WO2021197707A1 - Procédé de production d'un combustible synthétique et système pour la mise en œuvre d'un tel procédé - Google Patents

Procédé de production d'un combustible synthétique et système pour la mise en œuvre d'un tel procédé Download PDF

Info

Publication number
WO2021197707A1
WO2021197707A1 PCT/EP2021/053987 EP2021053987W WO2021197707A1 WO 2021197707 A1 WO2021197707 A1 WO 2021197707A1 EP 2021053987 W EP2021053987 W EP 2021053987W WO 2021197707 A1 WO2021197707 A1 WO 2021197707A1
Authority
WO
WIPO (PCT)
Prior art keywords
biogas
gas combustion
plant
carbon dioxide
fuel
Prior art date
Application number
PCT/EP2021/053987
Other languages
German (de)
English (en)
Inventor
Felix SCHORN
Remzi Can Samsun
Dennis LOHSE
Ralf Peters
Original Assignee
Forschungszentrum Jülich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Jülich GmbH filed Critical Forschungszentrum Jülich GmbH
Publication of WO2021197707A1 publication Critical patent/WO2021197707A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/1516Multisteps
    • C07C29/1518Multisteps one step being the formation of initial mixture of carbon oxides and hydrogen for synthesis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • C25B15/081Supplying products to non-electrochemical reactors that are combined with the electrochemical cell, e.g. Sabatier reactor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Definitions

