WO2021197403A1 - 一种远距离探测的激光雷达及其探测方法 - Google Patents

一种远距离探测的激光雷达及其探测方法 Download PDF

Info

Publication number
WO2021197403A1
WO2021197403A1 PCT/CN2021/084839 CN2021084839W WO2021197403A1 WO 2021197403 A1 WO2021197403 A1 WO 2021197403A1 CN 2021084839 W CN2021084839 W CN 2021084839W WO 2021197403 A1 WO2021197403 A1 WO 2021197403A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
fiber
exit
spot
optical
Prior art date
Application number
PCT/CN2021/084839
Other languages
English (en)
French (fr)
Inventor
张石
李亚锋
鲁佶
Original Assignee
深圳煜炜光学科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳煜炜光学科技有限公司 filed Critical 深圳煜炜光学科技有限公司
Publication of WO2021197403A1 publication Critical patent/WO2021197403A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4812Constructional features, e.g. arrangements of optical elements common to transmitter and receiver transmitted and received beams following a coaxial path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4818Constructional features, e.g. arrangements of optical elements using optical fibres

Definitions

  • the invention relates to the technical field of laser radar, in particular to a laser radar for long-distance detection and a detection method thereof.
  • Lidar can be used to obtain two-dimensional or three-dimensional point cloud parameters of the target environment, and has a wide range of applications in many fields.
  • three main parameters are considered, namely the size of the light-emitting surface, the divergence angle of the light source and the power of the light source.
  • the detection light sources of lidar mainly include semiconductor lasers and solid-state lasers. Among them, the size of the light-emitting surface of the semiconductor laser is large, the divergence angle of the light source is also large, the power of the light source is not high, but the cost is low, and it is mainly used for short-distance and low-cost Probe application areas.
  • the solid-state laser has a small light-emitting surface size, a small light source divergence angle, a high light source power, and a high cost. It is mainly used in long-distance and high-cost detection applications, but the overall size of the module is too large to be mass-produced Promote applications.
  • the industry also uses optical fibers as the light source emitting part.
  • the universal technical solution is to couple the light energy of the semiconductor laser into the multimode fiber, and achieve the uniform output of the light energy through the multimode fiber, which solves the problem of uneven light energy of the semiconductor laser, but still can only meet the technology of close-range measurement. Require.
  • the technical problem to be solved by the present invention is to provide a laser radar based on a single-mode fiber laser, which can be used for long-distance detection and has the characteristics of small size and high cost performance.
  • the present invention provides a lidar for long-distance detection, including a lidar body 1, a fiber laser 2, a single-mode fiber 3, an emission spot converter 4, an optical path component 5 in the lidar body, and a receiving detector 6 and the light path out and incident component 9 constitute, specifically:
  • the fiber laser 2 is fixed on the inner surface of the lidar body 1, and the fiber laser 2 transmits light energy to the spot converter 4 through a single-mode fiber 3;
  • the exit light spot converter 4 is used to transform the exit light spot into a circular light spot
  • the optical path component 5 is used to couple the outgoing spot converter 4, the receiving detector 6 and the light path out and incident component 9 so that the emitted light of the outgoing spot converter 4 passes through the optical path component 5 and reaches the optical path out and out.
  • Component 9; and the optical signal received from the optical path out of the incident component 9 can be transmitted to the receiving detector 6 through the optical path component 5.
  • the single-mode optical fiber 3 is a small bending radius optical fiber; wherein, when performing fiber winding, the small bending radius optical fiber is used without loss of light energy, so as to occupy a small installation space in the lidar body 1.
  • the core radius of the single-mode optical fiber 3 is 9 ⁇ 1um, and the spot divergence angle is 8 ⁇ 1 degree; wherein, the small bending radius is specifically 7.5mm-10mm.
  • the exit light spot converter 4 includes a beveled fiber exit pin 4-1 and a beveled fiber compensation prism 4-2; wherein, the beveled fiber exit pin 4-1 is the bevel of the single-mode fiber 3
  • the end face is embedded with ceramic or semiconductor materials to make a beveled mold to obtain the optical fiber exit pin 4-1; the beveled fiber compensation prism 4-2 is used for the beveled fiber exit pin 4-1
  • the elliptical spot is adjusted to a circular spot.
  • the end face of the single-mode optical fiber 3 is ground into an oblique angle, and the oblique angle is 8 ⁇ 1 degrees, so that the oblique end face of the single-mode optical fiber 3 is obtained.
  • the oblique angle fiber compensation prism 4-2 is specifically that one end coupled with the oblique angle fiber exit pin 4-1 has an oblique angle, and the other end of the light exit surface is a flat angle.
  • the elliptical light spot from 4-1 is transformed into a circular light spot.
  • the optical path assembly 5 includes an exit optical lens 51, an optical path folding mirror 52, an optical path folding prism 53 and a filter 54 and a receiving optical lens 55, specifically:
  • the divergent circular spot transformed by the exit spot converter 4 becomes a collimated circular spot after the exit optical lens 51.
  • the light passes through the exit optical lens 51 and then outputs parallel forward. After passing through the optical path folding mirror 52, the light is transmitted To the optical path folding prism 53, reflect the light to the optical path exit and incident component 9;
  • the light After the light is reflected from the target object, it is transmitted to the filter 54 through the optical path out and incident component 9, and then is focused by the receiving optical lens 55, and then collected by the receiving detector 6.
  • the optical path folding prism 53 and the filter 54 are bonded together; wherein the size of the optical path folding prism 53 is set according to the size of the light spot reflected by the optical path folding mirror 52, so that the reflective surface of the optical path folding prism 53 is The difference in size of the light spots reflected by the optical path folding mirror 52 is smaller than a preset distance.
  • the light path exit and entrance component 9 includes a rotating motor 91, a rotating reflector 92, a compensation lens 93 and an arc-shaped light exit surface 94, specifically:
  • the rotating mirror 92 and the compensating lens 93 are fixed together by connecting pieces, and then installed and fixed on the rotating motor 91. Through the control of the motor, the synchronous rotation of the rotating mirror 92 and the compensating lens 93 is realized; the driving circuit of the rotating motor 91 Electrically connected to the main control circuit board 8;
  • the compensation lens 93 has a convex surface for the light exit surface, and a concave-convex cylindrical structure for the light entrance surface of the light.
  • the horizontal direction compensates the light spot divergence effect caused by the arc-shaped light exit surface 94 of the light exit and entrance component 9 in the horizontal direction.
  • the present invention also provides a long-distance detection lidar detection method, using the long-distance detection lidar described in the first aspect, the lidar further includes a signal receiving circuit board 7 and a main control circuit Board 8; the fiber laser 2 and the signal receiving circuit board 7 are respectively electrically connected to the main control circuit board 8; the signal receiving circuit board 7 is used to analyze the optical signal in the receiving detector 6 and send the analysis result To the main control circuit board 8; the main control circuit board 8 is also used to control the working power of the fiber laser 2 according to the obtained analysis result, and the method includes:
  • the main control circuit board 8 controls the fiber laser 2 to enter work according to a preset initial state
  • the main control circuit board 8 controls the rotating motor 91, drives the rotating mirror 92 and the compensation lens 93 to rotate, and obtains the analysis results in real time, which are transmitted through the receiving detector 6 and the signal receiving circuit board 7;
  • the working power of the fiber laser 2 is adjusted, and the rotating motor 91 is controlled to complete the detection process of the target object.
  • the present invention has the following beneficial effects:
  • the invention adds a light spot conversion system to transform an elliptical light spot into a circular light spot, and it is easy to realize uniform detection in all directions in space.
  • a single-mode fiber-based fiber laser is used as the detection light source of the lidar.
  • the light-emitting surface size is small (for example, the core is 9um), the light source divergence angle is small (for example, the numerical aperture is about 0.14), and the light source power is high.
  • the size of the light source part is small, which can realize long-distance target detection, and has high spatial resolution, and the overall module size is small.
  • the laser radar of the present invention adopts the optical design of the common optical axis of the transmitting and receiving optical systems, and only needs to rotate the scanning mirror when performing spatial rotation detection, the dynamic balance of the system is easier to realize, and the rotation is more stable.
  • the exit window in the preferred solution of the present invention adopts a cylindrical shape, which has a divergence effect on the overall light spot, which will increase the divergence angle of the optical system; the present invention adopts a compensation lens to reversely compensate the light divergence of the exit light port and compress The divergence angle of the light spot.
