキンパス圧延を施すこと、並びに
 前記焼鈍の温度保持後に、平均冷却速度2℃/秒以上2000℃/秒以下で冷却し、100℃以上500℃以下の温度域で10秒間以上1000秒間以下保持すること
 を特徴とする鋼板の製造方法。
 (10)前記熱処理の温度と前記焼鈍の温度との差が、オーステナイト相分率の差に換算して15%以下相当であることを特徴とする、上記(9)に記載の鋼板の製造方法。
 (11)前記熱間圧延が、750℃以上1000℃以下の温度での仕上圧延、及び300℃未満の温度での巻取りを含む、上記(9)または(10)に記載の鋼板の製造方法。
 (12)前記焼鈍後に、溶融亜鉛めっき処理を施し、次いで前記スキンパス圧延を行うことを特徴とする、上記(9)~(11)のいずれかに記載の鋼板の製造方法。
 (13)前記溶融亜鉛めっき処理を施した後、450℃以上620℃以下の温度域で前記溶融亜鉛めっきの合金化処理を施し、次いで前記スキンパス圧延を行うことを特徴とする、上記(12)に記載の鋼板の製造方法。
The gist of the present disclosure is as follows.
(1) In mass%,
C: more than 0.10% and less than 0.55%,
Si: 0.001% or more and less than 3.50%,
Mn: more than 4.00% and less than 9.00%,
sol. Al: 0.001% or more and less than 3.00%,
P: 0.100% or less,
S: 0.010% or less,
N: less than 0.050%,
O: less than 0.020%,
Cr: 0% or more and less than 2.00%,
Mo: 0% or more and 2.00% or less,
W: 0% to 2.00%,
Cu: 0% or more and 2.00% or less,
Ni: 0% or more and 2.00% or less,
Ti: 0% or more and 0.300% or less,
Nb: 0% or more and 0.300% or less,
V: 0% or more and 0.300% or less,
B: 0% or more and 0.010% or less,
Ca: 0% or more and 0.010% or less,
Mg: 0% or more and 0.010% or less,
Zr: 0% or more and 0.010% or less,
REM: 0% or more and 0.010% or less,
Sb: 0% or more and 0.050% or less,
Sn: 0% or more and 0.050% or less and Bi: 0% or more and 0.050% or less, with the balance being iron and impurities,
In the L cross section, the metal structure at 1/8 position of the thickness from the surface contains an austenite phase of 10% or more and a ferrite phase of 10% or more in area ratio,
Among the ferrite phases, the area ratio of non-recrystallized ferrite is 30% or more and 70% or less,
CMnγ / CMnα, which is the ratio of the average Mn concentration CMnγ in the austenite phase and the average Mn concentration CMnα in the ferrite phase, is 1.2 or more,
The average dislocation density of the ferrite phase is 4 × 10 12 / m 2 or more.
(2) In mass%,
Cr: 0.01% or more and less than 2.00%,
Mo: 0.01% or more and 2.00% or less,
W: 0.01% or more and 2.00% or less,
Cu: 0.01% or more and 2.00% or less, and Ni: 0.01% or more and 2.00% or less, containing one or more selected from the group consisting of: The steel plate as described in 1).
(3) In mass%,
Ti: 0.005% or more and 0.300% or less,
Nb: 0.005% or more and 0.300% or less, and V: 0.005% or more and 0.300% or less, containing one or more selected from the group consisting of The steel plate according to 1) or (2).
(4) In mass%,
B: 0.0001% or more and 0.010% or less,
Ca: 0.0001% or more and 0.010% or less,
Mg: 0.0001% or more and 0.010% or less,
Zr: 0.0001% or more and 0.010% or less, and REM: 0.0001% or more and 0.010% or less, comprising one or more selected from the group consisting of The steel sheet according to any one of 1) to (3).
(5) In mass%,
Sb: 0.0005% or more and 0.050% or less,
Sn: 0.0005% or more and 0.050% or less, and Bi: 0.0005% or more and 0.050% or less, containing one or more selected from the group consisting of: The steel plate according to any one of 1) to (4).
(6) The metal structure further includes a tempered martensite phase of 5% or more by area ratio, and the martensite phase is limited to less than 15%, according to any one of the above (1) to (5) The described steel sheet.
(7) The steel sheet according to any one of (1) to (6) above, wherein a hot-dip galvanized layer is provided on the surface of the steel sheet.
(8) The steel sheet according to any one of (1) to (6) above, which has an alloyed hot-dip galvanized layer on the surface of the steel sheet.
(9) Hot rolling the steel having the component according to any one of (1) to (5) above to obtain a hot rolled steel sheet,
The hot-rolled steel sheet is subjected to heat treatment for 1 hour or more in a temperature range where the austenite phase fraction is 20% to 50%, and then subjected to pickling and cold rolling to form a cold-rolled steel sheet,
The cold rolling rate in the cold rolling is 30% or more and 70% or less,
Annealing the cold-rolled steel sheet in a temperature range where the austenite phase fraction is 20% to 50% and holding for 30 seconds to less than 15 minutes; and after the annealing, the rolling reduction is 5.0% or more Applying skin pass rolling, and maintaining the annealing temperature, cooling at an average cooling rate of 2 ° C./second to 2000 ° C./second and holding at a temperature range of 100 ° C. to 500 ° C. for 10 seconds to 1000 seconds. A method for producing a steel sheet characterized by the above.
(10) The method for producing a steel sheet according to (9) above, wherein the difference between the heat treatment temperature and the annealing temperature is equivalent to 15% or less in terms of a difference in austenite phase fraction. .
(11) The method for producing a steel sheet according to (9) or (10), wherein the hot rolling includes finish rolling at a temperature of 750 ° C. or more and 1000 ° C. or less and winding at a temperature of less than 300 ° C. .
(12) The method for producing a steel sheet according to any one of (9) to (11) above, wherein after the annealing, a hot dip galvanizing treatment is performed, and then the skin pass rolling is performed.
(13) The above (12), wherein after the hot dip galvanizing treatment is performed, the hot dip galvanizing is alloyed in a temperature range of 450 ° C. or higher and 620 ° C. or lower, and then the skin pass rolling is performed. The manufacturing method of the steel plate as described in 2.
 本開示によれば、高降伏点、優れた伸び特性、小さい降伏伸び、及び高強度を有する含有Mn濃度の高い鋼板を提供することができる。 According to the present disclosure, it is possible to provide a steel sheet having a high content Mn concentration and having a high yield point, excellent elongation characteristics, small yield elongation, and high strength.
図1は、鋼板の応力-ひずみ曲線である。FIG. 1 is a stress-strain curve of a steel plate. 図2は、フェライト単相域及びフェライト/オーステナイト二相域で熱処理した鋼板のMnの分配状態を表すマッピング結果である。FIG. 2 is a mapping result showing a distribution state of Mn in a steel sheet heat-treated in a ferrite single-phase region and a ferrite / austenite two-phase region.
 以下、本開示の鋼板の一実施形態の例を説明する。 Hereinafter, an example of an embodiment of the steel sheet of the present disclosure will be described.
 1.化学組成
 本開示の鋼板の化学組成を上述のように規定した理由を説明する。以下の説明において、各元素の含有量を表す「%」は特に断りがない限り質量%を意味する。
1. Chemical Composition The reason why the chemical composition of the steel sheet of the present disclosure is specified as described above will be described. In the following description, “%” representing the content of each element means mass% unless otherwise specified.
 (C:0.10%超0.55%未満)
 Cは、鋼の強度を高め、オーステナイトを確保するために、極めて重要な元素である。十分なオーステナイト量を得るためには、0.10%超のC含有量が必要となる。一方、Cを過剰に含有すると鋼板の溶接性を損なうので、C含有量の上限を0.55%未満とした。
(C: more than 0.10% and less than 0.55%)
C is an extremely important element for increasing the strength of steel and securing austenite. In order to obtain a sufficient amount of austenite, a C content of more than 0.10% is required. On the other hand, if C is contained excessively, the weldability of the steel sheet is impaired, so the upper limit of the C content is less than 0.55%.
 C含有量の下限値は、好ましくは0.15%以上、より好ましくは0.20%以上である。C含有量の下限値を0.15%以上とすると、金属組織がマルテンサイト及び焼き戻しマルテンサイトを含む場合にマルテンサイト及び焼き戻しマルテンサイトの強度を効果的に高めることができる。C含有量の上限値は、好ましくは0.40%以下、より好ましくは0.35%以下であり、C含有量の上限値を上記範囲にすることによって、鋼板の靭性をより高めることができる。 The lower limit of the C content is preferably 0.15% or more, more preferably 0.20% or more. When the lower limit of the C content is 0.15% or more, the strength of martensite and tempered martensite can be effectively increased when the metal structure includes martensite and tempered martensite. The upper limit value of the C content is preferably 0.40% or less, more preferably 0.35% or less. By setting the upper limit value of the C content within the above range, the toughness of the steel sheet can be further increased. .
 (Si:0.001%以上3.50%未満)
 Siは、セメンタイトの析出を抑制し、オーステナイトの残留を促進する作用を有する。また、Siは、金属組織が焼き戻しマルテンサイトを含む場合に焼き戻しマルテンサイトを強化し、組織を均一化し、加工性を改善するのに有効な元素である。上記効果を得るために、0.001%以上のSi含有量が必要となる。一方、Siを過剰に含有すると鋼板のめっき性や化成処理性を損なうので、Si含有量の上限値を3.50%未満とする。
(Si: 0.001% or more and less than 3.50%)
Si has the effect of suppressing the precipitation of cementite and promoting the austenite residue. Si is an element effective for strengthening tempered martensite when the metal structure contains tempered martensite, homogenizing the structure, and improving workability. In order to acquire the said effect, 0.001% or more of Si content is required. On the other hand, if Si is contained excessively, the plating properties and chemical conversion properties of the steel sheet are impaired, so the upper limit of the Si content is set to less than 3.50%.
 Si含有量の下限値は、好ましくは0.005%以上、より好ましくは0.010%以上である。Si含有量の下限値を上記範囲にすることによって、鋼板の伸び特性をさらに向上することができる。Si含有量の上限値は、好ましくは2.00%以下、より好ましくは1.00%以下である。 The lower limit of the Si content is preferably 0.005% or more, more preferably 0.010% or more. By setting the lower limit of the Si content in the above range, the elongation characteristics of the steel sheet can be further improved. The upper limit of the Si content is preferably 2.00% or less, more preferably 1.00% or less.
 (Mn:4.00%超9.00%未満)
 Mnは、オーステナイトを安定化させ、焼入れ性を高める元素である。また、本開示の鋼板においては、Mnをオーステナイト中に濃化させ、オーステナイトをより安定化させる。室温でオーステナイトを安定化させるためには、4.00%超のMnが必要である。一方、鋼板がMnを過剰に含有すると溶接性、穴広げ性及び延性を損なうので、Mn含有量の上限を9.00%未満とした。
(Mn: more than 4.00% and less than 9.00%)
Mn is an element that stabilizes austenite and improves hardenability. Moreover, in the steel plate of this indication, Mn is concentrated in austenite and austenite is stabilized more. In order to stabilize austenite at room temperature, more than 4.00% Mn is required. On the other hand, if the steel sheet contains Mn excessively, the weldability, hole expandability and ductility are impaired, so the upper limit of the Mn content is set to less than 9.00%.
 Mn含有量の下限値は、好ましくは4.20%超、より好ましくは4.50%以上、さらに好ましくは4.80%以上である。Mn含有量の上限値は、好ましくは8.50%以下、より好ましくは8.00%以下である。Mn含有量の下限値を上記範囲にすることで、安定なオーステナイト相の分率を増やすことができ、Mn含有量の上限値を上記範囲にすることで、靱性劣化をより抑制することができる。 The lower limit of the Mn content is preferably more than 4.20%, more preferably 4.50% or more, and further preferably 4.80% or more. The upper limit of the Mn content is preferably 8.50% or less, more preferably 8.00% or less. By making the lower limit value of Mn content in the above range, the fraction of stable austenite phase can be increased, and by making the upper limit value of Mn content in the above range, deterioration of toughness can be further suppressed. .
 (sol.Al:0.001%以上3.00%未満)
 Alは、脱酸剤であり、0.001%以上含有させる必要がある。また、Alは、焼鈍時の二相温度域を広げるため、材質安定性を高める作用も有する。Alの含有量が多いほどその効果は大きくなるが、Alを過剰に含有させると、表面性状、塗装性、及び溶接性などの劣化を招くので、sol.Alの上限を3.00%未満とした。
(Sol.Al: 0.001% or more and less than 3.00%)
Al is a deoxidizer and should be contained by 0.001% or more. In addition, Al has an effect of improving material stability in order to widen the two-phase temperature range during annealing. The effect increases as the Al content increases. However, excessive addition of Al leads to deterioration of surface properties, paintability, weldability, and the like. The upper limit of Al was made less than 3.00%.
 sol.Al含有量の下限値は、好ましくは0.005%以上、より好ましくは0.01%以上、さらに好ましくは0.02%以上である。sol.Al含有量の上限値は、好ましくは2.00%以下、より好ましくは1.00%以下である。sol.Al含有量の下限値及び上限値を上記範囲にすることによって、脱酸効果及び材質安定向上効果と、表面性状、塗装性、及び溶接性とのバランスがより良好になる。本明細書にいう「sol.Al」は、「酸可溶性Al」を意味する。 Sol. The lower limit of the Al content is preferably 0.005% or more, more preferably 0.01% or more, and further preferably 0.02% or more. sol. The upper limit of the Al content is preferably 2.00% or less, more preferably 1.00% or less. sol. By making the lower limit value and the upper limit value of the Al content within the above ranges, the balance between the deoxidation effect and the material stability improvement effect, the surface properties, the paintability, and the weldability becomes better. As used herein, “sol.Al” means “acid-soluble Al”.
 (P:0.100%以下)
 Pは不純物であり、鋼板がPを過剰に含有すると靭性や溶接性を損なう。したがって、P含有量の上限を0.100%以下とする。P含有量の上限値は、好ましくは0.050%以下、より好ましくは0.030%以下、さらに好ましくは0.020%以下である。本実施形態に係る鋼板はPを必要としないので、Pを実質的に含有しなくてもよく、P含有量の下限値は0%である。P含有量の下限値は0%超または0.001%以上でもよいが、P含有量は少ないほど好ましい。
(P: 0.100% or less)
P is an impurity, and if the steel sheet contains P excessively, the toughness and weldability are impaired. Therefore, the upper limit of the P content is 0.100% or less. The upper limit of the P content is preferably 0.050% or less, more preferably 0.030% or less, and still more preferably 0.020% or less. Since the steel plate according to this embodiment does not require P, P may not be substantially contained, and the lower limit value of the P content is 0%. The lower limit of the P content may be more than 0% or 0.001% or more, but the lower the P content, the better.
 (S:0.010%以下)
 Sは不純物であり、鋼板がSを過剰に含有すると、熱間圧延によって伸張したMnSが生成し、曲げ性及び穴広げ性などの成形性の劣化を招く。したがって、S含有量の上限を0.010%以下とする。S含有量の上限値は、好ましくは0.007%以下、より好ましくは0.003%以下である。本実施形態に係る鋼板はSを必要としないので、Sを実質的に含有しなくてもよく、S含有量の下限値は0%である。S含有量の下限値を0%超または0.001%以上としてもよいが、S含有量は少ないほど好ましい。
(S: 0.010% or less)
