WO2021199296A1 - Electromagnetic actuator and circuit breaker using same electromagnetic actuator - Google Patents

Electromagnetic actuator and circuit breaker using same electromagnetic actuator Download PDF

Info

Publication number
WO2021199296A1
WO2021199296A1 PCT/JP2020/014854 JP2020014854W WO2021199296A1 WO 2021199296 A1 WO2021199296 A1 WO 2021199296A1 JP 2020014854 W JP2020014854 W JP 2020014854W WO 2021199296 A1 WO2021199296 A1 WO 2021199296A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron core
movable
shaft
fixed
electromagnetic actuator
Prior art date
Application number
PCT/JP2020/014854
Other languages
French (fr)
Japanese (ja)
Inventor
康宏 神納
翔 田中
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP20928867.9A priority Critical patent/EP4131295A4/en
Priority to JP2022513006A priority patent/JP7361889B2/en
Priority to PCT/JP2020/014854 priority patent/WO2021199296A1/en
Publication of WO2021199296A1 publication Critical patent/WO2021199296A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F7/1607Armatures entering the winding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/081Magnetic constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/13Electromagnets; Actuators including electromagnets with armatures characterised by pulling-force characteristics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/16Magnetic circuit arrangements
    • H01H50/36Stationary parts of magnetic circuit, e.g. yoke
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/081Magnetic constructions
    • H01F2007/085Yoke or polar piece between coil bobbin and armature having a gap, e.g. filled with nonmagnetic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/081Magnetic constructions
    • H01F2007/086Structural details of the armature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F7/1607Armatures entering the winding
    • H01F2007/163Armatures entering the winding with axial bearing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/16Magnetic circuit arrangements
    • H01H50/18Movable parts of magnetic circuits, e.g. armature
    • H01H50/20Movable parts of magnetic circuits, e.g. armature movable inside coil and substantially lengthwise with respect to axis thereof; movable coaxially with respect to coil
    • H01H50/22Movable parts of magnetic circuits, e.g. armature movable inside coil and substantially lengthwise with respect to axis thereof; movable coaxially with respect to coil wherein the magnetic circuit is substantially closed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/16Magnetic circuit arrangements
    • H01H50/36Stationary parts of magnetic circuit, e.g. yoke
    • H01H50/42Auxiliary magnetic circuits, e.g. for maintaining armature in, or returning armature to, position of rest, for damping or accelerating movement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/10Operating or release mechanisms
    • H01H71/12Automatic release mechanisms with or without manual release
    • H01H71/24Electromagnetic mechanisms
    • H01H71/2454Electromagnetic mechanisms characterised by the magnetic circuit or active magnetic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/10Operating or release mechanisms
    • H01H71/12Automatic release mechanisms with or without manual release
    • H01H71/24Electromagnetic mechanisms
    • H01H71/2463Electromagnetic mechanisms with plunger type armatures