  • FIG. 1 is a schematic diagram of the principle of a laser radar based on a single-mode fiber laser provided by an embodiment of the present invention
  • Fig. 2 is a schematic diagram of an exit spot converter provided by an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a long-distance lidar detection method provided by an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a cylindrical barrel structure of a light path exiting and entering component provided by an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a comparison of light spot shapes before and after conversion provided by an embodiment of the present invention.
  • Fig. 6 is a schematic diagram showing a comparison of the transmission light wavelength bandwidth of a fiber laser and a filter provided by an embodiment of the present invention
  • 1 Lidar body; 2: Fiber laser; 3: Single-mode fiber; 4: Outgoing spot converter; 5: Optical circuit assembly; 6: Receiving detector; 7: Optical signal receiving circuit board; 8: Main control circuit board; 9: Optical path out and incident component; 4-1: Oblique angle fiber exit pin; 4-2: Oblique angle fiber compensation prism; 51: Outgoing optical lens; 52: Optical path folding mirror; 53: Optical path folding prism; 54: Filtering 55: receiving optical lens; 91: rotating motor; 92: rotating mirror; 93: compensating lens; 94: arc-shaped light-emitting surface.
  • the terms “inner”, “outer”, “longitudinal”, “transverse”, “upper”, “lower”, “top”, “bottom”, etc. indicate the orientation or positional relationship based on the accompanying drawings.
  • the orientation or positional relationship shown is only for the convenience of describing the present invention and does not require that the present invention must be constructed and operated in a specific orientation, so it should not be understood as a limitation to the present invention.
  • Embodiment 1 of the present invention provides a lidar for long-distance detection. As shown in Figure 1, it includes a lidar body 1, a fiber laser 2, a single-mode fiber 3, an exit spot converter 4, and an optical path component in the lidar body. 5.
  • the receiving detector 6 and the light path exit and entrance component 9 are composed, specifically:
  • the fiber laser 2 is fixed on the inner surface of the lidar body 1, and the fiber laser 2 transmits light energy to the spot converter 4 through a single-mode fiber 3;
  • the exit light spot converter 4 is used to transform the exit light spot into a circular light spot
  • the optical path component 5 is used to couple the outgoing spot converter 4, the receiving detector 6 and the light path out and incident component 9 so that the emitted light of the outgoing spot converter 4 passes through the optical path component 5 and reaches the optical path out and out.
  • Component 9; and the optical signal received from the optical path out of the incident component 9 can be transmitted to the receiving detector 6 through the optical path component 5.
  • the light exit of the fiber laser in the embodiment of the present invention is a tilted fiber head, and the exit light spot is an elliptical light spot.
  • the detection resolution in each direction is inconsistent; the patent of the invention adds the spot conversion system to change The elliptical spot is transformed into a circular spot, which is easy to realize uniform detection in all directions in space.
  • a single-mode fiber-based fiber laser is used as the detection light source of the lidar.
  • the light-emitting surface size is small (core 9 ⁇ 1um), the light source divergence angle is small (numerical aperture is about 0.14), and the light source power is high.
  • the size of the light source part is small, which can realize long-distance target detection, and has high spatial resolution.
  • the overall module size is small. Therefore, there is a preferred implementation scheme combining the embodiments of the present invention.
  • the single-mode optical fiber 3 is a small bending radius optical fiber; When performing fiber winding, the small bending radius fiber is used without losing light energy, so as to occupy a small installation space in the lidar body 1.
  • the core radius of the single-mode fiber 3 is 9um, the numerical aperture is about 0.14, and the spot divergence angle is 8 degrees; wherein, the small bending radius is specifically a single-mode fiber with a bending radius of 7.5mm-10mm.
  • the preferred optical fiber laser's light exit port is a tapered fiber head.
  • such technical operation will produce an elliptical light spot.
  • an optional solution is also given to improve the problem of inconsistency in detection resolution. Specifically, as shown in FIG.
  • the exit spot converter 4 includes a bevel fiber exit pin 4-1 and a bevel fiber compensation prism 4-2; wherein, the bevel fiber exit pin 4-1 is a single
  • the oblique end face of the optical fiber 3 is embedded with ceramic or semiconductor materials to form an oblique mold, thereby obtaining the optical fiber exit pin 4-1; the oblique fiber compensation prism 4-2 is used to insert the oblique fiber exit
  • the elliptical light spot coming out of the needle 4-1 is adjusted to a circular light spot.
  • the manufacturing process of the beveled end face is to grind the end face of the single-mode optical fiber 3 into a bevel, and the bevel angle is 8 ⁇ 1 degrees, so as to obtain the beveled end face of the single-mode optical fiber 3.
  • the oblique angle fiber compensation prism 4-2 specifically has an oblique angle at one end coupled with the oblique angle fiber exit pin 4-1, and the other end has a flat angle, so that the oblique angle fiber exit pin 4- 1
  • the elliptical light spot is transformed into a circular light spot;
  • the material of the oblique-angle fiber compensation prism 4-2 can be glass material or other semiconductor materials with higher light transmittance.
  • the optical path assembly 5 including an exit optical lens 51, an optical path folding mirror 52, an optical path folding prism 53 and a filter 54 and a receiving optical lens. 55, specific:
  • the divergent circular spot transformed by the exit spot converter 4 becomes a collimated circular spot after the exit optical lens 51.
  • the light passes through the exit optical lens 51 and then outputs parallel forward. After passing through the optical path folding mirror 52, the light is transmitted To the optical path folding prism 53, reflect the light to the optical path exit and incident component 9;
  • the light After the light is reflected from the target object, it is transmitted to the filter 54 through the optical path out and incident component 9, and then is focused by the receiving optical lens 55, and then collected by the receiving detector 6.
  • the light path folding mirror 52 may not be necessary.
  • the light exit of the exit spot converter 4 is directly set to emit horizontally to the light path folding prism 53.
  • the derivative solution obtained after adaptive adjustment also belongs to the protection scope of the present invention.
  • the optical path folding prism 53 and the filter 54 are bonded together.
  • the combination of the optical path folding prism 53 and the filter 54 is used as a component in the light-emitting channel of the fiber laser 2 and also as a component in the light-receiving channel of the receiving detector 6. Therefore, part of the received light will be affected.
  • the problem of the folding prism 53 is described. Therefore, in the implementation of the present invention, considering that the core radius of the light exit side is 9 ⁇ 1um, the corresponding numerical aperture is 0.14.
  • the optical path folding prism 53 can be made as much as possible
  • the combination of the compensation lens 93 and the arc-shaped light-emitting surface 94 is used to make the effective light area of the reflected detection light pass through the filter 54 Enlargement, thereby reducing the detection light loss caused by the optical path folding prism 53 caused by the reflection of the target object.
  • the embodiment of the present invention also provides an implementation of the light path exiting and incident component 9, including a rotating motor 91, a rotating mirror 92, a compensation lens 93, and an arc-shaped light exit surface 94. of:
  • the rotating mirror 92 and the compensating lens 93 are fixed together by a connecting piece, and then installed and fixed on the rotating motor 91. Through the control of the motor, the synchronous rotation of the rotating mirror 92 and the compensating lens 93 is realized; the driving circuit of the rotating motor 91 Electrically connected to the main control circuit board 8;
  • the compensation lens 93 has a convex surface for the light exit surface, and a concave-convex cylindrical structure for the light entrance surface of the light.
  • the horizontal direction compensates the light spot divergence effect caused by the arc-shaped light exit surface 94 of the light exit and entrance component 9 in the horizontal direction.
  • the lidar further includes a signal receiving circuit board 7 and a main control circuit board 8.
  • the fiber laser 2 and the signal receiving circuit board 7 are respectively connected to the main control circuit board.
  • the circuit board 8 is electrically connected; the signal receiving circuit board 7 is used to analyze the optical signal in the receiving detector 6 and send the analysis result to the main control circuit board 8; the main control circuit board 8 is also used to The obtained analysis result controls the working power of the fiber laser 2.
  • the embodiment of the present invention also provides a detection method of a long-distance detection lidar.
  • the long-distance detection lidar described in Embodiment 1 is used. As shown in FIG. 3, the method includes:
  • step 201 the main control circuit board 8 controls the fiber laser 2 to enter work according to a preset initial state.
  • step 202 the main control circuit board 8 controls the rotating motor 91, drives the rotating mirror 92 and the compensation lens 93 to rotate, and obtains the analysis results in real time, which are transmitted through the receiving detector 6 and the signal receiving circuit board 7.