S is an impurity, and if the steel sheet contains excessive S, MnS stretched by hot rolling is generated, which causes deterioration of formability such as bendability and hole expansibility. Therefore, the upper limit of the S content is 0.010% or less. The upper limit of the S content is preferably 0.007% or less, more preferably 0.003% or less. Since the steel plate according to the present embodiment does not require S, S may not be substantially contained, and the lower limit value of the S content is 0%. The lower limit of the S content may be more than 0% or 0.001% or more, but the lower the S content, the better.
 (N:0.050%未満)
 Nは不純物であり、鋼板が0.050%以上のNを含有すると靭性の劣化を招く。したがって、N含有量の上限を0.050%未満とする。N含有量の上限値は、好ましくは0.010%以下、より好ましくは0.006%以下である。本実施形態に係る鋼板はNを必要としないので、Nを実質的に含有しなくてもよく、N含有量の下限値は0%である。N含有量の下限値を0%超または0.005%以上としてもよいが、N含有量は少ないほど好ましい。
(N: less than 0.050%)
N is an impurity, and if the steel sheet contains 0.050% or more of N, the toughness is deteriorated. Therefore, the upper limit of the N content is less than 0.050%. The upper limit of the N content is preferably 0.010% or less, more preferably 0.006% or less. Since the steel plate according to the present embodiment does not require N, N may not be substantially contained, and the lower limit value of the N content is 0%. The lower limit of the N content may be more than 0% or 0.005% or more, but the lower the N content, the better.
 (O:0.020%未満)
 Oは不純物であり、鋼板が0.020%以上のOを含有すると延性の劣化を招く。したがって、O含有量の上限を0.020%未満とする。O含有量の上限値は、好ましくは0.010%以下、より好ましくは0.005%以下、さらに好ましくは0.003%以下である。本実施形態に係る鋼板はOを必要としないので、Oを実質的に含有しなくてもよく、O含有量の下限値は0%である。O含有量の下限値を0%超または0.001%以上としてもよいが、O含有量は少ないほど好ましい。
(O: less than 0.020%)
O is an impurity, and if the steel sheet contains 0.020% or more of O, ductility is deteriorated. Therefore, the upper limit of the O content is less than 0.020%. The upper limit of the O content is preferably 0.010% or less, more preferably 0.005% or less, and still more preferably 0.003% or less. Since the steel plate according to the present embodiment does not require O, it may not substantially contain O, and the lower limit value of the O content is 0%. The lower limit of the O content may be more than 0% or 0.001% or more, but the lower the O content, the better.
 本実施形態の鋼板は、更に、Cr、Mo、W、Cu、Ni、Ti、Nb、V、B、Ca、Mg、Zr、REM、Sb、Sn及びBiからなる群から選択される1種又は2種以上を含有してもよい。しかしながら、本実施形態に係る鋼板は、Cr、Mo、W、Cu、Ni、Ti、Nb、V、B、Ca、Mg、Zr、REM、Sb、Sn及びBiを含有しなくてもよい、すなわち含有量の下限値は0%であってもよい。 The steel plate of the present embodiment is further selected from the group consisting of Cr, Mo, W, Cu, Ni, Ti, Nb, V, B, Ca, Mg, Zr, REM, Sb, Sn, and Bi, or You may contain 2 or more types. However, the steel sheet according to the present embodiment may not contain Cr, Mo, W, Cu, Ni, Ti, Nb, V, B, Ca, Mg, Zr, REM, Sb, Sn, and Bi. The lower limit of the content may be 0%.
 (Cr:0%以上2.00%未満)
 (Mo:0%以上2.00%以下)
 (W:0%以上2.00%以下)
 (Cu:0%以上2.00%以下)
 (Ni:0%以上2.00%以下)
 Cr、Mo、W、Cu、及びNiはそれぞれ、本実施形態に係る鋼板に必須の元素ではないので含有されなくてもよく、それぞれの含有量は0%以上である。しかしながら、Cr、Mo、W、Cu、及びNiは、鋼板の強度を向上させる元素であるので、含有されてもよい。鋼板の強度向上効果を得るために、鋼板は、Cr、Mo、W、Cu、及びNiからなる群から選択された1種又は2種以上の元素それぞれを0.01%以上含有してもよい。しかしながら、鋼板がこれらの元素を過剰に含有させると、熱延時の表面傷が生成しやすくなり、さらには、熱延鋼板の強度が高くなりすぎて、冷間圧延性が低下する場合がある。したがって、Cr、Mo、W、Cu、及びNiからなる群から選択された1種又は2種以上の元素それぞれの含有量のうち、Crの含有量の上限値を2.00%未満とし、Mo、W、Cu、及びNiのそれぞれの含有量の上限値を2.00%以下とする。
(Cr: 0% or more and less than 2.00%)
(Mo: 0% to 2.00%)
(W: 0% to 2.00%)
(Cu: 0% to 2.00%)
(Ni: 0% to 2.00%)
Each of Cr, Mo, W, Cu, and Ni is not an essential element for the steel sheet according to the present embodiment, and thus may not be contained, and each content is 0% or more. However, since Cr, Mo, W, Cu, and Ni are elements that improve the strength of the steel sheet, they may be contained. In order to obtain the effect of improving the strength of the steel plate, the steel plate may contain 0.01% or more of each of one or more elements selected from the group consisting of Cr, Mo, W, Cu, and Ni. . However, if the steel sheet contains these elements in excess, surface flaws during hot rolling are likely to be generated, and further, the strength of the hot rolled steel sheet becomes too high and cold rolling properties may be deteriorated. Therefore, among the contents of one or more elements selected from the group consisting of Cr, Mo, W, Cu, and Ni, the upper limit value of the Cr content is less than 2.00%, and Mo , W, Cu, and Ni, the upper limit of each content shall be 2.00% or less.
 (Ti:0%以上0.300%以下)
 (Nb:0%以上0.300%以下)
 (V:0%以上0.300%以下)
 Ti、Nb、及びVは、本実施形態に係る鋼板に必須の元素ではないので含有されなくてもよく、それぞれの含有量は0%以上である。しかし、Ti、Nb、及びVは、微細な炭化物、窒化物または炭窒化物を生成する元素であるので、鋼板の強度向上に有効である。したがって、鋼板は、Ti、Nb、及びVからなる群から選択される1種または2種以上の元素を含有してもよい。鋼板の強度向上効果を得るためには、Ti、Nb、及びVからなる群から選択される1種または2種以上の元素それぞれの含有量の下限値を0.005%以上とすることが好ましい。一方で、これらの元素を過剰に含有させると、熱延鋼板の強度が上昇しすぎて、冷間圧延性が低下する場合がある。またNbについては、Nbの含有量を0.300%以下にすると、フェライト相の再結晶化の遅れを抑制することができ、所望の組織をより安定して得ることができる。したがって、Ti、Nb、及びVからなる群から選択される1種または2種以上の元素それぞれの含有量の上限値を0.300%以下とすることが好ましい。
(Ti: 0% to 0.300%)
(Nb: 0% to 0.300%)
(V: 0% to 0.300%)
Ti, Nb, and V do not have to be contained because they are not essential elements for the steel sheet according to the present embodiment, and each content is 0% or more. However, since Ti, Nb, and V are elements that generate fine carbides, nitrides, or carbonitrides, they are effective in improving the strength of the steel sheet. Therefore, the steel sheet may contain one or more elements selected from the group consisting of Ti, Nb, and V. In order to obtain the effect of improving the strength of the steel sheet, the lower limit value of the content of each of one or more elements selected from the group consisting of Ti, Nb, and V is preferably 0.005% or more. . On the other hand, when these elements are contained excessively, the strength of the hot-rolled steel sheet is excessively increased, and the cold rollability may be decreased. As for Nb, when the Nb content is 0.300% or less, a delay in recrystallization of the ferrite phase can be suppressed, and a desired structure can be obtained more stably. Therefore, it is preferable to set the upper limit of the content of each of one or more elements selected from the group consisting of Ti, Nb, and V to 0.300% or less.
 (B:0%以上0.010%以下)
 (Ca:0%以上0.010%以下)
 (Mg:0%以上0.010%以下)
 (Zr:0%以上0.010%以下)
 (REM:0%以上0.010%以下)
 B、Ca、Mg、Zr、及びREM(希土類金属)は、本開示の鋼板に必須の元素ではないので含有されなくてもよく、それぞれの含有量は0%以上である。しかしながら、B、Ca、Mg、Zr、及びREMは、鋼板の局部伸び及び穴広げ性を向上させる。この効果を得るためには、B、Ca、Mg、Zr、及びREMからなる群から選択される1種または2種以上の元素それぞれの下限値を好ましくは0.0001%以上、より好ましくは0.001%以上とする。しかし、過剰量のこれら元素は、鋼板の加工性を劣化させるので、これら元素それぞれの含有量の上限を0.010%以下とし、B、Ca、Mg、Zr、及びREMからなる群から選択される1種または2種以上の元素の含有量の合計を0.030%以下とすることが好ましい。本明細書にいうREMとは、Sc、Y、およびランタノイドの合計17元素を指し、REM含有量とは、REMが1種の場合はその含有量、2種以上の場合はそれらの合計含有量を指す。また、REMは一般的には複数種のREMの合金であるミッシュメタルとしても供給されている。このため、個別の元素を1種または2種以上添加してREM含有量が上記の範囲となるように含有させてもよいし、例えば、ミッシュメタルの形で添加して、REM含有量が上記の範囲となるように含有させてもよい。
(B: 0% to 0.010%)
(Ca: 0% or more and 0.010% or less)
(Mg: 0% to 0.010%)
(Zr: 0% to 0.010%)
(REM: 0% to 0.010%)
B, Ca, Mg, Zr, and REM (rare earth metal) may not be contained because they are not essential elements for the steel sheet of the present disclosure, and each content is 0% or more. However, B, Ca, Mg, Zr, and REM improve the local elongation and hole expandability of the steel sheet. In order to obtain this effect, the lower limit of each of one or more elements selected from the group consisting of B, Ca, Mg, Zr, and REM is preferably 0.0001% or more, more preferably 0. 0.001% or more. However, an excessive amount of these elements deteriorates the workability of the steel sheet, so the upper limit of the content of each of these elements is 0.010% or less, and is selected from the group consisting of B, Ca, Mg, Zr, and REM. The total content of one or more elements is preferably 0.030% or less. As used herein, REM refers to a total of 17 elements of Sc, Y, and lanthanoid, and the REM content refers to the content when there is one REM, and the total content when there are two or more. Point to. REM is also supplied as misch metal, which is generally an alloy of a plurality of types of REM. For this reason, one or more individual elements may be added so that the REM content falls within the above range. For example, the REM content may be added in the form of misch metal. You may make it contain so that it may become this range.
 (Sb:0%以上0.050%以下)
 (Sn:0%以上0.050%以下)
 (Bi:0%以上0.050%以下)
 Sb、Sn、及びBiは、本開示の鋼板に必須の元素ではないので含有されなくてもよく、それぞれの含有量は0%以上である。しかしながら、Sb、Sn、及びBiは、鋼板中のMn、Si、および/又はAl等の易酸化性元素が鋼板表面に拡散され酸化物を形成することを抑え、鋼板の表面性状やめっき性を高める。この効果を得るために、Sb、Sn、及びBiからなる群から選択される1種又は2種以上の元素それぞれの含有量の下限値を好ましくは0.0005%以上、より好ましくは0.001%以上とする。一方、これら元素それぞれの含有量が0.050%を超えると、その効果が飽和するので、これら元素それぞれの含有量の上限値を0.050%以下とすることが好ましい。
(Sb: 0% to 0.050%)
(Sn: 0% to 0.050%)
(Bi: 0% to 0.050%)
Sb, Sn, and Bi do not need to be contained because they are not essential elements for the steel sheet of the present disclosure, and each content is 0% or more. However, Sb, Sn, and Bi suppress oxidizable elements such as Mn, Si, and / or Al in the steel sheet from diffusing into the steel sheet surface to form oxides, and improve the surface properties and plating properties of the steel sheet. Increase. In order to obtain this effect, the lower limit of the content of each of one or more elements selected from the group consisting of Sb, Sn, and Bi is preferably 0.0005% or more, more preferably 0.001. % Or more. On the other hand, if the content of each of these elements exceeds 0.050%, the effect is saturated, so the upper limit of the content of each of these elements is preferably 0.050% or less.
 なお、残部は、鉄および不純物である。不純物としては、鋼原料もしくはスクラップから及び/又は製鋼過程から不可避的に混入するものであり、本実施形態に係る鋼板の特性を阻害しない範囲で許容される元素が例示される。 The balance is iron and impurities. Impurities are inevitably mixed from steel raw materials or scraps and / or from the steel making process, and elements allowed within a range not impairing the characteristics of the steel sheet according to the present embodiment are exemplified.
 2.金属組織
 次に、本実施形態に係る鋼板の金属組織について説明する。
2. Next, the metal structure of the steel sheet according to the present embodiment will be described.
 本実施形態に係る鋼板の表面から厚みの1/8位置(1/8t部ともいう)における金属組織は、面積率で、10%以上のオーステナイト相及び10%以上のフェライト相を含む。各組織の分率は、熱処理条件によって変化し、降伏点、強度、伸び特性などの材質に影響を与える。要求される材質は、例えば自動車用の部品により変わるため、必要に応じて熱処理条件を選択し、組織分率を制御すればよい。 The metal structure at the 1/8 position (also referred to as 1/8 t portion) of the thickness from the surface of the steel sheet according to the present embodiment includes an austenite phase of 10% or more and a ferrite phase of 10% or more in terms of area ratio. The fraction of each structure varies depending on the heat treatment conditions, and affects the material such as yield point, strength, and elongation characteristics. Since the required material varies depending on, for example, parts for automobiles, heat treatment conditions may be selected as necessary to control the tissue fraction.
 鋼板の表面から厚みの1/8位置のミクロ組織を観察して、それぞれの組織の面積率を測定することができる。L断面とは、板厚方向と圧延方向に平行に鋼板の中心軸を通るように切断した面をいう。 The area ratio of each structure can be measured by observing the microstructure at 1/8 position of the thickness from the surface of the steel sheet. The L cross section refers to a surface cut so as to pass through the central axis of the steel plate in parallel with the plate thickness direction and the rolling direction.
 (鋼板の1/8t部の金属組織中のオーステナイトの面積率:10%以上)
 本実施形態に係る鋼板においては、金属組織中のオーステナイト相の量が所定範囲にあることが重要である。オーステナイトは、変態誘起塑性によって鋼板の延性を高める組織である。オーステナイトは、引張変形を伴う張出し加工、絞り加工、伸びフランジ加工、または曲げ加工によってマルテンサイトに変態し得るので、鋼板の強度の向上にも寄与する。これら効果を得るために、本実施形態に係る鋼板は、金属組織中に、面積率で10%以上のオーステナイト相を含有する必要がある。
(Area ratio of austenite in metal structure of 1 / 8t part of steel plate: 10% or more)
In the steel sheet according to the present embodiment, it is important that the amount of austenite phase in the metal structure is in a predetermined range. Austenite is a structure that increases the ductility of a steel sheet by transformation-induced plasticity. Since austenite can be transformed into martensite by stretching, drawing, stretch flange processing, or bending with tensile deformation, it contributes to improving the strength of the steel sheet. In order to obtain these effects, the steel plate according to the present embodiment needs to contain an austenite phase of 10% or more in area ratio in the metal structure.
 オーステナイト相の面積率は、好ましくは15%以上、より好ましくは20%以上、さらに好ましくは25%以上である。オーステナイト相の面積率が15%以上になると、伸び特性がより高強度まで維持されるようになる。 The area ratio of the austenite phase is preferably 15% or more, more preferably 20% or more, and further preferably 25% or more. When the area ratio of the austenite phase is 15% or more, the elongation characteristic is maintained to a higher strength.
