WO2021199281A1 - Cooling device for sintered ore - Google Patents

Cooling device for sintered ore Download PDF

Info

Publication number
WO2021199281A1
WO2021199281A1 PCT/JP2020/014811 JP2020014811W WO2021199281A1 WO 2021199281 A1 WO2021199281 A1 WO 2021199281A1 JP 2020014811 W JP2020014811 W JP 2020014811W WO 2021199281 A1 WO2021199281 A1 WO 2021199281A1
Authority
WO
WIPO (PCT)
Prior art keywords
sinter
scraper
nozzle
cooling fluid
cooling
Prior art date
Application number
PCT/JP2020/014811
Other languages
French (fr)
Japanese (ja)
Inventor
真敏 下川
Original Assignee
Primetals Technologies Japan株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Primetals Technologies Japan株式会社 filed Critical Primetals Technologies Japan株式会社
Priority to KR1020227023381A priority Critical patent/KR20220111694A/en
Priority to JP2022512991A priority patent/JP7225471B2/en
Priority to CN202080093346.4A priority patent/CN114945691B/en
Priority to PCT/JP2020/014811 priority patent/WO2021199281A1/en
Publication of WO2021199281A1 publication Critical patent/WO2021199281A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/26Cooling of roasted, sintered, or agglomerated ores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B21/00Open or uncovered sintering apparatus; Other heat-treatment apparatus of like construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D15/00Handling or treating discharged material; Supports or receiving chambers therefor
    • F27D15/02Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D15/00Handling or treating discharged material; Supports or receiving chambers therefor
    • F27D15/02Cooling
    • F27D15/0206Cooling with means to convey the charge
    • F27D15/0213Cooling with means to convey the charge comprising a cooling grate
    • F27D15/022Cooling with means to convey the charge comprising a cooling grate grate plates
    • F27D2015/0233Cooling with means to convey the charge comprising a cooling grate grate plates with gas, e.g. air, supply to the grate