  • step 203 according to the analysis result, the working power of the fiber laser 2 is adjusted, and the rotating motor 91 is controlled to complete the detection process of the target object.
  • the elliptical light spot is transformed into a circular light spot, which is easy to realize uniform detection in all directions in space. This makes the data collected during the execution of the detection method easier to analyze and process by the computer, and improves the efficiency of the method implementation.
  • the embodiment of the present invention will further explain the implementation mechanism of the embodiment of the present invention from the level of implementation principles and in conjunction with the specific technical solution combination involved in the first embodiment.
  • FIG. 1 it is a schematic diagram of the laser radar principle based on a single-mode fiber laser of the present invention.
  • the fiber laser 2 is fixed on the inner surface of the laser radar body 1 with thermally conductive glue, because the fiber laser emits a lot of light when it is scanned at high frequency.
  • the heat needs to be fixed on the surface of the shell with thermally conductive glue. While fixing, the heat can also be transferred to the surface of the shell.
  • the fiber laser 2 also needs to be fixed and reinforced on the inner surface of the lidar body 1 with screws.
  • the fiber laser 2 outputs light energy through the single-mode fiber 3.
  • the single-mode fiber 3 is preferably a small bending radius fiber.
  • the radius of the optical fiber around the mode can be installed and fixed in a smaller size lidar module.
  • the core radius of the single-mode fiber is about 9um, which is two orders of magnitude smaller than the light-emitting area of the semiconductor laser of 220um ⁇ 10um; the numerical aperture is about 0.14, and the divergence angle of the spot is about 8 degrees, which is relative to the divergence angle of the semiconductor laser. 30 degrees ⁇ 10 degrees, a reduction of an order of magnitude. Therefore, using a single-mode fiber as the light source emitting part can reduce the divergence angle of the emitted light spot and greatly improve the spatial resolution of the lidar.
  • the exit light spot converter 4 mainly includes two parts, as shown in FIG. 2, the bevel fiber exit pin 4-1 and the bevel fiber compensation prism 4-2. If the exit end face is flat, there will be Fresnel reflection on the fiber plane, and part of the optical power will be reflected back to the fiber laser host, which will interfere with the laser excitation, causing fluctuations in the output optical power. In order to solve this problem, it is necessary to grind the end face of the optical fiber into an oblique end face, which generally adopts an oblique angle of 8 degrees, so that the return light from the end face of the optical fiber will not affect the laser excitation. However, the angle of the end face of the fiber will make the resulting light spot become elliptical, as shown in Figure 5.
  • the exit light spot converter 4 introduced by the present invention firstly manufactures the beveled end face fiber into the beveled fiber exit pin 4-1, and then designs the corresponding beveled fiber compensation prism 4-2 after theoretical calculation according to the ellipticity of the light spot.
  • the outgoing light spot can be transformed into a circular light spot, as shown in Figure 5.
  • the circular light spot transformed by the exit light spot converter 4 passes through the exit optical lens 51, and the divergent circular light spot is transformed into a collimated circular light spot, and is output in parallel forward. After passing through the light path folding mirror 52, the light is transmitted to the light path folding prism 53, and the light is reflected to the compensation lens 93.
  • the optical path folding prism 53 and the filter 54 are bonded together.
  • the laser radar proposed in the present invention adopts a coaxial optical design of the transmitting and receiving optical systems, and requires the central axis of the transmitting beam to coincide with the central axis of the receiving beam. Therefore, the center of the optical path folding prism 53 needs to coincide with the center of the filter 54.
  • the filter 54 and the receiving optical lens 55 need to be fixed together by an additional connecting piece (omitted here), and the processing accuracy of the additional connecting piece needs to be high precision, to ensure that the central optical axis of the two coincide, and realize the optical design of the common optical axis .
  • the present invention adopts a cylindrical light path exit and entrance component 9, which is a rotationally symmetric optical element, and can realize 360-degree scanning and detection of the ring, as shown in FIG. 1.
  • the arc-shaped light-emitting surface 94 of the light path exiting and incident component 9 needs to be coated with an optical antireflection coating to increase the transmittance of light energy.
  • the cylindrical light path out and incident component 9 shown in 4 (the other components of the light path out and incident component 9 including the rotating mirror 92 and the compensating lens 93 are arranged in the cavity shown in FIG. 4), which will also change
  • the light path structure has an effect similar to that of a concave cylindrical lens. Therefore, the light path exiting and entering component 9 will have a divergent effect on the emergent light spot, and reverse compensation is required, that is, a convex cylindrical lens is added to the optical path for compensation.
  • the compensation lens 93 adopts a concave-convex cylindrical design.
  • the z-axis direction compensates for the spot divergence effect caused by the incident component 9 (that is, the divergence of the arc-shaped light-emitting surface 94 in the z-axis direction).
  • the x-axis direction is equivalent to in the optical path.
  • the addition of parallel glass plates does not affect the effect of light path transmission (that is, the arc-shaped light-emitting surface 94 has no divergence effect in the y-axis direction).
  • the concave-convex cylindrical design is used because the compensating lens 93 also needs to be scanned and detected, so as to inversely compensate the divergence effect of the light path exiting the incident component 9 in the full angle range of 360 degrees.
  • the design of the concave-convex cylindrical surface is beneficial to determine the direction of the cylindrical lens when bonding and fixing, and to effectively compensate for the divergence direction.
  • the compensated light beam is then reflected by the rotating mirror 92, exits the incident component 9 through the optical path, and is transmitted outward to the detection target 18.
  • the rotating mirror 92 and the compensating lens 93 are fixed together by a connecting piece (omitted here), and then mounted and fixed on the rotating motor 91. Through the control of the motor, the synchronous rotation of the rotating mirror 92 and the compensating lens 93 is realized.
  • all the rotating components must complete the dynamic balance design to ensure the stability of the rotation detection.
  • the filter 54 proposed in the embodiment of the present invention is installed in front of the receiving optical lens 55.
  • the filter is basically installed behind the receiving optical lens 55 and before the receiving detector 14. .
  • This kind of filter design has the following advantages: (1) The filter only needs to support the incident angle of light within a small angle range, which is convenient for the design and implementation of the coating process, and at the same time effectively excludes the stray light scattered at a large angle and improves the reception Part of the signal-to-noise ratio.
  • the filter It is convenient to design the filter as an intermediate transition element, and realize the design of the common optical axis of the transmitting optical system and the receiving optical system.
  • the technical scheme of the present invention is based on a single-mode fiber laser, the output wavelength is very narrow, the half-height bandwidth is basically less than 2nm, and through temperature control, the influence of the external environment temperature change on the wavelength drift is eliminated. Therefore, the filter can be
  • the FWHM of 54 is designed to be very narrow. It only needs to be 2 ⁇ 3nm wider than the output wavelength bandwidth to meet the requirements.
  • the dashed line represents the transmission bandwidth of the fiber laser output wavelength
  • the dashed line represents the transmission of the filter 54 bandwidth.
  • the narrower filter transmission bandwidth is more conducive to eliminating the annoyance of interference wavelengths, improving the signal-to-noise ratio of the receiving system, and allowing lidar to be more suitable for outdoor application environments.
  • the receiving optical lens 55 focuses the return signal light into the receiving detector 14.
  • the receiving optical lens 55 adopts an aspherical optical lens, which can achieve a focusing effect close to the diffraction limit. More light energy is focused on the surface of the detector to receive it, and the light signal is converted into an electrical signal.
  • the signal receiving circuit board 15 performs processing such as filtering and amplifying the received electric signal, and sends the processing result to the signal analysis circuit board 16. Combining the optical transmission information returned by the fiber laser 2 (omitted here), the target and detection are calculated Distance information between points.
  • the obtained distance information is transmitted to the main control circuit board 17, and combined with the angle information returned by the rotating motor 91 (not shown here), the corresponding angle and distance information are analyzed and calculated.
  • the 360-degree fine-angle scanning measurement a series of small-angle spatial information can be aggregated together to obtain the spatial point cloud data of the detection target.