Definitions

  • the present disclosure relates to an electromagnetic actuator used for a circuit breaker or the like capable of interrupting an electric circuit, and a circuit breaker using this electromagnetic actuator.
  • an electromagnetic actuator is used to operate the contact opening / closing operation.
  • the electromagnetic actuator when a current flows through the coil, the magnetic circuit is excited, the movable iron core in the electromagnetic actuator is driven in the direction of the fixed iron core, and the shaft connected to the movable iron core moves together with the movable iron core to move the circuit breaker.
  • the closed pole operation of the contact is operated.
  • the shaft which is an operating shaft for operating the closing operation of the contact of the circuit breaker, is firmly tightened and fixed to the movable iron core by a set screw for preventing loosening.
  • the circuit breaker that constantly holds the closed state of the contact has a fixed contact in which the movable contact, which is one contact at the time of closing, is relatively the other contact. It is equipped with a pushing mechanism that gives contact pressure to. As a result, the wipe amount, which is the pressing amount of the contact pressure applied to the contacts, is maintained, and the contacts are in a stable contact state when the pole is closed.
  • circuit breaker is required to be miniaturized, there is a problem that the size of the circuit breaker becomes large if a mechanism for maintaining the wipe amount between the contacts at the time of closing the pole is provided separately from the electromagnetic actuator.
  • This disclosure has been made in order to solve the above-mentioned problems, and it is necessary to provide an electromagnetic actuator capable of maintaining the wipe amount when the circuit breaker is closed, and a mechanism for maintaining the wipe amount separately from the electromagnetic actuator. This is to obtain a circuit breaker that can improve miniaturization.
  • the electromagnetic actuator according to the present disclosure is surrounded by a tubular coil that generates an axial magnetic flux when an electric current flows, a movable iron core that is installed in a state where it can reciprocate in the axial direction of the coil, and a movable iron core.
  • a shaft that opens and closes between the movable side contact and the fixed side contact of the breaker and can move with the movable iron core, a tubular yoke pipe that surrounds the coil, and one end of the yoke pipe in the axial direction of the coil.
  • the movable iron core is provided with a fixed iron core arranged in the coil and a tubular yoke projecting portion protruding from the movable side lid plate toward the fixed side lid plate so as to face the fixed iron core on the inner peripheral side of the coil.
  • the circuit breaker according to the present disclosure is characterized in that the electromagnetic actuator according to the present disclosure is used to operate the opening / closing operation between the movable side contact and the fixed side contact.
  • the electromagnetic actuator according to the present disclosure after the movement of the shaft is stopped by bringing the movable side contact and the fixed side contact into contact with each other, the movable iron core can move to the fixed core with respect to the shaft, and the operation operation of the electromagnetic actuator itself is performed. Therefore, the wipe amount when the circuit breaker is closed can be maintained. According to the circuit breaker using the electromagnetic actuator according to the present disclosure, it is not necessary to provide a mechanism for maintaining the wipe amount separately from the electromagnetic actuator, so that the circuit breaker can be miniaturized.
  • FIG. 1 It is a schematic diagram which shows the open state of the contact of the circuit breaker using the electromagnetic actuator which concerns on Embodiment 1.
  • FIG. It is a schematic diagram which shows the closed pole state of the contact of the circuit breaker using the electromagnetic actuator which concerns on Embodiment 1.
  • FIG. It is schematic cross-sectional view which shows the demagnetized state of the electromagnetic actuator which concerns on Embodiment 1.
  • FIG. It is schematic cross-sectional view which shows the excitation operation completion state of the electromagnetic actuator which concerns on Embodiment 1.
  • FIG. It is a figure which shows the magnetic circuit at the initial position of the movable iron core of the electromagnetic actuator which concerns on Embodiment 1.
  • FIG. It is schematic cross-sectional view which shows the demagnetized state of the electromagnetic actuator which concerns on Embodiment 2.
  • FIG. 1 It is a schematic diagram which shows the open state of the contact of the circuit breaker using the electromagnetic actuator which concerns on Embodiment 1.
  • FIG. It is a schematic diagram which shows the closed pole
  • FIG. 2 It is schematic cross-sectional view which shows the excitation operation completion state of the electromagnetic actuator which concerns on Embodiment 2.
  • FIG. It is a figure which shows the magnetic circuit at the initial position of the movable iron core of the electromagnetic actuator which concerns on Embodiment 2.
  • FIG. It is schematic cross-sectional view which shows the demagnetized state of the electromagnetic actuator which concerns on Embodiment 3.
  • FIG. It is schematic cross-sectional view which shows the excitation operation completion state of the electromagnetic actuator which concerns on Embodiment 3.
  • Embodiment 1. 1 and 2 are schematic views showing a circuit breaker 110 using the electromagnetic actuator according to the first embodiment.
  • FIG. 1 is a diagram showing a state in which the contacts of the circuit breaker 110 are open
  • FIG. 2 is a diagram showing a state in which the contacts of the circuit breaker 110 are closed.
  • the circuit breaker 110 according to the first embodiment is a circuit breaker that constantly holds the closed state of the contacts by energizing the coil of the electromagnetic actuator.
  • the circuit breaker 110 includes a pair of movable side contacts 104 and fixed side contacts 105, and an electromagnetic actuator 100 provided with a shaft 8 for operating contact opening / closing operation. It has an arc extinguishing chamber 108.
  • a movable conductor 103, a flexible conductor 106, a lower conductor 101, and an open pole spring 107 are provided on the movable side contact 104 side.
  • An upper conductor 102 is provided on the fixed side contact 105 side.
  • the arc extinguishing chamber 108 extinguishes the arc discharge generated when the movable side contact 104 separates from the fixed side contact 105 during the opening operation.
  • the fixed-side contact 105 which is one of the pair of contacts, is joined to one end of the upper conductor 102 and is electrically connected to the upper conductor 102.
  • the movable side contact 104 which is the other of the pair of contacts, is joined to one end of the movable conductor 103 at a position facing the fixed side contact 105.
  • the other end of the movable conductor 103 is connected to the lower conductor 101 by a flexible conductor 106.
  • the movable side contact 104 is electrically connected to the lower conductor 101 via the movable conductor 103 and the flexible conductor 106.
  • the flexible conductor 106 is urged on the shaft 8 of the electromagnetic actuator 100 so as to open and close the movable side contact 104 and the fixed side contact 105.
  • the lower conductor 101, the upper conductor 102, the movable conductor 103, the movable side contact 104, the fixed side contact 105, and the flexible conductor 106 are composed of conductors.
  • the movable side contact 104 and the fixed side contact 105 are energized via the lower conductor 101 and the upper conductor 102, respectively.
  • the movable side contact 104 is connected to the fixed side contact 105 by moving the movable conductor 103 toward the upper conductor 102. Further, the movable side contact 104 is disconnected from the fixed side contact 105 by moving the movable conductor 103 in the direction away from the upper conductor 102.
  • the state in which the movable side contact 104 and the fixed side contact 105 are connected is the state in which the contact is closed, and the state in which the movable side contact 104 and the fixed side contact 105 are separated is the state in which the contact is open.
  • the movable side contact 104 and the fixed side contact 105 are connected by the exciting operation of the electromagnetic actuator 100, and the contact is in a closed state as shown in FIG.
  • the lower conductor 101 and the upper conductor 102 are energized via the movable side contact 104 and the fixed side contact 105.
  • the movable side contact 104 and the fixed side contact 105 are separated from each other by the demagnetizing operation of the electromagnetic actuator 100, and the contacts shown in FIG. 1 are opened. In this case, the energization of the lower conductor 101 and the upper conductor 102 is stopped.
  • the open pole spring 107 is connected to the movable conductor 103, and is provided so as to open the contact on the movable side contact 104 side of the movable conductor 103.
  • the open pole spring 107 elastically stores the movable side contact 104 so as to separate it from the fixed side contact 105.
  • the contact opening and closing operations which are the contact opening and closing operations, are performed by the operation of the electromagnetic actuator 100. When driving the closing pole of the contact, the electromagnetic actuator 100 pushes the contact against the accumulating force of the opening spring 107.
  • the shaft 8 is arranged so as to pass through the axis center of the electromagnetic actuator 100.
  • the movable conductor 103 is connected to the electromagnetic actuator 100 via the shaft 8.
  • the electromagnetic actuator 100 operates an opening / closing operation between the contacts of the circuit breaker 110.
  • the electromagnetic actuator 100 moves the movable conductor 103 via the shaft 8 to control the connection between the movable side contact 104 and the fixed side contact 105.
  • FIG. 3 is a cross-sectional view showing a demagnetized state of the electromagnetic actuator 100 according to the first embodiment, corresponding to the open pole state of the circuit breaker 110 shown in FIG.
  • the movable iron core 2 is located at the initial position.
  • FIG. 4 is a cross-sectional view showing a completed state of the excitation operation of the electromagnetic actuator 100 according to the first embodiment, corresponding to the closed pole state of the circuit breaker 110 shown in FIG.
  • the movable iron core 2 is in contact with the fixed core 3.
  • the electromagnetic actuator 100 has a tubular coil 1 that generates an axial magnetic flux when an electric current flows, and a movable iron core that is arranged in the axial direction of the coil 1 and is installed in a state where it can reciprocate in the axial direction of the coil 1. 2.
  • a shaft 8 surrounded by a movable iron core 2 and movable together with the movable iron core 2, a tubular yoke pipe 4 surrounding the coil 1, and arranged at one end of the yoke pipe 4 in the axial direction of the coil 1.
  • the fixed side lid plate 5 and the movable side lid plate 6 arranged at the other end of the yoke pipe 4 in the axial direction of the coil 1 and the movable side lid plate 5 to the movable side lid plate on the inner peripheral side of the coil 1.
  • a fixed iron core 3 arranged in the direction toward 6 and a tubular yoke protruding from the movable side lid plate 6 toward the fixed side lid plate 5 on the inner peripheral side of the coil 1 so as to face the fixed iron core 3. It has a protruding portion 7.
  • the yoke pipe 4 is arranged between the fixed side lid plate 5 and the movable side lid plate 6, and the fixed side lid plate 5 and the movable side lid plate 6 are arranged so as to face each other. ing.
  • the fixed iron core 3 faces the movable iron core 2 surrounded by the yoke projecting portion 7 and the yoke projecting portion 7 in the axial direction of the coil 1.
  • Each part of the yoke pipe 4, the fixed side lid plate 5, the movable side lid plate 6, the fixed iron core 3, and the yoke projecting portion 7 is a stepped integrated type and is made of a magnetic material.
  • a typical magnetic material is, for example, iron.
  • each of the yoke pipe 4 the fixed side lid plate 5, the movable side lid plate 6, the fixed iron core 3, and the yoke protruding portion 7, a magnetic circuit is excited together with the movable iron core 2 by energizing the coil 1.
  • the coil 1 is housed in a cylindrical space formed in a yoke pipe 4, a fixed side lid plate 5, a movable side lid plate 6, a fixed iron core 3, and a yoke protrusion 7. Further, the coil 1 has a cylindrical shape so as to surround the movable iron core 2, the yoke protrusion 7, and the fixed iron core 3.
  • the movable iron core 2 is arranged on the inner peripheral side of the yoke protruding portion 7 so as to face the fixed iron core 3, and is installed in a state in which the movable iron core 2 can reciprocate relative to the fixed iron core 3 in the axial direction of the coil 1. .. Specifically, the movable iron core 2 is driven so as to move toward the fixed core 3 in the axial direction of the coil 1 when a current flows through the coil 1. In this case, the movable iron core 2 is in the closed state of the circuit breaker 110 shown in FIG. 4 from the initial position which is the demagnetized state of the electromagnetic actuator 100 holding the open state of the contacts of the circuit breaker 110 shown in FIG.
  • the electromagnetic actuator 100 moves to a position where it abuts on the fixed iron core 3, which is the position where the excitation operation is completed. Further, the length of the movable iron core 2 in the axial direction of the coil 1 is longer than 1/2 of the length of the yoke pipe 4. In the initial position, the movable iron core end surface 2a of the movable iron core 2 is located on the fixed iron core 3 side from the center position of the coil 1 in the axial direction. As the movable iron core 2 becomes longer, the facing area between the movable iron core 2 and the yoke protrusion 7 in the axial direction becomes larger. The reluctance of a magnetic circuit is reduced by increasing the magnetic path cross-sectional area corresponding to the facing area.
  • the attractive force acting on the movable iron core 2 in the excited holding state can be further improved.
  • the holding force between the main contacts of the circuit breaker 110 in the closed pole state can be improved.
  • the shaft 8 is surrounded by a movable iron core 2 and is arranged in the axial direction of the coil 1.
  • the shaft 8 is made of a non-magnetic material.
  • the shaft 8 penetrates the fixed side lid plate 5, the fixed iron core 3, and the movable side lid plate 6 in the axial direction of the coil 1.
  • the shaft 8 has a first shaft end portion 8a which is one end portion penetrating the fixed side lid plate 5, and a second shaft end portion 8b which is the other end portion penetrating the movable side lid plate 6. ..
  • the first shaft end portion 8a extends to the movable conductor 103 and is connected to the movable conductor 103.
  • the second shaft end portion 8b is formed to have a larger outer diameter than the portion inserted into the movable iron core 2 of the shaft 8.
  • a shaft protrusion 8c and a shaft step portion 8d are formed on the shaft 8.
  • the shaft protrusion 8c faces the fixed iron core 3, and the shaft step portion 8d is adjacent to the shaft protrusion 8c and is located at the end of the movable iron core 2 on the fixed side lid plate 5.
  • the shaft protrusion 8c and the shaft step portion 8d are formed to have a larger outer diameter than the portion inserted into the movable iron core 2 of the shaft 8.
  • a first movable iron core bearing 13 and a second movable iron core bearing 14, which are bearings for the movable iron core, are arranged at both ends in the axial direction of the movable iron core 2, respectively.
  • a first movable iron core bearing 13 is provided on the shaft stepped portion 8d of the shaft 8 at the end position of the movable iron core 2 on the fixed side lid plate 5 side.
  • the movable iron core 2 is movably supported by the first movable iron core bearing 13 with respect to the shaft 8.
  • first movable iron core bearing 13 By arranging the first movable iron core bearing 13 on the shaft 8 of the non-magnetic component, it can be configured without cutting the cross-sectional area of the movable iron core 2, and the suction force can be secured. Further, a second movable iron core bearing 14 is provided at the end position of the movable iron core 2 on the movable side lid plate 6 side. The second movable iron core bearing 14 movably supports the shaft 8 together with the movable iron core 2.
  • a pressure contact spring 9 is arranged between the movable iron core 2 and the shaft 8.
  • the shaft 8 and the movable iron core 2 are connected to each other via a pressure spring 9.
  • the pressure contact spring 9 is built in the movable iron core 2, and is located between the first movable iron core bearing 13 and the second movable iron core bearing 14 in the axial direction.
  • the electromagnetic actuator 100 will be made compact. By increasing the length of the movable iron core 2, it is possible to increase the length of the pressure contact spring 9.
  • the pressure contact spring 9 is crimped and the movable core 2 is stored in the direction of being separated from the fixed core 3.
  • a return spring 10 is arranged between the shaft protrusion 8c and the fixed iron core 3.
  • the shaft 8 and the fixed iron core 3 are connected to each other via a return spring 10.
  • the return spring 10 has a tubular shape that surrounds the shaft 8 and is surrounded by the fixed iron core 3. When the shaft 8 moves in the direction of the fixed core 3 together with the movable core 2, the return spring 10 is crimped and stored in the direction of separating the contacts of the circuit breaker.
  • shaft bearings that support the movement of the shaft 8 are arranged on the fixed side lid plate 5 and the movable side lid plate 6 in the axial direction, respectively.
  • the first shaft bearing 11 is provided at the center of the fixed side lid plate 5
  • the second shaft bearing 12 is provided at the center of the movable side lid plate 6.
  • the first shaft bearing 11 is arranged between the fixed side lid plate 5 and the first shaft end portion 8a of the shaft 8 penetrating the fixed side lid plate 5.
  • the second shaft bearing 12 is arranged between the movable side lid plate 6 and the second shaft end portion 8b of the shaft 8 penetrating the movable side lid plate 6.
  • the shaft 8 can move in the axial direction of the coil 1 while being supported by the first shaft bearing 11 and the second shaft bearing 12.
  • the movable core 2 and the fixed core 3 have a cylindrical shape that surrounds the shaft 8.
  • the movable iron core 2 and the fixed iron core 3 have a movable iron core end surface 2a and a fixed iron core end surface 3a that face each other in the axial direction of the coil 1.
  • the movable iron core end surface 2a is an annular surface facing the fixed iron core end surface 3a
  • the fixed iron core end surface 3a is an annular surface facing the movable iron core end surface 2a.
  • the movable iron core end surface 2a and the fixed iron core end surface 3a are arranged at opposite positions with a gap s1 having a predetermined distance.
  • the movable iron core 2 is excited and driven in the axial direction toward the fixed iron core 3, the gap s1 becomes smaller as the movable iron core 2 moves, and when the excitation operation is completed, the movable iron core end surface 2a comes into contact with the fixed iron core end surface 3a.
  • the gap s1 becomes zero.
  • the fixed iron core end surface 3a is located closer to the fixed side lid plate 5 than the axial center of the coil 1.
  • the movable core 2 is excited and driven in the axial direction toward the fixed core 3, and in the excited operation completed state, the movable core end surface 2a of the movable core 2 becomes the fixed core end surface 3a of the fixed core 3.
  • the surface at the time of contact is referred to as the contact surface 16.
  • the position of the abutting surface 16 is the same as the position of the fixed iron core end surface 3a, and the abutting surface 16 between the movable iron core 2 and the fixed iron core 3 in the excited operation completed state is a movable iron core rather than the axial center of the coil 1. It is located on the moving direction side of 2.
  • the shaft protrusion 8c and the return spring 10 are accommodated at the axial center of the fixed iron core end surface 3a so as to face the shaft protrusion 8c of the shaft 8.
  • a recessed fixed iron core recess 3b is formed.
  • a fixed iron core step portion 3c is provided on the inner wall surface of the fixed iron core recess 3b and faces the shaft protrusion.
  • the shaft protrusion 8c is surrounded so as to fit in the fixed iron core recess 3b, and comes into contact with the fixed iron core 3 via the return spring 10.
  • the yoke protrusion 7 extends from the yoke main protrusion 7a arranged on the movable side lid plate 6 side and the yoke main protrusion 7a toward the fixed side lid plate 5. It has a yoke thin protrusion 7b to be formed.
  • the yoke protruding portion 7 faces the fixed iron core 3, and the yoke thin protruding portion 7b is arranged so as to extend in the direction of the fixed iron core 3.
  • the yoke protrusion tip surface 7c which is the end surface of the yoke protrusion 7 facing the fixed iron core 3, protrudes from the fixed iron core 3 from the movable iron core end surface 2a at the initial position.
  • a gap g1 having a predetermined distance is provided between the tip surface 7c of the yoke protrusion and the end surface 3a of the fixed iron core at opposite positions.
  • the gap g1 is smaller than the gap s1 between the movable iron core end surface 2a and the fixed iron core end surface 3a at the initial position.
  • the inner diameter of the yoke main protrusion 7a and the inner diameter of the yoke fine protrusion 7b are the same size, and the outer diameter of the yoke main protrusion 7a is larger than the outer diameter of the yoke fine protrusion 7b.
  • the yoke main protrusion 7a and the yoke fine protrusion 7b may be integrally formed or may be composed of separate parts. Both the yoke main protrusion 7a and the yoke fine protrusion 7b have a yoke protrusion inner wall surface 7d which is an inner wall surface of the yoke protrusion 7.
  • the inner wall surface 7d of the yoke projecting portion faces the outer wall surface 2b of the movable iron core, which is the outer wall surface of the movable iron core 2, so as to surround the movable iron core 2.
  • the yoke projecting portion 7 has a yoke thin projecting portion 7b extending from the yoke main projecting portion 7a, and by increasing the length of the movable iron core 2, the facing area between the movable iron core 2 and the yoke projecting portion 7 becomes large. .. That is, the facing area between the outer wall surface 2b of the movable iron core and the inner wall surface 7d of the yoke projecting portion is increased.
  • a magnetic circuit including a movable iron core 2, a fixed iron core 3, a fixed side lid plate 5, a yoke pipe 4, a movable side lid plate 6, and a yoke protruding portion 7 is excited, and a magnetic attraction force is applied to the movable iron core 2.
  • the movable core 2 is driven in the direction of the fixed core 3.
  • the movable iron core 2 shown in FIG. 3 is driven from the initial position to the position where the movable iron core 2 in the excitation operation completed state shown in FIG. 4 is in contact with the fixed core 3.
  • the circuit breaker 110 changes from the open pole state shown in FIG. 1 to the closed pole state shown in FIG.
  • the pressure spring 9 that connects the movable core 2 and the shaft 8 is pressed by the moving movable core 2, and the shaft 8 is pressed together with the movable core 2 on the movable side. It moves from the lid plate 6 side toward the fixed side lid plate 5.
  • the movable conductor 103 connected to the shaft 8 moves to the left of the paper surface in FIG. 1 so as to bring the movable side contact 104 and the fixed side contact 105 into contact with each other.
  • the return spring 10 between the shaft protrusion 8c and the fixed iron core 3 is crimped to store energy.
  • the movable iron core 2 is further driven in the direction toward the fixed core 3 with respect to the shaft 8 by the magnetic attraction force. After that, the movable iron core end surface 2a of the movable iron core 2 and the fixed iron core end surface 3a of the fixed iron core 3 come into contact with each other to complete the exciting operation, and the circuit breaker is closed. Twice
  • the movable iron core 2 moves with respect to the shaft 8 and is fixed to the movable side contact 104 via the shaft 8. Further contact pressure is applied to the side contact 105. As a result, the wipe amount at the time of closing can be maintained by the operation operation of the electromagnetic actuator itself.
  • the return spring 10 is crimped and the shaft 8 is in contact with the fixed core 3 via the return spring 10.
  • the shaft protrusion 8c is surrounded so as to fit in the fixed iron core recess 3b, does not completely abut with the fixed iron core step portion 3c in the fixed iron core recess 3b, and has a gap 16a. Since there is a gap 16a between the shaft protrusion 8c and the fixed iron core step portion 3c, the movable iron core 2 can apply contact pressure between the contacts via the shaft 8.
  • the shaft protrusion 8c comes into contact with the fixed iron core step portion 3c via the return spring 10 in a state where the accumulating force of the pressure contact spring 9 remains. Since there is a gap 16a, the accumulating force of the pressure contact spring 9 can be released when the magnetic circuit is demagnetized. In the electromagnetic actuator, an attractive force may act between the movable core and the fixed core due to the influence of the residual magnetic field, and the movable core 2 can be separated from the fixed core 3 by utilizing the accumulating force of the pressure contact spring 9. .. Since the accumulating force of the pressure contact spring 9 can be utilized, the size of the return spring 10 provided on the fixed iron core 3 side can be reduced, and the return spring 10 can be miniaturized.
  • FIG. 5 is a diagram showing a magnetic circuit at an initial position of a movable iron core 2 of the electromagnetic actuator 100 according to the first embodiment.
  • the gap g1 between the yoke protrusion tip surface 7c and the fixed iron core end surface 3a is smaller than the gap s1 between the movable iron core end surface 2a and the fixed iron core end surface 3a. Therefore, the magnetic flux 24 in the axial direction in the magnetic circuit generated by energizing the coil 1 has a magnetic flux 24a passing through the movable iron core 2 and a magnetic flux 24b passing through the yoke protrusion 7.
  • a part of the magnetic flux 24 in the axial direction flows from the yoke main protrusion 7a of the yoke protrusion 7 through the yoke fine protrusion 7b to the fixed iron core 3, and the magnetic flux flowing to the movable iron core 2 becomes smaller.
  • the driving force applied to the movable iron core 2 is reduced, and the exciting operation of the electromagnetic actuator 100 can be slowed down.
  • the contacts of the circuit breaker 110 can be turned on at low speed.
  • the magnetic flux passes through the movable iron core 2 and the fixed iron core 3 from the yoke protrusion 7.
  • the gap s1 between the movable iron core end surface 2a and the fixed iron core end surface 3a becomes smaller.
  • the gap g1 between the yoke protrusion tip surface 7c and the fixed iron core end surface 3a becomes the movable iron core end surface 2a and the fixed iron core end surface 3a.
  • the contact surface 16 between the movable core 2 and the fixed core 3 is located on the moving direction side of the movable core 2 with respect to the axial center of the coil 1, and is the length of the movable core 2.
  • the electromagnetic actuator according to the first embodiment after the movement of the shaft is stopped by bringing the movable side contact and the fixed side contact into contact with each other, the movable iron core can move to the fixed core with respect to the shaft, and the electromagnetic actuator itself
  • the wipe amount when the circuit breaker is closed can be maintained by the operation operation.
  • the contact surface between the movable iron core and the fixed iron core is located on the moving direction side of the movable iron core with respect to the center position of the coil in the axial direction of the coil.
  • the distance between the surface and the initial position can be secured. Even if the length of the movable iron core in the axial direction is long, the movable iron core can be configured without protruding outward from the movable side lid plate at the initial position, so that the external dimensions of the electromagnetic actuator can be miniaturized. Along with this, it is possible to reduce the size of the circuit breaker using this electromagnetic actuator.
  • the configuration in which the yoke fine protrusion is provided on the yoke protrusion has the effect of slowing down the excitation operation and improving the attractive force in the excitation holding state. Along with this, it is possible to improve the holding force between the contacts of the circuit breaker using this electromagnetic actuator at low speed and in the closed pole state.
  • Embodiment 2. 6 and 7 are cross-sectional views of the electromagnetic actuator 200 according to the second embodiment of the present disclosure.
  • FIG. 6 is a cross-sectional view showing a demagnetized state of the electromagnetic actuator 200 according to the second embodiment corresponding to the open pole state of the circuit breaker shown in FIG.
  • FIG. 6 is a cross-sectional view showing a state in which the movable iron core 2 is in the initial position in the demagnetized state of the electromagnetic actuator 200 shown in FIG.
  • FIG. 7 is a cross-sectional view showing a completed state of excitation operation of the electromagnetic actuator 200 according to the second embodiment corresponding to the closed pole state of the circuit breaker shown in FIG. In the excited operation completed state of the electromagnetic actuator 200 shown in FIG.
  • the movable iron core 2 is in contact with the fixed core 3. Similar to the electromagnetic actuator 100 shown in FIGS. 1 and 2, the electromagnetic actuator 200 urges the movable contacts of the circuit breaker in the closing direction, and is used for operating the opening / closing operation between the contacts.
  • the same reference numerals are used for the same components as those in the first embodiment of the present disclosure, and the description of the same or corresponding parts will be omitted.
  • the difference between the electromagnetic actuator 200 according to the second embodiment and the first embodiment will be described with reference to the drawings.
  • the electromagnetic actuator 200 is arranged in the axial direction of the coil 1 and the tubular coil 1 that generates an axial magnetic flux due to the flow of an electric current, and reciprocates in the axial direction of the coil 1.
  • the shaft 8 which is surrounded by the movable iron core 2 and can move together with the movable iron core 2, the tubular yoke pipe 4 surrounding the coil 1, and the coil 1.
  • the fixed side lid plate 5 arranged at one end of the yoke pipe, the movable side lid plate 6 arranged at the other end of the yoke pipe 4 in the axial direction of the coil 1, and the fixed side on the inner peripheral side of the coil 1.
  • Each part of the yoke pipe 4, the fixed side lid plate 5, the movable side lid plate 6, the fixed iron core 23, and the yoke projecting portion 27 is a stepped integrated type and is made of a magnetic material.
  • a typical magnetic material is, for example, iron.
  • the configuration of the fixed iron core 23 and the yoke protrusion 27 is different from the configuration of the fixed iron core 3 and the yoke protrusion 7 of the first embodiment.
  • the configurations other than the fixed iron core 23 and the yoke protrusion 27 are the same as those in the first embodiment. Each has the same effect.
  • the yoke projecting portion 27 projects in the direction from the movable side lid plate 6 toward the fixed side lid plate 5 so as to surround a part of the movable iron core 2 at the initial position, and the outer diameter and inner diameter of the yoke projecting portion 27 are the same.
  • the yoke protrusion 27 has a yoke protrusion tip surface 27a, which is an annular end surface facing the fixed iron core 23, and a yoke protrusion inner wall surface 27b facing the movable iron core outer wall surface 2b, which is the outer wall surface of the movable iron core 2.
  • the fixed iron core 23 has a fixed iron core base portion 23a arranged on the fixed side lid plate 5 side, and a fixed iron core fine protrusion 23b extending in a direction extending from the fixed iron core base portion 23a toward the movable side lid plate 6.
  • the fixed iron core base portion 23a and the fixed iron core fine protrusion portion 23b may be integrally formed or may be composed of separate parts.
  • the fixed iron core base 23a is arranged so as to face the movable iron core 2 and the yoke projecting portion 27 surrounding the movable iron core 2.
  • the fixed iron core base 23a has a fixed iron core end surface 23c which is an end surface facing the movable iron core 2.
  • the fixed iron core end surface 23c is an annular surface facing the movable iron core end surface 2a, and is located closer to the fixed side lid plate 5 than the axial center of the coil 1.
  • the movable iron core end surface 2a and the fixed iron core end surface 23c are arranged at opposite positions with a gap s2 having a predetermined distance.
  • the movable iron core 2 is excited and driven in the axial direction toward the fixed iron core 23, the gap s2 becomes smaller as the movable iron core 2 moves, and when the excitation operation is completed, the movable iron core end surface 2a comes into contact with the fixed iron core end surface 23c.
  • the gap s2 becomes zero.
  • the surface at which the movable iron core end surface 2a of the movable iron core 2 comes into contact with the fixed iron core end surface 23c of the fixed iron core 23 in the excited operation completed state is referred to as an abutting surface 26.
  • the position of the abutting surface 26 is the same as the position of the fixed iron core end surface 23c, and is located on the moving direction side of the movable iron core 2 with respect to the center position of the coil 1 in the axial direction of the coil 1. That is, it is located on the fixed side lid plate 5 side with respect to the axial center of the coil 1.
  • the shaft protrusion 8c and the return spring 10 are accommodated at the axial center of the fixed iron core end surface 23c so as to face the shaft protrusion 8c of the shaft 8.
  • a recessed fixed iron core recess 23f is formed.
  • a fixed iron core step portion 23g which is stepped on the inner wall surface of the fixed iron core recess 23f and faces the shaft protrusion portion is provided.
  • the shaft protrusion 8c is surrounded so as to fit in the fixed iron core step portion 23g.
  • the fixed iron core thin protrusion 23b extends in the direction of the movable iron core 2 and is presented in a cylindrical shape so as to surround the movable iron core tip portion 2c which is the tip portion in the direction of moving to the fixed iron core base 23a of the movable iron core 2.
  • the fixed iron core thin projecting portion 23b has a fixed iron core tip surface 23d which is an annular end surface facing the yoke projecting portion 27, and a fixed iron core inner wall surface 23e which is an inner wall surface facing the movable iron core outer wall surface 2b.
  • the movable iron core tip portion 2c is surrounded by the fixed core thin protrusion portion 23b, and the portion on the movable side lid plate 6 side other than the movable iron core tip portion 2c is the yoke protrusion portion 27. Surrounded by.
  • the fixed iron core tip surface 23d protrudes from the yoke protrusion 27 from the position of the movable iron core end surface 2a at the initial position.
  • a gap g2 having a predetermined distance is provided between the tip surface 27a of the yoke protrusion and the tip surface 23d of the fixed iron core at opposite positions.
  • the gap g2 is smaller than the gap s2 at the initial position.
  • a magnetic circuit including a movable iron core 2, a fixed iron core 23, a fixed side lid plate 5, a yoke pipe 4, a movable side lid plate 6, and a yoke projecting portion 27 is excited, and a magnetic attraction force is applied to the movable iron core 2.
  • the movable core 2 is driven in the direction of the fixed core 23.
  • the movable iron core 2 shown in FIG. 6 is driven from the initial position to the position where the movable iron core 2 in the excitation operation completed state shown in FIG. 7 is in contact with the fixed iron core 23.
  • the circuit breaker 110 changes from the open pole state shown in FIG. 1 to the closed pole state shown in FIG.
  • the pressure spring 9 that connects the movable core 2 and the shaft 8 is pressed by the moving movable core 2, and the shaft 8 is pressed together with the movable core 2 on the movable side. It moves in the axial direction from the lid plate 6 side toward the fixed side lid plate 5.
  • the contacts of the circuit breaker come into contact with each other via a movable conductor connected to the shaft 8.
  • the shaft 8 stops.
  • the movable iron core 2 is driven by a magnetic attraction so as to move to a position where the shaft 8 is further in contact with the fixed iron core 23.
  • the movable iron core end surface 2a of the movable iron core 2 and the fixed iron core end surface 23c of the fixed iron core 23 come into contact with each other to complete the exciting operation, and the circuit breaker is closed.
  • the movable iron core 2 moves with respect to the shaft 8 to further apply contact pressure to the contacts of the circuit breaker via the shaft 8. be able to.
  • the wipe amount at the time of closing can be maintained by the operation operation of the electromagnetic actuator itself.
  • the return spring 10 is crimped and the shaft 8 abuts on the fixed core 23 via the return spring 10.
  • the shaft protrusion 8c is surrounded so as to fit in the fixed iron core recess 23f, and does not completely abut with the fixed iron core step portion 23g in the fixed iron core recess 23f, so that there is a gap 26a. Since there is a gap 26a between the shaft protrusion 8c and the fixed iron core step portion 23g, the movable iron core 2 can apply contact pressure between the contacts via the shaft 8.
  • the shaft protrusion 8c comes into contact with the fixed iron core step portion 23g via the return spring 10 in a state where the accumulating force of the pressure contact spring 9 remains. Since there is a gap 26a, the accumulating force of the pressure contact spring 9 can be released when the magnetic circuit is demagnetized. In the electromagnetic actuator, an attractive force may act between the movable core and the fixed core due to the influence of the residual magnetic field, and the movable core 2 can be separated from the fixed core 23 by utilizing the accumulating force of the pressure contact spring 9. .. Since the accumulating force of the pressure contact spring 9 can be utilized, the size of the return spring 10 provided on the fixed iron core 23 side can be reduced, and the return spring 10 can be downsized.
  • the magnetic circuit When the magnetic circuit is demagnetized by stopping the energization of the coil 1, the magnetic attraction force disappears, the pressure spring 9 extends, and the movable iron core 2 moves in the direction opposite to the direction in which the fixed iron core 23 is arranged.
  • the movable iron core 2 is applied to the end portion 8b of the second shaft, and the shaft 8 moves together with the movable iron core.
  • the return spring 10 extends and the movable conductor 103 connected to the shaft 8 moves in a direction that separates the movable side contact 104 and the fixed side contact 105, and the contacts are completely separated together with the accumulating force of the opening pole spring 107.
  • the movable iron core 2 returns to the initial position. As a result, the electromagnetic actuator 200 is in the demagnetized state, and the circuit breaker is in the open pole state.
  • FIG. 8 is a diagram showing a magnetic circuit at an initial position of the movable iron core 2 of the electromagnetic actuator 200 according to the second embodiment.
  • the gap g2 between the yoke protrusion tip surface 27a and the fixed iron core tip surface 23d is smaller than the gap s2 between the movable iron core end surface 2a and the fixed iron core end surface 23c. Therefore, the magnetic flux 28 in the axial direction in the magnetic circuit generated by energizing the coil 1 has a magnetic flux 28a passing through the movable iron core 2 and a magnetic flux 28b passing through the fixed iron core fine protrusion 23b from the yoke protrusion 27.
  • a part of the magnetic flux 28 in the axial direction flows from the yoke projecting portion 27 through the fixed iron core fine projecting portion 23b to the fixed iron core 23, and the magnetic flux flowing through the movable iron core 2 becomes small.
  • the driving force applied to the movable iron core 2 is reduced, and the exciting operation of the electromagnetic actuator 200 can be slowed down. This makes it possible to turn on the contacts of the circuit breaker at low speed.
  • the movable iron core can move to the fixed core with respect to the shaft, and the electromagnetic actuator itself
  • the wipe amount when the circuit breaker is closed can be maintained by the operation operation.
  • the contact surface between the movable iron core and the fixed iron core is located on the moving direction side of the movable iron core with respect to the center position of the coil in the axial direction of the coil.
  • the distance between the surface and the initial position can be secured. Even if the length of the movable iron core in the axial direction is long, the movable iron core can be configured without protruding outward from the movable side lid plate at the initial position, so that the external dimensions of the electromagnetic actuator can be miniaturized.
  • the circuit breaker using this electromagnetic actuator can be miniaturized.
  • the slowdown of the exciting operation can be improved by the configuration of the fixed iron core provided with the fine protrusion of the fixed iron core. Along with this, it is possible to turn on the contacts of the circuit breaker using this electromagnetic actuator at a low speed.
  • Embodiment 3. 9 and 10 are cross-sectional views of the electromagnetic actuator 300 according to the third embodiment of the present disclosure.
  • FIG. 9 is a cross-sectional view showing a demagnetized state of the electromagnetic actuator 300 according to the third embodiment, corresponding to the open pole state of the circuit breaker 110 shown in FIG. In the demagnetized state of the electromagnetic actuator 300 shown in FIG. 9, the movable iron core 2 of the electromagnetic actuator 300 is located at the initial position.
  • FIG. 10 is a cross-sectional view showing a completed state of the excitation operation of the electromagnetic actuator 300 according to the third embodiment, corresponding to the closed pole state of the circuit breaker 110 shown in FIG. In the excited operation completed state of the electromagnetic actuator 300 shown in FIG.
  • the movable iron core 2 is in contact with the fixed iron core 3. Similar to the electromagnetic actuator 100 shown in FIGS. 1 and 2, the electromagnetic actuator 300 urges the movable contacts of the circuit breaker in the closing direction, and is used for operating the opening / closing operation between the contacts.
  • the same reference numerals are used for the same components as those in the first embodiment of the present disclosure, and the description of the same or corresponding parts will be omitted.
  • the difference between the electromagnetic actuator 300 according to the third embodiment and the first embodiment will be described with reference to the drawings.
  • a tubular coil 1 that generates an axial magnetic flux due to the flow of an electric current and a tubular space for accommodating the coil are formed in the coil 1. It surrounds a movable iron core 2 which is arranged in the axial direction and is installed in a state where it can reciprocate in the axial direction of the coil 1, and a shaft 8 which is surrounded by the movable iron core 2 and can move together with the movable iron core 2 and the coil 1.
  • Each part of the yoke pipe 4, the fixed side lid plate 5, the movable side lid plate 36, the fixed iron core 3, and the yoke projecting portion 7 is a stepped integrated type and is made of a magnetic material.
  • a typical magnetic material is, for example, iron.
  • the configuration of the movable side lid plate 36 is different from the configuration of the movable side lid plate 6 of the first embodiment.
  • the movable side lid plate 36 is provided with an air outlet 33 penetrating the movable side lid plate 36 at a portion surrounded by the yoke protrusion 7.
  • an airtight bearing is provided between the movable iron core 2 and the yoke projecting portion 7 to support the movement of the movable iron core 2 with respect to the yoke projecting portion 7 and prevent the outflow of air.
  • the airtight bearing is movable together with the movable iron core 2, and is arranged so that air inside the electromagnetic actuator does not leak from between the movable iron core 2 and the yoke protrusion 7.
  • a plurality of airtight bearings can be provided between the movable iron core 2 and the yoke protrusion 7, and the airtightness and the holding stability of the movable iron core 2 can be improved.
  • a third movable iron core bearing 31 and a fourth movable iron core bearing 32 which are airtight bearings, are provided, respectively.
  • the third movable iron core bearing 31 and the fourth movable iron core bearing 32 have a sealed configuration so that air inside the electromagnetic actuator does not leak from between the movable iron core 2 and the yoke protrusion 7, and the movable iron core. Together with 2, it is movably supported with respect to the yoke protrusion 7.
  • a spring holding plate 34 is provided between the movable iron core 2 and the pressure contact spring 9.
  • the pressure contact spring 9 is pressed by the movable iron core 2 that moves via the spring pressing plate 34, and the shaft 8 is pressed together with the movable iron core 2 from the movable side lid plate 6 side. It moves in the axial direction toward the fixed side lid plate 5 side.
  • the spring holding plate 34 is also in contact with the movable iron core 2 and the shaft 8, and also has a function of closing the gap between the movable iron core 2 and the shaft 8 so that the air inside the movable iron core 2 does not leak.
  • the configuration of the movable side lid plate 36 and the configuration other than the airtight bearing between the movable iron core 2 and the yoke protrusion 7 are the same as those of the first embodiment. Each has the same effect.
  • the magnetic circuit is demagnetized by stopping the energization of the coil 1, and when the movable iron core 2 moves from the position where it comes into contact with the fixed iron core 3 to the initial position, air is discharged from the air outlet 33. Is the same as in the first embodiment.
  • the magnetic circuit When the magnetic circuit is demagnetized by stopping the energization of the coil 1, the magnetic attraction force disappears, the pressure spring 9 extends, and the movable iron core 2 moves in the direction opposite to the direction in which the fixed iron core 3 is arranged.
  • the movable iron core 2 is applied to the end portion 8b of the second shaft, and the shaft 8 moves together with the movable iron core 2.
  • the return spring 10 extends and the movable conductor 103 connected to the shaft 8 moves in a direction that separates the movable side contact 104 and the fixed side contact 105, and the contacts are completely separated together with the accumulating force of the opening pole spring 107.
  • the movable iron core 2 returns to the initial position. As a result, the electromagnetic actuator 300 is in the demagnetized state, and the circuit breaker is in the open pole state.
  • FIG. 10 when moving in the initial position direction together with the movable iron core 2 and the shaft 8, air A between the movable iron core 2 and the movable side lid plate 36 is introduced from the air outlet 33 to the inside of the yoke protrusion 7 by an electromagnetic actuator. It is discharged to the outside of 300.
  • the arrow 33a indicates the direction in which the air A inside the electromagnetic actuator 300 is discharged from the air outlet 33 to the outside of the electromagnetic actuator 300.
  • the air A discharged from the air outlet 33 during the demagnetization operation can be used to extinguish the arc of the circuit breaker. With the demagnetization operation of the electromagnetic actuator, the contacts of the circuit breaker are separated and an arc discharge occurs. The arc needs to be extinguished quickly.
  • the magnetic circuit in the electromagnetic actuator 300 according to the third embodiment is the same as the magnetic circuit in the first embodiment.
  • the electromagnetic actuator according to the first embodiment has the same effect. Further, when the electromagnetic actuator is demagnetized, the air inside the electromagnetic actuator can be discharged from the air discharge port and used for extinguishing the arc of the circuit breaker, so that the arc extinguishing efficiency can be improved. Further, since the air discharged from the electromagnetic actuator itself can be used for extinguishing the arc, the cost and size of the circuit breaker can be reduced.
  • each embodiment can be combined, and each embodiment can be appropriately modified or omitted.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnets (AREA)