  • the present invention relates to a method for producing a synthetic fuel.
  • the invention also relates to a system which is designed and set up to carry out such a method.
  • a carbon source is required in addition to renewable hydrogen, e.g. hydrogen generated by electrolysis of water. Since the synthetic fuels should make a contribution to the reduction of greenhouse gas emissions, a non-fossil carbon source is a basic requirement.
  • Cheap et al. have shown that carbon dioxide (CO2) as a carbon source can make an important contribution to the production of synthetic fuels, see “Non-fossil CO2 recycling - The technical potential for the present and future utilization for fuels in Germany", Journal of CO2 utilization, 30 130-141 (2019).
  • FIG 3 shows schematically a known example of a biogas plant.
  • the biogas leaving the biogas plant 20 via the line 21 and containing methane (CFU) and carbon dioxide (CO2) is first divided into two partial flows, which are passed through the lines 22 and 23.
  • the biogas flowing through the line 22 is fed to a gas combustion system 24, which in the present case is a block-type thermal power station, where it is used to generate electricity and heat, the heat being used to operate the biogas system 20.
  • a gas combustion system 24 which in the present case is a block-type thermal power station, where it is used to generate electricity and heat, the heat being used to operate the biogas system 20.
  • up to 50% of the biogas produced in the biogas plant must be burned in the biogas incineration plant and therefore does not get into the processing.
  • the biogas flowing through the line 23 reaches the processing plant 25, where it is separated into biomethane (CH4) and carbon dioxide (CO2) using one of the technologies mentioned above.
  • CH4 biomethane
  • CO2 carbon dioxide
  • the biomethane leaving the processing plant 25 via the line 26 can, for example, be fed into the natural gas network.
  • the carbon dioxide leaving the treatment plant 25 via line 27 is normally discharged into the environment. In principle, it would therefore also be available for the production of synthetic fuels. Based on this prior art, it is an object of the present invention to provide an alternative and environmentally friendly method for producing a synthetic fuel.
  • the present invention provides a method for producing a synthetic fuel, comprising the steps: a) decomposition of water (H 2 O) into oxygen (O 2 ) and hydrogen (H 2 ) using an electrolyzer; b) Generation of a biogas comprising methane (CH 4 ) and carbon dioxide (CO 2 ) using a biogas plant; c) Generation of electricity and / or heat in a gas incineration plant using biogas generated in the biogas plant (CH 4 , CO 2 ) and oxygen obtained from electrolysis (O 2 ); d) Treat the exhaust gas leaving the gas incineration plant and containing water (H 2 O) and carbon dioxide (CO 2 ) in such a way that water (H 2 O) is at least partially withdrawn, in particular by means of condensation; and e) generating synthetic fuel in a fuel synthesis system using carbon dioxide (CO 2 ) obtained from the exhaust gas from the gas combustion system and hydrogen (H 2 ) obtained from electrolysis.
  • a major advantage of this process is that the gas combustion system is operated in the oxyfuel process and that the exhaust gas leaving the gas combustion system consists only of carbon dioxide (CO 2 ) and water (H 2 O), which makes the separation clear compared to the separation technologies mentioned above simplified, since the water only has to be condensed out.
  • this process makes all the carbon in the biogas available for the subsequent fuel synthesis.
  • the high-purity CO 2 obtained in this way is then used for fuel synthesis, for which the electrolyser supplies the additionally required hydrogen (H 2 ).
  • the invention thus creates a very environmentally friendly fuel synthesis process.
  • step c) advantageously takes place under the use of cooled carbon dioxide (CO 2 ) obtained from the exhaust gas from the gas incineration system to regulate the combustion temperature in order to prevent combustion in the exhaust gas incineration system at temperatures that are too high avoid pure oxygen through exhaust gas recirculation.
  • CO 2 cooled carbon dioxide
  • the recirculated CO2 thus replaces the role of the inert gas, which is normally played by the nitrogen contained in the ambient air.
  • the combustion process is preferably set in such a way that, compared to a combustion operation using ambient air, no higher temperatures and no higher pressures arise. This means that the engine is not loaded more than in nominal operation.
  • heat is generated in step c), this heat being at least partially used to drive the biogas plant.
  • the gas combustion system is advantageously a block-type thermal power station. As already described at the beginning, such combined heat and power units are widespread, especially in Germany, so that they can be used for fuel synthesis by simple retrofitting in combination with an installation of an electrolyser and a fuel synthesis system.
  • the fuel synthesis system is preferably a methanol synthesis system, since the two starting materials hydrogen (H 2 ) and carbon dioxide (CO 2 ) are sufficient for this without further processing.
  • the synthetic fuel produced in step e) is filled in the fuel synthesis system in the transport container, that is to say decentrally filled.
  • the design of the electrolyser, the biogas plant, the gas combustion system and the fuel synthesis system are preferably coordinated with one another in such a way that the gas combustion system and the fuel synthesis system can be operated continuously.
  • the present invention creates a system comprising at least one electrolyzer, at least one biogas plant, at least one gas combustion plant and at least one fuel synthesis plant, the system being designed and set up to carry out a method according to the invention.
  • Figure 1 is a flow chart showing the method steps of a
  • Fig. 10 shows a method for producing a synthetic fuel according to an embodiment of the present invention
  • Figure 2 is a schematic view of a system according to a
  • FIG. 1 Embodiment of the present invention which is used to carry out the method according to FIG. 1; and Figure 3 is a schematic view of a known Biogasanla ge with processing plant.
  • FIG. 1 shows a method for producing a synthetic fuel according to an embodiment of the present invention, which method is carried out using the system 10 shown in FIG.
  • a first step a using an electrolyzer 2, water (FhO) is broken down into oxygen (O 2 ) and hydrogen (FI2).
  • the water is fed to the electrolyser 2 via a line 3.
  • the oxygen is removed via a line 4, the hydrogen via a line 5.
  • step b) in a biogas plant 6 in a manner known per se, a biogas is produced that is made up of methane (CH 4 ) and carbon dioxide (CO 2 ) is composed, the proportion of CO 2 being approximately between 40-60 vol.%.
  • the biogas flows out of the biogas plant 6 via line 7.
  • step c) electricity and heat are generated in a gas combustion plant 8 using biogas (CH 4 , CO 2 ) generated in the biogas plant 6 and oxygen obtained from electrolysis (O 2 ), the biogas and the oxygen being fed to the gas combustion system 8 via a line 9, in the present case together with carbon dioxide (CO 2 ) fed via a return line 10.
  • the gas combustion system 8 is preferably a block-type thermal power station.
  • the heat generated in the gas combustion system 8 is at least partially used to operate the biogas system 6.
  • step d) the exhaust gas leaving the gas combustion system 8 via a line 11 and containing water (H 2 O) and carbon dioxide (CO 2 ) is treated in such a way that water (H 2 O) is removed from it, in particular using a capacitor not shown in detail.
  • the water is separated off via a line 12.
  • the remaining carbon dioxide (CO 2) flows in the line 13.
  • the line 13 is coupled via the feedback line 10 on the one hand to the line 9 to carry the recycling of CO 2 at high temperatures and pressures during the comparison to avoid combustion of the biogas obtained in the biogas system 6 in the gas combustion system 8 operated in the oxyfuel process.
  • the line 13 is coupled via a line 14 to a fuel synthesis system 15 in which, in step e), synthetic fuel using carbon dioxide (CO2) obtained from the exhaust gas of the gas combustion system 8 and hydrogen (H2) obtained from electrolysis is generated, which is fed to the fuel synthesis system 15 via the line 5.
  • the fuel synthesis system 15 is presently a methanol synthesis system that only requires hydrogen and carbon dioxide as starting materials.
  • the fuel produced is then preferably filled locally into transport containers.
  • the design of the electrolyser 2, the biogas system 6, the gas combustion system 8 and the fuel synthesis system 15 are coordinated in the present case in such a way that the gas combustion system 6 and the fuel synthesis system 15 can be operated continuously.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