Abstract

一种远距离探测的激光雷达及其探测方法。激光雷达中光纤激光器(2)固定在激光雷达主体(1)内表面,光纤激光器(2)通过单模光纤(3)将光能传输给出射光斑变换器(4);出射光斑变换器(4)用于将出射光斑变换成圆形光斑;光路组件(5)用于耦合出射光斑变换器(4)、接收探测器(6)和光路出入射组件(9),使得出射光斑变换器(4)的出射光经过光路组件(5)抵达光路出入射组件(9);而从光路出入射组件(9)接收回来的光信号能经过光路组件(5)传输给接收探测器(6)。通过加入光斑变换系统,将椭圆形光斑变换成圆形光斑,易于实现空间各方向的均匀探测。

Description

一种远距离探测的激光雷达及其探测方法 【技术领域】
本发明涉及激光雷达技术领域,特别是涉及一种远距离探测的激光雷达及其探测方法。
【背景技术】
激光雷达可用于获取目标环境的二维或三维点云参数,在很多领域有着广泛的应用。选择激光雷达的探测光源,主要考虑三个参数,分别是发光面尺寸、光源发散角和光源功率。目前,激光雷达的探测光源主要有半导体激光器和固体激光器,其中,半导体激光器的发光面尺寸较大,光源发散角也大,光源功率不高,但成本便宜,主要用于近距离且低成本的探测应用领域。固体激光器的发光面尺寸较小,光源发散角也小,光源功率很高,成本也很高,主要应用于远距离且成本较高的探测应用领域,但模块整体尺寸过大,未能大批量推广应用。
除上述两种探测光源,业界还采用光纤作为光源发射部分。普遍通用的技术方案是将半导体激光器的光能量耦合进多模光纤,通过多模光纤实现光能量的均匀输出,解决了半导体激光器光能量不均匀的问题,但依然只能满足近距离测量的技术要求。
鉴于此,克服该现有技术所存在的缺陷是本技术领域亟待解决的问题。
【发明内容】
本发明要解决的技术问题是提供一种基于单模光纤激光器的激光雷达,能够用于远距离探测,且存在尺寸小、高性价比特点。
本发明采用如下技术方案:
第一方面,本发明提供了一种远距离探测的激光雷达,包括激光雷达主体1、光纤激光器2、单模光纤3、出射光斑变换器4、激光雷达主体内的光路组件5、接收探测器6和光路出入射组件9构成,具体的:
光纤激光器2固定在激光雷达主体1内表面,所述光纤激光器2通过单模光纤3将光能传输给出射光斑变换器4;
所述出射光斑变换器4用于将出射光斑变换成圆形光斑;
所述光路组件5用于耦合所述出射光斑变换器4、接收探测器6和所述光路出入射组件9,使得所述出射光斑变换器4的出射光经过所述光路组件5抵达光路出入射组件9;而从光路出入射组件9接收回来的光信号能经过所述光路组件5传输给所述接收探测器6。
优选的,单模光纤3为小弯曲半径光纤;其中,当进行光纤绕模时,在不损失光能量的同时,使用所述小弯曲半径光纤,以便占用激光雷达主体1中小的安装固定空间。
优选的,单模光纤3的纤芯半径为9±1um,光斑发散角为8±1度;其中,所述小弯曲半径具体为7.5mm~10mm。
优选的,出射光斑变换器4包括斜角光纤出射插针4-1和斜角光纤补偿棱镜4-2;其中,所述斜角光纤出射插针4-1是将单模光纤3的斜角端面,嵌入陶瓷材料或者半导体材料制作成斜角模具,从而得到所述光纤出射插针4-1;所述斜角光纤补偿棱镜4-2用于将斜角光纤出射插针4-1出来的椭圆光斑调整为圆形光斑。
优选的,将单模光纤3端面磨成斜角,所述斜角为斜8±1度,从而得到单模光纤3的斜角端面。
优选的,所述斜角光纤补偿棱镜4-2具体为,与斜角光纤出射插针4-1耦合的一端为斜角,另一端出光面为平角,起到将从斜角光纤出射插针4-1出来的椭圆光斑变换为圆形光斑的作用。
优选的,所述光路组件5包括出射光学透镜51、光路折叠反射镜52、光路折叠棱镜53和滤波片54和接收光学透镜55,具体的:
经过出射光斑变换器4变换之后的发散的圆形光斑,经过出射光学透镜51变成准直圆形光斑,光线经过出射光学透镜51后平行向前输出,经过光路折叠反射镜52之后,光线传输至光路折叠棱镜53,将光线反射至所述光路出入射组件9;
光线在从目标物体反射回来后,经由所述光路出入射组件9传输到所述滤波片54,并再经过接收光学透镜55聚焦后,被所述接收探测器6采集到。
优选的,所述光路折叠棱镜53和滤波片54粘接在一起;其中,光路折叠棱镜53大小根据光路折叠反射镜52反射出来的光斑大小设定,使得所述光路折叠棱镜53的反射面与所述光路折叠反射镜52反射出来的光斑大小相差小于预设距离。
优选的,所述光路出入射组件9包括旋转电机91、旋转反射镜92、补偿透镜93和弧形出光面94,具体的:
旋转反射镜92和补偿透镜93通过连接件固定在一起,再安装固定在旋转电机91上面,通过电机的控制,实现旋转反射镜92和补偿透镜93的同步旋转;所述旋转电机91的驱动电路与主控电路板8电气连接;
其中,所述补偿透镜93是光线出光面采用凸面,光线入光面采用凹面的凹凸柱面结构,其中,水平方向上补偿光路出入射组件9中弧形出光面94所引起的光斑发散效应,竖直方向上作为平行玻璃板,保证了光路正常传输。
第二方面,本发明还提供了一种远距离探测的激光雷达的探测方法,使用第一方面所述的远距离探测的激光雷达,所述激光雷达还包括信号接收电路板7和主控电路板8;所述光纤激光器2和信号接收电路板7分别与所述主控电路板8电气相连;所述信号接收电路板7用于解析接收探测器6中的光信号,并将解析结果发送给所述主控电路板8;所述主控电路板8还用于根据获取到的解析结果控制光纤激光器2的工作功率,方法包括:
主控电路板8控制光纤激光器2按照预设的起始状态进入工作;
主控电路板8控制旋转电机91,带动旋转反射镜92和补偿透镜93转动,并实时获取,经过接收探测器6和信号接收电路板7传递过来的解析结果;
根据所述解析结果,调整光纤激光器2的工作功率,以及控制所述旋转电机91完成目标对象的探测过程。
与现有技术相比,本发明的有益效果在于:
本发明加入光斑变换系统,将椭圆形光斑变换成圆形光斑,易于实现空间各方向的均匀探测。
在本发明优选方式中,采用基于单模光纤的光纤激光器作为激光雷达的探测光源,发光面尺寸小(例如纤芯9um),光源发散角小(例如数值孔径约为0.14),光源功率高,光源部分尺寸较小,可实现远距离目标探测,且空间分辨率高,整体模块尺寸较小。
本发明的激光雷达采用发射和接收光学系统共光轴的光学设计,在进行空间旋转探测的时候,仅需要旋转扫描反射镜,系统的动平衡更易实现,转动也更稳定。
本发明优选方案中的出射窗口采用圆筒形状,对整体光斑起到发散作用,会增大光学系统的发散角;本发明采用了补偿透镜,对出射光口的光发散进行反向补偿,压缩了光斑的发散角。
