WO2021199308A1 - Turbocharger - Google Patents

Turbocharger Download PDF

Info

Publication number
WO2021199308A1
WO2021199308A1 PCT/JP2020/014878 JP2020014878W WO2021199308A1 WO 2021199308 A1 WO2021199308 A1 WO 2021199308A1 JP 2020014878 W JP2020014878 W JP 2020014878W WO 2021199308 A1 WO2021199308 A1 WO 2021199308A1
Authority
WO
WIPO (PCT)
Prior art keywords
turbine wheel
space
back plate
bearing housing
side opening
Prior art date
Application number
PCT/JP2020/014878
Other languages
French (fr)
Japanese (ja)
Inventor
北村 剛
直 谷口
雄祐 古田
Original Assignee
三菱重工エンジン&ターボチャージャ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工エンジン&ターボチャージャ株式会社 filed Critical 三菱重工エンジン&ターボチャージャ株式会社
Priority to PCT/JP2020/014878 priority Critical patent/WO2021199308A1/en
Publication of WO2021199308A1 publication Critical patent/WO2021199308A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • This disclosure relates to a turbocharger.
  • the exhaust turbocharger supercharges the air supplied to the engine by using the energy of the exhaust gas discharged from the engine.
  • the temperature of the exhaust gas supplied to the turbine housing of the exhaust turbocharger tends to be high in order to improve the thermal cycle efficiency. For example, it is around 800 ° C. for a diesel engine and around 1000 ° C. for a gasoline engine. Therefore, the durability of the member against the high temperature of the exhaust gas has become a problem.
  • a general heat-resistant material such as a Ni-based alloy
  • the exhaust turbocharger disclosed in Patent Document 1 forms a cooling hole in the boss portion and the blade portion of the turbine wheel, and supplies compressed air on the compressor side to the cooling hole to cool the turbine wheel. Is taking.
  • the present disclosure has been made in view of the above-mentioned problems, and an object of the present disclosure is to propose a cooling means that is easy to realize at low cost as a means for cooling a turbine wheel of a turbocharger.
  • the turbocharger includes a rotating shaft, a turbine wheel provided on one end side of the rotating shaft, a compressor wheel provided on the other end side of the rotating shaft, and the rotation.
  • a back plate that partitions an internal space defined between a bearing housing that accommodates a bearing portion that rotatably supports a shaft and the compressor wheel and the bearing housing along the axial direction of the rotating shaft.
  • a back plate that forms a space on one side with the back surface of the turbine wheel and a space on the other side with the bearing housing, and a compressed gas compressed by the compressor wheel are extracted to create the space on the other side. It is provided with a cooling gas passage having an outlet side opening communicating with the above.
  • the turbine wheel can be cooled by a low-cost and easy-to-realize means, and its life can be suppressed from being shortened.
  • an expression representing a shape such as a quadrangular shape or a cylindrical shape not only represents a shape such as a quadrangular shape or a cylindrical shape in a geometrically strict sense, but also includes a concavo-convex portion or a concavo-convex portion within a range in which the same effect can be obtained.
  • the shape including the chamfered portion and the like shall also be represented.
  • the expressions "equipped”, “equipped”, “equipped”, “included”, or “have” one component are not exclusive expressions that exclude the existence of other components.
  • FIG. 1 to 7 are diagrams showing turbochargers according to some embodiments.
  • 1 to 3 relate to the turbocharger 10 (10A) according to one embodiment
  • FIG. 1 is a front sectional view showing the overall configuration of the turbocharger
  • FIG. 2 is a partially enlarged view of FIG.
  • FIG. 3 is a perspective view of the back plate 40.
  • FIG. 4 is a front view sectional view of the turbocharger 10 (10B) according to another embodiment.
  • 5 to 7 are partially enlarged front view sectional views showing the vicinity of the back plate 40 of the turbocharger according to the different embodiments.
  • the turbocharger 10 (10A, 10B) is located at the center of the housing, the rotating shaft 12 is arranged in the lateral direction, and the turbine wheel 14 is provided on one end side of the rotating shaft 12.
  • a compressor wheel 16 is provided on the other end side of the rotating shaft 12.
  • the housing accommodating these members is provided between the turbine housing 20 accommodating the turbine wheel 14, the compressor housing 22 accommodating the compressor wheel 16, and the turbine housing 20 and the compressor housing 22, and the rotating shaft 12 can rotate. It is composed of a bearing housing 24 for accommodating a bearing portion 18 that supports the turbine.
  • the rotating shaft 12, the turbine wheel 14, and the compressor wheel 16 are configured to rotate about the axis CA.
  • a plurality of blades 28 are provided on the hub surface of the turbine wheel 14, and a plurality of blades 30 are provided on the hub surface of the compressor wheel 16.
  • the turbine wheel 14 is rotated by the exhaust gas e flowing into the turbine wheel 14 from the exhaust gas flow path 26 formed inside the turbine housing 20.
  • the gas to be compressed for example, air
  • a diffuser flow path 34 is formed on the outlet side of the compressor wheel 16, and the kinetic energy of the compressed gas g discharged from the compressor wheel 16 is converted into pressure energy in the diffuser flow path 34.
  • the compressed gas g is supplied to the internal combustion engine via the scroll flow path 36 formed inside the diffuser flow path 34 and the compressor housing 22.
  • an internal space Si is formed between the turbine wheel 14 and the bearing housing 24, and the back plates 40 (40a, 40b) are arranged in the internal space Si.
  • the back plate 40 is arranged so as to partition the internal space Si along the axial direction of the rotating shaft 12. That is, the space S 1 (one side space) is formed between the rear surface 14a of the back plate 40 and the turbine wheel 14, the space S 2 (the other side space) between the back plate 40 and the bearing housing 24 is It is formed. Furthermore, it bled compressed gas g, which is compressed by the compressor wheel 16, and a cooling gas passage 42 having an outlet opening 46 communicating with the space S 2 (42a, 42b).
  • the outlet side of the compressor wheel 16 e.g., outlet region or scroll passage 36 of the diffuser flow path 34
  • the pressure of the compressed gas g in is higher than the pressure in the space S 2
  • compressed gas bled to the cooling gas passage 42 g is ejected from the outlet opening 46 into the space S 2.
  • a portion of the compressed gas g is introduced into the space S 2, further, by flowing from the space S 2 in the space S 1, it can be cooled turbine wheel 14. Therefore, it is possible to suppress a decrease in life due to thermal deformation, thermal burnout, or the like of the turbine wheel 14.
  • the pressure of the compressed gas g the discharge side of the compressor wheel 16 is higher than the pressure in the space S 2, a driving means for supplying compressed gas g in the space S 2 is not required.
  • compressed gas g jetted into the space S 2 flows from a gap between the turbine wheel 14 and the turbine housing 20 in the exhaust gas line 26, which contributes to the turbine output.
  • the cooling gas passages 42 (42a, 42b) have an inlet side opening 44 that communicates with an outlet side region of the diffuser flow path 34 that houses the compressor wheel 16.
  • Inlet-side opening 44 of the cooling gas passage 42 since the opening on the outlet side region of the diffuser flow path 34 can supply compressed gas g of a high pressure through a diffuser flow path 34 into the space S 2.
  • the pressure difference between the inlet side opening 44 and the outlet side opening 46 of the cooling gas passage 42 makes it possible to easily supply the compressed gas g to the space S 2 without requiring other power.
  • FIG. 8 is a front view enlarged cross-sectional view showing the diffuser flow path 34.
  • the "outlet side region of the diffuser flow path 34" referred to in the present specification means that the pressure of the compressed gas g is high. It refers to a region of 50 to 100% and a region facing the scroll flow path 36, and the inlet side opening 44 is preferably opened in this region.
  • the inlet side opening 44 is opened in an outlet side region of 80 to 100% of the diffuser flow path 34 or a region facing the scroll flow path 36.
  • the back plate 40 (40a) has a plurality of discretely arranged first through holes 50.
  • the so-called jet cooling (impingement cooling) is performed by the compressed gas g ejected from the plurality of first through holes 50 toward the back surface 14a of the turbine wheel colliding with the back surface 14a.
  • the mode of distribution of the plurality of first through holes 50 is not limited to a specific mode.
  • the compressed gas g after colliding with the back surface 14a flows out to the exhaust gas flow path 26 from the gap c1 formed between the outer peripheral end of the turbine wheel 14 and the turbine housing 20, and contributes to the turbine output.
  • a plurality of first through holes 50 are arranged in a grid pattern at equal intervals from each other. That is, a virtual quadrangle 52 is defined on one surface of the back plate 40 (40a), and each first through hole 50 is arranged at a corner of the virtual quadrangle 52.
  • the virtual quadrangle may be a square or a rectangle.
  • the distance z between the first through hole 50 and the surface to be cooled 54 (back surface 14a in each embodiment) is set, and the flow velocity Uj of the compressed gas g ejected from the first through hole 50 is set to a set value or more to set the surface to be cooled.
  • the first through holes 50 may be arranged at appropriate intervals at the corners of the virtual triangle or the outer edge of another figure instead of the virtual quadrangle.
  • the back plate 40 (40a) is formed in a ring shape, its inner peripheral end is in contact with a corner portion 24a formed in the bearing housing 24, and its outer peripheral end is a turbine. It is arranged so as to be in contact with the corner portion 20a formed in the housing 20.
  • the inner peripheral end of the back plate 40 (40a) presses the corner portion 24a by utilizing the elasticity of the back plate 40 (40a), and the outer peripheral end of the back plate 40 (40a) is pressed. Assemble so that the corner portion 20a is pressed.
  • leakage of the compressed gas g at the inner peripheral end and the outer peripheral end of the back plate 40 (40a) can be suppressed.
  • a second through hole 56 extending along the axial direction of the rotating shaft 12 is formed inside the bearing housing 24.
  • the second through hole 56 forms a part of the cooling gas passage 42 (42a).
  • a space for arranging the cooling gas passage is provided outside the bearing housing 24. Can be reduced. Therefore, the bearing housing 24 can be made compact.
  • almost all of the cooling gas passage 42 (42a) is composed of the second through hole 56. Therefore, since almost all of the cooling gas passage 42 (42a) is arranged inside the bearing housing 24 and there is no portion exposed to the outside of the bearing housing 24, other equipment arranged outside the bearing housing 24. It doesn't get in the way of placement.
  • a cooling water space 48 to which cooling water is supplied is formed inside the bearing housing 24.
  • the bearing housing 24 can be cooled by circulating the cooling water in the cooling water space 48.
  • the cooling effect of the turbine wheel 14 can be improved by combining the cooling by the compressed gas g and the cooling by the cooling water supplied to the cooling water space 48.
  • the turbocharger 10 (10B) includes an external pipe 60 provided between the compressor housing 22 and the bearing housing 24.
  • the external pipe 60 constitutes a part of the cooling gas passage 42 (42b).
  • the processing for forming the cooling gas passage inside the bearing housing 24 can be reduced. Therefore, the formation of the cooling gas passage 42 (42b) becomes relatively easy.