La présente invention concerne un procédé de production d'un combustible synthétique, comprenant les étapes consistant à : a) fragmenter de l'eau (H2O) en oxygène (O2) et hydrogène (H2) à l'aide d'un électrolyseur (2) ; b) produire un biogaz comprenant du méthane (CH4) et du dioxyde de carbone (CO2) à l'aide d'une installation de biogaz (6) ; c) produire de l'énergie et/ou de la chaleur dans une installation de combustion de gaz (8) au moyen de biogaz (CH4, CO2) produit dans l'installation de biogaz (6) et de l'oxygène (O2) obtenu à partir de l'électrolyse ; d) traiter le gaz de dégagement comprenant de l'eau (H2O) et du dioxyde de carbone (CO2) qui sort de l'installation de combustion de gaz (8) de telle sorte que l'eau (H2O) est au moins en partie retirée de celui-ci, en particulier par condensation ; et e) produire du combustible synthétique dans une installation de synthèse de combustible (15) à l'aide de dioxyde de carbone (CO2) obtenu à partir du gaz de dégagement provenant de l'installation de combustion de gaz (8) et de l'hydrogène (H2) obtenu à partir de l'électrolyse. L'invention concerne en outre un système (1) pour la mise en en œuvre du procédé.
PCT/EP2021/053987 2020-04-03 2021-02-18 Procédé de production d'un combustible synthétique et système pour la mise en œuvre d'un tel procédé WO2021197707A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020109448.5A DE102020109448A1 (de) 2020-04-03 2020-04-03 Verfahren zur Herstellung eines synthetischen Kraftstoffs und System zur Durchführung eines solchen Verfahrens
DE102020109448.5 2020-04-03

Publications (1)

Publication Number Publication Date
WO2021197707A1 true WO2021197707A1 (fr) 2021-10-07

Family

ID=74672326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/053987 WO2021197707A1 (fr) 2020-04-03 2021-02-18 Procédé de production d'un combustible synthétique et système pour la mise en œuvre d'un tel procédé

Country Status (2)

Country Link
DE (1) DE102020109448A1 (fr)
WO (1) WO2021197707A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19802660A1 (de) * 1998-01-24 1999-07-29 Goes Ges Fuer Forschung Und Te Abprodukt-Wärmekraft-Synthese-Kopplung, ein Verfahren zur regionalen Be- und Entsorgung
DE10021383A1 (de) * 2000-05-03 2001-11-08 Wea Waste Energy Action Intern Verfahren und Vorrichtung zur vollständigen und schadstoffreien Konversion von Reststoffgemengen
DE102009007567A1 (de) * 2008-03-10 2009-09-17 Harzfeld, Edgar, Prof. Dr.-Ing. Verfahren zur Herstellung von Methanol durch Verwertung von Kohlendioxid aus Abgasen fossil betriebener Energieerzeugungsanlagen
US20140024726A1 (en) * 2010-11-10 2014-01-23 Silcon Fire Ag Method and apparatus for the carbon dioxide based methanol synthesis
WO2017102817A1 (fr) * 2015-12-18 2017-06-22 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Gemeinnützige Stiftung Procédé de production de supports d'énergie secondaire à base de carbone ou de produits chimiques de base