 オーステナイト相の面積率は高いほど、より良好な成形性が得られる。オーステナイト相の面積率の上限は特に規定しないが、実質的には40%である。なお、オーステナイト相の面積率は、後方散乱電子回折(EBSP:Electron Back Scattering pattern)にて測定できる。少なくとも100μm×100μmの範囲を0.1μmピッチで少なくとも8視野測定し、測定値を平均してオーステナイト相の面積率を測定することができる。 The higher the area ratio of the austenite phase, the better the moldability. The upper limit of the area ratio of the austenite phase is not particularly defined, but is substantially 40%. The area ratio of the austenite phase can be measured by backscattered electron diffraction (EBSP: Electron Back Back Scattering Pattern). It is possible to measure the area ratio of the austenite phase by measuring at least 8 visual fields in a range of at least 100 μm × 100 μm at a pitch of 0.1 μm and averaging the measured values.
 (鋼板の1/8t部の金属組織中のフェライトの面積率:10%以上)
 フェライトは、延性を確保するうえで必須な組織である。金属組織中のフェライト相の面積率は10%以上、好ましくは15%以上である。フェライトの面積率の上限は特に規定しないが、実質的には85%未満である。
(Area ratio of ferrite in metal structure of 1 / 8t part of steel sheet: 10% or more)
Ferrite is an essential structure for ensuring ductility. The area ratio of the ferrite phase in the metal structure is 10% or more, preferably 15% or more. The upper limit of the area ratio of ferrite is not particularly specified, but is substantially less than 85%.
 本実施形態に係る鋼板は、好ましくは、表面から厚みの1/8位置(1/8t部ともいう)における金属組織は、面積率で、5%以上の焼き戻しマルテンサイト相をさらに含有し、マルテンサイト相は15%未満に制限される。かかる金属組織により、強度を確保しながら、穴広げ性を得ることができる。 In the steel sheet according to the present embodiment, preferably, the metal structure at 1/8 position (also referred to as 1 / 8t part) of the thickness from the surface further contains a tempered martensite phase of 5% or more in area ratio, The martensite phase is limited to less than 15%. With such a metal structure, hole expandability can be obtained while ensuring strength.
 (鋼板の1/8t部の金属組織中の焼き戻しマルテンサイト相の面積率:5%以上)
 焼き戻しマルテンサイト相は硬質相であり、鋼板の強度を確保しつつ、穴広げ性の向上に寄与する。穴広げ性を向上しつつ強度を確保するために、焼き戻しマルテンサイト相の金属組織中の面積率は好ましくは5%以上である。鋼板の強度を重視する場合には、焼き戻しマルテンサイト相の面積率は10%以上が好ましく、15%以上がより好ましく、20%以上がさらに好ましい。焼き戻しマルテンサイト相の面積率の上限は規定しないが、実質的には80%未満である。金属組織にベイナイト相が含まれることがあるが、ベイナイト相は焼き戻しマルテンサイト相と同様の特徴を有するため、金属組織にベイナイト相が含まれる場合、焼き戻しマルテンサイト相の面積率は焼き戻しマルテンサイト相に加えてベイナイト相も含めて測定される。
(Area ratio of tempered martensite phase in metal structure of 1 / 8t part of steel sheet: 5% or more)
The tempered martensite phase is a hard phase and contributes to the improvement of the hole expansion property while ensuring the strength of the steel sheet. In order to ensure the strength while improving the hole expansion property, the area ratio in the metal structure of the tempered martensite phase is preferably 5% or more. When emphasizing the strength of the steel sheet, the area ratio of the tempered martensite phase is preferably 10% or more, more preferably 15% or more, and further preferably 20% or more. The upper limit of the area ratio of the tempered martensite phase is not specified, but is substantially less than 80%. Although the bainite phase may be included in the metal structure, the bainite phase has the same characteristics as the tempered martensite phase, so when the bainite phase is included in the metal structure, the area ratio of the tempered martensite phase is tempered. It is measured including the bainite phase in addition to the martensite phase.
 (鋼板の1/8t部の金属組織中のマルテンサイト相の面積率:15%未満)
 マルテンサイト(フレッシュマルテンサイトともいう)相も、その組織中に転位を多く含む硬質相であるが、上記焼き戻しマルテンサイト相とは異なる組織であり、穴広げ性を劣化させ得るため、穴広げ性を確保するためにはマルテンサイト相の金属組織中の面積率を好ましくは15%未満とする。また、マルテンサイト相の金属組織中の面積率を15%未満にすることにより、局部伸びをより向上することができる。金属組織中にマルテンサイト相は含まれなくてもよい。すなわち、マルテンサイト相の金属組織中の面積率は0%でもよい。穴広げ性及び局部伸びを特に必要とする場合は、マルテンサイト相の面積率は10%以下がより好ましく、5%以下がさらに好ましい。
(Area ratio of martensite phase in metal structure of 1 / 8t part of steel sheet: less than 15%)
The martensite (also called fresh martensite) phase is a hard phase that contains a lot of dislocations in its structure, but it is a different structure from the tempered martensite phase, and the hole expandability can be degraded. In order to ensure the property, the area ratio in the metal structure of the martensite phase is preferably less than 15%. Moreover, local elongation can be improved more by making the area ratio in the metal structure of a martensite phase less than 15%. The martensite phase may not be contained in the metal structure. That is, the area ratio in the metal structure of the martensite phase may be 0%. When especially hole expansibility and local elongation are required, the area ratio of the martensite phase is more preferably 10% or less, and further preferably 5% or less.
 金属組織中で、オーステナイト相、マルテンサイト相、焼き戻しマルテンサイト相(ベイナイト相を含む)、及びフェライト相以外の残部は、パーライト、セメンタイト等の組織であることができる。 In the metal structure, the remainder other than the austenite phase, martensite phase, tempered martensite phase (including bainite phase), and ferrite phase can be a structure such as pearlite or cementite.
 フェライト相、マルテンサイト相、及び焼き戻しマルテンサイト相の面積率は、走査型電子顕微鏡(SEM)による組織観察から算出される。鋼板のL断面を鏡面研磨した後に、3%ナイタール(3%硝酸―エタノール溶液)で腐食し、倍率5000倍の走査型電子顕微鏡で、表面から1/8位置における金属組織を観察する。フェライト相(未再結晶フェライト含む)は灰色の下地組織として、マルテンサイトは白色の組織として、判別される。焼き戻しマルテンサイトは、マルテンサイトと同様に白色にみえるが、結晶粒内に下部組織が確認されたものを焼き戻しマルテンサイトと判断する。 The area ratios of the ferrite phase, the martensite phase, and the tempered martensite phase are calculated from the structure observation with a scanning electron microscope (SEM). After the L section of the steel plate is mirror-polished, it is corroded with 3% nital (3% nitric acid-ethanol solution), and the metal structure at 1/8 position from the surface is observed with a scanning electron microscope with a magnification of 5000 times. The ferrite phase (including unrecrystallized ferrite) is discriminated as a gray background structure, and martensite is discriminated as a white structure. Tempered martensite appears white like martensite, but the one in which the substructure is confirmed in the crystal grains is determined to be tempered martensite.
 フェライト相の内、未再結晶フェライトの面積率は30%以上、好ましくは40%以上である。未再結晶フェライトの面積率が上記範囲内であることにより、降伏点が高い鋼板を得ることができる。未再結晶フェライトが多すぎると延性低下につながるため、面積率の上限は70%とする。未再結晶フェライトの面積率の上限は、より好ましくは60%である。 Among the ferrite phases, the area ratio of non-recrystallized ferrite is 30% or more, preferably 40% or more. When the area ratio of non-recrystallized ferrite is within the above range, a steel plate having a high yield point can be obtained. If there is too much unrecrystallized ferrite, it will lead to a decrease in ductility, so the upper limit of the area ratio is 70%. The upper limit of the area ratio of non-recrystallized ferrite is more preferably 60%.
 未再結晶フェライトの面積率は、上述のようにフェライト相の結晶粒を判別した後、この領域に対して、EBSP測定を行い、KAM(Kernel Average Misorientation)値で1°以上の領域を未再結晶フェライト組織として測定することにより算出される。 As for the area ratio of unrecrystallized ferrite, after discriminating ferrite phase grains as described above, EBSP measurement is performed on this area, and an area with a KAM (Kernel Average Misorientation) value of 1 ° or more is It is calculated by measuring as a crystalline ferrite structure.
 オーステナイト相における平均Mn濃度CMnγとフェライト相(未再結晶フェライト相を含むすべてのフェライト相)における平均Mn濃度CMnαとの比であるCMnγ/CMnαは1.2以上、好ましくは1.5以上である。CMnγ/CMnαが上記範囲内であることにより、熱処理中にオーステナイト相だった箇所にMnを濃化させるMn分配が十分に得られ、短時間焼鈍でも安定したオーステナイト相が得られて、優れた延性が得られる。一方、CMnγ/CMnαが1.2未満では、Mn分配が十分でなく、オーステナイト相を短時間焼鈍で得ることが困難となる。また、CMnγ/CMnαは、好ましくは2.0未満である。CMnγ/CMnαを2.0未満にすることによって、オーステナイト相が過剰に安定になることを抑制して延性向上効果の低下を抑制することができる。 CMnγ / CMnα, which is the ratio of the average Mn concentration CMnγ in the austenite phase and the average Mn concentration CMnα in the ferrite phase (all ferrite phases including unrecrystallized ferrite phase), is 1.2 or more, preferably 1.5 or more. . When CMnγ / CMnα is within the above range, sufficient Mn distribution to concentrate Mn is obtained at the place where it was an austenite phase during heat treatment, and a stable austenite phase can be obtained even after short-time annealing. Is obtained. On the other hand, if CMnγ / CMnα is less than 1.2, Mn distribution is not sufficient, and it becomes difficult to obtain an austenite phase by short-time annealing. Moreover, CMnγ / CMnα is preferably less than 2.0. By setting CMnγ / CMnα to less than 2.0, it is possible to suppress the austenite phase from becoming excessively stable and suppress the reduction in ductility improving effect.
 CMnγ/CMnαは、EBSP、SEM、及び電子線マイクロアナライザ(EMPA)により測定することができる。EBSP及びSEMにより、オーステナイト相及びフェライト相を測定し、EMPAにより、CMnγ及びCMnαを測定して、CMnγ/CMnαを算出することができる。 CMnγ / CMnα can be measured by EBSP, SEM, and electron beam microanalyzer (EMPA). CMnγ / CMnα can be calculated by measuring the austenite phase and ferrite phase by EBSP and SEM, and measuring CMnγ and CMnα by EMPA.
 フェライト相における平均転位密度は4.0×1012/m2以上である。フェライト相における平均転位密度が上記範囲内であることにより、降伏伸びを低減しつつ、降伏強度を増加し、十分な伸びを有する鋼板を得ることができる。 The average dislocation density in the ferrite phase is 4.0 × 10 12 / m 2 or more. When the average dislocation density in the ferrite phase is within the above range, the yield strength can be increased while the yield elongation is reduced, and a steel sheet having sufficient elongation can be obtained.
 フェライト相における平均転位密度は、好ましくは5×1013/m2以下である。フェライト相における平均転位密度の上限を上記範囲内とすることにより、延性の劣化を抑制し、成形性を維持することができる。 The average dislocation density in the ferrite phase is preferably 5 × 10 13 / m 2 or less. By setting the upper limit of the average dislocation density in the ferrite phase within the above range, deterioration of ductility can be suppressed and formability can be maintained.
 次に、本実施形態に係る鋼板の機械特性について説明する。 Next, the mechanical properties of the steel sheet according to this embodiment will be described.
 本実施形態に係る鋼板の引張強度(TS)は、好ましくは780MPa以上、より好ましくは980MPa以上である。これは、鋼板を自動車の素材として使用する際、高強度化によって板厚を減少させ、軽量化に寄与するためである。また、本実施形態に係る鋼板をプレス成形に供するためには、伸び(El)が優れることが望ましい。その場合、TS×Elは、好ましくは25000MPa・%以上、より好ましくは28000MPa・%以上である。 The tensile strength (TS) of the steel sheet according to this embodiment is preferably 780 MPa or more, more preferably 980 MPa or more. This is because when a steel plate is used as an automobile material, the plate thickness is reduced by increasing the strength, thereby contributing to weight reduction. Moreover, in order to use the steel plate which concerns on this embodiment for press forming, it is desirable that elongation (El) is excellent. In that case, TS × El is preferably 25000 MPa ·% or more, more preferably 28000 MPa ·% or more.
 本実施形態に係る鋼板は、降伏点にも優れており、図1に「A」として示すような応力-ひずみ曲線(SSカーブ)を示す。一方、本開示の方法における熱延鋼板への熱処理、すなわち、オーステナイト相分率が20%~50%となる温度域にて1時間以上の熱処理を行なわずに、冷延鋼板に短時間焼鈍のみを施して得られる鋼板は、伸びが小さい「C」として示すような応力-ひずみ曲線を示す。 The steel sheet according to this embodiment is also excellent in the yield point, and shows a stress-strain curve (SS curve) as shown as “A” in FIG. On the other hand, the heat treatment of the hot-rolled steel sheet in the method of the present disclosure, that is, only annealing for a short time on the cold-rolled steel sheet without performing heat treatment for 1 hour or more in the temperature range where the austenite phase fraction is 20% to 50%. The steel sheet obtained by applying the stress exhibits a stress-strain curve as indicated by “C” having a small elongation.
 本実施形態に係る鋼板は、圧下率が5.0%以上のスキンパス圧延を施すことにより、図1に「A」として示すような、応力-ひずみ曲線を示す。参考に、圧下率が0.5%のスキンパス圧延を施したこと以外は同条件で作製した鋼板の場合の応力-ひずみ曲線を「B」として示す。詳しくは後述するが、「B」のような応力-ひずみ曲線を示す鋼板と比較して、「A」に示すような応力-ひずみ曲線を示す鋼板は、降伏点は少し小さいものの、高い引張強度および伸びを維持したまま降伏伸び(YP-El)を抑制することができる。「A」として示すような応力-ひずみ曲線を示す鋼板は、「B」よりも、ひずみを局所化させずに分散させることができる。これにより、局所的な変形を抑制することができる。 The steel sheet according to the present embodiment exhibits a stress-strain curve as shown as “A” in FIG. 1 by performing skin pass rolling with a rolling reduction of 5.0% or more. For reference, the stress-strain curve for a steel sheet produced under the same conditions except that skin pass rolling with a rolling reduction of 0.5% is shown as “B”. As will be described in detail later, a steel plate showing a stress-strain curve as shown in “A” has a high tensile strength although its yield point is slightly smaller than that of a steel plate showing a stress-strain curve as shown in “B”. Further, the yield elongation (YP-El) can be suppressed while maintaining the elongation. A steel sheet exhibiting a stress-strain curve as shown as “A” can be dispersed without localizing the strain than “B”. Thereby, local deformation can be suppressed.
 本実施形態に係る鋼板の降伏比YR(降伏点YPを引張強度TSで徐したもの)は、好ましくは0.68以上、より好ましくは0.70以上、さらに好ましくは0.75以上を示す。そのため、本実施形態に係る鋼板を自動車の素材として使用する際、衝突特性の向上に寄与する。また、本実施形態に係る鋼板の降伏伸び(YP-El)は、好ましくは2.5%未満、より好ましくは1.5%未満を示す。また、本実施形態に係る鋼板は、好ましくは穴広げ性(λ)にも優れ、好ましくは18%以上、より好ましくは22%以上、さらに好ましくは24%以上のλを示す。また、本実施形態に係る鋼板は、好ましくは1.5%以上、より好ましくは1.7%以上、さらに好ましくは2.0%以上の局部伸びを有し、良好な成形性を示す。 The yield ratio YR (the yield point YP is gradually lowered by the tensile strength TS) of the steel sheet according to the present embodiment is preferably 0.68 or more, more preferably 0.70 or more, and further preferably 0.75 or more. Therefore, when using the steel plate which concerns on this embodiment as a raw material of a motor vehicle, it contributes to the improvement of a collision characteristic. Further, the yield elongation (YP-El) of the steel sheet according to this embodiment is preferably less than 2.5%, more preferably less than 1.5%. Moreover, the steel plate according to the present embodiment preferably has excellent hole expansibility (λ), and preferably exhibits a λ of 18% or more, more preferably 22% or more, and further preferably 24% or more. Further, the steel sheet according to the present embodiment preferably has a local elongation of 1.5% or more, more preferably 1.7% or more, and further preferably 2.0% or more, and exhibits good formability.