  • the cooling gas passage 42 (42b) includes a cooling gas passage 62 formed inside the bearing housing 24 on the upstream side of the external pipe 60, the external pipe 60, and the external pipe 60. It is composed of a cooling gas passage 64 formed inside the bearing housing 24 on the downstream side of the bearing housing 24.
  • a check valve 66 may be provided to prevent the compressed gas g from flowing back from the internal space Si toward the compressor housing 22 side.
  • the back plate 40 is composed of a back plate 40 (40b).
  • a gap c2 through which the compressed gas g can flow is formed between the inner peripheral end surface 68 of the back plate 40 (40b) and the bearing housing 24.
  • compressed gas g supplied to the space S 2 since the flow from the gap c2 to the space S 1, can be cooled turbine wheel 14.
  • the outer peripheral end 70 of the back plate 40 (40b) is sandwiched and fixed between the bearing housing 24 and the turbine housing 20. Since the back plate 40 (40b) has the outer peripheral end portion 70, the back plate 40 (40b) can be fixed at a predetermined position in the internal space Si. Further, the back plate 40 (40b) has a bent portion 72 on the inner peripheral side of the external pipe 60, and the inner peripheral side portion of the bent portion 72 is located on the turbine wheel 14 side. This is to allow a space S 1 and S 2 at an appropriate volume ratio on each side of the inner circumferential side portion.
  • the surface 41 of the back plate 40 (40a, 40b) facing the space S 2 is configured such that the radiation rate from the back surface 14a of the turbine wheel 14 increases.
  • the "emissivity” is the emissivity of thermal radiation of the entire electromagnetic wave including infrared rays, and is defined by the following equation (1).
  • Emissivity Radiant exitance of an object / Radiant exitance of a blackbody at the same temperature ... (1)
  • the surface 41 of the back plate 40 As a means for increasing the emissivity of the surface 41 of the back plate 40, for example, surface treatment such as applying black paint to the surface 41, making the surface 41 uneven, or roughening the roughness of the surface 41, etc. There is a means.
  • a third through hole 80 is formed inside the turbine wheel 14.
  • the inlet side opening 80a of the third through hole 80 is formed on the back surface 14a of the turbine wheel 14, the outlet side opening 80b is formed on the end surface (boss end surface) 74a of the boss portion 74 of the turbine wheel 14, and the third through hole 80 is formed. It extends between these openings inside the turbine wheel 14.
  • Compressed gas g which has flowed into the space S 2 from the outlet opening 46 flows from the space S 1 to the inlet side opening 80a, and flows out from the outlet opening 80b through the third through-hole 80. Therefore, the turbine wheel 14 can be effectively cooled.
  • One third through hole 80 or a plurality of third through holes 80 can be formed in the circumferential direction of the turbine wheel 14.
  • the inlet side As shown in FIG. 6, assuming that the radial position of the back surface 14a of the turbine wheel 14 corresponding to the outer peripheral surface of the rotating shaft 12 is 0% and the radial position corresponding to the outer peripheral end of the back surface 14a is 100%, the inlet side. It is desirable that the opening 80a is arranged at a position of 0 to 50%. When the inlet side opening 80a is arranged in the range of 50 to 100%, the third through hole 80 needs to be bent in the middle in order to communicate with the outlet side opening 80b that opens to the boss end surface 74a, and is linear as a whole. It is difficult to form the third through hole 80.
  • the inlet side opening 80a is preferably formed in the range of 0 to 30%. When the inlet side opening 80a is in this range, it is even easier to form a linear third through hole 80 that communicates with the outlet side opening 80b that opens in the boss end surface 74a.
  • the rotating shaft 12 is formed in a small diameter portion 12a at a joint portion with the back surface 14a of the turbine wheel 14. This makes it easier to form the inlet side opening 80a at a position close to the axis CA.
  • a fourth through hole 90 is formed inside the turbine wheel 14.
  • the inlet side opening 90a of the fourth through hole 90 is formed on the back surface 14a of the turbine wheel 14, and the outlet side opening 90b is formed on the hub surface 92 of the turbine wheel 14.
  • the fourth through hole 90 extends inside the turbine wheel 14 from the inlet side opening 90a toward the outlet side opening 90b.
  • the compressed gas g that has flowed into the fourth through hole 90 from the inlet side opening 90a flows out from the outlet side opening 90b to the hub surface 92 of the turbine wheel 14.
  • the axis of the fourth through hole 90 extends along the tangential direction of the hub surface 92 at the position where the outlet side opening 90b is formed.
  • the outlet-side opening 80b of the fourth through hole 90 opens along the tangential direction with respect to the hub surface 92, so that a film-like flow of the compressed gas g can easily be formed on the hub surface 92.
  • the cooling effect by cooling the hub surface 92 by the film can be improved.
  • the radial position of the back surface 14a of the turbine wheel 14 corresponding to the outer peripheral surface of the rotating shaft 12 is 0%, and the radial position of the back surface 14a corresponding to the outer peripheral end of the back surface 14a is 100%. .. Further, of the hub surface 92, the outlet end of the exhaust gas e is set to 0%, and the position of the hub surface 92 corresponding to the outer peripheral end of the back surface 14a is set to 100%.
  • the temperature distribution of the exhaust gas e on the surface of the blade 30 is the highest at the inlet end of the blade 30, and the temperature gradually decreases by consuming kinetic energy toward the downstream side.
  • the creep strength of the blade 30 decreases toward the downstream side of the exhaust gas flow due to the shape and structure of the blade 30. Therefore, it is preferable to arrange the outlet side opening 90b so that the film can be cooled at least in the downstream side region of 0 to 50% of the hub surface 92. Further, from the viewpoint of workability and pressure loss, when a condition that the fourth through hole 90 can be formed in a straight line as a whole is added, the inlet side opening 90a of the fourth through hole 90 is 0 to 0 on the back surface 14a. It is preferable to arrange the opening in a region of 50% and the outlet side opening 90b so as to open in a region of 30 to 75% of the hub surface 92. Further, preferably, the downstream side range of the opening position of the outlet side opening 90b is further limited to the upstream side to be a region of 40 to 75% of the hub surface 92.
  • the turbocharger (10 (10A, 10B)) is provided on a rotating shaft (12), a turbine wheel (14) provided on one end side of the rotating shaft, and on the other end side of the rotating shaft.
  • a back plate that partitions the internal space (Si) defined between the turbine wheels along the axial direction of the rotating shaft, and forms a one-sided space (S 1) with the back surface (14a) of the turbine wheel.
  • the back plate (40 (40a, 40b)) forming the other side space (S 2 ) with the bearing housing and the compressed gas (g) compressed by the compressor wheel are extracted, and the other side is extracted.
  • a cooling gas passage (42 (42a, 42b)) having an outlet-side opening (46) communicating with the space is provided.
  • the turbine wheel can be cooled and its life can be suppressed by introducing the compressed gas compressed by the compressor wheel into the other side space and flowing it from the other side space into the one side space. .. Due to the pressure difference between the compression side passage of the compressor wheel and the internal space, it is easy to introduce the compressed gas compressed by the compressor wheel into the other space.
  • the turbocharger according to another aspect is the turbocharger according to 1), and the back plate has a plurality of first through holes (50) arranged discretely.
  • the compressed gas ejected from the plurality of first through holes toward the back surface of the turbine wheel collides with the back surface, and so-called jet cooling (impingement cooling) becomes possible. In this way, the cooling effect of the turbine wheel can be improved.
  • the turbocharger according to still another aspect is the turbocharger according to 1) or 2), and the compressed gas can flow between the inner peripheral end surface (68) of the back plate and the bearing housing.
  • a gap (c2) is formed.
  • the compressed gas supplied to the other side space flows into the one side space through the gap formed between the inner peripheral end surface of the back plate and the bearing housing, so that the turbine wheel can be cooled. ..
  • the turbocharger according to still another aspect is the turbocharger according to any one of 1) to 3), and the cooling gas passage is on the outlet side of the diffuser flow path (34) accommodating the compressor wheel. It has an inlet side opening (44) that communicates with the region.
  • the compressed gas having a high pressure can be supplied to the other side space through the diffuser flow path. .. In this way, due to the pressure difference between the inlet side and the outlet side of the cooling gas passage, the compressed gas can be easily supplied to the internal space on the outlet side without requiring other power.
  • the turbocharger according to still another aspect is the turbocharger according to any one of 1) to 4), and the bearing housing has a second through hole extending along the axial direction of the rotating shaft.
  • the second through hole (56) constitutes a part of the cooling gas passage.
  • a part of the cooling gas passage can be formed inside the bearing housing, so that the space for arranging the cooling gas passage can be reduced outside the bearing housing.
  • the turbocharger according to still another aspect is the turbocharger according to any one of 1) to 4), and includes a compressor housing (22) accommodating the compressor wheel, the compressor housing, and the bearing housing. An external pipe (60) provided between the two is further provided, and the external pipe constitutes a part of the cooling gas passage.
  • the turbocharger according to still another aspect is the turbocharger according to any one of 1) to 6), and one surface (41) of the back plate facing the other side space is the turbine wheel. It is configured so that the emissivity is higher than that of the back surface.
  • the temperature of the back plate rises when it absorbs thermal radiation, and decreases when it radiates.
  • the surface of the back plate facing the outlet side opening of the cooling gas passage communicating with the internal space has a higher emissivity than the back surface of the turbine wheel, so that one surface of the back plate facing the other side space is The temperature is lower than the back of the turbine wheel.
  • the turbocharger according to still another aspect is the turbocharger according to any one of 1) to 7), and the turbine wheel is the turbine from an inlet side opening formed on the back surface of the turbine wheel. It has a third through hole (80) extending into the outlet side opening (80b) formed on the boss surface (74a) of the wheel.
  • the turbine wheel can be effectively cooled by supplying the compressed gas to the third through hole.
  • the turbocharger according to still another aspect is the turbocharger according to any one of 1) to 7), and the turbine wheel is the turbine from an inlet side opening formed on the back surface of the turbine wheel. It has a fourth through hole (90) extending into the outlet side opening (90b) formed on the hub surface (92) of the wheel.
  • the compressed gas supplied to the fourth through hole is ejected from the hub surface of the turbine wheel and flows along the hub surface along with the exhaust gas flowing toward the turbine outlet side.
  • the hub surface can be film-cooled. This makes it possible to enhance the cooling effect of the turbine wheel.