Definitions

  • This disclosure relates to a sinter cooling device.
  • the high-temperature sinter produced by the sinter is cooled and then transported to the blast furnace by a conveyor or the like.
  • a rotary cooling device including an annular sedimentation tank may be used to cool the sinter by circulating air in the sedimentation tank.
  • a cooling fluid cooling water or the like
  • Patent Document 1 describes a rotary table, an annular cooling tank provided above the rotary table, a cooling air introduction port (louver) provided at the lower part of the cooling tank, and a blower for sucking cooling air.
  • a cooling device for the sintered ore provided is disclosed. In this cooling device, by sucking air with a blower, cooling air is introduced into the cooling tank through the cooling air introduction port, and the cooling air flows upward in the cooling tank, so that the inside of the cooling tank is inside. The sintered ore supplied to is cooled. Further, in the cooling device described in Patent Document 1, in order to improve the cooling capacity, cooling water is supplied from above the cooling tank to the inner surface side of the inner peripheral wall of the cooling tank.
  • the cooling effect can be enhanced by using cooling air and cooling water together for cooling the sinter.
  • the cooling water when the cooling water is supplied from above the sedimentary tank, the cooling water is supplied to the relatively high temperature sinter at the upper part of the sedimentary tank. In this case, the cooling water is rapidly cooled. As a result, cracks are likely to occur in the sinter, which may result in pulverization in a blast furnace and deterioration of product quality.
  • At least one embodiment of the present invention aims to provide a sinter cooling device capable of improving the cooling effect while suppressing deterioration of product quality.
  • the sinter cooling device An internal space for receiving the sinter and a sedimentary tank with a lower opening capable of discharging the sinter.
  • a rotary table which is arranged below the deposit tank at a distance from the lower opening and is configured to rotate together with the deposit tank.
  • a scraper provided between the deposit tank and the rotary table,
  • An exhaust hood provided above the deposit tank so as to communicate with the internal space of the deposit tank.
  • a nozzle provided below the lower opening and above the rotary table and configured to discharge the cooling fluid. To be equipped.
  • a sinter cooling device capable of improving the cooling effect while suppressing deterioration of product quality.
  • FIG. 5 is a schematic view of a cross section of a lower opening of the cooling device shown in FIG. 1A in a plan view. It is a partial schematic sectional view of the cooling apparatus which concerns on one Embodiment. It is a partial schematic sectional view of the cooling apparatus which concerns on one Embodiment. It is a figure which shows schematic the CC cross section of FIG. It is a schematic diagram which shows the structure of the cooling device 1 which concerns on one Embodiment.
  • FIG. 1A is a schematic cross-sectional view of a sinter cooling device according to an embodiment.
  • FIG. 1B is a schematic view of an air cooling unit constituting the cooling device shown in FIG. 1A in a plan view.
  • FIG. 2 is a schematic view of a cross section of the lower opening of the cooling device shown in FIG. 1A in a plan view.
  • the sinter is obtained by subjecting iron ore, which is a raw material of pig iron, to a sinter treatment as a pretreatment.
  • the particle size of the sinter is generally about 5 mm or more and 200 mm or less.
  • the sinter cooling device 1 includes an annular hopper 2 (deposit tank) and a rotary table 12 provided around a central axis O along the vertical direction, and an annular hopper 2. It is provided with an air cooling unit 10 for cooling the sinter 5 supplied to the vehicle. Further, the cooling device 1 is provided with a scraper 30 for scraping out the sintered ore 5 deposited on the rotary table 12.
  • the annular hopper 2 includes an inner peripheral wall 3 and an outer peripheral wall 4 provided in a circumferential shape around the central axis O, and has an inner peripheral wall surface 3a which is a wall surface of the inner peripheral wall 3 and an outer peripheral wall surface 4a which is a wall surface of the outer peripheral wall 4.
  • the annular internal space 6 is defined by and.
  • a supply chute 27 for supplying the high-temperature sintered ore 5 from a sintering machine (not shown) to the annular hopper 2 is provided above the annular hopper 2.
  • the sinter 5 supplied from the supply chute 27 through the upper end opening of the annular hopper 2 is deposited in the internal space 6 of the annular hopper 2.
  • An annular hood 18 (exhaust hood) that covers the upper portion of the annular hopper 2 is provided on the upper portion of the annular hopper 2. That is, the hood 18 is provided above the annular hopper 2 so as to communicate with the internal space 6 of the annular hopper 2.
  • the rotary table 12 is provided around the central axis O below the annular internal space 6 of the annular hopper 2.
  • the sinter 5 deposited in the internal space 6 of the annular hopper 2 is discharged downward through the lower opening 2a of the annular hopper 2, and the sinter 5 is deposited on the rotary table 12. There is.
  • the inner peripheral wall 3 and the rotary table 12 of the annular hopper 2 are supported by the frames 21 and 22 provided on the inner peripheral side thereof.
  • the frames 21 and 22 are rotatably coupled to the central bearing 14 provided at the position of the central axis O on the foundation 13.
  • the outer peripheral wall 4 of the annular hopper 2 is supported by a support beam (not shown) extending between the inner peripheral wall 3 and the outer peripheral wall 4.
  • a plurality of circular rails 15 are fixedly installed on the lower surface of the frame 21 below the rotary table 12. Further, on the foundation 13, a plurality of support rollers 16 are arranged in a circular shape corresponding to the plurality of circular rails 15, and the rotary table 12 and the annular hopper 2 are supported via the rails 15. It is rotatably supported on the roller 16.
  • a drive motor 17 is connected to some of the support rollers 16, so that the rotary table 12 and the annular hopper 2 rotate around the central axis O due to the rotational friction force of the support rollers 16 by the drive motor 17. It has become.
  • the scraper 30 is provided between the lower opening 2a of the annular hopper 2 and the rotary table 12.
  • the scraper 30 is configured to guide the sinter 5 deposited on the rotary table 12 to the radial outside of the rotary table 12. As a result, the sinter 5 deposited on the rotary table 12 and in the internal space 6 of the annular hopper 2 is gradually discharged to the outside of the cooling device 1.
  • the air cooling unit 10 is configured to supply a cooling fluid (for example, air) to the internal space 6 of the annular hopper 2.
  • a cooling fluid for example, air
  • the air cooling unit 10 has an inner louver 7, an outer louver 8, a central louver 9, and a ventilation duct for taking in air from the outside into the internal space 6 of the annular hopper 2. 11 is included.
  • the air cooling unit 10 includes a blower 20 for sucking air from above the annular hopper 2.
  • the inner louver 7 and the outer louver 8 are incorporated in the lower part of the inner peripheral wall 3 and the outer peripheral wall 4 of the annular hopper 2, respectively, and air (cooling fluid) from the outside of the annular hopper 2. It forms a passage to take in.
  • the central louver 9 is provided in a circumferential shape between the inner peripheral wall 3 and the outer peripheral wall 4 in the radial direction.
  • the ventilation duct 11 is provided inside the annular hopper 2 so as to extend along the radial direction between the inner peripheral wall 3 and the outer peripheral wall 4, and air is introduced into the annular hopper 2 from at least one of the inner peripheral wall 3 or the outer peripheral wall 4. Is configured to capture.
  • the air taken in from the outside of the annular hopper 2 is supplied to the central louver 9 by the ventilation duct 11.
  • the blower 20 is connected to an exhaust duct 19 provided above the annular hopper 2.
  • the exhaust duct 19 is connected to the hood 18.
  • air is taken into the annular hopper 2 via the inner louver 7, the outer louver 8, the central louver 9, and the ventilation duct 11, and the air directs the inside of the annular hopper 2 upward. It flows and is further discharged to the outside of the cooling device 1 through the exhaust duct 19.
  • a dust remover for removing dust contained in the air sucked by the blower 20 may be provided on the upstream side of the blower 20. Further, the air sucked by the blower 20 may be supplied to an exhaust heat recovery device (boiler or the like) for recovering the heat of the air.
  • the cooling device 1 includes a seal portion 23 for suppressing leakage of cooling air between the annular hopper 2 that rotates and the hood 18 that does not rotate.
  • the seal portion 23 shown in FIG. 1 includes an annular tub portion 24 provided on the inner peripheral wall 3 and the upper portion of the outer peripheral wall 4, and a circumferential sealing plate 26 attached to the hood 18.
  • a predetermined amount of the sealing liquid 25 (for example, water) is supplied to the tub portion 24, and the lower end portion of the sealing plate 26 is immersed in the sealing liquid 25 so that the upper portion of the annular hopper 2 and the hood 18 are formed. The space is sealed.
  • the cooling device 1 configured in this way, while the annular hopper 2 rotates around the central axis O together with the rotary table 12, the high-temperature sintered ore 5 passes through the supply chute 27 from above to the annular hopper 2. It is supplied to the internal space 6.
  • the sinter 5 is deposited on the rotary table 12 and in the internal space 6 of the annular hopper 2 while forming a circumferential layer.
  • the sinter 5 deposited in the internal space 6 is taken into the annular hopper 2 by the air cooling unit 10 and cooled by the air flowing upward in the annular hopper 2.
  • the sinter 5 deposited on the rotary table 12 below the annular hopper 2 is guided radially outward by the scraper 30 as the annular hopper 2 and the rotary table 12 rotate, and the sinter 5 is guided to the lower opening 2a of the annular hopper 2. It is discharged from the annular hopper 2 via an open portion formed between the rotary table 12 and the rotary table 12.
  • the sinter 5 discharged by the scraper 30 is conveyed by a conveying means such as a belt conveyor 29.
  • the sinter 5 As described above, as the sinter 5 is discharged from the annular hopper 2, the sinter 5 accumulated in the annular hopper 2 descends.
  • the annular hopper 2 and the rotary table 12 are operated several times (for example, from 5 to 5) until the sinter 5 supplied from the supply chute 27 to the annular hopper 2 is discharged from below the annular hopper 2 by the scraper 30. 15 times) Rotate.
  • the scraper 30 is provided so that the tip surface 31 of the scraper 30 faces the inner peripheral wall surface 3a of the annular hopper 2.
  • the scraper 30 may be provided so as to extend along the radial direction of the annular hopper 2 (or the rotary table 12) in a plan view, or the rotation of the annular hopper 2 and the rotary table 12 with respect to the radial direction. It may be arranged so as to be inclined in the direction. In a plan view, the inclination angle ⁇ (see FIG. 2) of the scraper 30 with respect to the radial direction may be, for example, 15 degrees or more and 45 degrees or less.
  • the direction of the inclination angle ⁇ (where ⁇ is 15 degrees or more and 45 degrees or less) with respect to the radial direction is defined as a direction according to the radial direction.
  • the vertical direction is a direction along the vertical direction, which is the same direction as the direction of the central axis O.
  • FIG. 3 and 4 are partial schematic cross-sectional views of the cooling device according to the embodiment, respectively, and schematically cross-sectional views orthogonal to the length direction of the scraper 30 (that is, AA cross-section of FIG. 2). It is a figure which shows.
  • FIG. 5 is a diagram schematically showing a CC cross section of FIG.
  • FIG. 6 is a schematic view showing the configuration of the cooling device 1 according to the embodiment, and is a diagram schematically showing a cross section orthogonal to the length direction of the scraper 30.
  • the cooling device 1 includes a nozzle 50 provided at a position below the lower opening 2a of the annular hopper 2 and above the rotary table 12.
  • the nozzle 50 is configured to discharge a cooling fluid (for example, water) from the nozzle hole 52.
  • the nozzle 50 is supported by the scraper 30.
  • the scrapers 30 shown in FIGS. 3 to 5 are provided so as to face each other in the rotation direction (circumferential direction) of the rotary table 12 with the upper side wall portion 32 and the lower side wall portion 35 provided so as to face each other in the vertical direction.
  • the upstream wall portion 33 and the downstream wall portion 34 are included.
  • the upper side wall portion 32 is connected to the upstream wall portion 33 and the downstream wall portion 34 at the upstream side end portion and the downstream side end portion, respectively, and the lower side wall portion 35 is connected to the downstream wall portion 34 at the downstream side end portion.
  • the inner space 36 is formed by the inner surfaces of the upper side wall portion 32, the downstream wall portion 34, and the lower side wall portion 35.
  • the outer surface of the upper side wall portion 32 forms the upper surface 30a of the scraper 30, and the outer surface of the downstream wall portion 34 forms the downstream end surface 30b of the scraper 30.
  • the scraper 30 shown in FIGS. 3 and 4 is provided with a liner 40 for protecting the scraper 30 from wear due to friction with the sintered ore.
  • the liner 40 shown in FIGS. 3 and 4 includes an upstream liner 42 provided on the upstream side of the upstream wall portion 33 and an upper liner 41 provided above the upper side wall portion 32.
  • the upper liner 41 shown in FIG. 4 is provided at a distance from the upper surface 30a (upper side wall portion 32) of the scraper 30 in the vertical direction.
  • the nozzle 50 is provided so that a part of the nozzle 50 is located in the inner space of the scraper 30, and the nozzle hole 52 is provided in the rotation direction (circumference) of the rotary table 12. In the direction), it faces the downstream side.
  • the cooling fluid from the nozzle 50 is discharged toward the downstream side of the downstream end surface 30b through the opening 37 provided in the downstream end surface 30b of the scraper 30.
  • the nozzle 50 is provided on the upper surface 30a of the scraper 30 at a position upstream of the downstream end surface 30b of the scraper 30, and the nozzle hole 52 is a rotation of the rotary table 12. It faces the downstream side in the direction (circumferential direction).
  • the cooling fluid discharged from the nozzle 50 stays on the upper surface 30a of the scraper 30 at least temporarily.
  • the nozzle 50 capable of discharging the cooling fluid is provided at a position below the lower opening 2a of the annular hopper 2 and above the rotary table 12, the inside of the annular hopper 2 After being cooled by air, the cooling fluid from the nozzle can be supplied to the sintered ore 5 discharged from the lower opening 2a. That is, since the cooling fluid from the nozzle 50 was supplied to the sinter 5 whose temperature was lowered by being cooled by air to further cool the sinter, the sinter was baked while suppressing the occurrence of cracks due to quenching. The sinter 5 can be sufficiently cooled. Therefore, the cooling effect can be improved while suppressing the deterioration of the product quality. Thereby, for example, equipment such as a belt conveyor 29 for transporting the cooled sinter 5 can be protected from high temperature, or the processing speed by the cooling device 1 to protect these equipment from high temperature. The need to reduce can be reduced.
  • the powder of the sintered ore containing the discharged cooling fluid acts as a cooling air intake port (louver or the like) of the annular hopper 2. It may be sucked through and cause clogging of the cooling air intake port.
  • the nozzle 50 is located below the lower opening 2a of the annular hopper 2 (that is, radially inside the annular hopper 2 and radially outside the inner peripheral wall 3). Since the cooling fluid is discharged, clogging of the cooling air intake port as described above is unlikely to occur.
  • the sinter 5 since the sinter 5 is cooled by using a cooling fluid such as water, the sinter 5 can be cooled more efficiently.
  • the equipment can be made more compact than the case where the same cooling effect can be obtained only by air cooling, or the energy required for operating the cooling device can be reduced.
  • the above-mentioned cooling device 1 has a simple configuration using the nozzle 50, if there is an existing cooling device, the nozzle 50 is additionally added to the existing cooling device to relate to the above-described embodiment.
  • the cooling device 1 can be obtained relatively easily.
  • the nozzle 50 can be provided in a wide range in the radial direction below the lower opening 2a of the annular hopper 2 and above the rotary table 12.
  • the inner peripheral wall surface 3a and the outer peripheral wall surface 4a are combined.
  • the cooling fluid can be supplied over a wide range in the radial direction including the central region between them, and the sinter 5 can be cooled more effectively.
  • the nozzle 50 is configured to supply the cooling fluid downstream of the scraper 30 or above the scraper 30 in the direction of rotation of the rotary table 12.
  • the nozzle 50 supplies the cooling fluid to the downstream side of the scraper 30.
  • the nozzle 50 supplies the cooling fluid above the scraper 30.
  • the sinter 5 in the internal space 6 of the annular hopper 2 moves to the downstream side in the rotation direction with respect to the scraper 30 as the rotary table 12 rotates. Then, as shown in FIG. 6, when the sinter 5 located above the scraper 30 passes the position of the downstream end surface 30b of the scraper 30 in the circumferential direction, it passes from the upper surface 30a of the scraper 30 to the upper surface of the rotary table 12. (Ie, move to the downstream side of the scraper 30). In FIG. 6, the sintered ore 5 after descending from the upper surface 30a of the scraper 30 toward the upper surface of the rotary table 12 is shown by a broken line.
  • the sintered ore 5 in the vicinity of the downstream end surface 30b of the scraper 30 moves to the vicinity of the upstream side of the scraper 30 when the rotary table 12 rotates about once, and is moved outward in the radial direction by the scraper 30. It is scraped out.
  • the nozzle 50 for discharging the cooling fluid is provided on the downstream side of the scraper 30 or above the scraper 30, the cooling fluid is supplied to the sinter 5 and then the firing is performed. It is possible to secure a relatively long time for the ore to be scraped to the outside of the rotary table 12 by the scraper. That is, the contact time between the sinter 5 and the cooling fluid can be secured for a relatively long time, whereby the cooling effect of the sinter 5 by the cooling fluid can be enhanced.
  • the nozzle 50 is configured to supply the cooling fluid to the unloading region Rd (see FIG. 6) on the downstream side of the scraper 30 in the direction of rotation of the rotary table 12.
  • the unloading region Rd may be a region in which the sinter 5 deposited above the scraper 30 can move downward.
  • the unloading region Rd is within a range in which the distance from the downstream end surface 30b of the scraper 30 in the circumferential direction (rotation direction of the rotary table 12) is equal to or less than the height Hs (see FIG. 6) in the vertical direction of the scraper 30. You may.
  • the unloading region in the cooling device 1 is the region immediately after the scraper 30 on the downstream side of the scraper 30, and the sinter 5 resting on the upper surface of the scraper 30 moves downward toward the upper surface of the rotary table 12.
  • the area since the cooling fluid is supplied to the unloading region Rd in which the sinter 5 moves downward, the region in which the sinter 5 is stationary in the vertical direction (for example, It is easier to supply the cooling fluid to a larger amount of sinter than in the case of supplying the cooling fluid to the region downstream of the unloading region Rd). Further, since the cooling fluid is supplied to the region immediately after the scraper 30, the contact time between the sinter 5 and the cooling fluid can be secured relatively long. Thereby, the sinter 5 can be cooled more effectively.
  • the nozzle hole 52 (nozzle 50) may be provided at a position where the distance Hn (see FIGS. 3 and 4) in the vertical direction from the lower surface of the scraper 30 is Hs / 2 or more.
  • the nozzle 50 since the nozzle 50 is provided at a relatively high position, most of the sinter 5 moving downward can pass in the vicinity of the nozzle 50. This makes it easier to supply the cooling fluid to many sinters, and the sinter 5 can be cooled more effectively.
  • the nozzle 50 is configured to supply a cooling fluid above the scraper 30.
  • the cooling fluid discharged from the nozzle 50 may stay on the upper surface 30a of the scraper 30 at least temporarily.
  • the cooling fluid is supplied above the scraper 30, the cooling fluid is supplied to the sinter 5 which is deposited above the scraper 30 and immediately moves downward as the rotary table 12 rotates. Can be supplied. Therefore, it is easier to supply the cooling fluid to a larger amount of the sinter as compared with the case where the cooling fluid is supplied to the region where the sinter 5 is stationary in the vertical direction. Further, since the cooling fluid is supplied above the scraper 30, the contact time between the sinter 5 and the cooling fluid can be secured for a relatively long time. Thereby, the sinter 5 can be cooled more effectively.
  • the nozzle 50 is supported by the scraper 30, as shown, for example, in FIGS. 3 and 4.
  • the scraper 30 usually extends along a radial direction or a direction according to the radial direction, and has an upper surface 30a and a downstream end surface 30b.
  • the cooling fluid can be discharged to the region above the scraper 30 or immediately after (downstream) the scraper in the rotational direction.
  • Nozzle 50 can be appropriately provided by using the scraper 30.
  • the nozzle 50 since the nozzle 50 is supported by the scraper 30, the nozzle 50 can be moved together with the scraper 30 with respect to the annular hopper 2 and the rotary table 12 (for example, the nozzle 50 can be inserted and removed in the length direction of the scraper 30). The maintenance of 50 can be easily performed.
  • the nozzle 50 is configured to discharge the cooling fluid through an opening provided in the downstream end face 30b of the scraper 30.
  • the nozzle 50 is configured to discharge the cooling fluid through an opening 37 provided in the downstream end face 30b (downstream wall 34) of the scraper 30.
  • the nozzle hole 52 of the nozzle 50 is located inside the opening 37 provided in the downstream wall portion 34 of the scraper 30, and the cooling fluid from the nozzle hole 52 is discharged through the opening 37.
  • the entire nozzle 50 including the nozzle hole 52 is located in the inner space 36 of the scraper so that the cooling fluid from the nozzle hole 52 located in the inner space 36 is discharged through the opening 37. It may be.
  • the cooling fluid from the nozzle 50 is discharged through the opening 37 provided in the downstream end surface 30b of the scraper 30, so that the contact between the nozzle 50 and the sinter 5 is suppressed. Can be done. As a result, it is possible to suppress damage or wear of the nozzle 50, or blockage of the nozzle 50 due to adhesion of powder such as sintered ore 5.
  • the nozzle 50 may be provided above the scraper 30, for example, as shown in FIG.
  • the nozzle 50 is provided at a position above the scraper 30, the nozzle 50 can be easily installed and the nozzle 50 can be easily inspected.
  • the nozzle 50 may be provided at a position downstream of the downstream end surface of the scraper 30 in the rotation direction of the rotary table 12. Also, in some embodiments, the nozzle 50 may be supported by a structure other than the scraper 30.
  • the cooling device 1 includes a protective cover 60 provided to cover the nozzle 50 from above.
  • the upstream liner 42 (liner 40) provided above the scraper 30 functions as the protective cover 60 described above.
  • the protective cover 60 that covers the nozzle 50 from above since the protective cover 60 that covers the nozzle 50 from above is provided, the sinter 5 located above the nozzle 50 (for example, the sinter 5 above the scraper 30) comes into contact with the nozzle 50. It is possible to suppress the nozzle 50 and protect the nozzle 50 from the impact and wear caused by the sinter 5.
  • the cooling device 1 includes a supply pipe 54 for supplying the cooling fluid to the nozzle 50, and at least a part of the supply pipe 54 is provided inside the scraper 30.
  • a supply pipe 54 for supplying the cooling fluid to the nozzle 50, and at least a part of the supply pipe 54 is provided inside the scraper 30.
  • at least a portion of the supply pipe 54 is provided in the inner space 36 of the scraper 30.
  • at least a portion of the supply pipe 54 that is provided to overlap the rotary table 12 in plan view is provided inside the scraper 30.
  • the supply pipe 54 for supplying the cooling fluid to the nozzle 50 since at least a part of the supply pipe 54 for supplying the cooling fluid to the nozzle 50 is provided inside the scraper 30, it is possible to prevent the sinter 5 from coming into contact with the supply pipe 54. be able to. Therefore, the supply pipe 54 can be protected from the impact and wear caused by the sinter 5. Further, since at least a part of the supply pipe 54 for supplying the cooling fluid to the nozzle 50 is provided inside the scraper 30, a member provided in the vicinity of the scraper 30 (for example, the scraper 30). It is possible to avoid interference with the member for supporting the).
  • FIG. 7 to 10 are partial schematic cross-sectional views of the annular hopper 2 (sedimentation tank) constituting the sinter cooling device 1 according to the embodiment, respectively, and correspond to the BB cross section of FIG. It is a figure to do.
  • FIG. 11 is a schematic view of the cooling device 1 according to the embodiment in a plan view.
  • the inner louver 7 and the outer louver 8 are used as air intake ports for the inner space 6 of the annular hopper 2 as in the embodiments shown in FIGS. 1A and 1B. , Central louver 9, and ventilation duct 11 (not shown in FIGS. 7 and 8, see FIG. 1B).
  • the inner louver 7 and the outer louver 8 are included as the air intake ports of the annular hopper 2 into the internal space 6, but the central louver 9 and the ventilation duct 11 are not included.
  • the cooling device 1 includes a plurality of nozzles 50 arranged along the radial direction, for example, as shown in FIGS. 7 to 10.
  • the nozzle 50 can be provided over a wide range in the radial direction.
  • the inner peripheral wall surface 3a and the outer peripheral wall surface 4a are combined.
  • the cooling fluid can be supplied over a wide range in the radial direction including the central region between them, and the sinter 5 can be cooled more effectively.
  • the plurality of nozzles 50 are configured such that the discharge amount of the cooling fluid differs depending on the radial position.
  • a temperature distribution in the radial direction may occur in the sinter 5 in the annular hopper 2.
  • the temperature of the sinter 5 tends to be relatively low in the vicinity of the louvers (inner louver 7, outer louver 8 and central louver 9) through which cooling air easily flows.
  • the discharge amount of the cooling fluid is set to that of the sintered ore 5.
  • the plurality of nozzles 50 are located at the lower end of the annular hopper 2 in a central region of the opening region A1 from which the sintered ore 5 is discharged, including the central position Pc of the opening region A1 in the radial direction.
  • discharge flow rate of the cooling fluid in Rc is, among the opening area A1, configured to be larger than the discharge flow rate of the cooling fluid in the end region R E1, R E2 positioned on both sides of the center region Rc in the radial direction (See FIGS. 7 to 10).
  • the opening area A1 is an area occupied by the lower opening 2a that extends to the position of the lower end 4b of the outer peripheral wall surface 4a of the annular hopper 2 in the vertical direction.
  • the opening region A1 has a diameter and a region A1a extending between the inner peripheral wall surface 3a of the inner peripheral wall 3 and the inner peripheral side end surface 9a of the central louver 9 in the radial direction.
  • the region A1b extending between the outer peripheral wall surface 4a of the outer peripheral wall 4 and the outer peripheral side end surface 9b of the central louver 9 and the region A1b extending in the direction is included.
  • the opening region A1 is a region extending between the outer peripheral wall surface 4a of the outer peripheral wall 4 and the inner peripheral wall surface 3a of the inner peripheral wall 3 in the radial direction.
  • the central region Rc in the radial direction Upon cooling the sintered ore 5 in the annular hopper 2 with the cooling air, of the opening area A1 of the lower end of the annular hopper 2, the central region Rc in the radial direction, than in the end regions R E1, R E2 in the radial direction
  • the temperature of the sintered ore 5 tends to be high.
  • the discharge flow rate of the cooling fluid in the central region Rc of the opening region A1 is set to be larger than the discharge flow rate of the cooling fluid in the end regions RE1 and RE2. ,
  • the temperature of the sintered ore 5 after cooling can be made uniform in the radial direction.
  • a plurality of nozzles 50 may be provided at substantially equal intervals in the radial direction (or in the longitudinal direction of the scraper 30).
  • the discharge amount of the cooling fluid may be adjusted according to the radial position by making the nozzle diameters of the plurality of nozzles 50 different.
  • the nozzle diameter of the nozzle 50 provided at the radial position for example, the above-mentioned central region Rc
  • the discharge amount of the cooling fluid should be relatively large is set to be relatively large, and the discharge amount of the cooling fluid is relatively small.
  • the nozzle diameter of the nozzle 50 provided at the power radial position (for example, the above-mentioned end regions RE1 and RE2 ) may be set to be relatively small.
  • the cooling fluid is connected to the plurality of nozzles.
  • a plurality of supply lines 64a to 64c and a plurality of valves 65a to 65c provided corresponding to the supply lines 64a to 64c are provided, and by adjusting the valves 65a to 65c, a plurality of nozzles 50 can be provided. The discharge amount from each may be adjusted.
  • the supply lines 64a to 64c are provided so as to branch from the supply line 62, and the plurality of nozzles 50 located in the central region Rc receive the cooling fluid from the supply line 64b.
  • the cooling fluid is supplied from the supply line 64c and the supply line 64a to the plurality of nozzles 50 located in the end regions R E1 and R E2 on both sides, respectively.
  • a single supply line 64 and valve 65 to a plurality of nozzles 50 belonging to the same region may be provided separately so as to correspond to each of the plurality of nozzles 50.
  • the discharge amount of the cooling fluid may be adjusted according to the radial position by making the number densities of the plurality of nozzles 50 different according to the radial position.
  • the number density of nozzles 50 in the central region Rc is larger than the number density of nozzles 50 in the end regions RE1 and RE2.
  • the discharge flow rate of the cooling fluid in the central region Rc can be adjusted to be larger than the discharge flow rate of the cooling fluid in the end regions RE1 and RE2.
  • the sinter cooling device 1 is a flow rate adjusting unit configured to adjust the discharge flow rate of the cooling fluid from the nozzle 50 according to the rotation phase of the annular hopper 2 or the rotary table 12. (Not shown).
  • the flow rate adjusting unit is configured to adjust the discharge flow rate of the cooling fluid from the nozzle 50 based on the tachometer for detecting the rotation phase of the annular hopper 2 or the rotary table 12 and the detection result by the tachometer.
  • the controller and the controller may be included.
  • the discharge flow rate of the cooling fluid from the nozzle 50 may be adjustable via a valve provided in the supply line for supplying the cooling fluid to the nozzle 50.
  • a temperature distribution in the circumferential direction may occur in the sinter 5 in the annular hopper 2, and this temperature distribution is arranged in the annular hopper 2. It tends to depend on the position of the structure.
  • the circumferential position of the structure in the annular hopper 2 and the rotational phase (for example, 0 to 360 degrees) of the annular hopper 2 or the rotary table 12 are related to each other.
  • a plurality of ventilation ducts 11 are provided inside the annular hopper 2 at intervals in the circumferential direction. Therefore, in the circumferential direction, there may be a difference in the temperature of the sinter 5 between the position near the ventilation duct 11 and the position between the ventilation duct 11 and the ventilation duct 11.
  • the discharge flow rate of the cooling fluid can be adjusted according to the rotation phase of the annular hopper 2. Therefore, for example, the discharge amount of the cooling fluid is set to the position of the structure in the annular hopper 2. By appropriately adjusting the temperature accordingly, the temperature of the sintered ore 5 after cooling can be made uniform in the circumferential direction.
  • the sinter cooling device (1) is A depository (for example, the above-mentioned annular hopper 2) having an internal space (6) for receiving the sinter (5) and a lower opening (2a) capable of discharging the sinter.
  • a rotary table (12) arranged below the deposit tank at a distance from the lower opening and configured to rotate together with the deposit tank.
  • a scraper (30) provided between the deposit tank and the rotary table, and An exhaust hood (for example, the hood 18 described above) provided above the deposit tank so as to communicate with the internal space of the deposit tank.
  • a nozzle (50) provided below the lower opening and above the rotary table and configured to discharge the cooling fluid. To be equipped.
  • the nozzle capable of discharging the cooling fluid is provided below the lower opening of the deposit tank and above the rotary table, after being cooled by air inside the deposit tank.
  • the cooling fluid from the nozzle can be supplied to the sintered ore discharged from the lower opening. That is, since the cooling fluid from the nozzle is supplied to the sinter that has been cooled by air and the temperature has dropped to further cool the sinter, the sinter is further cooled while suppressing the occurrence of cracks due to quenching. Can be cooled sufficiently. Therefore, the cooling effect can be improved while suppressing the deterioration of the product quality.
  • the nozzle is configured to supply the cooling fluid to the downstream side of the scraper or above the scraper in the rotation direction of the rotary table.
  • the sinter is supplied to the sinter by the scraper after the cooling fluid is supplied to the sinter. It is possible to secure a relatively long time until it is scraped to the outside of the turntable. That is, the contact time between the sinter and the cooling fluid can be secured for a relatively long time, and thus the cooling effect of the sinter by the cooling fluid can be enhanced.
  • the nozzle is configured to supply the cooling fluid to the unloading region (Rd) on the downstream side of the scraper in the rotation direction of the rotary table.
  • the unloading area in the cooling device is the area immediately after the scraper on the downstream side of the scraper, and the sinter on the upper surface of the scraper moves downward toward the upper surface of the rotary table.
  • the cooling fluid is supplied to the region where the sinter moves downward, the region where the sinter 5 is stationary in the vertical direction (for example, unloading) It is easier to supply the cooling fluid to more sinters than when the cooling fluid is supplied to the region downstream of the region). Further, since the cooling fluid is supplied to the region immediately after the scraper, the contact time between the sinter and the cooling fluid can be secured relatively long. This makes it possible to cool the sinter more effectively.
  • the nozzle is configured to supply the cooling fluid to a region where the sinter deposited above the scraper can move downward.
  • the sinter deposited above the scraper supplies the cooling fluid to the region where it can move downward (the region immediately after the scraper in the rotational direction), so that the sinter is performed. It is easier to supply the cooling fluid to a larger amount of sinter as compared with the case where the cooling fluid is supplied to the region where the ore 5 is stationary in the vertical direction. Further, since the cooling fluid is supplied to the region immediately after the scraper, the contact time between the sinter and the cooling fluid can be secured relatively long. This makes it possible to cool the sinter more effectively.
  • the nozzle is configured to supply the cooling fluid within a range in which the distance in the circumferential direction from the downstream end surface of the scraper is Hs or less, where Hs is the height of the scraper.
  • the region where the distance from the downstream end face of the scraper is within the range of Hs or less that is, the region where the sinter deposited above the scraper can move downward (in the rotation direction). Since the cooling fluid is supplied to the region immediately after the scraper), more cooling fluid is cooled than when the cooling fluid is supplied to the region where the sinter 5 is stationary in the vertical direction. Easy to supply fluid. Further, since the cooling fluid is supplied to the region immediately after the scraper, the contact time between the sinter and the cooling fluid can be secured relatively long. This makes it possible to cool the sinter more effectively.
  • the scraper In a rotary cooling device, the scraper usually extends along a radial or radial direction and has an upper surface and a downstream end surface.
  • the cooling fluid can be discharged to the area above the scraper or immediately after (downstream) the scraper in the rotation direction.
  • the nozzle can be appropriately provided by utilizing a scraper.
  • the nozzle is configured to discharge the cooling fluid through an opening provided in the downstream end surface (30b) of the scraper.
  • the cooling fluid from the nozzle is discharged through the opening provided on the downstream end surface of the scraper, so that the contact between the nozzle and the sinter can be suppressed.
  • the nozzle it is possible to suppress the nozzle from being damaged or worn, or the nozzle from being blocked due to the adhesion of powder such as sinter.
  • the nozzle is provided above the scraper or at a position downstream of the scraper's downstream end surface in the rotational direction of the rotary table.
  • the nozzle since the nozzle is provided above the scraper or at a position downstream of the downstream end surface of the scraper, the nozzle can be easily installed and the nozzle can be easily inspected. It can be carried out.
  • the sinter cooling device A protective cover (60) provided so as to cover the nozzle from above is provided.
  • the protective cover that covers the nozzle from above since the protective cover that covers the nozzle from above is provided, it is possible to suppress the sinter located above the nozzle from coming into contact with the nozzle, and the impact of the sinter or the impact caused by the sinter can be prevented.
  • the nozzle can be protected from wear.
  • the sinter cooling device A supply pipe (54) for supplying the cooling fluid to the nozzle is provided. At least a part of the supply pipe is provided inside the scraper.
  • At least a part of the supply pipe for supplying the cooling fluid to the nozzle is provided inside the scraper, so that it is possible to prevent the sinter from coming into contact with the supply pipe. It can protect the supply pipe from the impact and wear caused by the sinter.
  • the sinter cooling device It includes a plurality of the nozzles arranged along the radial direction and configured so that the discharge amount of the cooling fluid differs depending on the radial position.
  • the sinter in the sedimentary tank may have a temperature distribution in the radial direction.
  • the discharge amount of the cooling fluid can be adjusted to that of the sintered ore.
  • the discharge amount of the cooling fluid can be appropriately adjusted according to the radial position by the plurality of supply lines and the valves provided in each of the plurality of supply lines.
  • the number density of the plurality of nozzles differs depending on the radial position.
  • the number densities of the plurality of nozzles are made different according to the radial positions. Therefore, by appropriately setting the number densities of the nozzles at each radial position, the cooling fluid can be used.
  • the discharge amount can be appropriately adjusted according to the radial position. Thereby, by appropriately adjusting the discharge amount of the cooling fluid according to the temperature distribution of the sinter, the temperature of the sinter after cooling can be made uniform in the radial direction.
  • the plurality of nozzles are used for cooling in the central region (Rc) including the central position of the opening region in the radial direction in the opening region (A1) from which the sintered ore is discharged at the lower end of the deposit tank.
  • the discharge flow rate of the fluid is configured to be larger than the discharge flow rate of the cooling fluid in the end regions (RE1 , RE2 ) located on both sides of the central region in the radial direction in the opening region.
  • the sinter in the sinter When the sinter in the sinter is cooled with cooling air, the sinter in the sinter may have a radial temperature distribution. In the region, the temperature of the sinter tends to be higher than in the radial end region.
  • the discharge flow rate of the cooling fluid in the central region of the opening region is set to be larger than the discharge flow rate of the cooling fluid in the end region.
  • the temperature of the ore can be made uniform in the radial direction.
  • the sinter cooling device is provided so as to adjust the discharge flow rate of the cooling fluid from the nozzle according to the rotation phase of the deposit tank.
  • the sinter in the sedimentary tank When the sinter in the sedimentary tank is cooled with cooling air, the sinter in the sedimentary tank may have a temperature distribution in the circumferential direction, and this temperature distribution is located at the position of the structure placed in the sedimentary tank. It tends to be compliant.
  • the discharge flow rate of the cooling fluid can be adjusted according to the rotation phase of the sedimentation tank. Therefore, for example, the discharge amount of the cooling fluid is set to the position of the structure in the sedimentation tank. By appropriately adjusting the temperature accordingly, the temperature of the sintered ore after cooling can be made uniform in the circumferential direction.
  • the present invention is not limited to the above-described embodiments, and includes a modified form of the above-described embodiments and a combination of these embodiments as appropriate.
  • the expression representing a shape such as a quadrangular shape or a cylindrical shape not only represents a shape such as a quadrangular shape or a cylindrical shape in a geometrically strict sense, but also within a range in which the same effect can be obtained.
  • the shape including the uneven portion, the chamfered portion, etc. shall also be represented.
  • the expression “comprising”, “including”, or “having” one component is not an exclusive expression excluding the existence of another component.
  • Cooling device 2 Circular hopper 2a Lower opening 3 Inner peripheral wall 3a Inner peripheral wall surface 4 Outer wall 4a Outer wall surface 4b Lower end 5 Sintered ore 6 Inner space 7 Inner louver 8 Outer louver 9 Central louver 9a Inner peripheral side end face 9b Outer peripheral side end face 10 Air cooling part 11 Ventilation duct 12 Rotating table 13 Foundation 14 Center bearing 15 Rail 16 Support roller 17 Drive motor 18 Hood 19 Exhaust duct 20 Blower 21 Frame 22 Frame 23 Seal part 24 Oke part 25 Sealing liquid 26 Sealing plate 27 Supply chute 29 Belt conveyor 30 Scraper 30a Upper surface 30b Downstream end surface 31 Tip surface 32 Upper side wall 33 Upstream wall 34 Downstream wall 35 Lower side wall 36 Inner space 37 Opening 40 Liner 41 Upper liner 42 Upstream liner 50 Nozzle 52 Nozzle hole 54 Supply Tube 60 Protective cover 62 Supply line 64 (64a to 64c) Supply line 65 (65a to 65c) Valve A1 Opening area O Central axis Pc Center position R E1 End area R E2 End area Rc Central area Rd Unload