 本開示の鋼板は上記のように、降伏点が十分高く、高い引張強度を確保し、伸び特性も十分確保され、成形性に優れ、降伏伸びが小さいので、メンバーなどの衝突部位の自動車の構造部品用途に最適である。さらに、本開示の鋼板は含有Mn濃度が高いので、自動車の軽量化にも寄与するので、産業上の貢献が極めて顕著である。 As described above, the steel sheet of the present disclosure has a sufficiently high yield point, high tensile strength, sufficient elongation characteristics, excellent formability, and low yield elongation. Ideal for parts applications. Furthermore, since the steel sheet of the present disclosure has a high Mn concentration, it contributes to the weight reduction of automobiles, and thus the industrial contribution is extremely remarkable.
 3.製造方法
 次に、本実施形態に係る鋼板の製造方法について説明する。
3. Manufacturing method Next, the manufacturing method of the steel plate concerning this embodiment is explained.
 本実施形態に係る鋼板は、上述の化学組成を有する鋼を常法で溶製し、鋳造してスラブまたは鋼塊を作製し、これを加熱して熱間圧延を施し、得られた熱延鋼板に、フェライト/オーステナイトの二相域で熱処理を行い、酸洗した後、30%以上70%以下の冷延率で冷間圧延し、次いでフェライト/オーステナイトの二相域で短時間焼鈍を施し、焼鈍後に圧下率が5.0%以上のスキンパス圧延を施して製造する。 The steel plate according to the present embodiment is obtained by melting a steel having the above-described chemical composition by a conventional method, casting it to produce a slab or a steel ingot, heating this, and subjecting it to hot rolling. The steel sheet is heat-treated in the ferrite / austenite two-phase region, pickled, cold-rolled at a cold rolling rate of 30% to 70%, and then annealed in the ferrite / austenite two-phase region for a short time. After the annealing, it is manufactured by performing skin pass rolling with a rolling reduction of 5.0% or more.
 熱間圧延は、通常の連続熱間圧延ラインで行えばよい。熱間圧延後の熱延鋼板への熱処理は、箱焼鈍炉(BAF)等のバッチ炉または連続焼鈍炉等のトンネル炉で行うことができる。冷間圧延も、通常の連続冷間圧延ラインで行えばよい。本開示の方法においては、焼鈍は、連続焼鈍ラインを用いて行うことができるので、生産性に非常に優れている。 Hot rolling may be performed on a normal continuous hot rolling line. The heat treatment of the hot-rolled steel sheet after hot rolling can be performed in a batch furnace such as a box annealing furnace (BAF) or a tunnel furnace such as a continuous annealing furnace. Cold rolling may be performed by a normal continuous cold rolling line. In the method of the present disclosure, the annealing can be performed using a continuous annealing line, and thus the productivity is very excellent.
 本開示の鋼板の金属組織を得るためには、下記の条件、特に、熱延条件、熱間圧延後の熱延鋼板への熱処理条件、冷間圧延条件、焼鈍条件、及びスキンパス圧延を、以下に示す範囲内で行うことが好ましい。 In order to obtain the metal structure of the steel sheet of the present disclosure, the following conditions, in particular, hot rolling conditions, heat treatment conditions for hot rolled steel sheets after hot rolling, cold rolling conditions, annealing conditions, and skin pass rolling are as follows: It is preferable to carry out within the range shown in.
 本実施形態に係る鋼板が上述の化学組成を有する限り、溶鋼は、通常の高炉法で溶製されたものであってもよく、電炉法で作成された鋼のように、原材料がスクラップを多量に含むものでもよい。スラブは、通常の連続鋳造プロセスで製造されたものでもよいし、薄スラブ鋳造で製造されたものでもよい。 As long as the steel sheet according to the present embodiment has the above-described chemical composition, the molten steel may be melted by a normal blast furnace method, and the raw material contains a large amount of scrap like steel produced by the electric furnace method. May be included. The slab may be manufactured by a normal continuous casting process or may be manufactured by thin slab casting.
 上述のスラブまたは鋼塊を加熱し、熱間圧延を行って熱延鋼板を得る。熱間圧延に供する鋼材の温度は、1100℃以上1300℃以下とすることが好ましい。熱間圧延に供する鋼材の温度を1100℃以上にすることにより、熱間圧延時の変形抵抗をより小さくすることができる。一方、熱間圧延に供する鋼材の温度を1300℃以下にすることにより、スケールロス増加による歩留まりの低下を抑制することができる。本願明細書において、温度とは、鋼材の主面中央部の表面温度をいう。 ¡The above-mentioned slab or steel ingot is heated and hot-rolled to obtain a hot-rolled steel sheet. The temperature of the steel material used for hot rolling is preferably 1100 ° C. or higher and 1300 ° C. or lower. By setting the temperature of the steel material used for hot rolling to 1100 ° C. or higher, the deformation resistance during hot rolling can be further reduced. On the other hand, by reducing the temperature of the steel material used for hot rolling to 1300 ° C. or less, it is possible to suppress a decrease in yield due to an increase in scale loss. In the present specification, the temperature refers to the surface temperature of the central portion of the main surface of the steel material.
 熱間圧延前に上記好ましい温度範囲である1100℃以上1300℃以下の温度域に保持する時間は特に規定しないが、曲げ性を向上させるためには、30分間以上とすることが好ましく、1時間以上にすることがさらに好ましい。また、過度のスケールロスを抑制するために10時間以下とすることが好ましく、5時間以下とすることがさらに好ましい。なお、直送圧延または直接圧延を行う場合であって、加熱処理を施さずにそのまま熱間圧延に供してもよい。 The time for holding in the temperature range of 1100 ° C. or higher and 1300 ° C. or lower, which is the preferable temperature range before hot rolling, is not particularly specified, but is preferably 30 minutes or longer in order to improve bendability. More preferably, the above is used. Moreover, in order to suppress an excessive scale loss, it is preferable to set it as 10 hours or less, and it is more preferable to set it as 5 hours or less. In addition, it is a case where direct feed rolling or direct rolling is performed, and it may be subjected to hot rolling as it is without performing heat treatment.
 (仕上圧延及び巻取り:750℃以上1000℃以下で仕上圧延及び300℃未満で巻取り)
 熱間圧延において仕上圧延を行う。仕上圧延開始温度を好ましくは750℃以上1000℃以下とすることが好ましい。仕上圧延開始温度を750℃以上とすることにより、圧延時の変形抵抗を小さくし、組織制御を容易に行うことができる。一方、仕上圧延開始温度を1000℃以下にすることにより、熱延状態での組織の粗大化を防ぐことができ、その後の組織制御ができることに加え、粒界酸化による鋼板の表面性状の劣化を抑制することができる。仕上圧延を行った後冷却、巻取りを行う。巻取温度は、好ましくは300℃未満である。300℃未満で巻き取ることで、熱延板組織をフルマルテンサイト組織とすることができ、熱延鋼板の熱処理及び冷延鋼板の焼鈍工程において、それぞれ、Mn分配とオーステナイト逆変態とを効率的に起こすことが可能となる。すなわち、上記温度での仕上圧延及び上記温度での巻取りを行うことにより、マルテンサイト相の面積率を15%未満に制限しつつ、5%以上の面積率の焼き戻しマルテンサイト相を得ることができ、強度と穴広げ性に優れた鋼板を得ることができる。
(Finish rolling and winding: finish rolling at 750 ° C. or more and 1000 ° C. or less and winding at less than 300 ° C.)
Finish rolling is performed in hot rolling. The finish rolling start temperature is preferably 750 ° C. or higher and 1000 ° C. or lower. By setting the finish rolling start temperature to 750 ° C. or higher, the deformation resistance during rolling can be reduced, and the structure can be easily controlled. On the other hand, by setting the finishing rolling start temperature to 1000 ° C. or lower, it is possible to prevent the coarsening of the structure in the hot-rolled state, and in addition to the subsequent structure control, the deterioration of the surface properties of the steel sheet due to grain boundary oxidation. Can be suppressed. After finishing rolling, cooling and winding are performed. The winding temperature is preferably less than 300 ° C. By winding at less than 300 ° C., the hot-rolled sheet structure can be made into a full martensite structure. In the heat treatment of the hot-rolled steel sheet and the annealing process of the cold-rolled steel sheet, Mn distribution and austenite reverse transformation are efficiently performed, respectively. It is possible to wake up. That is, by performing finish rolling at the above temperature and winding at the above temperature, the tempered martensite phase having an area ratio of 5% or more is obtained while limiting the area ratio of the martensite phase to less than 15%. It is possible to obtain a steel sheet excellent in strength and hole expansibility.
 (熱延鋼板の熱処理:オーステナイト相分率が20%~50%となる温度域で1時間以上保持)
 得られた熱延鋼板に、オーステナイト相分率が20%~50%となる温度域にて1時間以上の熱処理を行う。鋼板のAc1超Ac3未満の二相域の温度範囲内のうち、オーステナイト相分率が20%~50%となる温度範囲内で熱処理を行うことにより、オーステナイトにMnを分配して、オーステナイトを安定化させて、高い延性を得ることができる。オーステナイト相分率が20%~50%となる温度で熱処理を行うことによって、焼鈍後の鋼板のL断面における表面から厚みの1/8位置における金属組織が、面積率で、10%以上のオーステナイト相を含むことができる。オーステナイト相の面積率が20%~50%となる温度範囲は、鋼板の成分に応じて、オフラインの予備実験で室温から0.5℃/秒の加熱速度で加熱し、加熱中の体積変化から、オーステナイト相分率を測定することで求めることができる。熱処理の温度は、好ましくはオーステナイト相分率で25%~40%となる温度域に含まれる温度である。熱処理の保持時間の下限は、好ましくは2時間以上、さらに好ましくは3時間以上である。熱処理の保持時間の上限は、好ましくは10時間以内、より好ましくは8時間以内である。
(Heat treatment of hot-rolled steel sheet: Hold for 1 hour or more in a temperature range where the austenite phase fraction is 20% to 50%)
The obtained hot-rolled steel sheet is heat-treated for 1 hour or longer in a temperature range where the austenite phase fraction is 20% to 50%. By performing heat treatment in the temperature range where the austenite phase fraction is 20% to 50% within the temperature range of the steel sheet over Ac1 and less than Ac3, Mn is distributed to the austenite to stabilize the austenite. And high ductility can be obtained. By performing heat treatment at a temperature at which the austenite phase fraction is 20% to 50%, the metal structure at the 1/8 position of the thickness from the surface in the L cross section of the steel sheet after annealing has an area ratio of 10% or more austenite. Phases can be included. The temperature range in which the area ratio of the austenite phase is 20% to 50% is determined from the volume change during heating by heating at a heating rate of 0.5 ° C / sec from room temperature in an offline preliminary experiment, depending on the components of the steel sheet. It can be obtained by measuring the austenite phase fraction. The temperature of the heat treatment is preferably a temperature included in a temperature range where the austenite phase fraction is 25% to 40%. The lower limit of the heat treatment holding time is preferably 2 hours or more, more preferably 3 hours or more. The upper limit of the heat treatment holding time is preferably within 10 hours, more preferably within 8 hours.
 図2に、熱間圧延後に、二相域でオーステナイト相分率が20%~50%となる温度範囲の650℃で6時間の熱処理をした場合、及び単相域である500℃で15分間の熱処理をした場合における、鋼板のL断面の表面から厚みの1/8位置におけるMnの分配状態を表すマッピング結果の一例を示す。650℃で熱処理した鋼板では、フェライトからMnが排出され、オーステナイトにMnが濃化する(明色領域)ため、650℃でオーステナイトだった箇所におけるMn濃度は500℃で熱処理した場合よりも高く、650℃でフェライトだった箇所のMn濃度は低くなる。 FIG. 2 shows that after hot rolling, when heat treatment is performed at 650 ° C. for 6 hours in a temperature range in which the austenite phase fraction is 20% to 50% in the two-phase region, and for 15 minutes at 500 ° C. which is the single-phase region. The example of the mapping result showing the distribution state of Mn in the position of 1/8 of the thickness from the surface of the L cross section of the steel sheet when the heat treatment is performed is shown. In the steel plate heat-treated at 650 ° C., Mn is discharged from ferrite and Mn is concentrated in austenite (light-colored region). The Mn concentration in the portion that was ferrite at 650 ° C. becomes low.
 オーステナイト面積率が20%~50%となる温度範囲で熱処理を行った後、冷却を行う。これにより、熱処理で得たMn分配状態を維持することができる。 ¡After heat treatment in a temperature range where the austenite area ratio is 20% to 50%, cooling is performed. Thereby, the Mn distribution state obtained by the heat treatment can be maintained.
 熱延鋼板は、常法により酸洗を施された後に、30%以上70%以下の圧下率で冷間圧延が行われ、冷延鋼板とされる。冷間圧延の圧下率を30%未満とすると、粒径が大きく残りオーステナイト逆変態が遅れてしまい、オーステナイト相を十分得ることができない。また、圧下率を70%超とすると、未再結晶フェライトを十分得ることができない。冷間圧延の圧下率の下限値は好ましくは40%以上である。冷間圧延の圧下率の上限値は好ましくは60%以下である。 The hot-rolled steel sheet is pickled by a conventional method, and then cold-rolled at a rolling reduction of 30% to 70% to obtain a cold-rolled steel sheet. If the rolling reduction of cold rolling is less than 30%, the grain size remains large and the austenite reverse transformation is delayed, so that a sufficient austenite phase cannot be obtained. On the other hand, if the rolling reduction is more than 70%, sufficient unrecrystallized ferrite cannot be obtained. The lower limit value of the cold rolling reduction is preferably 40% or more. The upper limit of the cold rolling reduction is preferably 60% or less.
 冷間圧延の前であって酸洗の前または後に0%超~5%程度の軽度の圧延を行って形状を修正すると、平坦確保の点で有利となるので好ましい。また、酸洗前に軽度の圧延を行うことより酸洗性が向上し、表面濃化元素の除去が促進され、化成処理性やめっき処理性を向上させる効果がある。 It is preferable to modify the shape by performing mild rolling of more than 0% to about 5% before or after pickling before cold rolling because it is advantageous in terms of ensuring flatness. Moreover, pickling is improved by performing mild rolling before pickling, and removal of the surface concentrating element is promoted, and there is an effect of improving chemical conversion treatment and plating treatment.
 (冷延鋼板の焼鈍:オーステナイト相分率が20%~50%となる温度域で30秒間以上15分間未満保持)
 得られた冷延鋼板を、オーステナイト相分率が20%~50%となる温度域にて、30秒間以上15分間未満、好ましくは1分間以上5分間以下、保持して焼鈍を行う。上記熱延鋼板の熱処理ですでにMn分配を完了しており、熱処理中にオーステナイト相だった箇所にはMnが濃化しているので、この箇所は、短時間焼鈍でも、すぐにオーステナイト相になりやすく、安定したオーステナイトが得られ、短時間の焼鈍処理で優れた延性が得られる。一方、当該焼鈍においてオーステナイト相分率が20%未満となる温度で熱処理を行うとオーステナイトが十分に得られず、50%超となる温度で熱処理を行うとオーステナイト相からマルテンサイト相に変態しやすくなる。また、焼鈍時間が30秒間未満では、オーステナイトが十分に得られない。好ましくは、オーステナイト相分率が25%~40%となる温度域で焼鈍する。
(Annealing of cold-rolled steel sheet: Hold for 30 seconds or more and less than 15 minutes in a temperature range where the austenite phase fraction is 20% to 50%)