Abstract

A turbocharger according to one aspect comprises: a turbine wheel mounted on one end side of the rotational shaft; a compressor wheel mounted on the other end side of the rotational shaft; a bearing housing accommodating a bearing part that supports the rotational shaft rotatably; a back plate that partitions, along the axial direction of the rotational shaft, an inner space defined between a turbine housing accommodating the turbine wheel and the bearing housing, and that forms one side space between a back surface of the turbine wheel and the back plate, and forms other side space between the bearing housing and the back plate; and a cooling gas passage that bleeds compressed gas compressed by the compressor wheel, and has an outlet-side opening communicating with the other side space.

Description

ターボチャージャTurbocharger
 本開示は、ターボチャージャに関する。 This disclosure relates to a turbocharger.
 排気ターボチャージャは、エンジンから排出される排ガスのエネルギを利用して、エンジンに供給される空気を過給するものである。排気ターボチャージャのタービンハウジングに供給される排ガスの温度は、熱サイクル効率を高めるため、高温化の傾向にあり、例えば、ディーゼルエンジンで800℃前後、ガソリンエンジンで1000℃前後となっている。そのため、排ガスの高温化に対する部材の耐久性が問題となっている。この対策として、タービンホイールなどの部材に一般的な耐熱材料(Ni基合金など)を用いても、高温下での寿命を確保できない。 The exhaust turbocharger supercharges the air supplied to the engine by using the energy of the exhaust gas discharged from the engine. The temperature of the exhaust gas supplied to the turbine housing of the exhaust turbocharger tends to be high in order to improve the thermal cycle efficiency. For example, it is around 800 ° C. for a diesel engine and around 1000 ° C. for a gasoline engine. Therefore, the durability of the member against the high temperature of the exhaust gas has become a problem. As a countermeasure, even if a general heat-resistant material (such as a Ni-based alloy) is used for a member such as a turbine wheel, the life at a high temperature cannot be ensured.
 高温対策として、特許文献1に開示された排気ターボチャージャは、タービンホイールのボス部や翼部に冷却孔を形成し、この冷却孔にコンプレッサ側の圧縮空気を供給してタービンホイールを冷却する対策を講じている。 As a measure against high temperature, the exhaust turbocharger disclosed in Patent Document 1 forms a cooling hole in the boss portion and the blade portion of the turbine wheel, and supplies compressed air on the compressor side to the cooling hole to cool the turbine wheel. Is taking.
特開2004-232622号公報Japanese Unexamined Patent Publication No. 2004-232622
 特許文献1に記載されているように、タービンホイールのボス部や翼部に冷却孔を形成する対策は、加工が容易ではなく、特に、車両用ターボチャージャのような小型のターボチャージャの場合、コストや実現性等の面で実施は困難である。 As described in Patent Document 1, measures for forming cooling holes in the boss portion and the wing portion of the turbine wheel are not easy to process, and particularly in the case of a small turbocharger such as a turbocharger for vehicles. Implementation is difficult in terms of cost and feasibility.
 本開示は、上述する問題点を鑑みてなされたもので、ターボチャージャのタービンホイールを冷却する手段として、低コストで実現が容易な冷却手段を提案することを目的とする。 The present disclosure has been made in view of the above-mentioned problems, and an object of the present disclosure is to propose a cooling means that is easy to realize at low cost as a means for cooling a turbine wheel of a turbocharger.
 上記目的を達成するため、本開示に係るターボチャージャは、回転軸と、前記回転軸の一端側に設けられたタービンホイールと、前記回転軸の他端側に設けられたコンプレッサホイールと、前記回転軸を回転可能に支持する軸受部を収容する軸受ハウジングと、前記コンプレッサホイールと前記軸受ハウジングとの間に画定された内部空間を前記回転軸の軸方向に沿って仕切るバックプレートであって、前記タービンホイールの背面との間で一方側空間を形成すると共に、前記軸受ハウジングとの間で他方側空間を形成するバックプレートと、前記コンプレッサホイールで圧縮された圧縮気体を抽気し、前記他方側空間に連通する出口側開口を有する冷却気体通路と、を備える。 In order to achieve the above object, the turbocharger according to the present disclosure includes a rotating shaft, a turbine wheel provided on one end side of the rotating shaft, a compressor wheel provided on the other end side of the rotating shaft, and the rotation. A back plate that partitions an internal space defined between a bearing housing that accommodates a bearing portion that rotatably supports a shaft and the compressor wheel and the bearing housing along the axial direction of the rotating shaft. A back plate that forms a space on one side with the back surface of the turbine wheel and a space on the other side with the bearing housing, and a compressed gas compressed by the compressor wheel are extracted to create the space on the other side. It is provided with a cooling gas passage having an outlet side opening communicating with the above.
 本開示に係るターボチャージャによれば、低コストかつ実現が容易な手段でタービンホイールを冷却でき、その寿命低下を抑制できる。 According to the turbocharger according to the present disclosure, the turbine wheel can be cooled by a low-cost and easy-to-realize means, and its life can be suppressed from being shortened.
一実施形態に係るターボチャージャの全体構成を示す正面視断面図である。It is a front view sectional view which shows the whole structure of the turbocharger which concerns on one Embodiment. 図1の一部を拡大した正面視断面図である。It is a front view sectional view which enlarged a part of FIG. 一実施形態に係るバックプレートの斜視図である。It is a perspective view of the back plate which concerns on one Embodiment. 一実施形態に係るターボチャージャの全体構成を示す正面視断面図である。It is a front view sectional view which shows the whole structure of the turbocharger which concerns on one Embodiment. 一実施形態に係るターボチャージャの一部を拡大した正面視断面図である。It is an enlarged front view sectional view of a part of the turbocharger which concerns on one Embodiment. 一実施形態に係るターボチャージャの一部を拡大した正面視断面図である。It is an enlarged front view sectional view of a part of the turbocharger which concerns on one Embodiment. 一実施形態に係るターボチャージャの一部を拡大した正面視断面図である。It is an enlarged front view sectional view of a part of the turbocharger which concerns on one Embodiment. コンプレッサ部のディフューザ流路を拡大して示す正面視断面図である。It is a front view sectional view which shows the diffuser flow path of a compressor part enlarged.
 以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 また例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
Hereinafter, some embodiments of the present invention will be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, etc. of the components described as embodiments or shown in the drawings are not intended to limit the scope of the present invention to this, but are merely explanatory examples. No.
For example, expressions that represent relative or absolute arrangements such as "in a certain direction", "along a certain direction", "parallel", "orthogonal", "center", "concentric" or "coaxial" are exact. Not only does it represent such an arrangement, but it also represents a state of relative displacement with tolerances or angles and distances to the extent that the same function can be obtained.
Further, for example, an expression representing a shape such as a quadrangular shape or a cylindrical shape not only represents a shape such as a quadrangular shape or a cylindrical shape in a geometrically strict sense, but also includes a concavo-convex portion or a concavo-convex portion within a range in which the same effect can be obtained. The shape including the chamfered portion and the like shall also be represented.
On the other hand, the expressions "equipped", "equipped", "equipped", "included", or "have" one component are not exclusive expressions that exclude the existence of other components.
 図1~図7は、幾つかの実施形態に係るターボチャージャを示す図である。図1~図3は、一実施形態に係るターボチャージャ10(10A)に係り、図1はターボチャージャの全体構成を示す正面視断面図であり、図2は図1の一部拡大図であり、図3はバックプレート40の斜視図である。図4は別な実施形態に係るターボチャージャ10(10B)の正面視断面図である。図5~図7は夫々別な実施形態に係るターボチャージャのバックプレート40付近を示す一部拡大正面視断面図である。 1 to 7 are diagrams showing turbochargers according to some embodiments. 1 to 3 relate to the turbocharger 10 (10A) according to one embodiment, FIG. 1 is a front sectional view showing the overall configuration of the turbocharger, and FIG. 2 is a partially enlarged view of FIG. , FIG. 3 is a perspective view of the back plate 40. FIG. 4 is a front view sectional view of the turbocharger 10 (10B) according to another embodiment. 5 to 7 are partially enlarged front view sectional views showing the vicinity of the back plate 40 of the turbocharger according to the different embodiments.
 図1及び図4に示すように、ターボチャージャ10(10A、10B)は、ハウジングの中心に位置して横方向に回転軸12が配置され、回転軸12の一端側にタービンホイール14が設けられ、回転軸12の他端側にコンプレッサホイール16が設けられている。これら部材を収容するハウジングは、タービンホイール14を収容するタービンハウジング20と、コンプレッサホイール16を収容するコンプレッサハウジング22と、タービンハウジング20とコンプレッサハウジング22との間に設けられ、回転軸12を回転可能に支持する軸受部18を収容する軸受ハウジング24と、で構成されている。回転軸12、タービンホイール14及びコンプレッサホイール16は、軸線CAを中心に回転するように構成されている。 As shown in FIGS. 1 and 4, the turbocharger 10 (10A, 10B) is located at the center of the housing, the rotating shaft 12 is arranged in the lateral direction, and the turbine wheel 14 is provided on one end side of the rotating shaft 12. A compressor wheel 16 is provided on the other end side of the rotating shaft 12. The housing accommodating these members is provided between the turbine housing 20 accommodating the turbine wheel 14, the compressor housing 22 accommodating the compressor wheel 16, and the turbine housing 20 and the compressor housing 22, and the rotating shaft 12 can rotate. It is composed of a bearing housing 24 for accommodating a bearing portion 18 that supports the turbine. The rotating shaft 12, the turbine wheel 14, and the compressor wheel 16 are configured to rotate about the axis CA.
 タービンホイール14のハブ面に複数のブレード28が設けられ、コンプレッサホイール16のハブ面に複数のブレード30が設けられている。タービンハウジング20の内部に形成される排ガス流路26からタービンホイール14に流入する排ガスeによってタービンホイール14が回転する。タービンホイール14の回転と共にコンプレッサホイール16が回転することで、被圧縮気体(例えば空気)が、コンプレッサハウジング22に形成された入口開口32からコンプレッサホイール16に吸入される。コンプレッサホイール16の出口側にディフューザ流路34が形成され、コンプレッサホイール16から吐出された圧縮気体gの運動エネルギはディフューザ流路34で圧力エネルギに変換される。圧縮気体gは、ディフューザ流路34及びコンプレッサハウジング22の内部に形成されたスクロール流路36を経て内燃機関に供給される。 A plurality of blades 28 are provided on the hub surface of the turbine wheel 14, and a plurality of blades 30 are provided on the hub surface of the compressor wheel 16. The turbine wheel 14 is rotated by the exhaust gas e flowing into the turbine wheel 14 from the exhaust gas flow path 26 formed inside the turbine housing 20. As the compressor wheel 16 rotates with the rotation of the turbine wheel 14, the gas to be compressed (for example, air) is sucked into the compressor wheel 16 from the inlet opening 32 formed in the compressor housing 22. A diffuser flow path 34 is formed on the outlet side of the compressor wheel 16, and the kinetic energy of the compressed gas g discharged from the compressor wheel 16 is converted into pressure energy in the diffuser flow path 34. The compressed gas g is supplied to the internal combustion engine via the scroll flow path 36 formed inside the diffuser flow path 34 and the compressor housing 22.
