WO2021199784A1 - Welding control device and welding control method - Google Patents

Welding control device and welding control method Download PDF

Info

Publication number
WO2021199784A1
WO2021199784A1 PCT/JP2021/006406 JP2021006406W WO2021199784A1 WO 2021199784 A1 WO2021199784 A1 WO 2021199784A1 JP 2021006406 W JP2021006406 W JP 2021006406W WO 2021199784 A1 WO2021199784 A1 WO 2021199784A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
electrode
displacement amount
amount
resistance
Prior art date
Application number
PCT/JP2021/006406
Other languages
French (fr)
Japanese (ja)
Inventor
好寿 中塚
山田 清治
芳樹 花田
祐太 原
Original Assignee
株式会社ナ・デックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ナ・デックス filed Critical 株式会社ナ・デックス
Priority to CN202180006042.4A priority Critical patent/CN114616069A/en
Publication of WO2021199784A1 publication Critical patent/WO2021199784A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • B23K11/115Spot welding by means of two electrodes placed opposite one another on both sides of the welded parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • B23K11/25Monitoring devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/12Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to investigating the properties, e.g. the weldability, of materials
    • B23K31/125Weld quality monitoring

Definitions

  • the present disclosure relates to a welding control device and a welding control method.
  • a resistance welding device that welds a work (that is, a material to be welded) by supplying an electric current while pressurizing it with two electrodes, thermal expansion occurs in the work. Therefore, there is a possibility that the welding quality can be determined by observing the fluctuation of the distance between the electrodes during welding.
  • Patent Document 1 As a method of confirming the welding quality by resistance welding, a method of detecting the displacement amount of the distance between electrodes and diagnosing the welding quality has been devised (see Patent Document 1).
  • a method of detecting the displacement amount of the distance between electrodes by the encoder of the motor and a method of detecting by the strain of the gun arm are individually disclosed.
  • the accuracy of the displacement amount is insufficient because the displacement of the electrode supported by the gun arm is not included.
  • the displacement amount is detected by the strain of the gun arm, the accuracy of the displacement amount is insufficient because the displacement of the electrode whose position is changed by the motor is not included.
  • One aspect of the present disclosure is preferably to provide a welding control device capable of improving production efficiency and welding quality.
  • One aspect of the present disclosure is a first electrode and a second electrode arranged so as to sandwich a work, a support portion for supporting the second electrode, a motor for moving the first electrode with respect to the second electrode, and a motor. It is a welding control device used in a resistance welding machine provided with an encoder that outputs the amount of rotation of the above.
  • the welding control device includes a strain sensor configured to measure the strain of the support portion and a control unit configured to control the resistance welder.
  • the control unit determines the distance between the first electrode and the second electrode based on the amount of motor rotation output by the encoder and the strain of the support unit output by the strain sensor during welding by the resistance welder. It has a displacement amount detecting unit that detects the displacement amount, and an adjusting unit that adjusts the welding current of the resistance welding machine based on the displacement amount detected by the displacement amount detecting unit during welding by the resistance welding machine.
  • the influence of disturbance can be reduced by detecting the displacement amount of the distance between the electrodes during welding and adjusting the welding current in real time. Therefore, the welding quality can be improved. Further, since the displacement amount is detected based on the rotation amount of the motor by the encoder and the strain of the support portion by the strain sensor, the detection accuracy of the displacement amount can be improved. As a result, production efficiency and welding quality can be improved.
  • control unit may further include a thickness detection unit that detects the total thickness of the welded portion of the work from the amount of rotation of the motor. According to such a configuration, welding control using the total thickness of the work becomes possible. Therefore, the improvement of welding quality can be promoted.
  • control unit may further include a pressure detection unit that detects the actual pressure applied to the work from the strain of the support unit. According to such a configuration, welding control using the actual pressing force applied to the work becomes possible. Therefore, the improvement of welding quality can be promoted.
  • control unit includes a thickness detection unit that detects the total thickness of the welded portion of the work from the amount of rotation of the motor, and a pressure detection unit that detects the actual pressure applied to the work from the strain of the support portion. , And may further have.
  • the adjusting unit may adjust at least one of the magnitude of the welding current and the energization time of the resistance welder based on the total thickness and the actual pressing force. According to such a configuration, the current value and the energization time suitable for improving the welding quality can be automatically set.
  • the adjusting unit may cause the resistance welder to start welding based on the displacement amount detected by the displacement amount detecting unit. According to such a configuration, the control by the welding control device is stable, so that the welding quality can be improved.
  • the adjusting unit may supply a pulse current to the resistance welder and detect the disturbance based on the displacement amount detected by the displacement amount detecting unit when the pulse current is supplied.
  • Another aspect of the present disclosure is a first electrode and a second electrode arranged so as to sandwich the work, a support portion for supporting the second electrode, and a motor for moving the first electrode with respect to the second electrode.
  • This is a welding control method using a resistance welding machine equipped with an encoder that outputs the amount of rotation of the motor.
  • the welding control method detects the amount of displacement of the distance between the first electrode and the second electrode based on the amount of rotation of the motor output by the encoder and the distortion of the support portion during welding by the resistance welder. It has a step of adjusting the welding current of the resistance welder based on the detected displacement amount during the execution of welding by the resistance welder.
  • the production efficiency and the welding quality can be improved by adjusting the welding current in real time and improving the detection accuracy of the displacement amount.
  • One aspect of the present disclosure may further include a step of detecting the total thickness at the welded portion of the work from the amount of rotation of the motor.
  • One aspect of the present disclosure may further include a step of detecting the actual pressing force applied to the work from the strain of the support portion.
  • One aspect of the present disclosure includes a step of detecting the total thickness at the welded portion of the work from the rotation amount of the motor, a step of detecting the actual pressing force applied to the work from the strain of the support portion, and the total thickness and the actual pressing force. It may further have a step of adjusting at least one of the magnitude of the welding current and the energization time of the resistance welder based on the above.
  • One aspect of the present disclosure may further include a step of causing the resistance welder to start welding based on the detected displacement amount.
  • One aspect of the present disclosure may further include a step of supplying a pulse current to the resistance welder and detecting disturbance based on the amount of displacement detected when the pulse current is supplied.
  • FIG. 1 is a block diagram schematically showing a configuration of a welding control device according to an embodiment.
  • FIG. 2 is a schematic view showing a resistance welder according to the embodiment.
  • FIG. 3 is a graph showing an example of changes in welding current and displacement amount over time.
  • FIG. 4 is a graph showing an example of changes in welding current and displacement amount over time.
  • FIG. 5 is a graph showing an example of changes in welding current and displacement amount over time.
  • FIG. 6 is a graph showing an example of changes in welding current and displacement amount over time.
  • FIG. 7 is a graph showing an example of changes in welding current, displacement amount, and actual pressing force over time.
  • FIG. 8 is a graph showing an example of changes over time in the welding current and the amount of displacement.
  • FIG. 1 is a block diagram schematically showing a configuration of a welding control device according to an embodiment.
  • FIG. 2 is a schematic view showing a resistance welder according to the embodiment.
  • FIG. 3 is a graph showing an example
  • FIG. 9 is a graph showing an example of changes in welding current and displacement amount over time.
  • FIG. 10 is a flow chart schematically showing the processing executed by the control unit.
  • FIG. 11 is a schematic view showing a resistance welder in an embodiment different from that of FIG.
  • FIG. 12 is a graph showing an example of changes in welding current and displacement amount over time.
  • the welding control device 1 shown in FIG. 1 is used for controlling the resistance welding machine 10 shown in FIG.
  • the resistance welding machine 10 resistance welds the first plate P1 and the second plate P2 arranged as the work W in the thickness direction.
  • the work W has a first plate P1 and a second plate P2 on which the first plate P1 is overlapped from above.
  • the resistance welder 10 includes a first electrode 11, a second electrode 12, a support portion 13, a motor 14, a transmitter 15, and an encoder 16.
  • the first electrode 11, the second electrode 12, and the support portion 13 constitute a C-type welding gun 17.
  • the first electrode 11 is arranged above the work W.
  • the second electrode 12 is arranged below the work W so as to sandwich the work W together with the first electrode 11 in the thickness direction.
  • the first electrode 11 and the second electrode 12 each come into contact with the work W during welding.
  • a welding current supplied from the welding control device 1 flows between the first electrode 11 and the second electrode 12 via the work W.
  • the support portion 13 is a gun yoke that supports the second electrode 12.
  • the second electrode 12 projects upward from the tip end portion of the support portion 13.
  • the support portion 13 holds the second electrode 12 in a fixed position (that is, height).
  • the motor 14 rotates the transmitter 15 to move the first electrode 11 in the vertical direction with respect to the second electrode 12. That is, the motor 14 changes the distance between the first electrode 11 and the second electrode 12 by moving the first electrode 11 in the vertical direction.
  • the motor 14 applies pressure to the work W by the first electrode 11 and the second electrode 12 (that is, the resistance welder 10) by changing the distance between the first electrode 11 and the second electrode 12. Welding pressure) is adjusted.
  • the transmitter 15 converts the rotational motion of the motor 14 into a linear motion in the vertical direction of the first electrode 11.
  • a ball screw is used as the transmitter 15
  • the encoder 16 outputs the amount of rotation of the motor 14. Specifically, the encoder 16 outputs the amount of rotation of the motor 14 as the number of pulses to the welding control device 1.
  • the encoder 16 may directly output the rotation amount of the motor 14 to the welding control device 1, or the rotation amount of the motor 14 to the welding control device 1 via a robot controller (not shown) included in the resistance welder 10. May be output.
  • the amount of rotation of the motor 14 and the vertical position (that is, the height) of the first electrode 11 correlate with each other.
  • the transmitter 15 is a ball screw
  • the amount of rotation of the motor 14 and the amount of displacement of the first electrode 11 have a linear relationship.
  • the welding control device 1 includes a strain sensor 2 and a control unit 3.
  • the strain sensor 2 is attached to the support portion 13.
  • the strain sensor 2 is configured to measure the strain generated in the support portion 13 when the welding gun 17 is pressurized.
  • the strain sensor 2 for example, a piezoelectric sensor, a strain gauge, or the like can be used.
  • Control unit 3 The control unit 3 is electrically connected to the resistance welder 10 and is configured to control the resistance welder 10.
  • the control unit 3 is composed of, for example, a computer including a microprocessor, a storage medium such as RAM and ROM, and an input / output unit.
  • the control unit 3 includes a displacement amount detection unit 4, a thickness detection unit 5, a pressure detection unit 6, and an adjustment unit 7.
  • the displacement amount detecting unit 4 describes the rotational position of the motor 14 output directly from the encoder 16 or via the robot controller and the distortion of the support unit 13 output by the strain sensor 2 during the execution of welding by the resistance welding machine 10. The amount of displacement of the distance between the first electrode 11 and the second electrode 12 is detected based on the above.
  • the displacement amount detecting unit 4 acquires the rotation amount of the motor 14 from the encoder 16 and uses a function of the rotation amount of the motor 14 and the position of the first electrode 11, so that the displacement amount of the position of the first electrode 11 Is detected.
  • the displacement amount detecting unit 4 acquires the strain of the support portion 13 from the strain sensor 2, and uses a function of the strain of the support portion 13 and the position of the second electrode 12 to displace the position of the second electrode 12. Detect the amount.
  • the displacement amount detecting unit 4 detects the distance between the first electrode 11 and the second electrode 12 by adding the displacement amount at the position of the first electrode 11 and the displacement amount at the position of the second electrode 12. do. Further, the displacement amount detecting unit 4 continuously detects the distance between the electrodes from the start to the end of welding.