Abstract

Provided is an electromagnetic actuator that can maintain the wipe amount when a circuit breaker is closed. This electromagnetic actuator comprises: a cylindrical coil 1 that generates a magnetic flux in the axial direction by being energized; a moving core 2 that is installed in a state of being able to move back and forth in the axial direction of the coil 1; a shaft 8 that is surrounded by the moving core 2, that performs an opening/closing operation between contact points of the circuit breaker, and that can move together with the moving core 2; a cylindrical yoke pipe 4 that surrounds the coil 1; a fixed-side lid plate 5 and a moving-side lid plate 6 that are disposed, respectively, on both ends of the yoke pipe 4 in the axial direction; a fixed core 3 that is disposed on the inner peripheral side of the coil 1 on the side of the fixed-side lid plate 5; and a yoke protrusion 7 that is disposed on the inner peripheral side of the coil 1 on the side of the moving-side lid plate 6. When a current flows in the coil 1 to excite the coil, the moving core 2 moves from an initial position towards the fixed core 3 together with the shaft 8, and after the shaft 8 has stopped as a result of contacting a contact point of the circuit breaker, the moving core moves to a position of the shaft 8 abutting the fixed core 3.

Description

電磁アクチュエータおよびこの電磁アクチュエータを用いる回路遮断器Electromagnetic actuator and circuit breaker using this electromagnetic actuator
 本開示は電路を遮断することが可能な回路遮断器等に用いられる電磁アクチュエータおよびこの電磁アクチュエータを用いる回路遮断器に関するものである。 The present disclosure relates to an electromagnetic actuator used for a circuit breaker or the like capable of interrupting an electric circuit, and a circuit breaker using this electromagnetic actuator.
 一般的に、回路遮断器において、接点の開閉動作の操作に電磁アクチュエータが用いられている。電磁アクチュエータでは、コイルに電流が流れると磁気回路が励磁され、電磁アクチュエータ内の可動鉄心を固定鉄心の方向に駆動し、可動鉄心に連接されたシャフトが可動鉄心とともに移動することにより回路遮断器の接点の閉極動作を操作している。
 従来の電磁アクチュエータに関する技術として例えば特許文献に記載されているものがある。特許文献1に係る電磁アクチュエータでは、遮断器の接点の閉極動作を操作する操作軸であるシャフトは、緩み防止用止めねじにより可動鉄心と堅く締め付けられて固定されている。これにより、コイルに通電する際に、シャフトと可動鉄心とともに移動する構成となる。
 そして、接点の閉極状態を常時に保持する回路遮断器には、このような従来の電磁アクチュエータとは別に、閉極時に一方の接点である可動接点が相対的に他方の接点である固定接点への接触圧力を与える押し込む機構を具備している。これにより、接点に与える接触圧力の押込み量であるワイプ量が維持され、閉極時に接点間が安定した接触状態になる。
Generally, in a circuit breaker, an electromagnetic actuator is used to operate the contact opening / closing operation. In the electromagnetic actuator, when a current flows through the coil, the magnetic circuit is excited, the movable iron core in the electromagnetic actuator is driven in the direction of the fixed iron core, and the shaft connected to the movable iron core moves together with the movable iron core to move the circuit breaker. The closed pole operation of the contact is operated.
As a technique relating to a conventional electromagnetic actuator, for example, there is one described in a patent document. In the electromagnetic actuator according to Patent Document 1, the shaft, which is an operating shaft for operating the closing operation of the contact of the circuit breaker, is firmly tightened and fixed to the movable iron core by a set screw for preventing loosening. As a result, when the coil is energized, it moves together with the shaft and the movable iron core.
In addition to such a conventional electromagnetic actuator, the circuit breaker that constantly holds the closed state of the contact has a fixed contact in which the movable contact, which is one contact at the time of closing, is relatively the other contact. It is equipped with a pushing mechanism that gives contact pressure to. As a result, the wipe amount, which is the pressing amount of the contact pressure applied to the contacts, is maintained, and the contacts are in a stable contact state when the pole is closed.
特開平9-199320Japanese Patent Application Laid-Open No. 9-199320
 しかしながら、回路遮断器では、小型化が求められるが、閉極時に接点間のワイプ量を維持する機構を電磁アクチュエータと別に設けると、遮断器のサイズは大きくなってしまうという問題がある。
 本開示は、上述のような問題を解決するためになされたもので、回路遮断器の閉極時のワイプ量を維持できる電磁アクチュエータ、および電磁アクチュエータと別にワイプ量を維持する機構を設ける必要がなく、小型化が向上できる回路遮断器を得るものである。
However, although the circuit breaker is required to be miniaturized, there is a problem that the size of the circuit breaker becomes large if a mechanism for maintaining the wipe amount between the contacts at the time of closing the pole is provided separately from the electromagnetic actuator.
This disclosure has been made in order to solve the above-mentioned problems, and it is necessary to provide an electromagnetic actuator capable of maintaining the wipe amount when the circuit breaker is closed, and a mechanism for maintaining the wipe amount separately from the electromagnetic actuator. This is to obtain a circuit breaker that can improve miniaturization.
 本開示に係る電磁アクチュエータは、電流が流れることにより軸方向の磁束を発生する筒状のコイルと、コイルの軸方向に往復動作可能な状態で設置された可動鉄心と、可動鉄心に囲まれており、遮断器の可動側接点と固定側接点との間の開閉動作を行い、可動鉄心とともに移動可能なシャフトと、コイルを取り囲む筒状のヨークパイプと、コイルの軸方向において、ヨークパイプの一端に配置された固定側蓋板と、コイルの軸方向において、ヨークパイプの他端に配置された可動側蓋板と、コイルの内周側に、固定側蓋板から可動側蓋板に向かう方向に配置された固定鉄心と、コイルの内周側に、可動側蓋板から固定側蓋板に向かう方向に固定鉄心に対向するように突出する筒状のヨーク突出部とを備え、可動鉄心は、ヨーク突出部の内周側の空間内に配置されており、コイルに電流が流れることにより励磁されると、初期位置からシャフトとともにコイルの軸方向において固定鉄心に向かう方向に移動し、可動側接点と固定側接点とを接触させることによりシャフトの移動が停止した後、シャフトに対して励磁動作完了状態の固定鉄心に当接する位置まで移動することを特徴とする。
 本開示に係る回路遮断器は、可動側接点と固定側接点との間の開閉動作の操作に本開示に係る電磁アクチュエータを用いたことを特徴とする。
The electromagnetic actuator according to the present disclosure is surrounded by a tubular coil that generates an axial magnetic flux when an electric current flows, a movable iron core that is installed in a state where it can reciprocate in the axial direction of the coil, and a movable iron core. A shaft that opens and closes between the movable side contact and the fixed side contact of the breaker and can move with the movable iron core, a tubular yoke pipe that surrounds the coil, and one end of the yoke pipe in the axial direction of the coil. The fixed side lid plate arranged in the coil, the movable side lid plate arranged at the other end of the yoke pipe in the axial direction of the coil, and the direction from the fixed side lid plate to the movable side lid plate on the inner peripheral side of the coil. The movable iron core is provided with a fixed iron core arranged in the coil and a tubular yoke projecting portion protruding from the movable side lid plate toward the fixed side lid plate so as to face the fixed iron core on the inner peripheral side of the coil. , It is arranged in the space on the inner peripheral side of the yoke protrusion, and when it is excited by the flow of current through the coil, it moves from the initial position together with the shaft in the axial direction of the coil toward the fixed iron core, and is on the movable side. After the movement of the shaft is stopped by contacting the contact with the fixed side contact, the shaft is moved to a position where it comes into contact with the fixed iron core in the excited operation completed state.
The circuit breaker according to the present disclosure is characterized in that the electromagnetic actuator according to the present disclosure is used to operate the opening / closing operation between the movable side contact and the fixed side contact.
 本開示に係る電磁アクチュエータによれば、可動側接点と固定側接点とを接触させることによりシャフトの移動が停止した後、可動鉄心がシャフトに対して固定鉄心へ移動でき、電磁アクチュエータ自体の操作動作により回路遮断器の閉極時のワイプ量を維持できる。
 本開示に係る電磁アクチュエータを用いた回路遮断器によれば、電磁アクチュエータと別にワイプ量を維持する機構を設ける必要がないため、回路遮断器の小型化を図ることができる。
According to the electromagnetic actuator according to the present disclosure, after the movement of the shaft is stopped by bringing the movable side contact and the fixed side contact into contact with each other, the movable iron core can move to the fixed core with respect to the shaft, and the operation operation of the electromagnetic actuator itself is performed. Therefore, the wipe amount when the circuit breaker is closed can be maintained.
According to the circuit breaker using the electromagnetic actuator according to the present disclosure, it is not necessary to provide a mechanism for maintaining the wipe amount separately from the electromagnetic actuator, so that the circuit breaker can be miniaturized.
実施の形態1に係る電磁アクチュエータを用いた回路遮断器の接点の開極状態を示す概要図である。It is a schematic diagram which shows the open state of the contact of the circuit breaker using the electromagnetic actuator which concerns on Embodiment 1. FIG. 実施の形態1に係る電磁アクチュエータを用いた回路遮断器の接点の閉極状態を示す概要図である。It is a schematic diagram which shows the closed pole state of the contact of the circuit breaker using the electromagnetic actuator which concerns on Embodiment 1. FIG. 実施の形態1に係る電磁アクチュエータの解磁状態を示す概略断面図である。It is schematic cross-sectional view which shows the demagnetized state of the electromagnetic actuator which concerns on Embodiment 1. FIG. 実施の形態1に係る電磁アクチュエータの励磁動作完了状態を示す概略断面図である。It is schematic cross-sectional view which shows the excitation operation completion state of the electromagnetic actuator which concerns on Embodiment 1. FIG. 実施の形態1に係る電磁アクチュエータの可動鉄心の初期位置における磁気回路を示す図である。It is a figure which shows the magnetic circuit at the initial position of the movable iron core of the electromagnetic actuator which concerns on Embodiment 1. FIG. 実施の形態2に係る電磁アクチュエータの解磁状態を示す概略断面図である。It is schematic cross-sectional view which shows the demagnetized state of the electromagnetic actuator which concerns on Embodiment 2. FIG. 実施の形態2に係る電磁アクチュエータの励磁動作完了状態を示す概略断面図である。It is schematic cross-sectional view which shows the excitation operation completion state of the electromagnetic actuator which concerns on Embodiment 2. FIG. 実施の形態2に係る電磁アクチュエータの可動鉄心の初期位置における磁気回路を示す図である。It is a figure which shows the magnetic circuit at the initial position of the movable iron core of the electromagnetic actuator which concerns on Embodiment 2. FIG. 実施の形態3に係る電磁アクチュエータの解磁状態を示す概略断面図である。It is schematic cross-sectional view which shows the demagnetized state of the electromagnetic actuator which concerns on Embodiment 3. FIG. 実施の形態3に係る電磁アクチュエータの励磁動作完了状態を示す概略断面図である。It is schematic cross-sectional view which shows the excitation operation completion state of the electromagnetic actuator which concerns on Embodiment 3. FIG.
 以下、本開示に係る実施形態について図面を参照して説明する。なお、以下の各実施形態において、同様の構成要素については同一の符号を付している。 Hereinafter, embodiments according to the present disclosure will be described with reference to the drawings. In each of the following embodiments, the same reference numerals are given to the same components.
実施の形態1.
 図1と図2は、実施の形態1に係る電磁アクチュエータを用いた回路遮断器110を示す概要図である。図1は、回路遮断器110の接点の開極状態を示す図であり、図2は、回路遮断器110の接点の閉極状態を示す図である。
 実施の形態1に係る回路遮断器110は、電磁アクチュエータのコイルを通電することによって接点の閉極状態を常時に保持する回路遮断器である。図1および図2に示すように、回路遮断器110は、一対の接点である可動側接点104および固定側接点105と、接点の開閉動作を操作するシャフト8が設けられた電磁アクチュエータ100と、消弧室108とを有する。
Embodiment 1.
1 and 2 are schematic views showing a circuit breaker 110 using the electromagnetic actuator according to the first embodiment. FIG. 1 is a diagram showing a state in which the contacts of the circuit breaker 110 are open, and FIG. 2 is a diagram showing a state in which the contacts of the circuit breaker 110 are closed.
The circuit breaker 110 according to the first embodiment is a circuit breaker that constantly holds the closed state of the contacts by energizing the coil of the electromagnetic actuator. As shown in FIGS. 1 and 2, the circuit breaker 110 includes a pair of movable side contacts 104 and fixed side contacts 105, and an electromagnetic actuator 100 provided with a shaft 8 for operating contact opening / closing operation. It has an arc extinguishing chamber 108.
 可動側接点104側には可動導体103、可とう導体106、下部導体101と開極ばね107が設けられている。固定側接点105側には上部導体102が設けられている。
 消弧室108は、開極動作時において、可動側接点104が固定側接点105から離れる際に生じるアーク放電を消弧する。
A movable conductor 103, a flexible conductor 106, a lower conductor 101, and an open pole spring 107 are provided on the movable side contact 104 side. An upper conductor 102 is provided on the fixed side contact 105 side.
The arc extinguishing chamber 108 extinguishes the arc discharge generated when the movable side contact 104 separates from the fixed side contact 105 during the opening operation.
 一対の接点の一方である固定側接点105は、上部導体102の一方の端部に接合されており、上部導体102と電気的に連接される。
 一対の接点の他方である可動側接点104は、固定側接点105に対向する位置で可動導体103の一方の端部に接合されている。可動導体103の他方の端部は、可とう導体106によって下部導体101と連接されている。可動側接点104は、可動導体103、可とう導体106を介して下部導体101と電気的に連接される。
 可とう導体106は、可動側接点104と固定側接点105とを開閉するように電磁アクチュエータ100のシャフト8に付勢されている。
 下部導体101、上部導体102、可動導体103、可動側接点104、固定側接点105および可とう導体106は、導体で構成されている。
The fixed-side contact 105, which is one of the pair of contacts, is joined to one end of the upper conductor 102 and is electrically connected to the upper conductor 102.
The movable side contact 104, which is the other of the pair of contacts, is joined to one end of the movable conductor 103 at a position facing the fixed side contact 105. The other end of the movable conductor 103 is connected to the lower conductor 101 by a flexible conductor 106. The movable side contact 104 is electrically connected to the lower conductor 101 via the movable conductor 103 and the flexible conductor 106.
The flexible conductor 106 is urged on the shaft 8 of the electromagnetic actuator 100 so as to open and close the movable side contact 104 and the fixed side contact 105.
The lower conductor 101, the upper conductor 102, the movable conductor 103, the movable side contact 104, the fixed side contact 105, and the flexible conductor 106 are composed of conductors.
 可動側接点104と固定側接点105とはそれぞれ下部導体101と上部導体102とを介して通電される。可動側接点104は、可動導体103が上部導体102に向かって移動することにより、固定側接点105に接続される。また、可動側接点104は、可動導体103が上部導体102から離れる方向に移動することによって、固定側接点105への接続が解消される。
 可動側接点104と固定側接点105とが接続された状態が、接点の閉極状態であり、可動側接点104と固定側接点105とが離された状態が、接点の開極状態である。
The movable side contact 104 and the fixed side contact 105 are energized via the lower conductor 101 and the upper conductor 102, respectively. The movable side contact 104 is connected to the fixed side contact 105 by moving the movable conductor 103 toward the upper conductor 102. Further, the movable side contact 104 is disconnected from the fixed side contact 105 by moving the movable conductor 103 in the direction away from the upper conductor 102.
The state in which the movable side contact 104 and the fixed side contact 105 are connected is the state in which the contact is closed, and the state in which the movable side contact 104 and the fixed side contact 105 are separated is the state in which the contact is open.
 回路遮断器110では、電磁アクチュエータ100の励磁動作により、可動側接点104と固定側接点105とを接続させ、図2に示す接点の閉極状態となる。この場合、下部導体101と上部導体102とが、可動側接点104および固定側接点105を介して通電される。
 また、回路遮断器110では、電磁アクチュエータ100の解磁動作により、可動側接点104および固定側接点105が離された状態となり、図1に示す接点の開極状態となる。この場合、下部導体101と上部導体102との通電が停止される。
In the circuit breaker 110, the movable side contact 104 and the fixed side contact 105 are connected by the exciting operation of the electromagnetic actuator 100, and the contact is in a closed state as shown in FIG. In this case, the lower conductor 101 and the upper conductor 102 are energized via the movable side contact 104 and the fixed side contact 105.
Further, in the circuit breaker 110, the movable side contact 104 and the fixed side contact 105 are separated from each other by the demagnetizing operation of the electromagnetic actuator 100, and the contacts shown in FIG. 1 are opened. In this case, the energization of the lower conductor 101 and the upper conductor 102 is stopped.
 開極ばね107は、可動導体103に連結されており、可動導体103の可動側接点104側に接点の開極を行うように設けられている。開極ばね107は、可動側接点104を固定側接点105から引き離すように弾性的に蓄勢する。接点の開極動作および閉極動作である接点の開閉は、電磁アクチュエータ100の動作によって行われる。電磁アクチュエータ100は、接点の閉極を駆動する際には、開極ばね107の蓄勢力に抗って、接点の投入を行う。 The open pole spring 107 is connected to the movable conductor 103, and is provided so as to open the contact on the movable side contact 104 side of the movable conductor 103. The open pole spring 107 elastically stores the movable side contact 104 so as to separate it from the fixed side contact 105. The contact opening and closing operations, which are the contact opening and closing operations, are performed by the operation of the electromagnetic actuator 100. When driving the closing pole of the contact, the electromagnetic actuator 100 pushes the contact against the accumulating force of the opening spring 107.
 シャフト8は、電磁アクチュエータ100の軸中心を通るよう配置されている。可動導体103は、シャフト8を介して電磁アクチュエータ100に接続されている。電磁アクチュエータ100は回路遮断器110の接点間の開閉動作を操作する。電磁アクチュエータ100は、シャフト8を介して可動導体103を動かし、可動側接点104と固定側接点105との接続を制御する。 The shaft 8 is arranged so as to pass through the axis center of the electromagnetic actuator 100. The movable conductor 103 is connected to the electromagnetic actuator 100 via the shaft 8. The electromagnetic actuator 100 operates an opening / closing operation between the contacts of the circuit breaker 110. The electromagnetic actuator 100 moves the movable conductor 103 via the shaft 8 to control the connection between the movable side contact 104 and the fixed side contact 105.
 次に、図3と図4に示す電磁アクチュエータ100の構成について説明する。
 図3は図1に示す回路遮断器110の開極状態に対応し、実施の形態1に係る電磁アクチュエータ100の解磁状態を示す断面図である。図3に示す電磁アクチュエータ100の解磁状態では、可動鉄心2が初期位置に位置する状態である。
 図4は図2に示す回路遮断器110の閉極状態に対応し、実施の形態1に係る電磁アクチュエータ100の励磁動作完了状態を示す断面図である。図4に示す電磁アクチュエータ100の励磁動作完了状態では、可動鉄心2が固定鉄心3に当接した状態である。
Next, the configuration of the electromagnetic actuator 100 shown in FIGS. 3 and 4 will be described.
FIG. 3 is a cross-sectional view showing a demagnetized state of the electromagnetic actuator 100 according to the first embodiment, corresponding to the open pole state of the circuit breaker 110 shown in FIG. In the demagnetized state of the electromagnetic actuator 100 shown in FIG. 3, the movable iron core 2 is located at the initial position.
FIG. 4 is a cross-sectional view showing a completed state of the excitation operation of the electromagnetic actuator 100 according to the first embodiment, corresponding to the closed pole state of the circuit breaker 110 shown in FIG. In the excited operation completed state of the electromagnetic actuator 100 shown in FIG. 4, the movable iron core 2 is in contact with the fixed core 3.
 電磁アクチュエータ100は、電流が流れることにより軸方向の磁束を発生する筒状のコイル1と、コイル1の軸方向に配置され、コイル1の軸方向において往復動作可能な状態で設置された可動鉄心2と、可動鉄心2に囲まれており、可動鉄心2とともに移動可能なシャフト8と、コイル1を取り囲む筒状のヨークパイプ4と、コイル1の軸方向において、ヨークパイプ4の一端に配置された固定側蓋板5と、コイル1の軸方向において、ヨークパイプ4の他端に配置された可動側蓋板6と、コイル1の内周側に、固定側蓋板5から可動側蓋板6に向かう方向に配置された固定鉄心3と、コイル1の内周側に、可動側蓋板6から固定側蓋板5に向かう方向に固定鉄心3に対向するように突出する筒状のヨーク突出部7とを有する。 The electromagnetic actuator 100 has a tubular coil 1 that generates an axial magnetic flux when an electric current flows, and a movable iron core that is arranged in the axial direction of the coil 1 and is installed in a state where it can reciprocate in the axial direction of the coil 1. 2. A shaft 8 surrounded by a movable iron core 2 and movable together with the movable iron core 2, a tubular yoke pipe 4 surrounding the coil 1, and arranged at one end of the yoke pipe 4 in the axial direction of the coil 1. The fixed side lid plate 5 and the movable side lid plate 6 arranged at the other end of the yoke pipe 4 in the axial direction of the coil 1 and the movable side lid plate 5 to the movable side lid plate on the inner peripheral side of the coil 1. A fixed iron core 3 arranged in the direction toward 6 and a tubular yoke protruding from the movable side lid plate 6 toward the fixed side lid plate 5 on the inner peripheral side of the coil 1 so as to face the fixed iron core 3. It has a protruding portion 7.
 コイル1の軸方向において、ヨークパイプ4は固定側蓋板5と可動側蓋板6との間に配置されており、固定側蓋板5と可動側蓋板6とは対向するように配置されている。固定鉄心3は、コイル1の軸方向において、ヨーク突出部7およびヨーク突出部7に囲まれた可動鉄心2に対向している。
 ヨークパイプ4、固定側蓋板5、可動側蓋板6、固定鉄心3、およびヨーク突出部7の各部は、段付一体型となっており、磁性体材料で構成されている。典型的な磁性体材料として、例えば鉄である。
また、ヨークパイプ4、固定側蓋板5、可動側蓋板6、固定鉄心3、およびヨーク突出部7の各部は、コイル1を通電することにより、可動鉄心2とともに磁気回路が励磁される。
In the axial direction of the coil 1, the yoke pipe 4 is arranged between the fixed side lid plate 5 and the movable side lid plate 6, and the fixed side lid plate 5 and the movable side lid plate 6 are arranged so as to face each other. ing. The fixed iron core 3 faces the movable iron core 2 surrounded by the yoke projecting portion 7 and the yoke projecting portion 7 in the axial direction of the coil 1.
Each part of the yoke pipe 4, the fixed side lid plate 5, the movable side lid plate 6, the fixed iron core 3, and the yoke projecting portion 7 is a stepped integrated type and is made of a magnetic material. A typical magnetic material is, for example, iron.
Further, in each of the yoke pipe 4, the fixed side lid plate 5, the movable side lid plate 6, the fixed iron core 3, and the yoke protruding portion 7, a magnetic circuit is excited together with the movable iron core 2 by energizing the coil 1.
 コイル1は、ヨークパイプ4、固定側蓋板5、可動側蓋板6、固定鉄心3、およびヨーク突出部7に形成された筒状の空間に収納されている。また、コイル1は、可動鉄心2、ヨーク突出部7および固定鉄心3を囲むように筒状をなしている。 The coil 1 is housed in a cylindrical space formed in a yoke pipe 4, a fixed side lid plate 5, a movable side lid plate 6, a fixed iron core 3, and a yoke protrusion 7. Further, the coil 1 has a cylindrical shape so as to surround the movable iron core 2, the yoke protrusion 7, and the fixed iron core 3.
 可動鉄心2は、ヨーク突出部7の内周側に固定鉄心3に対向するように配置され、コイル1の軸方向において固定鉄心3に対して相対的に往復動作可能な状態で設置されている。具体的に、可動鉄心2は、コイル1に電流が流れる時に、コイル1の軸方向において、固定鉄心3へ向って移動するように駆動される。この場合、可動鉄心2は、図3に示す回路遮断器110の接点の開極状態を保持する電磁アクチュエータ100の解磁状態である初期位置から、図4に示す回路遮断器110の閉極状態を保持する電磁アクチュエータ100の励磁動作完了状態の位置である固定鉄心3に当接する位置まで移動する。
 また、コイル1の軸方向において可動鉄心2の長さはヨークパイプ4の長さの1/2より長い。初期位置では、可動鉄心2の可動鉄心端面2aは軸方向においてコイル1の中心位置より固定鉄心3側に位置する。可動鉄心2が長くなることにより、軸方向における可動鉄心2とヨーク突出部7との対向面積が大きくなる。
 磁気回路の磁気抵抗は、対向面積に対応する磁路断面積を増やすことにより低減される。可動鉄心2とヨーク突出部7との対向面積が大きくなることにより、励磁保持状態における可動鉄心2に働く吸引力をさらに向上できる。これにより、回路遮断器110の閉極状態における主接点間の保持力が向上できる。