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Furnace Details (AREA)

Abstract

This cooling device for sintered ore comprises: a deposition tank having an internal space for receiving sintered ore, and a lower opening through which the sintered ore can be discharged; a rotary table which is disposed below the deposition tank at an interval from the lower opening, and configured to rotate together with the deposition tank; a scraper provided between the deposition tank and the rotary table; an exhaust hood provided above the deposition tank so as to communicate with the internal space of the deposition tank; and a nozzle which is provided at a position below the lower opening and above the rotary table, and configured to discharge a cooling fluid.

Description

焼結鉱の冷却装置Sinter cooling device
 本開示は、焼結鉱の冷却装置に関する。 This disclosure relates to a sinter cooling device.
 焼結機で生成される高温の焼結鉱は、冷却後、コンベヤ等によって高炉に搬送される。高温の焼結鉱を冷却するために、環状堆積槽を含む回転式の冷却装置を用い、堆積槽内に空気を流通させることで焼結鉱を冷却することがある。このような冷却装置の冷却効果を高めるために、冷却流体(冷却水等)を併用することが提案されている。 The high-temperature sinter produced by the sinter is cooled and then transported to the blast furnace by a conveyor or the like. In order to cool the high temperature sinter, a rotary cooling device including an annular sedimentation tank may be used to cool the sinter by circulating air in the sedimentation tank. In order to enhance the cooling effect of such a cooling device, it has been proposed to use a cooling fluid (cooling water or the like) in combination.
 特許文献1には、回転テーブルと、回転テーブルの上方に設けられる環状の冷却槽と、冷却槽の下部に設けられる冷却空気導入口(ルーバ)と、冷却空気を吸引するためのブロワと、を備えた焼結鉱の冷却装置が開示されている。この冷却装置では、ブロワによって空気を吸引することにより、冷却空気導入口を介して冷却槽の内部に冷却空気が導入され、冷却槽内を上方に向けて冷却空気が流れることで、冷却槽内部に供給された焼結鉱が冷却されるようになっている。また、特許文献1に記載の冷却装置では、冷却能力を向上するため、冷却槽の上方から、冷却槽の内周壁の内面側へ冷却水が供給されるようになっている。 Patent Document 1 describes a rotary table, an annular cooling tank provided above the rotary table, a cooling air introduction port (louver) provided at the lower part of the cooling tank, and a blower for sucking cooling air. A cooling device for the sintered ore provided is disclosed. In this cooling device, by sucking air with a blower, cooling air is introduced into the cooling tank through the cooling air introduction port, and the cooling air flows upward in the cooling tank, so that the inside of the cooling tank is inside. The sintered ore supplied to is cooled. Further, in the cooling device described in Patent Document 1, in order to improve the cooling capacity, cooling water is supplied from above the cooling tank to the inner surface side of the inner peripheral wall of the cooling tank.
特開2013-79766号公報Japanese Unexamined Patent Publication No. 2013-79766
 特許文献1に記載されるように、焼結鉱の冷却に冷却空気と冷却水を併用することで冷却効果を高めることができると考えられる。一方、例えば特許文献1に記載されるように、堆積槽の上方から冷却水を供給すると、堆積槽上部の比較的高温の焼結鉱に冷却水が供給されることになり、この場合、急冷により焼結鉱にクラックが生じやすくなり、このため、高炉で粉化して製品品質が悪化するおそれがある。 As described in Patent Document 1, it is considered that the cooling effect can be enhanced by using cooling air and cooling water together for cooling the sinter. On the other hand, for example, as described in Patent Document 1, when the cooling water is supplied from above the sedimentary tank, the cooling water is supplied to the relatively high temperature sinter at the upper part of the sedimentary tank. In this case, the cooling water is rapidly cooled. As a result, cracks are likely to occur in the sinter, which may result in pulverization in a blast furnace and deterioration of product quality.
 上述の事情に鑑みて、本発明の少なくとも一実施形態は、製品品質の低下を抑制しながら冷却効果を向上可能な焼結鉱の冷却装置を提供することを目的とする。 In view of the above circumstances, at least one embodiment of the present invention aims to provide a sinter cooling device capable of improving the cooling effect while suppressing deterioration of product quality.
 本発明の少なくとも一実施形態に係る焼結鉱の冷却装置は、
 焼結鉱を受け入れるための内部空間、および、前記焼結鉱を排出可能な下部開口を有する堆積槽と、
 前記堆積槽の下方に前記下部開口から間隔を空けて配置され、前記堆積槽とともに回転するように構成された回転テーブルと、
 前記堆積槽と前記回転テーブルとの間に設けられたスクレーパと、
 前記堆積槽の前記内部空間に連通するように前記堆積槽の上方に設けられる排気フードと、
 前記下部開口の下方、かつ、前記回転テーブルの上方の位置に設けられ、冷却流体を吐出するように構成されたノズルと、
を備える。
The sinter cooling device according to at least one embodiment of the present invention
An internal space for receiving the sinter and a sedimentary tank with a lower opening capable of discharging the sinter.
A rotary table, which is arranged below the deposit tank at a distance from the lower opening and is configured to rotate together with the deposit tank.
A scraper provided between the deposit tank and the rotary table,
An exhaust hood provided above the deposit tank so as to communicate with the internal space of the deposit tank.
A nozzle provided below the lower opening and above the rotary table and configured to discharge the cooling fluid.
To be equipped.
 本発明の少なくとも一実施形態によれば、製品品質の低下を抑制しながら冷却効果を向上可能な焼結鉱の冷却装置が提供される。 According to at least one embodiment of the present invention, there is provided a sinter cooling device capable of improving the cooling effect while suppressing deterioration of product quality.
一実施形態に係る焼結鉱の冷却装置の概略断面図である。It is a schematic cross-sectional view of the sinter cooling apparatus which concerns on one Embodiment. 図1Aに示す冷却装置を構成する空気冷却部の平面視における概略図である。It is the schematic in the plan view of the air cooling part which constitutes the cooling device shown in FIG. 1A. 図1Aに示す冷却装置の下部開口部の断面を平面視した模式図である。FIG. 5 is a schematic view of a cross section of a lower opening of the cooling device shown in FIG. 1A in a plan view. 一実施形態に係る冷却装置の部分的な概略断面図である。It is a partial schematic sectional view of the cooling apparatus which concerns on one Embodiment. 一実施形態に係る冷却装置の部分的な概略断面図である。It is a partial schematic sectional view of the cooling apparatus which concerns on one Embodiment. 図3のC-C断面を概略的に示す図である。It is a figure which shows schematic the CC cross section of FIG. 一実施形態に係る冷却装置1の構成を示す模式図である。It is a schematic diagram which shows the structure of the cooling device 1 which concerns on one Embodiment. 一実施形態に係る環状ホッパ(堆積槽)の部分的な概略断面図である。It is a partial schematic sectional view of the annular hopper (sedimentation tank) which concerns on one Embodiment. 一実施形態に係る環状ホッパ(堆積槽)の部分的な概略断面図である。It is a partial schematic sectional view of the annular hopper (sedimentation tank) which concerns on one Embodiment. 一実施形態に係る環状ホッパ(堆積槽)の部分的な概略断面図である。It is a partial schematic sectional view of the annular hopper (sedimentation tank) which concerns on one Embodiment. 一実施形態に係る環状ホッパ(堆積槽)の部分的な概略断面図である。It is a partial schematic sectional view of the annular hopper (sedimentation tank) which concerns on one Embodiment. 一実施形態に係る冷却装置の平面視における模式図である。It is a schematic diagram in the plan view of the cooling device which concerns on one Embodiment.
 以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。 Hereinafter, some embodiments of the present invention will be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, etc. of the components described as embodiments or shown in the drawings are not intended to limit the scope of the present invention to this, but are merely explanatory examples. No.
 図1Aは、一実施形態に係る焼結鉱の冷却装置の概略断面図である。図1Bは、図1Aに示す冷却装置を構成する空気冷却部の平面視における概略図である。図2は、図1Aに示す冷却装置の下部開口部の断面を平面視した模式図である。なお、焼結鉱は、銑鉄の原料である鉄鉱石に、前処理として焼結処理を施したものである。焼結鉱の粒径は、一般的に5mm以上200mm以下程度である。 FIG. 1A is a schematic cross-sectional view of a sinter cooling device according to an embodiment. FIG. 1B is a schematic view of an air cooling unit constituting the cooling device shown in FIG. 1A in a plan view. FIG. 2 is a schematic view of a cross section of the lower opening of the cooling device shown in FIG. 1A in a plan view. The sinter is obtained by subjecting iron ore, which is a raw material of pig iron, to a sinter treatment as a pretreatment. The particle size of the sinter is generally about 5 mm or more and 200 mm or less.
 図1に示すように、一実施形態に係る焼結鉱の冷却装置1は、鉛直方向に沿った中心軸Oの周りに設けられる環状ホッパ2(堆積槽)及び回転テーブル12と、環状ホッパ2に供給される焼結鉱5を冷却するための空気冷却部10と、を備えている。また、冷却装置1は、回転テーブル12上に堆積した焼結鉱5をかき出すためのスクレーパ30を備えている。 As shown in FIG. 1, the sinter cooling device 1 according to the embodiment includes an annular hopper 2 (deposit tank) and a rotary table 12 provided around a central axis O along the vertical direction, and an annular hopper 2. It is provided with an air cooling unit 10 for cooling the sinter 5 supplied to the vehicle. Further, the cooling device 1 is provided with a scraper 30 for scraping out the sintered ore 5 deposited on the rotary table 12.
 環状ホッパ2は、中心軸Oの周りに円周状に設けられる内周壁3及び外周壁4を含み、内周壁3の壁面である内周壁面3aと、外周壁4の壁面である外周壁面4aとによって環状の内部空間6が画定される。環状ホッパ2の上方には、図示しない焼結機からの高温の焼結鉱5を環状ホッパ2に供給するための供給シュート27が設けられている。供給シュート27から環状ホッパ2の上端開口を介して供給された焼結鉱5は、環状ホッパ2の内部空間6に堆積されるようになっている。環状ホッパ2の上部には、環状ホッパ2の上部を覆う環状のフード18(排気フード)が設けられている。すなわち、フード18は、環状ホッパ2の内部空間6に連通するように、環状ホッパ2の上方に設けられる。 The annular hopper 2 includes an inner peripheral wall 3 and an outer peripheral wall 4 provided in a circumferential shape around the central axis O, and has an inner peripheral wall surface 3a which is a wall surface of the inner peripheral wall 3 and an outer peripheral wall surface 4a which is a wall surface of the outer peripheral wall 4. The annular internal space 6 is defined by and. Above the annular hopper 2, a supply chute 27 for supplying the high-temperature sintered ore 5 from a sintering machine (not shown) to the annular hopper 2 is provided. The sinter 5 supplied from the supply chute 27 through the upper end opening of the annular hopper 2 is deposited in the internal space 6 of the annular hopper 2. An annular hood 18 (exhaust hood) that covers the upper portion of the annular hopper 2 is provided on the upper portion of the annular hopper 2. That is, the hood 18 is provided above the annular hopper 2 so as to communicate with the internal space 6 of the annular hopper 2.
 回転テーブル12は、環状ホッパ2の環状の内部空間6の下方において中心軸O周りに設けられている。環状ホッパ2の内部空間6に堆積された焼結鉱5は、環状ホッパ2の下部開口2aを介して下方に排出され、この焼結鉱5が回転テーブル12の上に堆積するようになっている。 The rotary table 12 is provided around the central axis O below the annular internal space 6 of the annular hopper 2. The sinter 5 deposited in the internal space 6 of the annular hopper 2 is discharged downward through the lower opening 2a of the annular hopper 2, and the sinter 5 is deposited on the rotary table 12. There is.
 環状ホッパ2の内周壁3及び回転テーブル12は、これらの内周側に設けられた架構21,22によって支持されている。架構21,22は、基礎13上において中心軸Oの位置に設けられた中心軸受14と回転自在に結合されている。環状ホッパ2の外周壁4は、内周壁3と外周壁4との間を延びる支持梁(不図示)によって支持される。 The inner peripheral wall 3 and the rotary table 12 of the annular hopper 2 are supported by the frames 21 and 22 provided on the inner peripheral side thereof. The frames 21 and 22 are rotatably coupled to the central bearing 14 provided at the position of the central axis O on the foundation 13. The outer peripheral wall 4 of the annular hopper 2 is supported by a support beam (not shown) extending between the inner peripheral wall 3 and the outer peripheral wall 4.
 回転テーブル12の下方の架構21の下面には、複数の円形状のレール15が固設されている。また、基礎13上には、円形状の複数のレール15に対応して、複数の支持ローラ16が円形状に配置されており、回転テーブル12及び環状ホッパ2が、レール15を介して、支持ローラ16上に回転自在に支持されている。支持ローラ16のうち幾つかには駆動モータ17が接続されており、駆動モータ17による支持ローラ16の回転摩擦力により、回転テーブル12及び環状ホッパ2が、中心軸Oの周りを回転するようになっている。 A plurality of circular rails 15 are fixedly installed on the lower surface of the frame 21 below the rotary table 12. Further, on the foundation 13, a plurality of support rollers 16 are arranged in a circular shape corresponding to the plurality of circular rails 15, and the rotary table 12 and the annular hopper 2 are supported via the rails 15. It is rotatably supported on the roller 16. A drive motor 17 is connected to some of the support rollers 16, so that the rotary table 12 and the annular hopper 2 rotate around the central axis O due to the rotational friction force of the support rollers 16 by the drive motor 17. It has become.
 スクレーパ30は、環状ホッパ2の下部開口2aと回転テーブル12との間に設けられている。スクレーパ30は、回転テーブル12上に堆積した焼結鉱5を回転テーブル12の径方向外側に導くように構成されている。これにより、回転テーブル12上及び環状ホッパ2の内部空間6に堆積された焼結鉱5が冷却装置1の外部に徐々に排出されるようになっている。 The scraper 30 is provided between the lower opening 2a of the annular hopper 2 and the rotary table 12. The scraper 30 is configured to guide the sinter 5 deposited on the rotary table 12 to the radial outside of the rotary table 12. As a result, the sinter 5 deposited on the rotary table 12 and in the internal space 6 of the annular hopper 2 is gradually discharged to the outside of the cooling device 1.
 空気冷却部10は、環状ホッパ2の内部空間6に冷却流体(例えば空気)を供給するように構成される。図1A及び図1Bに示す例示的な実施形態では、空気冷却部10は、環状ホッパ2の内部空間6に外部から空気を取り入れるための内側ルーバ7、外側ルーバ8、中央ルーバ9、及び通気ダクト11含む。また、空気冷却部10は、環状ホッパ2の上方から空気を吸引するためのブロア20を含む。 The air cooling unit 10 is configured to supply a cooling fluid (for example, air) to the internal space 6 of the annular hopper 2. In the exemplary embodiment shown in FIGS. 1A and 1B, the air cooling unit 10 has an inner louver 7, an outer louver 8, a central louver 9, and a ventilation duct for taking in air from the outside into the internal space 6 of the annular hopper 2. 11 is included. Further, the air cooling unit 10 includes a blower 20 for sucking air from above the annular hopper 2.
 図1A及び図1Bに示すように、内側ルーバ7及び外側ルーバ8は、環状ホッパ2の内周壁3及び外周壁4の下部にそれぞれ組み込まれており、環状ホッパ2の外部から空気(冷却流体)を取り込む通路を形成している。中央ルーバ9は、径方向において内周壁3と外周壁4との間において円周状に設けられている。通気ダクト11は、環状ホッパ2の内部において内周壁3と外周壁4との間に径方向に沿って延びるように設けられ、内周壁3又は外周壁4の少なくとも一方から環状ホッパ2内に空気を取り込むように構成される。通気ダクト11によって環状ホッパ2の外部から取り込まれた空気が中央ルーバ9に供給されるようになっている。 As shown in FIGS. 1A and 1B, the inner louver 7 and the outer louver 8 are incorporated in the lower part of the inner peripheral wall 3 and the outer peripheral wall 4 of the annular hopper 2, respectively, and air (cooling fluid) from the outside of the annular hopper 2. It forms a passage to take in. The central louver 9 is provided in a circumferential shape between the inner peripheral wall 3 and the outer peripheral wall 4 in the radial direction. The ventilation duct 11 is provided inside the annular hopper 2 so as to extend along the radial direction between the inner peripheral wall 3 and the outer peripheral wall 4, and air is introduced into the annular hopper 2 from at least one of the inner peripheral wall 3 or the outer peripheral wall 4. Is configured to capture. The air taken in from the outside of the annular hopper 2 is supplied to the central louver 9 by the ventilation duct 11.
 ブロア20は、環状ホッパ2の上方に設けられる排気ダクト19に接続される。なお、排気ダクト19はフード18に接続されている。ブロア20で吸引することにより、内側ルーバ7、外側ルーバ8、中央ルーバ9及び通気ダクト11を介して環状ホッパ2の内部に空気が取り込まれ、該空気が環状ホッパ2の内部を上方に向けて流れ、さらに排気ダクト19を介して冷却装置1の外部に排出される。 The blower 20 is connected to an exhaust duct 19 provided above the annular hopper 2. The exhaust duct 19 is connected to the hood 18. By sucking with the blower 20, air is taken into the annular hopper 2 via the inner louver 7, the outer louver 8, the central louver 9, and the ventilation duct 11, and the air directs the inside of the annular hopper 2 upward. It flows and is further discharged to the outside of the cooling device 1 through the exhaust duct 19.
 ブロア20の上流側には、ブロア20に吸引される空気に含まれる塵を除塵する除塵機が設けられていてもよい。また、ブロア20に吸引される空気は、該空気の熱を回収するための排熱回収装置(ボイラ等)に供給されるようになっていてもよい。 A dust remover for removing dust contained in the air sucked by the blower 20 may be provided on the upstream side of the blower 20. Further, the air sucked by the blower 20 may be supplied to an exhaust heat recovery device (boiler or the like) for recovering the heat of the air.
 冷却装置1は、回転運動をする環状ホッパ2と、回転運動をしないフード18との間からの冷却空気の漏れを抑制するためのシール部23を備えている。図1に示すシール部23は、内周壁3と外周壁4の上部に設けられる環状の桶部24と、フード18に取り付けられた円周状の封止板26と、を含む。桶部24には所定量のシール液25(例えば水)が供給され、該シール液25に封止板26の下端部が浸された状態とすることで、環状ホッパ2の上部とフード18との間が封止されるようになっている。 The cooling device 1 includes a seal portion 23 for suppressing leakage of cooling air between the annular hopper 2 that rotates and the hood 18 that does not rotate. The seal portion 23 shown in FIG. 1 includes an annular tub portion 24 provided on the inner peripheral wall 3 and the upper portion of the outer peripheral wall 4, and a circumferential sealing plate 26 attached to the hood 18. A predetermined amount of the sealing liquid 25 (for example, water) is supplied to the tub portion 24, and the lower end portion of the sealing plate 26 is immersed in the sealing liquid 25 so that the upper portion of the annular hopper 2 and the hood 18 are formed. The space is sealed.
 このように構成された冷却装置1では、環状ホッパ2が回転テーブル12とともに中心軸Oの周りを回転している間、供給シュート27を介して高温の焼結鉱5が上方から環状ホッパ2の内部空間6に供給される。焼結鉱5は、円周状の層を形成しながら、回転テーブル12上及び環状ホッパ2の内部空間6に堆積される。内部空間6に堆積された焼結鉱5は、空気冷却部10によって環状ホッパ2内に取り込まれるとともに環状ホッパ2内を上方に向けて流れる空気によって冷却される。 In the cooling device 1 configured in this way, while the annular hopper 2 rotates around the central axis O together with the rotary table 12, the high-temperature sintered ore 5 passes through the supply chute 27 from above to the annular hopper 2. It is supplied to the internal space 6. The sinter 5 is deposited on the rotary table 12 and in the internal space 6 of the annular hopper 2 while forming a circumferential layer. The sinter 5 deposited in the internal space 6 is taken into the annular hopper 2 by the air cooling unit 10 and cooled by the air flowing upward in the annular hopper 2.
 環状ホッパ2の下方にて回転テーブル12上に堆積した焼結鉱5は、環状ホッパ2及び回転テーブル12の回転に伴い、スクレーパ30によって径方向外側に導かれ、環状ホッパ2の下部開口2aと回転テーブル12との間に形成される開放部を介して、環状ホッパ2から排出されるようになっている。スクレーパ30によって排出された焼結鉱5は、ベルトコンベヤ29等の搬送手段によって搬送される。 The sinter 5 deposited on the rotary table 12 below the annular hopper 2 is guided radially outward by the scraper 30 as the annular hopper 2 and the rotary table 12 rotate, and the sinter 5 is guided to the lower opening 2a of the annular hopper 2. It is discharged from the annular hopper 2 via an open portion formed between the rotary table 12 and the rotary table 12. The sinter 5 discharged by the scraper 30 is conveyed by a conveying means such as a belt conveyor 29.
 このように、環状ホッパ2から焼結鉱5が排出されるのに伴い、環状ホッパ2内に蓄積された焼結鉱5が下降する。なお、供給シュート27から環状ホッパ2に供給された焼結鉱5が、スクレーパ30によって環状ホッパ2の下方から排出されるまでの間、環状ホッパ2及び回転テーブル12は数回(例えば、5~15回)回転する。 As described above, as the sinter 5 is discharged from the annular hopper 2, the sinter 5 accumulated in the annular hopper 2 descends. The annular hopper 2 and the rotary table 12 are operated several times (for example, from 5 to 5) until the sinter 5 supplied from the supply chute 27 to the annular hopper 2 is discharged from below the annular hopper 2 by the scraper 30. 15 times) Rotate.
 図2に示すように、スクレーパ30は、該スクレーパ30の先端面31が環状ホッパ2の内周壁面3aに対向するように設けられる。スクレーパ30は、平面視において、環状ホッパ2(又は回転テーブル12)の径方向に沿って延びるように設けられていてもよく、あるいは、径方向に対して、環状ホッパ2及び回転テーブル12の回転方向に傾斜して配置されていてもよい。平面視において、径方向に対するスクレーパ30の傾斜角度φ(図2参照)は、例えば、15度以上45度以下であってもよい。本明細書において、径方向に対して傾斜角度φ(ただしφは15度以上45度以下)の方向を、径方向に準じた方向とする。なお、本明細書において上下方向とは、鉛直方向に沿った方向であり、中心軸Oの方向と同じ方向である。 As shown in FIG. 2, the scraper 30 is provided so that the tip surface 31 of the scraper 30 faces the inner peripheral wall surface 3a of the annular hopper 2. The scraper 30 may be provided so as to extend along the radial direction of the annular hopper 2 (or the rotary table 12) in a plan view, or the rotation of the annular hopper 2 and the rotary table 12 with respect to the radial direction. It may be arranged so as to be inclined in the direction. In a plan view, the inclination angle φ (see FIG. 2) of the scraper 30 with respect to the radial direction may be, for example, 15 degrees or more and 45 degrees or less. In the present specification, the direction of the inclination angle φ (where φ is 15 degrees or more and 45 degrees or less) with respect to the radial direction is defined as a direction according to the radial direction. In the present specification, the vertical direction is a direction along the vertical direction, which is the same direction as the direction of the central axis O.