  • FIG. 3 shows an example of displacement amount detection.
  • the time change of the displacement amount D3 of the distance between the electrodes due to the rotation amount of the motor 14 and the distortion of the support portion 13 is shown.
  • the waveform of the displacement amount D3 of the inter-electrode distance is substantially the same as the waveform of the displacement amount D0 of the inter-electrode distance measured by the laser measuring instrument.
  • the thickness detection unit 5 detects the total thickness of the work W at the welded portion from the amount of rotation of the motor 14. The total thickness is detected before the start of welding by the resistance welder 10 or during the execution of welding.
  • the thickness detection unit 5 sets the work W as the first electrode at the time of welding and the reference position of the first electrode 11 when the second electrode 12 is pressurized by the first electrode 11 in the absence of the work W.
  • the total thickness of the work W at the welded portion is calculated from the difference from the position of the first electrode 11 when pressurized by 11.
  • the pressure detection unit 6 detects the actual pressure applied to the work W from the strain of the support unit 13. The actual pressing force is detected before the start of welding by the resistance welder 10 or during the execution of welding.
  • the pressure detection unit 6 calculates the actual applied pressure on the current work W from the magnitude of strain (that is, the output of the strain sensor 2) using a well-known stress-strain curve and Hooke's law. do. Since a relatively high pressing force acts between the first electrode 11 and the second electrode 12, the support portion 13 is deformed in the elastic deformation region of the stress-strain curve. Therefore, according to Hooke's law, strain and actual pressure are proportional.
  • the adjusting unit 7 is a resistance welder 10 (based on the displacement amount of the distance between the electrodes detected by the displacement amount detecting unit 4, the total thickness detected by the thickness detecting unit 5, and the actual applied pressure detected by the pressure detecting unit 6). That is, the welding current of the welding gun 17) is adjusted.
  • the adjusting unit 7 adjusts the welding current so that the rate of change of the displacement amount of the distance between the electrodes becomes an appropriate magnitude during the execution of welding by the resistance welding machine 10.
  • FIG. 4 shows the displacement amount D11 of the distance between the electrodes in the first case welded with the first current C11 and the distance between the electrodes in the second case welded with the second current C12 smaller than the first current C11.
  • An example of the time change with the displacement amount D12 is shown.
  • the displacement amount D11 of the first case has a larger increase rate than the displacement amount D12 of the second case. Further, the diameter of the welding nugget obtained in the first case is larger than the diameter of the welding nugget obtained in the second case.
  • the displacement amount D14 of the fourth case has a larger rate of change than the displacement amount D13 of the third case. Further, in the third case, scattering does not occur during welding, while in the fourth case, scattering occurs.
  • the adjusting unit 7 targets the rate of change of the displacement amount at which a welding nugget having a sufficient size is formed and the occurrence of scattering is suppressed during welding, and the welding current of the welding gun 17 is changed. Set the size.
  • the adjusting unit 7 adjusts the energizing time after the displacement amount of the distance between the electrodes is saturated during the execution of welding by the resistance welding machine 10.
  • FIG. 6 shows the displacement amount D15 of the distance between the electrodes in the fifth case in which the fifth current C15 is energized, and the displacement amount of the distance between the electrodes in the sixth case in which the sixth current C16 having the same magnitude as the fifth current C15 is energized.
  • An example of time change with D16 is shown.
  • the welding current is still energized even after the displacement amount D15 is saturated.
  • the welding current is cut off immediately after the displacement amount D16 is saturated.
  • the diameter of the welding nugget obtained in the fifth case is larger than the diameter of the welding nugget obtained in the sixth case. Based on such a relationship, the adjusting unit 7 sets the energization time of the welding current after the displacement amount is saturated so that the welding nugget having a sufficient size is formed.
  • the adjusting unit 7 adjusts the magnitude of the welding current according to the actual pressing force applied to the work W.
  • FIG. 7 shows a displacement amount D17 of the distance between the electrodes in the seventh case in which the seventh current C17 is energized, and a displacement amount D18 of the distance between the electrodes in the eighth case in which the eighth current C18 larger than the seventh current C17 is energized. An example of the time change of is shown. Further, FIG. 7 shows the actual pressing force S17 in the seventh case and the actual pressing force S18 in the eighth case.
  • the adjusting unit 7 adjusts the magnitude of the welding current while monitoring the actual pressing force so that scattering does not occur during welding.
  • the adjusting unit 7 determines the effective welding current magnitude (for example, welding start current value, minimum current value, maximum current value, current change rate, etc.) and energization time (for example, minimum) based on the total thickness and the actual pressing force. Set the energization time, maximum energization time, etc.). The magnitude of the welding current and the energizing time are set before the start of welding by the resistance welding machine 10 or during the execution of welding.
  • the adjusting unit 7 causes the resistance welding machine 10 to start welding based on the displacement amount detected by the displacement amount detecting unit 4. Specifically, the adjusting unit 7 waits for welding by the resistance welding machine 10 until the change in the magnitude of the displacement amount and / or the change speed of the displacement amount becomes small (that is, the displacement amount becomes stable). After the displacement amount is stabilized, the adjusting unit 7 causes the resistance welding machine 10 to start welding. A current may or may not be supplied to the standby resistance welder 10.
  • the adjusting unit 7 supplies a pulse current to the resistance welding machine 10, and detects a disturbance based on the displacement amount detected by the displacement amount detecting unit 4 when the pulse current is supplied.
  • the disturbance is, for example, a gap in the work W, a foreign substance being caught in the work W, a scraping, or the like.
  • the adjusting unit 7 moves the first plate P1 and the second plate of the work W. It is determined that a gap has been generated between P2 and P2.
  • the adjusting unit 7 determines that foreign matter is caught or edged. do.
  • the control unit 3 energizes the resistance welding machine 10 with a welding current and starts welding (step S100). After the start of welding, the control unit 3 detects the amount of displacement of the distance between the first electrode 11 and the second electrode 12 (step S110). Subsequently, the control unit 3 adjusts the welding current of the resistance welding machine 10 based on the detected displacement amount (step S120).
  • the control unit 3 determines whether or not the welding is completed (that is, whether the welding point has reached the end point) (step S130). When the welding is completed (S130: YES), the control unit 3 ends the process. When the welding is not completed (S130: NO), the control unit 3 repeats the detection of the displacement amount and the adjustment of the welding current until the welding is completed.
  • the welding control method of this embodiment is executed by the control unit 3. That is, in the welding control method of the present embodiment, the step of starting the welding on the resistance welding machine 10, the step of detecting the displacement amount of the distance between the electrodes, and the welding current of the resistance welding machine 10 are adjusted based on the displacement amount.
  • the magnitude of the welding current of the resistance welding machine 10 based on the steps, the step of detecting the total thickness at the welded portion of the work W, the step of detecting the actual pressing force applied to the work W, and the total thickness and the actual pressing force. It also has a step of adjusting at least one of the energization time and a step of detecting disturbance based on the amount of displacement.
  • the thickness detection unit 5 enables welding control using the total thickness of the work W. Therefore, the improvement of welding quality can be promoted.
  • the pressure detection unit 6 enables welding control using the actual pressure applied to the work W. Therefore, the improvement of welding quality can be promoted.
  • the resistance welder 20 resistance welds the first plate P1 and the second plate P2 arranged as the work W in the thickness direction.
  • the resistance welder 20 includes a first electrode 21, a second electrode 22, a first support portion 23A, a second support portion 23B, a motor 24, a transmitter 25, and an encoder 26.
  • the first electrode 21, the second electrode 22, the first support portion 23A, and the second support portion 23B constitute an X-type welding gun 27.
  • the first electrode 21, the second electrode 22, the motor 24, and the encoder 26 are the same as the first electrode 11, the second electrode 12, the motor 14, and the encoder 16 of the resistance welder 10 of FIG.
  • the first support portion 23A is a gun arm that supports the first electrode 21.
  • the first support portion 23A is configured to be swingable with respect to the second support portion 23B by the transmitter 25.
  • the positions of the first electrode 21 and the work W and the second electrode 22 are adjusted by the swing of the first support portion 23A.
  • the second support portion 23B is a gun yoke that supports the second electrode 22.
  • the transmitter 25 swings the first support portion 23A by the driving force of the motor 24. Therefore, the motor 24 moves the first electrode 21 with respect to the second electrode 22.
  • the welding control device of the present embodiment is the same as the welding control device 1 of the first embodiment except for the points described below.
  • the welding control device has a first strain sensor 2A for measuring the strain of the first support portion 23A and a second strain sensor 2B for measuring the strain of the second support portion 23B.
  • the displacement amount detection unit of the welding control device includes the rotation amount of the motor 24 output by the encoder 26, the strain of the first support portion 23A output by the first strain sensor 2A, and the first strain output by the second strain sensor 2B. 2 The amount of displacement of the distance between the first electrode 21 and the second electrode 22 is detected based on the strain of the support portion 23B.
  • the displacement amount detecting unit includes the displacement amount of the first electrode 21 calculated from the rotation amount of the motor 24 and the displacement amount of the position of the first electrode 21 calculated from the strain of the first support unit 23A.
  • the distance between the first electrode 21 and the second electrode 22 is detected from the displacement amount of the position of the second electrode 22 calculated from the strain of the second support portion 23B.
  • FIG. 12 shows an example of displacement amount detection.
  • FIG. 12 shows a time change of the displacement amount D3 of the distance between the electrodes detected by the displacement amount detecting unit when welding is performed with the welding current C constant.
  • the waveform of the displacement amount D3 of the inter-electrode distance is substantially the same as the waveform of the displacement amount D0 of the inter-electrode distance measured by the laser measuring instrument.
  • one of the first strain sensor 2A and the second strain sensor 2B can be omitted.
  • the accuracy of detecting the displacement amount can be improved.
  • control unit does not necessarily have to have a thickness detection unit and a pressure detection unit.
  • the adjusting unit does not necessarily have to cause the resistance welder to start welding based on the displacement amount. Further, the adjusting unit does not necessarily have to detect the disturbance based on the displacement amount at the time of supplying the pulse current.
  • the welding control device of the above embodiment is a resistance welding machine that pressurizes the work W in the horizontal direction (that is, welds in a state where the first plate P1 and the second plate P2 are overlapped in the horizontal direction). It can also be used for.
  • both the first electrode and the second electrode are moved by the motor (for example, in the resistance welding machine 20 of the second embodiment, the second support portion 23B is also shaken by the motor 24. It can also be used in resistance welders (configured to move).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Quality & Reliability (AREA)
  • Resistance Welding (AREA)

Abstract

Provided is a welding control device capable of improving production efficiency and welding quality. One aspect of the present disclosure provides a welding control device used for a resistance welding machine comprising: a first electrode and a second electrode; a support part that supports the second electrode; a motor that moves the first electrode relative to the second electrode; and an encoder that outputs the amount of rotation of the motor. The welding control device comprises: a strain sensor that measures the strain of the support part; and a control unit that controls the resistance welding machine. The control unit has: a displacement amount detection unit that detects, during the execution of welding by the resistance welding machine, the amount of displacement of an inter-electrode distance between the first electrode and the second electrode on the basis of the amount of rotation of the motor output by the encoder and the strain of the support part output by the strain sensor; and an adjustment unit that adjusts, during the execution of the welding, a welding current of the resistance welding machine on the basis of the amount of the displacement.