The movable iron core 2 is arranged on the inner peripheral side of the yoke protruding portion 7 so as to face the fixed iron core 3, and is installed in a state in which the movable iron core 2 can reciprocate relative to the fixed iron core 3 in the axial direction of the coil 1. .. Specifically, the movable iron core 2 is driven so as to move toward the fixed core 3 in the axial direction of the coil 1 when a current flows through the coil 1. In this case, the movable iron core 2 is in the closed state of the circuit breaker 110 shown in FIG. 4 from the initial position which is the demagnetized state of the electromagnetic actuator 100 holding the open state of the contacts of the circuit breaker 110 shown in FIG. The electromagnetic actuator 100 moves to a position where it abuts on the fixed iron core 3, which is the position where the excitation operation is completed.
Further, the length of the movable iron core 2 in the axial direction of the coil 1 is longer than 1/2 of the length of the yoke pipe 4. In the initial position, the movable iron core end surface 2a of the movable iron core 2 is located on the fixed iron core 3 side from the center position of the coil 1 in the axial direction. As the movable iron core 2 becomes longer, the facing area between the movable iron core 2 and the yoke protrusion 7 in the axial direction becomes larger.
The reluctance of a magnetic circuit is reduced by increasing the magnetic path cross-sectional area corresponding to the facing area. By increasing the facing area between the movable iron core 2 and the yoke protruding portion 7, the attractive force acting on the movable iron core 2 in the excited holding state can be further improved. As a result, the holding force between the main contacts of the circuit breaker 110 in the closed pole state can be improved.
 シャフト8は、可動鉄心2に囲まれており、コイル1の軸方向に配置されている。シャフト8は非磁性体材料で構成されている。
 シャフト8は、コイル1の軸方向において、固定側蓋板5、固定鉄心3および可動側蓋板6を貫通している。シャフト8は固定側蓋板5を貫通する一方の端部である第1のシャフト端部8aと、可動側蓋板6を貫通する他方の端部である第2のシャフト端部8bとを有する。第1のシャフト端部8aは可動導体103まで延伸して可動導体103に連結される。第2のシャフト端部8bは、シャフト8の可動鉄心2に挿入されている部分に比べ、外径がより大きく形成されている。
 また、シャフト8上にシャフト突起部8cおよびシャフト段差部8dが形成されている。シャフト突起部8cが固定鉄心3に対向し、シャフト段差部8dはシャフト突起部8cに隣接して可動鉄心2の固定側蓋板5側の端部に位置する。シャフト突起部8cとシャフト段差部8dは、シャフト8の可動鉄心2に挿入されている部分に比べ、外径がより大きく形成されている。
The shaft 8 is surrounded by a movable iron core 2 and is arranged in the axial direction of the coil 1. The shaft 8 is made of a non-magnetic material.
The shaft 8 penetrates the fixed side lid plate 5, the fixed iron core 3, and the movable side lid plate 6 in the axial direction of the coil 1. The shaft 8 has a first shaft end portion 8a which is one end portion penetrating the fixed side lid plate 5, and a second shaft end portion 8b which is the other end portion penetrating the movable side lid plate 6. .. The first shaft end portion 8a extends to the movable conductor 103 and is connected to the movable conductor 103. The second shaft end portion 8b is formed to have a larger outer diameter than the portion inserted into the movable iron core 2 of the shaft 8.
Further, a shaft protrusion 8c and a shaft step portion 8d are formed on the shaft 8. The shaft protrusion 8c faces the fixed iron core 3, and the shaft step portion 8d is adjacent to the shaft protrusion 8c and is located at the end of the movable iron core 2 on the fixed side lid plate 5. The shaft protrusion 8c and the shaft step portion 8d are formed to have a larger outer diameter than the portion inserted into the movable iron core 2 of the shaft 8.
 可動鉄心2とシャフト8との間において、可動鉄心2の軸方向の両端には、それぞれ可動鉄心用軸受である第1の可動鉄心用軸受13と第2の可動鉄心用軸受14が配置されている。
 具体的に、可動鉄心2の固定側蓋板5側の端部位置に、シャフト8のシャフト段差部8dに第1の可動鉄心用軸受13が設けられている。可動鉄心2がシャフト8に対して移動可能に第1の可動鉄心用軸受13に支持されている。第1の可動鉄心用軸受13を非磁性部品のシャフト8に配置することにより、可動鉄心2の断面積を削ることなく構成でき、吸引力を確保できる。
 また、可動鉄心2の可動側蓋板6側の端部位置に、第2の可動鉄心用軸受14が設けられている。第2の可動鉄心用軸受14は、シャフト8に対して可動鉄心2とともに移動可能に支持している。
Between the movable iron core 2 and the shaft 8, a first movable iron core bearing 13 and a second movable iron core bearing 14, which are bearings for the movable iron core, are arranged at both ends in the axial direction of the movable iron core 2, respectively. There is.
Specifically, a first movable iron core bearing 13 is provided on the shaft stepped portion 8d of the shaft 8 at the end position of the movable iron core 2 on the fixed side lid plate 5 side. The movable iron core 2 is movably supported by the first movable iron core bearing 13 with respect to the shaft 8. By arranging the first movable iron core bearing 13 on the shaft 8 of the non-magnetic component, it can be configured without cutting the cross-sectional area of the movable iron core 2, and the suction force can be secured.
Further, a second movable iron core bearing 14 is provided at the end position of the movable iron core 2 on the movable side lid plate 6 side. The second movable iron core bearing 14 movably supports the shaft 8 together with the movable iron core 2.
 可動鉄心2とシャフト8との間に、接圧ばね9が配置されている。シャフト8と可動鉄心2とは接圧ばね9を介して連接される。接圧ばね9は、接圧ばね9は可動鉄心2に内蔵されており、軸方向において第1の可動鉄心用軸受13と第2の可動鉄心用軸受14との間に位置する。電磁アクチュエータ100のコンパクト化を図る。可動鉄心2の長さを長くすることにより、接圧ばね9の長さを長くすることが可能である。
 可動鉄心2がシャフト8に対し固定鉄心3方向へ向って移動する際に、接圧ばね9が圧着され、可動鉄心2を固定鉄心3から引き離す方向に蓄勢される。
A pressure contact spring 9 is arranged between the movable iron core 2 and the shaft 8. The shaft 8 and the movable iron core 2 are connected to each other via a pressure spring 9. The pressure contact spring 9 is built in the movable iron core 2, and is located between the first movable iron core bearing 13 and the second movable iron core bearing 14 in the axial direction. The electromagnetic actuator 100 will be made compact. By increasing the length of the movable iron core 2, it is possible to increase the length of the pressure contact spring 9.
When the movable core 2 moves with respect to the shaft 8 in the direction of the fixed core 3, the pressure contact spring 9 is crimped and the movable core 2 is stored in the direction of being separated from the fixed core 3.
 シャフト突起部8cと固定鉄心3との間に、復帰ばね10が配置されている。シャフト8と固定鉄心3とは復帰ばね10を介して連接される。復帰ばね10はシャフト8を囲み、固定鉄心3に囲まれる筒形状である。シャフト8が可動鉄心2とともに固定鉄心3方向へ向って移動する際に、復帰ばね10が圧着され、回路遮断器の接点を引き離す方向に蓄勢される。 A return spring 10 is arranged between the shaft protrusion 8c and the fixed iron core 3. The shaft 8 and the fixed iron core 3 are connected to each other via a return spring 10. The return spring 10 has a tubular shape that surrounds the shaft 8 and is surrounded by the fixed iron core 3. When the shaft 8 moves in the direction of the fixed core 3 together with the movable core 2, the return spring 10 is crimped and stored in the direction of separating the contacts of the circuit breaker.
 また、軸方向において固定側蓋板5と可動側蓋板6には、それぞれシャフト8の移動を支持するシャフト用軸受が配置されている。具体的に、固定側蓋板5の中心部に、第1のシャフト用軸受11が設けられており、可動側蓋板6の中心部に、第2のシャフト用軸受12が設けられている。第1のシャフト用軸受11は、固定側蓋板5と固定側蓋板5を貫通するシャフト8の第1のシャフト端部8aとの間に配置される。第2のシャフト用軸受12は、可動側蓋板6と可動側蓋板6を貫通するシャフト8の第2のシャフト端部8bとの間に配置される。シャフト8は、第1のシャフト用軸受11および第2のシャフト用軸受12に支持されながら、コイル1の軸方向に移動することができる。 Further, shaft bearings that support the movement of the shaft 8 are arranged on the fixed side lid plate 5 and the movable side lid plate 6 in the axial direction, respectively. Specifically, the first shaft bearing 11 is provided at the center of the fixed side lid plate 5, and the second shaft bearing 12 is provided at the center of the movable side lid plate 6. The first shaft bearing 11 is arranged between the fixed side lid plate 5 and the first shaft end portion 8a of the shaft 8 penetrating the fixed side lid plate 5. The second shaft bearing 12 is arranged between the movable side lid plate 6 and the second shaft end portion 8b of the shaft 8 penetrating the movable side lid plate 6. The shaft 8 can move in the axial direction of the coil 1 while being supported by the first shaft bearing 11 and the second shaft bearing 12.
 次に、実施の形態1に係る電磁アクチュエータ100における固定鉄心3の構造および可動鉄心2との位置関係について説明する。
 可動鉄心2および固定鉄心3は、シャフト8を囲む筒状である。可動鉄心2と固定鉄心3は、コイル1の軸方向の垂直方向において、互いに対向する可動鉄心端面2aと固定鉄心端面3aを有する。可動鉄心端面2aは、固定鉄心端面3aに対向する円環状の面であり、固定鉄心端面3aは、可動鉄心端面2aに対向する円環状の面である。
 初期位置において、可動鉄心端面2aと固定鉄心端面3aとの間に、所定の距離を有する間隙s1をもって、対向位置に配設されている。可動鉄心2が励磁されて固定鉄心3に向かって軸方向に駆動され、可動鉄心2の移動とともに間隙s1が小さくなり、励磁動作完了状態では、可動鉄心端面2aが固定鉄心端面3aと当接し、間隙s1がゼロとなる。
Next, the structure of the fixed iron core 3 and the positional relationship with the movable iron core 2 in the electromagnetic actuator 100 according to the first embodiment will be described.
The movable core 2 and the fixed core 3 have a cylindrical shape that surrounds the shaft 8. The movable iron core 2 and the fixed iron core 3 have a movable iron core end surface 2a and a fixed iron core end surface 3a that face each other in the axial direction of the coil 1. The movable iron core end surface 2a is an annular surface facing the fixed iron core end surface 3a, and the fixed iron core end surface 3a is an annular surface facing the movable iron core end surface 2a.
At the initial position, the movable iron core end surface 2a and the fixed iron core end surface 3a are arranged at opposite positions with a gap s1 having a predetermined distance. The movable iron core 2 is excited and driven in the axial direction toward the fixed iron core 3, the gap s1 becomes smaller as the movable iron core 2 moves, and when the excitation operation is completed, the movable iron core end surface 2a comes into contact with the fixed iron core end surface 3a. The gap s1 becomes zero.
 固定鉄心端面3aがコイル1の軸方向の中心よりも固定側蓋板5側に位置する。図4に示すように、可動鉄心2が励磁されて固定鉄心3に向かって軸方向に駆動され、励磁動作完了状態において、可動鉄心2の可動鉄心端面2aが固定鉄心3の固定鉄心端面3aと当接する際の面を当接面16と称す。
 当接面16の位置は固定鉄心端面3aの位置と同様であり、励磁動作完了状態での可動鉄心2と固定鉄心3との当接面16は、コイル1の軸方向の中心よりも可動鉄心2の移動方向側に位置する。すなわち、コイル1の軸方向の中心よりも固定側蓋板5側に位置する。
 これにより、当接面16と初期位置の可動鉄心端面2aとの距離を十分に得ることができる。また、可動鉄心2の軸方向における長さを長くすることが可能となり、ヨーク突出部7との対向面積を増やし、吸引力を増すことができる。
The fixed iron core end surface 3a is located closer to the fixed side lid plate 5 than the axial center of the coil 1. As shown in FIG. 4, the movable core 2 is excited and driven in the axial direction toward the fixed core 3, and in the excited operation completed state, the movable core end surface 2a of the movable core 2 becomes the fixed core end surface 3a of the fixed core 3. The surface at the time of contact is referred to as the contact surface 16.
The position of the abutting surface 16 is the same as the position of the fixed iron core end surface 3a, and the abutting surface 16 between the movable iron core 2 and the fixed iron core 3 in the excited operation completed state is a movable iron core rather than the axial center of the coil 1. It is located on the moving direction side of 2. That is, it is located on the fixed side lid plate 5 side with respect to the axial center of the coil 1.
As a result, a sufficient distance between the contact surface 16 and the movable iron core end surface 2a at the initial position can be obtained. Further, the length of the movable iron core 2 in the axial direction can be increased, the area facing the yoke protruding portion 7 can be increased, and the suction force can be increased.
 また、図3に示すように、固定鉄心3において、固定鉄心端面3aの軸方向の中心部に、シャフト8のシャフト突起部8cに対向し、シャフト突起部8cおよび復帰ばね10を収容するようにくぼんだ固定鉄心凹部3bが形成されている。固定鉄心凹部3bの内壁面に段付きされ、シャフト突起部と対向する固定鉄心段部3cが設けられている。図4に示す励磁動作完了状態では、シャフト突起部8cは、固定鉄心凹部3bに収まるように囲まれ、復帰ばね10を介して固定鉄心3に接する。 Further, as shown in FIG. 3, in the fixed iron core 3, the shaft protrusion 8c and the return spring 10 are accommodated at the axial center of the fixed iron core end surface 3a so as to face the shaft protrusion 8c of the shaft 8. A recessed fixed iron core recess 3b is formed. A fixed iron core step portion 3c is provided on the inner wall surface of the fixed iron core recess 3b and faces the shaft protrusion. In the excited operation completed state shown in FIG. 4, the shaft protrusion 8c is surrounded so as to fit in the fixed iron core recess 3b, and comes into contact with the fixed iron core 3 via the return spring 10.
 次に、実施の形態1に係る電磁アクチュエータ100におけるヨーク突出部7の構造および可動鉄心2、固定鉄心3との位置関係について説明する。
 実施の形態1に係る電磁アクチュエータ100において、ヨーク突出部7は、可動側蓋板6側に配置されたヨーク主突出部7a、およびヨーク主突出部7aから固定側蓋板5側に向かって延伸するヨーク細突出部7bを有する。ヨーク突出部7は、固定鉄心3に対向しており、ヨーク細突出部7bが固定鉄心3の方向に延伸するように配置されている。固定鉄心3に対向するヨーク突出部7の端面であるヨーク突出部先端面7cは、初期位置における可動鉄心端面2aよりも固定鉄心3よりに突出している。ヨーク突出部先端面7cと固定鉄心端面3aとの間に、所定の距離を有する間隙g1をもって、対向位置に配設されている。間隙g1は、初期位置における可動鉄心端面2aと固定鉄心端面3aとの間の間隙s1よりも小さい。
Next, the structure of the yoke protrusion 7 and the positional relationship between the movable iron core 2 and the fixed iron core 3 in the electromagnetic actuator 100 according to the first embodiment will be described.
In the electromagnetic actuator 100 according to the first embodiment, the yoke protrusion 7 extends from the yoke main protrusion 7a arranged on the movable side lid plate 6 side and the yoke main protrusion 7a toward the fixed side lid plate 5. It has a yoke thin protrusion 7b to be formed. The yoke protruding portion 7 faces the fixed iron core 3, and the yoke thin protruding portion 7b is arranged so as to extend in the direction of the fixed iron core 3. The yoke protrusion tip surface 7c, which is the end surface of the yoke protrusion 7 facing the fixed iron core 3, protrudes from the fixed iron core 3 from the movable iron core end surface 2a at the initial position. A gap g1 having a predetermined distance is provided between the tip surface 7c of the yoke protrusion and the end surface 3a of the fixed iron core at opposite positions. The gap g1 is smaller than the gap s1 between the movable iron core end surface 2a and the fixed iron core end surface 3a at the initial position.
 ヨーク主突出部7aの内径とヨーク細突出部7bの内径とは同じ大きさであり、ヨーク主突出部7aの外径はヨーク細突出部7bの外径よりも大きい。ヨーク主突出部7aとヨーク細突出部7bとは、一体に形成されていてもよいし、別部品で構成されてもよい。ヨーク主突出部7aとヨーク細突出部7bとは、ともにヨーク突出部7の内壁面であるヨーク突出部内壁面7dを有する。ヨーク主突出部7aとヨーク細突出部7bの外径差とヨーク細突出部7bの幅などのヨーク突出部7の構成を調整することにより、可動鉄心2に加える吸引力の特性を調整することができる。
 ヨーク突出部7は、可動鉄心2を囲むように、ヨーク突出部内壁面7dが可動鉄心2の外壁面である可動鉄心外壁面2bに対向している。ヨーク突出部7は、ヨーク主突出部7aから延伸するヨーク細突出部7bを有し、可動鉄心2の長さを長くすることにより、可動鉄心2とヨーク突出部7との対向面積が大きくなる。すなわち、可動鉄心外壁面2bとヨーク突出部内壁面7dとの対向面積が大きくなることである。
The inner diameter of the yoke main protrusion 7a and the inner diameter of the yoke fine protrusion 7b are the same size, and the outer diameter of the yoke main protrusion 7a is larger than the outer diameter of the yoke fine protrusion 7b. The yoke main protrusion 7a and the yoke fine protrusion 7b may be integrally formed or may be composed of separate parts. Both the yoke main protrusion 7a and the yoke fine protrusion 7b have a yoke protrusion inner wall surface 7d which is an inner wall surface of the yoke protrusion 7. Adjusting the characteristics of the suction force applied to the movable iron core 2 by adjusting the configuration of the yoke protrusion 7 such as the difference in outer diameter between the yoke main protrusion 7a and the yoke fine protrusion 7b and the width of the yoke fine protrusion 7b. Can be done.
In the yoke projecting portion 7, the inner wall surface 7d of the yoke projecting portion faces the outer wall surface 2b of the movable iron core, which is the outer wall surface of the movable iron core 2, so as to surround the movable iron core 2. The yoke projecting portion 7 has a yoke thin projecting portion 7b extending from the yoke main projecting portion 7a, and by increasing the length of the movable iron core 2, the facing area between the movable iron core 2 and the yoke projecting portion 7 becomes large. .. That is, the facing area between the outer wall surface 2b of the movable iron core and the inner wall surface 7d of the yoke projecting portion is increased.
 次に、電磁アクチュエータ100の動作について説明する。
 コイル1の通電により、可動鉄心2、固定鉄心3、固定側蓋板5、ヨークパイプ4、可動側蓋板6、およびヨーク突出部7からなる磁気回路が励磁され、可動鉄心2に磁気吸引力が働き、可動鉄心2は固定鉄心3の方向に駆動される。図3に示す可動鉄心2が初期位置から、図4に示す励磁動作完了状態である可動鉄心2が固定鉄心3に当接した位置まで駆動される。回路遮断器110は図1に示す開極状態から図2に示す閉極状態になる。
Next, the operation of the electromagnetic actuator 100 will be described.
By energizing the coil 1, a magnetic circuit including a movable iron core 2, a fixed iron core 3, a fixed side lid plate 5, a yoke pipe 4, a movable side lid plate 6, and a yoke protruding portion 7 is excited, and a magnetic attraction force is applied to the movable iron core 2. Works, and the movable core 2 is driven in the direction of the fixed core 3. The movable iron core 2 shown in FIG. 3 is driven from the initial position to the position where the movable iron core 2 in the excitation operation completed state shown in FIG. 4 is in contact with the fixed core 3. The circuit breaker 110 changes from the open pole state shown in FIG. 1 to the closed pole state shown in FIG.
 可動鉄心2が固定鉄心3側の方向に移動することに伴い、可動鉄心2とシャフト8とを連接する接圧ばね9が移動する可動鉄心2に押さえられ、シャフト8は可動鉄心2とともに可動側蓋板6側から固定側蓋板5側へ向って移動する。シャフト8に連接された可動導体103は、可動側接点104と固定側接点105とを接触させるように図1において紙面の左方向に移動する。シャフト突起部8cと固定鉄心3との間の復帰ばね10が圧着されて蓄勢する。可動側接点104と固定側接点105とが接触するとシャフト8は停止する。シャフト8の移動が停止した後、可動鉄心2は磁気吸引力により、シャフト8に対してさらに固定鉄心3に向かう方向に駆動される。この後、可動鉄心2の可動鉄心端面2aと固定鉄心3の固定鉄心端面3aとが当接して励磁動作が完了し、回路遮断器が閉極状態になる。  As the movable core 2 moves in the direction toward the fixed core 3, the pressure spring 9 that connects the movable core 2 and the shaft 8 is pressed by the moving movable core 2, and the shaft 8 is pressed together with the movable core 2 on the movable side. It moves from the lid plate 6 side toward the fixed side lid plate 5. The movable conductor 103 connected to the shaft 8 moves to the left of the paper surface in FIG. 1 so as to bring the movable side contact 104 and the fixed side contact 105 into contact with each other. The return spring 10 between the shaft protrusion 8c and the fixed iron core 3 is crimped to store energy. When the movable side contact 104 and the fixed side contact 105 come into contact with each other, the shaft 8 stops. After the movement of the shaft 8 is stopped, the movable iron core 2 is further driven in the direction toward the fixed core 3 with respect to the shaft 8 by the magnetic attraction force. After that, the movable iron core end surface 2a of the movable iron core 2 and the fixed iron core end surface 3a of the fixed iron core 3 come into contact with each other to complete the exciting operation, and the circuit breaker is closed. Twice
 可動側接点104と固定側接点105とを接触させることによりシャフト8の移動が停止した後、可動鉄心2がシャフト8に対して移動することにより、シャフト8を介して、可動側接点104と固定側接点105とにさらに接触圧力を与える。これにより、電磁アクチュエータ自体の操作動作により閉極時のワイプ量を維持できる。 After the movement of the shaft 8 is stopped by bringing the movable side contact 104 and the fixed side contact 105 into contact with each other, the movable iron core 2 moves with respect to the shaft 8 and is fixed to the movable side contact 104 via the shaft 8. Further contact pressure is applied to the side contact 105. As a result, the wipe amount at the time of closing can be maintained by the operation operation of the electromagnetic actuator itself.
 図4に示すように、可動鉄心2が固定鉄心3に当接して励磁動作完了状態では、復帰ばね10が圧着され、シャフト8が復帰ばね10を介して固定鉄心3に当接する。この時、シャフト突起部8cは、固定鉄心凹部3bに収まるように囲まれ、固定鉄心凹部3b内の固定鉄心段部3cとの間に完全に当接せず、間隙16aがある状態となる。
 シャフト突起部8cと固定鉄心段部3cとの間に間隙16aがあるため、可動鉄心2がシャフト8を介して、接点間に接触圧力を与えることができる。
 また、励磁動作完了状態では、シャフト突起部8cは、接圧ばね9の蓄勢力を残した状態で復帰ばね10を介して固定鉄心段部3cに接する。間隙16aがあるため、磁気回路が解磁される時に、接圧ばね9の蓄勢力を逃がすことができる。電磁アクチュエータでは、可動鉄心と固定鉄心の間に、残留磁場の影響で吸引力が働くことがあり、接圧ばね9の蓄勢力を利用して可動鉄心2を固定鉄心3から引き離すことができる。接圧ばね9の蓄勢力を利用できるため、固定鉄心3側に設けられた復帰ばね10のサイズを小さくでき、復帰ばね10の小型化が図れる。
As shown in FIG. 4, when the movable core 2 is in contact with the fixed core 3 and the excitation operation is completed, the return spring 10 is crimped and the shaft 8 is in contact with the fixed core 3 via the return spring 10. At this time, the shaft protrusion 8c is surrounded so as to fit in the fixed iron core recess 3b, does not completely abut with the fixed iron core step portion 3c in the fixed iron core recess 3b, and has a gap 16a.
Since there is a gap 16a between the shaft protrusion 8c and the fixed iron core step portion 3c, the movable iron core 2 can apply contact pressure between the contacts via the shaft 8.
Further, in the excited operation completed state, the shaft protrusion 8c comes into contact with the fixed iron core step portion 3c via the return spring 10 in a state where the accumulating force of the pressure contact spring 9 remains. Since there is a gap 16a, the accumulating force of the pressure contact spring 9 can be released when the magnetic circuit is demagnetized. In the electromagnetic actuator, an attractive force may act between the movable core and the fixed core due to the influence of the residual magnetic field, and the movable core 2 can be separated from the fixed core 3 by utilizing the accumulating force of the pressure contact spring 9. .. Since the accumulating force of the pressure contact spring 9 can be utilized, the size of the return spring 10 provided on the fixed iron core 3 side can be reduced, and the return spring 10 can be miniaturized.
 コイル1の通電停止により磁気回路が解磁されると、磁気吸引力が無くなり、接圧ばね9が延びて可動鉄心2は固定鉄心3が配置されている方向とは反対の方向に移動する。第2のシャフト端部8bが可動鉄心2に当てられ、シャフト8が可動鉄心とともに移動する。復帰ばね10が延びてシャフト8に連接された可動導体103が可動側接点104と固定側接点105とを引き離させるように図1において紙面の右方向に移動し、開極ばね107の蓄勢力とともに接点が完全に引き離される。可動鉄心2が初期位置に戻る。これにより、電磁アクチュエータ100が解磁状態になり、回路遮断器110は、図1に示す開極状態になる。 When the magnetic circuit is demagnetized by stopping the energization of the coil 1, the magnetic attraction force disappears, the pressure spring 9 extends, and the movable iron core 2 moves in the direction opposite to the direction in which the fixed iron core 3 is arranged. The second shaft end 8b is applied to the movable iron core 2, and the shaft 8 moves together with the movable iron core. The movable conductor 103 in which the return spring 10 extends and is connected to the shaft 8 moves to the right of the paper surface in FIG. 1 so as to separate the movable side contact 104 and the fixed side contact 105, and the accumulating force of the opening pole spring 107. At the same time, the contacts are completely separated. The movable iron core 2 returns to the initial position. As a result, the electromagnetic actuator 100 is in the demagnetized state, and the circuit breaker 110 is in the open pole state shown in FIG.