 ターボチャージャ10(10A、10B)は、タービンホイール14と軸受ハウジング24との間に内部空間Siが形成され、内部空間Siにバックプレート40(40a、40b)が配置されている。このバックプレート40は、内部空間Siを回転軸12の軸方向に沿って仕切るように配置されている。即ち、バックプレート40とタービンホイール14の背面14aとの間に空間S(一方側空間)が形成されると共に、バックプレート40と軸受ハウジング24との間に空間S(他方側空間)が形成される。さらに、コンプレッサホイール16で圧縮された圧縮気体gを抽気し、空間Sに連通する出口側開口46を有する冷却気体通路42(42a、42b)を備えている。コンプレッサホイール16の出口側(例えば、ディフューザ流路34の出口側領域又はスクロール流路36)の圧縮気体gの圧力は、空間Sの圧力より高いため、冷却気体通路42に抽気された圧縮気体gは出口側開口46から空間Sに噴出する。 In the turbocharger 10 (10A, 10B), an internal space Si is formed between the turbine wheel 14 and the bearing housing 24, and the back plates 40 (40a, 40b) are arranged in the internal space Si. The back plate 40 is arranged so as to partition the internal space Si along the axial direction of the rotating shaft 12. That is, the space S 1 (one side space) is formed between the rear surface 14a of the back plate 40 and the turbine wheel 14, the space S 2 (the other side space) between the back plate 40 and the bearing housing 24 is It is formed. Furthermore, it bled compressed gas g, which is compressed by the compressor wheel 16, and a cooling gas passage 42 having an outlet opening 46 communicating with the space S 2 (42a, 42b). The outlet side of the compressor wheel 16 (e.g., outlet region or scroll passage 36 of the diffuser flow path 34) the pressure of the compressed gas g in is higher than the pressure in the space S 2, compressed gas bled to the cooling gas passage 42 g is ejected from the outlet opening 46 into the space S 2.
 このように、圧縮気体gの一部を空間Sに導入し、さらに、空間Sから空間Sに流入させることで、タービンホイール14を冷却できる。そのため、タービンホイール14の熱変形や熱焼損等に起因した寿命低下を抑制できる。上述のように、コンプレッサホイール16の吐出側の圧縮気体gの圧力は、空間Sの圧力より高いため、圧縮気体gを空間Sに供給するための駆動手段などは不要である。なお、空間Sに噴出された圧縮気体gはタービンホイール14とタービンハウジング20との隙間から排ガス流路26に流れ、タービン出力に寄与する。 Thus, a portion of the compressed gas g is introduced into the space S 2, further, by flowing from the space S 2 in the space S 1, it can be cooled turbine wheel 14. Therefore, it is possible to suppress a decrease in life due to thermal deformation, thermal burnout, or the like of the turbine wheel 14. As described above, the pressure of the compressed gas g the discharge side of the compressor wheel 16 is higher than the pressure in the space S 2, a driving means for supplying compressed gas g in the space S 2 is not required. Incidentally, compressed gas g jetted into the space S 2 flows from a gap between the turbine wheel 14 and the turbine housing 20 in the exhaust gas line 26, which contributes to the turbine output.
 一実施形態では、図1及び図4に示すように、冷却気体通路42(42a、42b)は、コンプレッサホイール16を収容するディフューザ流路34の出口側領域と連通する入口側開口44を有する。冷却気体通路42の入口側開口44が、ディフューザ流路34の出口側領域に開口しているため、ディフューザ流路34を経て高圧となった圧縮気体gを空間Sに供給できる。このように、冷却気体通路42の入口側開口44と出口側開口46との圧力差によって、他の動力を必要とせず圧縮気体gを容易に空間Sに供給できる。 In one embodiment, as shown in FIGS. 1 and 4, the cooling gas passages 42 (42a, 42b) have an inlet side opening 44 that communicates with an outlet side region of the diffuser flow path 34 that houses the compressor wheel 16. Inlet-side opening 44 of the cooling gas passage 42, since the opening on the outlet side region of the diffuser flow path 34 can supply compressed gas g of a high pressure through a diffuser flow path 34 into the space S 2. As described above, the pressure difference between the inlet side opening 44 and the outlet side opening 46 of the cooling gas passage 42 makes it possible to easily supply the compressed gas g to the space S 2 without requiring other power.
 図8は、ディフューザ流路34を示す正面視拡大断面図である。図8に示すように、ディフューザ流路34の入口を0%とし、出口を100%とすると、本明細書で言う「ディフューザ流路34の出口側領域」とは、圧縮気体gの圧力が高くなる50~100%の領域及びスクロール流路36に面した領域を指し、入口側開口44はこの領域に開口するのがよい。好ましくは、入口側開口44は、ディフューザ流路34の80~100%の出口側領域又はスクロール流路36に面した領域に開口するのがよい。但し、スクロール流路36のうちディフューザ流路34の出口から離れた領域では、タービン側まで長い冷却気体通路42を形成しなければならないので、入口側開口44はディフューザ流路34の出口付近のスクロール流路36に開口するのがよい。 FIG. 8 is a front view enlarged cross-sectional view showing the diffuser flow path 34. As shown in FIG. 8, assuming that the inlet of the diffuser flow path 34 is 0% and the outlet is 100%, the "outlet side region of the diffuser flow path 34" referred to in the present specification means that the pressure of the compressed gas g is high. It refers to a region of 50 to 100% and a region facing the scroll flow path 36, and the inlet side opening 44 is preferably opened in this region. Preferably, the inlet side opening 44 is opened in an outlet side region of 80 to 100% of the diffuser flow path 34 or a region facing the scroll flow path 36. However, in the region of the scroll flow path 36 that is distant from the outlet of the diffuser flow path 34, a long cooling gas passage 42 must be formed up to the turbine side, so that the inlet side opening 44 is a scroll near the outlet of the diffuser flow path 34. It is preferable to open the flow path 36.
 一実施形態では、図2及び図3に示すように、バックプレート40(40a)は、離散的に配置された複数の第1貫通孔50を有する。複数の第1貫通孔50からタービンホイールの背面14aに向かって噴出する圧縮気体gが背面14aに衝突することにより、所謂、噴流冷却(インピンジメント冷却)が行われる。これによって、タービンホイール14の冷却効果を向上できる。複数の第1貫通孔50の分布の態様は特定の態様に限定されない。背面14aに衝突した後の圧縮気体gは、タービンホイール14の外周端とタービンハウジング20との間に形成される隙間c1から排ガス流路26に流出し、タービン出力に寄与する。 In one embodiment, as shown in FIGS. 2 and 3, the back plate 40 (40a) has a plurality of discretely arranged first through holes 50. The so-called jet cooling (impingement cooling) is performed by the compressed gas g ejected from the plurality of first through holes 50 toward the back surface 14a of the turbine wheel colliding with the back surface 14a. Thereby, the cooling effect of the turbine wheel 14 can be improved. The mode of distribution of the plurality of first through holes 50 is not limited to a specific mode. The compressed gas g after colliding with the back surface 14a flows out to the exhaust gas flow path 26 from the gap c1 formed between the outer peripheral end of the turbine wheel 14 and the turbine housing 20, and contributes to the turbine output.
 図3に示すバックプレート40(40a)の例示的な実施形態では、複数の第1貫通孔50は互いに等間隔に格子状に配置されている。即ち、バックプレート40(40a)の一面に仮想四角形52が画定され、各第1貫通孔50は仮想四角形52の角部に配置される。仮想四角形は正方形又は長方形であってもよい。仮想四角形52の一辺の長さx1、他辺の長さx2及び第1貫通孔50の直径Dを適宜設定することで、第1貫通孔50から噴出する圧縮気体gの流速Ujが設定される。さらに、第1貫通孔50と被冷却面54(各実施形態では背面14a)との距離zを設定し、第1貫通孔50から噴出する圧縮気体gの流速Ujを設定値以上として被冷却面54に衝突させることで、噴流冷却による冷却効果を向上できる。各第1貫通孔50は仮想四角形ではなく、仮想三角形の角部又は他の図形の外縁に適宜な間隔で配置されてもよい。 In an exemplary embodiment of the back plate 40 (40a) shown in FIG. 3, a plurality of first through holes 50 are arranged in a grid pattern at equal intervals from each other. That is, a virtual quadrangle 52 is defined on one surface of the back plate 40 (40a), and each first through hole 50 is arranged at a corner of the virtual quadrangle 52. The virtual quadrangle may be a square or a rectangle. By appropriately setting the length x1 of one side of the virtual quadrangle 52, the length x2 of the other side, and the diameter D of the first through hole 50, the flow velocity Uj of the compressed gas g ejected from the first through hole 50 is set. .. Further, the distance z between the first through hole 50 and the surface to be cooled 54 (back surface 14a in each embodiment) is set, and the flow velocity Uj of the compressed gas g ejected from the first through hole 50 is set to a set value or more to set the surface to be cooled. By colliding with 54, the cooling effect of jet cooling can be improved. The first through holes 50 may be arranged at appropriate intervals at the corners of the virtual triangle or the outer edge of another figure instead of the virtual quadrangle.
 一実施形態では、図2に示すように、バックプレート40(40a)はリング状に形成され、その内周端が軸受ハウジング24に形成された角部24aに当接され、その外周端がタービンハウジング20に形成された角部20aに当接されるように配置される。例えば、ターボチャージャ10の組立時に、バックプレート40(40a)の弾性を利用して、バックプレート40(40a)の内周端が角部24aを押圧し、バックプレート40(40a)の外周端が角部20aを押圧した状態となるように組み立てる。これによって、バックプレート40(40a)の内周端及び外周端での圧縮気体gの漏れを抑制できる。 In one embodiment, as shown in FIG. 2, the back plate 40 (40a) is formed in a ring shape, its inner peripheral end is in contact with a corner portion 24a formed in the bearing housing 24, and its outer peripheral end is a turbine. It is arranged so as to be in contact with the corner portion 20a formed in the housing 20. For example, when assembling the turbocharger 10, the inner peripheral end of the back plate 40 (40a) presses the corner portion 24a by utilizing the elasticity of the back plate 40 (40a), and the outer peripheral end of the back plate 40 (40a) is pressed. Assemble so that the corner portion 20a is pressed. As a result, leakage of the compressed gas g at the inner peripheral end and the outer peripheral end of the back plate 40 (40a) can be suppressed.
 一実施形態では、図1に示すように、軸受ハウジング24の内部に、回転軸12の軸方向に沿って延在する第2貫通孔56が形成される。第2貫通孔56は冷却気体通路42(42a)の一部を構成する。この実施形態によれば、冷却気体通路42(42a)の一部を形成する第2貫通孔56を軸受ハウジング24の内部に形成するので、軸受ハウジング24の外側で冷却気体通路配置用のスペースを削減できる。従って、軸受ハウジング24をコンパクト化できる。 In one embodiment, as shown in FIG. 1, a second through hole 56 extending along the axial direction of the rotating shaft 12 is formed inside the bearing housing 24. The second through hole 56 forms a part of the cooling gas passage 42 (42a). According to this embodiment, since the second through hole 56 forming a part of the cooling gas passage 42 (42a) is formed inside the bearing housing 24, a space for arranging the cooling gas passage is provided outside the bearing housing 24. Can be reduced. Therefore, the bearing housing 24 can be made compact.
 図1に示す例示的な実施形態では、冷却気体通路42(42a)のほぼ全部が第2貫通孔56で構成されている。従って、冷却気体通路42(42a)のほぼ全部は軸受ハウジング24の内部に配設され、軸受ハウジング24の外部に露出する部分はないため、軸受ハウジング24の外側に配置される他の機器類の配置のじゃまにならない。 In the exemplary embodiment shown in FIG. 1, almost all of the cooling gas passage 42 (42a) is composed of the second through hole 56. Therefore, since almost all of the cooling gas passage 42 (42a) is arranged inside the bearing housing 24 and there is no portion exposed to the outside of the bearing housing 24, other equipment arranged outside the bearing housing 24. It doesn't get in the way of placement.
 一実施形態では、図1及び図4に示すように、軸受ハウジング24の内部に冷却水が供給される冷却水空間48が形成される。冷却水空間48に冷却水を循環させることで、軸受ハウジング24を冷却できる。圧縮気体gによる冷却と冷却水空間48に供給される冷却水による冷却とを組み合わせることで、タービンホイール14の冷却効果を向上できる。 In one embodiment, as shown in FIGS. 1 and 4, a cooling water space 48 to which cooling water is supplied is formed inside the bearing housing 24. The bearing housing 24 can be cooled by circulating the cooling water in the cooling water space 48. The cooling effect of the turbine wheel 14 can be improved by combining the cooling by the compressed gas g and the cooling by the cooling water supplied to the cooling water space 48.
 一実施形態では、図4に示すように、ターボチャージャ10(10B)は、コンプレッサハウジング22と軸受ハウジング24との間に設けられた外部配管60を備えている。外部配管60は、冷却気体通路42(42b)の一部を構成する。この実施形態によれば、外部配管60が冷却気体通路42(42b)の一部を形成するため、軸受ハウジング24の内部に冷却気体通路を形成するための加工を削減できる。従って、冷却気体通路42(42b)の形成が比較的容易になる。 In one embodiment, as shown in FIG. 4, the turbocharger 10 (10B) includes an external pipe 60 provided between the compressor housing 22 and the bearing housing 24. The external pipe 60 constitutes a part of the cooling gas passage 42 (42b). According to this embodiment, since the external pipe 60 forms a part of the cooling gas passage 42 (42b), the processing for forming the cooling gas passage inside the bearing housing 24 can be reduced. Therefore, the formation of the cooling gas passage 42 (42b) becomes relatively easy.
 図4に示す例示的な実施形態では、冷却気体通路42(42b)は、外部配管60の上流側で軸受ハウジング24の内部に形成された冷却気体通路62と、外部配管60と、外部配管60の下流側で軸受ハウジング24の内部に形成された冷却気体通路64と、で構成されている。このように、冷却気体通路42(42b)の一部を外部配管60で構成することで、冷却気体通路42(42b)の配置が比較的容易になる。
 また、図4に示すように、圧縮気体gが内部空間Siからコンプレッサハウジング22側へ逆流するのを防止するための逆止弁66を設けてもよい。
