WO2021199935A1 - Medical care system - Google Patents

Medical care system Download PDF

Info

Publication number
WO2021199935A1
WO2021199935A1 PCT/JP2021/008974 JP2021008974W WO2021199935A1 WO 2021199935 A1 WO2021199935 A1 WO 2021199935A1 JP 2021008974 W JP2021008974 W JP 2021008974W WO 2021199935 A1 WO2021199935 A1 WO 2021199935A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional data
unit
dimensional
storage unit
data
Prior art date
Application number
PCT/JP2021/008974
Other languages
French (fr)
Japanese (ja)
Inventor
泰徳 山下
丸山 智司
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Priority to JP2022511716A priority Critical patent/JPWO2021199935A1/ja
Publication of WO2021199935A1 publication Critical patent/WO2021199935A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/045Control thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters

Definitions

  • This disclosure relates to the medical system.
  • diagnostic imaging methods such as IVUS (Intravascular Ultrasound) and OCT (Optical Coherence Tomography) have been used as methods for obtaining tomographic images of luminal organs.
  • the present disclosure has been made in view of the above problems, and in a method of generating 3D image data of a luminal organ using a diagnostic imaging method such as IVUS, it is necessary to improve the storage efficiency of a storage or the like for storing data. With the goal.
  • the medical system includes a first acquisition unit, a second acquisition unit, a storage unit, an input unit, and a setting unit.
  • the first acquisition unit is configured to be able to acquire the three-dimensional coordinates of the luminal organ of the subject.
  • the second acquisition unit is provided with a transmission / reception unit that is inserted into the tract organ of the subject and can transmit / receive waves of a predetermined wavelength at the tip, and can generate two-dimensional data from the signal acquired by the transmission / reception unit. It is configured.
  • the storage unit stores the two-dimensional data generated from the signal acquired by the second acquisition unit.
  • the input unit is configured to be able to specify the range of the two-dimensional data associated with the three-dimensional coordinates when associating the three-dimensional coordinates with the two-dimensional data.
  • the setting unit sets the amount of two-dimensional data of the luminal organ stored in the storage unit in association with the three-dimensional coordinates based on the above range.
  • the medical system includes a first acquisition unit, a second acquisition unit, a storage unit, an input unit, and a setting unit.
  • the first acquisition unit is configured to be able to acquire the three-dimensional coordinates of the luminal organ of the subject.
  • the second acquisition unit is provided with a transmission / reception unit that is inserted into the tract organ of the subject and can transmit / receive waves of a predetermined wavelength at the tip, and can generate two-dimensional data from the signal acquired by the transmission / reception unit. It is configured.
  • the storage unit stores the two-dimensional data generated from the signal acquired by the second acquisition unit.
  • the input unit is configured to be able to specify the range of the two-dimensional data associated with the three-dimensional coordinates when associating the three-dimensional coordinates with the two-dimensional data.
  • the setting unit selects the two-dimensional data to be associated with the three-dimensional coordinates from the two-dimensional data stored in the storage unit based on the above range.
  • the medical system 1 is used in a percutaneous coronary intervention (PCI) used in treating a patient having a cardiovascular disease.
  • PCI percutaneous coronary intervention
  • the medical system 1 in the present disclosure includes a first acquisition unit 100, a second acquisition unit 200, an external device 300, and a main server 400. The details will be described below.
  • the first acquisition unit 100 is configured to be able to acquire the three-dimensional coordinates of the luminal organ of the subject.
  • the first acquisition unit 100 includes an irradiation unit 110, a detection unit 120, a bed 130, a first storage unit 140, a processor 150, and an input / output unit 160.
  • the irradiation unit 110 is configured to be capable of irradiating radiation having a predetermined wavelength such as X-rays toward the sleeper 130.
  • the irradiation unit 110 can be mounted on a gantry such as a known medical CT.
  • the irradiation range of the radiation emitted from the irradiation unit 110 can be regulated by a diaphragm or the like.
  • the detection unit 120 receives the X-rays and the like irradiated from the irradiation unit 110.
  • the detection unit 120 can include an image sensor such as CMOS.
  • the detection unit 120 can be mounted on a known medical CT gantry or the like like the irradiation unit 110.
  • the irradiation unit 110 and the detection unit 120 can be configured to rotate the gantry at a position where the sleeper 130 can be irradiated with X-rays or the like.
  • the sleeper 130 is arranged at a position where X-rays and the like from the irradiation unit 110 can be irradiated.
  • the first storage unit 140 includes a ROM, a RAM, an auxiliary storage unit, and the like.
  • a program required for generating an X-ray image is stored in the ROM.
  • the data acquired by the detection unit 120 is read into the RAM, and the image generated by the processor 150 is displayed on a display or the like (not shown).
  • the processor 150 is, for example, a CPU or the like, and controls an irradiation unit 110, a detection unit 120, a sleeper 130, and a first storage unit 140.
  • the auxiliary storage unit of the first storage unit 140 includes at least one of an HDD (Hard Disk Drive), an SSD (Solid State Drive), and the like.
  • the processor 150 can form an image obtained by extracting a tomographic image (two-dimensional data) of a human body or a luminal organ such as a blood vessel from the data acquired by the detection unit 120.
  • the data such as the lumen organ formed by the processor 150 includes three-dimensional coordinates that can be associated with the two-dimensional data, and is stored in the auxiliary storage unit.
  • the first acquisition unit 100 is electrically connected to the main server 400 and is configured to be able to transmit the data stored in the auxiliary storage unit to the main server 400.
  • the position of the three-dimensional coordinates stored in the auxiliary storage unit may be specified by the processor 150 or may be specified by the user from the input / output unit 160. Further, the first acquisition unit 100 may be electrically connected to the main server 400 by wire or may be electrically connected wirelessly.
  • the input / output unit 160 can include at least one of a mouse, a keyboard, buttons, a touch panel, a display, and the like.
  • the input / output unit 160 allows the user to instruct the first acquisition unit 100 to acquire the three-dimensional coordinates, and can visually display the acquired three-dimensional coordinates to the user.
  • FIG. 2 is a diagram illustrating a pullback in the diagnostic imaging catheter according to the second acquisition unit 200.
  • FIG. 3 is a diagram showing the distal end side of the diagnostic imaging catheter according to the second acquisition unit 200.
  • FIG. 4 is a cross-sectional view showing the proximal end side of the diagnostic imaging catheter.
  • the second acquisition unit 200 is a dual type diagnostic imaging catheter having both functions of an intravascular ultrasonic diagnostic method (IVUS) and an optical coherence tomography diagnostic method (OCT).
  • IVUS intravascular ultrasonic diagnostic method
  • OCT optical coherence tomography diagnostic method
  • the medical device that can be connected to the external device 300 is not limited to the above, and may be, for example, a catheter for IVUS or a catheter used for purposes other than obtaining a diagnostic image (for example, a therapeutic catheter).
  • the diagnostic imaging catheter according to the second acquisition unit 200 will be described with reference to FIGS. 1 to 4.
  • the diagnostic imaging catheter according to the second acquisition unit 200 is driven by being connected to the external device 300.
  • the diagnostic imaging catheter according to the second acquisition unit 200 is a long sheath (“medical use”) inserted into the body cavity of a living body. It has a 210 (corresponding to a "long body") and an outer tube 220 provided on the base end side of the sheath 210.
  • the diagnostic imaging catheter includes an inner shaft 230 that is movably inserted into the outer tube 220, a drive shaft 240 that has a signal transmission / reception unit 245 at the tip and is rotatably provided in the sheath 210.
  • the diagnostic imaging catheter has a unit connector 250 provided on the proximal end side of the outer tube 220 and configured to receive the inner shaft 230, and a hub 260 provided on the proximal end side of the inner shaft 230.
  • the side inserted into the body cavity of the diagnostic imaging catheter is referred to as the distal end side
  • the hub 260 side provided in the diagnostic imaging catheter is referred to as the proximal end side
  • the extending direction of the sheath 210 is referred to as the extending direction. It is called the axial direction.
  • the sheath 210 is inserted into the luminal organ of the subject.
  • the drive shaft 240 passes through the sheath 210, the outer tube 220 connected to the base end of the sheath 210, and the inner shaft 230 inserted into the outer tube 220, and reaches the inside of the hub 260. It is postponed.
  • a signal transmission / reception unit 245 capable of transmitting / receiving waves having a predetermined wavelength (about several MHz) is provided at the tip of the drive shaft 240.
  • the hub 260, the inner shaft 230, the drive shaft 240, and the signal transmission / reception unit 245 are connected to each other so as to move forward and backward in the axial direction. Therefore, for example, when the hub 260 is pushed toward the tip side, the inner shaft 230 connected to the hub 260 is pushed into the outer tube 220 and the unit connector 250.
  • the drive shaft 240 and the signal transmission / reception unit 245 move inside the sheath 210 toward the tip side.
  • the inner shaft 230 is pulled out from the outer tube 220 and the unit connector 250 as shown by the arrow a1 in FIGS. 1 and 2B.
  • the drive shaft 240 and the signal transmitting / receiving unit 245 move inside the sheath 210 toward the proximal end side as shown by the arrow a2 in FIG.
  • the tip portion of the inner shaft 230 reaches the vicinity of the relay connector 270.
  • the signal transmission / reception unit 245 is located near the tip of the sheath 210.
  • the relay connector 270 is a connector for connecting the sheath 210 and the outer tube 220.
  • a connector 231 for preventing disconnection is provided at the tip of the inner shaft 230.
  • the disconnection prevention connector 131 has a function of preventing the inner shaft 230 from detaching from the outer pipe 220.
  • the disconnection prevention connector 231 is configured so that when the hub 260 is pulled to the most proximal side, it is caught in a predetermined position on the inner wall of the unit connector 250.
  • the drive shaft 240 includes a flexible tube body 241, and an electric signal cable 242 and an optical fiber 243 connected to a signal transmission / reception unit 245 are arranged inside the drive shaft 240.
  • the tube body 241 can be composed of, for example, a multi-layer coil having different winding directions around the axis. Examples of coil constituent materials include stainless steel and Ni-Ti (nickel-titanium) alloys.
  • the electric signal cable 242 is electrically connected to the electrode terminal 265b provided in the connector portion 265, which will be described later.
  • the electric signal cable 242 is configured to include two signal lines 242a and 242b in order to transmit and receive a high frequency voltage.
  • the signal transmission / reception unit 245 has an ultrasonic wave transmission / reception unit 245a for transmitting / receiving ultrasonic waves and an optical transmission / reception unit 245b for transmitting / receiving light.
  • the ultrasonic transmission / reception unit 245a is provided with a vibrator, and has a function of transmitting ultrasonic waves based on a pulse signal into the body cavity and receiving ultrasonic waves reflected from living tissues in the body cavity.
  • the ultrasonic transmission / reception unit 245a is electrically connected to the electrode terminal 265b on the proximal end side of the diagnostic imaging catheter via an electric signal cable 242.
  • a piezoelectric material such as ceramics or quartz can be used.
  • the light transmission / reception unit 245b continuously transmits the transmitted measurement light into the body cavity and continuously receives the reflected light from the living tissue in the body cavity.
  • the light transmission / reception unit 245b has a ball lens (optical element) provided at the tip of the optical fiber 243 and having a lens function for collecting light and a reflection function for reflecting light.
  • the signal transmission / reception unit 245 is housed inside the housing 246 as shown in FIG.
  • the base end side of the housing 246 is connected to the drive shaft 240.
  • the housing 246 is provided with an opening on the cylindrical surface of a cylindrical metal pipe so as not to obstruct the progress of ultrasonic waves transmitted and received by the ultrasonic transmission / reception unit 245a and light transmitted / received by the optical transmission / reception unit 245b. It has a good shape.
  • the sheath 210 includes a lumen 210a into which the drive shaft 240 is inserted so as to be movable back and forth.
  • a guide wire insertion member 214 having a guide wire lumen 214a through which the guide wire G can be inserted is attached to the tip of the sheath 210 in parallel with the lumen 210 a provided on the sheath 210.
  • the sheath 210 and the guide wire insertion member 214 can be integrally configured by heat fusion or the like.
  • the guide wire insertion member 214 is provided with a marker 215 having X-ray contrast property.
  • the marker 215 is composed of a metal coil having high X-ray impermeable properties such as Pt and Au. Further, by providing the marker in the housing 246, the position of the signal transmission / reception unit 245 and the three-dimensional coordinates acquired by the first acquisition unit 100 can be identified in real time from the contrast image.
  • a communication hole 216 that communicates the inside and the outside of the lumen 210a is formed at the tip of the sheath 210. Further, a reinforcing member 217 for firmly joining and supporting the guide wire insertion member 214 is provided at the tip of the sheath 210.
  • the reinforcing member 217 is formed with a communication passage 217a that communicates the inside of the lumen 210a arranged on the proximal end side of the reinforcing member 217 with the communication hole 216.
  • the reinforcing member 217 may not be provided at the tip of the sheath 210.
  • the communication hole 216 is a priming liquid discharge hole for discharging the priming liquid.
  • a priming process is performed in which the priming liquid is filled in the sheath 210 in order to reduce the attenuation of the ultrasonic waves due to the air in the sheath 210 and efficiently transmit and receive the ultrasonic waves.
  • the priming liquid can be discharged to the outside through the communication hole 216, and a gas such as air can be discharged from the inside of the sheath 210 together with the priming liquid.
  • the sheath 210, the guide wire insertion member 214, and the reinforcing member 217 are made of a flexible material, and the material is not particularly limited, and examples thereof include styrene-based, polyolefin-based, polyurethane-based, polyester-based, and polyamide-based. Examples include various thermoplastic elastomers such as polyimide-based, polybutadiene-based, transpolyisoprene-based, fluororubber-based, and chlorinated polyethylene-based, and one or a combination of two or more of these (polymer alloy, polymer blend). , Laminates, etc.) can also be used. A hydrophilic lubricating coating layer that exhibits lubricity when wet can be arranged on the outer surface of the sheath 210.
  • the hub 260 includes a hub body 261 having a hollow shape, a connector case 265c connected to the base end side of the hub body 261, and a port 262 communicating with the inside of the hub body 261. ..
  • the hub 260 includes protrusions 263a and 263b for determining the position (direction) of the hub 260 when connecting to the external device 300, and a connection pipe 264b for holding the drive shaft 240.
  • the hub 260 includes a bearing 264c that rotatably supports the connecting pipe 264b, and a sealing member 264a that prevents the priming liquid from leaking from between the connecting pipe 264b and the bearing 264c toward the proximal end side.
  • the hub 260 includes an electrode terminal 265b connected to the external device 300 and a connector portion 265 in which the optical connector 265a is arranged inside.
  • the inner shaft 230 is connected to the tip of the hub body 261.
  • the drive shaft 240 is pulled out from the inner shaft 230 inside the hub body 261.
  • An injection device S (see FIG. 1) for injecting the priming liquid is connected to the port 262 when performing the priming process.
  • the injection device S includes a connector S1 connected to the port 262, a tube S2 connected to the connector S1, and a three-way stopcock S3 connected to the tube S2.
  • the injection device S includes a first syringe S4 and a second syringe S5 that are connected to the three-way stopcock S3 and capable of injecting the priming liquid into the port 262.
  • the second syringe S5 is a syringe that has a larger capacity than the first syringe S4 and is used as an auxiliary when the amount of the priming liquid to be injected by the first syringe S4 is insufficient.
  • connection pipe 264b holds the drive shaft 240 in order to transmit the rotation of the electrode terminal 265b and the optical connector 265a, which are rotationally driven by the external device 300, to the drive shaft 240.
  • An electric signal cable 242 and an optical fiber 243 are inserted inside the connecting pipe 264b.
  • the connector portion 265 includes an optical connector 265a that is optically connected to an optical fiber and an electrode terminal 265b that is electrically connected to an electric signal cable 242.
  • the received signal in the ultrasonic transmission / reception unit 245a is transmitted to the external device 300 via the electrode terminal 265b, subjected to predetermined processing, and displayed as an image.
  • the received signal in the optical transmission / reception unit 245b is transmitted to the external device 300 via the optical connector 265a, is subjected to predetermined processing, and is displayed as an image.
  • the diagnostic imaging catheter according to the second acquisition unit 200 is connected to and driven by the external device 300.
  • the external device 300 is connected to the connector portion 265 (see FIG. 4) provided on the base end side of the hub 260.
  • the external device 300 includes a motor 300a which is a power source for rotating the drive shaft 240 and a motor 300b which is a power source for moving the drive shaft 240 in the axial direction.
  • a motor 300a which is a power source for rotating the drive shaft 240
  • a motor 300b which is a power source for moving the drive shaft 240 in the axial direction.
  • the rotational motion of the motor 300b is converted into axial motion by the ball screw 300c connected to the motor 300b.
  • the operation of the external device 300 is controlled by the control device 301 electrically connected to the external device 300.
  • the control device 301 includes a second storage unit 301b (corresponding to a storage unit), a processor 301a (corresponding to a setting unit), and an input unit 301c.
  • the control device 301 is electrically connected to the monitor 302.
  • the processor 301a generates two-dimensional data of the luminal organ from the signal acquired by the signal transmission / reception unit 245.
  • the second storage unit 301b stores the two-dimensional data generated from the signal acquired (received) by the second acquisition unit 200.
  • the second storage unit 301b is a ROM for storing programs and the like used when generating two-dimensional data, a RAM for temporarily storing programs and data as a work area, and an auxiliary for storing the generated two-dimensional data and the like. It is equipped with a storage unit and the like.
  • the 3D image data of the luminal organ is generated by the main server 400, which will be described later, using the tomographic images of a plurality of frames acquired by the diagnostic imaging catheter according to the second acquisition unit 200.
  • the number of frames of the tomographic image used for 3D image data generation is the remaining storage capacity of the auxiliary storage unit related to the second storage unit 301b at the time when the second storage unit 301b associates the three-dimensional coordinates with the two-dimensional data.
  • the remaining storage capacity at the time point is the remaining storage capacity at the time point or the maximum storage capacity that can be set by the user for one 3D image data in the auxiliary storage unit constituting the second storage unit 301b. It means the remaining storage capacity at the time point.
  • the usable storage capacity for the 3D image data may be set to be changeable in advance as an initial setting.
  • the auxiliary storage unit of the second storage unit 301b stores the signal or the like received by the signal transmission / reception unit 245.
  • the auxiliary storage unit of the second storage unit 301b includes at least one such as an HDD (Hard Disk Drive), an SSD (Solid State Drive), a memory card, a CD, a DVD, and a BD (Blu-ray (registered trademark) Disc).
  • the control device 301 is electrically connected to the main server 400, and can transmit a cross-sectional image (two-dimensional data) generated by the control device 301 from the signal received by the signal transmission / reception unit 245 to the main server 400.
  • the processor 301a selects the two-dimensional data associated with the three-dimensional coordinates from the two-dimensional data stored in the second storage unit 301b based on the range for generating the 3D image data specified by the input unit 301c described later.
  • Processor 301a has one or more processors.
  • the processor 301a is, for example, one of a CPU (Central Processing Unit), an MPU (Micro Processing Unit), a GPU (Graphics Processing Unit), and the like.
  • FIG. 5 is a diagram showing a generation position of two-dimensional data acquired by the second acquisition unit 200.
  • FIG. 6 is a diagram showing a case where the generated two-dimensional data is deleted.
  • the 3D image data is generated from the two-dimensional data (tomographic image) acquired in a predetermined frame by the second acquisition unit 200 as described above.
  • the acquired two-dimensional data is generated by the second acquisition unit 200 at intervals as shown in position 1-10 in the longitudinal direction of the luminal organ.
  • the medical worker moves the drive shaft 240 forward and backward in the luminal organ when obtaining a tomographic image at a predetermined position using the diagnostic imaging catheter according to the second acquisition unit 200.
  • the medical staff basically moves the drive shaft 240 from the distal end side to the proximal end side or from the proximal end side to the distal side in one direction as shown in data 1-5 of FIG. Sends and receives signals necessary for generating images.
  • the drive shaft 240 passes through the same position multiple times in the longitudinal direction of the luminal organ such as a blood vessel as shown in positions 6 and 7 of data 6-9 in FIG. In some cases, two-dimensional data may be generated.
  • the second storage unit 301b when the second storage unit 301b stores a plurality of two-dimensional data at the same position in the luminal organ as shown in positions 6 and 7 (data 6-9) in FIG. 6, the second storage unit 301b to the above 2 Reduce any of the dimensional data.
  • the processor 301a receives (acquires) a signal required for 3D image data generation when the generated two-dimensional data are at the same position in the lumen organ, that is, the acquisition time is not the latest, that is, the acquisition time is old. It is deleted from the second storage unit 301b. Specifically, in FIG. 6, data 6 and 7 are deleted. The time may be the two-dimensional data generation time instead of the signal acquisition time required for the two-dimensional data generation.
  • the input unit 301c is configured so that the range of the two-dimensional data can be specified when associating the two-dimensional data with the three-dimensional coordinates acquired by the first acquisition unit 100 in order to generate the 3D image data.
  • the input unit 301c is configured so that the area where the 3D image data is to be generated in the present embodiment can be specified as a start point and an end point. Further, the input unit 301c may be configured so that the storage capacity of the auxiliary storage unit that can be used for one 3D image data can be specified.