 図5は、実施の形態1に係る電磁アクチュエータ100の可動鉄心2の初期位置における磁気回路を示す図である。
 図5に示すように、初期位置において、ヨーク突出部先端面7cと固定鉄心端面3aとの間の間隙g1は、可動鉄心端面2aと固定鉄心端面3aとの間の間隙s1よりも小さい。このため、コイル1に通電することにより発生した磁気回路における軸方向の磁束24は、可動鉄心2を通る磁束24aと、ヨーク突出部7を通る磁束24bとを有する。軸方向の磁束24の一部はヨーク突出部7のヨーク主突出部7aからヨーク細突出部7bを通って固定鉄心3に流れ、可動鉄心2に流れる磁束が小さくなる。可動鉄心2の可動鉄心端面2aの位置がヨーク突出部先端面7cを越えるまでは可動鉄心2に加わる駆動力が低減され、電磁アクチュエータ100の励磁動作の低速化が可能である。これにより、回路遮断器110の接点の低速投入が可能である。
FIG. 5 is a diagram showing a magnetic circuit at an initial position of a movable iron core 2 of the electromagnetic actuator 100 according to the first embodiment.
As shown in FIG. 5, at the initial position, the gap g1 between the yoke protrusion tip surface 7c and the fixed iron core end surface 3a is smaller than the gap s1 between the movable iron core end surface 2a and the fixed iron core end surface 3a. Therefore, the magnetic flux 24 in the axial direction in the magnetic circuit generated by energizing the coil 1 has a magnetic flux 24a passing through the movable iron core 2 and a magnetic flux 24b passing through the yoke protrusion 7. A part of the magnetic flux 24 in the axial direction flows from the yoke main protrusion 7a of the yoke protrusion 7 through the yoke fine protrusion 7b to the fixed iron core 3, and the magnetic flux flowing to the movable iron core 2 becomes smaller. Until the position of the movable iron core end surface 2a of the movable iron core 2 exceeds the yoke protrusion tip surface 7c, the driving force applied to the movable iron core 2 is reduced, and the exciting operation of the electromagnetic actuator 100 can be slowed down. As a result, the contacts of the circuit breaker 110 can be turned on at low speed.
 また、可動鉄心2の固定鉄心3へ向かって移動し、可動鉄心2が可動側蓋板6から離れることにより、磁束はヨーク突出部7から可動鉄心2と固定鉄心3を通ることとなる。可動鉄心2の移動とともに可動鉄心端面2aと固定鉄心端面3aとの間の間隙s1が小さくなる。可動鉄心2の可動鉄心端面2aの位置がヨーク突出部先端面7cを越えると、ヨーク突出部先端面7cと固定鉄心端面3aとの間の間隙g1は、可動鉄心端面2aと固定鉄心端面3aとの間の間隙s1よりも大きくなるので、軸方向の磁束のほぼ全てがヨーク突出部7から可動鉄心2を通ることになる。励磁動作完了した保持状態において、軸方向の磁束のほぼ全てが可動鉄心2を通ることになる。このため、可動鉄心2の可動鉄心端面2aがヨーク突出部7のヨーク突出部先端面7cを越えた後は、可動鉄心2に加わる駆動力は大きくなり、励磁保持状態の吸引力を向上できる。 Further, when the movable iron core 2 moves toward the fixed core 3 and the movable iron core 2 is separated from the movable side lid plate 6, the magnetic flux passes through the movable iron core 2 and the fixed iron core 3 from the yoke protrusion 7. As the movable iron core 2 moves, the gap s1 between the movable iron core end surface 2a and the fixed iron core end surface 3a becomes smaller. When the position of the movable iron core end surface 2a of the movable iron core 2 exceeds the yoke protrusion tip surface 7c, the gap g1 between the yoke protrusion tip surface 7c and the fixed iron core end surface 3a becomes the movable iron core end surface 2a and the fixed iron core end surface 3a. Since it is larger than the gap s1 between them, almost all of the magnetic flux in the axial direction passes through the movable iron core 2 from the yoke protrusion 7. In the holding state where the excitation operation is completed, almost all of the magnetic flux in the axial direction passes through the movable iron core 2. Therefore, after the movable iron core end surface 2a of the movable iron core 2 exceeds the yoke protruding portion tip end surface 7c of the yoke protruding portion 7, the driving force applied to the movable iron core 2 becomes large, and the attractive force in the excited holding state can be improved.
 また、上述したように、可動鉄心2と固定鉄心3との当接面16は、コイル1の軸方向の中心よりも可動鉄心2の移動方向側に位置し、かつ、可動鉄心2の長さを長くし、ヨーク突出部7のヨーク細突出部7bは固定鉄心3の方向に延伸することにより、軸方向の垂直方向におけるヨーク突出部7と可動鉄心2との対向面積が大きくなり、励磁保持状態の吸引力をさらに向上できる。 Further, as described above, the contact surface 16 between the movable core 2 and the fixed core 3 is located on the moving direction side of the movable core 2 with respect to the axial center of the coil 1, and is the length of the movable core 2. By extending the yoke thin protrusion 7b of the yoke protrusion 7 in the direction of the fixed iron core 3, the facing area between the yoke protrusion 7 and the movable iron core 2 in the vertical direction in the axial direction becomes large, and excitation is maintained. The suction power of the state can be further improved.
 実施の形態1に係る電磁アクチュエータによれば、可動側接点と固定側接点とを接触させることによりシャフトの移動が停止した後、可動鉄心がシャフトに対して固定鉄心へ移動でき、電磁アクチュエータ自体の操作動作により回路遮断器の閉極時のワイプ量を維持できる。
 実施の形態1に係る電磁アクチュエータを用いた回路遮断器によれば、電磁アクチュエータと別にワイプ量を維持する機構を設ける必要がないため、回路遮断器の小型化を図ることができる。
According to the electromagnetic actuator according to the first embodiment, after the movement of the shaft is stopped by bringing the movable side contact and the fixed side contact into contact with each other, the movable iron core can move to the fixed core with respect to the shaft, and the electromagnetic actuator itself The wipe amount when the circuit breaker is closed can be maintained by the operation operation.
According to the circuit breaker using the electromagnetic actuator according to the first embodiment, it is not necessary to provide a mechanism for maintaining the wipe amount separately from the electromagnetic actuator, so that the circuit breaker can be miniaturized.
 また、実施の形態1に係る電磁アクチュエータによれば、可動鉄心と固定鉄心との当接面がコイルの軸方向においてコイルの中心位置よりも可動鉄心の移動方向側に位置することにより、当接面と初期位置との距離を確保できる。可動鉄心の軸方向における長さが長くしても、初期位置において可動鉄心が可動側蓋板よりも外側へ突出することなく構成できるので、電磁アクチュエータの外形寸法の小型化が可能である。これに伴い、この電磁アクチュエータを用いる回路遮断器の小型化を図ることができる。 Further, according to the electromagnetic actuator according to the first embodiment, the contact surface between the movable iron core and the fixed iron core is located on the moving direction side of the movable iron core with respect to the center position of the coil in the axial direction of the coil. The distance between the surface and the initial position can be secured. Even if the length of the movable iron core in the axial direction is long, the movable iron core can be configured without protruding outward from the movable side lid plate at the initial position, so that the external dimensions of the electromagnetic actuator can be miniaturized. Along with this, it is possible to reduce the size of the circuit breaker using this electromagnetic actuator.
 さらに、実施の形態1に係る電磁アクチュエータによれば、ヨーク突出部にヨーク細突出部が設けられた構成により、励磁動作の低速化、および励磁保持状態における吸引力を向上する効果がある。これに伴い、この電磁アクチュエータを用いる回路遮断器の接点の低速投入および閉極状態における接点間の保持力が向上できる。 Further, according to the electromagnetic actuator according to the first embodiment, the configuration in which the yoke fine protrusion is provided on the yoke protrusion has the effect of slowing down the excitation operation and improving the attractive force in the excitation holding state. Along with this, it is possible to improve the holding force between the contacts of the circuit breaker using this electromagnetic actuator at low speed and in the closed pole state.
実施の形態2.
 図6、7は本開示の実施の形態2に係る電磁アクチュエータ200の断面図である。
 図6は、図1に示す回路遮断器の開極状態に対応する実施の形態2に係る電磁アクチュエータ200の解磁状態を示す断面図である。図6に示す電磁アクチュエータ200の解磁状態では、可動鉄心2が初期位置にある状態を示す断面図である。
 図7は、図2に示す回路遮断器の閉極状態に対応する実施の形態2に係る電磁アクチュエータ200の励磁動作完了状態を示す断面図である。図7に示す電磁アクチュエータ200の励磁動作完了状態では、可動鉄心2が固定鉄心3に当接した状態である。
 電磁アクチュエータ200は、図1、図2に示す電磁アクチュエータ100と同様に、回路遮断器の可動接点の閉磁方向へ付勢を担い、接点間の開閉動作の操作に用いられる。
Embodiment 2.
6 and 7 are cross-sectional views of the electromagnetic actuator 200 according to the second embodiment of the present disclosure.
FIG. 6 is a cross-sectional view showing a demagnetized state of the electromagnetic actuator 200 according to the second embodiment corresponding to the open pole state of the circuit breaker shown in FIG. FIG. 6 is a cross-sectional view showing a state in which the movable iron core 2 is in the initial position in the demagnetized state of the electromagnetic actuator 200 shown in FIG.
FIG. 7 is a cross-sectional view showing a completed state of excitation operation of the electromagnetic actuator 200 according to the second embodiment corresponding to the closed pole state of the circuit breaker shown in FIG. In the excited operation completed state of the electromagnetic actuator 200 shown in FIG. 7, the movable iron core 2 is in contact with the fixed core 3.
Similar to the electromagnetic actuator 100 shown in FIGS. 1 and 2, the electromagnetic actuator 200 urges the movable contacts of the circuit breaker in the closing direction, and is used for operating the opening / closing operation between the contacts.
 実施の形態2では、本開示の実施の形態1と同一の構成要素には同一の符号を使用し、同一または対応する部分についての説明は省略する。以下、図面を参照して、実施の形態2に係る電磁アクチュエータ200が、実施の形態1と異なる点について説明する。 In the second embodiment, the same reference numerals are used for the same components as those in the first embodiment of the present disclosure, and the description of the same or corresponding parts will be omitted. Hereinafter, the difference between the electromagnetic actuator 200 according to the second embodiment and the first embodiment will be described with reference to the drawings.
 図6、7に示すように、電磁アクチュエータ200は、電流が流れることにより軸方向の磁束を発生する筒状のコイル1と、コイル1の軸方向に配置され、コイル1の軸方向において往復動作可能な状態で設置された可動鉄心2と、可動鉄心2に囲まれており、可動鉄心2とともに移動可能なシャフト8と、コイル1を取り囲む筒状のヨークパイプ4と、コイル1の軸方向において、ヨークパイプの一端に配置された固定側蓋板5と、コイル1の軸方向において、ヨークパイプ4の他端に配置された可動側蓋板6と、コイル1の内周側に、固定側蓋板5から可動側蓋板6に向かう方向に配置された固定鉄心23と、コイル1の内周側に、可動側蓋板6から固定側蓋板5に向かう方向に固定鉄心23に対向するように突出する筒状のヨーク突出部27とを有する。 As shown in FIGS. 6 and 7, the electromagnetic actuator 200 is arranged in the axial direction of the coil 1 and the tubular coil 1 that generates an axial magnetic flux due to the flow of an electric current, and reciprocates in the axial direction of the coil 1. In the axial direction of the movable iron core 2 installed in a possible state, the shaft 8 which is surrounded by the movable iron core 2 and can move together with the movable iron core 2, the tubular yoke pipe 4 surrounding the coil 1, and the coil 1. , The fixed side lid plate 5 arranged at one end of the yoke pipe, the movable side lid plate 6 arranged at the other end of the yoke pipe 4 in the axial direction of the coil 1, and the fixed side on the inner peripheral side of the coil 1. The fixed iron core 23 arranged in the direction from the lid plate 5 toward the movable side lid plate 6 and the inner peripheral side of the coil 1 face the fixed iron core 23 in the direction from the movable side lid plate 6 toward the fixed side lid plate 5. It has a tubular yoke projecting portion 27 that projects so as to.
ヨークパイプ4、固定側蓋板5、可動側蓋板6、固定鉄心23、およびヨーク突出部27の各部は、段付一体型となっており、磁性体材料で構成されている。典型的な磁性体材料として、例えば鉄である。
また、ヨークパイプ4、固定側蓋板5、可動側蓋板6、固定鉄心23、およびヨーク突出部27の各部は、コイル1を通電することにより、可動鉄心2とともに磁気回路が励磁される。
Each part of the yoke pipe 4, the fixed side lid plate 5, the movable side lid plate 6, the fixed iron core 23, and the yoke projecting portion 27 is a stepped integrated type and is made of a magnetic material. A typical magnetic material is, for example, iron.
Further, in each of the yoke pipe 4, the fixed side lid plate 5, the movable side lid plate 6, the fixed iron core 23, and the yoke protruding portion 27, a magnetic circuit is excited together with the movable iron core 2 by energizing the coil 1.
 実施の形態2では、固定鉄心23とヨーク突出部27の構成が実施の形態1の固定鉄心3とヨーク突出部7の構成と異なる。実施の形態2に係る電磁アクチュエータ200において、固定鉄心23とヨーク突出部27以外の構成は実施の形態1と同様である。それぞれ同様な効果を奏する。 In the second embodiment, the configuration of the fixed iron core 23 and the yoke protrusion 27 is different from the configuration of the fixed iron core 3 and the yoke protrusion 7 of the first embodiment. In the electromagnetic actuator 200 according to the second embodiment, the configurations other than the fixed iron core 23 and the yoke protrusion 27 are the same as those in the first embodiment. Each has the same effect.
 次に、実施の形態1に係る電磁アクチュエータ200におけるヨーク突出部27の構造および可動鉄心2との位置関係について説明する。
 ヨーク突出部27は、初期位置における可動鉄心2の一部を取り囲むように可動側蓋板6から固定側蓋板5に向かう方向に突出しており、ヨーク突出部27の外径と内径とも同様である。ヨーク突出部27は固定鉄心23に対向する円環状の端面であるヨーク突出部先端面27aと、可動鉄心2の外壁面である可動鉄心外壁面2bに対向するヨーク突出部内壁面27bを有する。
Next, the structure of the yoke protrusion 27 and the positional relationship with the movable iron core 2 in the electromagnetic actuator 200 according to the first embodiment will be described.
The yoke projecting portion 27 projects in the direction from the movable side lid plate 6 toward the fixed side lid plate 5 so as to surround a part of the movable iron core 2 at the initial position, and the outer diameter and inner diameter of the yoke projecting portion 27 are the same. be. The yoke protrusion 27 has a yoke protrusion tip surface 27a, which is an annular end surface facing the fixed iron core 23, and a yoke protrusion inner wall surface 27b facing the movable iron core outer wall surface 2b, which is the outer wall surface of the movable iron core 2.
 次に、実施の形態1に係る電磁アクチュエータ200における固定鉄心23の構造および可動鉄心2、ヨーク突出部27との位置関係について説明する。
 固定鉄心23は、固定側蓋板5側に配置された固定鉄心基部23a、および固定鉄心基部23aから可動側蓋板6に向かう方向に延伸する固定鉄心細突出部23bを有する。固定鉄心基部23aと固定鉄心細突出部23bとは、一体に形成されていてもよいし、別部品で構成されてもよい。
Next, the structure of the fixed iron core 23 and the positional relationship between the movable iron core 2 and the yoke protrusion 27 in the electromagnetic actuator 200 according to the first embodiment will be described.
The fixed iron core 23 has a fixed iron core base portion 23a arranged on the fixed side lid plate 5 side, and a fixed iron core fine protrusion 23b extending in a direction extending from the fixed iron core base portion 23a toward the movable side lid plate 6. The fixed iron core base portion 23a and the fixed iron core fine protrusion portion 23b may be integrally formed or may be composed of separate parts.
 固定鉄心基部23aは可動鉄心2および可動鉄心2を囲むヨーク突出部27に対向するように配置されている。固定鉄心基部23aは可動鉄心2に対向する端面である固定鉄心端面23cを有する。固定鉄心端面23cは、可動鉄心端面2aに対向する円環状の面であり、コイル1の軸方向の中心よりも固定側蓋板5側に位置する。
 初期位置において、可動鉄心端面2aと固定鉄心端面23cとの間に、所定の距離を有する間隙s2をもって、対向位置に配設されている。可動鉄心2が励磁されて固定鉄心23に向かって軸方向に駆動され、可動鉄心2の移動とともに間隙s2が小さくなり、励磁動作完了状態では、可動鉄心端面2aが固定鉄心端面23cと当接し、間隙s2がゼロとなる。
The fixed iron core base 23a is arranged so as to face the movable iron core 2 and the yoke projecting portion 27 surrounding the movable iron core 2. The fixed iron core base 23a has a fixed iron core end surface 23c which is an end surface facing the movable iron core 2. The fixed iron core end surface 23c is an annular surface facing the movable iron core end surface 2a, and is located closer to the fixed side lid plate 5 than the axial center of the coil 1.
At the initial position, the movable iron core end surface 2a and the fixed iron core end surface 23c are arranged at opposite positions with a gap s2 having a predetermined distance. The movable iron core 2 is excited and driven in the axial direction toward the fixed iron core 23, the gap s2 becomes smaller as the movable iron core 2 moves, and when the excitation operation is completed, the movable iron core end surface 2a comes into contact with the fixed iron core end surface 23c. The gap s2 becomes zero.
 図7に示すように、励磁動作完了状態において、可動鉄心2の可動鉄心端面2aが固定鉄心23の固定鉄心端面23cと当接する際の面を当接面26と称す。当接面26位置は、固定鉄心端面23cの位置と同様であり、コイル1の軸方向においてコイル1の中心位置よりも可動鉄心2の移動方向側に位置する。すなわち、コイル1の軸方向の中心よりも固定側蓋板5側に位置する。
 これにより、当接面26と初期位置の可動鉄心端面2aとの距離を十分に得ることができる。
As shown in FIG. 7, the surface at which the movable iron core end surface 2a of the movable iron core 2 comes into contact with the fixed iron core end surface 23c of the fixed iron core 23 in the excited operation completed state is referred to as an abutting surface 26. The position of the abutting surface 26 is the same as the position of the fixed iron core end surface 23c, and is located on the moving direction side of the movable iron core 2 with respect to the center position of the coil 1 in the axial direction of the coil 1. That is, it is located on the fixed side lid plate 5 side with respect to the axial center of the coil 1.
As a result, a sufficient distance between the contact surface 26 and the movable iron core end surface 2a at the initial position can be obtained.
 また、図6に示すように、固定鉄心基部23aにおいて、固定鉄心端面23cの軸方向の中心部に、シャフト8のシャフト突起部8cに対向し、シャフト突起部8cおよび復帰ばね10を収容するようにくぼんだ固定鉄心凹部23fが形成されている。固定鉄心凹部23fの内壁面に段付きされ、シャフト突起部と対向する固定鉄心段部23gが設けられている。図7に示す励磁動作完了状態では、シャフト突起部8cは、固定鉄心段部23gに収まるように囲まれる。 Further, as shown in FIG. 6, in the fixed iron core base 23a, the shaft protrusion 8c and the return spring 10 are accommodated at the axial center of the fixed iron core end surface 23c so as to face the shaft protrusion 8c of the shaft 8. A recessed fixed iron core recess 23f is formed. A fixed iron core step portion 23g which is stepped on the inner wall surface of the fixed iron core recess 23f and faces the shaft protrusion portion is provided. In the excited operation completed state shown in FIG. 7, the shaft protrusion 8c is surrounded so as to fit in the fixed iron core step portion 23g.
 固定鉄心細突出部23bは可動鉄心2の方向に延伸し、可動鉄心2の固定鉄心基部23aへ移動する方向の先端部分である可動鉄心先端部2cを囲むように、筒状に呈している。固定鉄心細突出部23bは、ヨーク突出部27に対向する円環状の端面である固定鉄心先端面23dと、可動鉄心外壁面2bに対向する内壁面である固定鉄心内壁面23eを有する。初期位置では、可動鉄心2は軸方向において、可動鉄心先端部2cが固定鉄心細突出部23bに囲まれており、可動鉄心先端部2c以外の可動側蓋板6側の部分がヨーク突出部27に囲まれている。 The fixed iron core thin protrusion 23b extends in the direction of the movable iron core 2 and is presented in a cylindrical shape so as to surround the movable iron core tip portion 2c which is the tip portion in the direction of moving to the fixed iron core base 23a of the movable iron core 2. The fixed iron core thin projecting portion 23b has a fixed iron core tip surface 23d which is an annular end surface facing the yoke projecting portion 27, and a fixed iron core inner wall surface 23e which is an inner wall surface facing the movable iron core outer wall surface 2b. In the initial position, in the axial direction of the movable iron core 2, the movable iron core tip portion 2c is surrounded by the fixed core thin protrusion portion 23b, and the portion on the movable side lid plate 6 side other than the movable iron core tip portion 2c is the yoke protrusion portion 27. Surrounded by.
 固定鉄心先端面23dが、初期位置における可動鉄心端面2aの位置よりもヨーク突出部27よりに突出している。ヨーク突出部先端面27aと固定鉄心先端面23dとの間に、所定の距離を有する間隙g2をもって、対向位置に配設されている。間隙g2は、初期位置における間隙s2よりも小さい。 The fixed iron core tip surface 23d protrudes from the yoke protrusion 27 from the position of the movable iron core end surface 2a at the initial position. A gap g2 having a predetermined distance is provided between the tip surface 27a of the yoke protrusion and the tip surface 23d of the fixed iron core at opposite positions. The gap g2 is smaller than the gap s2 at the initial position.
 次に、電磁アクチュエータ200の動作について説明する。
 コイル1の通電により、可動鉄心2、固定鉄心23、固定側蓋板5、ヨークパイプ4、可動側蓋板6、およびヨーク突出部27からなる磁気回路が励磁され、可動鉄心2に磁気吸引力が働き、可動鉄心2は固定鉄心23の方向に駆動される。図6に示す可動鉄心2が初期位置から、図7に示す励磁動作完了状態である可動鉄心2が固定鉄心23に当接した位置まで駆動される。回路遮断器110は図1に示す開極状態から図2に示す閉極状態になる。
Next, the operation of the electromagnetic actuator 200 will be described.
By energizing the coil 1, a magnetic circuit including a movable iron core 2, a fixed iron core 23, a fixed side lid plate 5, a yoke pipe 4, a movable side lid plate 6, and a yoke projecting portion 27 is excited, and a magnetic attraction force is applied to the movable iron core 2. Is working, and the movable core 2 is driven in the direction of the fixed core 23. The movable iron core 2 shown in FIG. 6 is driven from the initial position to the position where the movable iron core 2 in the excitation operation completed state shown in FIG. 7 is in contact with the fixed iron core 23. The circuit breaker 110 changes from the open pole state shown in FIG. 1 to the closed pole state shown in FIG.
 可動鉄心2が固定鉄心23側の方向に移動することに伴い、可動鉄心2とシャフト8とを連接する接圧ばね9が移動する可動鉄心2に押さえられ、シャフト8は可動鉄心2とともに可動側蓋板6側から固定側蓋板5側へ向って軸方向に移動する。シャフト8に連接された可動導体を介して、回路遮断器の接点が接触する。接点が接触するとシャフト8は停止する。シャフト8の移動が停止した後、可動鉄心2は磁気吸引力により、シャフト8に対してさらに固定鉄心23に当接する位置まで移動するように駆動される。この後、可動鉄心2の可動鉄心端面2aと固定鉄心23の固定鉄心端面23cとが当接して励磁動作が完了し、回路遮断器が閉極状態になる。 As the movable core 2 moves in the direction toward the fixed core 23, the pressure spring 9 that connects the movable core 2 and the shaft 8 is pressed by the moving movable core 2, and the shaft 8 is pressed together with the movable core 2 on the movable side. It moves in the axial direction from the lid plate 6 side toward the fixed side lid plate 5. The contacts of the circuit breaker come into contact with each other via a movable conductor connected to the shaft 8. When the contacts come into contact, the shaft 8 stops. After the movement of the shaft 8 is stopped, the movable iron core 2 is driven by a magnetic attraction so as to move to a position where the shaft 8 is further in contact with the fixed iron core 23. After that, the movable iron core end surface 2a of the movable iron core 2 and the fixed iron core end surface 23c of the fixed iron core 23 come into contact with each other to complete the exciting operation, and the circuit breaker is closed.
 回路遮断器の接点を接触させることによりシャフト8の移動が停止した後、可動鉄心2がシャフト8に対して移動することにより、シャフト8を介して、回路遮断器の接点にさらに接触圧力を与えることができる。これにより、電磁アクチュエータ自体の操作動作により閉極時のワイプ量を維持できる。 After the movement of the shaft 8 is stopped by contacting the contacts of the circuit breaker, the movable iron core 2 moves with respect to the shaft 8 to further apply contact pressure to the contacts of the circuit breaker via the shaft 8. be able to. As a result, the wipe amount at the time of closing can be maintained by the operation operation of the electromagnetic actuator itself.
 図7に示すように、可動鉄心2が固定鉄心23に当接して励磁動作完了状態では、復帰ばね10が圧着され、シャフト8が復帰ばね10を介して固定鉄心23に当接する。この時、シャフト突起部8cは、固定鉄心凹部23fに収まるように囲まれ、固定鉄心凹部23f内の固定鉄心段部23gとの間に完全に当接せず、間隙26aがある状態となる。
 シャフト突起部8cと固定鉄心段部23gとの間に間隙26aがあるため、可動鉄心2がシャフト8を介して、接点間に接触圧力を与えることができる。