Description

溶接制御装置及び溶接制御方法Welding control device and welding control method 関連出願の相互参照Cross-reference of related applications
 本国際出願は、2020年4月3日に日本国特許庁に出願された日本国特許出願第2020-67779号に基づく優先権を主張するものであり、日本国特許出願第2020-67779号の全内容を本国際出願に参照により援用する。 This international application claims priority based on Japanese Patent Application No. 2020-67779 filed with the Japan Patent Office on April 3, 2020, and Japanese Patent Application No. 2020-67779. The entire contents are incorporated in this international application by reference.
 本開示は、溶接制御装置及び溶接制御方法に関する。 The present disclosure relates to a welding control device and a welding control method.
 ワーク(つまり被溶接材)を2つの電極により加圧しつつ電流を供給することで溶接する抵抗溶接装置では、ワークに熱膨張が発生する。そのため、溶接中の電極間距離の変動を観測することによって、溶接品質を判定できる可能性がある。 In a resistance welding device that welds a work (that is, a material to be welded) by supplying an electric current while pressurizing it with two electrodes, thermal expansion occurs in the work. Therefore, there is a possibility that the welding quality can be determined by observing the fluctuation of the distance between the electrodes during welding.
 そこで、抵抗溶接による溶接品質を確認する方法として、電極間距離の変位量を検出して溶接の品質を診断する方法が考案されている(特許文献1参照)。 Therefore, as a method of confirming the welding quality by resistance welding, a method of detecting the displacement amount of the distance between electrodes and diagnosing the welding quality has been devised (see Patent Document 1).
特開2016-203246号公報Japanese Unexamined Patent Publication No. 2016-203246
 上述の溶接品質の診断方法では、溶接が終了した後に品質診断が行われるため、溶接の品質が満たされない場合には再溶接を実施する必要がある。その結果、製品の生産効率が低下する。 In the above-mentioned welding quality diagnosis method, quality diagnosis is performed after welding is completed, so if the welding quality is not satisfied, it is necessary to carry out rewelding. As a result, the production efficiency of the product decreases.
 また、上記公報では、電極間距離の変位量をモータのエンコーダで検出する方法と、ガンアームの歪みで検出する方法とが個別に開示されている。エンコーダで変位量を検出する場合、ガンアームに支持された電極の変位が含まれないため、変位量の精度が不十分である。同様に、ガンアームの歪みで変位量を検出する場合、モータで位置が変わる電極の変位が含まれないため、変位量の精度が不十分である。 Further, in the above publication, a method of detecting the displacement amount of the distance between electrodes by the encoder of the motor and a method of detecting by the strain of the gun arm are individually disclosed. When the displacement amount is detected by the encoder, the accuracy of the displacement amount is insufficient because the displacement of the electrode supported by the gun arm is not included. Similarly, when the displacement amount is detected by the strain of the gun arm, the accuracy of the displacement amount is insufficient because the displacement of the electrode whose position is changed by the motor is not included.
 本開示の一局面は、生産効率及び溶接品質を向上できる溶接制御装置を提供することが好ましい。 One aspect of the present disclosure is preferably to provide a welding control device capable of improving production efficiency and welding quality.
 本開示の一態様は、ワークを挟むように配置された第1電極及び第2電極と、第2電極を支持する支持部と、第1電極を第2電極に対して移動させるモータと、モータの回転量を出力するエンコーダとを備える抵抗溶接機に用いられる溶接制御装置である。溶接制御装置は、支持部の歪みを測定するように構成された歪みセンサと、抵抗溶接機を制御するように構成された制御部と、を備える。 One aspect of the present disclosure is a first electrode and a second electrode arranged so as to sandwich a work, a support portion for supporting the second electrode, a motor for moving the first electrode with respect to the second electrode, and a motor. It is a welding control device used in a resistance welding machine provided with an encoder that outputs the amount of rotation of the above. The welding control device includes a strain sensor configured to measure the strain of the support portion and a control unit configured to control the resistance welder.
 制御部は、抵抗溶接機による溶接の実行中に、エンコーダが出力するモータの回転量と歪みセンサが出力する支持部の歪みとに基づいて、第1電極と第2電極との電極間距離の変位量を検出する変位量検出部と、抵抗溶接機による溶接の実行中に、変位量検出部が検出した変位量に基づいて抵抗溶接機の溶接電流を調整する調整部と、を有する。 The control unit determines the distance between the first electrode and the second electrode based on the amount of motor rotation output by the encoder and the strain of the support unit output by the strain sensor during welding by the resistance welder. It has a displacement amount detecting unit that detects the displacement amount, and an adjusting unit that adjusts the welding current of the resistance welding machine based on the displacement amount detected by the displacement amount detecting unit during welding by the resistance welding machine.
 このような構成によれば、溶接中に電極間距離の変位量を検出し、リアルタイムに溶接電流を調整することで、外乱の影響を低減することができる。そのため、溶接品質を高めることができる。また、エンコーダによるモータの回転量と、歪みセンサによる支持部の歪みとに基づいて変位量が検出されるため、変位量の検出精度を高められる。その結果、生産効率及び溶接品質を向上できる。 According to such a configuration, the influence of disturbance can be reduced by detecting the displacement amount of the distance between the electrodes during welding and adjusting the welding current in real time. Therefore, the welding quality can be improved. Further, since the displacement amount is detected based on the rotation amount of the motor by the encoder and the strain of the support portion by the strain sensor, the detection accuracy of the displacement amount can be improved. As a result, production efficiency and welding quality can be improved.
 本開示の一態様では、制御部は、モータの回転量からワークの溶接部位における総厚みを検出する厚み検出部をさらに有してもよい。このような構成によれば、ワークの総厚みを用いた溶接制御が可能となる。そのため、溶接品質の向上を促進できる。 In one aspect of the present disclosure, the control unit may further include a thickness detection unit that detects the total thickness of the welded portion of the work from the amount of rotation of the motor. According to such a configuration, welding control using the total thickness of the work becomes possible. Therefore, the improvement of welding quality can be promoted.
 本開示の一態様では、制御部は、支持部の歪みからワークに加わっている実加圧力を検出する圧力検出部をさらに有してもよい。このような構成によれば、ワークに加わっている実加圧力を用いた溶接制御が可能となる。そのため、溶接品質の向上を促進できる。 In one aspect of the present disclosure, the control unit may further include a pressure detection unit that detects the actual pressure applied to the work from the strain of the support unit. According to such a configuration, welding control using the actual pressing force applied to the work becomes possible. Therefore, the improvement of welding quality can be promoted.
 本開示の一態様では、制御部は、モータの回転量からワークの溶接部位における総厚みを検出する厚み検出部と、支持部の歪みからワークに加わっている実加圧力を検出する圧力検出部と、をさらに有してもよい。調整部は、総厚みと実加圧力とに基づいて抵抗溶接機の溶接電流の大きさ及び通電時間の少なくとも一方を調整してもよい。このような構成によれば、溶接品質の向上に適した電流値及び通電時間を自動で設定することができる。 In one aspect of the present disclosure, the control unit includes a thickness detection unit that detects the total thickness of the welded portion of the work from the amount of rotation of the motor, and a pressure detection unit that detects the actual pressure applied to the work from the strain of the support portion. , And may further have. The adjusting unit may adjust at least one of the magnitude of the welding current and the energization time of the resistance welder based on the total thickness and the actual pressing force. According to such a configuration, the current value and the energization time suitable for improving the welding quality can be automatically set.
 本開示の一態様では、調整部は、変位量検出部が検出した変位量に基づいて抵抗溶接機に溶接を開始させてもよい。このような構成によれば、溶接制御装置による制御が安定するため溶接品質を高めることができる。 In one aspect of the present disclosure, the adjusting unit may cause the resistance welder to start welding based on the displacement amount detected by the displacement amount detecting unit. According to such a configuration, the control by the welding control device is stable, so that the welding quality can be improved.
 本開示の一態様では、調整部は、抵抗溶接機へパルス電流を供給し、パルス電流の供給時に変位量検出部が検出した変位量に基づいて外乱を検出してもよい。このような構成によれば、溶接不具合の有無の確認が可能となる。 In one aspect of the present disclosure, the adjusting unit may supply a pulse current to the resistance welder and detect the disturbance based on the displacement amount detected by the displacement amount detecting unit when the pulse current is supplied. With such a configuration, it is possible to confirm the presence or absence of welding defects.
 本開示の別の態様は、ワークを挟むように配置された第1電極及び第2電極と、第2電極を支持する支持部と、第1電極を第2電極に対して移動させるモータと、モータの回転量を出力するエンコーダとを備える抵抗溶接機を用いた溶接制御方法である。 Another aspect of the present disclosure is a first electrode and a second electrode arranged so as to sandwich the work, a support portion for supporting the second electrode, and a motor for moving the first electrode with respect to the second electrode. This is a welding control method using a resistance welding machine equipped with an encoder that outputs the amount of rotation of the motor.
 溶接制御方法は、抵抗溶接機による溶接の実行中に、エンコーダが出力するモータの回転量と支持部の歪みとに基づいて、第1電極と第2電極との電極間距離の変位量を検出する工程と、抵抗溶接機による溶接の実行中に、検出した変位量に基づいて抵抗溶接機の溶接電流を調整する工程と、を有する。 The welding control method detects the amount of displacement of the distance between the first electrode and the second electrode based on the amount of rotation of the motor output by the encoder and the distortion of the support portion during welding by the resistance welder. It has a step of adjusting the welding current of the resistance welder based on the detected displacement amount during the execution of welding by the resistance welder.
 このような構成によれば、上述したリアルタイムの溶接電流の調整と、変位量の検出精度の向上とによって、生産効率及び溶接品質を向上できる。 According to such a configuration, the production efficiency and the welding quality can be improved by adjusting the welding current in real time and improving the detection accuracy of the displacement amount.
 本開示の一態様は、モータの回転量からワークの溶接部位における総厚みを検出する工程をさらに有してもよい。 One aspect of the present disclosure may further include a step of detecting the total thickness at the welded portion of the work from the amount of rotation of the motor.
 本開示の一態様は、支持部の歪みからワークに加わっている実加圧力を検出する工程をさらに有してもよい。 One aspect of the present disclosure may further include a step of detecting the actual pressing force applied to the work from the strain of the support portion.
 本開示の一態様は、モータの回転量からワークの溶接部位における総厚みを検出する工程と、支持部の歪みからワークに加わっている実加圧力を検出する工程と、総厚みと実加圧力とに基づいて抵抗溶接機の溶接電流の大きさ及び通電時間の少なくとも一方を調整する工程と、をさらに有してもよい。 One aspect of the present disclosure includes a step of detecting the total thickness at the welded portion of the work from the rotation amount of the motor, a step of detecting the actual pressing force applied to the work from the strain of the support portion, and the total thickness and the actual pressing force. It may further have a step of adjusting at least one of the magnitude of the welding current and the energization time of the resistance welder based on the above.
 本開示の一態様は、検出した変位量に基づいて抵抗溶接機に溶接を開始させる工程をさらに有してもよい。 One aspect of the present disclosure may further include a step of causing the resistance welder to start welding based on the detected displacement amount.
 本開示の一態様は、抵抗溶接機へパルス電流を供給し、パルス電流の供給時に検出した変位量に基づいて外乱を検出する工程をさらに有してもよい。 One aspect of the present disclosure may further include a step of supplying a pulse current to the resistance welder and detecting disturbance based on the amount of displacement detected when the pulse current is supplied.