In the exemplary embodiment shown in FIG. 4, the cooling gas passage 42 (42b) includes a cooling gas passage 62 formed inside the bearing housing 24 on the upstream side of the external pipe 60, the external pipe 60, and the external pipe 60. It is composed of a cooling gas passage 64 formed inside the bearing housing 24 on the downstream side of the bearing housing 24. By forming a part of the cooling gas passage 42 (42b) with the external pipe 60 in this way, the arrangement of the cooling gas passage 42 (42b) becomes relatively easy.
Further, as shown in FIG. 4, a check valve 66 may be provided to prevent the compressed gas g from flowing back from the internal space Si toward the compressor housing 22 side.
 一実施形態では、図5に示すように、バックプレート40はバックプレート40(40b)で構成されている。バックプレート40(40b)の内周端面68と軸受ハウジング24との間に圧縮気体gが流通可能な隙間c2が形成されている。この実施形態によれば、空間Sに供給された圧縮気体gは、隙間c2から空間Sへ流れるため、タービンホイール14を冷却できる。 In one embodiment, as shown in FIG. 5, the back plate 40 is composed of a back plate 40 (40b). A gap c2 through which the compressed gas g can flow is formed between the inner peripheral end surface 68 of the back plate 40 (40b) and the bearing housing 24. According to this embodiment, compressed gas g supplied to the space S 2, since the flow from the gap c2 to the space S 1, can be cooled turbine wheel 14.
 図5に示す例示的な実施形態では、バックプレート40(40b)の外周端部70は、軸受ハウジング24とタービンハウジング20とで挟持されて固定されている。外周端部70を有するため、バックプレート40(40b)は内部空間Siの所定場所に固定できる。また、バックプレート40(40b)は外部配管60より内周側に曲折部72を有し、曲折部72より内周側部位はタービンホイール14側に位置している。これによって、該内周側部位の両側に空間S及びSを適宜な容積比で形成できるようにしている。 In the exemplary embodiment shown in FIG. 5, the outer peripheral end 70 of the back plate 40 (40b) is sandwiched and fixed between the bearing housing 24 and the turbine housing 20. Since the back plate 40 (40b) has the outer peripheral end portion 70, the back plate 40 (40b) can be fixed at a predetermined position in the internal space Si. Further, the back plate 40 (40b) has a bent portion 72 on the inner peripheral side of the external pipe 60, and the inner peripheral side portion of the bent portion 72 is located on the turbine wheel 14 side. This is to allow a space S 1 and S 2 at an appropriate volume ratio on each side of the inner circumferential side portion.
 一実施形態では、空間Sに面するバックプレート40(40a、40b)の面41は、タービンホイール14の背面14aより放射率が高くなるように構成されている。ここで、「放射率」とは、赤外線を含む電磁波全体の熱放射線の放射率であり、次の(1)式で定義される。
  放射率=物体の放射発散度/同じ温度の黒体の放射発散度・・・(1)
In one embodiment, the surface 41 of the back plate 40 (40a, 40b) facing the space S 2 is configured such that the radiation rate from the back surface 14a of the turbine wheel 14 increases. Here, the "emissivity" is the emissivity of thermal radiation of the entire electromagnetic wave including infrared rays, and is defined by the following equation (1).
Emissivity = Radiant exitance of an object / Radiant exitance of a blackbody at the same temperature ... (1)
 バックプレート40が熱放射線を吸収すると温度が高くなり、熱放射線を放射すると温度が低くなる。空間Sに面するバックプレート40は、軸受ハウジング24から放射伝熱及び熱伝導で冷却される。バックプレート40の温度が低下するため、空間Sを通過する圧縮気体gは面41に接することで冷却される。こうして、圧縮気体gを冷却することで、タービンホイール14の冷却効果を高めることができる。これによって、タービンホイール14の熱変形や熱焼損を抑制できる。 When the back plate 40 absorbs thermal radiation, the temperature rises, and when the back plate 40 emits thermal radiation, the temperature decreases. Backplate 40 facing the space S 2 is cooled by radiant heat transfer and heat conduction from the bearing housing 24. Since the temperature of the back plate 40 is lowered, compressed gas g which passes through the space S 2 is cooled by contact with the surface 41. By cooling the compressed gas g in this way, the cooling effect of the turbine wheel 14 can be enhanced. As a result, thermal deformation and thermal burnout of the turbine wheel 14 can be suppressed.
 バックプレート40の面41の放射率を高くする手段として、例えば、面41に黒色塗料を塗布するなどの表面処理や、面41に凹凸を付けたり、面41の粗度を粗くする、等の手段がある。 As a means for increasing the emissivity of the surface 41 of the back plate 40, for example, surface treatment such as applying black paint to the surface 41, making the surface 41 uneven, or roughening the roughness of the surface 41, etc. There is a means.
 一実施形態では、図6に示すように、タービンホイール14の内部に第3貫通孔80が形成されている。第3貫通孔80の入口側開口80aはタービンホイール14の背面14aに形成され、出口側開口80bはタービンホイール14のボス部74の端面(ボス端面)74aに形成され、第3貫通孔80はタービンホイール14の内部でこれら開口の間に延在している。出口側開口46から空間Sに流入した圧縮気体gは、空間Sから入口側開口80aに流入し、第3貫通孔80を通って出口側開口80bから流出する。そのため、タービンホイール14を効果的に冷却できる。第3貫通孔80は1個又はタービンホイール14の周方向に複数個形成できる。 In one embodiment, as shown in FIG. 6, a third through hole 80 is formed inside the turbine wheel 14. The inlet side opening 80a of the third through hole 80 is formed on the back surface 14a of the turbine wheel 14, the outlet side opening 80b is formed on the end surface (boss end surface) 74a of the boss portion 74 of the turbine wheel 14, and the third through hole 80 is formed. It extends between these openings inside the turbine wheel 14. Compressed gas g which has flowed into the space S 2 from the outlet opening 46 flows from the space S 1 to the inlet side opening 80a, and flows out from the outlet opening 80b through the third through-hole 80. Therefore, the turbine wheel 14 can be effectively cooled. One third through hole 80 or a plurality of third through holes 80 can be formed in the circumferential direction of the turbine wheel 14.
 図6に示すように、回転軸12の外周面に相当するタービンホイール14の背面14aの径方向位置を0%とし、背面14aの外周端に相当する径方向位置を100%とすると、入口側開口80aは、0~50%の位置に配置するのが望ましい。50~100%の範囲に、入口側開口80aを配置すると、ボス端面74aに開口する出口側開口80bに連通させるためには第3貫通孔80を途中で曲げる必要があり、全体として直線状の第3貫通孔80を形成するのは困難である。他方、タービンホイール14の内部で曲がる貫通孔を形成するのは、加工上困難であると共に、圧力損失が増加するという問題がある。50~100%の範囲では、このような問題はなくなる。さらに好ましくは、入口側開口80aは0~30%の範囲に形成するのがよい。入口側開口80aがこの範囲にあるとき、ボス端面74aに開口する出口側開口80bに連通する直線状の第3貫通孔80を形成するのはさらに容易である。 As shown in FIG. 6, assuming that the radial position of the back surface 14a of the turbine wheel 14 corresponding to the outer peripheral surface of the rotating shaft 12 is 0% and the radial position corresponding to the outer peripheral end of the back surface 14a is 100%, the inlet side. It is desirable that the opening 80a is arranged at a position of 0 to 50%. When the inlet side opening 80a is arranged in the range of 50 to 100%, the third through hole 80 needs to be bent in the middle in order to communicate with the outlet side opening 80b that opens to the boss end surface 74a, and is linear as a whole. It is difficult to form the third through hole 80. On the other hand, it is difficult to form a through hole that bends inside the turbine wheel 14, and there is a problem that the pressure loss increases. In the range of 50 to 100%, such a problem disappears. More preferably, the inlet side opening 80a is preferably formed in the range of 0 to 30%. When the inlet side opening 80a is in this range, it is even easier to form a linear third through hole 80 that communicates with the outlet side opening 80b that opens in the boss end surface 74a.
 一実施形態では、図6に示すように、回転軸12は、タービンホイール14の背面14aとの接合部において小径部12aに形成されている。これによって、入口側開口80aを軸線CAに近い位置に形成しやすくなる。 In one embodiment, as shown in FIG. 6, the rotating shaft 12 is formed in a small diameter portion 12a at a joint portion with the back surface 14a of the turbine wheel 14. This makes it easier to form the inlet side opening 80a at a position close to the axis CA.
 一実施形態では、図7に示すように、タービンホイール14の内部に第4貫通孔90が形成される。第4貫通孔90の入口側開口90aは、タービンホイール14の背面14aに形成され、出口側開口90bは、タービンホイール14のハブ面92に形成されている。第4貫通孔90は、タービンホイール14の内部を入口側開口90aから出口側開口90bに向かって延在する。入口側開口90aから第4貫通孔90に流入した圧縮気体gは、出口側開口90bからタービンホイール14のハブ面92に流出する。そして、ハブ面92に沿ってタービン出口側に向かって流れる排ガスeに同伴してハブ面92に沿って流れるため、ハブ面92に圧縮気体gの膜状の流れを形成できる。これによって、ハブ面92をフィルム冷却できるため、タービンホイール14の冷却効果を高めることができる。 In one embodiment, as shown in FIG. 7, a fourth through hole 90 is formed inside the turbine wheel 14. The inlet side opening 90a of the fourth through hole 90 is formed on the back surface 14a of the turbine wheel 14, and the outlet side opening 90b is formed on the hub surface 92 of the turbine wheel 14. The fourth through hole 90 extends inside the turbine wheel 14 from the inlet side opening 90a toward the outlet side opening 90b. The compressed gas g that has flowed into the fourth through hole 90 from the inlet side opening 90a flows out from the outlet side opening 90b to the hub surface 92 of the turbine wheel 14. Then, since it flows along the hub surface 92 along with the exhaust gas e flowing toward the turbine outlet side along the hub surface 92, a film-like flow of the compressed gas g can be formed on the hub surface 92. As a result, the hub surface 92 can be film-cooled, so that the cooling effect of the turbine wheel 14 can be enhanced.
 一実施形態では、第4貫通孔90の軸線は、出口側開口90bが形成された位置においてハブ面92の接線方向に沿って延在している。これによって、第4貫通孔90の出口側開口80bは、ハブ面92に対して接線方向に沿って開口するため、ハブ面92に圧縮気体gの膜状の流れを形成しやすくなる。これによって、ハブ面92をフィルム冷却による冷却効果を向上できる。 In one embodiment, the axis of the fourth through hole 90 extends along the tangential direction of the hub surface 92 at the position where the outlet side opening 90b is formed. As a result, the outlet-side opening 80b of the fourth through hole 90 opens along the tangential direction with respect to the hub surface 92, so that a film-like flow of the compressed gas g can easily be formed on the hub surface 92. Thereby, the cooling effect by cooling the hub surface 92 by the film can be improved.
 図7に示すように、回転軸12の外周面に相当するタービンホイール14の背面14aの径方向位置を0%とし、背面14aの外周端の相当する背面14aの径方向位置を100%とする。また、ハブ面92のうち、排ガスeの出口端を0%とし、背面14aの外周端に対応するハブ面92の位置を100%とする。ブレード30の面における排ガスeの温度分布は、ブレード30の入口端で最も高温となり、下流側に行くほど運動エネルギを消費して徐々に温度が低下する。一方、ブレード30のクリープ強度は、ブレード30の形状及び構造から、排ガス流れの下流側に行くほど低下する。従って、少なくともハブ面92の0から50%の下流側領域をフィルム冷却可能となるように、出口側開口90bを配置するのが好ましい。さらに、加工性及び圧力損失の観点から、第4貫通孔90を全体として1本の直線状に形成可能な条件を加えると、第4貫通孔90の入口側開口90aは、背面14aの0~50%の領域に開口し、出口側開口90bは、ハブ面92の30~75%の領域に開口するように配置するのが好ましい。さらに、好ましくは、出口側開口90bの開口位置の下流側範囲をさらに上流側に限定して、ハブ面92の40~75%の領域とする。 As shown in FIG. 7, the radial position of the back surface 14a of the turbine wheel 14 corresponding to the outer peripheral surface of the rotating shaft 12 is 0%, and the radial position of the back surface 14a corresponding to the outer peripheral end of the back surface 14a is 100%. .. Further, of the hub surface 92, the outlet end of the exhaust gas e is set to 0%, and the position of the hub surface 92 corresponding to the outer peripheral end of the back surface 14a is set to 100%. The temperature distribution of the exhaust gas e on the surface of the blade 30 is the highest at the inlet end of the blade 30, and the temperature gradually decreases by consuming kinetic energy toward the downstream side. On the other hand, the creep strength of the blade 30 decreases toward the downstream side of the exhaust gas flow due to the shape and structure of the blade 30. Therefore, it is preferable to arrange the outlet side opening 90b so that the film can be cooled at least in the downstream side region of 0 to 50% of the hub surface 92. Further, from the viewpoint of workability and pressure loss, when a condition that the fourth through hole 90 can be formed in a straight line as a whole is added, the inlet side opening 90a of the fourth through hole 90 is 0 to 0 on the back surface 14a. It is preferable to arrange the opening in a region of 50% and the outlet side opening 90b so as to open in a region of 30 to 75% of the hub surface 92. Further, preferably, the downstream side range of the opening position of the outlet side opening 90b is further limited to the upstream side to be a region of 40 to 75% of the hub surface 92.