 また、励磁動作完了状態では、シャフト突起部8cは、接圧ばね9の蓄勢力を残した状態で復帰ばね10を介して固定鉄心段部23gに接する。間隙26aがあるため、磁気回路が解磁される時に、接圧ばね9の蓄勢力を逃がすことができる。電磁アクチュエータでは、可動鉄心と固定鉄心の間に、残留磁場の影響で吸引力が働くことがあり、接圧ばね9の蓄勢力を利用して可動鉄心2を固定鉄心23から引き離すことができる。接圧ばね9の蓄勢力を利用できるため、固定鉄心23側に設けられた復帰ばね10のサイズを小さくでき、復帰ばね10の小型化が図れる。
As shown in FIG. 7, when the movable core 2 abuts on the fixed core 23 and the excitation operation is completed, the return spring 10 is crimped and the shaft 8 abuts on the fixed core 23 via the return spring 10. At this time, the shaft protrusion 8c is surrounded so as to fit in the fixed iron core recess 23f, and does not completely abut with the fixed iron core step portion 23g in the fixed iron core recess 23f, so that there is a gap 26a.
Since there is a gap 26a between the shaft protrusion 8c and the fixed iron core step portion 23g, the movable iron core 2 can apply contact pressure between the contacts via the shaft 8.
Further, in the excited operation completed state, the shaft protrusion 8c comes into contact with the fixed iron core step portion 23g via the return spring 10 in a state where the accumulating force of the pressure contact spring 9 remains. Since there is a gap 26a, the accumulating force of the pressure contact spring 9 can be released when the magnetic circuit is demagnetized. In the electromagnetic actuator, an attractive force may act between the movable core and the fixed core due to the influence of the residual magnetic field, and the movable core 2 can be separated from the fixed core 23 by utilizing the accumulating force of the pressure contact spring 9. .. Since the accumulating force of the pressure contact spring 9 can be utilized, the size of the return spring 10 provided on the fixed iron core 23 side can be reduced, and the return spring 10 can be downsized.
 コイル1の通電停止により磁気回路が解磁されると、磁気吸引力が無くなり、接圧ばね9が延びて可動鉄心2は固定鉄心23が配置されている方向とは反対の方向に移動する。第2のシャフト端部8bに可動鉄心2が当てられ、シャフト8が可動鉄心とともに移動する。復帰ばね10が延びてシャフト8に連接された可動導体103が可動側接点104と固定側接点105とを引き離させる方向に移動し、開極ばね107の蓄勢力とともに接点が完全に引き離される。可動鉄心2が初期位置に戻る。これにより、電磁アクチュエータ200が解磁状態になり、回路遮断器では、開極状態になる。 When the magnetic circuit is demagnetized by stopping the energization of the coil 1, the magnetic attraction force disappears, the pressure spring 9 extends, and the movable iron core 2 moves in the direction opposite to the direction in which the fixed iron core 23 is arranged. The movable iron core 2 is applied to the end portion 8b of the second shaft, and the shaft 8 moves together with the movable iron core. The return spring 10 extends and the movable conductor 103 connected to the shaft 8 moves in a direction that separates the movable side contact 104 and the fixed side contact 105, and the contacts are completely separated together with the accumulating force of the opening pole spring 107. The movable iron core 2 returns to the initial position. As a result, the electromagnetic actuator 200 is in the demagnetized state, and the circuit breaker is in the open pole state.
 図8は、実施の形態2に係る電磁アクチュエータ200の可動鉄心2の初期位置における磁気回路を示す図である。
 図8に示すように、初期位置において、ヨーク突出部先端面27aと固定鉄心先端面23dとの間の間隙g2は、可動鉄心端面2aと固定鉄心端面23cとの間の間隙s2よりも小さい。このため、コイル1に通電することにより発生した磁気回路における軸方向の磁束28は、可動鉄心2を通る磁束28aと、ヨーク突出部27から固定鉄心細突出部23bを通る磁束28bとを有する。軸方向の磁束28の一部はヨーク突出部27から固定鉄心細突出部23bを通って固定鉄心23に流れ、可動鉄心2に流れる磁束が小さくなる。可動鉄心2に加わる駆動力が低減され、電磁アクチュエータ200の励磁動作の低速化が可能である。これにより、回路遮断器の接点の低速投入が可能である。
FIG. 8 is a diagram showing a magnetic circuit at an initial position of the movable iron core 2 of the electromagnetic actuator 200 according to the second embodiment.
As shown in FIG. 8, at the initial position, the gap g2 between the yoke protrusion tip surface 27a and the fixed iron core tip surface 23d is smaller than the gap s2 between the movable iron core end surface 2a and the fixed iron core end surface 23c. Therefore, the magnetic flux 28 in the axial direction in the magnetic circuit generated by energizing the coil 1 has a magnetic flux 28a passing through the movable iron core 2 and a magnetic flux 28b passing through the fixed iron core fine protrusion 23b from the yoke protrusion 27. A part of the magnetic flux 28 in the axial direction flows from the yoke projecting portion 27 through the fixed iron core fine projecting portion 23b to the fixed iron core 23, and the magnetic flux flowing through the movable iron core 2 becomes small. The driving force applied to the movable iron core 2 is reduced, and the exciting operation of the electromagnetic actuator 200 can be slowed down. This makes it possible to turn on the contacts of the circuit breaker at low speed.
 実施の形態2に係る電磁アクチュエータによれば、可動側接点と固定側接点とを接触させることによりシャフトの移動が停止した後、可動鉄心がシャフトに対して固定鉄心へ移動でき、電磁アクチュエータ自体の操作動作により回路遮断器の閉極時のワイプ量を維持できる。
 実施の形態2に係る電磁アクチュエータを用いた回路遮断器によれば、電磁アクチュエータと別にワイプ量を維持する機構を設ける必要がないため、回路遮断器の小型化を図ることができる。
According to the electromagnetic actuator according to the second embodiment, after the movement of the shaft is stopped by bringing the movable side contact and the fixed side contact into contact with each other, the movable iron core can move to the fixed core with respect to the shaft, and the electromagnetic actuator itself The wipe amount when the circuit breaker is closed can be maintained by the operation operation.
According to the circuit breaker using the electromagnetic actuator according to the second embodiment, it is not necessary to provide a mechanism for maintaining the wipe amount separately from the electromagnetic actuator, so that the circuit breaker can be miniaturized.
 また、実施の形態2に係る電磁アクチュエータによれば、可動鉄心と固定鉄心との当接面がコイルの軸方向においてコイルの中心位置よりも可動鉄心の移動方向側に位置することにより、当接面と初期位置との距離を確保できる。可動鉄心の軸方向における長さが長くしても、初期位置において可動鉄心が可動側蓋板よりも外側へ突出することなく構成できるので、電磁アクチュエータの外形寸法の小型化が可能である。これに伴い、この電磁アクチュエータを用いる回路遮断器の小型化が図ることができる。 Further, according to the electromagnetic actuator according to the second embodiment, the contact surface between the movable iron core and the fixed iron core is located on the moving direction side of the movable iron core with respect to the center position of the coil in the axial direction of the coil. The distance between the surface and the initial position can be secured. Even if the length of the movable iron core in the axial direction is long, the movable iron core can be configured without protruding outward from the movable side lid plate at the initial position, so that the external dimensions of the electromagnetic actuator can be miniaturized. Along with this, the circuit breaker using this electromagnetic actuator can be miniaturized.
 さらに、実施の形態2に係る電磁アクチュエータによれば、固定鉄心細突出部が設けられた固定鉄心の構成により、励磁動作の低速化を向上できる。これに伴い、この電磁アクチュエータを用いる回路遮断器の接点の低速投入が可能である。 Further, according to the electromagnetic actuator according to the second embodiment, the slowdown of the exciting operation can be improved by the configuration of the fixed iron core provided with the fine protrusion of the fixed iron core. Along with this, it is possible to turn on the contacts of the circuit breaker using this electromagnetic actuator at a low speed.
実施の形態3.
 図9、10は本開示の実施の形態3に係る電磁アクチュエータ300の断面図である。
 図9は図1に示す回路遮断器110の開極状態に対応し、実施の形態3に係る電磁アクチュエータ300の解磁状態を示す断面図である。図9に示す電磁アクチュエータ300の解磁状態では、電磁アクチュエータ300の可動鉄心2が初期位置に位置する状態である。
 図10は図2に示す回路遮断器110の閉極状態に対応し、実施の形態3に係る電磁アクチュエータ300の励磁動作完了状態を示す断面図である。図10に示す電磁アクチュエータ300の励磁動作完了状態では、可動鉄心2が固定鉄心3に当接した状態である。
 電磁アクチュエータ300は、図1、図2に示す電磁アクチュエータ100と同様に、回路遮断器の可動接点の閉磁方向へ付勢を担い、接点間の開閉動作の操作に用いられる。
Embodiment 3.
9 and 10 are cross-sectional views of the electromagnetic actuator 300 according to the third embodiment of the present disclosure.
FIG. 9 is a cross-sectional view showing a demagnetized state of the electromagnetic actuator 300 according to the third embodiment, corresponding to the open pole state of the circuit breaker 110 shown in FIG. In the demagnetized state of the electromagnetic actuator 300 shown in FIG. 9, the movable iron core 2 of the electromagnetic actuator 300 is located at the initial position.
FIG. 10 is a cross-sectional view showing a completed state of the excitation operation of the electromagnetic actuator 300 according to the third embodiment, corresponding to the closed pole state of the circuit breaker 110 shown in FIG. In the excited operation completed state of the electromagnetic actuator 300 shown in FIG. 10, the movable iron core 2 is in contact with the fixed iron core 3.
Similar to the electromagnetic actuator 100 shown in FIGS. 1 and 2, the electromagnetic actuator 300 urges the movable contacts of the circuit breaker in the closing direction, and is used for operating the opening / closing operation between the contacts.
 実施の形態3では、本開示の実施の形態1と同一の構成要素には同一の符号を使用し、同一または対応する部分についての説明は省略する。以下、図面を参照して、実施の形態3に係る電磁アクチュエータ300が、実施の形態1と異なる点について説明する。 In the third embodiment, the same reference numerals are used for the same components as those in the first embodiment of the present disclosure, and the description of the same or corresponding parts will be omitted. Hereinafter, the difference between the electromagnetic actuator 300 according to the third embodiment and the first embodiment will be described with reference to the drawings.
 図9、10に示すように、電磁アクチュエータ300は、電流が流れることにより軸方向の磁束を発生する筒状のコイル1と、コイルを収納する筒状の空間が形成されており、コイル1の軸方向に配置され、コイル1の軸方向において往復動作可能な状態で設置された可動鉄心2と、可動鉄心2に囲まれており、可動鉄心2とともに移動可能なシャフト8と、コイル1を取り囲む筒状のヨークパイプ4と、コイル1の軸方向において、ヨークパイプの一端に配置された固定側蓋板5と、コイル1の軸方向において、ヨークパイプ4の他端に配置された可動側蓋板36と、コイル1の内周側に、固定側蓋板5から可動側蓋板36に向かう方向に配置された固定鉄心3と、コイル1の内周側に、可動側蓋板36から固定側蓋板5に向かう方向に固定鉄心3に対向するように突出する筒状のヨーク突出部7とを有する。 As shown in FIGS. 9 and 10, in the electromagnetic actuator 300, a tubular coil 1 that generates an axial magnetic flux due to the flow of an electric current and a tubular space for accommodating the coil are formed in the coil 1. It surrounds a movable iron core 2 which is arranged in the axial direction and is installed in a state where it can reciprocate in the axial direction of the coil 1, and a shaft 8 which is surrounded by the movable iron core 2 and can move together with the movable iron core 2 and the coil 1. A tubular yoke pipe 4, a fixed side lid plate 5 arranged at one end of the yoke pipe in the axial direction of the coil 1, and a movable side lid arranged at the other end of the yoke pipe 4 in the axial direction of the coil 1. The plate 36, the fixed iron core 3 arranged on the inner peripheral side of the coil 1 in the direction from the fixed side lid plate 5 toward the movable side lid plate 36, and the fixed iron core 3 arranged on the inner peripheral side of the coil 1 from the movable side lid plate 36. It has a tubular yoke projecting portion 7 that projects so as to face the fixed iron core 3 in the direction toward the side lid plate 5.
ヨークパイプ4、固定側蓋板5、可動側蓋板36、固定鉄心3、およびヨーク突出部7の各部は、段付一体型となっており、磁性体材料で構成されている。典型的な磁性体材料として、例えば鉄である。
また、ヨークパイプ4、固定側蓋板5、可動側蓋板36、固定鉄心3、およびヨーク突出部7の各部は、コイル1を通電することにより、可動鉄心2とともに磁気回路が励磁される。
Each part of the yoke pipe 4, the fixed side lid plate 5, the movable side lid plate 36, the fixed iron core 3, and the yoke projecting portion 7 is a stepped integrated type and is made of a magnetic material. A typical magnetic material is, for example, iron.
Further, in each of the yoke pipe 4, the fixed side lid plate 5, the movable side lid plate 36, the fixed iron core 3, and the yoke protruding portion 7, a magnetic circuit is excited together with the movable iron core 2 by energizing the coil 1.
 実施の形態3では、可動側蓋板36の構成が実施の形態1の可動側蓋板6の構成と異なる。
 図9に示すように、可動側蓋板36はヨーク突出部7に囲まれた部分において、可動側蓋板36を貫通する空気取出口33が設けられている。
 また、可動鉄心2とヨーク突出部7との間に、ヨーク突出部7に対する可動鉄心2の移動を支持し、空気の流出を阻止する気密軸受が設けられている。気密軸受は、可動鉄心2とともに移動可能であり、可動鉄心2とヨーク突出部7との間から電磁アクチュエータ内部の空気が漏れないよう配置されている。
 気密軸受は、可動鉄心2とヨーク突出部7との間に複数設けられることができ、気密性および可動鉄心2の保持安定性が向上できる。
In the third embodiment, the configuration of the movable side lid plate 36 is different from the configuration of the movable side lid plate 6 of the first embodiment.
As shown in FIG. 9, the movable side lid plate 36 is provided with an air outlet 33 penetrating the movable side lid plate 36 at a portion surrounded by the yoke protrusion 7.
Further, an airtight bearing is provided between the movable iron core 2 and the yoke projecting portion 7 to support the movement of the movable iron core 2 with respect to the yoke projecting portion 7 and prevent the outflow of air. The airtight bearing is movable together with the movable iron core 2, and is arranged so that air inside the electromagnetic actuator does not leak from between the movable iron core 2 and the yoke protrusion 7.
A plurality of airtight bearings can be provided between the movable iron core 2 and the yoke protrusion 7, and the airtightness and the holding stability of the movable iron core 2 can be improved.
 図9と図10に示すように、可動鉄心2の両端部において、それぞれ気密軸受である第3の可動鉄心用軸受31と第4の可動鉄心用軸受32とが設けられている。第3の可動鉄心用軸受31と第4の可動鉄心用軸受32は、可動鉄心2とヨーク突出部7との間から電磁アクチュエータ内部の空気が漏れないように密封型の構成であり、可動鉄心2とともにヨーク突出部7に対して移動可能に支持している。 As shown in FIGS. 9 and 10, at both ends of the movable iron core 2, a third movable iron core bearing 31 and a fourth movable iron core bearing 32, which are airtight bearings, are provided, respectively. The third movable iron core bearing 31 and the fourth movable iron core bearing 32 have a sealed configuration so that air inside the electromagnetic actuator does not leak from between the movable iron core 2 and the yoke protrusion 7, and the movable iron core. Together with 2, it is movably supported with respect to the yoke protrusion 7.
また、可動鉄心2と接圧ばね9との間にばね押さえ板34が設けられている。可動鉄心2が固定鉄心3側の方向に移動する際、接圧ばね9がばね押さえ板34を介して移動する可動鉄心2に押さえられ、シャフト8は可動鉄心2とともに可動側蓋板6側から固定側蓋板5側へ向って軸方向に移動する。
ばね押さえ板34は、可動鉄心2とシャフト8とも接しており、可動鉄心2内部の空気が漏れないよう可動鉄心2とシャフト8との間の隙間を塞ぐ機能も有する。
 実施の形態3に係る電磁アクチュエータ300において、可動側蓋板36の構成およびの可動鉄心2とヨーク突出部7との間の気密軸受以外の構成は実施の形態1と同様である。それぞれ同様な効果を奏する。
Further, a spring holding plate 34 is provided between the movable iron core 2 and the pressure contact spring 9. When the movable iron core 2 moves in the direction of the fixed iron core 3, the pressure contact spring 9 is pressed by the movable iron core 2 that moves via the spring pressing plate 34, and the shaft 8 is pressed together with the movable iron core 2 from the movable side lid plate 6 side. It moves in the axial direction toward the fixed side lid plate 5 side.
The spring holding plate 34 is also in contact with the movable iron core 2 and the shaft 8, and also has a function of closing the gap between the movable iron core 2 and the shaft 8 so that the air inside the movable iron core 2 does not leak.
In the electromagnetic actuator 300 according to the third embodiment, the configuration of the movable side lid plate 36 and the configuration other than the airtight bearing between the movable iron core 2 and the yoke protrusion 7 are the same as those of the first embodiment. Each has the same effect.
 実施の形態3に係る電磁アクチュエータ300の動作について、実施の形態1と異なる点について説明する。
 電磁アクチュエータ300では、コイル1の通電停止により、磁気回路が解磁され、可動鉄心2が固定鉄心3と当接する位置から初期位置に移動する際に、空気取出口33から空気を排出すること以外は実施の形態1と同様である。
The operation of the electromagnetic actuator 300 according to the third embodiment will be described as being different from the first embodiment.
In the electromagnetic actuator 300, the magnetic circuit is demagnetized by stopping the energization of the coil 1, and when the movable iron core 2 moves from the position where it comes into contact with the fixed iron core 3 to the initial position, air is discharged from the air outlet 33. Is the same as in the first embodiment.
 コイル1の通電停止により磁気回路が解磁されると、磁気吸引力が無くなり、接圧ばね9が延びて可動鉄心2は固定鉄心3が配置されている方向とは反対の方向に移動する。第2のシャフト端部8bに可動鉄心2が当てられ、シャフト8が可動鉄心2とともに移動する。復帰ばね10が延びてシャフト8に連接された可動導体103が可動側接点104と固定側接点105とを引き離させる方向に移動し、開極ばね107の蓄勢力とともに接点が完全に引き離される。可動鉄心2が初期位置に戻る。これにより、電磁アクチュエータ300が解磁状態になり、回路遮断器では、開極状態になる。 When the magnetic circuit is demagnetized by stopping the energization of the coil 1, the magnetic attraction force disappears, the pressure spring 9 extends, and the movable iron core 2 moves in the direction opposite to the direction in which the fixed iron core 3 is arranged. The movable iron core 2 is applied to the end portion 8b of the second shaft, and the shaft 8 moves together with the movable iron core 2. The return spring 10 extends and the movable conductor 103 connected to the shaft 8 moves in a direction that separates the movable side contact 104 and the fixed side contact 105, and the contacts are completely separated together with the accumulating force of the opening pole spring 107. The movable iron core 2 returns to the initial position. As a result, the electromagnetic actuator 300 is in the demagnetized state, and the circuit breaker is in the open pole state.
 図10において、可動鉄心2とシャフト8とともに初期位置方向に移動する際に、ヨーク突出部7の内側に可動鉄心2と可動側蓋板36との間の空気Aが空気取出口33から電磁アクチュエータ300の外側へ排出される。矢印33aは、電磁アクチュエータ300の内部の空気Aが空気取出口33から電磁アクチュエータ300の外側へ排出される方向を表している。解磁動作時に空気取出口33から排出された空気Aを回路遮断器のアークの消弧に利用することができる。
電磁アクチュエータの解磁動作に伴い、遮断器の接点が離れ、アーク放電が生じる。アークは速やかに消弧する必要がある。接点間に発生したアークに空気を吹き付けることで消弧室側に転流させ、アークを引き伸ばし消弧できる。アークに対して空気吹き付け量が増えると、消弧効率は上がる傾向になる。解磁動作時に空気取出口33から高速で排出された空気Aを回路遮断器のアークの消弧に利用することにより、アーク発生時の消弧効率を向上できる。
In FIG. 10, when moving in the initial position direction together with the movable iron core 2 and the shaft 8, air A between the movable iron core 2 and the movable side lid plate 36 is introduced from the air outlet 33 to the inside of the yoke protrusion 7 by an electromagnetic actuator. It is discharged to the outside of 300. The arrow 33a indicates the direction in which the air A inside the electromagnetic actuator 300 is discharged from the air outlet 33 to the outside of the electromagnetic actuator 300. The air A discharged from the air outlet 33 during the demagnetization operation can be used to extinguish the arc of the circuit breaker.
With the demagnetization operation of the electromagnetic actuator, the contacts of the circuit breaker are separated and an arc discharge occurs. The arc needs to be extinguished quickly. By blowing air on the arc generated between the contacts, it can be commutated to the arc extinguishing chamber side, and the arc can be extended and extinguished. As the amount of air blown to the arc increases, the arc extinguishing efficiency tends to increase. By using the air A discharged at high speed from the air outlet 33 during the demagnetization operation to extinguish the arc of the circuit breaker, the arc extinguishing efficiency at the time of arc generation can be improved.
 実施の形態3に係る電磁アクチュエータ300における磁気回路も実施の形態1の磁気回路と同様である。 The magnetic circuit in the electromagnetic actuator 300 according to the third embodiment is the same as the magnetic circuit in the first embodiment.
 実施の形態3に係る電磁アクチュエータおよびこの電磁アクチュエータを用いた回路遮断器によれば、実施の形態1に係る電磁アクチュエータと同様な効果を有する。
 さらに、電磁アクチュエータの解磁時に、電磁アクチュエータ内部の空気を空気排出口から排出して回路遮断器のアークの消弧に利用することができるため、消弧効率を向上できる。また、電磁アクチュエータ自体から排出された空気をアークの消弧に利用できるため、回路遮断器の低コスト化および小型化を図ることができる。
According to the electromagnetic actuator according to the third embodiment and the circuit breaker using the electromagnetic actuator, the electromagnetic actuator according to the first embodiment has the same effect.
Further, when the electromagnetic actuator is demagnetized, the air inside the electromagnetic actuator can be discharged from the air discharge port and used for extinguishing the arc of the circuit breaker, so that the arc extinguishing efficiency can be improved. Further, since the air discharged from the electromagnetic actuator itself can be used for extinguishing the arc, the cost and size of the circuit breaker can be reduced.
 なお、本開示は、その開示の範囲内において、各実施の形態を組み合わせ、各実施の形態を適宜、変形、省略することが可能である。 It should be noted that, within the scope of the disclosure, each embodiment can be combined, and each embodiment can be appropriately modified or omitted.
1 コイル、2 可動鉄心、2a 可動鉄心端面、2b 可動鉄心外壁面、2c可動鉄心先端部、3 固定鉄心、3a 固定鉄心端面、3b 固定鉄心凹部、3c 固定鉄心段部、4 ヨークパイプ、5 固定側蓋板、6 可動側蓋板、7 ヨーク突出部、7a ヨーク主突出部、7b ヨーク細突出部、7c ヨーク突出部先端面、7d ヨーク突出部内壁面、8 シャフト、8a 第1のシャフト端部、8b 第2のシャフト端部、9 接圧ばね、10 復帰ばね、11 第1のシャフト用軸受、12 第2のシャフト用軸受、13 第1の可動鉄心用軸受、14 第2の可動鉄心用軸受、23 固定鉄心、23a 固定鉄心基部、23b 固定鉄心細突出部、23c 固定鉄心端面、23d 固定鉄心先端面 23e 固定鉄心内壁面、23f 固定鉄心凹部、23g 固定鉄心段部、24 磁束、27 ヨーク突出部、27a ヨーク突出部先端面、27b ヨーク突出部内壁面、28 磁束、31 第3の可動鉄心用軸受、32 第4の可動鉄心用軸受、33、空気取出口、36 可動側蓋板、100、 電磁アクチュエータ、110 回路遮断器、101 下部導体、102 上部導体、103 可動導体、104 可動側接点、105 固定側接点、106 可とう導体、107 開極ばね、108 消弧室、110 回路遮断器、200、300 電磁アクチュエータ 1 coil, 2 movable iron core, 2a movable iron core end surface, 2b movable iron core outer wall surface, 2c movable iron core tip, 3 fixed iron core, 3a fixed iron core end surface, 3b fixed iron core recess, 3c fixed iron core step, 4 yoke pipe, 5 fixed Side lid plate, 6 movable side lid plate, 7 yoke protrusion, 7a yoke main protrusion, 7b yoke fine protrusion, 7c yoke protrusion tip surface, 7d yoke protrusion inner wall surface, 8 shaft, 8a first shaft end , 8b 2nd shaft end, 9 contact pressure spring, 10 return spring, 11 1st shaft bearing, 12 2nd shaft bearing, 13 1st movable iron core bearing, 14 2nd movable iron core bearing Bearing, 23 fixed core, 23a fixed core base, 23b fixed core fine protrusion, 23c fixed core end face, 23d fixed core tip surface 23e fixed core inner wall surface, 23f fixed core recess, 23 g fixed core step, 24 magnetic flux, 27 yoke Protruding part, 27a, tip surface of yoke protruding part, 27b, inner wall surface of yoke protruding part, 28 magnetic flux, 31 third movable iron core bearing, 32 fourth movable iron core bearing, 33, air outlet, 36 movable side lid plate, 100 , Electromagnetic actuator, 110 circuit breaker, 101 lower conductor, 102 upper conductor, 103 movable conductor, 104 movable side contact, 105 fixed side contact, 106 flexible conductor, 107 open pole spring, 108 arc extinguishing chamber, 110 circuit breaker , 200, 300 Electromagnetic actuator