The obtained cold-rolled steel sheet is annealed while being held in a temperature range where the austenite phase fraction is 20% to 50% for 30 seconds to less than 15 minutes, preferably 1 minute to 5 minutes. The Mn distribution has already been completed by the heat treatment of the hot-rolled steel sheet, and Mn is concentrated in the austenite phase during the heat treatment, so this part immediately becomes an austenite phase even after short-time annealing. Easy and stable austenite can be obtained, and excellent ductility can be obtained by a short annealing treatment. On the other hand, if heat treatment is performed at a temperature at which the austenite phase fraction is less than 20% in the annealing, sufficient austenite is not obtained, and if heat treatment is performed at a temperature exceeding 50%, the austenite phase is easily transformed into a martensite phase. Become. Also, if the annealing time is less than 30 seconds, austenite cannot be obtained sufficiently. Preferably, annealing is performed in a temperature range where the austenite phase fraction is 25% to 40%.
 理論に束縛されるものではないが、上記の低い温度且つ短時間で冷延鋼板を熱処理すると、主に回復焼鈍が起こり、再結晶が起こりにくい。このため、未再結晶フェライトが残存して不動転位が消えずに残り、スキンパス圧延前における降伏点が大きくなると考えられる。本開示の方法によれば、スキンパス圧延前において、Mn分配による引張強度(TS)×伸び(El)の改善に加えて、未再結晶フェライトによる高降伏点(YP)を備えた鋼板を得ることができる。 Although not limited by theory, when the cold-rolled steel sheet is heat-treated at the low temperature and in a short time, recovery annealing mainly occurs and recrystallization hardly occurs. For this reason, it is considered that non-recrystallized ferrite remains and the dislocations remain without disappearing, and the yield point before skin pass rolling is increased. According to the method of the present disclosure, in addition to improvement of tensile strength (TS) × elongation (El) due to Mn distribution before skin pass rolling, a steel sheet having a high yield point (YP) due to non-recrystallized ferrite is obtained. Can do.
 冷間圧延前の熱処理における温度と冷間圧延後の焼鈍における温度との差は、好ましくはオーステナイト相分率の差に換算して15%以下相当、より好ましくは10%以下相当である。冷間圧延前の熱処理における温度と冷間圧延後の焼鈍における温度とはどちらが高くてもよい。冷間圧延前の熱処理における温度と冷間圧延後の焼鈍における温度との差を上記範囲内にすることにより、冷間圧延前の熱処理におけるオーステナイト相分率と冷間圧延後の焼鈍におけるオーステナイト相分率とを近づけることができるので、冷間圧延後の焼鈍において、Mnが濃化した箇所にだけオーステナイトを生成することができる。冷間圧延前の熱処理における温度及び冷間圧延後の焼鈍における温度とは、熱処理プロファイルにおける実質的な最高温度である。 The difference between the temperature in the heat treatment before cold rolling and the temperature in the annealing after cold rolling is preferably equivalent to 15% or less, more preferably equivalent to 10% or less in terms of the difference in austenite phase fraction. Either the temperature in the heat treatment before cold rolling or the temperature in the annealing after cold rolling may be higher. By making the difference between the temperature in the heat treatment before cold rolling and the temperature in the annealing after cold rolling within the above range, the austenite phase fraction in the heat treatment before cold rolling and the austenite phase in the annealing after cold rolling Since the fraction can be made closer, austenite can be generated only at the location where Mn is concentrated in the annealing after cold rolling. The temperature in the heat treatment before cold rolling and the temperature in the annealing after cold rolling are substantially the maximum temperatures in the heat treatment profile.
 (焼鈍後の冷却条件:平均冷却速度2℃/秒以上2000℃/秒以下で冷却し、100℃以上500℃以下の温度域で10秒間以上1000秒間以下保持)
 焼鈍の温度保持後に、平均冷却速度2℃/秒以上2000℃/秒以下で100℃以上500℃以下の温度域まで冷却する。焼鈍後の平均冷却速度を2℃/秒以上とすることによって、粒界偏析を抑制し、曲げ性を向上することができる。一方、平均冷却速度を2000℃/秒以下とすることにより、冷却停止した後の鋼板温度分布が均一になるので、鋼板の平坦性を向上させることができる。
(Cooling conditions after annealing: Cool at an average cooling rate of 2 ° C./second or more and 2000 ° C./second or less and hold at a temperature range of 100 ° C. or more and 500 ° C. or less for 10 seconds or more and 1000 seconds or less)
After the annealing temperature is maintained, cooling is performed to an average cooling rate of 2 ° C./second to 2000 ° C./second to a temperature range of 100 ° C. to 500 ° C. By setting the average cooling rate after annealing to 2 ° C./second or more, grain boundary segregation can be suppressed and bendability can be improved. On the other hand, by setting the average cooling rate to 2000 ° C./second or less, the steel plate temperature distribution after the cooling is stopped becomes uniform, so that the flatness of the steel plate can be improved.
 冷却停止温度を500℃以下にすることにより、粒界偏析を抑制し、曲げ性を向上することができる。一方、冷却停止温度を100℃以上とすることにより、マルテンサイト変態に伴うひずみ発生を抑制でき、鋼板の平坦性を向上させることができる。 冷却 By setting the cooling stop temperature to 500 ° C or lower, it is possible to suppress segregation at the grain boundaries and improve bendability. On the other hand, by setting the cooling stop temperature to 100 ° C. or higher, the generation of strain associated with martensitic transformation can be suppressed, and the flatness of the steel sheet can be improved.
 上記冷却の後、100℃以上500℃以下の温度域で10秒間以上1000秒間以下保持する。100℃以上500℃以下の温度域に冷却することによって、マルテンサイトが生成し、その後の保持によって、マルテンサイトの自己焼き戻しが生じる。100℃以上500℃以下の温度域における保持時間を10秒間以上とすることにより、オーステナイトへのC分配が十分に進行して、最終熱処理前の組織にオーステナイトを安定に生成させることができ、その結果、最終熱処理後の組織に塊状のオーステナイトが生成することを抑制し、強度特性の変動を抑えることができる。一方、上記保持時間が1000秒間超であっても、上記作用による効果は飽和して、生産性が低下するだけであるため、100℃以上500℃以下の温度域における保持時間は、1000秒以下、好ましくは300秒以下、より好ましくは180秒以下である。 After the cooling, the temperature is maintained at 100 ° C. to 500 ° C. for 10 seconds to 1000 seconds. By cooling to a temperature range of 100 ° C. or more and 500 ° C. or less, martensite is generated, and the subsequent holding causes martensite self-tempering. By setting the holding time in the temperature range of 100 ° C. or more and 500 ° C. or less to 10 seconds or more, C distribution to austenite is sufficiently advanced, and austenite can be stably generated in the structure before the final heat treatment, As a result, it is possible to suppress the formation of massive austenite in the structure after the final heat treatment, and to suppress fluctuations in strength characteristics. On the other hand, even if the holding time is longer than 1000 seconds, the effect of the above action is saturated and the productivity is lowered, so the holding time in the temperature range of 100 ° C. to 500 ° C. is 1000 seconds or less. , Preferably 300 seconds or less, more preferably 180 seconds or less.
 上記保持温度を100℃以上にすることにより、連続焼鈍ラインの効率を向上することができる。一方、保持温度を500℃以下にすることにより、粒界偏析を抑制し、曲げ性を向上することができる。 The efficiency of the continuous annealing line can be improved by setting the holding temperature to 100 ° C. or higher. On the other hand, by setting the holding temperature to 500 ° C. or lower, grain boundary segregation can be suppressed and bendability can be improved.
 上記冷却の後、鋼板を室温まで冷却することが好ましい。 After the cooling, it is preferable to cool the steel plate to room temperature.
 焼鈍後の鋼板に、圧下率が5.0%以上のスキンパス圧延を行う。鋼板の表面に溶融亜鉛めっきまたは合金化溶融亜鉛めっきを施す場合は、めっき後の鋼板に、圧下率が5.0%以上のスキンパス圧延を行う。延性の低下またはロール荷重の増大の観点から、従来の鋼板の製造においては、スキンパス圧延は一般的に0.5%未満であるところ、本実施形態においては、5.0%以上の圧下率のスキンパス圧延を行うことにより、転位が多く導入され加工硬化するので、通常のスキンパス(圧下率5.0%未満)を行う場合よりも鋼板の降伏伸びを低減しつつ、降伏点を高くする方向に調整することができる。また、本実施形態においては、5.0%以上の圧下率のスキンパス圧延を行うことにより、フレッシュマルテンサイトの増加による降伏伸びの低下を実現しつつ、局部伸びを向上することができる。 Skin pass rolling with a rolling reduction of 5.0% or more is performed on the annealed steel sheet. When hot dip galvanizing or alloying hot dip galvanizing is performed on the surface of the steel plate, skin pass rolling with a rolling reduction of 5.0% or more is performed on the steel plate after plating. From the viewpoint of lowering ductility or increasing roll load, skin pass rolling is generally less than 0.5% in the production of conventional steel sheets, but in this embodiment, the rolling reduction is 5.0% or more. By performing skin pass rolling, many dislocations are introduced and work hardening is performed, so that the yield elongation of the steel sheet is increased while reducing the yield elongation of the steel sheet compared to the case of performing normal skin pass (less than 5.0% reduction). Can be adjusted. In the present embodiment, by performing skin pass rolling at a rolling reduction of 5.0% or more, local elongation can be improved while realizing a decrease in yield elongation due to an increase in fresh martensite.
 圧下率が5.0%以上のスキンパス圧延を行うことにより、図1に「A」として示すような、参考として示した「B」よりも伸びおよび降伏点が若干低くなるものの、降伏点および引張強度を高い水準で確保し、且つ降伏伸びが小さい応力-ひずみ曲線を示す鋼板を得ることができる。この特性を有する鋼板は、衝突時の初期吸収エネルギーが大きく且つより多くのエネルギーを吸収することができる。 By performing skin pass rolling with a rolling reduction of 5.0% or more, the elongation and yield points are slightly lower than “B” shown as a reference, as shown by “A” in FIG. It is possible to obtain a steel sheet that exhibits a stress-strain curve with high strength and low yield elongation. A steel plate having this characteristic has a large initial absorption energy at the time of collision and can absorb more energy.
 圧下率が5.0%以上のスキンパス圧延を行うことにより、フェライト相の平均転位密度を、4.0×1012/m2以上にすることができる。平均転位密度は、フェライト相(未再結晶フェライト相を含むすべてのフェライト相)の不動転位と可動転位との合計転位密度である。 By performing skin pass rolling with a rolling reduction of 5.0% or more, the average dislocation density of the ferrite phase can be made 4.0 × 10 12 / m 2 or more. The average dislocation density is the total dislocation density of fixed dislocations and movable dislocations in the ferrite phase (all ferrite phases including non-recrystallized ferrite phases).
 平均転位密度を4.0×1012/m2以上とすることにより、図1に「A」として示すような、「B」よりも伸びおよび降伏点が若干低くなるものの、高い引張強度を維持し、且つ降伏点伸びが小さい応力-ひずみ曲線を示す鋼板を得ることができる。このような特性を有する鋼板は、降伏点(YP)を高い水準に保ちつつ衝突時に変形の局所化を抑制することができるので、大きな初期吸収エネルギーを有し且つより多くのエネルギーを吸収することができる。 By setting the average dislocation density to 4.0 × 10 12 / m 2 or more, the elongation and yield point are slightly lower than “B” as shown in FIG. 1, but high tensile strength is maintained. In addition, a steel sheet exhibiting a stress-strain curve with a low yield point elongation can be obtained. A steel plate having such characteristics has a large initial absorption energy and absorbs more energy because it can suppress the localization of deformation at the time of collision while keeping the yield point (YP) at a high level. Can do.
 好ましくは、スキンパス圧延の圧下率を10.0%以下にする。これにより成形性を十分確保することができる。スキンパス圧延の圧下率を10.0%以下にすることによって、フェライト相の平均転位密度を、5×1013/m2以下にすることができる。 Preferably, the reduction rate of skin pass rolling is set to 10.0% or less. Thereby, sufficient moldability can be secured. By making the rolling reduction of skin pass rolling 10.0% or less, the average dislocation density of the ferrite phase can be made 5 × 10 13 / m 2 or less.
 フェライト相の平均転位密度の測定は、TEM(透過型電子顕微鏡)を用いた従来の測定により行うことができる。 The average dislocation density of the ferrite phase can be measured by conventional measurement using a TEM (transmission electron microscope).
 上記焼鈍後の冷却は、鋼板にめっきしない場合には、そのまま室温まで行われればよい。また、鋼板にめっきする場合には、以下のようにして製造することができる。 The cooling after the annealing may be performed to room temperature as it is when the steel plate is not plated. Moreover, when plating on a steel plate, it can manufacture as follows.
 鋼板の表面に溶融亜鉛めっきを施して溶融亜鉛めっき鋼板を製造する場合には、上記焼鈍後の冷却を430~500℃の温度範囲で停止し、次いで冷延鋼板を溶融亜鉛のめっき浴に浸漬して溶融亜鉛めっき処理を行う。めっき浴の条件は通常の範囲内とすればよい。めっき処理後は室温まで冷却すればよい。 When producing hot dip galvanized steel sheets by hot dip galvanizing on the surface of the steel sheet, the cooling after the annealing is stopped in a temperature range of 430 to 500 ° C., and then the cold rolled steel sheet is immersed in a hot dip galvanizing bath. Then, hot dip galvanizing is performed. The conditions for the plating bath may be within the normal range. What is necessary is just to cool to room temperature after a plating process.
 鋼板の表面に合金化溶融亜鉛めっきを施して合金化溶融亜鉛めっき鋼板を製造する場合には、鋼板に溶融亜鉛めっき処理を施した後、鋼板を室温まで冷却する前に、450~620℃の温度で溶融亜鉛めっきの合金化処理を行う。合金化処理条件は、通常の範囲内とすればよい。 In the case of producing an alloyed hot dip galvanized steel sheet by subjecting the surface of the steel sheet to galvannealed steel sheet, after the hot dip galvanizing treatment is performed on the steel sheet, before the steel sheet is cooled to room temperature, the temperature is changed to 450 to 620 ° C. An alloying treatment of hot dip galvanizing is performed at a temperature. The alloying treatment conditions may be within a normal range.
 以上のように鋼板を製造することによって、本実施形態に係る鋼板を得ることができる。 By manufacturing a steel plate as described above, the steel plate according to this embodiment can be obtained.
 本開示の鋼板を、例を参照しながらより具体的に説明する。ただし、以下の例は本開示の鋼板及びその製造方法の例であり、本開示の鋼板及びその製造方法は以下の例の態様に限定されるものではない。 The steel sheet of the present disclosure will be described more specifically with reference to an example. However, the following examples are examples of the steel sheet of the present disclosure and the manufacturing method thereof, and the steel sheet of the present disclosure and the manufacturing method thereof are not limited to the following examples.
 1.評価用鋼板の製造
 表1に示す化学成分を有する鋼を転炉で溶製し、連続鋳造により245mm厚のスラブを得た。
1. Production of Steel Plate for Evaluation Steel having chemical components shown in Table 1 was melted in a converter and a slab having a thickness of 245 mm was obtained by continuous casting.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 得られたスラブを表2に示す仕上温度及び巻取り温度で熱間圧延し、2.6mm厚の熱延鋼板を製板した。得られた熱延鋼板に、表2に示すオーステナイト相分率となる温度及び保持時間で熱処理を行い、次いで酸洗し、さらに、表2に示す冷間圧延率で冷間圧延を施して、1.2mm厚の冷延鋼板を製板した。熱延鋼板の熱処理は、窒素98%及び水素2%の還元雰囲気で行った。以下の表2~表7に示す「鋼」欄のアルファベット文字は、表1の「鋼」欄に示す鋼種記号の各々に対応する。 The obtained slab was hot-rolled at a finishing temperature and a winding temperature shown in Table 2 to produce a 2.6 mm thick hot-rolled steel sheet. The obtained hot-rolled steel sheet is subjected to a heat treatment at a temperature and a holding time at an austenite phase fraction shown in Table 2, then pickled, and further subjected to cold rolling at a cold rolling rate shown in Table 2, A cold rolled steel sheet having a thickness of 1.2 mm was made. The heat treatment of the hot-rolled steel sheet was performed in a reducing atmosphere of 98% nitrogen and 2% hydrogen. The alphabetical characters in the “Steel” column shown in Tables 2 to 7 below correspond to the steel type symbols shown in the “Steel” column of Table 1, respectively.