【附图说明】
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本发明实施例提供的基于单模光纤激光器的激光雷达原理示意图;
图2为本发明实施例提供的出射光斑变换器示意图;
图3是本发明实施例提供的一种远距离探测的激光雷达探测方法流程示意图;
图4是本发明实施例提供的一种光路出入射组件圆柱筒结构示意图;
图5为本发明实施例提供的变换前后的光斑形状对比示意图;
图6为本发明实施例提供的光纤激光器和滤波片的传输光波长带宽对比示 意图;
其中:
1:激光雷达主体;2:光纤激光器;3:单模光纤;4:出射光斑变换器;5:光路组件;6:接收探测器;7:光信号接收电路板;8:主控电路板;9:光路出入射组件;4-1:斜角光纤出射插针;4-2:斜角光纤补偿棱镜;51:出射光学透镜;52:光路折叠反射镜;53:光路折叠棱镜;54:滤波片;55:接收光学透镜;91:旋转电机;92:旋转反射镜;93:补偿透镜;94:弧形出光面。
【具体实施方式】
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在本发明的描述中,术语“内”、“外”、“纵向”、“横向”、“上”、“下”、“顶”、“底”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明而不是要求本发明必须以特定的方位构造和操作,因此不应当理解为对本发明的限制。
此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
实施例1:
本发明实施例1提供了一种远距离探测的激光雷达,如图1所示,包括激光雷达主体1、光纤激光器2、单模光纤3、出射光斑变换器4、激光雷达主体内的光路组件5、接收探测器6和光路出入射组件9构成,具体的:
光纤激光器2固定在激光雷达主体1内表面,所述光纤激光器2通过单模光纤3将光能传输给出射光斑变换器4;
所述出射光斑变换器4用于将出射光斑变换成圆形光斑;
所述光路组件5用于耦合所述出射光斑变换器4、接收探测器6和所述光路出入射组件9,使得所述出射光斑变换器4的出射光经过所述光路组件5抵达光路出入射组件9;而从光路出入射组件9接收回来的光信号能经过所述光路组件 5传输给所述接收探测器6。
本发明实施例光纤激光器的出光口是带斜度的光纤头,出射光斑为椭圆形光斑,进行全角度扫描测量时,各方向的探测分辨率存在不一致性;本发明专利加入光斑变换系统,将椭圆形光斑变换成圆形光斑,易于实现空间各方向的均匀探测。
在本发明实施例中,采用基于单模光纤的光纤激光器作为激光雷达的探测光源,发光面尺寸小(纤芯9±1um),光源发散角小(数值孔径约为0.14),光源功率高,光源部分尺寸较小,可实现远距离目标探测,且空间分辨率高,整体模块尺寸较小,因此,集合本发明实施例存在一种优选实现方案,单模光纤3为小弯曲半径光纤;其中,当进行光纤绕模时,在不损失光能量的同时,使用所述小弯曲半径光纤,以便占用激光雷达主体1中小的安装固定空间。例如,单模光纤3的纤芯半径为9um,数值孔径约为0.14,光斑发散角为8度;其中,所述小弯曲半径具体为弯曲半径为7.5mm~10mm的单模光纤。
本发明实施例中,考虑到光信号反射问题,优选的光纤激光器的出光口是带斜度的光纤头,然而,这样的技术操作会产生出射光斑为椭圆形光斑,进行全角度扫描测量时,各方向的探测分辨率存在不一致性。因此,结合本发明实施例还给与了一种可选方案,改善探测分辨率不一致性问题。具体的,如图2所示,出射光斑变换器4包括斜角光纤出射插针4-1和斜角光纤补偿棱镜4-2;其中,所述斜角光纤出射插针4-1是将单模光纤3的斜角端面,嵌入陶瓷材料或者半导体材料制作成斜角模具,从而得到所述光纤出射插针4-1;所述斜角光纤补偿棱镜4-2用于将斜角光纤出射插针4-1出来的椭圆光斑调整为圆形光斑。其中斜角端面的制作过程为,将单模光纤3端面磨成斜角,所述斜角为斜8±1度,从而得到单模光纤3的斜角端面。
其中,所述斜角光纤补偿棱镜4-2具体为与斜角光纤出射插针4-1耦合的一端为斜角,另一端出光面为平角,起到将从斜角光纤出射插针4-1出来的椭圆光斑变换为圆形光斑的作用;可选的,所述斜角光纤补偿棱镜4-2的制作材料可以是玻璃材料或者其他具有较高透光率的半导体材料。
在本发明实施例,如图1所示,对所述光路组件5给予了一种可行的实现方案包括出射光学透镜51、光路折叠反射镜52、光路折叠棱镜53和滤波片54和接收光学透镜55,具体的:
经过出射光斑变换器4变换之后的发散的圆形光斑,经过出射光学透镜51变成准直圆形光斑,光线经过出射光学透镜51后平行向前输出,经过光路折叠反射镜52之后,光线传输至光路折叠棱镜53,将光线反射至所述光路出入射组件9;
光线在从目标物体反射回来后,经由所述光路出入射组件9传输到所述滤波片54,并再经过接收光学透镜55聚焦后,被所述接收探测器6采集到。
本领域技术人员可知悉,因为选择的设置出光口的方向的不同,其中的光路折叠反射镜52便可能不是必要,例如将出射光斑变换器4的出光口直接设置成水平发射到光路折叠棱镜53上的形式,因此,基于图1所示的示例性光路结构,在适应性调整之后得到的衍生方案也属于本发明的保护范围。
在本发明实施例中,光路折叠棱镜53和滤波片54粘接在一起。其中,采用了光路折叠棱镜53和滤波片54组合即作为光纤激光器2的出光通道中的构成组件,也作为接收探测器6收光通道中的构成组件,因此,会带来部分接收光被所述折叠棱镜53阻挡的问题,因此,在本发明实施中,考虑到出光侧的纤芯半径为9±1um,相应的数值孔径为0.14,因此,所述光路折叠棱镜53可以做的尽可能的小,而对于目标对象反射回来的探测光(即上述的接收光),则利用补偿透镜93和弧形出光面94的组合,使得反射回来的探测光在经过滤波片54时的有效光面积得以放大,从而减小由光路折叠棱镜53造成的目标对象反射回来的探测光损耗问题。
基于上述的分析,如图1所示,本发明实施例还提供了一种光路出入射组件9的实现方式,包括旋转电机91、旋转反射镜92、补偿透镜93和弧形出光面94,具体的:
旋转反射镜92和补偿透镜93通过连接件固定在一起,再安装固定在旋转电机91上面,通过电机的控制,实现旋转反射镜92和补偿透镜93的同步旋转; 所述旋转电机91的驱动电路与主控电路板8电气连接;
其中,所述补偿透镜93是光线出光面采用凸面,光线入光面采用凹面的凹凸柱面结构,其中,水平方向上补偿光路出入射组件9中弧形出光面94所引起的光斑发散效应,竖直方向上作为平行玻璃板,保证了光路正常传输。
结合本发明实施例,还存在一种优选的实现方案,所述激光雷达还包括信号接收电路板7和主控电路板8;所述光纤激光器2和信号接收电路板7分别与所述主控电路板8电气相连;所述信号接收电路板7用于解析接收探测器6中的光信号,并将解析结果发送给所述主控电路板8;所述主控电路板8还用于根据获取到的解析结果控制光纤激光器2的工作功率。
实施例2:
本发明实施例还提供了一种远距离探测的激光雷达的探测方法,使用实施例1所述的远距离探测的激光雷达,如图3所示,方法包括:
在步骤201中,主控电路板8控制光纤激光器2按照预设的起始状态进入工作。
在步骤202中,主控电路板8控制旋转电机91,带动旋转反射镜92和补偿透镜93转动,并实时获取,经过接收探测器6和信号接收电路板7传递过来的解析结果。
在步骤203中,根据所述解析结果,调整光纤激光器2的工作功率,以及控制所述旋转电机91完成目标对象的探测过程。
本发明实施例通过加入光斑变换系统,将椭圆形光斑变换成圆形光斑,易于实现空间各方向的均匀探测。使得探测方法执行过程所采集到的数据,更易于计算机的分析和处理,提高了方法实现的效率。
由于本发明实施例的核心改进点在于对探测光信号的改善,因此,具体的探测方法实现细节可以借鉴相关现有技术实现,在此不多赘述。但是作为本领域技术人员可知悉,由于本发明实施例1所提出的结构改进,其可以相应的带来最终探测方法实现的效率和精确度的提高是可以进一步通过后续实施例3中所展开描述的原理机制推导得到。
实施例3:
本发明实施例将进一步从实现原理层面,结合实施例1中所涉及的特定技术方案组合,阐述本发明实施例的实现机制。
如图1所示,为本发明基于单模光纤激光器的激光雷达原理示意图,光纤激光器2通过导热胶水固定在激光雷达主体1内表面,因为光纤激光器在高频扫描工作时,会散发出较大的热量,需要通过导热胶水固定在外壳表面,在进行固定的同时,也可以将热量传输到外壳表面。为提高安装稳定性,光纤激光器2也需要通过螺钉固定加固在激光雷达主体1内表面上。光纤激光器2通过单模光纤3输出光能量,为减小整体模块的尺寸,单模光纤3优选小弯曲半径光纤,当进行光纤绕模时,在不损失光能量的同时,也可以使用更小的光纤绕模半径,可以安装固定在更小尺寸的激光雷达模块里面。单模光纤的纤芯半径约为9um,相对于半导体激光器的发光面积220um×10um,减小了两个数量级;数值孔径约为0.14,光斑发散角约为8度,相对于半导体激光器的发散角30度×10度,减小了一个数量级。因此,采用单模光纤作为光源发射部分,可以降低出射光斑的发散角,极大地提升激光雷达的空间分辨率。
出射光斑变换器4主要包括两部分,如图2所示,分别是斜角光纤出射插针4-1和斜角光纤补偿棱镜4-2。出射端面如果是平面,则在光纤平面存在菲涅尔反射,部分光功率会反射回光纤激光器主机,并对激光激发产生干扰,使得输出光功率产生波动。为解决此问题,需要将光纤端面磨成斜角端面,一般采用斜8度,则光纤端面返回光不会影响激光激发。但光纤端面的角度会使得出射光斑变成椭圆形,如图5所示。在使用激光雷达进行实际扫描测量时,不同方向的空间分辨率存在不一致性,会影响测试结果。本发明推出的出射光斑变换器4,首先将斜角端面光纤制作成斜角光纤出射插针4-1,再根据光斑椭圆度,经过理论计算,设计对应的斜角光纤补偿棱镜4-2,可以将出射光斑变换成圆形光斑,如图5所示。
经出射光斑变换器4变换之后的圆形光斑,经过出射光学透镜51,发散的圆形光斑转变成准直圆形光斑,并平行向前输出。经过光路折叠反射镜52之后, 光线传输至光路折叠棱镜53,将光线反射至补偿透镜93。所述光路折叠棱镜53和滤波片54粘接在一起。本发明提出的激光雷达采用发射和接收光学系统共轴的光学设计,要求发射光束的中心轴和接收光束的中心轴重合,因此,光路折叠棱镜53的中心需和滤波片54的中心位置重合。滤波片54和接收光学透镜55需要通过外加连接件(此处略)固定在一起,外加连接件的加工精度需达到较高精度,保证二者的中心光轴重合,实现共光轴的光学设计。
本发明采用圆筒形状的光路出入射组件9,属于旋转对称的光学元件,可实现环360度的扫描探测,如图1所示。光路出入射组件9的弧形出光面94需增镀光学增透膜,提高光能量的透过率。在本发明实施例中,除了可以采用如图1所示的局部区域设置弧形出光面94以外,还可以将整个光路出入射组件9外壳利用玻璃或者透光性的硅材料,制作成如图4所示的圆筒形状的光路出入射组件9(其中,光路出入射组件9的其它组件包括旋转反射镜92和补偿透镜93则设置在图4所示的空腔内),其同样会改变光路结构,其效果近似于凹柱透镜,因此,光路出入射组件9会对出射光斑产生发散的影响,需要进行逆向补偿,即在光路中加入凸柱透镜进行补偿。补偿透镜93采用的是凹凸柱面设计,z轴方向补偿光路出入射组件9所引起的光斑发散效应(即弧形出光面94在z轴方向上的发散),x轴方向相当于在光路中加入了平行玻璃板,不会影响光路传输的效果(即弧形出光面94在y轴方向上无发散效果)。采用凹凸柱面的设计,是因为补偿透镜93也需要进行扫描探测,以便360度全角度范围对光路出入射组件9的发散效应进行逆补偿。凹凸柱面的设计有利于在进行粘接固定的时候,判定柱面透镜的方向,对发散方向进行有效补偿。经过补偿之后的光束,再经旋转反射镜92反射,经过光路出入射组件9,向外传输至探测目标18。旋转反射镜92和补偿透镜93通过连接件(此处略)固定在一起,再安装固定在旋转电机91上面,通过电机的控制,实现旋转反射镜92和补偿透镜93的同步旋转。此处,所有的旋转元件都必须完成动平衡设计,才能保证旋转探测的稳定性。
经过探测目标11反射回的光信号再依次经过光路出入射组件9、旋转反射镜92和补偿透镜93,传输至滤波片54。和传统的激光雷达不一样的地方,本 发明实施例提出的滤波片54,安装在接收光学透镜55的前面,传统技术方案基本都将滤波片安装在接收光学透镜55之后、接收探测器14之前。此种滤波片设计,有以下几点优势:(1)滤波片仅需支持小角度范围以内的光线入射角,便于镀膜工艺设计和实现,同时有效将大角度散射的杂散光排除在外,提高接收部分的信噪比。(2)便于将滤波片设计成中间过渡元件,实现发射光学系统和接收光学系统的共光轴设计。本发明的技术方案基于单模光纤激光器,输出光波长波段很窄,半高宽带宽基本都小于2nm,而且通过温度控制,排除了外界环境温度变化对波长漂移的影响,因此,可以将滤波片54的半高宽带宽设计的很窄,只需要比输出波长带宽宽2~3nm,就可以满足要求,如图6所示,虚线代表光纤激光器输出波长的传输带宽,虚线代表滤波片54的传输带宽。更窄的滤波片传输带宽,更有利于排除干扰波长的烦扰,提高接收系统的信噪比,可以让激光雷达更能使用户外应用环境的应用场景。
接收光学透镜55将返回信号光聚焦到接收探测器14里面,为减小系统像差且提高光功率的接收效率,接收光学透镜55采用非球面光学透镜,可以实现近似衍射极限的聚焦效果,将更多的光能量聚焦到探测器表面接收,并将光信号转换成电信号。信号接收电路板15将所接收的电信号进行滤波及放大等处理,并将处理结果发送至信号分析电路板16,结合光纤激光器2返回的光发送信息(此处略),计算出目标和探测点之间的距离信息。所获得的距离信息传输给主控电路板17,结合旋转电机91所返回的角度信息(此处略),分析计算出对应的角度和距离信息。通过360度的精细角度扫描测量,可以将系列小角度的空间信息汇总在一起,即得到探测目标的空间点云数据。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种远距离探测的激光雷达,其特征在于,包括激光雷达主体(1)、光纤激光器(2)、单模光纤(3)、出射光斑变换器(4)、激光雷达主体内的光路组件(5)、接收探测器(6)和光路出入射组件(9)构成,具体的:
    光纤激光器(2)固定在激光雷达主体(1)内表面,所述光纤激光器(2)通过单模光纤(3)将光能传输给出射光斑变换器(4);
    所述出射光斑变换器(4)用于将出射光斑变换成圆形光斑;
    所述光路组件(5)用于耦合所述出射光斑变换器(4)、接收探测器(6)和所述光路出入射组件(9),使得所述出射光斑变换器(4)的出射光经过所述光路组件(5)抵达光路出入射组件(9);而从光路出入射组件(9)接收回来的光信号能经过所述光路组件(5)传输给所述接收探测器(6)。
  2. 根据权利要求1所述的远距离探测的激光雷达,其特征在于,单模光纤(3)为小弯曲半径光纤;其中,当进行光纤绕模时,在不损失光能量的同时,使用所述小弯曲半径光纤,以便占用激光雷达主体(1)中小的安装固定空间。
  3. 根据权利要求2所述的远距离探测的激光雷达,其特征在于,单模光纤(3)的纤芯半径为9±1um,光斑发散角为8±1度;其中,所述小弯曲半径具体为7.5mm~10mm。
  4. 根据权利要求2所述的远距离探测的激光雷达,其特征在于,出射光斑变换器(4)包括斜角光纤出射插针(4-1)和斜角光纤补偿棱镜(4-2);其中,所述斜角光纤出射插针(4-1)是将单模光纤(3)的斜角端面,嵌入陶瓷材料或者半导体材料制作成斜角模具,从而得到所述光纤出射插针(4-1);所述斜角光纤补偿棱镜(4-2)用于将斜角光纤出射插针(4-1)出来的椭圆光斑调整为圆形光斑。
  5. 根据权利要求4所述的远距离探测的激光雷达,其特征在于,将单模光纤(3)端面磨成斜角,所述斜角为斜8±1度,从而得到单模光纤(3)的斜角端面。
  6. 根据权利要求4所述的远距离探测的激光雷达,其特征在于,所述斜角光纤补偿棱镜(4-2)具体为,与斜角光纤出射插针(4-1)耦合的一端为斜角,另一端出光面为平角,起到将从斜角光纤出射插针(4-1)出来的椭圆光斑变换为圆形光斑的作用。
  7. 根据权利要求1所述的远距离探测的激光雷达,其特征在于,所述光路组件(5)包括出射光学透镜(51)、光路折叠反射镜(52)、光路折叠棱镜(53)和滤波片(54)和接收光学透镜(55),具体的:
    经过出射光斑变换器(4)变换之后的发散的圆形光斑,经过出射光学透镜(51)变成准直圆形光斑,光线经过出射光学透镜(51)后平行向前输出,经过光路折叠反射镜(52)之后,光线传输至光路折叠棱镜(11),将光线反射至所述光路出入射组件(9);
    光线在从目标物体反射回来后,经由所述光路出入射组件(9)传输到所述滤波片(54),并再经过接收光学透镜(55)聚焦后,被所述接收探测器(6)采集到。
  8. 根据权利要求7所述的远距离探测的激光雷达,其特征在于,所述光路折叠棱镜(53)和滤波片(54)粘接在一起;其中,光路折叠棱镜(53)大小根据光路折叠反射镜(52)反射出来的光斑大小设定,使得所述光路折叠棱镜(53)的反射面与所述光路折叠反射镜(52)反射出来的光斑大小相差小于预设距离。
  9. 根据权利要求7所述的远距离探测的激光雷达,其特征在于,所述光路 出入射组件(9)包括旋转电机(91)、旋转反射镜(92)、补偿透镜(93)和弧形出光面(94),具体的:
    旋转反射镜(92)和补偿透镜(93)通过连接件固定在一起,再安装固定在旋转电机(91)上面,通过电机的控制,实现旋转反射镜(92)和补偿透镜(93)的同步旋转;所述旋转电机(91)的驱动电路与主控电路板(8)电气连接;
    其中,所述补偿透镜(93)是光线出光面采用凸面,光线入光面采用凹面的凹凸柱面结构,其中,水平方向上补偿光路出入射组件(9)中弧形出光面(94)所引起的光斑发散效应,竖直方向上作为平行玻璃板,保证了光路正常传输。
  10. 一种远距离探测的激光雷达的探测方法,其特征在于,使用如权利要求1-9任一所述的远距离探测的激光雷达,所述激光雷达还包括信号接收电路板(7)和主控电路板(8);所述光纤激光器(2)和信号接收电路板(7)分别与所述主控电路板(8)电气相连;所述信号接收电路板(7)用于解析接收探测器(6)中的光信号,并将解析结果发送给所述主控电路板(8);所述主控电路板(8)还用于根据获取到的解析结果控制光纤激光器(2)的工作功率,方法包括:
    主控电路板(8)控制光纤激光器(2)按照预设的起始状态进入工作;
    主控电路板(8)控制旋转电机(91),带动旋转反射镜(92)和补偿透镜(93)转动,并实时获取,经过接收探测器(6)和信号接收电路板(7)传递过来的解析结果;
    根据所述解析结果,调整光纤激光器(2)的工作功率,以及控制所述旋转电机(91)完成目标对象的探测过程。
PCT/CN2021/084839 2020-04-03 2021-04-01 一种远距离探测的激光雷达及其探测方法 WO2021197403A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010261437.6A CN111337901A (zh) 2020-04-03 2020-04-03 一种远距离探测的激光雷达及其探测方法
CN202010261437.6 2020-04-03

Publications (1)

Publication Number Publication Date
WO2021197403A1 true WO2021197403A1 (zh) 2021-10-07

Family

ID=71184669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/084839 WO2021197403A1 (zh) 2020-04-03 2021-04-01 一种远距离探测的激光雷达及其探测方法

Country Status (2)

Country Link
CN (1) CN111337901A (zh)
WO (1) WO2021197403A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113933023A (zh) * 2021-10-15 2022-01-14 合肥工业大学 一种mpo光纤的功率测量和通断检测设备及其方法
CN114189284A (zh) * 2022-02-16 2022-03-15 之江实验室 一种星载激光通信机的在轨自标校装置及其标校方法
CN115453572A (zh) * 2022-08-25 2022-12-09 湖南国天电子科技有限公司 一种全光纤一体化光路的激光气象探测设备

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111337901A (zh) * 2020-04-03 2020-06-26 深圳煜炜光学科技有限公司 一种远距离探测的激光雷达及其探测方法
CN113114358B (zh) * 2021-03-24 2022-03-29 中航光电科技股份有限公司 大偏移光接触件、光互连组件及远距离空间光通信系统
CN113777617A (zh) * 2021-09-13 2021-12-10 广州中海达卫星导航技术股份有限公司 扫描装置及激光雷达系统
CN115508815B (zh) * 2022-11-21 2023-03-24 深圳煜炜光学科技有限公司 一种校准激光测距光路的方法及校准系统
CN115951331A (zh) * 2023-03-13 2023-04-11 锐驰智光(北京)科技有限公司 具有补偿片的激光雷达

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180372491A1 (en) * 2016-02-03 2018-12-27 Konica Minolta, Inc. Optical scan type object detecting apparatus
CN109738880A (zh) * 2019-03-26 2019-05-10 深圳市镭神智能系统有限公司 一种激光雷达系统及激光测距装置
CN209542971U (zh) * 2019-03-29 2019-10-25 潍坊华光光电子有限公司 一种实现半导体激光器光斑整形及匀化的装置
CN209673991U (zh) * 2018-12-21 2019-11-22 宁波傲视智绘光电科技有限公司 激光雷达光学组件
CN110612456A (zh) * 2017-03-28 2019-12-24 卢米诺技术公司 动态控制激光功率的方法
CN111337901A (zh) * 2020-04-03 2020-06-26 深圳煜炜光学科技有限公司 一种远距离探测的激光雷达及其探测方法
CN212321830U (zh) * 2020-04-03 2021-01-08 深圳煜炜光学科技有限公司 一种远距离探测的激光雷达

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180372491A1 (en) * 2016-02-03 2018-12-27 Konica Minolta, Inc. Optical scan type object detecting apparatus
CN110612456A (zh) * 2017-03-28 2019-12-24 卢米诺技术公司 动态控制激光功率的方法
CN209673991U (zh) * 2018-12-21 2019-11-22 宁波傲视智绘光电科技有限公司 激光雷达光学组件
CN109738880A (zh) * 2019-03-26 2019-05-10 深圳市镭神智能系统有限公司 一种激光雷达系统及激光测距装置
CN209542971U (zh) * 2019-03-29 2019-10-25 潍坊华光光电子有限公司 一种实现半导体激光器光斑整形及匀化的装置
CN111337901A (zh) * 2020-04-03 2020-06-26 深圳煜炜光学科技有限公司 一种远距离探测的激光雷达及其探测方法
CN212321830U (zh) * 2020-04-03 2021-01-08 深圳煜炜光学科技有限公司 一种远距离探测的激光雷达

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113933023A (zh) * 2021-10-15 2022-01-14 合肥工业大学 一种mpo光纤的功率测量和通断检测设备及其方法
CN113933023B (zh) * 2021-10-15 2023-06-27 合肥工业大学 一种mpo光纤的功率测量和通断检测设备及其方法
CN114189284A (zh) * 2022-02-16 2022-03-15 之江实验室 一种星载激光通信机的在轨自标校装置及其标校方法
CN115453572A (zh) * 2022-08-25 2022-12-09 湖南国天电子科技有限公司 一种全光纤一体化光路的激光气象探测设备

Also Published As

Publication number Publication date
CN111337901A (zh) 2020-06-26

Similar Documents

Publication Publication Date Title
WO2021197403A1 (zh) 一种远距离探测的激光雷达及其探测方法
JP2018151398A (ja) キャリブレーション装置、レーザー距離測定装置、および構造物の製造方法
WO2015043521A1 (zh) 激光模组
CN103594918A (zh) 一种输出空心激光光束的方法和装置
CN110471147A (zh) 大发散角激光耦合单模光纤的装置及方法
CN109031533B (zh) 基于卡塞格林望远镜的双光路收发一体化天线及收发方法
CN109167246B (zh) 一种双信号探测激光稳频集成光路装置
CN104901155A (zh) 一种高功率光纤激光泵浦光耦合与信号光扩束输出装置
CN115079346B (zh) 一种空间光耦合至光纤的装调装置和方法
CN113267856A (zh) 一种收发共轴紧凑激光收发装置
WO2019080345A1 (zh) 一种基于双胶合透镜的传输光器件
CN114300918B (zh) 一种超稳窄线宽激光器系统和耦合调节方法
CN216119577U (zh) 一种二维磁光阱的光机装置
CN212321830U (zh) 一种远距离探测的激光雷达
CN112612065A (zh) 同轴光纤传感器
CN216646976U (zh) 一种基于四棱锥反射镜的激光空间合束系统
CN113933939B (zh) 激光通信耦合装置及基于该装置的光轴校正方法
CN216870812U (zh) 一种通用的测风激光雷达收发合置望远镜装置
CN104898273A (zh) 光学扫描识别系统
CN114859567A (zh) 一种激光合束耦合装置
CN208753720U (zh) 一种大折叠角度激光谐振腔
CN114665369A (zh) 一种单频窄线宽中波红外原子气室激光器及激光干涉仪
CN210347443U (zh) 一种环境大气特征气体监测仪
CN210604964U (zh) 一种光纤相干多普勒探测系统
CN113904208A (zh) 一种高纯度拉盖尔高斯光束产生系统及其产生方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21778863

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21778863

Country of ref document: EP

Kind code of ref document: A1