Claims (19)

  1.  電流が流れることにより軸方向の磁束を発生する筒状のコイルと、
     前記コイルの軸方向に往復動作可能な状態で設置された可動鉄心と、
     前記可動鉄心に囲まれており、回路遮断器の可動側接点と固定側接点との間の開閉動作を操作し、前記可動鉄心とともに移動可能なシャフトと、
     前記コイルを取り囲む筒状のヨークパイプと、
     前記コイルの軸方向において、前記ヨークパイプの一端に配置された固定側蓋板と、
     前記コイルの軸方向において、前記ヨークパイプの他端に配置された可動側蓋板と、
     前記コイルの内周側に、前記固定側蓋板から前記可動側蓋板に向かう方向に配置された固定鉄心と、
     前記コイルの内周側に、前記可動側蓋板から前記固定側蓋板に向かう方向に前記固定鉄心に対向するように突出する筒状のヨーク突出部と、を備え、
     前記可動鉄心は、
     前記ヨーク突出部の内周側の空間内に配置されており、前記コイルに電流が流れることにより励磁されると、初期位置から前記シャフトとともに前記コイルの軸方向において前記固定鉄心に向かう方向に移動し、前記可動側接点と前記固定側接点とを接触させることにより前記シャフトの移動が停止した後、前記シャフトに対して励磁動作完了状態の前記固定鉄心に当接する位置まで移動することを特徴とする電磁アクチュエータ。
    A cylindrical coil that generates magnetic flux in the axial direction when an electric current flows,
    A movable iron core installed in a state where it can reciprocate in the axial direction of the coil,
    A shaft that is surrounded by the movable iron core and can move together with the movable iron core by operating the opening / closing operation between the movable side contact and the fixed side contact of the circuit breaker.
    A cylindrical yoke pipe surrounding the coil and
    With the fixed side lid plate arranged at one end of the yoke pipe in the axial direction of the coil,
    With the movable side lid plate arranged at the other end of the yoke pipe in the axial direction of the coil,
    On the inner peripheral side of the coil, a fixed iron core arranged in a direction from the fixed side lid plate to the movable side lid plate, and
    The inner peripheral side of the coil is provided with a cylindrical yoke projecting portion that projects from the movable side lid plate toward the fixed side lid plate so as to face the fixed iron core.
    The movable iron core is
    It is arranged in the space on the inner peripheral side of the yoke protrusion, and when excited by a current flowing through the coil, it moves from the initial position together with the shaft in the axial direction of the coil toward the fixed iron core. The movable side contact and the fixed side contact are brought into contact with each other to stop the movement of the shaft, and then the shaft is moved to a position where it comes into contact with the fixed iron core in the excited operation completed state. Electromagnetic actuator.
  2.  前記励磁動作完了状態において、前記可動鉄心と前記固定鉄心と当接する当接面は、前記コイルの軸方向において前記コイルの中心位置よりも前記可動鉄心の移動方向側に位置することを特徴とする請求項1に記載の電磁アクチュエータ。 In the excited operation completed state, the contact surface that abuts the movable iron core and the fixed iron core is located on the moving direction side of the movable iron core with respect to the center position of the coil in the axial direction of the coil. The electromagnetic actuator according to claim 1.
  3.  前記コイルの軸方向において、前記可動鉄心の長さは前記ヨークパイプの長さの1/2より長いことを特徴とする請求項1または請求項2に記載の電磁アクチュエータ。 The electromagnetic actuator according to claim 1 or 2, wherein the length of the movable iron core is longer than 1/2 of the length of the yoke pipe in the axial direction of the coil.
  4.  前記シャフトは、前記固定側蓋板側の前記可動鉄心の端部位置において、前記シャフトの前記可動鉄心に挿入された部分に比べ、外径がより大きいシャフト突起部が設けられていることを特徴とする請求項1から3の何れか1項に記載の電磁アクチュエータ。 The shaft is characterized in that a shaft protrusion having a larger outer diameter than a portion of the shaft inserted into the movable iron core is provided at an end position of the movable iron core on the fixed side lid plate side. The electromagnetic actuator according to any one of claims 1 to 3.
  5.  前記固定鉄心の前記可動鉄心に対向する端面である固定鉄心端面に、前記シャフトを収容するようにくぼんだ固定鉄心凹部が形成されていることを特徴とする請求項4に記載の電磁アクチュエータ。 The electromagnetic actuator according to claim 4, wherein a recessed fixed iron core recess is formed on the fixed iron core end surface, which is an end surface of the fixed iron core facing the movable iron core, so as to accommodate the shaft.
  6.  前記固定鉄心凹部の内壁面に段付きされ、前記シャフト突起部と対向する固定鉄心段部が形成されており、
     前記励磁動作完了状態において、前記シャフト突起部は、前記固定鉄心凹部に収まるように囲まれ、前記シャフト突起部と前記固定鉄心段部との間に間隙を有することを特徴とする請求項5に記載の電磁アクチュエータ。
    A fixed iron core step portion is formed on the inner wall surface of the fixed iron core recess so as to face the shaft protrusion.
    The fifth aspect of the present invention is characterized in that, in the excited operation completed state, the shaft protrusion is surrounded so as to fit in the fixed iron core recess, and has a gap between the shaft protrusion and the fixed iron core step portion. The electromagnetic actuator described.
  7.  前記シャフト突起部と前記固定鉄心凹部との間に復帰ばねが配置されており、
     前記シャフトと前記固定鉄心とは前記復帰ばねを介して連接されることを特徴とする請求項5または6に記載の電磁アクチュエータ。
    A return spring is arranged between the shaft protrusion and the fixed iron core recess.
    The electromagnetic actuator according to claim 5 or 6, wherein the shaft and the fixed iron core are connected to each other via the return spring.
  8.  前記可動鉄心と前記シャフトとの間に接圧ばねが配置されており、
     前記可動鉄心と前記シャフトとは前記接圧ばねを介して連接されることを特徴とする請求項1から7の何れか1項に記載の電磁アクチュエータ。
    A pressure spring is arranged between the movable iron core and the shaft.
    The electromagnetic actuator according to any one of claims 1 to 7, wherein the movable iron core and the shaft are connected to each other via the pressure contact spring.
  9.  前記可動鉄心と前記シャフトとの間において、前記可動鉄心の前記固定側蓋板側の端部位置に、前記シャフトに対して前記可動鉄心が移動可能に支持し、前記シャフト上に設けられた第1の可動鉄心用軸受が設けられることを特徴とする請求項1から8の何れか1項に記載の電磁アクチュエータ。 Between the movable iron core and the shaft, the movable iron core is movably supported with respect to the shaft at the end position on the fixed side lid plate side of the movable iron core, and is provided on the shaft. The electromagnetic actuator according to any one of claims 1 to 8, wherein the movable iron core bearing of 1 is provided.
  10.  前記可動鉄心と前記シャフトとの間において、前記可動鉄心の前記可動側蓋板側の端部位置に、前記シャフトに対して前記可動鉄心とともに移動可能に支持する第2の可動鉄心用軸受が設けられることを特徴とする請求項1から9の何れか1項に記載の電磁アクチュエータ。 Between the movable iron core and the shaft, a second movable iron core bearing that movably supports the movable iron core together with the movable iron core is provided at the end position of the movable iron core on the movable side lid plate side. The electromagnetic actuator according to any one of claims 1 to 9, wherein the electromagnetic actuator is characterized in that.
  11.  前記シャフトは、
     前記固定側蓋板を貫通する一方の端部である第1のシャフト端部と、
     前記可動側蓋板を貫通する他方の端部である第2のシャフト端部と、を有し、
     前記第2のシャフト端部は、
     前記シャフトの前記可動鉄心に挿入されている部分に比べ、外径がより大きく形成されていることを特徴とする請求項1から10の何れか1項に記載の電磁アクチュエータ。
    The shaft
    The first shaft end, which is one end penetrating the fixed side lid plate, and
    It has a second shaft end, which is the other end that penetrates the movable side lid plate, and has.
    The second shaft end is
    The electromagnetic actuator according to any one of claims 1 to 10, wherein the outer diameter is formed to be larger than that of the portion of the shaft inserted into the movable iron core.
  12.  前記固定側蓋板と前記第1のシャフト端部との間に、前記シャフトの移動を支持する第1のシャフト用軸受が設けられており、
     前記可動側蓋板と前記第2のシャフト端部との間に、前記シャフトの移動を支持する第2のシャフト用軸受が設けられていることを特徴とする請求項11に記載の電磁アクチュエータ。
    A first shaft bearing that supports the movement of the shaft is provided between the fixed side lid plate and the end of the first shaft.
    The electromagnetic actuator according to claim 11, wherein a second shaft bearing that supports the movement of the shaft is provided between the movable side lid plate and the end of the second shaft.
  13.  前記ヨーク突出部は、
     前記可動側蓋板側に配置されたヨーク主突出部と、
     前記ヨーク主突出部から前記固定側蓋板に向かう方向に延伸するヨーク細突出部と、
     を有する請求項1から12の何れか1項に記載の電磁アクチュエータ。
    The yoke protrusion is
    With the yoke main protrusion arranged on the movable side lid plate side,
    A yoke thin protrusion extending from the yoke main protrusion toward the fixed side lid plate,
    The electromagnetic actuator according to any one of claims 1 to 12.
  14.  前記固定鉄心は、
     前記固定側蓋板側に配置された固定鉄心基部と、
     前記固定鉄心基部から前記可動側蓋板に向かう方向に延伸する固定鉄心細突出部と、
     を有し、
     前記固定鉄心基部は、前記可動鉄心に対向する端面である固定鉄心端面を有し、
     前記固定鉄心細突出部は、前記可動鉄心の前記固定鉄心基部へ移動する方向の先端部分である可動鉄心先端部を取り囲むように筒状に呈することを特徴とする請求項1から13の何れか1項に記載の電磁アクチュエータ。
    The fixed iron core
    The fixed iron core base arranged on the fixed side lid plate side and
    A fixed iron core fine protrusion extending in a direction from the fixed iron core base toward the movable side lid plate,
    Have,
    The fixed core base has a fixed core end face which is an end face facing the movable core.
    Any of claims 1 to 13, wherein the fixed iron core fine protrusion portion is provided in a cylindrical shape so as to surround the tip portion of the movable iron core, which is the tip portion of the movable iron core in the direction of moving to the fixed iron core base. The electromagnetic actuator according to item 1.
  15.  前記可動側蓋板に、前記ヨーク突出部に囲まれた部分において、前記可動側蓋板を貫通する空気取出口が設けられていることを特徴とする請求項1から14の何れか1項に記載の電磁アクチュエータ。 According to any one of claims 1 to 14, the movable side lid plate is provided with an air outlet that penetrates the movable side lid plate at a portion surrounded by the yoke protrusion. The electromagnetic actuator described.
  16.  前記可動鉄心と前記ヨーク突出部との間に、前記ヨーク突出部に対する前記可動鉄心の移動を支持し、空気の流出を阻止する気密軸受が設けられているが設けられていることを特徴とする請求項15に記載の電磁アクチュエータ。 An airtight bearing is provided between the movable iron core and the yoke projecting portion to support the movement of the movable iron core with respect to the yoke projecting portion and prevent the outflow of air. The electromagnetic actuator according to claim 15.
  17.  前記気密軸受が複数設けられることを特徴とする請求項16に記載の電磁アクチュエータ。 The electromagnetic actuator according to claim 16, wherein a plurality of the airtight bearings are provided.
  18. 前記可動鉄心の内部の空気が漏れないように前記可動鉄心と前記シャフトとの間の隙間を塞ぐばね押さえ板が設けられることを特徴とする請求項15から17の何れか1項に記載の電磁アクチュエータ。 The electromagnetic wave according to any one of claims 15 to 17, wherein a spring holding plate for closing a gap between the movable iron core and the shaft is provided so that air inside the movable iron core does not leak. Actuator.
  19.  前記可動側接点と前記固定側接点との間の開閉動作の操作に請求項1から18のいずれかに記載の電磁アクチュエータを用いたことを特徴とする回路遮断器。 A circuit breaker characterized in that the electromagnetic actuator according to any one of claims 1 to 18 is used for the operation of opening / closing operation between the movable side contact and the fixed side contact.
PCT/JP2020/014854 2020-03-31 2020-03-31 Electromagnetic actuator and circuit breaker using same electromagnetic actuator WO2021199296A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20928867.9A EP4131295A4 (en) 2020-03-31 2020-03-31 Electromagnetic actuator and circuit breaker using same electromagnetic actuator
JP2022513006A JP7361889B2 (en) 2020-03-31 2020-03-31 Electromagnetic actuator and circuit breaker using this electromagnetic actuator
PCT/JP2020/014854 WO2021199296A1 (en) 2020-03-31 2020-03-31 Electromagnetic actuator and circuit breaker using same electromagnetic actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/014854 WO2021199296A1 (en) 2020-03-31 2020-03-31 Electromagnetic actuator and circuit breaker using same electromagnetic actuator