 なお、上記各実施形態は、ノズルベーンを有する可変容量型ターボチャージャにも適用できる。 Note that each of the above embodiments can also be applied to a variable capacity turbocharger having a nozzle vane.
 上記各実施形態に記載の内容は、例えば以下のように把握される。 The contents described in each of the above embodiments are grasped as follows, for example.
 1)一態様に係るターボチャージャ(10(10A、10B))は、回転軸(12)と、前記回転軸の一端側に設けられたタービンホイール(14)と、前記回転軸の他端側に設けられたコンプレッサホイール(16)と、前記回転軸を回転可能に支持する軸受部(18)を収容する軸受ハウジング(24)と、前記タービンホイールを収容するタービンハウジング(20)と前記軸受ハウジングとの間に画定された内部空間(Si)を前記回転軸の軸方向に沿って仕切るバックプレートであって、前記タービンホイールの背面(14a)との間で一方側空間(S)を形成すると共に、前記軸受ハウジングとの間で他方側空間(S)を形成するバックプレート(40(40a、40b))と、前記コンプレッサホイールで圧縮された圧縮気体(g)を抽気し、前記他方側空間に連通する出口側開口(46)を有する冷却気体通路(42(42a、42b))と、を備える。 1) The turbocharger (10 (10A, 10B)) according to one embodiment is provided on a rotating shaft (12), a turbine wheel (14) provided on one end side of the rotating shaft, and on the other end side of the rotating shaft. The provided compressor wheel (16), a bearing housing (24) accommodating a bearing portion (18) that rotatably supports the rotating shaft, a turbine housing (20) accommodating the turbine wheel, and the bearing housing. A back plate that partitions the internal space (Si) defined between the turbine wheels along the axial direction of the rotating shaft, and forms a one-sided space (S 1) with the back surface (14a) of the turbine wheel. At the same time, the back plate (40 (40a, 40b)) forming the other side space (S 2 ) with the bearing housing and the compressed gas (g) compressed by the compressor wheel are extracted, and the other side is extracted. A cooling gas passage (42 (42a, 42b)) having an outlet-side opening (46) communicating with the space is provided.
 このような構成によれば、コンプレッサホイールで圧縮された圧縮気体を上記他方側空間に導入し、他方側空間から一方側空間に流入させることで、タービンホイールを冷却でき、その寿命低下を抑制できる。コンプレッサホイールの圧縮側通路と上記内部空間との圧力差から、コンプレッサホイールで圧縮された圧縮気体を上記他方側空間に導入することは容易である。 According to such a configuration, the turbine wheel can be cooled and its life can be suppressed by introducing the compressed gas compressed by the compressor wheel into the other side space and flowing it from the other side space into the one side space. .. Due to the pressure difference between the compression side passage of the compressor wheel and the internal space, it is easy to introduce the compressed gas compressed by the compressor wheel into the other space.
 2)別な態様に係るターボチャージャは、1)に記載のターボチャージャであって、前記バックプレートは、離散的に配置された複数の第1貫通孔(50)を有する。 2) The turbocharger according to another aspect is the turbocharger according to 1), and the back plate has a plurality of first through holes (50) arranged discretely.
 このような構成によれば、上記複数の第1貫通孔からタービンホイールの背面に向かって噴出する圧縮気体が該背面に衝突して、所謂、噴流冷却(インピンジメント冷却)が可能になる。こうして、タービンホイールの冷却効果を向上できる。 According to such a configuration, the compressed gas ejected from the plurality of first through holes toward the back surface of the turbine wheel collides with the back surface, and so-called jet cooling (impingement cooling) becomes possible. In this way, the cooling effect of the turbine wheel can be improved.
 3)さらに別な態様に係るターボチャージャは、1)又は2)に記載のターボチャージャであって、前記バックプレートの内周端面(68)と前記軸受ハウジングとの間に前記圧縮気体が流通可能な隙間(c2)が形成されている。 3) The turbocharger according to still another aspect is the turbocharger according to 1) or 2), and the compressed gas can flow between the inner peripheral end surface (68) of the back plate and the bearing housing. A gap (c2) is formed.
 このような構成によれば、他方側空間に供給された圧縮気体は、バックプレートの内周端面と軸受ハウジングとの間に形成された隙間から一方側空間に流入するため、タービンホイールを冷却できる。 According to such a configuration, the compressed gas supplied to the other side space flows into the one side space through the gap formed between the inner peripheral end surface of the back plate and the bearing housing, so that the turbine wheel can be cooled. ..
 4)さらに別な態様に係るターボチャージャは、1)乃至3)の何れかに記載のターボチャージャであって、前記冷却気体通路は、前記コンプレッサホイールを収容するディフューザ流路(34)の出口側領域と連通する入口側開口(44)を有する。 4) The turbocharger according to still another aspect is the turbocharger according to any one of 1) to 3), and the cooling gas passage is on the outlet side of the diffuser flow path (34) accommodating the compressor wheel. It has an inlet side opening (44) that communicates with the region.
 このような構成によれば、冷却気体通路の入口側開口が、ディフューザ流路の出口側領域に開口しているため、ディフューザ流路を経て高圧となった圧縮気体を上記他方側空間に供給できる。このように、冷却気体通路の入口側と出口側との圧力差によって、他の動力を必要とせず圧縮気体を容易に出口側の内部空間に供給できる。 According to such a configuration, since the inlet side opening of the cooling gas passage is opened in the outlet side region of the diffuser flow path, the compressed gas having a high pressure can be supplied to the other side space through the diffuser flow path. .. In this way, due to the pressure difference between the inlet side and the outlet side of the cooling gas passage, the compressed gas can be easily supplied to the internal space on the outlet side without requiring other power.
 5)さらに別な態様に係るターボチャージャは、1)乃至4)の何れかに記載のターボチャージャであって、前記軸受ハウジングは、前記回転軸の軸方向に沿って延在する第2貫通孔を有し、前記第2貫通孔(56)が前記冷却気体通路の一部を構成する。 5) The turbocharger according to still another aspect is the turbocharger according to any one of 1) to 4), and the bearing housing has a second through hole extending along the axial direction of the rotating shaft. The second through hole (56) constitutes a part of the cooling gas passage.
 このような構成によれば、冷却気体通路の一部を軸受ハウジングの内部に形成できるため、軸受ハウジングの外側で冷却気体通路配置用のスペースを削減できる。 According to such a configuration, a part of the cooling gas passage can be formed inside the bearing housing, so that the space for arranging the cooling gas passage can be reduced outside the bearing housing.
 6)さらに別な態様に係るターボチャージャは、1)乃至4)の何れかに記載のターボチャージャであって、前記コンプレッサホイールを収容するコンプレッサハウジング(22)と、前記コンプレッサハウジングと前記軸受ハウジングとの間に設けられた外部配管(60)と、をさらに備え、前記外部配管が前記冷却気体通路の一部を構成する。 6) The turbocharger according to still another aspect is the turbocharger according to any one of 1) to 4), and includes a compressor housing (22) accommodating the compressor wheel, the compressor housing, and the bearing housing. An external pipe (60) provided between the two is further provided, and the external pipe constitutes a part of the cooling gas passage.
 このような構成によれば、上記外部配管によって冷却気体通路の一部を形成できるため、冷却気体通路の形成が比較的容易になる。 According to such a configuration, since a part of the cooling gas passage can be formed by the external piping, the formation of the cooling gas passage becomes relatively easy.
 7)さらに別な態様に係るターボチャージャは、1)乃至6)の何れかに記載のターボチャージャであって、前記他方側空間に面する前記バックプレートの一面(41)は、前記タービンホイールの前記背面より放射率が高くなるように構成されている。 7) The turbocharger according to still another aspect is the turbocharger according to any one of 1) to 6), and one surface (41) of the back plate facing the other side space is the turbine wheel. It is configured so that the emissivity is higher than that of the back surface.
 バックプレートは、熱放射線を吸収すると温度が高くなり、放射すると温度が低くなる。上記構成によれば、内部空間と連通する冷却気体通路の出口側開口に面するバックプレートの面がタービンホイールの背面より放射率が高いため、他方側空間に面するバックプレートの該一面は、タービンホイールの背面より低温となる。これによって、他方側空間を通過するとき該一面に接する圧縮気体の冷却効果を高めることができるため、タービンホイールの温度を低減できる。 The temperature of the back plate rises when it absorbs thermal radiation, and decreases when it radiates. According to the above configuration, the surface of the back plate facing the outlet side opening of the cooling gas passage communicating with the internal space has a higher emissivity than the back surface of the turbine wheel, so that one surface of the back plate facing the other side space is The temperature is lower than the back of the turbine wheel. As a result, the cooling effect of the compressed gas in contact with the one surface when passing through the space on the other side can be enhanced, so that the temperature of the turbine wheel can be reduced.
 8)さらに別な態様に係るターボチャージャは、1)乃至7)の何れかに記載のターボチャージャであって、前記タービンホイールは、前記タービンホイールの前記背面に形成された入口側開口から前記タービンホイールのボス面(74a)に形成された出口側開口(80b)に延在する第3貫通孔(80)を有する。 8) The turbocharger according to still another aspect is the turbocharger according to any one of 1) to 7), and the turbine wheel is the turbine from an inlet side opening formed on the back surface of the turbine wheel. It has a third through hole (80) extending into the outlet side opening (80b) formed on the boss surface (74a) of the wheel.
 このような構成によれば、上記第3貫通孔に圧縮気体を供給することで、タービンホイールを効果的に冷却できる。 According to such a configuration, the turbine wheel can be effectively cooled by supplying the compressed gas to the third through hole.
 9)さらに別な態様に係るターボチャージャは、1)乃至7)の何れかに記載のターボチャージャであって、前記タービンホイールは、前記タービンホイールの前記背面に形成された入口側開口から前記タービンホイールのハブ面(92)に形成された出口側開口(90b)に延在する第4貫通孔(90)を有する。 9) The turbocharger according to still another aspect is the turbocharger according to any one of 1) to 7), and the turbine wheel is the turbine from an inlet side opening formed on the back surface of the turbine wheel. It has a fourth through hole (90) extending into the outlet side opening (90b) formed on the hub surface (92) of the wheel.
 このような構成によれば、上記第4貫通孔に供給された圧縮気体は、タービンホイールのハブ面から噴出し、タービン出口側に向かって流れる排ガスに同伴して該ハブ面に沿って流れるため、該ハブ面をフィルム冷却できる。これによって、タービンホイールの冷却効果を高めることができる。 According to such a configuration, the compressed gas supplied to the fourth through hole is ejected from the hub surface of the turbine wheel and flows along the hub surface along with the exhaust gas flowing toward the turbine outlet side. , The hub surface can be film-cooled. This makes it possible to enhance the cooling effect of the turbine wheel.
 10(10a、10B)  ターボチャージャ
 12  回転軸
  12a  小径部
 14  タービンホイール
  14a  背面
 16  コンプレッサホイール
 18  軸受部
  18a  角部
 20  タービンハウジング
  20a  角部
 22  コンプレッサハウジング
 24  軸受ハウジング
  24a  角部
 26  排ガス流路
 28、30  ブレード
 32  入口開口
 34  ディフューザ流路
 36  スクロール流路
 40(40a、40b)  バックプレート
  41  面
 42(42a、42b)、62、64  冷却気体通路
  44  入口側開口
  46  出口側開口
 48  冷却水空間
 50  第1貫通孔
 52  仮想四角形
 54  被冷却面
 56  第2貫通孔
 60  外部配管
 66  逆止弁
 68  内周端面
 70  外周端部
 72  曲折部
 74  ボス部
  74a  ボス端面
 80  第3貫通孔
  80a  入口側開口
  80b  出口側開口
 90  第4貫通孔
  90a  入口側開口
  90b  出口側開口
 92  ハブ面
 CA  軸線
 Si  内部空間
  S  空間(一方側空間)
  S  空間(他方側空間)
 c1、c2  隙間
 e   排ガス
 g   圧縮気体
10 (10a, 10B) Turbocharger 12 Rotating shaft 12a Small diameter 14 Turbine wheel 14a Back surface 16 Compressor wheel 18 Bearing 18a Square 20 Turbine housing 20a Square 22 Compressor housing 24 Bearing housing 24a Corner 26 Exhaust gas flow path 28, 30 Blade 32 Inlet opening 34 Diffuser flow path 36 Scroll flow path 40 (40a, 40b) Back plate 41 Surface 42 (42a, 42b), 62, 64 Cooling gas passage 44 Inlet side opening 46 Outlet side opening 48 Cooling water space 50 1st Through hole 52 Virtual square 54 Cooled surface 56 Second through hole 60 External piping 66 Check valve 68 Inner peripheral end surface 70 Outer peripheral end 72 Bent 74 Boss 74a Boss end surface 80 Third through hole 80a Inlet side opening 80b Exit side Opening 90 4th through hole 90a Entrance side opening 90b Exit side opening 92 Hub surface CA Axis Si Internal space S 1 space (one side space)
S 2 space (space on the other side)
c1, c2 Gap e Exhaust gas g Compressed gas