 以下、幾つかの実施形態に係る焼結鉱の冷却装置1についてより詳細に説明する。図3及び図4は、それぞれ、一実施形態に係る冷却装置の部分的な概略断面図であり、スクレーパ30の長さ方向に直交する断面(すなわち図2のA-A断面)を概略的に示す図である。図5は、図3のC-C断面を概略的に示す図である。図6は、一実施形態に係る冷却装置1の構成を示す模式図であり、スクレーパ30の長さ方向に直交する断面を模式的に示す図である。 Hereinafter, the sinter cooling device 1 according to some embodiments will be described in more detail. 3 and 4 are partial schematic cross-sectional views of the cooling device according to the embodiment, respectively, and schematically cross-sectional views orthogonal to the length direction of the scraper 30 (that is, AA cross-section of FIG. 2). It is a figure which shows. FIG. 5 is a diagram schematically showing a CC cross section of FIG. FIG. 6 is a schematic view showing the configuration of the cooling device 1 according to the embodiment, and is a diagram schematically showing a cross section orthogonal to the length direction of the scraper 30.
 図1A及び図3~図6に示すように、冷却装置1は、環状ホッパ2の下部開口2aの下方、かつ、回転テーブル12の上方の位置に設けられたノズル50を備えている。ノズル50は、ノズル孔52から冷却流体(例えば水)を吐出するように構成されている。 As shown in FIGS. 1A and 3 to 6, the cooling device 1 includes a nozzle 50 provided at a position below the lower opening 2a of the annular hopper 2 and above the rotary table 12. The nozzle 50 is configured to discharge a cooling fluid (for example, water) from the nozzle hole 52.
 図3~図5に示す例示的な実施形態では、ノズル50は、スクレーパ30に支持されている。図3~図5に示すスクレーパ30は、上下方向において互いに対向するように設けられる上側壁部32及び下側壁部35と、回転テーブル12の回転方向(周方向)において互いに対向するように設けられる上流壁部33及び下流壁部34と、を含む。上側壁部32は、上流側端部及び下流側端部にて、上流壁部33及び下流壁部34にそれぞれ接続され、下側壁部35は、下流側端部にて下流壁部34に接続され、上側壁部32、下流壁部34及び下側壁部35の内面によって内側空間36が形成される。上側壁部32の外面はスクレーパ30の上面30aを形成し、下流壁部34の外面はスクレーパ30の下流側端面30bを形成する。 In the exemplary embodiment shown in FIGS. 3-5, the nozzle 50 is supported by the scraper 30. The scrapers 30 shown in FIGS. 3 to 5 are provided so as to face each other in the rotation direction (circumferential direction) of the rotary table 12 with the upper side wall portion 32 and the lower side wall portion 35 provided so as to face each other in the vertical direction. The upstream wall portion 33 and the downstream wall portion 34 are included. The upper side wall portion 32 is connected to the upstream wall portion 33 and the downstream wall portion 34 at the upstream side end portion and the downstream side end portion, respectively, and the lower side wall portion 35 is connected to the downstream wall portion 34 at the downstream side end portion. The inner space 36 is formed by the inner surfaces of the upper side wall portion 32, the downstream wall portion 34, and the lower side wall portion 35. The outer surface of the upper side wall portion 32 forms the upper surface 30a of the scraper 30, and the outer surface of the downstream wall portion 34 forms the downstream end surface 30b of the scraper 30.
 図3及び図4に示すスクレーパ30には、焼結鉱との摩擦による摩耗から該スクレーパ30を保護するためのライナ40が設けられている。図3及び図4に示すライナ40は、上流壁部33の上流側に設けられる上流側ライナ42と、上側壁部32の上方に設けられる上方ライナ41と、を含む。なお、図4に示す上方ライナ41は、上下方向においてスクレーパ30の上面30a(上側壁部32)と間隔を空けて設けられている。 The scraper 30 shown in FIGS. 3 and 4 is provided with a liner 40 for protecting the scraper 30 from wear due to friction with the sintered ore. The liner 40 shown in FIGS. 3 and 4 includes an upstream liner 42 provided on the upstream side of the upstream wall portion 33 and an upper liner 41 provided above the upper side wall portion 32. The upper liner 41 shown in FIG. 4 is provided at a distance from the upper surface 30a (upper side wall portion 32) of the scraper 30 in the vertical direction.
 図3に示す例示的な実施形態では、ノズル50は、該ノズル50の一部がスクレーパ30の内側空間に位置するように設けられており、ノズル孔52は、回転テーブル12の回転方向(周方向)において下流側を向いている。ノズル50からの冷却流体は、スクレーパ30の下流側端面30bに設けられる開口37を介して、下流側端面30bの下流側に向けて吐出されるようになっている。 In the exemplary embodiment shown in FIG. 3, the nozzle 50 is provided so that a part of the nozzle 50 is located in the inner space of the scraper 30, and the nozzle hole 52 is provided in the rotation direction (circumference) of the rotary table 12. In the direction), it faces the downstream side. The cooling fluid from the nozzle 50 is discharged toward the downstream side of the downstream end surface 30b through the opening 37 provided in the downstream end surface 30b of the scraper 30.
 図4に示す例示的な実施形態では、ノズル50は、スクレーパ30の下流側端面30bよりも上流側の位置においてスクレーパ30の上面30aに設けられており、ノズル孔52は、回転テーブル12の回転方向(周方向)において下流側を向いている。ノズル50から吐出される冷却流体は、少なくとも一時的に、スクレーパ30の上面30aの上に滞留するようになっている。 In the exemplary embodiment shown in FIG. 4, the nozzle 50 is provided on the upper surface 30a of the scraper 30 at a position upstream of the downstream end surface 30b of the scraper 30, and the nozzle hole 52 is a rotation of the rotary table 12. It faces the downstream side in the direction (circumferential direction). The cooling fluid discharged from the nozzle 50 stays on the upper surface 30a of the scraper 30 at least temporarily.
 上述の実施形態に係る冷却装置1では、環状ホッパ2の下部開口2aの下方、かつ、回転テーブル12の上方の位置に冷却流体を吐出可能なノズル50を設けたので、環状ホッパ2の内部で空気により冷却された後、下部開口2aから排出された焼結鉱5にノズルからの冷却流体を供給することができる。すなわち、空気で冷却されて温度が低下した焼結鉱5に、ノズル50からの冷却流体を供給して焼結鉱をさらに冷却するようにしたので、急冷によるクラックの発生を抑制しながら、焼結鉱5を十分に冷却することができる。よって、製品品質の低下を抑制しながら、冷却効果を向上することができる。これにより、例えば、冷却後の焼結鉱5を搬送するためのベルトコンベヤ29等の設備を高温から保護することができ、あるいは、これらの設備を高温から保護するために冷却装置1による処理速度を低下させる必要性を小さくすることができる。 In the cooling device 1 according to the above-described embodiment, since the nozzle 50 capable of discharging the cooling fluid is provided at a position below the lower opening 2a of the annular hopper 2 and above the rotary table 12, the inside of the annular hopper 2 After being cooled by air, the cooling fluid from the nozzle can be supplied to the sintered ore 5 discharged from the lower opening 2a. That is, since the cooling fluid from the nozzle 50 was supplied to the sinter 5 whose temperature was lowered by being cooled by air to further cool the sinter, the sinter was baked while suppressing the occurrence of cracks due to quenching. The sinter 5 can be sufficiently cooled. Therefore, the cooling effect can be improved while suppressing the deterioration of the product quality. Thereby, for example, equipment such as a belt conveyor 29 for transporting the cooled sinter 5 can be protected from high temperature, or the processing speed by the cooling device 1 to protect these equipment from high temperature. The need to reduce can be reduced.
 また、仮に、下部開口2aよりも径方向外側の位置で冷却流体を吐出する場合、吐出された冷却流体を含む焼結鉱の粉体が、環状ホッパ2の冷却空気取り込み口(ルーバ等)を介して吸引され、冷却空気取り込み口の目詰まりを引き起こすおそれがある。この点、上述の実施形態によれば、環状ホッパ2の下部開口2aの下方(即ち、環状ホッパ2の外周壁4よりも径方向内側かつ内周壁3よりも径方向外側)においてノズル50からの冷却流体を吐出するようにしたので、上述のような冷却空気取り込み口の目詰まりを起こしにくい。 Further, when the cooling fluid is discharged at a position radially outside the lower opening 2a, the powder of the sintered ore containing the discharged cooling fluid acts as a cooling air intake port (louver or the like) of the annular hopper 2. It may be sucked through and cause clogging of the cooling air intake port. In this regard, according to the above-described embodiment, the nozzle 50 is located below the lower opening 2a of the annular hopper 2 (that is, radially inside the annular hopper 2 and radially outside the inner peripheral wall 3). Since the cooling fluid is discharged, clogging of the cooling air intake port as described above is unlikely to occur.
 また、上述の実施形態によれば、水等の冷却流体を使用して焼結鉱5を冷却するようにしたので、焼結鉱5の冷却をより効率的に行うことができる。例えば、空気冷却のみで同等の冷却効果を得る場合に比べて設備をコンパクト化でき、あるいは、冷却装置の運転に必要なエネルギーを低減することができる。 Further, according to the above-described embodiment, since the sinter 5 is cooled by using a cooling fluid such as water, the sinter 5 can be cooled more efficiently. For example, the equipment can be made more compact than the case where the same cooling effect can be obtained only by air cooling, or the energy required for operating the cooling device can be reduced.
 また、上述の冷却装置1は、ノズル50を用いた簡素な構成であるので、既存の冷却装置がある場合には、これに対してノズル50を追設することにより、上述の実施形態に係る冷却装置1を比較的容易に得ることができる。 Further, since the above-mentioned cooling device 1 has a simple configuration using the nozzle 50, if there is an existing cooling device, the nozzle 50 is additionally added to the existing cooling device to relate to the above-described embodiment. The cooling device 1 can be obtained relatively easily.
 また、上述の実施形態では、環状ホッパ2の下部開口2aの下方、かつ、回転テーブル12の上方の、径方向における広範囲にノズル50を設けることができる。これにより、例えば特許文献1に記載されるように、環状ホッパの内壁面(内周壁面3aや外周壁面4a)に冷却水を供給する場合に比べて、内周壁面3aと外周壁面4aとの間の中央領域を含む径方向の広範囲に冷却流体を供給することができ、焼結鉱5をより効果的に冷却することができる。 Further, in the above-described embodiment, the nozzle 50 can be provided in a wide range in the radial direction below the lower opening 2a of the annular hopper 2 and above the rotary table 12. As a result, as compared with the case where cooling water is supplied to the inner wall surface (inner peripheral wall surface 3a and outer peripheral wall surface 4a) of the annular hopper, for example, as described in Patent Document 1, the inner peripheral wall surface 3a and the outer peripheral wall surface 4a are combined. The cooling fluid can be supplied over a wide range in the radial direction including the central region between them, and the sinter 5 can be cooled more effectively.
 幾つかの実施形態では、ノズル50は、回転テーブル12の回転方向におけるスクレーパ30の下流側又はスクレーパ30の上方に冷却流体を供給するように構成される。例えば、図3に示す例示的な実施形態では、ノズル50は、スクレーパ30の下流側に冷却流体を供給するようになっている。また、図4に示す例示的な実施形態では、ノズル50は、スクレーパ30の上方に冷却流体を供給するようになっている。 In some embodiments, the nozzle 50 is configured to supply the cooling fluid downstream of the scraper 30 or above the scraper 30 in the direction of rotation of the rotary table 12. For example, in the exemplary embodiment shown in FIG. 3, the nozzle 50 supplies the cooling fluid to the downstream side of the scraper 30. Further, in the exemplary embodiment shown in FIG. 4, the nozzle 50 supplies the cooling fluid above the scraper 30.
 ここで、環状ホッパ2の内部空間6の焼結鉱5は、回転テーブル12の回転に伴いスクレーパ30に対して回転方向の下流側に移動する。そして、図6に示すように、スクレーパ30の上方に位置する焼結鉱5は、周方向にてスクレーパ30の下流側端面30bの位置を通過すると、スクレーパ30の上面30aから回転テーブル12の上面に向けて下降する(すなわち、スクレーパ30の下流側に移動する)。なお、図6において、スクレーパ30の上面30aから回転テーブル12の上面に向けて下降した後の焼結鉱5が破線で示されている。また、スクレーパ30の下流側端面30bの近傍の焼結鉱5は、回転テーブル12が約1周回転すると、スクレーパ30の上流側の近傍まで移動し、スクレーパ30によって回転テーブル12の径方向外側に掻き出される。 Here, the sinter 5 in the internal space 6 of the annular hopper 2 moves to the downstream side in the rotation direction with respect to the scraper 30 as the rotary table 12 rotates. Then, as shown in FIG. 6, when the sinter 5 located above the scraper 30 passes the position of the downstream end surface 30b of the scraper 30 in the circumferential direction, it passes from the upper surface 30a of the scraper 30 to the upper surface of the rotary table 12. (Ie, move to the downstream side of the scraper 30). In FIG. 6, the sintered ore 5 after descending from the upper surface 30a of the scraper 30 toward the upper surface of the rotary table 12 is shown by a broken line. Further, the sintered ore 5 in the vicinity of the downstream end surface 30b of the scraper 30 moves to the vicinity of the upstream side of the scraper 30 when the rotary table 12 rotates about once, and is moved outward in the radial direction by the scraper 30. It is scraped out.
 この点、上述の実施形態によれば、冷却流体を吐出するノズル50を、スクレーパ30の下流側又はスクレーパ30の上方に設けたので、冷却流体が焼結鉱5に供給されてから、該焼結鉱がスクレーパによって回転テーブル12の外側に掻き出されるまでの時間を比較的長く確保することができる。すなわち、焼結鉱5と冷却流体の接触時間を比較的長く確保することができ、これにより、冷却流体による焼結鉱5の冷却効果を高めることができる。 In this regard, according to the above-described embodiment, since the nozzle 50 for discharging the cooling fluid is provided on the downstream side of the scraper 30 or above the scraper 30, the cooling fluid is supplied to the sinter 5 and then the firing is performed. It is possible to secure a relatively long time for the ore to be scraped to the outside of the rotary table 12 by the scraper. That is, the contact time between the sinter 5 and the cooling fluid can be secured for a relatively long time, whereby the cooling effect of the sinter 5 by the cooling fluid can be enhanced.
 幾つかの実施形態では、ノズル50は、回転テーブル12の回転方向におけるスクレーパ30の下流側の荷下がり領域Rd(図6参照)に冷却流体を供給するように構成される。荷下がり領域Rdは、スクレーパ30の上方に堆積された焼結鉱5が下方に移動可能な領域であってもよい。荷下がり領域Rdは、スクレーパ30の下流側端面30bからの周方向(回転テーブル12の回転方向)における距離がスクレーパ30の上下方向における高さHs(図6参照)と同等以下の範囲内であってもよい。 In some embodiments, the nozzle 50 is configured to supply the cooling fluid to the unloading region Rd (see FIG. 6) on the downstream side of the scraper 30 in the direction of rotation of the rotary table 12. The unloading region Rd may be a region in which the sinter 5 deposited above the scraper 30 can move downward. The unloading region Rd is within a range in which the distance from the downstream end surface 30b of the scraper 30 in the circumferential direction (rotation direction of the rotary table 12) is equal to or less than the height Hs (see FIG. 6) in the vertical direction of the scraper 30. You may.
 冷却装置1における荷下がり領域は、スクレーパ30の下流側のスクレーパ30の直後の領域であり、スクレーパ30の上面に載っていた焼結鉱5が、回転テーブル12の上面に向けて下方に移動する領域である。この点、上述の実施形態によれば、焼結鉱5が下方に移動する荷下がり領域Rdに冷却流体を供給するようにしたので、焼結鉱5が上下方向において静止している領域(例えば荷下がり領域Rdよりも下流側の領域)に冷却流体を供給する場合に比べ、より多くの焼結鉱に対して冷却流体を供給しやすい。また、スクレーパ30の直後の領域に冷却流体を供給するようにしたので、焼結鉱5と冷却流体の接触時間を比較的長く確保することができる。これにより、焼結鉱5をより効果的に冷却することができる。 The unloading region in the cooling device 1 is the region immediately after the scraper 30 on the downstream side of the scraper 30, and the sinter 5 resting on the upper surface of the scraper 30 moves downward toward the upper surface of the rotary table 12. The area. In this regard, according to the above-described embodiment, since the cooling fluid is supplied to the unloading region Rd in which the sinter 5 moves downward, the region in which the sinter 5 is stationary in the vertical direction (for example, It is easier to supply the cooling fluid to a larger amount of sinter than in the case of supplying the cooling fluid to the region downstream of the unloading region Rd). Further, since the cooling fluid is supplied to the region immediately after the scraper 30, the contact time between the sinter 5 and the cooling fluid can be secured relatively long. Thereby, the sinter 5 can be cooled more effectively.
 幾つかの実施形態では、ノズル孔52(ノズル50)は、スクレーパ30の下面からの上下方向における距離Hn(図3及び図4参照)がHs/2以上の位置に設けられていてもよい。 In some embodiments, the nozzle hole 52 (nozzle 50) may be provided at a position where the distance Hn (see FIGS. 3 and 4) in the vertical direction from the lower surface of the scraper 30 is Hs / 2 or more.
 上述の実施形態によれば、ノズル50を比較的高い位置に設けたので、下方に移動する焼結鉱5の多くがノズル50の近傍を通過することができる。これにより、多くの焼結鉱に対して冷却流体を供給しやすくなり、焼結鉱5をより効果的に冷却することができる。 According to the above-described embodiment, since the nozzle 50 is provided at a relatively high position, most of the sinter 5 moving downward can pass in the vicinity of the nozzle 50. This makes it easier to supply the cooling fluid to many sinters, and the sinter 5 can be cooled more effectively.
 幾つかの実施形態では、例えば図4に示すように、ノズル50は、スクレーパ30の上方に冷却流体を供給するように構成される。ノズル50から吐出される冷却流体は、少なくとも一時的に、スクレーパ30の上面30aの上に滞留するようになっていてもよい。 In some embodiments, for example, as shown in FIG. 4, the nozzle 50 is configured to supply a cooling fluid above the scraper 30. The cooling fluid discharged from the nozzle 50 may stay on the upper surface 30a of the scraper 30 at least temporarily.
 上述の実施形態では、スクレーパ30の上方に冷却流体を供給するようにしたので、スクレーパ30の上方に堆積され、回転テーブル12の回転に伴い直後に下方に移動する焼結鉱5に冷却流体を供給することができる。よって、焼結鉱5が上下方向において静止している領域に冷却流体を供給する場合に比べ、より多くの焼結鉱に対して冷却流体を供給しやすい。また、スクレーパ30の上方に冷却流体を供給するようにしたので、焼結鉱5と冷却流体の接触時間を比較的長く確保することができる。これにより、焼結鉱5をより効果的に冷却することができる。 In the above-described embodiment, since the cooling fluid is supplied above the scraper 30, the cooling fluid is supplied to the sinter 5 which is deposited above the scraper 30 and immediately moves downward as the rotary table 12 rotates. Can be supplied. Therefore, it is easier to supply the cooling fluid to a larger amount of the sinter as compared with the case where the cooling fluid is supplied to the region where the sinter 5 is stationary in the vertical direction. Further, since the cooling fluid is supplied above the scraper 30, the contact time between the sinter 5 and the cooling fluid can be secured for a relatively long time. Thereby, the sinter 5 can be cooled more effectively.
 幾つかの実施形態では、例えば図3及び図4に示すように、ノズル50はスクレーパ30に支持される。 In some embodiments, the nozzle 50 is supported by the scraper 30, as shown, for example, in FIGS. 3 and 4.
 回転式の冷却装置において、スクレーパ30は、通常、径方向又は径方向に準じた方向に沿って延びるとともに、上面30a及び下流側端面30bを有する。この点、上述の実施形態によれば、スクレーパ30によってノズル50を支持するようにしたので、スクレーパ30の上方や、回転方向におけるスクレ―パの直後(下流側)の領域に冷却流体を吐出可能なノズル50を、スクレーパ30を利用して適切に設けることができる。また、スクレーパ30によってノズル50を支持するようにしたので、環状ホッパ2及び回転テーブル12に対してスクレーパ30とともに移動させることができる(例えば、スクレーパ30の長さ方向にて抜き差しできる)ので、ノズル50のメンテナンスを容易に行うことができる。 In the rotary cooling device, the scraper 30 usually extends along a radial direction or a direction according to the radial direction, and has an upper surface 30a and a downstream end surface 30b. In this regard, according to the above-described embodiment, since the nozzle 50 is supported by the scraper 30, the cooling fluid can be discharged to the region above the scraper 30 or immediately after (downstream) the scraper in the rotational direction. Nozzle 50 can be appropriately provided by using the scraper 30. Further, since the nozzle 50 is supported by the scraper 30, the nozzle 50 can be moved together with the scraper 30 with respect to the annular hopper 2 and the rotary table 12 (for example, the nozzle 50 can be inserted and removed in the length direction of the scraper 30). The maintenance of 50 can be easily performed.
 幾つかの実施形態では、ノズル50は、スクレーパ30の下流側端面30bに設けられる開口を介して、冷却流体を吐出するように構成される。例えば、図3に示す例示的な実施形態では、ノズル50は、スクレーパ30の下流側端面30b(下流壁部34)に設けられる開口37を介して冷却流体を吐出するように構成される。この実施形態では、ノズル50のノズル孔52はスクレーパ30の下流壁部34に設けられる開口37の内部に位置し、該ノズル孔52からの冷却流体が開口37を介して吐出されるようになっている。他の一実施形態では、ノズル孔52を含むノズル50の全体がスクレーパの内側空間36に位置し、内側空間36に位置するノズル孔52からの冷却流体が開口37を介して吐出されるようになっていてもよい。 In some embodiments, the nozzle 50 is configured to discharge the cooling fluid through an opening provided in the downstream end face 30b of the scraper 30. For example, in the exemplary embodiment shown in FIG. 3, the nozzle 50 is configured to discharge the cooling fluid through an opening 37 provided in the downstream end face 30b (downstream wall 34) of the scraper 30. In this embodiment, the nozzle hole 52 of the nozzle 50 is located inside the opening 37 provided in the downstream wall portion 34 of the scraper 30, and the cooling fluid from the nozzle hole 52 is discharged through the opening 37. ing. In another embodiment, the entire nozzle 50 including the nozzle hole 52 is located in the inner space 36 of the scraper so that the cooling fluid from the nozzle hole 52 located in the inner space 36 is discharged through the opening 37. It may be.