図1は、実施形態における溶接制御装置の構成を概略的に示すブロック図である。FIG. 1 is a block diagram schematically showing a configuration of a welding control device according to an embodiment. 図2は、実施形態における抵抗溶接機を示す模式図である。FIG. 2 is a schematic view showing a resistance welder according to the embodiment. 図3は、溶接電流及び変位量の時間変化の一例を示すグラフである。FIG. 3 is a graph showing an example of changes in welding current and displacement amount over time. 図4は、溶接電流及び変位量の時間変化の一例を示すグラフである。FIG. 4 is a graph showing an example of changes in welding current and displacement amount over time. 図5は、溶接電流及び変位量の時間変化の一例を示すグラフである。FIG. 5 is a graph showing an example of changes in welding current and displacement amount over time. 図6は、溶接電流及び変位量の時間変化の一例を示すグラフである。FIG. 6 is a graph showing an example of changes in welding current and displacement amount over time. 図7は、溶接電流、変位量及び実加圧力の時間変化の一例を示すグラフである。FIG. 7 is a graph showing an example of changes in welding current, displacement amount, and actual pressing force over time. 図8は、溶接電流及び変位量の時間変化の一例を示すグラフである。FIG. 8 is a graph showing an example of changes over time in the welding current and the amount of displacement. 図9は、溶接電流及び変位量の時間変化の一例を示すグラフである。FIG. 9 is a graph showing an example of changes in welding current and displacement amount over time. 図10は、制御部が実行する処理を概略的に示すフロー図である。FIG. 10 is a flow chart schematically showing the processing executed by the control unit. 図11は、図2とは異なる実施形態における抵抗溶接機を示す模式図である。FIG. 11 is a schematic view showing a resistance welder in an embodiment different from that of FIG. 図12は、溶接電流及び変位量の時間変化の一例を示すグラフである。FIG. 12 is a graph showing an example of changes in welding current and displacement amount over time.
 1…溶接制御装置、2…歪みセンサ、2A…第1歪みセンサ、2B…第2歪みセンサ、3…制御部、4…変位量検出部、5…厚み検出部、6…圧力検出部、7…調整部、10…抵抗溶接機、11…第1電極、12…第2電極、13…支持部、14…モータ、15…伝達体、16…エンコーダ、17…溶接ガン、20…抵抗溶接機、21…第1電極、22…第2電極、23A…第1支持部、23B…第2支持部、24…モータ、25…伝達体、26…エンコーダ、27…溶接ガン。 1 ... Welding control device, 2 ... Strain sensor, 2A ... 1st strain sensor, 2B ... 2nd strain sensor, 3 ... Control unit, 4 ... Displacement amount detection unit, 5 ... Thickness detection unit, 6 ... Pressure detection unit, 7 ... Adjustment part, 10 ... Resistance welding machine, 11 ... 1st electrode, 12 ... 2nd electrode, 13 ... Support part, 14 ... Motor, 15 ... Transmitter, 16 ... Encoder, 17 ... Welding gun, 20 ... Resistance welding machine , 21 ... 1st electrode, 22 ... 2nd electrode, 23A ... 1st support, 23B ... 2nd support, 24 ... motor, 25 ... transmitter, 26 ... encoder, 27 ... welding gun.
 以下、本開示が適用された実施形態について、図面を用いて説明する。 Hereinafter, embodiments to which the present disclosure has been applied will be described with reference to the drawings.
 [1.第1実施形態]
 [1-1.構成]
 図1に示す溶接制御装置1は、図2に示す抵抗溶接機10の制御に用いられる。
[1. First Embodiment]
[1-1. composition]
The welding control device 1 shown in FIG. 1 is used for controlling the resistance welding machine 10 shown in FIG.
 <抵抗溶接機>
 抵抗溶接機10は、ワークWとして配置された第1板P1と第2板P2とを厚み方向に抵抗溶接する。ワークWは、第1板P1と、第1板P1が上方から重ね合わされた第2板P2とを有する。
<Resistance welding machine>
The resistance welding machine 10 resistance welds the first plate P1 and the second plate P2 arranged as the work W in the thickness direction. The work W has a first plate P1 and a second plate P2 on which the first plate P1 is overlapped from above.
 抵抗溶接機10は、第1電極11と、第2電極12と、支持部13と、モータ14と、伝達体15と、エンコーダ16とを備える。第1電極11、第2電極12及び支持部13は、Cタイプの溶接ガン17を構成している。 The resistance welder 10 includes a first electrode 11, a second electrode 12, a support portion 13, a motor 14, a transmitter 15, and an encoder 16. The first electrode 11, the second electrode 12, and the support portion 13 constitute a C-type welding gun 17.
 第1電極11は、ワークWの上方に配置されている。第2電極12は、ワークWの下方において、第1電極11と共にワークWを厚み方向に挟むように配置されている。第1電極11及び第2電極12は、それぞれ、溶接時にワークWに当接する。第1電極11と第2電極12との間には、溶接制御装置1から供給された溶接電流がワークWを介して流れる。 The first electrode 11 is arranged above the work W. The second electrode 12 is arranged below the work W so as to sandwich the work W together with the first electrode 11 in the thickness direction. The first electrode 11 and the second electrode 12 each come into contact with the work W during welding. A welding current supplied from the welding control device 1 flows between the first electrode 11 and the second electrode 12 via the work W.
 支持部13は、第2電極12を支持するガンヨークである。第2電極12は、支持部13の先端部から上方に突出している。支持部13によって、第2電極12は、一定の位置(つまり高さ)に保持される。 The support portion 13 is a gun yoke that supports the second electrode 12. The second electrode 12 projects upward from the tip end portion of the support portion 13. The support portion 13 holds the second electrode 12 in a fixed position (that is, height).
 モータ14は、伝達体15を回転させることで、第1電極11を第2電極12に対して上下方向に移動させる。つまり、モータ14は、第1電極11を上下方向に移動させることで、第1電極11と第2電極12との電極間距離を変化させる。 The motor 14 rotates the transmitter 15 to move the first electrode 11 in the vertical direction with respect to the second electrode 12. That is, the motor 14 changes the distance between the first electrode 11 and the second electrode 12 by moving the first electrode 11 in the vertical direction.
 また、モータ14は、第1電極11と第2電極12との電極間距離を変化させることによって、第1電極11及び第2電極12によるワークWへの加圧力(つまり、抵抗溶接機10の溶接圧力)を調整する。 Further, the motor 14 applies pressure to the work W by the first electrode 11 and the second electrode 12 (that is, the resistance welder 10) by changing the distance between the first electrode 11 and the second electrode 12. Welding pressure) is adjusted.
 伝達体15は、モータ14の回転運動を第1電極11の上下方向の直線運動に変換する。伝達体15としては、例えば、ボールねじが使用される。 The transmitter 15 converts the rotational motion of the motor 14 into a linear motion in the vertical direction of the first electrode 11. As the transmitter 15, for example, a ball screw is used.
 エンコーダ16は、モータ14の回転量を出力する。具体的には、エンコーダ16は、モータ14の回転量をパルス数として溶接制御装置1に出力する。エンコーダ16は、直接、溶接制御装置1にモータ14の回転量を出力してもよいし、抵抗溶接機10が備えるロボットコントローラ(図示省略)を介して、溶接制御装置1にモータ14の回転量を出力してもよい。 The encoder 16 outputs the amount of rotation of the motor 14. Specifically, the encoder 16 outputs the amount of rotation of the motor 14 as the number of pulses to the welding control device 1. The encoder 16 may directly output the rotation amount of the motor 14 to the welding control device 1, or the rotation amount of the motor 14 to the welding control device 1 via a robot controller (not shown) included in the resistance welder 10. May be output.
 モータ14の回転量と第1電極11の上下方向の位置(つまり高さ)とは相関する。特に、伝達体15がボールねじの場合は、モータ14の回転量と第1電極11の変位量とは線形関係にある。 The amount of rotation of the motor 14 and the vertical position (that is, the height) of the first electrode 11 correlate with each other. In particular, when the transmitter 15 is a ball screw, the amount of rotation of the motor 14 and the amount of displacement of the first electrode 11 have a linear relationship.
 <溶接制御装置>
 溶接制御装置1は、図1に示すように、歪みセンサ2と、制御部3とを備える。
<Welding control device>
As shown in FIG. 1, the welding control device 1 includes a strain sensor 2 and a control unit 3.
 (歪みセンサ)
 歪みセンサ2は、支持部13に取り付けられている。歪みセンサ2は、溶接ガン17の加圧時に支持部13に生じる歪みを測定するように構成されている。歪みセンサ2としては、例えば、圧電センサ、歪みゲージ等が使用できる。
(Strain sensor)
The strain sensor 2 is attached to the support portion 13. The strain sensor 2 is configured to measure the strain generated in the support portion 13 when the welding gun 17 is pressurized. As the strain sensor 2, for example, a piezoelectric sensor, a strain gauge, or the like can be used.
 (制御部)
 制御部3は、抵抗溶接機10と電気的に接続され、抵抗溶接機10を制御するように構成されている。
(Control unit)
The control unit 3 is electrically connected to the resistance welder 10 and is configured to control the resistance welder 10.
 制御部3は、例えば、マイクロプロセッサと、RAM、ROM等の記憶媒体と、入出力部とを備えるコンピュータにより構成される。制御部3は、変位量検出部4と、厚み検出部5と、圧力検出部6と、調整部7とを有する。 The control unit 3 is composed of, for example, a computer including a microprocessor, a storage medium such as RAM and ROM, and an input / output unit. The control unit 3 includes a displacement amount detection unit 4, a thickness detection unit 5, a pressure detection unit 6, and an adjustment unit 7.
 (変位量検出部)
 変位量検出部4は、抵抗溶接機10による溶接の実行中に、エンコーダ16から直接、又はロボットコントローラを介して出力されるモータ14の回転位置と歪みセンサ2が出力する支持部13の歪みとに基づいて、第1電極11と第2電極12との電極間距離の変位量を検出する。
(Displacement amount detection unit)
The displacement amount detecting unit 4 describes the rotational position of the motor 14 output directly from the encoder 16 or via the robot controller and the distortion of the support unit 13 output by the strain sensor 2 during the execution of welding by the resistance welding machine 10. The amount of displacement of the distance between the first electrode 11 and the second electrode 12 is detected based on the above.
 具体的には、溶接時にワークWが膨張すると、第1電極11が押し上げられる。その結果、伝達体15を介してモータ14が回転する。変位量検出部4は、モータ14の回転量をエンコーダ16から取得し、モータ14の回転量と第1電極11との位置との関数を使用することで、第1電極11の位置の変位量を検出する。 Specifically, when the work W expands during welding, the first electrode 11 is pushed up. As a result, the motor 14 rotates via the transmitter 15. The displacement amount detecting unit 4 acquires the rotation amount of the motor 14 from the encoder 16 and uses a function of the rotation amount of the motor 14 and the position of the first electrode 11, so that the displacement amount of the position of the first electrode 11 Is detected.
 また、ワークWが膨張すると、第2電極12が押し下げられる。その結果、支持部13に歪みが生じる。変位量検出部4は、支持部13の歪みを歪みセンサ2から取得し、支持部13の歪みと第2電極12との位置との関数を使用することで、第2電極12の位置の変位量を検出する。 Further, when the work W expands, the second electrode 12 is pushed down. As a result, the support portion 13 is distorted. The displacement amount detecting unit 4 acquires the strain of the support portion 13 from the strain sensor 2, and uses a function of the strain of the support portion 13 and the position of the second electrode 12 to displace the position of the second electrode 12. Detect the amount.
 変位量検出部4は、第1電極11の位置の変位量と、第2電極12の位置の変位量とを足し合わせることで、第1電極11と第2電極12との電極間距離を検出する。また、変位量検出部4は、溶接の開始から終了まで継続的に電極間距離を検出する。 The displacement amount detecting unit 4 detects the distance between the first electrode 11 and the second electrode 12 by adding the displacement amount at the position of the first electrode 11 and the displacement amount at the position of the second electrode 12. do. Further, the displacement amount detecting unit 4 continuously detects the distance between the electrodes from the start to the end of welding.
 図3に変位量検出の一例を示す。図3には、溶接電流Cを一定として溶接を行った際に検出されたモータ14の回転量による第1電極11の変位量D1と、支持部13の歪みによる第2電極12の変位量D2と、モータ14の回転量と支持部13の歪みとによる電極間距離の変位量D3との時間変化が示されている。電極間距離の変位量D3の波形は、レーザ測定器で測定した電極間距離の変位量D0の波形とほぼ同形である。 FIG. 3 shows an example of displacement amount detection. In FIG. 3, the displacement amount D1 of the first electrode 11 due to the rotation amount of the motor 14 detected when welding is performed with the welding current C constant, and the displacement amount D2 of the second electrode 12 due to the distortion of the support portion 13. And the time change of the displacement amount D3 of the distance between the electrodes due to the rotation amount of the motor 14 and the distortion of the support portion 13 is shown. The waveform of the displacement amount D3 of the inter-electrode distance is substantially the same as the waveform of the displacement amount D0 of the inter-electrode distance measured by the laser measuring instrument.
 (厚み検出部)
 厚み検出部5は、モータ14の回転量からワークWの溶接部位における総厚みを検出する。総厚みは、抵抗溶接機10による溶接の開始前又は溶接の実行中に検出される。
(Thickness detector)
The thickness detection unit 5 detects the total thickness of the work W at the welded portion from the amount of rotation of the motor 14. The total thickness is detected before the start of welding by the resistance welder 10 or during the execution of welding.
 具体的には、厚み検出部5は、ワークWがない状態において第1電極11で第2電極12を加圧した場合の第1電極11の基準位置と、溶接時においてワークWを第1電極11で加圧した場合の第1電極11の位置との差分によって、ワークWの溶接部位における総厚みを算出する。 Specifically, the thickness detection unit 5 sets the work W as the first electrode at the time of welding and the reference position of the first electrode 11 when the second electrode 12 is pressurized by the first electrode 11 in the absence of the work W. The total thickness of the work W at the welded portion is calculated from the difference from the position of the first electrode 11 when pressurized by 11.
 (圧力検出部)