 得られた冷延鋼板に、表2に示すオーステナイト相分率となる温度及び保持時間で焼鈍を行った。冷延鋼板の焼鈍は、窒素98%及び水素2%の還元雰囲気で行った。 The obtained cold-rolled steel sheet was annealed at a temperature and holding time at which the austenite phase fraction shown in Table 2 was obtained. The cold rolled steel sheet was annealed in a reducing atmosphere of 98% nitrogen and 2% hydrogen.
 熱延鋼板の熱処理温度と冷延鋼板の焼鈍温度とは、表2に示されるオーステナイト相分率に相当する温度差であった。 The heat treatment temperature of the hot-rolled steel sheet and the annealing temperature of the cold-rolled steel sheet were a temperature difference corresponding to the austenite phase fraction shown in Table 2.
 焼鈍の温度保持後に、鋼板を、表2に示す平均冷却速度、冷却停止温度、及び保持時間の条件で冷却した。冷却停止温度及び保持時間の数値を記載していない例は、焼鈍後の冷却で、100℃以上500℃以下の温度域において冷却停止および保持を行わず、焼鈍後そのまま室温まで冷却した例を意味する。 After holding the annealing temperature, the steel sheet was cooled under the conditions of average cooling rate, cooling stop temperature, and holding time shown in Table 2. The example which does not describe the numerical values of the cooling stop temperature and the holding time means an example of cooling after annealing, cooling is not performed in the temperature range of 100 ° C. or higher and 500 ° C. or lower, and is cooled to room temperature as it is after annealing. To do.
 一部の焼鈍冷延鋼板については、焼鈍を行った後、焼鈍後の冷却を400℃で停止し、冷延鋼板を400℃の溶融亜鉛のめっき浴に2秒間浸漬して、溶融亜鉛めっき処理を行った。めっき浴の条件は従来のものと同じである。後述する合金化処理を施さない場合、400℃の保持後に、平均冷却速度10℃/秒で室温まで冷却した。 For some annealed cold-rolled steel sheets, after annealing, cooling after annealing was stopped at 400 ° C., and the cold-rolled steel sheets were immersed in a 400 ° C. hot-dip galvanizing bath for 2 seconds to perform hot dip galvanizing treatment Went. The conditions of the plating bath are the same as the conventional one. In the case where the alloying process described later was not performed, the sample was cooled to room temperature at an average cooling rate of 10 ° C./second after maintaining at 400 ° C.
 一部の焼鈍冷延鋼板については、溶融亜鉛めっき処理を行った後に、室温に冷却せずに、続いて合金化処理を施した。500℃まで加熱し、500℃で5秒間保持して合金化処理を行い、その後、平均冷却速度10℃/秒で室温まで冷却した。 Some of the annealed cold-rolled steel sheets were hot-dip galvanized and then subjected to alloying without cooling to room temperature. The mixture was heated to 500 ° C., held at 500 ° C. for 5 seconds to perform alloying treatment, and then cooled to room temperature at an average cooling rate of 10 ° C./second.
 このようにして得られた焼鈍冷延鋼板に、圧下率が6.0%のスキンパス圧延を施して、鋼板を作製した。 The annealed cold-rolled steel sheet thus obtained was subjected to skin pass rolling with a rolling reduction of 6.0% to produce a steel sheet.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示す条件で作製した鋼板とは別に、表3に示すように、3.0%、9.0%及び12.0%の圧下率(SPM)でスキンパス圧延を施して、鋼板を作製した。ただし、表3の番号102、105、108、111、115は参照用であり、それぞれ表2の番号2、5、10、13、15と同じものである。下記の表5及び表6においても同様である。 Separately from the steel sheets produced under the conditions shown in Table 2, as shown in Table 3, skin pass rolling was performed at 3.0%, 9.0% and 12.0% reduction ratios (SPM) to produce steel sheets. did. However, numbers 102, 105, 108, 111, and 115 in Table 3 are for reference and are the same as numbers 2, 5, 10, 13, and 15 in Table 2, respectively. The same applies to Tables 5 and 6 below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2及び表3に示す条件で作製した鋼板とは別に、表4に示す条件で鋼板(発明例、比較例)を作製した。 Separately from the steel sheets produced under the conditions shown in Tables 2 and 3, steel sheets (invention examples and comparative examples) were produced under the conditions shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 2.評価方法
 表2及び表3の各例で得られた鋼板について、ミクロ組織観察、引張試験、伸び試験、及び穴広げ試験を実施して、フェライト相(α)、オーステナイト相(γ)、焼き戻しマルテンサイト相(T.M)、マルテンサイト相(F.M)、及び未再結晶フェライト(未結晶α)の面積率、CMnγ/CMnα、降伏点(YP)、引張強度(TS)、伸び(El)、穴広げ性(λ)、降伏伸び(YP-El)、降伏比(YR)、及びTS×Elを評価した。各評価の方法は次のとおりである。表4の各例で得られた鋼板について、表2及び表3の各例で得られた鋼板について行った試験及び評価に加えて、局所伸び試験を実施した。
2. Evaluation method The steel sheet obtained in each example of Table 2 and Table 3 was subjected to microstructure observation, tensile test, elongation test, and hole expansion test, and ferrite phase (α), austenite phase (γ), and tempered. Martensite phase (TM), martensite phase (FM), unrecrystallized ferrite (non-crystalline α) area ratio, CMnγ / CMnα, yield point (YP), tensile strength (TS), elongation ( El), hole expansibility (λ), yield elongation (YP-El), yield ratio (YR), and TS × El were evaluated. The method of each evaluation is as follows. About the steel plate obtained by each example of Table 4, in addition to the test and evaluation which were performed about the steel plate obtained by each example of Table 2 and Table 3, the local elongation test was implemented.
 オーステナイト相の面積率は、後方散乱電子回折(EBSP:Electron Back Scattering pattern)を用いて測定した。鋼板を板厚方向と圧延方向に平行に切断したL断面について、ダイヤモンドバフ研磨及びアルミナ研磨による鏡面研磨を行い、次いで3%ナイタールによりミクロ組織を現出させて、表面から1/8位置における100μm×100μmの範囲を0.1μmピッチで8視野測定し、測定値を平均して算出した。 The area ratio of the austenite phase was measured using backscattered electron diffraction (EBSP: Electron Back Scattering pattern). The L cross-section obtained by cutting the steel plate in parallel with the plate thickness direction and the rolling direction was subjected to mirror polishing by diamond buffing and alumina polishing, and then the microstructure was revealed with 3% nital, and 100 μm at 1/8 position from the surface. The x100 μm range was measured with 8 visual fields at a pitch of 0.1 μm, and the measured values were averaged.
 フェライト相、焼き戻しマルテンサイト相、及びマルテンサイト相の面積率は、走査型電子顕微鏡(SEM)による組織観察から算出した。上記鏡面研磨及びナイタール処理をしたミクロ組織について、倍率5000倍の走査型電子顕微鏡で、鋼板の幅方向中央の表面から1/8位置における0.2mm×0.3mmの範囲を0.5mm間隔で2視野観察した。面積率は、JIS-G0555点算法で400~500点を測定して算出した。 The area ratios of the ferrite phase, the tempered martensite phase, and the martensite phase were calculated from structural observation with a scanning electron microscope (SEM). About the microstructure which carried out the said mirror surface polishing and the nital processing, the range of 0.2 mm x 0.3 mm in the 1/8 position from the surface of the center of the width direction of a steel plate with a scanning electron microscope of 5000 times is carried out at intervals of 0.5 mm. Two visual fields were observed. The area ratio was calculated by measuring 400 to 500 points using the JIS-G0555 point calculation method.
 フェライト相(未再結晶フェライト含む)は灰色の下地組織として、マルテンサイトは白色の組織として、判別した。焼き戻しマルテンサイトは、マルテンサイトと同様に白色にみえるが、結晶粒内に下部組織が確認されたものを焼き戻しマルテンサイトと判断した。 The ferrite phase (including non-recrystallized ferrite) was identified as a gray background structure, and martensite was identified as a white structure. Tempered martensite appears white like martensite, but the one in which the substructure was confirmed in the crystal grains was judged to be tempered martensite.
 未再結晶フェライトの面積率は、上述のようにフェライト相の結晶粒を100~150個判別し、判別した結晶粒に対してEBSP測定を行って各結晶粒のKAM値を算出し、KAM値で1°以上の領域を未再結晶フェライト組織として判断することにより算出した。 The area ratio of non-recrystallized ferrite is determined as follows. 100 to 150 ferrite phase grains are discriminated, and EBSP measurement is performed on the discriminated crystal grains to calculate the KAM value of each crystal grain. And a region of 1 ° or more was calculated as an unrecrystallized ferrite structure.
 CMnγ/CMnαは、EBSP、SEM、及び電子線マイクロアナライザ(EMPA)により測定した。上記鏡面研磨及びナイタール処理をしたミクロ組織について、EBSP及びSEMを用いてオーステナイト相及びフェライト相をそれぞれ10点選択し、加速電圧15kVのEMPAにより、それぞれ10点の平均値をCMnγ及びCMnαとして測定し、CMnγ/CMnαを算出した。 CMnγ / CMnα was measured by EBSP, SEM, and electron beam microanalyzer (EMPA). For the microstructure subjected to the mirror polishing and the nital treatment, 10 points each of austenite phase and ferrite phase were selected using EBSP and SEM, and the average values of 10 points were measured as CMnγ and CMnα, respectively, using EMPA with an acceleration voltage of 15 kV. CMnγ / CMnα was calculated.
 (機械的性質の試験方法)
 降伏点(YP)及び降伏伸び(YP-El)は、JIS-Z2241に規定される方法により測定した。なお、降伏点は、降伏現象があるときは下降伏点を意味し、降伏現象がないときは0.2%耐力を意味する。
(Test method for mechanical properties)
The yield point (YP) and the yield elongation (YP-El) were measured by the methods specified in JIS-Z2241. The yield point means a falling yield point when there is a yield phenomenon, and 0.2% proof stress when there is no yield phenomenon.
 鋼板の圧延方向に直角方向からJIS5号引張試験片を採取し、引張強度(TS)及び伸び(El)を測定し、TS×uELを算出した。引張試験は、JIS5号引張試験片を用いて、JIS Z2241:2011に規定される方法で行った。伸びの測定は、平行部の長さが60mmで、歪を測定する基準となる標点距離が50mmのJIS5号試験片を用いて、JIS Z2241:2011に規定される方法で行った。均一伸びは、最大試験強さ(TS)に到達するまでに得られる伸び(標点間で測定した歪)である。局所伸びの測定は、破断した試験片を突き合せた際の伸び(全伸び)の値から最大荷重点の伸び(均一伸び)の値を引くことにより算出した。 A JIS No. 5 tensile test piece was taken from the direction perpendicular to the rolling direction of the steel sheet, the tensile strength (TS) and the elongation (El) were measured, and TS × uEL was calculated. The tensile test was performed by the method prescribed | regulated to JISZ2241: 2011 using the JIS5 tension test piece. The elongation was measured by a method defined in JIS Z2241: 2011 using a JIS No. 5 test piece having a parallel part length of 60 mm and a standard distance of 50 mm as a reference for measuring strain. Uniform elongation is the elongation (strain measured between gauge points) obtained until the maximum test strength (TS) is reached. The measurement of local elongation was calculated by subtracting the value of elongation at the maximum load point (uniform elongation) from the value of elongation (total elongation) when the fractured specimens were butted.
 穴広げ性(λ)は次の方法で評価した。鋼板の圧延方向に直角方向から100mm×100mmの穴広げ用試験片を切り出し、クリアランス12.5%でその中央に直径10mmの穴を打ち抜いた。クリアランスは、クリアランス(%)=(金型の穴径-ダイスの直径)/(鋼板の板厚)/2×100で定義される。その穴付き試験片を円錐ポンチで押し出し、穴を広げ、穴縁が内部に割れが進展した時点で試験を停止し、その穴径d(単位mm)を測定した。穴広げ率λ(%)を、λ=100×(d-10)/10の式から算出した。 The hole expansibility (λ) was evaluated by the following method. A test piece for hole expansion of 100 mm × 100 mm was cut out from the direction perpendicular to the rolling direction of the steel sheet, and a hole with a diameter of 10 mm was punched in the center with a clearance of 12.5%. The clearance is defined as Clearance (%) = (Die hole diameter−Die diameter) / (Steel plate thickness) / 2 × 100. The test piece with a hole was extruded with a conical punch, the hole was widened, and the test was stopped when a crack progressed inside the hole edge, and the hole diameter d (unit: mm) was measured. The hole expansion ratio λ (%) was calculated from the equation: λ = 100 × (d−10) / 10.
 3.評価結果
 表2に示す条件で作製した鋼板についての評価結果を表5に示す。25000MPa・%以上のTS×El、18%以上の穴広げ率(λ)、及び0.68以上の降伏比(YR)を示す鋼板を、高降伏点、優れた伸び特性、小さい降伏伸び、及び高強度を有する鋼板として評価した。
3. Evaluation Results Table 5 shows the evaluation results for the steel plates produced under the conditions shown in Table 2. A steel plate exhibiting TS × El of 25000 MPa ·% or more, a hole expansion ratio (λ) of 18% or more, and a yield ratio (YR) of 0.68 or more, a high yield point, excellent elongation characteristics, a small yield elongation, and Evaluation was made as a steel sheet having high strength.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表3に示す条件で作製した鋼板についての評価結果を表6に示す。9.0%及び12.0%の圧下率(SPM)でスキンパス圧延を施した鋼板(発明例)は、6.0%の圧下率(SPM)でスキンパス圧延を施した鋼板(発明例)と同様に、高降伏点、良好な伸び特性、及び高強度を維持しながら、非常に小さい降伏伸び(YP-El)を示した。3.0%の圧下率(SPM)でスキンパス圧延を施した鋼板(比較例)は、6.0%の圧下率(SPM)でスキンパス圧延を施した鋼板(発明例)と比較して、降伏点(YP)及び降伏比(YR)は低くなり、大きい降伏伸び(YP-El)を示した。 Table 6 shows the evaluation results for the steel sheets produced under the conditions shown in Table 3. A steel plate (invention example) subjected to skin pass rolling at a reduction rate (SPM) of 9.0% and 12.0% is a steel plate (invention example) subjected to skin pass rolling at a reduction rate (SPM) of 6.0%. Similarly, very low yield elongation (YP-El) was exhibited while maintaining high yield point, good elongation characteristics, and high strength. A steel plate subjected to skin pass rolling at a reduction rate (SPM) of 3.0% (comparative example) is yielded compared with a steel plate subjected to skin pass rolling at a reduction rate (SPM) of 6.0% (invention example). The point (YP) and yield ratio (YR) were low, indicating a large yield elongation (YP-El).
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表4に示す条件で作製した鋼板についての評価結果を表7に示す。表4に示す条件で鋼板を作製することにより、1.5%以上の局部伸びを示しつつ、25000MPa・%以上のTS×El、18%以上の穴広げ率(λ)、及び0.68以上の降伏比(YR)を示す鋼板が得られた。 Table 7 shows the evaluation results for the steel sheets produced under the conditions shown in Table 4. By producing a steel sheet under the conditions shown in Table 4, while exhibiting a local elongation of 1.5% or more, TS × El of 25000 MPa ·% or more, a hole expansion rate (λ) of 18% or more, and 0.68 or more A steel sheet having a yield ratio (YR) of 1 was obtained.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007