 上述の実施形態によれば、ノズル50からの冷却流体は、スクレーパ30の下流側端面30bに設けられる開口37を介して吐出されるので、ノズル50と焼結鉱5との接触を抑制することができる。これにより、ノズル50の破損や摩耗、あるいは、焼結鉱5等の紛体の付着によるノズル50の閉塞を抑制することができる。 According to the above-described embodiment, the cooling fluid from the nozzle 50 is discharged through the opening 37 provided in the downstream end surface 30b of the scraper 30, so that the contact between the nozzle 50 and the sinter 5 is suppressed. Can be done. As a result, it is possible to suppress damage or wear of the nozzle 50, or blockage of the nozzle 50 due to adhesion of powder such as sintered ore 5.
 幾つかの実施形態では、例えば図4に示すように、ノズル50は、スクレーパ30の上方に設けられていてもよい。 In some embodiments, the nozzle 50 may be provided above the scraper 30, for example, as shown in FIG.
 この場合、スクレーパ30の上方の位置にノズル50を設けるようにしたので、ノズル50を設置しやすく、また、ノズル50の点検を容易に行うことができる。 In this case, since the nozzle 50 is provided at a position above the scraper 30, the nozzle 50 can be easily installed and the nozzle 50 can be easily inspected.
 また、特に図示しないが、幾つかの実施形態では、ノズル50は、スクレーパ30の下流側端面よりも回転テーブル12の回転方向の下流側の位置に設けられていてもよい。また、幾つかの実施形態では、ノズル50は、スクレーパ30以外の構造物に支持されてもよい。 Further, although not particularly shown, in some embodiments, the nozzle 50 may be provided at a position downstream of the downstream end surface of the scraper 30 in the rotation direction of the rotary table 12. Also, in some embodiments, the nozzle 50 may be supported by a structure other than the scraper 30.
 幾つかの実施形態では、冷却装置1は、ノズル50を上方から覆うように設けられる保護カバー60を備える。図3及び図4に示す例示的な実施形態では、スクレーパ30の上方に設けられる上流側ライナ42(ライナ40)が上述の保護カバー60として機能する。 In some embodiments, the cooling device 1 includes a protective cover 60 provided to cover the nozzle 50 from above. In the exemplary embodiment shown in FIGS. 3 and 4, the upstream liner 42 (liner 40) provided above the scraper 30 functions as the protective cover 60 described above.
 上述の実施形態によれば、ノズル50を上方から覆う保護カバー60を設けたので、ノズル50の上方に位置する焼結鉱5(例えばスクレーパ30の上方の焼結鉱5)がノズル50に接触するのを抑制することができ、焼結鉱5による衝撃や摩耗からノズル50を保護することができる。 According to the above-described embodiment, since the protective cover 60 that covers the nozzle 50 from above is provided, the sinter 5 located above the nozzle 50 (for example, the sinter 5 above the scraper 30) comes into contact with the nozzle 50. It is possible to suppress the nozzle 50 and protect the nozzle 50 from the impact and wear caused by the sinter 5.
 幾つかの実施形態では、冷却装置1は、ノズル50に冷却流体を供給するための供給管54を備え、該供給管54の少なくとも一部は、スクレーパ30の内部に設けられる。例えば、図5に示す例示的な実施形態では、供給管54の少なくとも一部は、スクレーパ30の内側空間36に設けられる。幾つかの実施形態では、少なくとも、平面視において回転テーブル12と重なるように設けられる供給管54の部分は、スクレーパ30の内部に設けられる。 In some embodiments, the cooling device 1 includes a supply pipe 54 for supplying the cooling fluid to the nozzle 50, and at least a part of the supply pipe 54 is provided inside the scraper 30. For example, in the exemplary embodiment shown in FIG. 5, at least a portion of the supply pipe 54 is provided in the inner space 36 of the scraper 30. In some embodiments, at least a portion of the supply pipe 54 that is provided to overlap the rotary table 12 in plan view is provided inside the scraper 30.
 上述の実施形態によれば、ノズル50に冷却流体を供給するための供給管54の少なくとも一部をスクレーパ30の内部に設けたので、焼結鉱5が供給管54に接触するのを抑制することができる。よって、焼結鉱5による衝撃や摩耗から供給管54を保護することができる。また、上述の実施形態によれば、ノズル50に冷却流体を供給するための供給管54の少なくとも一部をスクレーパ30の内部に設けたので、スクレーパ30の近傍に設けられる部材(例えば、スクレーパ30を支持するための部材)と干渉を回避することができる。 According to the above-described embodiment, since at least a part of the supply pipe 54 for supplying the cooling fluid to the nozzle 50 is provided inside the scraper 30, it is possible to prevent the sinter 5 from coming into contact with the supply pipe 54. be able to. Therefore, the supply pipe 54 can be protected from the impact and wear caused by the sinter 5. Further, according to the above-described embodiment, since at least a part of the supply pipe 54 for supplying the cooling fluid to the nozzle 50 is provided inside the scraper 30, a member provided in the vicinity of the scraper 30 (for example, the scraper 30). It is possible to avoid interference with the member for supporting the).
 図7~図10は、それぞれ、一実施形態に係る焼結鉱の冷却装置1を構成する環状ホッパ2(堆積槽)の部分的な概略断面図であり、図2のB-B断面に相当する図である。図11は、一実施形態に係る冷却装置1の平面視における模式図である。 7 to 10 are partial schematic cross-sectional views of the annular hopper 2 (sedimentation tank) constituting the sinter cooling device 1 according to the embodiment, respectively, and correspond to the BB cross section of FIG. It is a figure to do. FIG. 11 is a schematic view of the cooling device 1 according to the embodiment in a plan view.
 なお、図7及び図8に示す例示的な実施形態では、図1A及び図1Bに示す実施形態と同様に、環状ホッパ2の内部空間6への空気取入れ口として、内側ルーバ7、外側ルーバ8、中央ルーバ9、及び通気ダクト11(図7及び図8において不図示、図1B参照)を含む。図9及び図10に示す例示的な実施形態では、環状ホッパ2の内部空間6への空気取入れ口として、内側ルーバ7及び外側ルーバ8を含むが、中央ルーバ9及び通気ダクト11は含まない。 In the exemplary embodiment shown in FIGS. 7 and 8, the inner louver 7 and the outer louver 8 are used as air intake ports for the inner space 6 of the annular hopper 2 as in the embodiments shown in FIGS. 1A and 1B. , Central louver 9, and ventilation duct 11 (not shown in FIGS. 7 and 8, see FIG. 1B). In the exemplary embodiment shown in FIGS. 9 and 10, the inner louver 7 and the outer louver 8 are included as the air intake ports of the annular hopper 2 into the internal space 6, but the central louver 9 and the ventilation duct 11 are not included.
 幾つかの実施形態では、冷却装置1は、例えば図7~図10に示すように、径方向に沿って配置される複数のノズル50を備えている。 In some embodiments, the cooling device 1 includes a plurality of nozzles 50 arranged along the radial direction, for example, as shown in FIGS. 7 to 10.
 この場合、径方向における広範囲にノズル50を設けることができる。これにより、例えば特許文献1に記載されるように、環状ホッパの内壁面(内周壁面3aや外周壁面4a)に冷却水を供給する場合に比べて、内周壁面3aと外周壁面4aとの間の中央領域を含む径方向の広範囲に冷却流体を供給することができ、焼結鉱5をより効果的に冷却することができる。 In this case, the nozzle 50 can be provided over a wide range in the radial direction. As a result, as compared with the case where cooling water is supplied to the inner wall surface (inner peripheral wall surface 3a and outer peripheral wall surface 4a) of the annular hopper, for example, as described in Patent Document 1, the inner peripheral wall surface 3a and the outer peripheral wall surface 4a are combined. The cooling fluid can be supplied over a wide range in the radial direction including the central region between them, and the sinter 5 can be cooled more effectively.
 幾つかの実施形態では、複数のノズル50は、冷却流体の吐出量が径方向位置に応じて異なるように構成される。 In some embodiments, the plurality of nozzles 50 are configured such that the discharge amount of the cooling fluid differs depending on the radial position.
 環状ホッパ2内の焼結鉱5を上述の冷却空気で冷却すると、環状ホッパ2内の焼結鉱5に径方向における温度分布が生じる場合がある。例えば、冷却空気が流通しやすいルーバ(内側ルーバ7、外側ルーバ8及び中央ルーバ9)の近傍は、焼結鉱5の温度が比較的低くなりやすい傾向がある。この点、上述の実施形態によれば、径方向に複数のノズル50を設け、冷却流体の吐出量を径方向位置に応じて調節可能としたので、冷却流体の吐出量を焼結鉱5の温度分布に応じて適切に調節することで、冷却後の焼結鉱5の温度を径方向において均一化することができる。 When the sinter 5 in the annular hopper 2 is cooled with the above-mentioned cooling air, a temperature distribution in the radial direction may occur in the sinter 5 in the annular hopper 2. For example, the temperature of the sinter 5 tends to be relatively low in the vicinity of the louvers (inner louver 7, outer louver 8 and central louver 9) through which cooling air easily flows. In this regard, according to the above-described embodiment, since a plurality of nozzles 50 are provided in the radial direction and the discharge amount of the cooling fluid can be adjusted according to the radial position, the discharge amount of the cooling fluid is set to that of the sintered ore 5. By appropriately adjusting the temperature according to the temperature distribution, the temperature of the sintered ore 5 after cooling can be made uniform in the radial direction.
 幾つかの実施形態では、複数のノズル50は、環状ホッパ2の下端部において、焼結鉱5が排出される開口領域A1のうち、径方向にて開口領域A1の中心位置Pcを含む中央領域Rcにおける冷却流体の吐出流量が、開口領域A1のうち、径方向にて中央領域Rcの両側に位置する端部領域RE1、RE2における冷却流体の吐出流量よりも多くなるように構成される(図7~図10参照)。 In some embodiments, the plurality of nozzles 50 are located at the lower end of the annular hopper 2 in a central region of the opening region A1 from which the sintered ore 5 is discharged, including the central position Pc of the opening region A1 in the radial direction. discharge flow rate of the cooling fluid in Rc is, among the opening area A1, configured to be larger than the discharge flow rate of the cooling fluid in the end region R E1, R E2 positioned on both sides of the center region Rc in the radial direction (See FIGS. 7 to 10).
 ここで、開口領域A1は、上下方向において、環状ホッパ2の外周壁面4aの下端4bの位置に広がる、下部開口2aが占める領域である。図7及び図8に示す例示的な実施形態では、開口領域A1は、径方向において内周壁3の内周壁面3aと中央ルーバ9の内周側端面9aとの間に広がる領域A1aと、径方向において外周壁4の外周壁面4aと中央ルーバ9の外周側端面9bとの間に広がる領域A1bとの間に広がる領域A1bと、を含む。図9及び図10に示す例示的な実施形態では、開口領域A1は、径方向において外周壁4の外周壁面4aと内周壁3の内周壁面3aとの間に広がる領域である。 Here, the opening area A1 is an area occupied by the lower opening 2a that extends to the position of the lower end 4b of the outer peripheral wall surface 4a of the annular hopper 2 in the vertical direction. In the exemplary embodiment shown in FIGS. 7 and 8, the opening region A1 has a diameter and a region A1a extending between the inner peripheral wall surface 3a of the inner peripheral wall 3 and the inner peripheral side end surface 9a of the central louver 9 in the radial direction. The region A1b extending between the outer peripheral wall surface 4a of the outer peripheral wall 4 and the outer peripheral side end surface 9b of the central louver 9 and the region A1b extending in the direction is included. In the exemplary embodiment shown in FIGS. 9 and 10, the opening region A1 is a region extending between the outer peripheral wall surface 4a of the outer peripheral wall 4 and the inner peripheral wall surface 3a of the inner peripheral wall 3 in the radial direction.
 環状ホッパ2内の焼結鉱5を冷却空気で冷却すると、環状ホッパ2の下端部の開口領域A1のうち、径方向における中央領域Rcでは、径方向における端部領域RE1,RE2に比べて焼結鉱5の温度が高い傾向がある。この点、上述の実施形態によれば、開口領域A1のうち、中央領域Rcにおける冷却流体の吐出流量を、端部領域RE1,RE2における冷却流体の吐出流量よりも多くなるようにしたので、冷却後の焼結鉱5の温度を径方向において均一化することができる。 Upon cooling the sintered ore 5 in the annular hopper 2 with the cooling air, of the opening area A1 of the lower end of the annular hopper 2, the central region Rc in the radial direction, than in the end regions R E1, R E2 in the radial direction The temperature of the sintered ore 5 tends to be high. In this regard, according to the above-described embodiment, the discharge flow rate of the cooling fluid in the central region Rc of the opening region A1 is set to be larger than the discharge flow rate of the cooling fluid in the end regions RE1 and RE2. , The temperature of the sintered ore 5 after cooling can be made uniform in the radial direction.
 一実施形態では、例えば図7及び図9に示すように、径方向において(又はスクレーパ30の長手方向において)略等間隔に複数のノズル50を設けてもよい。この場合、複数のノズル50の各々のノズル径を異ならせることにより、冷却流体の吐出量を径方向位置に応じて調節するようにしてもよい。例えば、冷却流体の吐出量を比較的多くすべき径方向位置(例えば、上述の中央領域Rc)に設けられるノズル50のノズル径を比較的大きく設定し、冷却流体の吐出量を比較的少なくすべき径方向位置(例えば、上述の端部領域RE1,RE2)に設けられるノズル50のノズル径を比較的小さく設定するようにしてもよい。 In one embodiment, as shown in FIGS. 7 and 9, a plurality of nozzles 50 may be provided at substantially equal intervals in the radial direction (or in the longitudinal direction of the scraper 30). In this case, the discharge amount of the cooling fluid may be adjusted according to the radial position by making the nozzle diameters of the plurality of nozzles 50 different. For example, the nozzle diameter of the nozzle 50 provided at the radial position (for example, the above-mentioned central region Rc) where the discharge amount of the cooling fluid should be relatively large is set to be relatively large, and the discharge amount of the cooling fluid is relatively small. The nozzle diameter of the nozzle 50 provided at the power radial position (for example, the above-mentioned end regions RE1 and RE2 ) may be set to be relatively small.
 あるいは、一実施形態では、例えば図11に示すように、径方向において(又はスクレーパ30の長手方向において)配列される複数のノズル50に対し、図11に示すように、複数のノズルに冷却流体を供給するための複数の供給ライン64a~64c、及び、供給ライン64a~64cに対応して設けられる複数のバルブ65a~65cを設け、バルブ65a~65cを調節することにより、複数のノズル50の各々からの吐出量を調節するようにしてもよい。 Alternatively, in one embodiment, for example, as shown in FIG. 11, for a plurality of nozzles 50 arranged in the radial direction (or in the longitudinal direction of the scraper 30), as shown in FIG. 11, the cooling fluid is connected to the plurality of nozzles. A plurality of supply lines 64a to 64c and a plurality of valves 65a to 65c provided corresponding to the supply lines 64a to 64c are provided, and by adjusting the valves 65a to 65c, a plurality of nozzles 50 can be provided. The discharge amount from each may be adjusted.
 図11に示す例示的な実施形態では、供給ライン64a~64cは、供給ライン62から分岐して設けられており、中央領域Rcに位置する複数のノズル50には、供給ライン64bから冷却流体が供給されるとともに、両側の端部領域RE1,RE2に位置する複数のノズル50には、供給ライン64c及び供給ライン64aから冷却流体がそれぞれ供給されるようになっている。 In the exemplary embodiment shown in FIG. 11, the supply lines 64a to 64c are provided so as to branch from the supply line 62, and the plurality of nozzles 50 located in the central region Rc receive the cooling fluid from the supply line 64b. The cooling fluid is supplied from the supply line 64c and the supply line 64a to the plurality of nozzles 50 located in the end regions R E1 and R E2 on both sides, respectively.
 なお、幾つかの実施形態では、上述のように、同一の領域(中央領域Rcや端部領域RE1,RE2)に属する複数のノズル50に対して単一の供給ライン64やバルブ65を設けてもよいし、あるいは、複数のノズル50の各々に対応するように、供給ライン64及びバルブ65を個別に設けてもよい。 In some embodiments, as described above, a single supply line 64 and valve 65 to a plurality of nozzles 50 belonging to the same region (central region Rc and end regions R E1, R E2) The supply line 64 and the valve 65 may be provided separately so as to correspond to each of the plurality of nozzles 50.
 一実施形態では、複数のノズル50の個数密度を径方向位置に応じて異ならせることにより、冷却流体の吐出量を径方向位置に応じて調節するようにしてもよい。例えば、図8及び図10に示す例示的な実施形態では、中央領域Rcにおけるノズル50の個数密度が、端部領域RE1,RE2におけるノズル50の個数密度より大きくなっている。このようにして、中央領域Rcにおける冷却流体の吐出流量が、端部領域RE1,RE2における冷却流体の吐出流量よりも多くなるように調節することができる。 In one embodiment, the discharge amount of the cooling fluid may be adjusted according to the radial position by making the number densities of the plurality of nozzles 50 different according to the radial position. For example, in the exemplary embodiment shown in FIGS. 8 and 10, the number density of nozzles 50 in the central region Rc is larger than the number density of nozzles 50 in the end regions RE1 and RE2. In this way, the discharge flow rate of the cooling fluid in the central region Rc can be adjusted to be larger than the discharge flow rate of the cooling fluid in the end regions RE1 and RE2.
 幾つかの実施形態では、焼結鉱の冷却装置1は、環状ホッパ2又は回転テーブル12の回転位相に応じて、ノズル50からの冷却流体の吐出流量を調節するように構成された流量調節部(不図示)を備える。該流量調節部は、環状ホッパ2又は回転テーブル12の回転位相を検出するための回転計と、回転計による検出結果に基づいて、ノズル50からの冷却流体の吐出流量を調節するように構成されたコントローラと、を含んでもよい。また、ノズル50からの冷却流体の吐出流量は、ノズル50に冷却流体を供給するための供給ラインに設けられたバルブを介して調節可能になっていてもよい。 In some embodiments, the sinter cooling device 1 is a flow rate adjusting unit configured to adjust the discharge flow rate of the cooling fluid from the nozzle 50 according to the rotation phase of the annular hopper 2 or the rotary table 12. (Not shown). The flow rate adjusting unit is configured to adjust the discharge flow rate of the cooling fluid from the nozzle 50 based on the tachometer for detecting the rotation phase of the annular hopper 2 or the rotary table 12 and the detection result by the tachometer. The controller and the controller may be included. Further, the discharge flow rate of the cooling fluid from the nozzle 50 may be adjustable via a valve provided in the supply line for supplying the cooling fluid to the nozzle 50.
 環状ホッパ2内の焼結鉱5を冷却空気で冷却すると、環状ホッパ2内の焼結鉱5に周方向における温度分布が生じる場合があり、この温度分布は、環状ホッパ2内に配置される構造物の位置に応じたものとなる傾向がある。ここで、環状ホッパ2内における構造物の周方向位置と、環状ホッパ2又は回転テーブル12の回転位相(例えば0度~360度)とは互いに関連する。 When the sinter 5 in the annular hopper 2 is cooled with cooling air, a temperature distribution in the circumferential direction may occur in the sinter 5 in the annular hopper 2, and this temperature distribution is arranged in the annular hopper 2. It tends to depend on the position of the structure. Here, the circumferential position of the structure in the annular hopper 2 and the rotational phase (for example, 0 to 360 degrees) of the annular hopper 2 or the rotary table 12 are related to each other.
 例えば、図1A及び図1Bに示す冷却装置1の場合、環状ホッパ2の内部には、周方向において間隔を空けて複数の通気ダクト11が設けられている。したがって、周方向において、通気ダクト11の近傍の位置と、通気ダクト11と通気ダクト11の間の位置とでは、焼結鉱5の温度に差がある場合がある。 For example, in the case of the cooling device 1 shown in FIGS. 1A and 1B, a plurality of ventilation ducts 11 are provided inside the annular hopper 2 at intervals in the circumferential direction. Therefore, in the circumferential direction, there may be a difference in the temperature of the sinter 5 between the position near the ventilation duct 11 and the position between the ventilation duct 11 and the ventilation duct 11.
 この点、上述の実施形態によれば、冷却流体の吐出流量を環状ホッパ2の回転位相に応じて調節可能としたので、例えば、冷却流体の吐出量を環状ホッパ2内の構造物の位置に応じて適切に調節することで、冷却後の焼結鉱5の温度を周方向において均一化することができる。 In this regard, according to the above-described embodiment, the discharge flow rate of the cooling fluid can be adjusted according to the rotation phase of the annular hopper 2. Therefore, for example, the discharge amount of the cooling fluid is set to the position of the structure in the annular hopper 2. By appropriately adjusting the temperature accordingly, the temperature of the sintered ore 5 after cooling can be made uniform in the circumferential direction.
 以下、幾つかの実施形態に係る焼結鉱の冷却装置について概要を記載する。 The outline of the sinter cooling device according to some embodiments will be described below.
(1)本発明の少なくとも一実施形態に係る焼結鉱の冷却装置(1)は、
 焼結鉱(5)を受け入れるための内部空間(6)、および、前記焼結鉱を排出可能な下部開口(2a)を有する堆積槽(例えば上述の環状ホッパ2)と、
 前記堆積槽の下方に前記下部開口から間隔を空けて配置され、前記堆積槽とともに回転するように構成された回転テーブル(12)と、
 前記堆積槽と前記回転テーブルとの間に設けられたスクレーパ(30)と、
 前記堆積槽の前記内部空間に連通するように前記堆積槽の上方に設けられる排気フード(例えば上述のフード18)と、
 前記下部開口の下方、かつ、前記回転テーブルの上方の位置に設けられ、冷却流体を吐出するように構成されたノズル(50)と、
を備える。
(1) The sinter cooling device (1) according to at least one embodiment of the present invention is
A depository (for example, the above-mentioned annular hopper 2) having an internal space (6) for receiving the sinter (5) and a lower opening (2a) capable of discharging the sinter.
A rotary table (12) arranged below the deposit tank at a distance from the lower opening and configured to rotate together with the deposit tank.
A scraper (30) provided between the deposit tank and the rotary table, and
An exhaust hood (for example, the hood 18 described above) provided above the deposit tank so as to communicate with the internal space of the deposit tank.
A nozzle (50) provided below the lower opening and above the rotary table and configured to discharge the cooling fluid.
To be equipped.
 上記(1)の構成によれば、堆積槽の下部開口の下方、かつ、回転テーブルの上方の位置に冷却流体を吐出可能なノズルを設けたので、堆積槽の内部で空気により冷却された後、下部開口から排出された焼結鉱にノズルからの冷却流体を供給することができる。すなわち、空気で冷却されて温度が低下した焼結鉱に、ノズルからの冷却流体を供給して焼結鉱をさらに冷却するようにしたので、急冷によるクラックの発生を抑制しながら、焼結鉱を十分に冷却することができる。よって、製品品質の低下を抑制しながら、冷却効果を向上することができる。 According to the configuration of (1) above, since the nozzle capable of discharging the cooling fluid is provided below the lower opening of the deposit tank and above the rotary table, after being cooled by air inside the deposit tank. , The cooling fluid from the nozzle can be supplied to the sintered ore discharged from the lower opening. That is, since the cooling fluid from the nozzle is supplied to the sinter that has been cooled by air and the temperature has dropped to further cool the sinter, the sinter is further cooled while suppressing the occurrence of cracks due to quenching. Can be cooled sufficiently. Therefore, the cooling effect can be improved while suppressing the deterioration of the product quality.