 圧力検出部6は、支持部13の歪みからワークWに加わっている実加圧力を検出する。実加圧力は、抵抗溶接機10による溶接の開始前又は溶接の実行中に検出される。
(Pressure detector)
The pressure detection unit 6 detects the actual pressure applied to the work W from the strain of the support unit 13. The actual pressing force is detected before the start of welding by the resistance welder 10 or during the execution of welding.
 具体的には、圧力検出部6は、周知の応力-歪み曲線と、フックの法則とを用いて、歪みの大きさ(つまり歪みセンサ2の出力)から現在のワークWへの実加圧力を算出する。第1電極11と第2電極12との間には比較的高い加圧力が作用するため、支持部13は応力-歪み曲線の弾性変形領域で変形をする。そのため、フックの法則にしたがって、歪みと実加圧力とは比例する。 Specifically, the pressure detection unit 6 calculates the actual applied pressure on the current work W from the magnitude of strain (that is, the output of the strain sensor 2) using a well-known stress-strain curve and Hooke's law. do. Since a relatively high pressing force acts between the first electrode 11 and the second electrode 12, the support portion 13 is deformed in the elastic deformation region of the stress-strain curve. Therefore, according to Hooke's law, strain and actual pressure are proportional.
 (調整部)
 調整部7は、変位量検出部4が検出した電極間距離の変位量と、厚み検出部5が検出した総厚みと、圧力検出部6が検出した実加圧力とに基づいて抵抗溶接機10(つまり溶接ガン17)の溶接電流を調整する。
(Adjustment section)
The adjusting unit 7 is a resistance welder 10 (based on the displacement amount of the distance between the electrodes detected by the displacement amount detecting unit 4, the total thickness detected by the thickness detecting unit 5, and the actual applied pressure detected by the pressure detecting unit 6). That is, the welding current of the welding gun 17) is adjusted.
 具体的には、調整部7は、抵抗溶接機10による溶接の実行中に、電極間距離の変位量の変化速度が適切な大きさになるように溶接電流を調整する。図4に、第1電流C11で溶接を行った第1ケースにおける電極間距離の変位量D11と、第1電流C11よりも小さい第2電流C12で溶接を行った第2ケースにおける電極間距離の変位量D12との時間変化の一例を示す。 Specifically, the adjusting unit 7 adjusts the welding current so that the rate of change of the displacement amount of the distance between the electrodes becomes an appropriate magnitude during the execution of welding by the resistance welding machine 10. FIG. 4 shows the displacement amount D11 of the distance between the electrodes in the first case welded with the first current C11 and the distance between the electrodes in the second case welded with the second current C12 smaller than the first current C11. An example of the time change with the displacement amount D12 is shown.
 図4では、第1ケースの変位量D11は、第2ケースの変位量D12よりも増加速度が大きい。また、第1ケースで得られる溶接ナゲットの径は、第2ケースで得られる溶接ナゲットの径よりも大きい。 In FIG. 4, the displacement amount D11 of the first case has a larger increase rate than the displacement amount D12 of the second case. Further, the diameter of the welding nugget obtained in the first case is larger than the diameter of the welding nugget obtained in the second case.
 また、図5に、第3電流C13で溶接を行った第3ケースにおける電極間距離の変位量D13と、第3電流C13よりも大きい第4電流C14で溶接を行った第4ケースにおける電極間距離の変位量D14との時間変化の一例を示す。 Further, in FIG. 5, the displacement amount D13 of the distance between the electrodes in the third case welded with the third current C13 and the distance between the electrodes in the fourth case welded with the fourth current C14 larger than the third current C13. An example of the time change with the displacement amount D14 of the distance is shown.
 図5では、第4ケースの変位量D14は、第3ケースの変位量D13よりも変化速度が大きい。また、第3ケースでは溶接時に散りが発生しない一方で、第4ケースでは散りが発生する。 In FIG. 5, the displacement amount D14 of the fourth case has a larger rate of change than the displacement amount D13 of the third case. Further, in the third case, scattering does not occur during welding, while in the fourth case, scattering occurs.
 このような関係を基に、調整部7は、十分な大きさの溶接ナゲットが形成され、かつ、溶接時に散りの発生が抑えられる変位量の変化速度をターゲットとして、溶接ガン17の溶接電流の大きさを設定する。このように散りの発生を抑制することで、溶接品質の向上、作業環境の改善、後工程でのワークWの清掃工数の削減等の効果が得られる。 Based on such a relationship, the adjusting unit 7 targets the rate of change of the displacement amount at which a welding nugget having a sufficient size is formed and the occurrence of scattering is suppressed during welding, and the welding current of the welding gun 17 is changed. Set the size. By suppressing the occurrence of scattering in this way, effects such as improvement of welding quality, improvement of working environment, and reduction of man-hours for cleaning the work W in the subsequent process can be obtained.
 また、調整部7は、抵抗溶接機10による溶接の実行中に、電極間距離の変位量が飽和した後の通電時間を調整する。図6に、第5電流C15を通電した第5ケースにおける電極間距離の変位量D15と、第5電流C15と同じ大きさの第6電流C16を通電した第6ケースにおける電極間距離の変位量D16との時間変化の一例を示す。 Further, the adjusting unit 7 adjusts the energizing time after the displacement amount of the distance between the electrodes is saturated during the execution of welding by the resistance welding machine 10. FIG. 6 shows the displacement amount D15 of the distance between the electrodes in the fifth case in which the fifth current C15 is energized, and the displacement amount of the distance between the electrodes in the sixth case in which the sixth current C16 having the same magnitude as the fifth current C15 is energized. An example of time change with D16 is shown.
 第5ケースでは、変位量D15が飽和した後も溶接電流の通電が継続されている。一方、第6ケースでは、変位量D16が飽和した直後に溶接電流が遮断されている。また、第5ケースで得られる溶接ナゲットの径は、第6ケースで得られる溶接ナゲットの径よりも大きい。このような関係を基に、調整部7は、十分な大きさの溶接ナゲットが形成されるように、変位量の飽和後の溶接電流の通電時間を設定する。 In the fifth case, the welding current is still energized even after the displacement amount D15 is saturated. On the other hand, in the sixth case, the welding current is cut off immediately after the displacement amount D16 is saturated. Further, the diameter of the welding nugget obtained in the fifth case is larger than the diameter of the welding nugget obtained in the sixth case. Based on such a relationship, the adjusting unit 7 sets the energization time of the welding current after the displacement amount is saturated so that the welding nugget having a sufficient size is formed.
 さらに、調整部7は、ワークWに加わっている実加圧力に合わせて溶接電流の大きさを調整する。図7に、第7電流C17を通電した第7ケースにおける電極間距離の変位量D17と、第7電流C17よりも大きい第8電流C18を通電した第8ケースにおける電極間距離の変位量D18との時間変化の一例を示す。また、図7には、第7ケースにおける実加圧力S17及び第8ケースにおける実加圧力S18が示されている。 Further, the adjusting unit 7 adjusts the magnitude of the welding current according to the actual pressing force applied to the work W. FIG. 7 shows a displacement amount D17 of the distance between the electrodes in the seventh case in which the seventh current C17 is energized, and a displacement amount D18 of the distance between the electrodes in the eighth case in which the eighth current C18 larger than the seventh current C17 is energized. An example of the time change of is shown. Further, FIG. 7 shows the actual pressing force S17 in the seventh case and the actual pressing force S18 in the eighth case.
 第7ケースでは、変位量D17及び実加圧力S17は滑らかに変化している。一方、第8ケースでは、変位量D18及び実加圧力S18が急激に低下している。また、第7ケースでは溶接時に散りが発生しない一方で、第8ケースでは散りが発生する。このような関係を基に、調整部7は、溶接時に散りが発生しないように実加圧力を監視しながら溶接電流の大きさを調整する。 In the seventh case, the displacement amount D17 and the actual pressing force S17 change smoothly. On the other hand, in the eighth case, the displacement amount D18 and the actual pressing force S18 are sharply reduced. Further, in the seventh case, scattering does not occur during welding, while in the eighth case, scattering occurs. Based on such a relationship, the adjusting unit 7 adjusts the magnitude of the welding current while monitoring the actual pressing force so that scattering does not occur during welding.
 また、調整部7は、総厚み及び実加圧力から、有効な溶接電流の大きさ(例えば、溶接開始電流値、最低電流値、最大電流値、電流の変化速度等)及び通電時間(例えば、最小通電時間、最大通電時間等)を設定する。溶接電流の大きさ及び通電時間は、抵抗溶接機10による溶接の開始前又は溶接の実行中に設定される。 Further, the adjusting unit 7 determines the effective welding current magnitude (for example, welding start current value, minimum current value, maximum current value, current change rate, etc.) and energization time (for example, minimum) based on the total thickness and the actual pressing force. Set the energization time, maximum energization time, etc.). The magnitude of the welding current and the energizing time are set before the start of welding by the resistance welding machine 10 or during the execution of welding.
 さらに、調整部7は、変位量検出部4が検出した変位量に基づいて抵抗溶接機10に溶接を開始させる。具体的には、調整部7は、変位量の大きさ及び/又は変位量の変化速度の変化が小さくなる(つまり変位量が安定する)まで、抵抗溶接機10による溶接を待機させる。変位量が安定した後、調整部7は、抵抗溶接機10に溶接を開始させる。なお、待機中の抵抗溶接機10には、電流が供給されていてもよいし、電流が供給されなくてもよい。 Further, the adjusting unit 7 causes the resistance welding machine 10 to start welding based on the displacement amount detected by the displacement amount detecting unit 4. Specifically, the adjusting unit 7 waits for welding by the resistance welding machine 10 until the change in the magnitude of the displacement amount and / or the change speed of the displacement amount becomes small (that is, the displacement amount becomes stable). After the displacement amount is stabilized, the adjusting unit 7 causes the resistance welding machine 10 to start welding. A current may or may not be supplied to the standby resistance welder 10.
 また、調整部7は、抵抗溶接機10へパルス電流を供給し、パルス電流の供給時に変位量検出部4が検出した変位量に基づいて外乱を検出する。外乱とは、例えば、ワークWの隙間、異物の噛み込み、端打ち等である。 Further, the adjusting unit 7 supplies a pulse current to the resistance welding machine 10, and detects a disturbance based on the displacement amount detected by the displacement amount detecting unit 4 when the pulse current is supplied. The disturbance is, for example, a gap in the work W, a foreign substance being caught in the work W, a scraping, or the like.
 例えば図8に示すように、溶接電流C21の通電前にパルス電流PCを通電したときに変位量D21の変化速度が低下した場合、調整部7は、ワークWの第1板P1と第2板P2との間に隙間が発生したと判断する。 For example, as shown in FIG. 8, when the rate of change of the displacement amount D21 decreases when the pulse current PC is energized before the welding current C21 is energized, the adjusting unit 7 moves the first plate P1 and the second plate of the work W. It is determined that a gap has been generated between P2 and P2.
 また、例えば図9に示すように、溶接電流C22の通電前にパルス電流PCを通電したときに変位量D22が低下した場合、調整部7は、異物の噛み込み又は端打ちが発生したと判断する。 Further, for example, as shown in FIG. 9, when the displacement amount D22 decreases when the pulse current PC is energized before the welding current C22 is energized, the adjusting unit 7 determines that foreign matter is caught or edged. do.
 [1-2.処理]
 以下、図10のフロー図を参照しつつ、溶接制御装置1の制御部3が実行する処理の一例について説明する。
[1-2. process]
Hereinafter, an example of the process executed by the control unit 3 of the welding control device 1 will be described with reference to the flow chart of FIG.
 本処理では、まず、制御部3は、抵抗溶接機10に溶接電流を通電し、溶接を開始する(ステップS100)。溶接開始後、制御部3は、第1電極11と第2電極12との電極間距離の変位量を検出する(ステップS110)。続けて、制御部3は、検出した変位量に基づいて抵抗溶接機10の溶接電流を調整する(ステップS120)。 In this process, first, the control unit 3 energizes the resistance welding machine 10 with a welding current and starts welding (step S100). After the start of welding, the control unit 3 detects the amount of displacement of the distance between the first electrode 11 and the second electrode 12 (step S110). Subsequently, the control unit 3 adjusts the welding current of the resistance welding machine 10 based on the detected displacement amount (step S120).
 溶接の継続中、制御部3は、溶接が終了したか(つまり溶接点が終了点に到達したか)否か判定する(ステップS130)。溶接が終了した場合(S130:YES)、制御部3は、処理を終了する。溶接が終了していない場合(S130:NO)、制御部3は、溶接が終了するまで変位量の検出と溶接電流の調整とを繰り返す。 During the continuation of welding, the control unit 3 determines whether or not the welding is completed (that is, whether the welding point has reached the end point) (step S130). When the welding is completed (S130: YES), the control unit 3 ends the process. When the welding is not completed (S130: NO), the control unit 3 repeats the detection of the displacement amount and the adjustment of the welding current until the welding is completed.