Claims (13)

  1.  質量%で、
     C:0.10%超0.55%未満、
     Si:0.001%以上3.50%未満、
     Mn:4.00%超9.00%未満、
     sol.Al:0.001%以上3.00%未満、
     P:0.100%以下、
     S:0.010%以下、
     N:0.050%未満、
     O:0.020%未満、
     Cr:0%以上2.00%未満、
     Mo:0%以上2.00%以下、
     W:0%以上2.00%以下、
     Cu:0%以上2.00%以下、
     Ni:0%以上2.00%以下、
     Ti:0%以上0.300%以下、
     Nb:0%以上0.300%以下、
     V:0%以上0.300%以下、
     B:0%以上0.010%以下、
     Ca:0%以上0.010%以下、
     Mg:0%以上0.010%以下、
     Zr:0%以上0.010%以下、
     REM:0%以上0.010%以下、
     Sb:0%以上0.050%以下、
     Sn:0%以上0.050%以下、及び
     Bi:0%以上0.050%以下
     を含有し、残部が鉄および不純物からなり、
     L断面において、表面から厚みの1/8位置における金属組織が、面積率で、10%以上のオーステナイト相及び10%以上のフェライト相を含有し、
     前記フェライト相の内、未再結晶フェライトの面積率が30%以上、70%以下であり、
     前記オーステナイト相における平均Mn濃度CMnγと前記フェライト相における平均Mn濃度CMnαとの比であるCMnγ/CMnαが1.2以上であり、
     前記フェライト相の平均転位密度が4×1012/m2以上である
     ことを特徴とする鋼板。
    % By mass
    C: more than 0.10% and less than 0.55%,
    Si: 0.001% or more and less than 3.50%,
    Mn: more than 4.00% and less than 9.00%,
    sol. Al: 0.001% or more and less than 3.00%,
    P: 0.100% or less,
    S: 0.010% or less,
    N: less than 0.050%,
    O: less than 0.020%,
    Cr: 0% or more and less than 2.00%,
    Mo: 0% or more and 2.00% or less,
    W: 0% to 2.00%,
    Cu: 0% or more and 2.00% or less,
    Ni: 0% or more and 2.00% or less,
    Ti: 0% or more and 0.300% or less,
    Nb: 0% or more and 0.300% or less,
    V: 0% or more and 0.300% or less,
    B: 0% or more and 0.010% or less,
    Ca: 0% or more and 0.010% or less,
    Mg: 0% or more and 0.010% or less,
    Zr: 0% or more and 0.010% or less,
    REM: 0% or more and 0.010% or less,
    Sb: 0% or more and 0.050% or less,
    Sn: 0% or more and 0.050% or less and Bi: 0% or more and 0.050% or less, with the balance being iron and impurities,
    In the L cross section, the metal structure at 1/8 position of the thickness from the surface contains an austenite phase of 10% or more and a ferrite phase of 10% or more in area ratio,
    Among the ferrite phases, the area ratio of non-recrystallized ferrite is 30% or more and 70% or less,
    CMnγ / CMnα, which is the ratio of the average Mn concentration CMnγ in the austenite phase and the average Mn concentration CMnα in the ferrite phase, is 1.2 or more,
    The average dislocation density of the ferrite phase is 4 × 10 12 / m 2 or more.
  2.  質量%で、
     Cr:0.01%以上2.00%未満、
     Mo:0.01%以上2.00%以下、
     W:0.01%以上2.00%以下、
     Cu:0.01%以上2.00%以下、及び
     Ni:0.01%以上2.00%以下
     からなる群から選択される1種又は2種以上を含有することを特徴とする、請求項1に記載の鋼板。
    % By mass
    Cr: 0.01% or more and less than 2.00%,
    Mo: 0.01% or more and 2.00% or less,
    W: 0.01% or more and 2.00% or less,
    It contains one or more selected from the group consisting of Cu: 0.01% or more and 2.00% or less, and Ni: 0.01% or more and 2.00% or less. The steel plate according to 1.
  3.  質量%で、
     Ti:0.005%以上0.300%以下、
     Nb:0.005%以上0.300%以下、及び
     V:0.005%以上0.300%以下
     からなる群から選択される1種又は2種以上を含有することを特徴とする、請求項1または2に記載の鋼板。
    % By mass
    Ti: 0.005% or more and 0.300% or less,
    It contains one or more selected from the group consisting of Nb: 0.005% or more and 0.300% or less, and V: 0.005% or more and 0.300% or less. The steel plate according to 1 or 2.
  4.  質量%で、
     B:0.0001%以上0.010%以下、
     Ca:0.0001%以上0.010%以下、
     Mg:0.0001%以上0.010%以下、
     Zr:0.0001%以上0.010%以下、及び
     REM:0.0001%以上0.010%以下
     からなる群から選択される1種又は2種以上を含有することを特徴とする、請求項1~3のいずれか一項に記載の鋼板。
    % By mass
    B: 0.0001% or more and 0.010% or less,
    Ca: 0.0001% or more and 0.010% or less,
    Mg: 0.0001% or more and 0.010% or less,
    Zr: 0.0001% or more and 0.010% or less, and REM: 0.0001% or more and 0.010% or less, comprising one or more selected from the group consisting of: The steel sheet according to any one of 1 to 3.
  5.  質量%で、
     Sb:0.0005%以上0.050%以下、
     Sn:0.0005%以上0.050%以下、及び
     Bi:0.0005%以上0.050%以下
     からなる群から選択される1種又は2種以上を含有することを特徴とする、請求項1~4のいずれか一項に記載の鋼板。
    % By mass
    Sb: 0.0005% or more and 0.050% or less,
    It contains one or more selected from the group consisting of Sn: 0.0005% or more and 0.050% or less, and Bi: 0.0005% or more and 0.050% or less. The steel sheet according to any one of 1 to 4.
  6.  前記金属組織が、面積率で、5%以上の焼き戻しマルテンサイト相をさらに含有し、マルテンサイト相は15%未満に制限される、請求項1~5のいずれか一項に記載の鋼板。 The steel sheet according to any one of claims 1 to 5, wherein the metal structure further contains a tempered martensite phase of 5% or more by area ratio, and the martensite phase is limited to less than 15%.
  7.  前記鋼板の表面に溶融亜鉛めっき層を有することを特徴とする、請求項1~6のいずれか一項に記載の鋼板。 The steel plate according to any one of claims 1 to 6, further comprising a hot-dip galvanized layer on the surface of the steel plate.
  8.  前記鋼板の表面に合金化溶融亜鉛めっき層を有することを特徴とする、請求項1~6のいずれか一項に記載の鋼板。 The steel sheet according to any one of claims 1 to 6, wherein the steel sheet has an alloyed hot-dip galvanized layer on the surface thereof.
  9.  請求項1~6のいずれか一項に記載の成分を有する鋼に熱間圧延を施して熱延鋼板とすること、
     前記熱延鋼板に、オーステナイト相分率が20%~50%となる温度域にて1時間以上の熱処理を行い、その後、酸洗及び冷間圧延を施して冷延鋼板とすること、
     前記冷間圧延における冷間圧延率を30%以上70%以下とすること、
     前記冷延鋼板を、オーステナイト相分率が20%~50%となる温度域にて、30秒間以上15分間未満保持して焼鈍すること、及び
     前記焼鈍後に、圧下率が5.0%以上のスキンパス圧延を施すこと、並びに
     前記焼鈍の温度保持後に、平均冷却速度2℃/秒以上2000℃/秒以下で冷却し、100℃以上500℃以下の温度域で10秒間以上1000秒間以下保持すること
     を特徴とする鋼板の製造方法。
    Applying hot rolling to the steel having the component according to any one of claims 1 to 6 to obtain a hot-rolled steel sheet,
    The hot-rolled steel sheet is subjected to heat treatment for 1 hour or more in a temperature range where the austenite phase fraction is 20% to 50%, and then subjected to pickling and cold rolling to form a cold-rolled steel sheet,
    The cold rolling rate in the cold rolling is 30% or more and 70% or less,
    Annealing the cold-rolled steel sheet in a temperature range where the austenite phase fraction is 20% to 50% and holding for 30 seconds to less than 15 minutes; and after the annealing, the rolling reduction is 5.0% or more Applying skin pass rolling, and maintaining the annealing temperature, cooling at an average cooling rate of 2 ° C./second to 2000 ° C./second and holding at a temperature range of 100 ° C. to 500 ° C. for 10 seconds to 1000 seconds. A method for producing a steel sheet characterized by the above.
  10.  前記熱処理の温度と前記焼鈍の温度との差が、オーステナイト相分率の差に換算して15%以下相当であることを特徴とする、請求項9に記載の鋼板の製造方法。 The method for producing a steel sheet according to claim 9, wherein a difference between the temperature of the heat treatment and the temperature of the annealing is equivalent to 15% or less in terms of a difference in austenite phase fraction.
  11.  前記熱間圧延が、750℃以上1000℃以下の温度での仕上圧延、及び300℃未満の温度での巻取りを含む、請求項9または10に記載の鋼板の製造方法。 The method for producing a steel sheet according to claim 9 or 10, wherein the hot rolling includes finish rolling at a temperature of 750 ° C or higher and 1000 ° C or lower and winding at a temperature of less than 300 ° C.
  12.  前記焼鈍後に、溶融亜鉛めっき処理を施し、次いで前記スキンパス圧延を行うことを特徴とする、請求項9~11のいずれか一項に記載の鋼板の製造方法。 The method for producing a steel sheet according to any one of claims 9 to 11, wherein after the annealing, a hot dip galvanizing treatment is performed, and then the skin pass rolling is performed.
  13.  前記溶融亜鉛めっき処理を施した後、450℃以上620℃以下の温度域で前記溶融亜鉛めっきの合金化処理を施し、次いで前記スキンパス圧延を行うことを特徴とする、請求項12に記載の鋼板の製造方法。 The steel sheet according to claim 12, wherein after the hot dip galvanizing treatment is performed, the hot dip galvanizing is alloyed in a temperature range of 450 ° C or higher and 620 ° C or lower, and then the skin pass rolling is performed. Manufacturing method.
PCT/JP2019/014877 2018-04-03 2019-04-03 Steel sheet and method for producing steel sheet WO2019194250A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019543954A JP6683292B2 (en) 2018-04-03 2019-04-03 Steel plate and method for manufacturing steel plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-071482 2018-04-03
JP2018071482 2018-04-03