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19802660A1 (de) * 1998-01-24 1999-07-29 Goes Ges Fuer Forschung Und Te Abprodukt-Wärmekraft-Synthese-Kopplung, ein Verfahren zur regionalen Be- und Entsorgung
DE10021383A1 (de) * 2000-05-03 2001-11-08 Wea Waste Energy Action Intern Verfahren und Vorrichtung zur vollständigen und schadstoffreien Konversion von Reststoffgemengen
DE102009007567A1 (de) * 2008-03-10 2009-09-17 Harzfeld, Edgar, Prof. Dr.-Ing. Verfahren zur Herstellung von Methanol durch Verwertung von Kohlendioxid aus Abgasen fossil betriebener Energieerzeugungsanlagen
US20140024726A1 (en) * 2010-11-10 2014-01-23 Silcon Fire Ag Method and apparatus for the carbon dioxide based methanol synthesis
WO2017102817A1 (fr) * 2015-12-18 2017-06-22 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Gemeinnützige Stiftung Procédé de production de supports d'énergie secondaire à base de carbone ou de produits chimiques de base

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Non-fossil C0 recycling - The technical potential for the present and future utilization for fuels in Germany", JOURNAL OF C0 UTILIZATION, vol. 30, 2019, pages 130 - 141
ADLER ET AL., LEITFADEN BIOGASAUFBEREITUNG UND -EINSPEISUNG, FACHAGENTUR NACHWACHSENDE ROHSTOFFE E.V. (FNR

Also Published As

Publication number Publication date
DE102020109448A1 (de) 2021-10-07

Similar Documents

Publication Publication Date Title
EP1191215B1 (fr) Procédé d' utilisation des gaz contenant du methane
DE2425939C2 (de) Verfahren zum Betreiben eines Kraftwerkes
DE102012214907B4 (de) Dampfkraftanlage zur Erzeugung von elektrischer Energie nach dem Oxyfuel-Verfahren
EP2342008B1 (fr) Centrale électrique igcc à recyclage de gaz de fumée et à gaz de lavage
EP3052435B1 (fr) Procédé de stockage d'énergie électrique
DE112010001543B4 (de) Verfahren und Vorrichtung zum Zurückführen von Restgas
DE69417251T2 (de) Synergistisches verfahren zur herstellung von methanol
WO2000058421A1 (fr) Procede et dispositif permettant de produire de l'energie ou du methanol
DE102011077788A1 (de) Verfahren zur Modifizierung eines methanhaltigen Gasvolumenstroms
WO2009135558A2 (fr) Dispositif et procédé de gazéification électro-thermo-chimique de biomasse
EP3030636A1 (fr) Procédé et système de stockage d'énergie
WO2021122584A1 (fr) Dispositif et procédé pour valoriser des gaz de dégagement provenant d'une installation p2x
DE102015005940A1 (de) Verfahren zur verbesserten Integration regenerativer Energiequellen in das existierende Energiesystem durch Umwandlung elektrischer Energie in chemische Energie mit Zwischenspeicherung des verflüssigten CO, wodurch eine Reduzierung der CO2 Emission erziel
DE102012105736A1 (de) Verfahren zur Speicherung von Elektroenergie
WO2011134705A1 (fr) Installation de production pour des matières premières chimiques ou des combustibles ainsi que procédé permettant de faire fonctionner une telle installation de production
EP1699906A1 (fr) Procede et installation de production de porteurs d energie fluides a partir d un porteur d 'energie solide
DE102015218502A1 (de) Dampfturbinenkraftwerk mit Wasserstoffverbrennung unter Einbindung einer Vergasungseinrichtung
EP2650257B1 (fr) Dispositif de synthèse de méthanol régénératif à partir de gaz méthane contenant du co2
WO2021197707A1 (fr) Procédé de production d'un combustible synthétique et système pour la mise en œuvre d'un tel procédé
DE69213472T2 (de) Methode zur verbrennung von kohlenwasserstoffen
DE102012025722B3 (de) Verfahren zur Verbrennung von Erdgas/Methan
EP4298187A1 (fr) Système et procédé de production de combustibles synthétiques sans émission de dioxyde de carbone
EP2675775A1 (fr) Procédé de fabrication d'un carburant pour moteurs à combustion interne
AT511941B1 (de) Betriebsstoffversorgungssystem für Fahrzeuge mit Kohlendioxidspeicherung
WO2015014459A1 (fr) Procédé et dispositif d'enrichissement d'un gaz de synthèse, produit par gazéification, en hydrogène

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21706907

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21706907

Country of ref document: EP

Kind code of ref document: A1