 [1-3.溶接制御方法]
 本実施形態の溶接制御方法は、制御部3によって実行される。つまり、本実施形態の溶接制御方法は、抵抗溶接機10に溶接を開始させる工程と、電極間距離の変位量を検出する工程と、変位量に基づいて抵抗溶接機10の溶接電流を調整する工程と、ワークWの溶接部位における総厚みを検出する工程と、ワークWに加わっている実加圧力を検出する工程と、総厚みと実加圧力とに基づいて抵抗溶接機10の溶接電流の大きさ及び通電時間の少なくとも一方を調整する工程と、変位量に基づいて外乱を検出する工程とを有する。
[1-3. Welding control method]
The welding control method of this embodiment is executed by the control unit 3. That is, in the welding control method of the present embodiment, the step of starting the welding on the resistance welding machine 10, the step of detecting the displacement amount of the distance between the electrodes, and the welding current of the resistance welding machine 10 are adjusted based on the displacement amount. The magnitude of the welding current of the resistance welding machine 10 based on the steps, the step of detecting the total thickness at the welded portion of the work W, the step of detecting the actual pressing force applied to the work W, and the total thickness and the actual pressing force. It also has a step of adjusting at least one of the energization time and a step of detecting disturbance based on the amount of displacement.
 [1-4.効果]
 以上詳述した実施形態によれば、以下の効果が得られる。
[1-4. effect]
According to the embodiment described in detail above, the following effects can be obtained.
 (1a)抵抗溶接機10の溶接中に電極間距離の変位量を検出し、リアルタイムに溶接電流を調整することで、外乱の影響を低減することができる。そのため、溶接品質を高めることができる。また、エンコーダ16によるモータ14の回転量と、歪みセンサ2による支持部13の歪みとに基づいて変位量が検出されるため、変位量の検出精度を高められる。その結果、生産効率及び溶接品質を向上できる。 (1a) The influence of disturbance can be reduced by detecting the displacement amount of the distance between the electrodes during welding of the resistance welding machine 10 and adjusting the welding current in real time. Therefore, the welding quality can be improved. Further, since the displacement amount is detected based on the rotation amount of the motor 14 by the encoder 16 and the strain of the support portion 13 by the strain sensor 2, the detection accuracy of the displacement amount can be improved. As a result, production efficiency and welding quality can be improved.
 (1b)厚み検出部5によって、ワークWの総厚みを用いた溶接制御が可能となる。そのため、溶接品質の向上を促進できる。 (1b) The thickness detection unit 5 enables welding control using the total thickness of the work W. Therefore, the improvement of welding quality can be promoted.
 (1c)圧力検出部6によって、ワークWに加わっている実加圧力を用いた溶接制御が可能となる。そのため、溶接品質の向上を促進できる。 (1c) The pressure detection unit 6 enables welding control using the actual pressure applied to the work W. Therefore, the improvement of welding quality can be promoted.
 (1d)総厚みと実加圧力とに基づいて抵抗溶接機10の溶接電流の大きさ及び通電時間の少なくとも一方を調整することで、溶接品質の向上に適した電流値及び通電時間を自動で設定することができる。 (1d) By adjusting at least one of the magnitude of the welding current and the energizing time of the resistance welding machine 10 based on the total thickness and the actual pressing force, the current value and the energizing time suitable for improving the welding quality are automatically set. can do.
 (1e)変位量検出部4が検出した変位量に基づいて抵抗溶接機10に溶接を開始させることで、溶接制御装置1による制御が安定するため溶接品質を高めることができる。 (1e) By starting the welding in the resistance welding machine 10 based on the displacement amount detected by the displacement amount detecting unit 4, the control by the welding control device 1 is stabilized, and the welding quality can be improved.
 (1f)パルス電流の供給時に変位量検出部4が検出した変位量に基づいて外乱を検出することで、溶接不具合の有無の確認が可能となる。 (1f) By detecting the disturbance based on the displacement amount detected by the displacement amount detection unit 4 when the pulse current is supplied, it is possible to confirm the presence or absence of welding defects.
 [2.第2実施形態]
 [2-1.構成]
 第2実施形態の溶接制御装置は、図11に示す抵抗溶接機20の制御に用いられる。
[2. Second Embodiment]
[2-1. composition]
The welding control device of the second embodiment is used for controlling the resistance welding machine 20 shown in FIG.
 抵抗溶接機20は、ワークWとして配置された第1板P1と第2板P2とを厚み方向に抵抗溶接する。抵抗溶接機20は、第1電極21と、第2電極22と、第1支持部23Aと、第2支持部23Bと、モータ24と、伝達体25と、エンコーダ26とを備える。 The resistance welder 20 resistance welds the first plate P1 and the second plate P2 arranged as the work W in the thickness direction. The resistance welder 20 includes a first electrode 21, a second electrode 22, a first support portion 23A, a second support portion 23B, a motor 24, a transmitter 25, and an encoder 26.
 第1電極21、第2電極22、第1支持部23A及び第2支持部23Bは、Xタイプの溶接ガン27を構成している。第1電極21、第2電極22、モータ24及びエンコーダ26は、図2の抵抗溶接機10の第1電極11、第2電極12、モータ14及びエンコーダ16と同様である。 The first electrode 21, the second electrode 22, the first support portion 23A, and the second support portion 23B constitute an X-type welding gun 27. The first electrode 21, the second electrode 22, the motor 24, and the encoder 26 are the same as the first electrode 11, the second electrode 12, the motor 14, and the encoder 16 of the resistance welder 10 of FIG.
 第1支持部23Aは、第1電極21を支持するガンアームである。第1支持部23Aは、伝達体25によって第2支持部23Bに対し揺動可能に構成されている。第1電極21は、第1支持部23Aの揺動により、ワークW及び第2電極22との位置が調整される。 The first support portion 23A is a gun arm that supports the first electrode 21. The first support portion 23A is configured to be swingable with respect to the second support portion 23B by the transmitter 25. The positions of the first electrode 21 and the work W and the second electrode 22 are adjusted by the swing of the first support portion 23A.
 第2支持部23Bは、第2電極22を支持するガンヨークである。伝達体25は、モータ24の駆動力によって第1支持部23Aを揺動させる。したがって、モータ24は、第1電極21を第2電極22に対して移動させる。 The second support portion 23B is a gun yoke that supports the second electrode 22. The transmitter 25 swings the first support portion 23A by the driving force of the motor 24. Therefore, the motor 24 moves the first electrode 21 with respect to the second electrode 22.
 本実施形態の溶接制御装置は、以下に説明する点を除き、第1実施形態の溶接制御装置1と同じである。 The welding control device of the present embodiment is the same as the welding control device 1 of the first embodiment except for the points described below.
 本実施形態では、溶接制御装置は、第1支持部23Aの歪みを測定する第1歪みセンサ2Aと、第2支持部23Bの歪みを測定する第2歪みセンサ2Bとを有する。また、溶接制御装置の変位量検出部は、エンコーダ26が出力するモータ24の回転量と、第1歪みセンサ2Aが出力する第1支持部23Aの歪みと、第2歪みセンサ2Bが出力する第2支持部23Bの歪みとに基づいて、第1電極21と第2電極22との電極間距離の変位量を検出する。 In the present embodiment, the welding control device has a first strain sensor 2A for measuring the strain of the first support portion 23A and a second strain sensor 2B for measuring the strain of the second support portion 23B. Further, the displacement amount detection unit of the welding control device includes the rotation amount of the motor 24 output by the encoder 26, the strain of the first support portion 23A output by the first strain sensor 2A, and the first strain output by the second strain sensor 2B. 2 The amount of displacement of the distance between the first electrode 21 and the second electrode 22 is detected based on the strain of the support portion 23B.
 具体的には、変位量検出部は、モータ24の回転量から算出される第1電極21の変位量と、第1支持部23Aの歪みから算出される第1電極21の位置の変位量と、第2支持部23Bの歪みから算出される第2電極22の位置の変位量とから、第1電極21と第2電極22との電極間距離を検出する。 Specifically, the displacement amount detecting unit includes the displacement amount of the first electrode 21 calculated from the rotation amount of the motor 24 and the displacement amount of the position of the first electrode 21 calculated from the strain of the first support unit 23A. , The distance between the first electrode 21 and the second electrode 22 is detected from the displacement amount of the position of the second electrode 22 calculated from the strain of the second support portion 23B.
 図12に変位量検出の一例を示す。図12には、溶接電流Cを一定として溶接を行った際に変位量検出部によって検出された電極間距離の変位量D3の時間変化が示されている。電極間距離の変位量D3の波形は、レーザ測定器で測定した電極間距離の変位量D0の波形とほぼ同形である。 FIG. 12 shows an example of displacement amount detection. FIG. 12 shows a time change of the displacement amount D3 of the distance between the electrodes detected by the displacement amount detecting unit when welding is performed with the welding current C constant. The waveform of the displacement amount D3 of the inter-electrode distance is substantially the same as the waveform of the displacement amount D0 of the inter-electrode distance measured by the laser measuring instrument.
 なお、本実施形態において、第1歪みセンサ2A及び第2歪みセンサ2Bの一方を省略することも可能である。ただし、2つの歪みセンサを用いることで、変位量の検出精度を向上できる。 In the present embodiment, one of the first strain sensor 2A and the second strain sensor 2B can be omitted. However, by using the two strain sensors, the accuracy of detecting the displacement amount can be improved.
 [2-2.効果]
 以上詳述した実施形態によれば、以下の効果が得られる。
[2-2. effect]
According to the embodiment described in detail above, the following effects can be obtained.
 (2a)第1支持部23Aの揺動によって第1電極21が第2電極22に対して移動する抵抗溶接機20に対しても、変位量の検出精度を高められる。その結果、生産効率及び溶接品質を向上できる。 (2a) The accuracy of detecting the displacement amount can be improved even for the resistance welding machine 20 in which the first electrode 21 moves with respect to the second electrode 22 due to the swing of the first support portion 23A. As a result, production efficiency and welding quality can be improved.
 [3.他の実施形態]
 以上、本開示の実施形態について説明したが、本開示は、上記実施形態に限定されることなく、種々の形態を採り得ることは言うまでもない。
[3. Other embodiments]
Although the embodiments of the present disclosure have been described above, it goes without saying that the present disclosure is not limited to the above-described embodiments, and various forms can be adopted.
 (3a)上記実施形態の溶接制御装置において、制御部は、必ずしも厚み検出部及び圧力検出部を有しなくてもよい。 (3a) In the welding control device of the above embodiment, the control unit does not necessarily have to have a thickness detection unit and a pressure detection unit.
 (3b)上記実施形態の溶接制御装置において、調整部は、必ずしも変位量に基づいて抵抗溶接機に溶接を開始させなくてもよい。また、調整部は、必ずしもパルス電流の供給時の変位量に基づいて外乱を検出しなくてもよい。 (3b) In the welding control device of the above embodiment, the adjusting unit does not necessarily have to cause the resistance welder to start welding based on the displacement amount. Further, the adjusting unit does not necessarily have to detect the disturbance based on the displacement amount at the time of supplying the pulse current.
 (3c)上記実施形態の溶接制御装置は、水平方向にワークWを加圧する(つまり、第1板P1と第2板P2とが水平方向に重ねあわされた状態で溶接を行う)抵抗溶接機にも使用可能である。 (3c) The welding control device of the above embodiment is a resistance welding machine that pressurizes the work W in the horizontal direction (that is, welds in a state where the first plate P1 and the second plate P2 are overlapped in the horizontal direction). It can also be used for.
 (3d)上記実施形態の溶接制御装置は、モータによって第1電極及び第2電極の双方が移動する(例えば、第2実施形態の抵抗溶接機20において、第2支持部23Bもモータ24によって揺動するように構成された)抵抗溶接機にも使用可能である。 (3d) In the welding control device of the above embodiment, both the first electrode and the second electrode are moved by the motor (for example, in the resistance welding machine 20 of the second embodiment, the second support portion 23B is also shaken by the motor 24. It can also be used in resistance welders (configured to move).
 (3e)上記実施形態における1つの構成要素が有する機能を複数の構成要素として分散させたり、複数の構成要素が有する機能を1つの構成要素に統合したりしてもよい。また、上記実施形態の構成の一部を省略してもよい。また、上記実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加、置換等してもよい。なお、特許請求の範囲に記載の文言から特定される技術思想に含まれるあらゆる態様が本開示の実施形態である。 (3e) The functions of one component in the above embodiment may be dispersed as a plurality of components, or the functions of the plurality of components may be integrated into one component. Further, a part of the configuration of the above embodiment may be omitted. Further, at least a part of the configuration of the above embodiment may be added or replaced with the configuration of the other embodiment. It should be noted that all aspects included in the technical idea specified from the wording described in the claims are embodiments of the present disclosure.