(2)幾つかの実施形態では、上記(1)の構成において、
 前記ノズルは、前記回転テーブルの回転方向における前記スクレーパの下流側又は前記スクレーパの上方に前記冷却流体を供給するように構成される。
(2) In some embodiments, in the configuration of (1) above,
The nozzle is configured to supply the cooling fluid to the downstream side of the scraper or above the scraper in the rotation direction of the rotary table.
 上記(2)の構成によれば、冷却流体を吐出するノズルを、スクレーパの下流側又はスクレーパの上方に設けたので、冷却流体が焼結鉱に供給されてから、該焼結鉱がスクレーパによって回転テーブルの外側に掻き出されるまでの時間を比較的長く確保することができる。すなわち、焼結鉱と冷却流体の接触時間を比較的長く確保することができ、これにより、冷却流体による焼結鉱の冷却効果を高めることができる。 According to the configuration of (2) above, since the nozzle for discharging the cooling fluid is provided on the downstream side of the scraper or above the scraper, the sinter is supplied to the sinter by the scraper after the cooling fluid is supplied to the sinter. It is possible to secure a relatively long time until it is scraped to the outside of the turntable. That is, the contact time between the sinter and the cooling fluid can be secured for a relatively long time, and thus the cooling effect of the sinter by the cooling fluid can be enhanced.
(3)幾つかの実施形態では、上記(1)又は(2)の構成において、
 前記ノズルは、前記回転テーブルの回転方向における前記スクレーパの下流側の荷下がり領域(Rd)に前記冷却流体を供給するように構成される。
(3) In some embodiments, in the configuration of (1) or (2) above,
The nozzle is configured to supply the cooling fluid to the unloading region (Rd) on the downstream side of the scraper in the rotation direction of the rotary table.
 冷却装置における荷下がり領域は、スクレーパ下流側におけるスクレーパの直後の領域であり、スクレーパの上面に載っていた焼結鉱が、回転テーブルの上面に向けて下方に移動する領域である。この点、上記(3)の構成によれば、焼結鉱が下方に移動する領域に冷却流体を供給するようにしたので、焼結鉱5が上下方向において静止している領域(例えば荷下がり領域よりも下流側の領域)に冷却流体を供給する場合に比べ、より多くの焼結鉱に対して冷却流体を供給しやすい。また、スクレーパの直後の領域に冷却流体を供給するようにしたので、焼結鉱と冷却流体の接触時間を比較的長く確保することができる。これにより、焼結鉱をより効果的に冷却することができる。 The unloading area in the cooling device is the area immediately after the scraper on the downstream side of the scraper, and the sinter on the upper surface of the scraper moves downward toward the upper surface of the rotary table. In this regard, according to the configuration of (3) above, since the cooling fluid is supplied to the region where the sinter moves downward, the region where the sinter 5 is stationary in the vertical direction (for example, unloading) It is easier to supply the cooling fluid to more sinters than when the cooling fluid is supplied to the region downstream of the region). Further, since the cooling fluid is supplied to the region immediately after the scraper, the contact time between the sinter and the cooling fluid can be secured relatively long. This makes it possible to cool the sinter more effectively.
(4)幾つかの実施形態では、上記(1)乃至(3)の何れかの構成において、
 前記ノズルは、前記スクレーパの上方に堆積された前記焼結鉱が下方に移動可能な領域に前記冷却流体を供給するように構成される。
(4) In some embodiments, in any of the configurations (1) to (3) above,
The nozzle is configured to supply the cooling fluid to a region where the sinter deposited above the scraper can move downward.
 上記(4)の構成によれば、スクレーパの上方に堆積された焼結鉱が下方に移動可能な領域(回転方向におけるスクレーパの直後の領域)に冷却流体を供給するようにしたので、焼結鉱5が上下方向において静止している領域に冷却流体を供給する場合に比べ、より多くの焼結鉱に対して冷却流体を供給しやすい。また、スクレーパの直後の領域に冷却流体を供給するようにしたので、焼結鉱と冷却流体の接触時間を比較的長く確保することができる。これにより、焼結鉱をより効果的に冷却することができる。 According to the configuration of (4) above, the sinter deposited above the scraper supplies the cooling fluid to the region where it can move downward (the region immediately after the scraper in the rotational direction), so that the sinter is performed. It is easier to supply the cooling fluid to a larger amount of sinter as compared with the case where the cooling fluid is supplied to the region where the ore 5 is stationary in the vertical direction. Further, since the cooling fluid is supplied to the region immediately after the scraper, the contact time between the sinter and the cooling fluid can be secured relatively long. This makes it possible to cool the sinter more effectively.
(5)幾つかの実施形態では、上記(1)乃至(4)の何れかの構成において、
 前記ノズルは、前記スクレーパの高さをHsとしたとき、前記スクレーパの下流側端面からの周方向における距離がHs以下の範囲内に前記冷却流体を供給するように構成される。
(5) In some embodiments, in any of the configurations (1) to (4) above,
The nozzle is configured to supply the cooling fluid within a range in which the distance in the circumferential direction from the downstream end surface of the scraper is Hs or less, where Hs is the height of the scraper.
 上記(5)の構成によれば、スクレーパの下流側端面からの距離がHs以下の範囲内の領域、すなわち、スクレーパの上方に堆積された焼結鉱が下方に移動可能な領域(回転方向におけるスクレーパの直後の領域)に冷却流体を供給するようにしたので、焼結鉱5が上下方向において静止している領域に冷却流体を供給する場合に比べ、より多くの焼結鉱に対して冷却流体を供給しやすい。また、スクレーパの直後の領域に冷却流体を供給するようにしたので、焼結鉱と冷却流体の接触時間を比較的長く確保することができる。これにより、焼結鉱をより効果的に冷却することができる。 According to the configuration of (5) above, the region where the distance from the downstream end face of the scraper is within the range of Hs or less, that is, the region where the sinter deposited above the scraper can move downward (in the rotation direction). Since the cooling fluid is supplied to the region immediately after the scraper), more cooling fluid is cooled than when the cooling fluid is supplied to the region where the sinter 5 is stationary in the vertical direction. Easy to supply fluid. Further, since the cooling fluid is supplied to the region immediately after the scraper, the contact time between the sinter and the cooling fluid can be secured relatively long. This makes it possible to cool the sinter more effectively.
(6)幾つかの実施形態では、上記(1)乃至(5)の何れかの構成において、
 前記ノズルは、前記スクレーパに支持される。
(6) In some embodiments, in any of the configurations (1) to (5) above,
The nozzle is supported by the scraper.
 回転式の冷却装置において、スクレーパは、通常、径方向又は径方向に準じた方向に沿って延びるとともに、上面及び下流側端面を有する。この点、上記(6)の構成によれば、スクレーパによってノズルを支持するようにしたので、スクレーパの上方や、回転方向におけるスクレ―パの直後(下流側)の領域に冷却流体を吐出可能なノズルを、スクレーパを利用して適切に設けることができる。 In a rotary cooling device, the scraper usually extends along a radial or radial direction and has an upper surface and a downstream end surface. In this regard, according to the configuration of (6) above, since the nozzle is supported by the scraper, the cooling fluid can be discharged to the area above the scraper or immediately after (downstream) the scraper in the rotation direction. The nozzle can be appropriately provided by utilizing a scraper.
(7)幾つかの実施形態では、上記(6)の構成において、
 前記ノズルは、前記スクレーパの下流側端面(30b)に設けられる開口を介して、前記冷却流体を吐出するように構成される。
(7) In some embodiments, in the configuration of (6) above,
The nozzle is configured to discharge the cooling fluid through an opening provided in the downstream end surface (30b) of the scraper.
 上記(7)の構成によれば、ノズルからの冷却流体は、スクレーパの下流側端面に設けられる開口を介して吐出されるので、ノズルと焼結鉱との接触を抑制することができる。これにより、ノズルの破損や摩耗、あるいは、焼結鉱等の紛体の付着によるノズルの閉塞を抑制することができる。 According to the configuration of (7) above, the cooling fluid from the nozzle is discharged through the opening provided on the downstream end surface of the scraper, so that the contact between the nozzle and the sinter can be suppressed. As a result, it is possible to suppress the nozzle from being damaged or worn, or the nozzle from being blocked due to the adhesion of powder such as sinter.
(8)幾つかの実施形態では、上記(6)の構成において、
 前記ノズルは、前記スクレーパの上方、又は、前記スクレーパの下流側端面よりも、前記回転テーブルの回転方向の下流側の位置に設けられる。
(8) In some embodiments, in the configuration of (6) above,
The nozzle is provided above the scraper or at a position downstream of the scraper's downstream end surface in the rotational direction of the rotary table.
 上記(8)の構成によれば、スクレーパの上方、又は、スクレーパの下流側端面よりも下流側の位置にノズルを設けるようにしたので、ノズルを設置しやすく、また、ノズルの点検を容易に行うことができる。 According to the configuration of (8) above, since the nozzle is provided above the scraper or at a position downstream of the downstream end surface of the scraper, the nozzle can be easily installed and the nozzle can be easily inspected. It can be carried out.
(9)幾つかの実施形態では、上記(1)乃至(8)の何れかの構成において、
 前記焼結鉱の冷却装置は、
 前記ノズルを上方から覆うように設けられる保護カバー(60)を備える。
(9) In some embodiments, in any of the configurations (1) to (8) above,
The sinter cooling device
A protective cover (60) provided so as to cover the nozzle from above is provided.
 上記(9)の構成によれば、ノズルを上方から覆う保護カバーを設けたので、ノズルの上方に位置する焼結鉱がノズルに接触するのを抑制することができ、焼結鉱による衝撃や摩耗からノズルを保護することができる。 According to the configuration of (9) above, since the protective cover that covers the nozzle from above is provided, it is possible to suppress the sinter located above the nozzle from coming into contact with the nozzle, and the impact of the sinter or the impact caused by the sinter can be prevented. The nozzle can be protected from wear.
(10)幾つかの実施形態では、上記(1)乃至(9)の何れかの構成において、
 前記焼結鉱の冷却装置は、
 前記ノズルに前記冷却流体を供給するための供給管(54)を備え、
 前記供給管の少なくとも一部は、前記スクレーパの内部に設けられる。
(10) In some embodiments, in any of the configurations (1) to (9) above,
The sinter cooling device
A supply pipe (54) for supplying the cooling fluid to the nozzle is provided.
At least a part of the supply pipe is provided inside the scraper.
 上記(10)の構成によれば、ノズルに冷却流体を供給するための供給管の少なくとも一部は、スクレーパの内部に設けられるので、焼結鉱が供給管に接触するのを抑制することができ、焼結鉱による衝撃や摩耗から供給管を保護することができる。 According to the configuration of (10) above, at least a part of the supply pipe for supplying the cooling fluid to the nozzle is provided inside the scraper, so that it is possible to prevent the sinter from coming into contact with the supply pipe. It can protect the supply pipe from the impact and wear caused by the sinter.
(11)幾つかの実施形態では、上記(1)乃至(10)の何れかの構成において、
 前記焼結鉱の冷却装置は、
 径方向に沿って配置され、前記冷却流体の吐出量が径方向位置に応じて異なるように構成された複数の前記ノズルを備える。
(11) In some embodiments, in any of the configurations (1) to (10) above,
The sinter cooling device
It includes a plurality of the nozzles arranged along the radial direction and configured so that the discharge amount of the cooling fluid differs depending on the radial position.
 堆積槽内の焼結鉱を冷却空気で冷却すると、堆積槽内の焼結鉱に径方向における温度分布が生じる場合がある。この点、上記(11)の構成によれば、径方向に複数のノズルを設け、冷却流体の吐出量を径方向位置に応じて調節可能としたので、冷却流体の吐出量を焼結鉱の温度分布に応じて適切に調節することで、冷却後の焼結鉱の温度を径方向において均一化することができる。 When the sinter in the sedimentary tank is cooled with cooling air, the sinter in the sedimentary tank may have a temperature distribution in the radial direction. In this regard, according to the configuration of (11) above, since a plurality of nozzles are provided in the radial direction and the discharge amount of the cooling fluid can be adjusted according to the radial position, the discharge amount of the cooling fluid can be adjusted to that of the sintered ore. By appropriately adjusting the temperature according to the temperature distribution, the temperature of the sintered ore after cooling can be made uniform in the radial direction.
(12)幾つかの実施形態では、上記(11)の構成において、
 前記複数のノズルに前記冷却流体を供給するための複数の供給ライン(64a~64c)と、
 前記複数の供給ラインにそれぞれ設けられ、前記複数のノズルの各々からの吐出量を調節するための複数のバルブ(65a~65c)と、
を備える。
(12) In some embodiments, in the configuration of (11) above,
A plurality of supply lines (64a to 64c) for supplying the cooling fluid to the plurality of nozzles, and
A plurality of valves (65a to 65c) provided in each of the plurality of supply lines and for adjusting the discharge amount from each of the plurality of nozzles, and
To be equipped.
 上記(12)の構成によれば、複数の供給ラインと、複数の供給ラインの各々に設けられるバルブによって、冷却流体の吐出量を径方向位置に応じて適切に調節することができる。これにより、冷却流体の吐出量を焼結鉱の温度分布に応じて適切に調節することで、冷却後の焼結鉱の温度を径方向において均一化することができる。 According to the configuration of (12) above, the discharge amount of the cooling fluid can be appropriately adjusted according to the radial position by the plurality of supply lines and the valves provided in each of the plurality of supply lines. Thereby, by appropriately adjusting the discharge amount of the cooling fluid according to the temperature distribution of the sinter, the temperature of the sinter after cooling can be made uniform in the radial direction.
(13)幾つかの実施形態では、上記(11)の構成において、
 前記複数のノズルの個数密度が径方向位置に応じて異なる。
(13) In some embodiments, in the configuration of (11) above,
The number density of the plurality of nozzles differs depending on the radial position.
 上記(13)の構成によれば、複数のノズルの個数密度を径方向位置に応じて異ならせるようにしたので、各径方向位置におけるノズルの個数密度を適切に設定することにより、冷却流体の吐出量を径方向位置に応じて適切に調節することができる。これにより、冷却流体の吐出量を焼結鉱の温度分布に応じて適切に調節することで、冷却後の焼結鉱の温度を径方向において均一化することができる。 According to the configuration of (13) above, the number densities of the plurality of nozzles are made different according to the radial positions. Therefore, by appropriately setting the number densities of the nozzles at each radial position, the cooling fluid can be used. The discharge amount can be appropriately adjusted according to the radial position. Thereby, by appropriately adjusting the discharge amount of the cooling fluid according to the temperature distribution of the sinter, the temperature of the sinter after cooling can be made uniform in the radial direction.
(14)幾つかの実施形態では、上記(11)乃至(13)の何れかの構成において、
 前記複数のノズルは、前記堆積槽の下端部において、前記焼結鉱が排出される開口領域(A1)のうち、径方向にて前記開口領域の中心位置を含む中央領域(Rc)における前記冷却流体の吐出流量が、前記開口領域のうち、前記径方向にて前記中央領域の両側に位置する端部領域(RE1,RE2)における前記冷却流体の吐出流量よりも多くなるように構成される。
(14) In some embodiments, in any of the configurations (11) to (13) above,
The plurality of nozzles are used for cooling in the central region (Rc) including the central position of the opening region in the radial direction in the opening region (A1) from which the sintered ore is discharged at the lower end of the deposit tank. The discharge flow rate of the fluid is configured to be larger than the discharge flow rate of the cooling fluid in the end regions (RE1 , RE2 ) located on both sides of the central region in the radial direction in the opening region. NS.
 堆積槽内の焼結鉱を冷却空気で冷却すると、堆積槽内の焼結鉱に径方向における温度分布が生じる場合があり、このとき、堆積槽下端部の開口領域のうち、径方向における中央領域では、径方向における端部領域に比べて焼結鉱の温度が高い傾向がある。この点、上記(14)の構成によれば、開口領域のうち、中央領域における冷却流体の吐出流量を、端部領域における冷却流体の吐出流量よりも多くなるようにしたので、冷却後の焼結鉱の温度を径方向において均一化することができる。 When the sinter in the sinter is cooled with cooling air, the sinter in the sinter may have a radial temperature distribution. In the region, the temperature of the sinter tends to be higher than in the radial end region. In this regard, according to the configuration of (14) above, the discharge flow rate of the cooling fluid in the central region of the opening region is set to be larger than the discharge flow rate of the cooling fluid in the end region. The temperature of the ore can be made uniform in the radial direction.
(15)幾つかの実施形態では、上記(1)乃至(14)の何れかの構成において、
 前記焼結鉱の冷却装置は、
 前記堆積槽の回転位相に応じて、前記ノズルからの前記冷却流体の吐出流量を調節するように構成された流量調節部を備える。
(15) In some embodiments, in any of the configurations (1) to (14) above,
The sinter cooling device
The flow rate adjusting unit is provided so as to adjust the discharge flow rate of the cooling fluid from the nozzle according to the rotation phase of the deposit tank.
 堆積槽内の焼結鉱を冷却空気で冷却すると、堆積槽内の焼結鉱に周方向における温度分布が生じる場合があり、この温度分布は、堆積槽内に配置される構造物の位置に応じたものとなる傾向がある。この点、上記(15)の構成によれば、冷却流体の吐出流量を堆積槽の回転位相に応じて調節可能としたので、例えば、冷却流体の吐出量を堆積槽内の構造物の位置に応じて適切に調節することで、冷却後の焼結鉱の温度を周方向において均一化することができる。 When the sinter in the sedimentary tank is cooled with cooling air, the sinter in the sedimentary tank may have a temperature distribution in the circumferential direction, and this temperature distribution is located at the position of the structure placed in the sedimentary tank. It tends to be compliant. In this regard, according to the configuration of (15) above, the discharge flow rate of the cooling fluid can be adjusted according to the rotation phase of the sedimentation tank. Therefore, for example, the discharge amount of the cooling fluid is set to the position of the structure in the sedimentation tank. By appropriately adjusting the temperature accordingly, the temperature of the sintered ore after cooling can be made uniform in the circumferential direction.
 以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and includes a modified form of the above-described embodiments and a combination of these embodiments as appropriate.
 本明細書において、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 また、本明細書において、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 また、本明細書において、一の構成要素を「備える」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
In the present specification, expressions representing relative or absolute arrangements such as "in a certain direction", "along a certain direction", "parallel", "orthogonal", "center", "concentric" or "coaxial". Strictly represents not only such an arrangement, but also a tolerance or a state of relative displacement at an angle or distance to the extent that the same function can be obtained.
For example, expressions such as "same", "equal", and "homogeneous" that indicate that things are in the same state not only represent exactly the same state, but also have tolerances or differences to the extent that the same function can be obtained. It shall also represent the existing state.
Further, in the present specification, the expression representing a shape such as a quadrangular shape or a cylindrical shape not only represents a shape such as a quadrangular shape or a cylindrical shape in a geometrically strict sense, but also within a range in which the same effect can be obtained. , The shape including the uneven portion, the chamfered portion, etc. shall also be represented.
Further, in the present specification, the expression "comprising", "including", or "having" one component is not an exclusive expression excluding the existence of another component.
1   冷却装置
2   環状ホッパ
2a  下部開口
3   内周壁
3a  内周壁面
4   外周壁
4a  外周壁面
4b  下端
5   焼結鉱
6   内部空間
7   内側ルーバ
8   外側ルーバ
9   中央ルーバ
9a  内周側端面
9b  外周側端面
10  空気冷却部
11  通気ダクト
12  回転テーブル
13  基礎
14  中心軸受
15  レール
16  支持ローラ
17  駆動モータ
18  フード
19  排気ダクト
20  ブロア
21  架構
22  架構
23  シール部
24  桶部
25  シール液
26  封止板
27  供給シュート
29  ベルトコンベヤ
30  スクレーパ
30a 上面
30b 下流側端面
31  先端面
32  上側壁部
33  上流壁部
34  下流壁部
35  下側壁部
36  内側空間
37  開口
40  ライナ
41  上方ライナ
42  上流側ライナ
50  ノズル
52  ノズル孔
54  供給管
60  保護カバー
62  供給ライン
64(64a~64c) 供給ライン
65(65a~65c) バルブ
A1  開口領域
O   中心軸
Pc  中心位置
E1 端部領域
E2 端部領域
Rc  中央領域
Rd  荷下がり領域
1 Cooling device 2 Circular hopper 2a Lower opening 3 Inner peripheral wall 3a Inner peripheral wall surface 4 Outer wall 4a Outer wall surface 4b Lower end 5 Sintered ore 6 Inner space 7 Inner louver 8 Outer louver 9 Central louver 9a Inner peripheral side end face 9b Outer peripheral side end face 10 Air cooling part 11 Ventilation duct 12 Rotating table 13 Foundation 14 Center bearing 15 Rail 16 Support roller 17 Drive motor 18 Hood 19 Exhaust duct 20 Blower 21 Frame 22 Frame 23 Seal part 24 Oke part 25 Sealing liquid 26 Sealing plate 27 Supply chute 29 Belt conveyor 30 Scraper 30a Upper surface 30b Downstream end surface 31 Tip surface 32 Upper side wall 33 Upstream wall 34 Downstream wall 35 Lower side wall 36 Inner space 37 Opening 40 Liner 41 Upper liner 42 Upstream liner 50 Nozzle 52 Nozzle hole 54 Supply Tube 60 Protective cover 62 Supply line 64 (64a to 64c) Supply line 65 (65a to 65c) Valve A1 Opening area O Central axis Pc Center position R E1 End area R E2 End area Rc Central area Rd Unloading area

Claims (15)

  1.  焼結鉱を受け入れるための内部空間、および、前記焼結鉱を排出可能な下部開口を有する堆積槽と、
     前記堆積槽の下方に前記下部開口から間隔を空けて配置され、前記堆積槽とともに回転するように構成された回転テーブルと、
     前記堆積槽と前記回転テーブルとの間に設けられたスクレーパと、
     前記堆積槽の前記内部空間に連通するように前記堆積槽の上方に設けられる排気フードと、
     前記下部開口の下方、かつ、前記回転テーブルの上方の位置に設けられ、冷却流体を吐出するように構成されたノズルと、
    を備える焼結鉱の冷却装置。
    An internal space for receiving the sinter and a sedimentary tank with a lower opening capable of discharging the sinter.
    A rotary table, which is arranged below the deposit tank at a distance from the lower opening and is configured to rotate together with the deposit tank.
    A scraper provided between the deposit tank and the rotary table,
    An exhaust hood provided above the deposit tank so as to communicate with the internal space of the deposit tank.
    A nozzle provided below the lower opening and above the rotary table and configured to discharge the cooling fluid.
    Sinter cooling device equipped with.
  2.  前記ノズルは、前記回転テーブルの回転方向における前記スクレーパの下流側又は前記スクレーパの上方に前記冷却流体を供給するように構成された
    請求項1に記載の焼結鉱の冷却装置。
    The sinter cooling device according to claim 1, wherein the nozzle is configured to supply the cooling fluid to the downstream side of the scraper or above the scraper in the rotation direction of the rotary table.
  3.  前記ノズルは、前記回転テーブルの回転方向における前記スクレーパの下流側の荷下がり領域に前記冷却流体を供給するように構成された
    請求項1又は2に記載の焼結鉱の冷却装置。
    The sinter cooling device according to claim 1 or 2, wherein the nozzle is configured to supply the cooling fluid to a unloading region on the downstream side of the scraper in the rotation direction of the rotary table.
  4.  前記ノズルは、前記スクレーパの上方に堆積された前記焼結鉱が下方に移動可能な領域に前記冷却流体を供給するように構成された
    請求項1乃至3の何れか一項に記載の焼結鉱の冷却装置。
    The sinter according to any one of claims 1 to 3, wherein the nozzle is configured to supply the cooling fluid to a region where the sinter deposited above the scraper can move downward. Ore cooling system.
  5.  前記ノズルは、前記スクレーパの高さをHsとしたとき、前記スクレーパの下流側端面からの周方向における距離がHs以下の範囲内に前記冷却流体を供給するように構成された
    請求項1乃至4の何れか一項に記載の焼結鉱の冷却装置。
    Claims 1 to 4 are configured such that the nozzle supplies the cooling fluid within a range in which the distance in the circumferential direction from the downstream end surface of the scraper is Hs or less when the height of the scraper is Hs. The sinter cooling device according to any one of the above items.
  6.  前記ノズルは、前記スクレーパに支持される
    請求項1乃至5の何れか一項に記載の焼結鉱の冷却装置。
    The sinter cooling device according to any one of claims 1 to 5, wherein the nozzle is supported by the scraper.
  7.  前記ノズルは、前記スクレーパの下流側端面に設けられる開口を介して、前記冷却流体を吐出するように構成された
    請求項6に記載の焼結鉱の冷却装置。
    The sinter cooling device according to claim 6, wherein the nozzle is configured to discharge the cooling fluid through an opening provided on the downstream end surface of the scraper.
  8.  前記ノズルは、前記スクレーパの上方、又は、前記スクレーパの下流側端面よりも、前記回転テーブルの回転方向の下流側の位置に設けられた
    請求項6に記載の焼結鉱の冷却装置。
    The sinter cooling device according to claim 6, wherein the nozzle is provided above the scraper or at a position downstream of the scraper's downstream end surface in the rotational direction of the rotary table.
  9.  前記ノズルを上方から覆うように設けられる保護カバーを備える
    請求項1乃至8の何れか一項に記載の焼結鉱の冷却装置。
    The sinter cooling device according to any one of claims 1 to 8, further comprising a protective cover provided so as to cover the nozzle from above.
  10.  前記ノズルに前記冷却流体を供給するための供給管を備え、
     前記供給管の少なくとも一部は、前記スクレーパの内部に設けられる
    請求項1乃至9の何れか一項に記載の焼結鉱の冷却装置。
    The nozzle is provided with a supply pipe for supplying the cooling fluid.
    The sinter cooling device according to any one of claims 1 to 9, wherein at least a part of the supply pipe is provided inside the scraper.
  11.  径方向に沿って配置され、前記冷却流体の吐出量が径方向位置に応じて異なるように構成された複数の前記ノズルを備える
    請求項1乃至10の何れか一項に記載の焼結鉱の冷却装置。
    The sinter according to any one of claims 1 to 10, further comprising a plurality of the nozzles arranged along the radial direction and configured such that the discharge amount of the cooling fluid differs depending on the radial position. Cooling system.
  12.  前記複数のノズルに前記冷却流体を供給するための複数の供給ラインと、
     前記複数の供給ラインにそれぞれ設けられ、前記複数のノズルの各々からの吐出量を調節するための複数のバルブと、
    を備える
    請求項11に記載の焼結鉱の冷却装置。
    A plurality of supply lines for supplying the cooling fluid to the plurality of nozzles,
    A plurality of valves provided in each of the plurality of supply lines for adjusting the discharge amount from each of the plurality of nozzles, and
    The sinter cooling device according to claim 11.
  13.  前記複数のノズルの個数密度が径方向位置に応じて異なる
    請求項11に記載の焼結鉱の冷却装置。
    The sinter cooling device according to claim 11, wherein the number densities of the plurality of nozzles differ depending on the radial position.
  14.  前記複数のノズルは、前記堆積槽の下端部において、前記焼結鉱が排出される開口領域のうち、径方向にて前記開口領域の中心位置を含む中央領域における前記冷却流体の吐出流量が、前記開口領域のうち、前記径方向にて前記中央領域の両側に位置する端部領域における前記冷却流体の吐出流量よりも多くなるように構成された
    請求項11乃至13の何れか一項に記載の焼結鉱の冷却装置。
    In the plurality of nozzles, at the lower end of the deposit tank, the discharge flow rate of the cooling fluid in the central region including the central position of the opening region in the radial direction among the opening regions where the sintered ore is discharged is determined. The invention according to any one of claims 11 to 13, wherein the opening region is configured to be larger than the discharge flow rate of the cooling fluid in the end regions located on both sides of the central region in the radial direction. Sintered ore cooling system.
  15.  前記堆積槽の回転位相に応じて、前記ノズルからの前記冷却流体の吐出流量を調節するように構成された流量調節部を備える
    請求項1乃至14の何れか一項に記載の焼結鉱の冷却装置。
    The sinter according to any one of claims 1 to 14, further comprising a flow rate adjusting unit configured to adjust the discharge flow rate of the cooling fluid from the nozzle according to the rotation phase of the deposit tank. Cooling system.
PCT/JP2020/014811 2020-03-31 2020-03-31 Cooling device for sintered ore WO2021199281A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227023381A KR20220111694A (en) 2020-03-31 2020-03-31 Cooling device for sinter ore
JP2022512991A JP7225471B2 (en) 2020-03-31 2020-03-31 sinter cooling device
CN202080093346.4A CN114945691B (en) 2020-03-31 2020-03-31 Cooling device for sinter
PCT/JP2020/014811 WO2021199281A1 (en) 2020-03-31 2020-03-31 Cooling device for sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/014811 WO2021199281A1 (en) 2020-03-31 2020-03-31 Cooling device for sintered ore

Publications (1)

Publication Number Publication Date
WO2021199281A1 true WO2021199281A1 (en) 2021-10-07

Family

ID=77930128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/014811 WO2021199281A1 (en) 2020-03-31 2020-03-31 Cooling device for sintered ore

Country Status (4)

Country Link
JP (1) JP7225471B2 (en)
KR (1) KR20220111694A (en)
CN (1) CN114945691B (en)
WO (1) WO2021199281A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113720166A (en) * 2021-10-13 2021-11-30 新兴铸管股份有限公司 Circular cooler

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016094630A (en) * 2014-11-12 2016-05-26 株式会社Ihi Sintered ore cooling device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3214309B2 (en) * 1995-09-08 2001-10-02 住友金属工業株式会社 Sinter cooling device and cooling method
JP5682763B2 (en) * 2011-10-04 2015-03-11 新日鐵住金株式会社 Rotary circular cooling device and method for cooling sintered ore using the same
JP6436748B2 (en) * 2014-05-21 2018-12-12 スチールプランテック株式会社 Sinter cooler
JP2017075346A (en) * 2015-10-13 2017-04-20 株式会社Ihi Sintered ore cooling apparatus
JP2018204043A (en) * 2017-05-30 2018-12-27 Jfeスチール株式会社 Method for cooling sintered ore

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016094630A (en) * 2014-11-12 2016-05-26 株式会社Ihi Sintered ore cooling device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113720166A (en) * 2021-10-13 2021-11-30 新兴铸管股份有限公司 Circular cooler
CN113720166B (en) * 2021-10-13 2023-11-28 新兴铸管股份有限公司 Circular cooler

Also Published As

Publication number Publication date
JPWO2021199281A1 (en) 2021-10-07
KR20220111694A (en) 2022-08-09
CN114945691A (en) 2022-08-26
CN114945691B (en) 2024-05-14
JP7225471B2 (en) 2023-02-20

Similar Documents

Publication Publication Date Title
EP3175194B1 (en) Sinter cooler
WO2021199281A1 (en) Cooling device for sintered ore
TW201009276A (en) Air supplying device, and high-temperature particulate cooling facility provided with the air supplying device
KR20140009240A (en) Roller mill
UA125441C2 (en) Cooling of bulk material
JP7062625B2 (en) Sintered ore cooling device
JP2020165637A (en) Sintered ore cooler
CN113748304B (en) Cooling device for granular material and scraper
RU2703760C2 (en) Reducing dust generation enclosure of cooling device for cooling of hot loose material
US3966062A (en) Apparatus for charging raw materials into blast furnaces
JPH08199230A (en) Method and apparatus for cooling workpiece
KR101618246B1 (en) Cooling device for hot bulk material
JP2016075445A (en) Sintered ore cooling device
TW201336998A (en) Rotary charging device for shaft furnace
CN207448244U (en) A kind of caliber pipe inwall shot-blast cleaning machine
JPS6221058B2 (en)
JP7280164B2 (en) Sinter cooling device
CN107179002B (en) Groove type liquid seal blast cooling device and method for double-side unloading sintering mine
KR101431040B1 (en) Sintering apparatus of raw material
JP2018146189A (en) Sinter ore cooling machine and recovery method for granular sinter ore
JP3881768B2 (en) Dust discharging device in sintering machine cooling device
JP7288185B2 (en) Sintered ore cooling device and method for cooling sintered ore using sintered ore cooling device
CN107179003B (en) Split-driven groove type liquid seal blast cooling device and method for sintering mine
CN112747605B (en) Scraper type circular cooler
JP7401572B2 (en) Furnace workpiece charging and extraction device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20929586

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022512991

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227023381

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20929586

Country of ref document: EP

Kind code of ref document: A1