Publications (1)

Publication Number Publication Date
WO2021199296A1 true WO2021199296A1 (en) 2021-10-07

Family

ID=77928032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/014854 WO2021199296A1 (en) 2020-03-31 2020-03-31 Electromagnetic actuator and circuit breaker using same electromagnetic actuator

Country Status (3)

Country Link
EP (1) EP4131295A4 (en)
JP (1) JP7361889B2 (en)
WO (1) WO2021199296A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09199320A (en) 1996-01-16 1997-07-31 Mitsubishi Electric Corp Electromagnetic solenoid
JP2003163115A (en) * 2001-11-27 2003-06-06 Shindengen Electric Mfg Co Ltd Electromagnetic actuator
JP2005142257A (en) * 2003-11-05 2005-06-02 Shindengen Mechatronics Co Ltd Solenoid

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5727862B2 (en) * 2011-05-19 2015-06-03 富士電機機器制御株式会社 Magnetic contactor
KR101943366B1 (en) * 2015-12-30 2019-01-29 엘에스산전 주식회사 Direct Relay
JP7103091B2 (en) * 2018-09-07 2022-07-20 オムロン株式会社 relay

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09199320A (en) 1996-01-16 1997-07-31 Mitsubishi Electric Corp Electromagnetic solenoid
JP2003163115A (en) * 2001-11-27 2003-06-06 Shindengen Electric Mfg Co Ltd Electromagnetic actuator
JP2005142257A (en) * 2003-11-05 2005-06-02 Shindengen Mechatronics Co Ltd Solenoid

Also Published As

Publication number Publication date
EP4131295A1 (en) 2023-02-08
JP7361889B2 (en) 2023-10-16
JPWO2021199296A1 (en) 2021-10-07
EP4131295A4 (en) 2023-05-17

Similar Documents

Publication Publication Date Title
US8653917B2 (en) Contact device and electromagnetic switch using contact device
KR101890848B1 (en) Contact device and magnetic contactor using same
JP5809443B2 (en) Contact mechanism and electromagnetic contactor using the same
WO2012157176A1 (en) Electromagnetic contactor
WO2012157173A1 (en) Electromagnetic contactor
EP2605262A1 (en) Contact device, and electromagnetic switch using same
WO2014083769A1 (en) Contact device and electromagnetic switch using same
JP6228162B2 (en) relay
KR20150016487A (en) Electromagnetic contactor
WO2012157171A1 (en) Electromagnetic contactor
JP2013246873A (en) Contact device
WO2020044607A1 (en) Electromagnetic relay
WO2014080555A1 (en) Electromagnet contactor
WO2014087574A1 (en) Contact device and electromagnetic switch using same
WO2021199296A1 (en) Electromagnetic actuator and circuit breaker using same electromagnetic actuator
JP6291871B2 (en) Contact device and electromagnetic contactor using the same
US11515113B2 (en) Contact device
WO2021095206A1 (en) Electromagnetic actuator
JP2008204864A (en) Switch
CN110911234B (en) Contact mechanism and electromagnetic contactor using same
WO2020148994A1 (en) Relay
JP3024497B2 (en) Sealed contact device
JP4580814B2 (en) Electromagnetic actuator
JP2015176810A (en) electromagnetic contactor
JP2006294449A (en) Switching device and electromagnetic actuator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20928867

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022513006

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020928867

Country of ref document: EP

Effective date: 20221031