Claims (12)

  1.  ワークを挟むように配置された第1電極及び第2電極と、前記第2電極を支持する支持部と、前記第1電極を前記第2電極に対して移動させるモータと、前記モータの回転量を出力するエンコーダとを備える抵抗溶接機に用いられる溶接制御装置であって、
     前記支持部の歪みを測定するように構成された歪みセンサと、
     前記抵抗溶接機を制御するように構成された制御部と、
     を備え、
     前記制御部は、
     前記抵抗溶接機による溶接の実行中に、前記エンコーダが出力する前記モータの回転量と前記歪みセンサが出力する前記支持部の歪みとに基づいて、前記第1電極と前記第2電極との電極間距離の変位量を検出する変位量検出部と、
     前記抵抗溶接機による溶接の実行中に、前記変位量検出部が検出した前記変位量に基づいて前記抵抗溶接機の溶接電流を調整する調整部と、
     を有する、溶接制御装置。
    A first electrode and a second electrode arranged so as to sandwich a work, a support portion for supporting the second electrode, a motor for moving the first electrode with respect to the second electrode, and a rotation amount of the motor. It is a welding control device used in a resistance welding machine equipped with an encoder that outputs
    A strain sensor configured to measure the strain of the support and
    A control unit configured to control the resistance welder and
    With
    The control unit
    During welding by the resistance welding machine, the electrodes of the first electrode and the second electrode are based on the amount of rotation of the motor output by the encoder and the strain of the support portion output by the strain sensor. Displacement amount detection unit that detects the displacement amount of the distance, and
    An adjusting unit that adjusts the welding current of the resistance welding machine based on the displacement amount detected by the displacement amount detecting unit during the execution of welding by the resistance welding machine.
    Welding control device.
  2.  請求項1に記載の溶接制御装置であって、
     前記制御部は、前記モータの回転量から前記ワークの溶接部位における総厚みを検出する厚み検出部をさらに有する、溶接制御装置。
    The welding control device according to claim 1.
    The control unit is a welding control device further comprising a thickness detection unit that detects the total thickness of the work at the welded portion from the rotation amount of the motor.
  3.  請求項1又は請求項2に記載の溶接制御装置であって、
     前記制御部は、前記支持部の歪みから前記ワークに加わっている実加圧力を検出する圧力検出部をさらに有する、溶接制御装置。
    The welding control device according to claim 1 or 2.
    The control unit is a welding control device further comprising a pressure detection unit that detects the actual pressure applied to the work from the strain of the support portion.
  4.  請求項1に記載の溶接制御装置であって、
     前記制御部は、
     前記モータの回転量から前記ワークの溶接部位における総厚みを検出する厚み検出部と、
     前記支持部の歪みから前記ワークに加わっている実加圧力を検出する圧力検出部と、
     をさらに有し、
     前記調整部は、前記総厚みと前記実加圧力とに基づいて前記抵抗溶接機の溶接電流の大きさ及び通電時間の少なくとも一方を調整する、溶接制御装置。
    The welding control device according to claim 1.
    The control unit
    A thickness detection unit that detects the total thickness of the welded portion of the work from the amount of rotation of the motor,
    A pressure detection unit that detects the actual pressure applied to the work from the strain of the support unit, and a pressure detection unit.
    Have more
    The adjusting unit is a welding control device that adjusts at least one of the magnitude of the welding current and the energization time of the resistance welding machine based on the total thickness and the actual pressing force.
  5.  請求項1から請求項4のいずれか1項に記載の溶接制御装置であって、
     前記調整部は、前記変位量検出部が検出した前記変位量に基づいて前記抵抗溶接機に溶接を開始させる、溶接制御装置。
    The welding control device according to any one of claims 1 to 4.
    The adjusting unit is a welding control device that causes the resistance welder to start welding based on the displacement amount detected by the displacement amount detecting unit.
  6.  請求項1から請求項5のいずれか1項に記載の溶接制御装置であって、
     前記調整部は、前記抵抗溶接機へパルス電流を供給し、前記パルス電流の供給時に前記変位量検出部が検出した前記変位量に基づいて外乱を検出する、溶接制御装置。
    The welding control device according to any one of claims 1 to 5.
    The adjusting unit is a welding control device that supplies a pulse current to the resistance welding machine and detects disturbance based on the displacement amount detected by the displacement amount detecting unit when the pulse current is supplied.
  7.  ワークを挟むように配置された第1電極及び第2電極と、前記第2電極を支持する支持部と、前記第1電極を前記第2電極に対して移動させるモータと、前記モータの回転量を出力するエンコーダとを備える抵抗溶接機を用いた溶接制御方法であって、
     前記抵抗溶接機による溶接の実行中に、前記エンコーダが出力する前記モータの回転量と前記支持部の歪みとに基づいて、前記第1電極と前記第2電極との電極間距離の変位量を検出する工程と、
     前記抵抗溶接機による溶接の実行中に、検出した前記変位量に基づいて前記抵抗溶接機の溶接電流を調整する工程と、
     を有する、溶接制御方法。
    A first electrode and a second electrode arranged so as to sandwich a work, a support portion for supporting the second electrode, a motor for moving the first electrode with respect to the second electrode, and a rotation amount of the motor. It is a welding control method using a resistance welding machine equipped with an encoder that outputs
    During welding by the resistance welder, the amount of displacement of the distance between the first electrode and the second electrode is determined based on the amount of rotation of the motor output by the encoder and the strain of the support portion. The process of detection and
    During the execution of welding by the resistance welder, the step of adjusting the welding current of the resistance welder based on the detected displacement amount, and
    Welding control method.
  8.  請求項7に記載の溶接制御方法であって、
     前記モータの回転量から前記ワークの溶接部位における総厚みを検出する工程をさらに有する、溶接制御方法。
    The welding control method according to claim 7.
    A welding control method further comprising a step of detecting the total thickness of the work at a welded portion from the amount of rotation of the motor.
  9.  請求項7又は請求項8に記載の溶接制御方法であって、
     前記支持部の歪みから前記ワークに加わっている実加圧力を検出する工程をさらに有する、溶接制御方法。
    The welding control method according to claim 7 or 8.
    A welding control method further comprising a step of detecting an actual pressing force applied to the work from the strain of the support portion.
  10.  請求項7に記載の溶接制御方法であって、
     前記モータの回転量から前記ワークの溶接部位における総厚みを検出する工程と、
     前記支持部の歪みから前記ワークに加わっている実加圧力を検出する工程と、
     前記総厚みと前記実加圧力とに基づいて前記抵抗溶接機の溶接電流の大きさ及び通電時間の少なくとも一方を調整する工程と、
     をさらに有する、溶接制御方法。
    The welding control method according to claim 7.
    A step of detecting the total thickness of the welded portion of the work from the amount of rotation of the motor, and
    A process of detecting the actual pressing force applied to the work from the strain of the support portion, and
    A step of adjusting at least one of the magnitude of the welding current and the energization time of the resistance welding machine based on the total thickness and the actual pressing force.
    Further, a welding control method.
  11.  請求項7から請求項10のいずれか1項に記載の溶接制御方法であって、
     検出した前記変位量に基づいて前記抵抗溶接機に溶接を開始させる工程をさらに有する、溶接制御方法。
    The welding control method according to any one of claims 7 to 10.
    A welding control method further comprising a step of causing the resistance welding machine to start welding based on the detected displacement amount.
  12.  請求項7から請求項11のいずれか1項に記載の溶接制御方法であって、
     前記抵抗溶接機へパルス電流を供給し、前記パルス電流の供給時に検出した前記変位量に基づいて外乱を検出する工程をさらに有する、溶接制御方法。
    The welding control method according to any one of claims 7 to 11.
    A welding control method further comprising a step of supplying a pulse current to the resistance welding machine and detecting a disturbance based on the displacement amount detected at the time of supplying the pulse current.
PCT/JP2021/006406 2020-04-03 2021-02-19 Welding control device and welding control method WO2021199784A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180006042.4A CN114616069A (en) 2020-04-03 2021-02-19 Welding control device and welding control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020067779A JP7464262B2 (en) 2020-04-03 2020-04-03 Welding control device and welding control method
JP2020-067779 2020-04-03

Publications (1)

Publication Number Publication Date
WO2021199784A1 true WO2021199784A1 (en) 2021-10-07

Family

ID=77928332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006406 WO2021199784A1 (en) 2020-04-03 2021-02-19 Welding control device and welding control method

Country Status (3)

Country Link
JP (1) JP7464262B2 (en)
CN (1) CN114616069A (en)
WO (1) WO2021199784A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023153389A1 (en) * 2022-02-09 2023-08-17 日本製鉄株式会社 Spot welding device, spot welding device control method, spot welding joint, and spot welding joint production method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03204182A (en) * 1989-12-29 1991-09-05 Matsushita Electric Ind Co Ltd Resistance welding machine
JPH09285871A (en) * 1996-04-23 1997-11-04 Dengensha Mfg Co Ltd Pressure equipment for resistance welding machine
JP2013121616A (en) * 2011-12-12 2013-06-20 Dengensha Mfg Co Ltd Resistance welding machine and resistance welding method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3651310B2 (en) * 1999-05-17 2005-05-25 日産自動車株式会社 Welding robot controller
JP3593981B2 (en) * 2000-01-20 2004-11-24 日産自動車株式会社 Method and apparatus for detecting movement amount between welding electrodes
JP2003311426A (en) 2002-04-15 2003-11-05 Nissan Motor Co Ltd Welding controller and method therefor
JP2011152574A (en) * 2010-01-28 2011-08-11 Honda Motor Co Ltd Resistance welding method
CN104384696B (en) * 2014-11-14 2016-06-08 广州松兴电气股份有限公司 Aluminum alloy plate materials resistance welding technology and welding set
JP6224648B2 (en) * 2015-04-28 2017-11-01 ファナック株式会社 Spot welding quality diagnostic system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03204182A (en) * 1989-12-29 1991-09-05 Matsushita Electric Ind Co Ltd Resistance welding machine
JPH09285871A (en) * 1996-04-23 1997-11-04 Dengensha Mfg Co Ltd Pressure equipment for resistance welding machine
JP2013121616A (en) * 2011-12-12 2013-06-20 Dengensha Mfg Co Ltd Resistance welding machine and resistance welding method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023153389A1 (en) * 2022-02-09 2023-08-17 日本製鉄株式会社 Spot welding device, spot welding device control method, spot welding joint, and spot welding joint production method

Also Published As

Publication number Publication date
CN114616069A (en) 2022-06-10
JP7464262B2 (en) 2024-04-09
JP2021159989A (en) 2021-10-11

Similar Documents

Publication Publication Date Title
US7432466B2 (en) Method of electrical resistance spot welding
US7718918B2 (en) Production or assembly line method of spot welding
JP5196642B2 (en) Resistance welding method monitoring method and apparatus for carrying out the method
JP2003500213A (en) Determination of resistance spot welding system status
WO2021199784A1 (en) Welding control device and welding control method
JP2791400B2 (en) Consumable electrode type arc welding method and arc welding apparatus
JP6971724B2 (en) One-sided spot welding equipment and one-sided spot welding method
JP2009226467A (en) Spot welding method of dissimilar plates, and its apparatus
JP2905800B2 (en) Consumable electrode type arc welding method and arc welding apparatus
KR20060018236A (en) Spot welding method, spot welding machine and spot welding robot
JP3651310B2 (en) Welding robot controller
CN111360386B (en) Resistance spot welding splash restraining method adopting piezoelectric driving to actively apply pressure
JP5787696B2 (en) Welding method and apparatus
GB2055318A (en) Monitoring resistance welding
JP2023046247A (en) Welding quality evaluation device, welding quality evaluation program, and welding quality evaluation method
JP6057850B2 (en) Seam welding apparatus and seam welding method
JP7152895B2 (en) Evaluation method of joint point of spot welding
JP4232257B2 (en) Projection welding pass / fail judgment method
JP3223065B2 (en) Pre-energization control device for resistance welding and method for determining pre-energization conditions
JP3703017B2 (en) Spot welding monitoring method and monitoring apparatus
JP2019118921A (en) Welding device
JP7515145B1 (en) Manufacturing method and device for manufacturing contact members for electric/electronic circuits
JP7158115B2 (en) Evaluation method of joint point of spot welding
CN114007791B (en) Laser irradiation state determination method
JP6164862B2 (en) Seam welding method and system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21781703

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21781703

Country of ref document: EP

Kind code of ref document: A1