Claims (9)

  1.  回転軸と、
     前記回転軸の一端側に設けられたタービンホイールと、
     前記回転軸の他端側に設けられたコンプレッサホイールと、
     前記回転軸を回転可能に支持する軸受部を収容する軸受ハウジングと、
     前記タービンホイールを収容するタービンハウジングと前記軸受ハウジングとの間に画定された内部空間を前記回転軸の軸方向に沿って仕切るバックプレートであって、前記タービンホイールの背面との間で一方側空間を形成すると共に、前記軸受ハウジングとの間で他方側空間を形成するバックプレートと、
     前記コンプレッサホイールで圧縮された圧縮気体を抽気し、前記他方側空間に連通する出口側開口を有する冷却気体通路と、
    を備える、
    ターボチャージャ。
    Rotation axis and
    A turbine wheel provided on one end side of the rotating shaft and
    A compressor wheel provided on the other end side of the rotating shaft and
    A bearing housing that houses a bearing that rotatably supports the rotating shaft,
    A back plate that partitions an internal space defined between a turbine housing accommodating the turbine wheel and the bearing housing along the axial direction of the rotating shaft, and is a one-sided space between the back surface of the turbine wheel. And a back plate that forms a space on the other side with the bearing housing.
    A cooling gas passage having an outlet side opening that draws out the compressed gas compressed by the compressor wheel and communicates with the other side space.
    To prepare
    Turbocharger.
  2.  前記バックプレートは、離散的に配置された複数の第1貫通孔を有する、
    請求項1に記載のターボチャージャ。
    The back plate has a plurality of discretely arranged first through holes.
    The turbocharger according to claim 1.
  3.  前記バックプレートの内周端面と前記軸受ハウジングとの間に前記圧縮気体が流通可能な隙間が形成されている、
    請求項1又は2に記載のターボチャージャ。
    A gap through which the compressed gas can flow is formed between the inner peripheral end surface of the back plate and the bearing housing.
    The turbocharger according to claim 1 or 2.
  4.  前記冷却気体通路は、前記コンプレッサホイールを収容するディフューザ流路の出口側領域と連通する入口側開口を有する、
    請求項1乃至3の何れか一項に記載のターボチャージャ。
    The cooling gas passage has an inlet side opening communicating with an outlet side region of the diffuser flow path accommodating the compressor wheel.
    The turbocharger according to any one of claims 1 to 3.
  5.  前記軸受ハウジングは、前記回転軸の軸方向に沿って延在する第2貫通孔を有し、
     前記第2貫通孔が前記冷却気体通路の一部を構成する、
    請求項1乃至4の何れか一項に記載のターボチャージャ。
    The bearing housing has a second through hole extending along the axial direction of the rotating shaft.
    The second through hole constitutes a part of the cooling gas passage.
    The turbocharger according to any one of claims 1 to 4.
  6.  前記コンプレッサホイールを収容するコンプレッサハウジングと、
     前記コンプレッサハウジングと前記軸受ハウジングとの間に設けられた外部配管と、
    をさらに備え、
     前記外部配管が前記冷却気体通路の一部を構成する、
    請求項1乃至4の何れか一項に記載のターボチャージャ。
    The compressor housing that houses the compressor wheel and
    An external pipe provided between the compressor housing and the bearing housing,
    With more
    The external pipe constitutes a part of the cooling gas passage.
    The turbocharger according to any one of claims 1 to 4.
  7.  前記他方側空間に面する前記バックプレートの一面は、前記タービンホイールの前記背面より放射率が高くなるように構成されている、
    請求項1乃至6の何れか一項に記載のターボチャージャ。
    One surface of the back plate facing the other side space is configured to have a higher emissivity than the back surface of the turbine wheel.
    The turbocharger according to any one of claims 1 to 6.
  8.  前記タービンホイールは、前記タービンホイールの前記背面に形成された入口側開口から前記タービンホイールのボス面に形成された出口側開口に延在する第3貫通孔を有する請求項1乃至7の何れか一項に記載のターボチャージャ。 Any of claims 1 to 7, wherein the turbine wheel has a third through hole extending from an inlet side opening formed on the back surface of the turbine wheel to an outlet side opening formed on a boss surface of the turbine wheel. The turbocharger described in item 1.
  9.  前記タービンホイールは、前記タービンホイールの前記背面に形成された入口側開口から前記タービンホイールのハブ面に形成された出口側開口に延在する第4貫通孔を有する、
    請求項1乃至7の何れか一項に記載のターボチャージャ。
    The turbine wheel has a fourth through hole extending from an inlet side opening formed on the back surface of the turbine wheel to an outlet side opening formed on the hub surface of the turbine wheel.
    The turbocharger according to any one of claims 1 to 7.
PCT/JP2020/014878 2020-03-31 2020-03-31 Turbocharger WO2021199308A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/014878 WO2021199308A1 (en) 2020-03-31 2020-03-31 Turbocharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/014878 WO2021199308A1 (en) 2020-03-31 2020-03-31 Turbocharger