Publications (1)

Publication Number Publication Date
WO2019194250A1 true WO2019194250A1 (en) 2019-10-10

Family

ID=68100328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014877 WO2019194250A1 (en) 2018-04-03 2019-04-03 Steel sheet and method for producing steel sheet

Country Status (3)

Country Link
JP (1) JP6683292B2 (en)
TW (1) TWI688666B (en)
WO (1) WO2019194250A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021070640A1 (en) * 2019-10-11 2021-04-15 Jfeスチール株式会社 High-strength steel sheet, shock-absorbing member, and method for producing high-strength steel sheet
WO2021070639A1 (en) * 2019-10-11 2021-04-15 Jfeスチール株式会社 High-strength steel sheet, impact absorbing member, and method for manufacturing high-strength steel sheet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013061545A1 (en) * 2011-10-24 2013-05-02 Jfeスチール株式会社 Method for producing high-strength steel sheet having superior workability
WO2016067624A1 (en) * 2014-10-30 2016-05-06 Jfeスチール株式会社 High-strength steel sheet, high-strength hot-dip galvanized steel sheet, high-strength molten aluminum-plated steel sheet, and high-strength electrogalvanized steel sheet, and methods for manufacturing same
WO2017183349A1 (en) * 2016-04-19 2017-10-26 Jfeスチール株式会社 Steel plate, plated steel plate, and production method therefor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5418047B2 (en) * 2008-09-10 2014-02-19 Jfeスチール株式会社 High strength steel plate and manufacturing method thereof
JP5825119B2 (en) * 2011-04-25 2015-12-02 Jfeスチール株式会社 High-strength steel sheet with excellent workability and material stability and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013061545A1 (en) * 2011-10-24 2013-05-02 Jfeスチール株式会社 Method for producing high-strength steel sheet having superior workability
WO2016067624A1 (en) * 2014-10-30 2016-05-06 Jfeスチール株式会社 High-strength steel sheet, high-strength hot-dip galvanized steel sheet, high-strength molten aluminum-plated steel sheet, and high-strength electrogalvanized steel sheet, and methods for manufacturing same
WO2017183349A1 (en) * 2016-04-19 2017-10-26 Jfeスチール株式会社 Steel plate, plated steel plate, and production method therefor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021070640A1 (en) * 2019-10-11 2021-04-15 Jfeスチール株式会社 High-strength steel sheet, shock-absorbing member, and method for producing high-strength steel sheet
WO2021070639A1 (en) * 2019-10-11 2021-04-15 Jfeスチール株式会社 High-strength steel sheet, impact absorbing member, and method for manufacturing high-strength steel sheet
JPWO2021070639A1 (en) * 2019-10-11 2021-10-21 Jfeスチール株式会社 Manufacturing method of high-strength steel sheet, shock absorbing member and high-strength steel sheet
JPWO2021070640A1 (en) * 2019-10-11 2021-10-21 Jfeスチール株式会社 Manufacturing method of high-strength steel sheet, shock absorbing member and high-strength steel sheet
CN114585758A (en) * 2019-10-11 2022-06-03 杰富意钢铁株式会社 High-strength steel sheet, impact absorbing member, and method for producing high-strength steel sheet
CN114585759A (en) * 2019-10-11 2022-06-03 杰富意钢铁株式会社 High-strength steel sheet, impact absorbing member, and method for producing high-strength steel sheet
CN114585758B (en) * 2019-10-11 2023-03-24 杰富意钢铁株式会社 High-strength steel sheet, impact absorbing member, and method for producing high-strength steel sheet
CN114585759B (en) * 2019-10-11 2023-04-07 杰富意钢铁株式会社 High-strength steel sheet, impact absorbing member, and method for producing high-strength steel sheet

Also Published As

Publication number Publication date
TW201942385A (en) 2019-11-01
JPWO2019194250A1 (en) 2020-04-30
JP6683292B2 (en) 2020-04-15
TWI688666B (en) 2020-03-21

Similar Documents

Publication Publication Date Title
KR101915917B1 (en) High-strength steel sheet, high-strength hot-dip galvanized steel sheet, high-strength hot-dip aluminum-coated steel sheet, and high-strength electrogalvanized steel sheet, and methods for manufacturing same
JP5983895B2 (en) High strength steel plate and method for producing the same, and method for producing high strength galvanized steel plate
CN110177896B (en) Steel sheet and method for producing same
CN109642288B (en) High-strength steel sheet and method for producing same
KR101913053B1 (en) High-strength steel sheet, high-strength hot-dip galvanized steel sheet, high-strength hot-dip aluminum-coated steel sheet, and high-strength electrogalvanized steel sheet, and methods for manufacturing same
JP5983896B2 (en) High strength steel plate and method for producing the same, and method for producing high strength galvanized steel plate
JP5488129B2 (en) Cold rolled steel sheet and method for producing the same
CN114990431A (en) Alloyed hot-dip galvanized steel sheet and method for producing same
JP4926814B2 (en) High strength steel plate with controlled yield point elongation and its manufacturing method
JP2017048412A (en) Hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet and production methods therefor
JPWO2017131053A1 (en) High-strength steel sheet for warm working and manufacturing method thereof
KR20190073469A (en) High strength steel sheet and manufacturing method thereof
JP5239562B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
KR102119017B1 (en) High strength cold rolled thin steel sheet and method for manufacturing the same
JP6683291B2 (en) Steel plate and method for manufacturing steel plate
JP6683292B2 (en) Steel plate and method for manufacturing steel plate
JP6252709B2 (en) High-strength steel sheet for warm working and manufacturing method thereof
JP6744003B1 (en) Steel plate
KR20220066364A (en) High-strength steel sheet and manufacturing method thereof
JP6760543B1 (en) Steel plate and steel plate manufacturing method
JP2018003115A (en) High strength steel sheet and manufacturing method therefor
WO2020017607A1 (en) Steel plate
JP7417169B2 (en) Steel plate and its manufacturing method
CN114945690B (en) Steel sheet and method for producing same
CN115362280B (en) Steel sheet and method for producing same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019543954

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19782356

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19782356

Country of ref document: EP

Kind code of ref document: A1