  • the input unit 301c can be configured to include at least one of a mouse, a keyboard, a touch panel, a button, and the like.
  • the main server 400 stores the three-dimensional coordinates acquired by the first acquisition unit 100 and the two-dimensional data generated by the second acquisition unit 200 in association with each other.
  • the main server 400 includes a third storage unit 410, a processor 420, and an input / output unit 430.
  • the third storage unit 410 stores the three-dimensional coordinates acquired by the first acquisition unit 100 and the two-dimensional data generated by the second acquisition unit 200 in association with each other. Specifically, when the above-mentioned signal transmission / reception unit 245 receives an ultrasonic wave at a specific position, the position is collated with the three-dimensional coordinates acquired by the first acquisition unit 100. As a result, when the second acquisition unit 200 receives the ultrasonic signal while pulling back and generates the two-dimensional data, the generation position of the two-dimensional data can be identified in real time.
  • the third storage unit 410 includes a RAM, a ROM, an auxiliary storage unit, and the like.
  • a program for associating the three-dimensional coordinates with the two-dimensional data is stored in the ROM, and the three-dimensional coordinates acquired from the first acquisition unit 100 and the two-dimensional data generated by the second acquisition unit 200 are read out in the RAM.
  • Data in which three-dimensional coordinates and two-dimensional data are associated with each other is stored in the auxiliary storage unit.
  • the auxiliary storage unit is not particularly limited, but can be configured to include an HDD, SSD, etc. like the first acquisition unit 100 and the like.
  • the processor 420 is configured to associate the three-dimensional coordinates acquired by the first acquisition unit 100 with the two-dimensional data generated by the second acquisition unit 200.
  • Processor 420 has one or more processors.
  • the processor 420 is, for example, one of a CPU (Central Processing Unit), an MPU (Micro Processing Unit), a GPU (Graphics Processing Unit), and the like.
  • the 2D data generated by the diagnostic imaging catheter according to the 2nd acquisition unit 200 can generate 3D image data based on the 3D coordinates by a method such as volume rendering.
  • the input / output unit 430 is configured so that it can be instructed to associate the three-dimensional coordinates acquired by the first acquisition unit 100 with the two-dimensional data generated by the second acquisition unit 200.
  • the input / output unit 430 can include a mouse, a keyboard, buttons, a display, a touch panel, and the like.
  • a balloon catheter or the like is placed and expanded in a stenosis such as a blood vessel of a patient (also referred to as pre-dilation), a stent or the like is placed in the stenosis, and a balloon catheter or the like is placed in the stenosis. And then expand (also called post-extension).
  • a stenosis such as a blood vessel of a patient (also referred to as pre-dilation)
  • a stent or the like is placed in the stenosis
  • a balloon catheter or the like is placed in the stenosis.
  • expand also called post-extension
  • the medical staff places the subject on the sleeper 130 of the first acquisition unit 100, operates the input / output unit 160, and uses the irradiation unit 110, the detection unit 120, and the like to three-dimensionalize the blood vessel of the subject.
  • the coordinates are acquired (stored) in the first storage unit 140 (S1).
  • the medical staff generates two-dimensional data using the second acquisition unit 200.
  • the medical staff connects the device for injecting the priming liquid to the port 262 with the hub 260 pulled to the most proximal side, and injects the priming liquid into the lumen 210a of the sheath 210.
  • the priming liquid When the priming liquid is injected into the lumen 210a, the priming liquid is discharged to the outside of the sheath 210 through the communication passage 217a and the communication hole 216. As a result, a gas such as air can be discharged from the inside of the sheath 210 to the outside together with the priming liquid.
  • the user connects the external device 300 to the connector portion 265 of the diagnostic imaging catheter as shown in FIG. Then, the user pushes the hub 260 until it comes into contact with the base end of the unit connector 250, and moves the signal transmission / reception unit 245 toward the tip end side.
  • the healthcare professional uses the introducer kit to form a port on the wrist or thigh.
  • a guide wire (not shown) is inserted near the entrance of the coronary artery (coronary artery) of the heart of the living body.
  • the guiding catheter is inserted into the target site along the guide wire.
  • the surgeon then removes the guide wire and inserts another guide wire through the guiding catheter to the lesion.
  • the diagnostic imaging catheter according to the second acquisition unit 200 is inserted to the lesion portion along another guide wire.
  • the tip of the diagnostic imaging catheter is projected from the tip opening of the guiding catheter.
  • a known guiding catheter can be used.
  • the blood in the blood vessel is temporarily replaced with a flash solution such as a contrast medium, and the blood in the blood vessel is temporarily replaced with the flash solution.
  • a flash solution such as a contrast medium
  • the syringe containing the flush solution is connected to the port of the guiding catheter, and the pusher of the syringe is pushed to inject the flush solution into the lumen of the guiding catheter.
  • the flush fluid passes through the lumen of the guiding catheter and is introduced into the blood vessel through its tip opening.
  • the introduced flush liquid flushes the blood around the tip of the sheath 210, and the flash liquid is filled around the tip of the sheath 210.
  • the step of replacing with the flash liquid described above can be omitted.
  • the signal transmission / reception unit 245 moves to the proximal end side while rotating together with the drive shaft 240 (pullback operation).
  • the ultrasonic transmission / reception unit 245a transmits the ultrasonic waves toward the blood vessel wall and receives the ultrasonic waves reflected by the blood vessel wall.
  • the light transmission / reception unit 245b also transmits the measurement light toward the blood vessel wall and receives the reflected light reflected by the blood vessel wall.
  • the ultrasonic wave transmitted from the ultrasonic transmission / reception unit 245a and the measurement light transmitted from the light transmission / reception unit 245b intersect, the region inspected by the ultrasonic wave in the living body and the light are inspected. Areas can be overlapped.
  • the rotation and movement operations of the drive shaft 240 are controlled by the control device 301.
  • the connector portion 265 provided in the hub 260 is rotated while being connected to the external device 300, and the drive shaft 240 is rotated in conjunction with this.
  • the signal transmission / reception unit 245 transmits ultrasonic waves and light into the body.
  • the signal corresponding to the reflected wave and the reflected light received by the signal transmitting / receiving unit 245 is sent to the control device 301 via the drive shaft 240 and the external device 300.
  • the control device 301 generates a tomographic image (two-dimensional data) of the luminal organ based on the signal sent from the signal transmission / reception unit 245 (S2).
  • the medical staff specifies the region of the luminal organ that he / she wants to generate as a three-dimensional image from the three-dimensional coordinates acquired by the first acquisition unit 100 through the input unit 301c and the two-dimensional data generated by the second acquisition unit 200 (S3). ).
  • the processor 301a calculates the size of an area that can be used as a storage area for the three-dimensional image data of the luminal organ in the auxiliary storage unit of the second storage unit 301b.
  • the processor 301a calculates the interval (number of frames) of the area from the start point to the end point in the tomographic image generated by the second acquisition unit 200 based on the capacity of the storage area available in the second storage unit 301b. ..
  • the processor 420 of the main server 400 uses the program of the third storage unit 410 to input the three-dimensional coordinates from the first acquisition unit 100 and the two-dimensional data specified by the second acquisition unit 200 according to the instruction from the input / output unit 430. And store it in the auxiliary storage unit of the third storage unit 410.
  • the two-dimensional data acquired from the second acquisition unit 200 is partially used depending on the relationship between the current capacity of the auxiliary storage unit of the second storage unit 301b and the area designated by the user for generating 3D image data.
  • the processor 301a uses every other two-dimensional data generated by the second acquisition unit 200 in the long axis direction of the luminal organ, and deletes the remaining two-dimensional data from the second storage unit 301b.
  • the processor 301a transmits the two-dimensional data other than the latest time from the second storage unit 301b. It can also be deleted.
  • the two-dimensional data generated by the second acquisition unit 200 in this way is sorted by the processor 301a, associated with (corresponds to) the three-dimensional coordinates acquired by the first acquisition unit 100, and then associated with the third storage unit 410. It is stored (stored / saved) in (S4).
  • the medical system 1 includes a first acquisition unit 100, a second acquisition unit 200, a second storage unit 301b, an input unit 301c, and a processor 301a.
  • the first acquisition unit 100 is configured to be able to acquire the three-dimensional coordinates of the luminal organ of the subject.
  • the second acquisition unit 200 is inserted into the tract organ of the subject, has a signal transmission / reception unit 245 capable of transmitting / receiving waves of a predetermined wavelength at the tip, and has two-dimensional data from the signal acquired by the signal transmission / reception unit 245. Is configured to enable the generation of.
  • the second storage unit 301b is configured to store the two-dimensional data generated from the signal acquired by the second acquisition unit 200.
  • the input unit 301c is configured to be able to specify the range of the two-dimensional data associated with the three-dimensional coordinates when associating the three-dimensional coordinates with the two-dimensional data.
  • the processor 301a is configured to select the two-dimensional data associated with the three-dimensional coordinates from the two-dimensional data stored in the second storage unit 301b based on the range specified by the input unit 301c.
  • the processor 301a is configured to select the two-dimensional data stored in the second storage unit 301b when generating the 3D image data of the luminal organ. Therefore, it is possible to prevent the amount of data stored in the second storage unit 301b from becoming excessively large.
  • any one of the two-dimensional data at the same position stored in the second storage unit 301b is deleted. ing. Only one 2D data at the same position is required to generate 3D image data of the luminal organ, and the remaining 2D data at the same position is likely to be unnecessary. Therefore, the two-dimensional data can be efficiently stored in the second storage unit 301b by the above configuration.
  • the time when the signal is acquired or the time when the two-dimensional data is generated is given to the two-dimensional data.
  • the data to be deleted is configured so that either the signal acquisition time or the two-dimensional data generation time related to the two-dimensional data is the old two-dimensional data. ..
  • the fact that a plurality of signal transmission / reception units 245 pass through the same position can be considered to mean that it is more necessary to pass through the luminal organ at the new time than at the old time. Therefore, by configuring as described above, the two-dimensional data necessary for generating 3D image data of the luminal organ can be efficiently stored in the second storage unit 301b.
  • two-dimensional data is acquired in multiple frames in order to generate a 3D image of the luminal organ.
  • the number of frames of the two-dimensional data is set in the second storage unit 301b based on the storage capacity at the time when the three-dimensional coordinates and the two-dimensional data are associated with each other.
  • FIG. 8 is a diagram showing the medical system 1a according to the second embodiment
  • FIG. 9 is a flowchart showing a 3D image data generation method according to the second embodiment.
  • the area for generating the 3D image is set after the second acquisition unit 200 acquires the two-dimensional data, but it can also be configured as follows.
  • the medical system 1a includes a first acquisition unit 100, a second acquisition unit 200, an external device 300A, a main server 400A, and an angio device 500. Since the first acquisition unit 100 and the second acquisition unit 200 are the same as those in the first embodiment in the present embodiment, the description thereof will be omitted.
  • the external device 300A includes motors 300a and 300b, a ball screw 300c, a control device 301A, and a monitor 302. Since the motors 300a and 300b, the ball screw 300c, and the monitor 302 of the external device 300A are the same as those in the first embodiment, the description thereof will be omitted.
  • the control device 301A includes a processor 301d (corresponding to a "setting unit”), a second storage unit 301e (corresponding to a “storage unit”), and an input unit 301f.
  • the processor 301d uses the data amount of the two-dimensional data of the lumen organ stored in the second storage unit 301e in association with the three-dimensional coordinates acquired by the first acquisition unit 100 based on the range specified by the input unit 301f. And set.
  • the processor 301d uses the matching result of the two-dimensional data from the angio apparatus 500 and the two-dimensional data from the first acquisition unit 100 performed by the processor 420a, which will be described later, and data based on the range specified from the input unit 301c. Set the acquisition interval.
  • the two-dimensional data by the first acquisition unit 100 and the two-dimensional data by the angio device 500 can be read from the third storage unit 410a of the main server 400A.
  • the second storage unit 301e stores the two-dimensional data generated from the signal acquired by the second acquisition unit 200 as in the first embodiment.
  • the second storage unit 301e includes a ROM, a RAM, and an auxiliary storage unit in the same manner as the second storage unit 301b.
  • the RAM of the second storage unit 301e the matching result of the two-dimensional data of the first acquisition unit 100 and the angio device 500 read from the third storage unit 410a of the main server 400A can be temporarily stored.
  • the ROM of the second storage unit 301e can store a program or the like for acquiring two-dimensional data within a range designated from the input unit 301f and an interval calculated by the processor 301d.
  • the auxiliary storage unit of the second storage unit 301e can be configured in the same manner as in the first embodiment.
  • the input unit 301f is configured to be able to specify the range of the two-dimensional data associated with the three-dimensional coordinates acquired by the first acquisition unit 100 when associating the three-dimensional coordinates with the two-dimensional data.
  • the input unit 301f is configured to be able to set a start point and an end point for the angio image data of the angio device 500 associated with the three-dimensional coordinates acquired by the first acquisition unit 100 in the present embodiment. Details will be described later.
  • the main server 400A stores the three-dimensional coordinates acquired by the first acquisition unit 100 and the two-dimensional data generated by the second acquisition unit 200 in association with each other. As shown in FIG. 1, the main server 400A includes a third storage unit 410a, a processor 420a, and an input / output unit 430a.
  • the third storage unit 410a can be provided with a ROM, a RAM, an auxiliary storage unit, and the like as in the first embodiment.
  • a program or the like that compares the image obtained by the first acquisition unit 100 with the two-dimensional data from the angio device 500 and identifies the most similar image can be stored (stored).
  • the RAM of the third storage unit 410a can store the two-dimensional data acquired from the first acquisition unit 100 and the two-dimensional data of the angio image acquired from the angio device 500.
  • the auxiliary storage unit of the third storage unit 410a can store the matching result of the two-dimensional data of the first acquisition unit 100 and the angio device 500. From these data, the two-dimensional data of the angio apparatus 500 can be associated with the three-dimensional coordinates of the first acquisition unit 100.
  • the angio device 500 is configured to be able to acquire an angio image of a luminal organ.
  • the angio device 500 is the same as the first acquisition unit 100 except that the irradiation unit 110 and the detection unit 120 are not rotatable like the gantry of the first acquisition unit 100. Therefore, detailed description will be omitted.
  • the medical worker places the subject on the sleeper 130 of the first acquisition unit 100, gives an instruction from the input / output unit 160, and uses the irradiation unit 110, the detection unit 120, and the like to perform 2 in the blood vessel of the subject.
  • the first storage unit 140 acquires (stores) the dimensional data and the three-dimensional coordinates (S1).
  • the medical worker injects a contrast medium into a luminal organ such as a blood vessel, and uses the angio device 500 to display an angio image (two-dimensional data) of the luminal organ on a display or the like related to the input / output portion of the angio device 500. It is in the displayed state (S2).
  • the image displayed on the input / output unit of the angio device 500 can be transmitted as data to the main server 400A.
  • the medical staff operates the input / output unit 430a of the main server 400A to compare the two-dimensional data acquired by the first acquisition unit 100 with the two-dimensional data of the angio image by the angio device 500 and perform pattern matching.
  • S3 Since the two-dimensional data of the first acquisition unit 100 is associated with the three-dimensional coordinates, the two-dimensional data by the angio device 500 can be associated with the three-dimensional coordinates acquired by the first acquisition unit 100 by the above matching (S4). ..
  • the medical worker specifies the region of the luminal organ to be generated as a three-dimensional image from the three-dimensional coordinates acquired by the first acquisition unit 100 through the input unit 301f and the two-dimensional image by the angio image as the start point to the end point. (S5).
  • the processor 301d calculates the size of an area that can be used as a storage area for the three-dimensional image data of the luminal organ in the auxiliary storage unit of the second storage unit 301e.
  • the processor 301d calculates the data acquisition interval in the range from the start point to the end point designated from the input unit 301f based on the capacity of the storage area available in the second storage unit 301e (S6).
  • the second acquisition unit 200 acquires the two-dimensional data of the luminal organ (S7).
  • the signal transmission / reception unit 245 can acquire two-dimensional data every time the image is moved at a set interval based on the angio image acquired by the angio device 500. Further, since the acquisition of the tomographic image in the luminal organ by the second acquisition unit 200 is the same as the step of S2 in FIG. 7 in the first embodiment, the description thereof will be omitted.
  • the processor 420a of the main server 400A uses the input / output unit 430a to instruct (input) the three-dimensional coordinates from the first acquisition unit 100 and the two-dimensional data acquired by the second acquisition unit 200 to program the third storage unit 410a. Correspond using. Then, the processor 420a stores the data in the auxiliary storage unit of the third storage unit 410a.
  • the medical system 1a includes a first acquisition unit 100, a second acquisition unit 200, a second storage unit 301e, a processor 301d, and an input unit 301f.
  • the first acquisition unit 100 acquires the three-dimensional coordinates of the luminal organ of the subject.
  • the second acquisition unit 200 includes a signal transmission / reception unit 245 inserted into the tract organ of the subject and capable of transmitting / receiving waves of a predetermined wavelength at the tip, and two-dimensional data from the signal acquired by the signal transmission / reception unit 245. To generate.
  • the second storage unit 301e stores the two-dimensional data generated from the signal acquired by the second acquisition unit 200.
  • the input unit 301f is configured so that the range of the two-dimensional data associated with the three-dimensional coordinates can be specified when associating the three-dimensional coordinates with the two-dimensional data.
  • the processor 301d sets the amount of two-dimensional data of the luminal organ stored in the second storage unit 301e in association with the three-dimensional coordinates based on the above range.
  • the medical system 1a has an angio device 500 capable of acquiring an angio image of a luminal organ.
  • the first acquisition unit 100 is configured to be able to acquire two-dimensional data of the luminal organ associated with the three-dimensional coordinates.
  • the input unit 301f is configured to specify the above range for the angio image data from the angio device 500 associated with the three-dimensional coordinates acquired by the first acquisition unit 100. With this configuration, it is possible to prevent the amount of data stored in the second storage unit 301e from becoming excessively large as described above.
  • the second storage unit 301e is configured to store the two-dimensional data acquired at the set intervals from the start point to the end point. Therefore, it is possible to prevent the amount of data stored in the second storage unit 301e from becoming excessively large without going through the process of deleting data from the second storage unit as in the first embodiment.
  • the second acquisition unit 200 when the second acquisition unit 200 generates a plurality of two-dimensional data at the same position in the lumen organ and the processor 301a deletes any of the two-dimensional data, it is assumed that the two-dimensional data to be deleted has an older time.
  • the embodiment has been described. However, the present disclosure is not limited to the above as long as the storage efficiency of the second storage unit can be improved.
  • FIGS. 10 and 11 are diagrams showing a case where any of the two-dimensional data generated by the second acquisition unit is selected by using the trained model generated by machine learning in one embodiment of the present disclosure.
  • the two-dimensional data generated by the second acquisition unit 200 is input with either a correct label or an abnormal label, and the processor 301a deletes the data using the trained model generated by machine learning. It may be configured to sort the images.
  • the image to which the correct answer label is attached can be an image having no noise or very little noise as in the two-dimensional data shown in FIG. 10, for example.
  • the image with the abnormality label can be an image containing noise N (also called an artifact) such as a shadow of a guide wire or blurring of the image.
  • the generated trained model is stored in a ROM or the like constituting the second storage unit.
  • the data to be deleted can be selected using the trained model generated by machine learning.
  • the amount of two-dimensional data required for 3D image data generation can be made efficient, and the image selection accuracy of the two-dimensional data can be improved.
  • the configuration for designating the range of the two-dimensional data associated with the three-dimensional coordinates with respect to the data of the angio image by the angio device 500 is applied to the medical system 1a according to the second embodiment.
  • the designation of the range of the two-dimensional data associated with the three-dimensional coordinates with respect to the data of the angio image of the angio device 500 may be applied to the medical system 1 according to the first embodiment.
  • 1, 1a medical system 100 First Acquisition Department, 200 Second Acquisition Department, 300, 300A external device, 301a, 301d processor (setting part), 301b, 301e Second storage unit (storage unit), 301c, 301f input unit.

Abstract

[Problem] To provide a medical care system that improves storage efficiency, such as storage for saving data, in a method for generating 3D image data of a hollow organ using a diagnostic imaging method such as IVUS. [Solution] A medical system 1 comprises: a first acquisition unit 100 capable of acquiring three-dimensional coordinates of a hollow organ of a subject; and a signal transmission/reception unit 245 which is inserted into the hollow organ of the subject and is capable of transmitting/receiving waves of a prescribed wavelength at the tip. The medical care system 1 also includes: a second acquisition unit 200 capable of generating two-dimensional data from signals acquired by the signal transmission/reception unit; a second storage unit 301b that stores the two-dimensional data generated by the second acquisition unit from the acquired signals; an input unit 301c capable of specifying a range of the two-dimensional data to be associated with the three-dimensional coordinates when the three-dimensional coordinates and the two-dimensional data are associated with each other; and a processor 301a that, on the basis of said range, identifies the two-dimensional data to be associated with the three-dimensional coordinates from among the two-dimensional data stored in the second storage unit.

Description

医療システムMedical system
 本開示は、医療システムに関する。 This disclosure relates to the medical system.
 近年、管腔器官の断層画像を得る方法にIVUS(Intravascular Ultrasound)やOCT(Optical Coherence Tomography)等の画像診断方法が用いられている。 In recent years, diagnostic imaging methods such as IVUS (Intravascular Ultrasound) and OCT (Optical Coherence Tomography) have been used as methods for obtaining tomographic images of luminal organs.
特開2010-201077号公報JP-A-2010-201077
 IVUSやOCT等によって取得した管腔器官の断層画像から管腔器官の長軸方向における3D画像データを生成することができる。本発明者は、IVUS等の画像診断方法から管腔器官の3D画像データを生成する際におけるストレージ等の記憶領域を効率的に用いる方法について鋭意検討している。 It is possible to generate 3D image data in the long axis direction of the luminal organ from the tomographic image of the luminal organ acquired by IVUS, OCT, or the like. The present inventor is diligently studying a method of efficiently using a storage area such as a storage when generating 3D image data of a luminal organ from an image diagnosis method such as IVUS.
 本開示は、上記課題に鑑みてなされたものであり、IVUS等の画像診断方法を用いて管腔器官の3D画像データを生成する方法においてデータを保存するストレージ等の格納効率を良好にすることを目的とする。 The present disclosure has been made in view of the above problems, and in a method of generating 3D image data of a luminal organ using a diagnostic imaging method such as IVUS, it is necessary to improve the storage efficiency of a storage or the like for storing data. With the goal.
 また、本開示の一態様に係る医療システムは、第1取得部と、第2取得部と、記憶部と、入力部と、設定部と、を有する。第1取得部は被検者の管腔器官の3次元座標を取得可能に構成している。第2取得部は、被検者の管腔器官内に挿入され先端に所定波長の波の送受信が可能な送受信部を備え、かつ送受信部により取得された信号から2次元データの生成が可能に構成している。記憶部は第2取得部によって取得された信号から生成された2次元データを記憶する。入力部は3次元座標と2次元データとを関連づける際に、3次元座標と関連づけられる2次元データの範囲を指定可能に構成している。設定部は3次元座標と関連づけて記憶部に記憶される管腔器官の2次元データのデータ量を上記範囲に基づいて設定する。 Further, the medical system according to one aspect of the present disclosure includes a first acquisition unit, a second acquisition unit, a storage unit, an input unit, and a setting unit. The first acquisition unit is configured to be able to acquire the three-dimensional coordinates of the luminal organ of the subject. The second acquisition unit is provided with a transmission / reception unit that is inserted into the tract organ of the subject and can transmit / receive waves of a predetermined wavelength at the tip, and can generate two-dimensional data from the signal acquired by the transmission / reception unit. It is configured. The storage unit stores the two-dimensional data generated from the signal acquired by the second acquisition unit. The input unit is configured to be able to specify the range of the two-dimensional data associated with the three-dimensional coordinates when associating the three-dimensional coordinates with the two-dimensional data. The setting unit sets the amount of two-dimensional data of the luminal organ stored in the storage unit in association with the three-dimensional coordinates based on the above range.
 また、本開示の一態様に係る医療システムは、第1取得部と、第2取得部と、記憶部と、入力部と、設定部と、を有する。第1取得部は被検者の管腔器官の3次元座標を取得可能に構成している。第2取得部は、被検者の管腔器官内に挿入され先端に所定波長の波の送受信が可能な送受信部を備え、かつ送受信部により取得された信号から2次元データの生成が可能に構成している。記憶部は第2取得部によって取得された信号から生成された2次元データを記憶する。入力部は3次元座標と2次元データとを関連づける際に、3次元座標と関連づけられる2次元データの範囲を指定可能に構成している。設定部は、上記範囲に基づいて記憶部に記憶された2次元データから3次元座標と関連付ける2次元データを選別する。 Further, the medical system according to one aspect of the present disclosure includes a first acquisition unit, a second acquisition unit, a storage unit, an input unit, and a setting unit. The first acquisition unit is configured to be able to acquire the three-dimensional coordinates of the luminal organ of the subject. The second acquisition unit is provided with a transmission / reception unit that is inserted into the tract organ of the subject and can transmit / receive waves of a predetermined wavelength at the tip, and can generate two-dimensional data from the signal acquired by the transmission / reception unit. It is configured. The storage unit stores the two-dimensional data generated from the signal acquired by the second acquisition unit. The input unit is configured to be able to specify the range of the two-dimensional data associated with the three-dimensional coordinates when associating the three-dimensional coordinates with the two-dimensional data. The setting unit selects the two-dimensional data to be associated with the three-dimensional coordinates from the two-dimensional data stored in the storage unit based on the above range.
 上記医療システムによれば、IVUS等の画像診断方法を用いて管腔器官の3D画像データを生成する方法においてデータを保存するストレージ等の格納効率を良好にすることができる。 According to the above medical system, it is possible to improve the storage efficiency of a storage or the like for storing data in a method of generating 3D image data of a luminal organ using a diagnostic imaging method such as IVUS.
本開示の第1実施形態に係る医療システムを示す概略図である。It is the schematic which shows the medical system which concerns on 1st Embodiment of this disclosure. 図1に係る画像診断カテーテルにおいてプルバック操作を実施する前後の状態を示す図である。It is a figure which shows the state before and after performing the pullback operation in the diagnostic imaging catheter which concerns on FIG. 画像診断カテーテルの先端側の構成を示す断面図である。It is sectional drawing which shows the structure of the tip side of the diagnostic imaging catheter. 画像診断カテーテルの基端側の構成を示す断面図である。It is sectional drawing which shows the structure of the proximal end side of the diagnostic imaging catheter. 管腔器官の2次元データを生成する位置について示す図である。It is a figure which shows the position which generates the 2D data of a luminal organ. 血管(管腔器官)から取得した2次元データを選別する際について示す図である。It is a figure which shows when the 2D data acquired from a blood vessel (a luminal organ) is selected. 本開示の第1実施形態に係る3D画像データ生成方法について示すフローチャートである。It is a flowchart which shows the 3D image data generation method which concerns on 1st Embodiment of this disclosure. 本開示の第2実施形態に係る医療システムを示す概略図である。It is a schematic diagram which shows the medical system which concerns on 2nd Embodiment of this disclosure. 本開示の第2実施形態に係る3D画像データ生成方法について示すフローチャートである。It is a flowchart which shows the 3D image data generation method which concerns on 2nd Embodiment of this disclosure. 管腔器官の3D画像データを生成するために管腔器官のある位置で複数の2次元データを取得した際に機械学習によって2次元データを選別する際について示す図である。It is a figure which shows the case of selecting 2D data by machine learning when a plurality of 2D data are acquired at a certain position of a tract organ in order to generate 3D image data of a tract organ. 管腔器官の3D画像データを生成するために管腔器官のある位置で複数の2次元データを取得した際に機械学習によって2次元データを選別する際について示す図である。It is a figure which shows the case of selecting 2D data by machine learning when a plurality of 2D data are acquired at a certain position of a tract organ in order to generate 3D image data of a tract organ.
 (第1実施形態)
 以下、各図面を参照して、本開示の実施形態を説明する。なお、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。本実施形態に係る医療システム1は、心臓動脈の疾患を有する患者の治療を行う際に使用される経皮的冠動脈インターベンション(Percutaneous Coronary Intervention:PCI)において利用される。
(First Embodiment)
Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. The dimensional ratios in the drawings are exaggerated for convenience of explanation and may differ from the actual ratios. The medical system 1 according to the present embodiment is used in a percutaneous coronary intervention (PCI) used in treating a patient having a cardiovascular disease.
 本開示における医療システム1は、図1に示すように第1取得部100と、第2取得部200と、外部装置300と、メインサーバ400と、を有する。以下、詳述する。 As shown in FIG. 1, the medical system 1 in the present disclosure includes a first acquisition unit 100, a second acquisition unit 200, an external device 300, and a main server 400. The details will be described below.
 (第1取得部)
 第1取得部100は被検者の管腔器官の3次元座標を取得可能に構成している。第1取得部100は、照射部110と、検出部120と、寝台130と、第1記憶部140と、プロセッサ150と、入出力部160と、を備える。
(1st acquisition department)
The first acquisition unit 100 is configured to be able to acquire the three-dimensional coordinates of the luminal organ of the subject. The first acquisition unit 100 includes an irradiation unit 110, a detection unit 120, a bed 130, a first storage unit 140, a processor 150, and an input / output unit 160.
 照射部110は、X線等の所定波長の放射線を寝台130に向けて照射可能に構成している。照射部110は、公知の医療用CT等のガントリに搭載することができる。照射部110から照射される放射線は絞りなどによって照射範囲を規制することができる。 The irradiation unit 110 is configured to be capable of irradiating radiation having a predetermined wavelength such as X-rays toward the sleeper 130. The irradiation unit 110 can be mounted on a gantry such as a known medical CT. The irradiation range of the radiation emitted from the irradiation unit 110 can be regulated by a diaphragm or the like.
 検出部120は、照射部110から照射されたX線等を受信する。検出部120は、CMOS等のイメージセンサ等を含むことができる。検出部120は、照射部110と同様に公知の医療用CTのガントリ等に搭載することができる。照射部110と検出部120は寝台130にX線等を照射可能な位置でガントリを回転可能に構成できる。 The detection unit 120 receives the X-rays and the like irradiated from the irradiation unit 110. The detection unit 120 can include an image sensor such as CMOS. The detection unit 120 can be mounted on a known medical CT gantry or the like like the irradiation unit 110. The irradiation unit 110 and the detection unit 120 can be configured to rotate the gantry at a position where the sleeper 130 can be irradiated with X-rays or the like.
 寝台130は、照射部110からのX線等が照射できる位置に配置している。 The sleeper 130 is arranged at a position where X-rays and the like from the irradiation unit 110 can be irradiated.
 第1記憶部140は、ROM、RAM、補助記憶部等を含む。ROMにはX線画像の生成に必要なプログラムが記憶される。RAMには検出部120によって取得したデータが読み出され、プロセッサ150によって生成された画像が不図示のディスプレイ等に表示される。プロセッサ150は、例えばCPU等であり、照射部110、検出部120、寝台130、および第1記憶部140を制御する。第1記憶部140の補助記憶部は、HDD(Hard Disk Drive)およびSSD(Solid State Drive)等の少なくともいずれかを含む。 The first storage unit 140 includes a ROM, a RAM, an auxiliary storage unit, and the like. A program required for generating an X-ray image is stored in the ROM. The data acquired by the detection unit 120 is read into the RAM, and the image generated by the processor 150 is displayed on a display or the like (not shown). The processor 150 is, for example, a CPU or the like, and controls an irradiation unit 110, a detection unit 120, a sleeper 130, and a first storage unit 140. The auxiliary storage unit of the first storage unit 140 includes at least one of an HDD (Hard Disk Drive), an SSD (Solid State Drive), and the like.
 プロセッサ150は、検出部120によって取得したデータから人体の断層画像(2次元データ)や血管等の管腔器官を抽出した画像を形成することができる。プロセッサ150によって形成された管腔器官等のデータは2次元データと関連付けが可能な3次元座標を含み、補助記憶部に保存される。第1取得部100は、メインサーバ400と電気的に接続され、補助記憶部に保存したデータをメインサーバ400に送信可能に構成している。なお、補助記憶部に保存される3次元座標の位置はプロセッサ150によって指定されてもよいし、入出力部160から使用者が指定してもよい。また、第1取得部100はメインサーバ400と有線で電気的に接続してもよいし、無線で電気的に接続してもよい。 The processor 150 can form an image obtained by extracting a tomographic image (two-dimensional data) of a human body or a luminal organ such as a blood vessel from the data acquired by the detection unit 120. The data such as the lumen organ formed by the processor 150 includes three-dimensional coordinates that can be associated with the two-dimensional data, and is stored in the auxiliary storage unit. The first acquisition unit 100 is electrically connected to the main server 400 and is configured to be able to transmit the data stored in the auxiliary storage unit to the main server 400. The position of the three-dimensional coordinates stored in the auxiliary storage unit may be specified by the processor 150 or may be specified by the user from the input / output unit 160. Further, the first acquisition unit 100 may be electrically connected to the main server 400 by wire or may be electrically connected wirelessly.
 入出力部160は、マウス、キーボード、ボタン、タッチパネル、ディスプレイ等の少なくともいずれかを含むことができる。入出力部160によって使用者は3次元座標の取得を第1取得部100に指示できるとともに、取得された3次元座標を使用者に視認可能に表示できる。 The input / output unit 160 can include at least one of a mouse, a keyboard, buttons, a touch panel, a display, and the like. The input / output unit 160 allows the user to instruct the first acquisition unit 100 to acquire the three-dimensional coordinates, and can visually display the acquired three-dimensional coordinates to the user.
 (第2取得部)
 次に第2取得部の一例として画像診断用カテーテル(以下、画像カテーテル又はカテーテルデバイスと言う)について説明する。図2は第2取得部200に係る画像診断カテーテルにおけるプルバックについて説明する図である。図3は第2取得部200に係る画像診断カテーテルの先端側を示す図である。図4は画像診断用カテーテルの基端側を示す断面図である。
(2nd acquisition department)
Next, an image diagnostic catheter (hereinafter referred to as an image catheter or a catheter device) will be described as an example of the second acquisition unit. FIG. 2 is a diagram illustrating a pullback in the diagnostic imaging catheter according to the second acquisition unit 200. FIG. 3 is a diagram showing the distal end side of the diagnostic imaging catheter according to the second acquisition unit 200. FIG. 4 is a cross-sectional view showing the proximal end side of the diagnostic imaging catheter.
 本実施形態に係る第2取得部200は、血管内超音波診断法(IVUS)と、光干渉断層診断法(OCT)との両方の機能を備えるデュアルタイプの画像診断カテーテルである。ただし、外部装置300に接続可能な医療器具は上記に限定されず、例えばIVUS用カテーテルや、診断画像を取得する目的以外で使用されるカテーテル(例えば、治療用カテーテル等)であってもよい。 The second acquisition unit 200 according to the present embodiment is a dual type diagnostic imaging catheter having both functions of an intravascular ultrasonic diagnostic method (IVUS) and an optical coherence tomography diagnostic method (OCT). However, the medical device that can be connected to the external device 300 is not limited to the above, and may be, for example, a catheter for IVUS or a catheter used for purposes other than obtaining a diagnostic image (for example, a therapeutic catheter).
 図1~図4を参照して、第2取得部200に係る画像診断カテーテルについて説明する。 The diagnostic imaging catheter according to the second acquisition unit 200 will be described with reference to FIGS. 1 to 4.
 図1に示すように、第2取得部200に係る画像診断カテーテルは、外部装置300に接続されることによって駆動される。 As shown in FIG. 1, the diagnostic imaging catheter according to the second acquisition unit 200 is driven by being connected to the external device 300.
 図1、図2(A)、図2(B)を参照して概説すると、第2取得部200に係る画像診断カテーテルは、生体の体腔内に挿入される長尺状のシース(「医療用長尺体」に相当)210と、シース210の基端側に設けられた外管220と、を有する。画像診断カテーテルは、外管220内に進退移動可能に挿入される内側シャフト230と、信号を送受信する信号送受信部245を先端に有してシース210内に回転可能に設けられる駆動シャフト240と、を有する。画像診断カテーテルは、外管220の基端側に設けられ内側シャフト230を受容するように構成されたユニットコネクタ250と、内側シャフト230の基端側に設けられたハブ260と、を有している。 Outlined with reference to FIGS. 1, 2 (A) and 2 (B), the diagnostic imaging catheter according to the second acquisition unit 200 is a long sheath (“medical use”) inserted into the body cavity of a living body. It has a 210 (corresponding to a "long body") and an outer tube 220 provided on the base end side of the sheath 210. The diagnostic imaging catheter includes an inner shaft 230 that is movably inserted into the outer tube 220, a drive shaft 240 that has a signal transmission / reception unit 245 at the tip and is rotatably provided in the sheath 210. Has. The diagnostic imaging catheter has a unit connector 250 provided on the proximal end side of the outer tube 220 and configured to receive the inner shaft 230, and a hub 260 provided on the proximal end side of the inner shaft 230. There is.
 ここで明細書の説明においては、画像診断カテーテルの体腔内に挿入される側を先端側と称し、画像診断カテーテルに設けられたハブ260側を基端側と称し、シース210の延在方向を軸方向と称する。 Here, in the description of the specification, the side inserted into the body cavity of the diagnostic imaging catheter is referred to as the distal end side, the hub 260 side provided in the diagnostic imaging catheter is referred to as the proximal end side, and the extending direction of the sheath 210 is referred to as the extending direction. It is called the axial direction.
 シース210は被検者の管腔器官内に挿入される。 The sheath 210 is inserted into the luminal organ of the subject.
 図2(A)に示すように、駆動シャフト240は、シース210とシース210の基端に接続した外管220と外管220内に挿入される内側シャフト230とを通り、ハブ260の内部まで延在している。駆動シャフト240の先端には所定波長(数MHz程度)の波の送受信が可能な信号送受信部245を設けている。 As shown in FIG. 2A, the drive shaft 240 passes through the sheath 210, the outer tube 220 connected to the base end of the sheath 210, and the inner shaft 230 inserted into the outer tube 220, and reaches the inside of the hub 260. It is postponed. A signal transmission / reception unit 245 capable of transmitting / receiving waves having a predetermined wavelength (about several MHz) is provided at the tip of the drive shaft 240.
 ハブ260、内側シャフト230、駆動シャフト240、及び信号送受信部245は、それぞれが一体的に軸方向に進退移動するように互いに接続されている。このため、例えば、ハブ260が先端側に向けて押される操作がなされると、ハブ260に接続された内側シャフト230は外管220内およびユニットコネクタ250内に押し込まれる。 The hub 260, the inner shaft 230, the drive shaft 240, and the signal transmission / reception unit 245 are connected to each other so as to move forward and backward in the axial direction. Therefore, for example, when the hub 260 is pushed toward the tip side, the inner shaft 230 connected to the hub 260 is pushed into the outer tube 220 and the unit connector 250.
 そして、駆動シャフト240および信号送受信部245がシース210の内部を先端側へ移動する。例えば、ハブ260が基端側に引かれる操作がなされると、内側シャフト230は、図1、図2(B)中の矢印a1で示すように外管220およびユニットコネクタ250から引き出される。また、ハブ260が基端側に引かれる操作がなされると、駆動シャフト240および信号送受信部245は、図1の矢印a2で示すように、シース210の内部を基端側へ移動する。 Then, the drive shaft 240 and the signal transmission / reception unit 245 move inside the sheath 210 toward the tip side. For example, when the hub 260 is pulled toward the proximal end side, the inner shaft 230 is pulled out from the outer tube 220 and the unit connector 250 as shown by the arrow a1 in FIGS. 1 and 2B. Further, when the hub 260 is pulled toward the proximal end side, the drive shaft 240 and the signal transmitting / receiving unit 245 move inside the sheath 210 toward the proximal end side as shown by the arrow a2 in FIG.
 図2(A)に示すように内側シャフト230が先端側へ最も押し込まれたときには、内側シャフト230の先端部は中継コネクタ270付近まで到達する。この際、信号送受信部245は、シース210の先端付近に位置する。中継コネクタ270はシース210と外管220とを接続するコネクタである。 As shown in FIG. 2A, when the inner shaft 230 is pushed most toward the tip side, the tip portion of the inner shaft 230 reaches the vicinity of the relay connector 270. At this time, the signal transmission / reception unit 245 is located near the tip of the sheath 210. The relay connector 270 is a connector for connecting the sheath 210 and the outer tube 220.
 図2(B)に示すように内側シャフト230の先端には抜け防止用のコネクタ231が設けられている。抜け防止用のコネクタ131は、内側シャフト230が外管220から抜け出るのを防止する機能を有する。抜け防止用のコネクタ231は、ハブ260が最も基端側に引かれたときに、ユニットコネクタ250の内壁の所定の位置に引っかかるように構成している。 As shown in FIG. 2B, a connector 231 for preventing disconnection is provided at the tip of the inner shaft 230. The disconnection prevention connector 131 has a function of preventing the inner shaft 230 from detaching from the outer pipe 220. The disconnection prevention connector 231 is configured so that when the hub 260 is pulled to the most proximal side, it is caught in a predetermined position on the inner wall of the unit connector 250.
 図3に示すように、駆動シャフト240は、可撓性を有する管体241を備え、その内部には信号送受信部245に接続される電気信号ケーブル242および光ファイバ243が配されている。管体241は、例えば軸まわりの巻き方向が異なる多層のコイルによって構成することができる。コイルの構成材料として、例えばステンレス、Ni-Ti(ニッケル・チタン)合金などが挙げられる。電気信号ケーブル242は、本実施形態では、後述するコネクタ部265に設けられた電極端子265bに電気的に接続されている。電気信号ケーブル242は、高周波電圧を送受信するために2本の信号線242a、242bを備えるように構成している。 As shown in FIG. 3, the drive shaft 240 includes a flexible tube body 241, and an electric signal cable 242 and an optical fiber 243 connected to a signal transmission / reception unit 245 are arranged inside the drive shaft 240. The tube body 241 can be composed of, for example, a multi-layer coil having different winding directions around the axis. Examples of coil constituent materials include stainless steel and Ni-Ti (nickel-titanium) alloys. In the present embodiment, the electric signal cable 242 is electrically connected to the electrode terminal 265b provided in the connector portion 265, which will be described later. The electric signal cable 242 is configured to include two signal lines 242a and 242b in order to transmit and receive a high frequency voltage.
 信号送受信部245は、図3に示すように、超音波を送受信する超音波送受信部245aと、光を送受信する光送受信部245bと、を有している。 As shown in FIG. 3, the signal transmission / reception unit 245 has an ultrasonic wave transmission / reception unit 245a for transmitting / receiving ultrasonic waves and an optical transmission / reception unit 245b for transmitting / receiving light.
 超音波送受信部245aは、振動子を備え、パルス信号に基づく超音波を体腔内に送信し、かつ、体腔内の生体組織から反射してきた超音波を受信する機能を有している。超音波送受信部245aは、電気信号ケーブル242を介して画像診断カテーテルの基端側において電極端子265bと電気的に接続している。 The ultrasonic transmission / reception unit 245a is provided with a vibrator, and has a function of transmitting ultrasonic waves based on a pulse signal into the body cavity and receiving ultrasonic waves reflected from living tissues in the body cavity. The ultrasonic transmission / reception unit 245a is electrically connected to the electrode terminal 265b on the proximal end side of the diagnostic imaging catheter via an electric signal cable 242.
 超音波送受信部245aが備える振動子としては、例えば、セラミックス、水晶などの圧電材を用いることができる。 As the vibrator included in the ultrasonic transmission / reception unit 245a, for example, a piezoelectric material such as ceramics or quartz can be used.
 光送受信部245bは、伝送された測定光を連続的に体腔内に送信するとともに、体腔内の生体組織からの反射光を連続的に受信する。光送受信部245bは、光ファイバ243の先端に設けられ、光を集光するレンズ機能と反射する反射機能とを備えるボールレンズ(光学素子)を有する。 The light transmission / reception unit 245b continuously transmits the transmitted measurement light into the body cavity and continuously receives the reflected light from the living tissue in the body cavity. The light transmission / reception unit 245b has a ball lens (optical element) provided at the tip of the optical fiber 243 and having a lens function for collecting light and a reflection function for reflecting light.
 信号送受信部245は、図3に示すようにハウジング246の内部に収容される。ハウジング246の基端側は駆動シャフト240に接続されている。ハウジング246は、図3に示すように円筒状の金属パイプの円筒面に超音波送受信部245aが送受信する超音波および光送受信部245bが送受信する光の進行を妨げないように開口部が設けられた形状をしている。 The signal transmission / reception unit 245 is housed inside the housing 246 as shown in FIG. The base end side of the housing 246 is connected to the drive shaft 240. As shown in FIG. 3, the housing 246 is provided with an opening on the cylindrical surface of a cylindrical metal pipe so as not to obstruct the progress of ultrasonic waves transmitted and received by the ultrasonic transmission / reception unit 245a and light transmitted / received by the optical transmission / reception unit 245b. It has a good shape.
 図3に示すように、シース210は、駆動シャフト240が進退移動可能に挿入されるルーメン210aを備える。シース210の先端部には、シース210に設けられたルーメン210aに並設されて、ガイドワイヤGが挿通可能なガイドワイヤルーメン214aを備えるガイドワイヤ挿通部材214が取付けられている。 As shown in FIG. 3, the sheath 210 includes a lumen 210a into which the drive shaft 240 is inserted so as to be movable back and forth. A guide wire insertion member 214 having a guide wire lumen 214a through which the guide wire G can be inserted is attached to the tip of the sheath 210 in parallel with the lumen 210 a provided on the sheath 210.
 シース210およびガイドワイヤ挿通部材214は、熱融着等により一体的に構成することが可能である。ガイドワイヤ挿通部材214には、X線造影性を有するマーカー215が設けられている。マーカー215は、Pt、Au等のX線不透過性の高い金属コイルから構成される。また、マーカーはハウジング246に設けることによって造影画像から信号送受信部245の位置と第1取得部100によって取得した3次元座標とをリアルタイムに同定することができる。 The sheath 210 and the guide wire insertion member 214 can be integrally configured by heat fusion or the like. The guide wire insertion member 214 is provided with a marker 215 having X-ray contrast property. The marker 215 is composed of a metal coil having high X-ray impermeable properties such as Pt and Au. Further, by providing the marker in the housing 246, the position of the signal transmission / reception unit 245 and the three-dimensional coordinates acquired by the first acquisition unit 100 can be identified in real time from the contrast image.
 シース210の先端部には、ルーメン210aの内部と外部とを連通する連通孔216が形成されている。また、シース210の先端部には、ガイドワイヤ挿通部材214を強固に接合・支持するための補強部材217が設けられる。 A communication hole 216 that communicates the inside and the outside of the lumen 210a is formed at the tip of the sheath 210. Further, a reinforcing member 217 for firmly joining and supporting the guide wire insertion member 214 is provided at the tip of the sheath 210.
 補強部材217には、補強部材217より基端側に配置されるルーメン210aの内部と連通孔216とを連通する連通路217aが形成されている。なお、シース210の先端部には、補強部材217が設けられていなくてもよい。 The reinforcing member 217 is formed with a communication passage 217a that communicates the inside of the lumen 210a arranged on the proximal end side of the reinforcing member 217 with the communication hole 216. The reinforcing member 217 may not be provided at the tip of the sheath 210.
 連通孔216は、プライミング液を排出するためのプライミング液排出孔である。画像診断カテーテルを使用する際は、シース210内の空気による超音波の減衰を減らし、超音波を効率良く送受信するため、プライミング液をシース210内に充填させるプライミング処理を行う。プライミング処理を行う際に、プライミング液を連通孔216から外部に放出させて、プライミング液とともに空気等の気体をシース210の内部から排出することができる。 The communication hole 216 is a priming liquid discharge hole for discharging the priming liquid. When using the diagnostic imaging catheter, a priming process is performed in which the priming liquid is filled in the sheath 210 in order to reduce the attenuation of the ultrasonic waves due to the air in the sheath 210 and efficiently transmit and receive the ultrasonic waves. When the priming process is performed, the priming liquid can be discharged to the outside through the communication hole 216, and a gas such as air can be discharged from the inside of the sheath 210 together with the priming liquid.
 シース210、ガイドワイヤ挿通部材214および補強部材217は、可撓性を有する材料で形成され、その材料は、特に限定されず、例えば、スチレン系、ポリオレフィン系、ポリウレタン系、ポリエステル系、ポリアミド系、ポリイミド系、ポリブタジエン系、トランスポリイソプレン系、フッ素ゴム系、塩素化ポリエチレン系等の各種熱可塑性エラストマー等が挙げられ、これらのうちの1種または2種以上を組合せたもの(ポリマーアロイ、ポリマーブレンド、積層体等)も用いることができる。なお、シース210の外表面には、湿潤時に潤滑性を示す親水性潤滑被覆層を配置することが可能である。 The sheath 210, the guide wire insertion member 214, and the reinforcing member 217 are made of a flexible material, and the material is not particularly limited, and examples thereof include styrene-based, polyolefin-based, polyurethane-based, polyester-based, and polyamide-based. Examples include various thermoplastic elastomers such as polyimide-based, polybutadiene-based, transpolyisoprene-based, fluororubber-based, and chlorinated polyethylene-based, and one or a combination of two or more of these (polymer alloy, polymer blend). , Laminates, etc.) can also be used. A hydrophilic lubricating coating layer that exhibits lubricity when wet can be arranged on the outer surface of the sheath 210.
 図4に示すように、ハブ260は、中空形状を有するハブ本体261と、ハブ本体261の基端側に接続されるコネクタケース265cと、ハブ本体261の内部に連通するポート262と、を備える。 As shown in FIG. 4, the hub 260 includes a hub body 261 having a hollow shape, a connector case 265c connected to the base end side of the hub body 261, and a port 262 communicating with the inside of the hub body 261. ..
 ハブ260は、外部装置300との接続を行う際にハブ260の位置(方向)決めをするための突起263a、263bと、駆動シャフト240を保持する接続パイプ264bと、を備える。 The hub 260 includes protrusions 263a and 263b for determining the position (direction) of the hub 260 when connecting to the external device 300, and a connection pipe 264b for holding the drive shaft 240.
 ハブ260は、接続パイプ264bを回転自在に支持する軸受264cと、接続パイプ264bと軸受264cの間から基端側に向かってプライミング液が漏れるのを防止するシール部材264aと、を備える。ハブ260は、外部装置300に接続される電極端子265bおよび光コネクタ265aが内部に配置されたコネクタ部265を備える。 The hub 260 includes a bearing 264c that rotatably supports the connecting pipe 264b, and a sealing member 264a that prevents the priming liquid from leaking from between the connecting pipe 264b and the bearing 264c toward the proximal end side. The hub 260 includes an electrode terminal 265b connected to the external device 300 and a connector portion 265 in which the optical connector 265a is arranged inside.
 ハブ本体261の先端部には内側シャフト230が接続されている。駆動シャフト240は、ハブ本体261の内部において内側シャフト230から引き出されている。 The inner shaft 230 is connected to the tip of the hub body 261. The drive shaft 240 is pulled out from the inner shaft 230 inside the hub body 261.
 ポート262には、プライミング処理を行う際に、プライミング液を注入する注入デバイスS(図1参照)が接続される。注入デバイスSは、ポート262に接続されるコネクタS1と、コネクタS1に接続されるチューブS2と、チューブS2に接続される三方活栓S3と、を備える。 An injection device S (see FIG. 1) for injecting the priming liquid is connected to the port 262 when performing the priming process. The injection device S includes a connector S1 connected to the port 262, a tube S2 connected to the connector S1, and a three-way stopcock S3 connected to the tube S2.
 注入デバイスSは、三方活栓S3に接続されるとともに、プライミング液をポート262に注入可能な第1シリンジS4及び第2シリンジS5を備える。第2シリンジS5は、第1シリンジS4よりも容量が大きく、第1シリンジS4が注入するプライミング液の量が不足している場合等に、補助的に使用されるシリンジである。 The injection device S includes a first syringe S4 and a second syringe S5 that are connected to the three-way stopcock S3 and capable of injecting the priming liquid into the port 262. The second syringe S5 is a syringe that has a larger capacity than the first syringe S4 and is used as an auxiliary when the amount of the priming liquid to be injected by the first syringe S4 is insufficient.
 接続パイプ264bは、外部装置300によって回転駆動する電極端子265bおよび光コネクタ265aの回転を駆動シャフト240に伝達するために、駆動シャフト240を保持する。接続パイプ264bの内部には電気信号ケーブル242および光ファイバ243が挿通されている。 The connection pipe 264b holds the drive shaft 240 in order to transmit the rotation of the electrode terminal 265b and the optical connector 265a, which are rotationally driven by the external device 300, to the drive shaft 240. An electric signal cable 242 and an optical fiber 243 are inserted inside the connecting pipe 264b.
 コネクタ部265は、光ファイバに光学的に接続される光コネクタ265aと、電気信号ケーブル242と電気的に接続される電極端子265bと、を備える。超音波送受信部245aにおける受信信号は、電極端子265bを介して外部装置300に送信され、所定の処理を施されて画像として表示される。光送受信部245bにおける受信信号は、光コネクタ265aを介して外部装置300に送信され、所定の処理を施されて画像として表示される。 The connector portion 265 includes an optical connector 265a that is optically connected to an optical fiber and an electrode terminal 265b that is electrically connected to an electric signal cable 242. The received signal in the ultrasonic transmission / reception unit 245a is transmitted to the external device 300 via the electrode terminal 265b, subjected to predetermined processing, and displayed as an image. The received signal in the optical transmission / reception unit 245b is transmitted to the external device 300 via the optical connector 265a, is subjected to predetermined processing, and is displayed as an image.
 (外部装置)
 図3を参照して、第2取得部200に係る画像診断カテーテルは、外部装置300に接続されて駆動される。
(External device)
With reference to FIG. 3, the diagnostic imaging catheter according to the second acquisition unit 200 is connected to and driven by the external device 300.
 上述したように、外部装置300は、ハブ260の基端側に設けられたコネクタ部265(図4参照)に接続される。 As described above, the external device 300 is connected to the connector portion 265 (see FIG. 4) provided on the base end side of the hub 260.
 また、外部装置300は、図1に示すように、駆動シャフト240を回転させるための動力源であるモータ300aと、駆動シャフト240を軸方向に移動させるための動力源であるモータ300bと、を有する。モータ300bの回転運動は、モータ300bに接続したボールねじ300cによって軸方向の運動に変換される。 Further, as shown in FIG. 1, the external device 300 includes a motor 300a which is a power source for rotating the drive shaft 240 and a motor 300b which is a power source for moving the drive shaft 240 in the axial direction. Have. The rotational motion of the motor 300b is converted into axial motion by the ball screw 300c connected to the motor 300b.
 外部装置300の動作は、これに電気的に接続した制御装置301によって制御される。制御装置301は、第2記憶部301b(記憶部に相当)と、プロセッサ301a(設定部に相当)と、入力部301cと、を含む。制御装置301は、モニタ302に電気的に接続している。プロセッサ301aは、信号送受信部245が取得した信号から管腔器官の2次元データを生成する。 The operation of the external device 300 is controlled by the control device 301 electrically connected to the external device 300. The control device 301 includes a second storage unit 301b (corresponding to a storage unit), a processor 301a (corresponding to a setting unit), and an input unit 301c. The control device 301 is electrically connected to the monitor 302. The processor 301a generates two-dimensional data of the luminal organ from the signal acquired by the signal transmission / reception unit 245.
 第2記憶部301bは、第2取得部200によって取得(受信)された信号から生成された2次元データを記憶する。第2記憶部301bは、2次元データを生成する際等に用いられるプログラム等を格納するROM、作業領域として一時的にプログラムやデータを記憶するRAM、生成された2次元データ等を格納する補助記憶部等を備える。 The second storage unit 301b stores the two-dimensional data generated from the signal acquired (received) by the second acquisition unit 200. The second storage unit 301b is a ROM for storing programs and the like used when generating two-dimensional data, a RAM for temporarily storing programs and data as a work area, and an auxiliary for storing the generated two-dimensional data and the like. It is equipped with a storage unit and the like.
 管腔器官の3D画像データは、第2取得部200に係る画像診断カテーテルにより取得された複数フレームの断層画像を用いて後述するメインサーバ400によって生成される。ここで3D画像データ生成に用いる断層画像のフレーム数は、第2記憶部301bにおいて3次元座標と2次元データの関連づけを行う時点での第2記憶部301bに係る補助記憶部の残り記憶容量に基づいて設定される。ここで当該時点での残り記憶容量とは、第2記憶部301bを構成する補助記憶部において上記時点での残り記憶容量または3D画像データ1つにつき使用者が設定可能な最大記憶容量のうち上記時点での残り記憶容量を意味する。なお、使用者が3D画像データ一つにつき使用可能な記憶容量を設定しない場合、初期設定として3D画像データにつき使用可能な記憶容量が予め変更可能に設定されていてもよい。 The 3D image data of the luminal organ is generated by the main server 400, which will be described later, using the tomographic images of a plurality of frames acquired by the diagnostic imaging catheter according to the second acquisition unit 200. Here, the number of frames of the tomographic image used for 3D image data generation is the remaining storage capacity of the auxiliary storage unit related to the second storage unit 301b at the time when the second storage unit 301b associates the three-dimensional coordinates with the two-dimensional data. Set based on. Here, the remaining storage capacity at the time point is the remaining storage capacity at the time point or the maximum storage capacity that can be set by the user for one 3D image data in the auxiliary storage unit constituting the second storage unit 301b. It means the remaining storage capacity at the time point. When the user does not set the usable storage capacity for each 3D image data, the usable storage capacity for the 3D image data may be set to be changeable in advance as an initial setting.
 第2記憶部301bの補助記憶部は、信号送受信部245が受信した信号等を記憶する。第2記憶部301bの補助記憶部は、HDD(Hard Disk Drive)、SSD(Solid State Drive)、メモリカード、CD,DVD、BD(Blu-ray(登録商標) Disc)等の少なくとも一つを含むように構成できる。制御装置301は、メインサーバ400と電気的に接続され、信号送受信部245が受信した信号から制御装置301が生成した断面画像(2次元データ)をメインサーバ400に送信することができる。 The auxiliary storage unit of the second storage unit 301b stores the signal or the like received by the signal transmission / reception unit 245. The auxiliary storage unit of the second storage unit 301b includes at least one such as an HDD (Hard Disk Drive), an SSD (Solid State Drive), a memory card, a CD, a DVD, and a BD (Blu-ray (registered trademark) Disc). Can be configured as The control device 301 is electrically connected to the main server 400, and can transmit a cross-sectional image (two-dimensional data) generated by the control device 301 from the signal received by the signal transmission / reception unit 245 to the main server 400.
 プロセッサ301aは、後述する入力部301cによって指定された3D画像データを生成する範囲に基づいて第2記憶部301bに記憶された2次元データから3次元座標と関連づける2次元データを選別する。プロセッサ301aは、一つまたは複数のプロセッサを有する。プロセッサ301aは、例えばCPU(Central Processing Unit)、MPU(Micro Processing Unit)、およびGPU(Graphics Processing Unit)等のいずれかである。 The processor 301a selects the two-dimensional data associated with the three-dimensional coordinates from the two-dimensional data stored in the second storage unit 301b based on the range for generating the 3D image data specified by the input unit 301c described later. Processor 301a has one or more processors. The processor 301a is, for example, one of a CPU (Central Processing Unit), an MPU (Micro Processing Unit), a GPU (Graphics Processing Unit), and the like.
 図5は第2取得部200によって取得される2次元データの生成位置について示す図である。図6は生成された2次元データを削除する際について示す図である。3D画像データは上述のように第2取得部200によって所定フレーム取得された2次元データ(断層画像)から生成される。取得される2次元データは、管腔器官の長手方向において図5に示す位置1-10のように間隔をおいて第2取得部200によって生成される。 FIG. 5 is a diagram showing a generation position of two-dimensional data acquired by the second acquisition unit 200. FIG. 6 is a diagram showing a case where the generated two-dimensional data is deleted. The 3D image data is generated from the two-dimensional data (tomographic image) acquired in a predetermined frame by the second acquisition unit 200 as described above. The acquired two-dimensional data is generated by the second acquisition unit 200 at intervals as shown in position 1-10 in the longitudinal direction of the luminal organ.
 医療従事者は、第2取得部200に係る画像診断カテーテルを用いて所定位置の断層画像を得るにあたり、駆動シャフト240を管腔器官内において進退移動させる。 The medical worker moves the drive shaft 240 forward and backward in the luminal organ when obtaining a tomographic image at a predetermined position using the diagnostic imaging catheter according to the second acquisition unit 200.
 医療従事者は基本的に管腔器官内において図6のデータ1-5に示すように駆動シャフト240を先端側から基端側、または基端側から先端側の一方向に移動させることによって断層画像を生成するために必要な信号の送受信を行う。 The medical staff basically moves the drive shaft 240 from the distal end side to the proximal end side or from the proximal end side to the distal side in one direction as shown in data 1-5 of FIG. Sends and receives signals necessary for generating images.
 ただし、手技の際には必要に応じて血管等の管腔器官の長手方向において図6のデータ6-9の位置6、7のように駆動シャフト240が同じ位置を複数回通過し、当該位置において2次元データを生成する場合がある。 However, during the procedure, if necessary, the drive shaft 240 passes through the same position multiple times in the longitudinal direction of the luminal organ such as a blood vessel as shown in positions 6 and 7 of data 6-9 in FIG. In some cases, two-dimensional data may be generated.
 本実施形態では図6における位置6、7(データ6-9)のように管腔器官における同じ位置の2次元データを第2記憶部301bが複数記憶した際に第2記憶部301bから上記2次元データのいずれかを削減する。 In the present embodiment, when the second storage unit 301b stores a plurality of two-dimensional data at the same position in the luminal organ as shown in positions 6 and 7 (data 6-9) in FIG. 6, the second storage unit 301b to the above 2 Reduce any of the dimensional data.
 プロセッサ301aは、生成した複数の2次元データが管腔器官において同じ位置である場合に3D画像データ生成に必要な信号を受信(取得)した時刻が最新でない、すなわち取得時刻が古い2次元データを第2記憶部301bから削除する。具体的にいえば、図6ではデータ6、7を削除する。なお、上記時刻は2次元データの生成に必要な信号の取得時刻に代えて2次元データ生成時刻としてもよい。 The processor 301a receives (acquires) a signal required for 3D image data generation when the generated two-dimensional data are at the same position in the lumen organ, that is, the acquisition time is not the latest, that is, the acquisition time is old. It is deleted from the second storage unit 301b. Specifically, in FIG. 6, data 6 and 7 are deleted. The time may be the two-dimensional data generation time instead of the signal acquisition time required for the two-dimensional data generation.
 入力部301cは、3D画像データを生成するために第1取得部100によって取得された3次元座標と2次元データを関連づける際に2次元データの範囲を指定可能に構成している。入力部301cは、本実施形態において3D画像データを生成したい領域を始点、終点のように指定できるように構成している。また、入力部301cは、3D画像データ一つにつき使用可能な補助記憶部の記憶容量を指定可能に構成してもよい。入力部301cは、マウス、キーボード、タッチパネル、ボタン等の少なくともいずれかを含むように構成できる。 The input unit 301c is configured so that the range of the two-dimensional data can be specified when associating the two-dimensional data with the three-dimensional coordinates acquired by the first acquisition unit 100 in order to generate the 3D image data. The input unit 301c is configured so that the area where the 3D image data is to be generated in the present embodiment can be specified as a start point and an end point. Further, the input unit 301c may be configured so that the storage capacity of the auxiliary storage unit that can be used for one 3D image data can be specified. The input unit 301c can be configured to include at least one of a mouse, a keyboard, a touch panel, a button, and the like.
 (メインサーバ)
 メインサーバ400は、第1取得部100によって取得した3次元座標と第2取得部200によって生成した2次元データとを対応づけて記憶する。メインサーバ400は、第3記憶部410と、プロセッサ420と、入出力部430と、を備える。
(Main server)
The main server 400 stores the three-dimensional coordinates acquired by the first acquisition unit 100 and the two-dimensional data generated by the second acquisition unit 200 in association with each other. The main server 400 includes a third storage unit 410, a processor 420, and an input / output unit 430.
 第3記憶部410は、第1取得部100が取得した3次元座標と第2取得部200によって生成された2次元データとを対応づけて記憶する。具体的には、上述した信号送受信部245が特定の位置での超音波を受信した際に当該位置を第1取得部100が取得した3次元座標と照合させることなどが挙げられる。これにより、第2取得部200がプルバックしながら超音波信号を受信して2次元データを生成する際に2次元データの生成位置をリアルタイムに同定できる。 The third storage unit 410 stores the three-dimensional coordinates acquired by the first acquisition unit 100 and the two-dimensional data generated by the second acquisition unit 200 in association with each other. Specifically, when the above-mentioned signal transmission / reception unit 245 receives an ultrasonic wave at a specific position, the position is collated with the three-dimensional coordinates acquired by the first acquisition unit 100. As a result, when the second acquisition unit 200 receives the ultrasonic signal while pulling back and generates the two-dimensional data, the generation position of the two-dimensional data can be identified in real time.
 第3記憶部410は、RAM、ROM、補助記憶部等を含む。ROMには3次元座標と2次元データとを対応付けるプログラムが記憶され、RAMには第1取得部100から取得した3次元座標と第2取得部200が生成した2次元データが読み出される。補助記憶部には3次元座標と2次元データを対応づけたデータが保存される。 The third storage unit 410 includes a RAM, a ROM, an auxiliary storage unit, and the like. A program for associating the three-dimensional coordinates with the two-dimensional data is stored in the ROM, and the three-dimensional coordinates acquired from the first acquisition unit 100 and the two-dimensional data generated by the second acquisition unit 200 are read out in the RAM. Data in which three-dimensional coordinates and two-dimensional data are associated with each other is stored in the auxiliary storage unit.
 補助記憶部は特に限定されないが、第1取得部100等と同様にHDD、SSD等を含むように構成できる。 The auxiliary storage unit is not particularly limited, but can be configured to include an HDD, SSD, etc. like the first acquisition unit 100 and the like.
 プロセッサ420は、第1取得部100によって取得された3次元座標と第2取得部200によって生成された2次元データを関連付けるように構成している。 The processor 420 is configured to associate the three-dimensional coordinates acquired by the first acquisition unit 100 with the two-dimensional data generated by the second acquisition unit 200.
 プロセッサ420は、一つまたは複数のプロセッサを有する。プロセッサ420は、例えばCPU(Central Processing Unit)、MPU(Micro Processing Unit)、およびGPU(Graphics Processing Unit)等のいずれかである。 Processor 420 has one or more processors. The processor 420 is, for example, one of a CPU (Central Processing Unit), an MPU (Micro Processing Unit), a GPU (Graphics Processing Unit), and the like.
 第2取得部200に係る画像診断カテーテルによって生成される2次元データはボリュームレンダリング等の手法によって3次元座標に基づいて3D画像データを生成することができる。 The 2D data generated by the diagnostic imaging catheter according to the 2nd acquisition unit 200 can generate 3D image data based on the 3D coordinates by a method such as volume rendering.
 入出力部430は、第1取得部100が取得した3次元座標と第2取得部200によって生成された2次元データとを対応づけることを指示できるように構成している。入出力部430は、マウス、キーボード、ボタン、ディスプレイ、タッチパネル等を含むことができる。 The input / output unit 430 is configured so that it can be instructed to associate the three-dimensional coordinates acquired by the first acquisition unit 100 with the two-dimensional data generated by the second acquisition unit 200. The input / output unit 430 can include a mouse, a keyboard, buttons, a display, a touch panel, and the like.
 (使用例)
 次に本実施形態に係る医療システム1を用いた方法について説明する。
(Example of use)
Next, a method using the medical system 1 according to the present embodiment will be described.
 一般的にPCIではバルーンカテーテル等を患者の血管等の狭窄部に配置して拡張させ(前(プレ)拡張とも言う)、当該狭窄部にステント等を留置し、狭窄部でバルーンカテーテル等を配置して拡張を行う(後(ポスト)拡張とも言う)。以下に述べる方法は、前拡張や後拡張の際に行うことができる。 Generally, in PCI, a balloon catheter or the like is placed and expanded in a stenosis such as a blood vessel of a patient (also referred to as pre-dilation), a stent or the like is placed in the stenosis, and a balloon catheter or the like is placed in the stenosis. And then expand (also called post-extension). The method described below can be performed at the time of pre-extension and post-extension.
 まず、医療従事者は第1取得部100の寝台130に被検者を載置させ、入出力部160を操作し、照射部110および検出部120等を用いて被検者の血管における3次元座標を第1記憶部140に取得(記憶)させる(S1)。 First, the medical staff places the subject on the sleeper 130 of the first acquisition unit 100, operates the input / output unit 160, and uses the irradiation unit 110, the detection unit 120, and the like to three-dimensionalize the blood vessel of the subject. The coordinates are acquired (stored) in the first storage unit 140 (S1).
 次に医療従事者は、第2取得部200を用いて2次元データを生成する。 Next, the medical staff generates two-dimensional data using the second acquisition unit 200.
 具体的には医療従事者はハブ260を最も基端側に引いた状態でプライミング液を注入するデバイスをポート262に接続し、プライミング液をシース210のルーメン210aに注入する。 Specifically, the medical staff connects the device for injecting the priming liquid to the port 262 with the hub 260 pulled to the most proximal side, and injects the priming liquid into the lumen 210a of the sheath 210.
 プライミング液をルーメン210aの内部に注入すると、連通路217a及び連通孔216を介してプライミング液がシース210の外部に放出される。これにより、プライミング液とともに空気等の気体をシース210の内部から外部に排出することができる。 When the priming liquid is injected into the lumen 210a, the priming liquid is discharged to the outside of the sheath 210 through the communication passage 217a and the communication hole 216. As a result, a gas such as air can be discharged from the inside of the sheath 210 to the outside together with the priming liquid.
 プライミング処理後、使用者は、図3に示すように、外部装置300を画像診断カテーテルのコネクタ部265に接続する。そして、使用者は、ハブ260をユニットコネクタ250の基端に当接するまで押し込み、信号送受信部245を先端側に移動させる。 After the priming process, the user connects the external device 300 to the connector portion 265 of the diagnostic imaging catheter as shown in FIG. Then, the user pushes the hub 260 until it comes into contact with the base end of the unit connector 250, and moves the signal transmission / reception unit 245 toward the tip end side.
 次に、医療従事者は、イントロデューサ―キットを使用して手首もしくは大腿部にポートを形成する。次に、不図示のガイドワイヤを生体の心臓の冠動脈(冠状動脈)入り口付近まで挿入する。そして、ガイドワイヤに沿わせてガイディングカテーテルを目的部位に挿入する。次に、術者は上記ガイドワイヤを抜去し、ガイディングカテーテルを介して別のガイドワイヤを病変部まで挿入する。次に、別のガイドワイヤに沿って第2取得部200に係る画像診断用カテーテルを病変部まで挿入する。 Next, the healthcare professional uses the introducer kit to form a port on the wrist or thigh. Next, a guide wire (not shown) is inserted near the entrance of the coronary artery (coronary artery) of the heart of the living body. Then, the guiding catheter is inserted into the target site along the guide wire. The surgeon then removes the guide wire and inserts another guide wire through the guiding catheter to the lesion. Next, the diagnostic imaging catheter according to the second acquisition unit 200 is inserted to the lesion portion along another guide wire.
 次に画像診断用カテーテルの先端部をガイディングカテーテルの先端開口部から突出させる。なお、ガイディングカテーテルは公知のものを使用することができる。 Next, the tip of the diagnostic imaging catheter is projected from the tip opening of the guiding catheter. A known guiding catheter can be used.
 次に、血管内の血液を造影剤などのフラッシュ液で血管内の血液を一時的にフラッシュ液で置換する。前述したプライミング処理と同様にフラッシュ液が入ったシリンジをガイディングカテーテルのポートに接続し、シリンジの押し子を押してフラッシュ液をガイディングカテーテルのルーメンの内部に注入する。 Next, the blood in the blood vessel is temporarily replaced with a flash solution such as a contrast medium, and the blood in the blood vessel is temporarily replaced with the flash solution. Similar to the priming process described above, the syringe containing the flush solution is connected to the port of the guiding catheter, and the pusher of the syringe is pushed to inject the flush solution into the lumen of the guiding catheter.
 フラッシュ液は、ガイディングカテーテルのルーメン内を通り、その先端開口部を介して血管内に導入される。導入されたフラッシュ液により、シース210の先端部の周りの血液が押し流されて、シース210の先端部の周囲にフラッシュ液が充満された状態となる。なお、IVUSのみによって断層画像を取得するモードの際は、上述のフラッシュ液で置換する工程を省略することができる。 The flush fluid passes through the lumen of the guiding catheter and is introduced into the blood vessel through its tip opening. The introduced flush liquid flushes the blood around the tip of the sheath 210, and the flash liquid is filled around the tip of the sheath 210. In the mode of acquiring the tomographic image only by IVUS, the step of replacing with the flash liquid described above can be omitted.
 血管内の目的の位置で断層画像を得る際、信号送受信部245は、駆動シャフト240とともに回転しつつ基端側へと移動する(プルバック操作)。プルバック操作と同時に、超音波送受信部245aは超音波を血管壁に向けて送信するとともに、血管壁において反射された超音波を受信する。 When obtaining a tomographic image at a target position in a blood vessel, the signal transmission / reception unit 245 moves to the proximal end side while rotating together with the drive shaft 240 (pullback operation). At the same time as the pullback operation, the ultrasonic transmission / reception unit 245a transmits the ultrasonic waves toward the blood vessel wall and receives the ultrasonic waves reflected by the blood vessel wall.
 また、光送受信部245bも、同時に、測定光を血管壁に向けて送信し、血管壁において反射された反射光を受信する。なお、前述したように、超音波送受信部245aから送信される超音波と光送受信部245bから送信される測定光が交差するため、生体内において超音波によって検査される領域と、光によって検査される領域を重ねることができる。 At the same time, the light transmission / reception unit 245b also transmits the measurement light toward the blood vessel wall and receives the reflected light reflected by the blood vessel wall. As described above, since the ultrasonic wave transmitted from the ultrasonic transmission / reception unit 245a and the measurement light transmitted from the light transmission / reception unit 245b intersect, the region inspected by the ultrasonic wave in the living body and the light are inspected. Areas can be overlapped.
 駆動シャフト240の回転および移動操作は、制御装置301によって制御される。ハブ260内に設けたコネクタ部265は、外部装置300に接続された状態で回転され、これに連動して、駆動シャフト240が回転する。 The rotation and movement operations of the drive shaft 240 are controlled by the control device 301. The connector portion 265 provided in the hub 260 is rotated while being connected to the external device 300, and the drive shaft 240 is rotated in conjunction with this.
 また、制御装置301から送られる信号に基づき、信号送受信部245は体内に超音波および光を送信する。信号送受信部245が受信した反射波および反射光に対応する信号は、駆動シャフト240および外部装置300を介して制御装置301に送られる。制御装置301は、信号送受信部245から送られてくる信号に基づき管腔器官の断層画像(2次元データ)を生成する(S2)。 Further, based on the signal sent from the control device 301, the signal transmission / reception unit 245 transmits ultrasonic waves and light into the body. The signal corresponding to the reflected wave and the reflected light received by the signal transmitting / receiving unit 245 is sent to the control device 301 via the drive shaft 240 and the external device 300. The control device 301 generates a tomographic image (two-dimensional data) of the luminal organ based on the signal sent from the signal transmission / reception unit 245 (S2).
 医療従事者は、入力部301cを通じて第1取得部100によって取得した3次元座標や第2取得部200によって生成された2次元データから3次元画像として生成したい管腔器官の領域を指定する(S3)。 The medical staff specifies the region of the luminal organ that he / she wants to generate as a three-dimensional image from the three-dimensional coordinates acquired by the first acquisition unit 100 through the input unit 301c and the two-dimensional data generated by the second acquisition unit 200 (S3). ).
 プロセッサ301aは、第2記憶部301bの補助記憶部の中でも管腔器官の3次元画像データの記憶領域として使用できる領域のサイズを計算する。 The processor 301a calculates the size of an area that can be used as a storage area for the three-dimensional image data of the luminal organ in the auxiliary storage unit of the second storage unit 301b.
 そして、プロセッサ301aは第2記憶部301bの中でも利用可能な記憶領域の容量に基づいて、第2取得部200によって生成した断層画像の中でも始点から終点までの領域の間隔(フレーム数)を計算する。 Then, the processor 301a calculates the interval (number of frames) of the area from the start point to the end point in the tomographic image generated by the second acquisition unit 200 based on the capacity of the storage area available in the second storage unit 301b. ..
 メインサーバ400のプロセッサ420は、入出力部430からの指示により第1取得部100からの3次元座標と第2取得部200において指定された二次元データとを第3記憶部410のプログラムを用いて対応づけ、第3記憶部410の補助記憶部に保存する。 The processor 420 of the main server 400 uses the program of the third storage unit 410 to input the three-dimensional coordinates from the first acquisition unit 100 and the two-dimensional data specified by the second acquisition unit 200 according to the instruction from the input / output unit 430. And store it in the auxiliary storage unit of the third storage unit 410.
 そのため、第2記憶部301bの補助記憶部の現在容量と使用者が3D画像データ生成のために指定した領域との関係によっては第2取得部200から取得した2次元データが部分的に使用される。例えば、プロセッサ301aは、第2取得部200が生成した2次元データを管腔器官の長軸方向において一つおきに使用し、残りの2次元データを第2記憶部301bから削除する。 Therefore, the two-dimensional data acquired from the second acquisition unit 200 is partially used depending on the relationship between the current capacity of the auxiliary storage unit of the second storage unit 301b and the area designated by the user for generating 3D image data. NS. For example, the processor 301a uses every other two-dimensional data generated by the second acquisition unit 200 in the long axis direction of the luminal organ, and deletes the remaining two-dimensional data from the second storage unit 301b.
 また、上記以外にもプロセッサ301aは、上述のように図6に示すように管腔器官の同じ位置での2次元データが複数ある場合、最新時刻以外の2次元データを第2記憶部301bから削除することもできる。 In addition to the above, when there are a plurality of two-dimensional data at the same position of the luminal organ as shown in FIG. 6, the processor 301a transmits the two-dimensional data other than the latest time from the second storage unit 301b. It can also be deleted.
 このようにして第2取得部200によって生成された2次元データはプロセッサ301aによって選別され、第1取得部100によって取得された3次元座標と関連(対応)づけられたうえで第3記憶部410に記憶(格納・保存)される(S4)。 The two-dimensional data generated by the second acquisition unit 200 in this way is sorted by the processor 301a, associated with (corresponds to) the three-dimensional coordinates acquired by the first acquisition unit 100, and then associated with the third storage unit 410. It is stored (stored / saved) in (S4).
 以上、説明したように本実施形態に係る医療システム1は、第1取得部100と、第2取得部200と、第2記憶部301bと、入力部301cと、プロセッサ301aと、を有する。第1取得部100は被検者の管腔器官の3次元座標を取得可能に構成している。第2取得部200は被検者の管腔器官内に挿入され、先端に所定波長の波の送受信が可能な信号送受信部245を備え、かつ信号送受信部245により取得された信号から2次元データの生成を可能に構成している。第2記憶部301bは、第2取得部200によって取得された信号から生成された2次元データを記憶するように構成している。入力部301cは、3次元座標と2次元データとを関連づける際に、3次元座標と関連づけられる2次元データの範囲を指定可能に構成している。プロセッサ301aは、入力部301cによって指定された範囲に基づいて第2記憶部301bに記憶された2次元データから3次元座標と関連づけられる2次元データを選別するように構成している。 As described above, the medical system 1 according to the present embodiment includes a first acquisition unit 100, a second acquisition unit 200, a second storage unit 301b, an input unit 301c, and a processor 301a. The first acquisition unit 100 is configured to be able to acquire the three-dimensional coordinates of the luminal organ of the subject. The second acquisition unit 200 is inserted into the tract organ of the subject, has a signal transmission / reception unit 245 capable of transmitting / receiving waves of a predetermined wavelength at the tip, and has two-dimensional data from the signal acquired by the signal transmission / reception unit 245. Is configured to enable the generation of. The second storage unit 301b is configured to store the two-dimensional data generated from the signal acquired by the second acquisition unit 200. The input unit 301c is configured to be able to specify the range of the two-dimensional data associated with the three-dimensional coordinates when associating the three-dimensional coordinates with the two-dimensional data. The processor 301a is configured to select the two-dimensional data associated with the three-dimensional coordinates from the two-dimensional data stored in the second storage unit 301b based on the range specified by the input unit 301c.
 このようにプロセッサ301aは管腔器官の3D画像データを生成する際に第2記憶部301bに記憶された2次元データを選別するように構成している。そのため、第2記憶部301bに記憶されるデータ量が過剰に大きくなることを抑制できる。 In this way, the processor 301a is configured to select the two-dimensional data stored in the second storage unit 301b when generating the 3D image data of the luminal organ. Therefore, it is possible to prevent the amount of data stored in the second storage unit 301b from becoming excessively large.
 また、血管のように管腔器官における長手方向において同じ位置で2次元データを複数取得した場合、第2記憶部301bに記憶された同じ位置における2次元データのいずれかは削除するように構成している。管腔器官の3D画像データを生成するために同じ位置での2次元データは一つあればよく、同じ位置における残りの2次元データは不要である可能性が高い。そのため、上記のように構成することによって2次元データを第2記憶部301bに効率的に記憶させることができる。 Further, when a plurality of two-dimensional data are acquired at the same position in the longitudinal direction in the luminal organ such as a blood vessel, any one of the two-dimensional data at the same position stored in the second storage unit 301b is deleted. ing. Only one 2D data at the same position is required to generate 3D image data of the luminal organ, and the remaining 2D data at the same position is likely to be unnecessary. Therefore, the two-dimensional data can be efficiently stored in the second storage unit 301b by the above configuration.
 また、上記のように2次元データには信号を取得した時刻または2次元データを生成した時刻が付与される。管腔器官の同じ位置において2次元データを複数生成した場合、削除するデータは2次元データに係る信号取得時刻または2次元データ生成時刻のいずれかが古い2次元データとするように構成している。同じ位置を信号送受信部245が複数通過するということは古い時刻よりも新しい時刻の方がより管腔器官内を通過する必要性が高いと考えることができる。そのため、上記のように構成することによって、管腔器官の3D画像データ生成に必要な2次元データを効率的に第2記憶部301bに記憶させることができる。 Further, as described above, the time when the signal is acquired or the time when the two-dimensional data is generated is given to the two-dimensional data. When a plurality of two-dimensional data are generated at the same position of the lumen organ, the data to be deleted is configured so that either the signal acquisition time or the two-dimensional data generation time related to the two-dimensional data is the old two-dimensional data. .. The fact that a plurality of signal transmission / reception units 245 pass through the same position can be considered to mean that it is more necessary to pass through the luminal organ at the new time than at the old time. Therefore, by configuring as described above, the two-dimensional data necessary for generating 3D image data of the luminal organ can be efficiently stored in the second storage unit 301b.
 また、管腔器官の3D画像を生成するために2次元データは複数フレーム取得される。2次元データのフレーム数は第2記憶部301bにおいて3次元座標と2次元データとを関連づけする時点での記憶容量に基づいて設定するように構成している。このように構成することによって、第2記憶部301bの上記時点での記憶容量にかかわらず、膨大な容量の2次元データが記憶されてシステムの動作が遅くなるなどの事態が発生することを防止することができる。 In addition, two-dimensional data is acquired in multiple frames in order to generate a 3D image of the luminal organ. The number of frames of the two-dimensional data is set in the second storage unit 301b based on the storage capacity at the time when the three-dimensional coordinates and the two-dimensional data are associated with each other. With this configuration, regardless of the storage capacity of the second storage unit 301b at the above time point, it is possible to prevent a situation such as a situation in which a huge amount of two-dimensional data is stored and the system operation is slowed down. can do.
 (第2実施形態)
 図8は第2実施形態に係る医療システム1aについて示す図であり、図9は第2実施形態に係る3D画像データ生成方法について示すフローチャートである。第1実施形態では第2取得部200によって2次元データを取得した後に3D画像を生成する領域を設定すると説明したが、以下のように構成することもできる。
(Second Embodiment)
FIG. 8 is a diagram showing the medical system 1a according to the second embodiment, and FIG. 9 is a flowchart showing a 3D image data generation method according to the second embodiment. In the first embodiment, it has been described that the area for generating the 3D image is set after the second acquisition unit 200 acquires the two-dimensional data, but it can also be configured as follows.
 以下に、本実施形態に係る医療システム1aについて説明する。医療システム1aは、図8に示すように第1取得部100と、第2取得部200と、外部装置300Aと、メインサーバ400Aと、アンギオ装置500と、を有する。なお、本実施形態において第1取得部100および第2取得部200は第1実施形態と同様であるため、説明を省略する。 The medical system 1a according to this embodiment will be described below. As shown in FIG. 8, the medical system 1a includes a first acquisition unit 100, a second acquisition unit 200, an external device 300A, a main server 400A, and an angio device 500. Since the first acquisition unit 100 and the second acquisition unit 200 are the same as those in the first embodiment in the present embodiment, the description thereof will be omitted.
 (外部装置)
 外部装置300Aは、モータ300a、300b、ボールねじ300c、制御装置301Aおよびモニタ302を備える。なお、外部装置300Aのモータ300a、300b、ボールねじ300c、モニタ302は第1実施形態と同様であるため、説明を省略する。
(External device)
The external device 300A includes motors 300a and 300b, a ball screw 300c, a control device 301A, and a monitor 302. Since the motors 300a and 300b, the ball screw 300c, and the monitor 302 of the external device 300A are the same as those in the first embodiment, the description thereof will be omitted.
 制御装置301Aは、プロセッサ301d(「設定部」に相当)、第2記憶部301e(「記憶部」に相当)、入力部301fを備える。 The control device 301A includes a processor 301d (corresponding to a "setting unit"), a second storage unit 301e (corresponding to a "storage unit"), and an input unit 301f.
 プロセッサ301dは、第1取得部100によって取得された3次元座標と関連付けて第2記憶部301eに記憶される管腔器官の2次元データのデータ量を、入力部301fによって指定された範囲に基づいて設定する。 The processor 301d uses the data amount of the two-dimensional data of the lumen organ stored in the second storage unit 301e in association with the three-dimensional coordinates acquired by the first acquisition unit 100 based on the range specified by the input unit 301f. And set.
 プロセッサ301dは、後述するプロセッサ420aによって行われたアンギオ装置500からの2次元データと第1取得部100からの2次元データとのマッチング結果を用いて入力部301cから指定された範囲に基づいてデータ取得間隔を設定する。第1取得部100による2次元データとアンギオ装置500による2次元データはメインサーバ400Aの第3記憶部410aから読み出し得る。 The processor 301d uses the matching result of the two-dimensional data from the angio apparatus 500 and the two-dimensional data from the first acquisition unit 100 performed by the processor 420a, which will be described later, and data based on the range specified from the input unit 301c. Set the acquisition interval. The two-dimensional data by the first acquisition unit 100 and the two-dimensional data by the angio device 500 can be read from the third storage unit 410a of the main server 400A.
 第2記憶部301eは、第1実施形態と同様に第2取得部200によって取得された信号から生成された2次元データを記憶する。第2記憶部301eは、第2記憶部301bと同様にROM、RAM,補助記憶部を備える。第2記憶部301eのRAMにはメインサーバ400Aの第3記憶部410aから読み出した第1取得部100とアンギオ装置500の2次元データのマッチング結果を一時的に保存することができる。第2記憶部301eのROMには入力部301fから指定された範囲とプロセッサ301dにて算出された間隔において2次元データを取得するプログラム等を格納することができる。第2記憶部301eの補助記憶部については第1実施形態と同様に構成することができる。 The second storage unit 301e stores the two-dimensional data generated from the signal acquired by the second acquisition unit 200 as in the first embodiment. The second storage unit 301e includes a ROM, a RAM, and an auxiliary storage unit in the same manner as the second storage unit 301b. In the RAM of the second storage unit 301e, the matching result of the two-dimensional data of the first acquisition unit 100 and the angio device 500 read from the third storage unit 410a of the main server 400A can be temporarily stored. The ROM of the second storage unit 301e can store a program or the like for acquiring two-dimensional data within a range designated from the input unit 301f and an interval calculated by the processor 301d. The auxiliary storage unit of the second storage unit 301e can be configured in the same manner as in the first embodiment.
 入力部301fは、3次元座標と2次元データを関連付けする際に、第1取得部100によって取得された3次元座標と対応付けられる2次元データの範囲を指定可能に構成している。入力部301fは、本実施形態において第1取得部100により取得された3次元座標に対応付けられた、アンギオ装置500のアンギオ画像データに対して始点と終点を設定可能に構成している。詳細については後述する。 The input unit 301f is configured to be able to specify the range of the two-dimensional data associated with the three-dimensional coordinates acquired by the first acquisition unit 100 when associating the three-dimensional coordinates with the two-dimensional data. The input unit 301f is configured to be able to set a start point and an end point for the angio image data of the angio device 500 associated with the three-dimensional coordinates acquired by the first acquisition unit 100 in the present embodiment. Details will be described later.
 (メインサーバ)
 メインサーバ400Aは、第1取得部100によって取得した3次元座標と第2取得部200によって生成した2次元データとを対応づけて記憶する。メインサーバ400Aは、図1に示すように第3記憶部410aと、プロセッサ420aと、入出力部430aと、を備える。
(Main server)
The main server 400A stores the three-dimensional coordinates acquired by the first acquisition unit 100 and the two-dimensional data generated by the second acquisition unit 200 in association with each other. As shown in FIG. 1, the main server 400A includes a third storage unit 410a, a processor 420a, and an input / output unit 430a.
 第3記憶部410aは、第1実施形態と同様にROM、RAM、補助記憶部等を備えることができる。第3記憶部410aのROMには第1取得部100による画像とアンギオ装置500からの2次元データを比較して最も類似している画像を特定するプログラム等を保存(格納)することができる。 The third storage unit 410a can be provided with a ROM, a RAM, an auxiliary storage unit, and the like as in the first embodiment. In the ROM of the third storage unit 410a, a program or the like that compares the image obtained by the first acquisition unit 100 with the two-dimensional data from the angio device 500 and identifies the most similar image can be stored (stored).
 第3記憶部410aのRAMには第1取得部100から取得した2次元データとアンギオ装置500から取得したアンギオ画像の2次元データを記憶することができる。第3記憶部410aの補助記憶部には第1取得部100とアンギオ装置500の2次元データのマッチング結果を保存することができる。これらのデータから、アンギオ装置500の2次元データに第1取得部100の3次元座標を対応付けすることができる。 The RAM of the third storage unit 410a can store the two-dimensional data acquired from the first acquisition unit 100 and the two-dimensional data of the angio image acquired from the angio device 500. The auxiliary storage unit of the third storage unit 410a can store the matching result of the two-dimensional data of the first acquisition unit 100 and the angio device 500. From these data, the two-dimensional data of the angio apparatus 500 can be associated with the three-dimensional coordinates of the first acquisition unit 100.
 (アンギオ装置)
 アンギオ装置500は、管腔器官のアンギオ画像を取得可能に構成している。アンギオ装置500は、第1取得部100のガントリのように照射部110と検出部120が回転可能でない点以外は第1取得部100と同様である。そのため、詳細な説明を省略する。
(Angio device)
The angio device 500 is configured to be able to acquire an angio image of a luminal organ. The angio device 500 is the same as the first acquisition unit 100 except that the irradiation unit 110 and the detection unit 120 are not rotatable like the gantry of the first acquisition unit 100. Therefore, detailed description will be omitted.
 (使用例)
 次に図9を参照して本実施形態に係る3D画像データ生成方法について説明する。
(Example of use)
Next, the 3D image data generation method according to the present embodiment will be described with reference to FIG.
 まず、医療従事者は第1取得部100の寝台130に被検者を載置させ、入出力部160から指示を行い、照射部110および検出部120等を用いて被検者の血管における2次元データおよび3次元座標を第1記憶部140に取得(記憶)させる(S1)。 First, the medical worker places the subject on the sleeper 130 of the first acquisition unit 100, gives an instruction from the input / output unit 160, and uses the irradiation unit 110, the detection unit 120, and the like to perform 2 in the blood vessel of the subject. The first storage unit 140 acquires (stores) the dimensional data and the three-dimensional coordinates (S1).
 次に医療従事者は、造影剤を血管等の管腔器官に注入し、アンギオ装置500を用いて管腔器官のアンギオ画像(2次元データ)をアンギオ装置500の入出力部に係るディスプレイ等に表示した状態にする(S2)。アンギオ装置500の入出力部に表示した画像はデータとしてメインサーバ400Aに送信できる。 Next, the medical worker injects a contrast medium into a luminal organ such as a blood vessel, and uses the angio device 500 to display an angio image (two-dimensional data) of the luminal organ on a display or the like related to the input / output portion of the angio device 500. It is in the displayed state (S2). The image displayed on the input / output unit of the angio device 500 can be transmitted as data to the main server 400A.
 次に、医療従事者はメインサーバ400Aの入出力部430aを操作して、第1取得部100で取得された2次元データとアンギオ装置500によるアンギオ画像の2次元データとを比較してパターンマッチングを行う(S3)。第1取得部100の2次元データは3次元座標と関連付けされているため、上記マッチングによりアンギオ装置500による2次元データを第1取得部100によって取得された3次元座標と対応づけできる(S4)。 Next, the medical staff operates the input / output unit 430a of the main server 400A to compare the two-dimensional data acquired by the first acquisition unit 100 with the two-dimensional data of the angio image by the angio device 500 and perform pattern matching. (S3). Since the two-dimensional data of the first acquisition unit 100 is associated with the three-dimensional coordinates, the two-dimensional data by the angio device 500 can be associated with the three-dimensional coordinates acquired by the first acquisition unit 100 by the above matching (S4). ..
 次に、医療従事者は入力部301fを通じて第1取得部100によって取得した3次元座標とアンギオ画像による2次元画像から3次元画像として生成したい管腔器官の領域を始点から終点のように指定する(S5)。 Next, the medical worker specifies the region of the luminal organ to be generated as a three-dimensional image from the three-dimensional coordinates acquired by the first acquisition unit 100 through the input unit 301f and the two-dimensional image by the angio image as the start point to the end point. (S5).
 次に、プロセッサ301dは、第2記憶部301eの補助記憶部の中でも管腔器官の3次元画像データの記憶領域としてできる領域のサイズを計算する。 Next, the processor 301d calculates the size of an area that can be used as a storage area for the three-dimensional image data of the luminal organ in the auxiliary storage unit of the second storage unit 301e.
 そして、プロセッサ301dは、第2記憶部301eの中でも利用可能な記憶領域の容量に基づいて、入力部301fから指定された始点から終点までの範囲におけるデータの取得間隔を計算する(S6)。 Then, the processor 301d calculates the data acquisition interval in the range from the start point to the end point designated from the input unit 301f based on the capacity of the storage area available in the second storage unit 301e (S6).
 そして、第2取得部200により管腔器官の2次元データを取得する(S7)。なお、設定された間隔において画像を取得する場合、信号送受信部245はアンギオ装置500によって取得されるアンギオ画像に基づいて、設定された間隔移動する毎に2次元データを取得することができる。また、第2取得部200による管腔器官での断層画像取得については第1実施形態における図7のS2のステップと同様であるため、説明を省略する。 Then, the second acquisition unit 200 acquires the two-dimensional data of the luminal organ (S7). When acquiring an image at a set interval, the signal transmission / reception unit 245 can acquire two-dimensional data every time the image is moved at a set interval based on the angio image acquired by the angio device 500. Further, since the acquisition of the tomographic image in the luminal organ by the second acquisition unit 200 is the same as the step of S2 in FIG. 7 in the first embodiment, the description thereof will be omitted.
 メインサーバ400Aのプロセッサ420aは、入出力部430aからの指示(入力)により第1取得部100からの3次元座標と第2取得部200において取得された2次元データを第3記憶部410aのプログラムを用いて対応づける。そして、プロセッサ420aは当該データを第3記憶部410aの補助記憶部に保存する。 The processor 420a of the main server 400A uses the input / output unit 430a to instruct (input) the three-dimensional coordinates from the first acquisition unit 100 and the two-dimensional data acquired by the second acquisition unit 200 to program the third storage unit 410a. Correspond using. Then, the processor 420a stores the data in the auxiliary storage unit of the third storage unit 410a.
 このように本実施形態において医療システム1aは、第1取得部100と、第2取得部200と、第2記憶部301eと、プロセッサ301dと、入力部301fと、を備える。第1取得部100は、被検者の管腔器官の3次元座標を取得する。第2取得部200は、被検者の管腔器官内に挿入され先端に所定波長の波の送受信が可能な信号送受信部245を備え、かつ信号送受信部245により取得された信号から2次元データを生成する。第2記憶部301eは、第2取得部200によって取得された信号から生成された2次元データを記憶する。入力部301fは、3次元座標と2次元データを関連付けする際に3次元座標と関連付けされる2次元データの範囲を指定可能に構成している。プロセッサ301dは、3次元座標と関連付けて第2記憶部301eに記憶される管腔器官の2次元データのデータ量を上記範囲に基づいて設定する。 As described above, in the present embodiment, the medical system 1a includes a first acquisition unit 100, a second acquisition unit 200, a second storage unit 301e, a processor 301d, and an input unit 301f. The first acquisition unit 100 acquires the three-dimensional coordinates of the luminal organ of the subject. The second acquisition unit 200 includes a signal transmission / reception unit 245 inserted into the tract organ of the subject and capable of transmitting / receiving waves of a predetermined wavelength at the tip, and two-dimensional data from the signal acquired by the signal transmission / reception unit 245. To generate. The second storage unit 301e stores the two-dimensional data generated from the signal acquired by the second acquisition unit 200. The input unit 301f is configured so that the range of the two-dimensional data associated with the three-dimensional coordinates can be specified when associating the three-dimensional coordinates with the two-dimensional data. The processor 301d sets the amount of two-dimensional data of the luminal organ stored in the second storage unit 301e in association with the three-dimensional coordinates based on the above range.
 このように構成することによって、第2記憶部301eに記憶される2次元データに記憶されるデータ量が過剰に大きくなることを抑制することができる。 With this configuration, it is possible to prevent the amount of data stored in the two-dimensional data stored in the second storage unit 301e from becoming excessively large.
 また、医療システム1aは管腔器官のアンギオ画像を取得可能なアンギオ装置500を有する。第1取得部100は、3次元座標と関連付けされた管腔器官の2次元データを取得可能に構成している。また、入力部301fは、第1取得部100により取得された3次元座標に対応付けられた、アンギオ装置500からのアンギオ画像データに対して上記範囲を指定するように構成している。このように構成することによって、上記と同様に第2記憶部301eに記憶されるデータ量が過剰に大きくなることを抑制することができる。 Further, the medical system 1a has an angio device 500 capable of acquiring an angio image of a luminal organ. The first acquisition unit 100 is configured to be able to acquire two-dimensional data of the luminal organ associated with the three-dimensional coordinates. Further, the input unit 301f is configured to specify the above range for the angio image data from the angio device 500 associated with the three-dimensional coordinates acquired by the first acquisition unit 100. With this configuration, it is possible to prevent the amount of data stored in the second storage unit 301e from becoming excessively large as described above.
 また、第2記憶部301eには始点から終点まで設定された間隔にて取得された2次元データを保存するように構成している。そのため、第1実施形態のように第2記憶部からデータを削除するプロセスを経なくても第2記憶部301eに記憶されるデータ量が過剰に大きくなることを抑制することができる。 Further, the second storage unit 301e is configured to store the two-dimensional data acquired at the set intervals from the start point to the end point. Therefore, it is possible to prevent the amount of data stored in the second storage unit 301e from becoming excessively large without going through the process of deleting data from the second storage unit as in the first embodiment.
 なお、本開示は上述した実施形態にのみ限定されず、特許請求の範囲において種々の変更が可能である。 Note that the present disclosure is not limited to the above-described embodiment, and various changes can be made within the scope of the claims.
 上記では第2取得部200が管腔器官における同じ位置で2次元データを複数生成し、プロセッサ301aがいずれかの2次元データを削除する場合、削除する2次元データは上記時刻が古いものとする実施形態について説明した。しかし、第2記憶部の記憶効率を良好にできれば、本開示は上記に限定されない。 In the above, when the second acquisition unit 200 generates a plurality of two-dimensional data at the same position in the lumen organ and the processor 301a deletes any of the two-dimensional data, it is assumed that the two-dimensional data to be deleted has an older time. The embodiment has been described. However, the present disclosure is not limited to the above as long as the storage efficiency of the second storage unit can be improved.
 図10、図11は本開示の一実施形態における、第2取得部によって生成した2次元データのいずれかを機械学習によって生成した学習済みモデルを用いて選別する際について示す図である。 10 and 11 are diagrams showing a case where any of the two-dimensional data generated by the second acquisition unit is selected by using the trained model generated by machine learning in one embodiment of the present disclosure.
 上記以外にも第2取得部200によって生成された2次元データに正解ラベルと異常ラベルのいずれかを付与したものを入力とし、機械学習により生成された学習済みモデルを用いてプロセッサ301aが削除する画像を選別するように構成してもよい。 In addition to the above, the two-dimensional data generated by the second acquisition unit 200 is input with either a correct label or an abnormal label, and the processor 301a deletes the data using the trained model generated by machine learning. It may be configured to sort the images.
 正解ラベルが付与された画像は、例えば図10に示す2次元データのようにノイズ等のない、又はノイズ等の極めて少ない画像とすることができる。異常ラベルが付与された画像は、図11に示すようにガイドワイヤの影や画像のぶれといったノイズN(アーチファクトとも呼ばれる)を含む画像とすることができる。生成された学習済みモデルは、第2記憶部を構成するROM等に格納する。 The image to which the correct answer label is attached can be an image having no noise or very little noise as in the two-dimensional data shown in FIG. 10, for example. As shown in FIG. 11, the image with the abnormality label can be an image containing noise N (also called an artifact) such as a shadow of a guide wire or blurring of the image. The generated trained model is stored in a ROM or the like constituting the second storage unit.
 このように、管腔器官において同じ位置におけるデータを複数取得した場合、削除するデータは機械学習により生成された学習済みモデルを用いて選択することができる。このように構成することによって、3D画像データ生成に必要な2次元データ量を効率化するとともに2次元データの画像選別精度を良好にし得る。 In this way, when a plurality of data at the same position in the luminal organ are acquired, the data to be deleted can be selected using the trained model generated by machine learning. With this configuration, the amount of two-dimensional data required for 3D image data generation can be made efficient, and the image selection accuracy of the two-dimensional data can be improved.
 また、アンギオ装置500によるアンギオ画像のデータに対して3次元座標と関連付けられる2次元データの範囲を指定する構成は第2実施形態に係る医療システム1aに適用されると説明した。ただし、アンギオ装置500のアンギオ画像のデータに対して3次元座標と関連付けられる2次元データの範囲の指定は第1実施形態に係る医療システム1に適用してもよい。なお、本出願は、2020年3月30日に出願された日本特許出願2020-060604号に基づき、その開示内容は、参照により全体として組み込まれている。 Further, it was explained that the configuration for designating the range of the two-dimensional data associated with the three-dimensional coordinates with respect to the data of the angio image by the angio device 500 is applied to the medical system 1a according to the second embodiment. However, the designation of the range of the two-dimensional data associated with the three-dimensional coordinates with respect to the data of the angio image of the angio device 500 may be applied to the medical system 1 according to the first embodiment. This application is based on Japanese Patent Application No. 2020-060604 filed on March 30, 2020, and the disclosure contents are incorporated as a whole by reference.
1、1a 医療システム、
100 第1取得部、
200 第2取得部、
300、300A 外部装置、
301a、301d プロセッサ(設定部)、
301b、301e 第2記憶部(記憶部)、
301c、301f 入力部。
1, 1a medical system,
100 First Acquisition Department,
200 Second Acquisition Department,
300, 300A external device,
301a, 301d processor (setting part),
301b, 301e Second storage unit (storage unit),
301c, 301f input unit.

Claims (7)

  1.  被検者の管腔器官の3次元座標を取得可能な第1取得部と、
     前記被検者の管腔器官内に挿入され先端に所定波長の波の送受信が可能な送受信部を備え、かつ前記送受信部により取得された信号から2次元データの生成が可能な第2取得部と、
     前記第2取得部によって取得された前記信号から生成された前記2次元データを記憶する記憶部と、
     前記3次元座標と前記2次元データとを関連付ける際に、前記3次元座標と関連づけられる前記2次元データの範囲を指定可能な入力部と、
     前記3次元座標と関連付けて前記記憶部に記憶される管腔器官の前記2次元データのデータ量を前記範囲に基づいて設定する設定部と、を有する医療システム。
    The first acquisition part that can acquire the three-dimensional coordinates of the luminal organ of the subject, and
    A second acquisition unit that is inserted into the tract organ of the subject and has a transmission / reception unit at the tip capable of transmitting / receiving waves of a predetermined wavelength, and can generate two-dimensional data from the signal acquired by the transmission / reception unit. When,
    A storage unit that stores the two-dimensional data generated from the signal acquired by the second acquisition unit, and a storage unit that stores the two-dimensional data.
    An input unit capable of specifying a range of the two-dimensional data associated with the three-dimensional coordinates when associating the three-dimensional coordinates with the two-dimensional data.
    A medical system including a setting unit that sets a data amount of the two-dimensional data of a lumen organ stored in the storage unit in association with the three-dimensional coordinates based on the range.
  2.  被検者の管腔器官の3次元座標を取得可能な第1取得部と、
     前記被検者の管腔器官内に挿入され先端に所定波長の波の送受信が可能な送受信部を備え、かつ前記送受信部により取得された信号から2次元データの生成が可能な第2取得部と、
     前記第2取得部によって取得された前記信号から生成された前記2次元データを記憶する記憶部と、
     前記3次元座標と前記2次元データとを関連付ける際に、前記3次元座標と関連づけられる前記2次元データの範囲を指定可能な入力部と、
     前記範囲に基づいて前記記憶部に記憶された前記2次元データから前記3次元座標と関連づける前記2次元データを選別する設定部と、を有する医療システム。
    The first acquisition part that can acquire the three-dimensional coordinates of the luminal organ of the subject, and
    A second acquisition unit that is inserted into the tract organ of the subject and has a transmission / reception unit at the tip capable of transmitting / receiving waves of a predetermined wavelength, and can generate two-dimensional data from the signal acquired by the transmission / reception unit. When,
    A storage unit that stores the two-dimensional data generated from the signal acquired by the second acquisition unit, and a storage unit that stores the two-dimensional data.
    An input unit capable of specifying a range of the two-dimensional data associated with the three-dimensional coordinates when associating the three-dimensional coordinates with the two-dimensional data.
    A medical system including a setting unit that selects the two-dimensional data associated with the three-dimensional coordinates from the two-dimensional data stored in the storage unit based on the range.
  3.  管腔器官のアンギオ画像を取得可能なアンギオ装置をさらに有し、
     前記第1取得部は、前記3次元座標に関連づけられた前記2次元データを取得可能であり、
     前記入力部は、前記第1取得部により取得された前記3次元座標に対応付けられた、前記アンギオ装置の前記アンギオ画像のデータに対して前記範囲を指定可能である請求項1または2に記載の医療システム。
    It also has an angio device capable of acquiring angio images of luminal organs,
    The first acquisition unit can acquire the two-dimensional data associated with the three-dimensional coordinates, and can acquire the two-dimensional data.
    The first or second claim, wherein the input unit can specify the range with respect to the data of the angio image of the angio device associated with the three-dimensional coordinates acquired by the first acquisition unit. Medical system.
  4.  管腔器官の同じ位置における前記2次元データが前記記憶部に複数記憶される場合、同じ位置における前記2次元データは、前記記憶部から削除される請求項1~3のいずれか1項に記載の医療システム。 When a plurality of the two-dimensional data at the same position of the luminal organ are stored in the storage unit, the two-dimensional data at the same position is deleted from the storage unit according to any one of claims 1 to 3. Medical system.
  5.  前記2次元データには前記2次元データに係る信号を取得するか、または前記2次元データを生成した時刻が付与され、
     前記記憶部から削除される前記2次元データは、前記時刻に基づいて選択される請求項4に記載の医療システム。
    The time when the signal related to the two-dimensional data is acquired or the time when the two-dimensional data is generated is given to the two-dimensional data.
    The medical system according to claim 4, wherein the two-dimensional data deleted from the storage unit is selected based on the time.
  6.  前記記憶部から削除される前記2次元データは、機械学習により生成された学習済みモデルを用いて選択される請求項4に記載の医療システム。 The medical system according to claim 4, wherein the two-dimensional data deleted from the storage unit is selected using a trained model generated by machine learning.
  7.  前記2次元データは、前記範囲において複数フレーム取得され、
     前記2次元データのフレーム数は、前記3次元座標と前記2次元データとを関連づけする時点での前記記憶部の容量に基づいて設定される請求項1~6のいずれか1項に記載の医療システム。
     
    The two-dimensional data is acquired in a plurality of frames in the range, and the two-dimensional data is acquired.
    The medical treatment according to any one of claims 1 to 6, wherein the number of frames of the two-dimensional data is set based on the capacity of the storage unit at the time when the three-dimensional coordinates are associated with the two-dimensional data. system.
PCT/JP2021/008974 2020-03-30 2021-03-08 Medical care system WO2021199935A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022511716A JPWO2021199935A1 (en) 2020-03-30 2021-03-08

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-060604 2020-03-30
JP2020060604 2020-03-30

Publications (1)

Publication Number Publication Date
WO2021199935A1 true WO2021199935A1 (en) 2021-10-07

Family

ID=77927902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008974 WO2021199935A1 (en) 2020-03-30 2021-03-08 Medical care system

Country Status (2)

Country Link
JP (1) JPWO2021199935A1 (en)
WO (1) WO2021199935A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH105224A (en) * 1996-06-26 1998-01-13 Fuji Photo Optical Co Ltd Ultrasonic image generator
JP2004135950A (en) * 2002-10-18 2004-05-13 Olympus Corp Ultrasonic image processor
JP2005253963A (en) * 2004-03-08 2005-09-22 Siemens Ag Method of registering 2d image data of hollow tube together with 3d image data of hollow tube
US20140039294A1 (en) * 2012-07-31 2014-02-06 Yuan Jiang Catheter with ultrasound sensor and method for creating a volume graphic by means of the catheter
WO2017006618A1 (en) * 2015-07-09 2017-01-12 オリンパス株式会社 Server, endoscopic system, transmission method, and program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH105224A (en) * 1996-06-26 1998-01-13 Fuji Photo Optical Co Ltd Ultrasonic image generator
JP2004135950A (en) * 2002-10-18 2004-05-13 Olympus Corp Ultrasonic image processor
JP2005253963A (en) * 2004-03-08 2005-09-22 Siemens Ag Method of registering 2d image data of hollow tube together with 3d image data of hollow tube
US20140039294A1 (en) * 2012-07-31 2014-02-06 Yuan Jiang Catheter with ultrasound sensor and method for creating a volume graphic by means of the catheter
WO2017006618A1 (en) * 2015-07-09 2017-01-12 オリンパス株式会社 Server, endoscopic system, transmission method, and program

Also Published As

Publication number Publication date
JPWO2021199935A1 (en) 2021-10-07

Similar Documents

Publication Publication Date Title
JP7069236B2 (en) How to control the behavior of the imaging system and the system to acquire the image
US8167810B2 (en) Catheter device for treating a blockage of a vessel
US7785261B2 (en) Catheter device with a position sensor system for treating a vessel blockage using image monitoring
JP7391100B2 (en) Velocity determination and related devices, systems, and methods for intraluminal ultrasound imaging
US10874409B2 (en) Methods and systems for clearing thrombus from a vascular access site
JP7378484B2 (en) Intraluminal ultrasound imaging with automatic and assisted labels and bookmarks
JP4065167B2 (en) catheter
EP3870069B1 (en) Intraluminal ultrasound directional guidance and associated devices and systems
JP7340594B2 (en) Intravascular Imaging Procedure-Specific Workflow Guide and Related Devices, Systems, and Methods
JP2004290548A (en) Diagnostic imaging device, diagnosis or therapeutic device and diagnosis or therapeutic method
US20200375468A1 (en) Opto acoustic device system and method
JP6794226B2 (en) Diagnostic imaging device, operating method and program of diagnostic imaging device
JP4315770B2 (en) Body cavity diagnosis system
JP6445593B2 (en) Control of X-ray system operation and image acquisition for 3D / 4D aligned rendering of the targeted anatomy
JP6669720B2 (en) Image diagnostic apparatus, operating method thereof, program, and computer-readable storage medium
WO2021199935A1 (en) Medical care system
JP6779799B2 (en) Medical device
JP2019107094A (en) Photoacoustic guide support system and photoacoustic guide support method
US20120116205A1 (en) Imaging guidewire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21780782

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022511716

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21780782

Country of ref document: EP

Kind code of ref document: A1