Publications (1)

Publication Number Publication Date
WO2021199308A1 true WO2021199308A1 (en) 2021-10-07

Family

ID=77927759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/014878 WO2021199308A1 (en) 2020-03-31 2020-03-31 Turbocharger

Country Status (1)

Country Link
WO (1) WO2021199308A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH108903A (en) * 1996-06-24 1998-01-13 Nissan Motor Co Ltd Structure for ceramic gas turbine
JP2005030244A (en) * 2003-07-09 2005-02-03 Yanmar Co Ltd Back plate structure of gas turbine or supercharger
JP2014145343A (en) * 2013-01-30 2014-08-14 Ihi Corp Pressurized incineration facility and pressurized incineration method
WO2014128894A1 (en) * 2013-02-21 2014-08-28 三菱重工業株式会社 Variable geometry turbocharger
US9033670B2 (en) * 2012-04-11 2015-05-19 Honeywell International Inc. Axially-split radial turbines and methods for the manufacture thereof
JP2018096267A (en) * 2016-12-12 2018-06-21 三菱重工エンジン&ターボチャージャ株式会社 Turbocharger

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH108903A (en) * 1996-06-24 1998-01-13 Nissan Motor Co Ltd Structure for ceramic gas turbine
JP2005030244A (en) * 2003-07-09 2005-02-03 Yanmar Co Ltd Back plate structure of gas turbine or supercharger
US9033670B2 (en) * 2012-04-11 2015-05-19 Honeywell International Inc. Axially-split radial turbines and methods for the manufacture thereof
JP2014145343A (en) * 2013-01-30 2014-08-14 Ihi Corp Pressurized incineration facility and pressurized incineration method
WO2014128894A1 (en) * 2013-02-21 2014-08-28 三菱重工業株式会社 Variable geometry turbocharger
JP2018096267A (en) * 2016-12-12 2018-06-21 三菱重工エンジン&ターボチャージャ株式会社 Turbocharger

Similar Documents

Publication Publication Date Title
US7351042B2 (en) Structure of scroll of variable-throat exhaust turbocharger and method for manufacturing the turbocharger
JP5274125B2 (en) Method and system for cooling fluid in a turbine engine
US20100303635A1 (en) Cooling arrangements
US10815789B2 (en) Impingement holes for a turbine engine component
CN102410251A (en) Airfoil shape for compressor inlet guide vane
JP6505720B2 (en) Centrifugal compressor impeller with non-linear wing leading edge and related design method
JP6283173B2 (en) Cooling assembly for a gas turbine system
US9028202B2 (en) Variable geometry turbine
US20100326039A1 (en) Gas turbine, disk, and method for forming radial passage of disk
JP2017141825A (en) Airfoil for gas turbine engine
JP5494248B2 (en) Fixed-wing turbocharger
CN109891055B (en) Airfoil for a turbine engine and corresponding method of cooling
US11118501B2 (en) Turbine and turbocharger including the same
US10914190B2 (en) Variable nozzle unit and turbocharger
WO2021199308A1 (en) Turbocharger
CN108266275B (en) Gas turbine with secondary air system
JP7316381B2 (en) Variable displacement turbocharger
KR20210113553A (en) Turbomachine component for a gas turbine, turbomachine assembly and gas turbine having the same
US20200200033A1 (en) Turbo machine
JP7155429B2 (en) Variable nozzle device and variable capacity exhaust turbocharger
JP7390920B2 (en) Boosting equipment, carbon dioxide cycle plants and combined cycle plants
US20220333502A1 (en) Turbomachine
EP3974618B1 (en) A technique for cooling squealer tip of a gas turbine blade
JP6806599B2 (en) Turbine blades, turbines and turbine blade cooling methods
JP2016525652A (en) Turbine blade

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20929089

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20929089

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP