WO2021197398A1 - 一种摄像头模组及电子设备 - Google Patents

一种摄像头模组及电子设备 Download PDF

Info

Publication number
WO2021197398A1
WO2021197398A1 PCT/CN2021/084783 CN2021084783W WO2021197398A1 WO 2021197398 A1 WO2021197398 A1 WO 2021197398A1 CN 2021084783 W CN2021084783 W CN 2021084783W WO 2021197398 A1 WO2021197398 A1 WO 2021197398A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
camera module
imaging
efl
focal length
Prior art date
Application number
PCT/CN2021/084783
Other languages
English (en)
French (fr)
Inventor
徐运强
贾远林
封荣凯
周少攀
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21779945.1A priority Critical patent/EP4119998A4/en
Priority to KR1020227037617A priority patent/KR20220149788A/ko
Priority to JP2022559720A priority patent/JP7475483B2/ja
Priority to CN202180026070.2A priority patent/CN115362403A/zh
Publication of WO2021197398A1 publication Critical patent/WO2021197398A1/zh
Priority to US17/955,686 priority patent/US20230034285A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B7/00Control of exposure by setting shutters, diaphragms or filters, separately or conjointly
    • G03B7/08Control effected solely on the basis of the response, to the intensity of the light received by the camera, of a built-in light-sensitive device
    • G03B7/091Digital circuits
    • G03B7/095Digital circuits for control of aperture
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/005Diaphragms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/34Systems for automatic generation of focusing signals using different areas in a pupil plane
    • G02B7/346Systems for automatic generation of focusing signals using different areas in a pupil plane using horizontal and vertical areas in the pupil plane, i.e. wide area autofocusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B9/00Exposure-making shutters; Diaphragms
    • G03B9/02Diaphragms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules

Definitions

  • This application relates to the technical field of electronic equipment, and in particular to a camera module and electronic equipment.
  • the high-power optical zooms of mobile phone lenses released on the market are basically "jumping" zooms, that is, by carrying multiple lenses with different focal lengths, and combining with algorithm-based digital zoom to achieve hybrid optical zoom, this leads to a greater number of mobile phone lenses. The more you come, it will not only take up more body space, but also affect the appearance quality of the phone.
  • the present application provides a camera module and electronic equipment, which are used to achieve a hybrid zooming shooting effect on the basis of adopting a single lens, and in addition, the imaging quality can be improved.
  • the present application provides a camera module, which may include a lens, a variable aperture, and a photosensitive element, wherein the lens may include multiple lenses arranged from the object side to the image side; the variable aperture may Set on the object side of one of the lenses, the clear aperture of the iris can be adjusted to the first clear aperture and the second clear aperture.
  • the lens can be Adjust the aperture number of F1 to F1.
  • the aperture number of the lens can be adjusted to F2, F1 and F2 meet: F1 ⁇ F2; the photosensitive element is set on the imaging surface of the lens ,
  • the photosensitive element includes a photosensitive area.
  • the camera module can include two imaging modes, namely the first imaging mode and the second imaging mode.
  • the aperture of the lens is F1
  • the photosensitive element can be used to image the lens in the whole area of the photosensitive area.
  • the angular resolution of part of the area is n ⁇ , where n is a natural number greater than or equal to 1 and less than or equal to 3.
  • the camera module can realize full-pixel imaging of the photosensitive area with an angular resolution of ⁇ in the first imaging mode, and can realize the photosensitive area with an angular resolution of 2* ⁇ or 3* ⁇ in the second imaging mode.
  • Pixel imaging, and the effective focal length of the lens is unchanged when switching between the two imaging modes, that is, a single lens is used to achieve full-pixel double imaging and partial pixel double or triple imaging at the same time, realizing the main lens and Two-in-one with a double or triple telephoto lens; and, in the second imaging mode, the F number of the lens is switched from F1 to F2 by changing the clear aperture of the iris, so that the central pixel imaging is compared to ordinary
  • the double or triple lens has a larger aperture and higher optical quality.
  • the diffraction limit of the lens imaging in the whole area of the photosensitive area at 100 lp/mm is MTF1L
  • the diffraction limit of the lens imaging in a partial area of the photosensitive area at 100 lp/mm is MTF2L
  • MTF1L and MTF2L satisfy: 1 ⁇
  • the number N of lenses included in the lens satisfies: 5 ⁇ N ⁇ 9.
  • the aperture number F1 of the lens satisfies: 1.2 ⁇ F1 ⁇ 8; the clear aperture of the variable aperture When the aperture is the second clear aperture, the aperture number F2 of the lens satisfies: 1.1 ⁇ F2 ⁇ 4.
  • the semi-image height of the lens when the lens is imaging in the full area of the photosensitive area is Y1
  • the semi-image height of the lens when the lens is imaging in a partial area of the photosensitive area The height is Y2, and Y1 and Y2 satisfy: 1 ⁇
  • the pixel size output by the photosensitive element is P1
  • the photosensitive element The output pixel size is P2;
  • the half-image height Y1 of the lens and the total length TTL of the lens satisfy: 0.5 ⁇
  • the distance l between the iris and the imaging surface of the lens and the total length TTL of the lens satisfy: 0.5 ⁇
  • the pixels of the image output by the lens when imaging in a part of the photosensitive area with an angular resolution of n ⁇ are 8M to 32M pixels, which can effectively ensure the imaging quality.
  • the entrance pupil diameter of the lens when imaging the whole area of the photosensitive area is EPD1
  • the entrance pupil diameter of the lens when imaging a part of the photosensitive area is EPD2
  • EPD1 and EPD2 satisfies: 0.25 ⁇
  • the focal length EFL of the lens and the total length TTL of the lens satisfy: 0.5 ⁇
  • the lens may include eight lenses arranged from the object side to the image side, namely the first lens, the second lens, the third lens, the fourth lens, the fifth lens, the sixth lens, and the first lens. Seven lens and eighth lens; wherein, the second lens has negative refractive power; the fifth lens has positive refractive power, and the focal length f5 of the fifth lens and the focal length EFL of the lens satisfy: 0.5 ⁇
  • the focal length f6 of the sixth lens and the focal length EFL of the lens satisfy: 1 ⁇
  • each of the eight lenses may be aspherical lenses, which can eliminate aberrations and improve imaging quality.
  • each lens can be made of resin material to reduce the manufacturing process difficulty and manufacturing cost of the lens.
  • the specific structure of the lens can be as follows:
  • the second lens has a negative refractive power, and the ratio of its focal length f2 to the focal length EFL of the lens:
  • 1.70;
  • the fifth lens has a positive refractive power, and the ratio of its focal length f5 to the focal length EFL of the lens:
  • 1.01;
  • the sixth lens has a negative refractive power, the ratio of its focal length f6 to the focal length of the lens EFL:
  • 1.09; the ratio of the focal length of the lens EFL to the total length of the lens TTL:
  • 0.8307; when the clear aperture of the iris diaphragm is the first clear aperture, the aperture number F1 of the lens is 2.074, and when the clear aperture of the iris diaphragm is the first clear aperture, the aperture number F2 of the lens is 1.4758; or
  • the second lens has a negative refractive power, and the ratio of its focal length f2 to the focal length EFL of the lens:
  • 1.71;
  • the fifth lens has a positive refractive power, and the ratio of its focal length f5 to the focal length EFL of the lens:
  • 1.07;
  • the sixth lens has a negative refractive power, the ratio of its focal length f6 to the focal length of the lens EFL:
  • 1.14; the ratio of the focal length of the lens EFL to the total length of the lens TTL:
  • 0.830; when the clear aperture of the iris is the first clear aperture, the aperture number F1 of the lens is 2.075, and when the clear aperture of the iris is the first clear aperture, the aperture number F2 of the lens is 1.461; or
  • the second lens has a negative refractive power, and the ratio of its focal length f2 to the focal length EFL of the lens:
  • 2.452;
  • the fifth lens has a positive refractive power, and the ratio of its focal length f5 to the focal length EFL of the lens:
  • 1.49;
  • the sixth lens has a negative refractive power, the ratio of its focal length f6 to the focal length of the lens EFL:
  • 4.052; the ratio of the focal length of the lens EFL to the total length of the lens TTL:
  • 0.7269; when the clear aperture of the iris diaphragm is the first clear aperture, the aperture number F1 of the lens is 1.99, and when the clear aperture of the iris diaphragm is the first clear aperture, the aperture number F2 of the lens is 1.15; or
  • the second lens has a negative refractive power, and the ratio of its focal length f2 to the focal length EFL of the lens:
  • 1.99;
  • the fifth lens has a positive refractive power, and the ratio of its focal length f5 to the focal length EFL of the lens:
  • 1.14;
  • the sixth lens has a negative refractive power, and the ratio of its focal length f6 to the focal length of the lens EFL:
  • 1.22; the ratio of the focal length of the lens EFL to the total length of the lens TTL:
  • 0.802; when the clear aperture of the iris is the first clear aperture, the aperture number F1 of the lens is 1.65, and when the clear aperture of the iris is the first clear aperture, the aperture number F2 of the lens is 1.58; or
  • the second lens has a negative refractive power, and the ratio of its focal length f2 to the focal length EFL of the lens:
  • 2.42;
  • the fifth lens has a positive refractive power, and the ratio of its focal length f5 to the focal length EFL of the lens:
  • 1.49;
  • the sixth lens has a negative refractive power, the ratio of its focal length f6 to the focal length of the lens EFL:
  • 4.01; the ratio of the focal length of the lens EFL to the total length of the lens TTL:
  • 0.731; when the clear aperture of the variable aperture is the first clear aperture, the aperture number F1 of the lens is 3.97, and when the clear aperture of the variable aperture is the first clear aperture, the aperture number F2 of the lens is 1.14.
  • the lens may include nine lenses arranged from the object side to the image side, namely the first lens, the second lens, the third lens, the fourth lens, the fifth lens, the sixth lens, and the first lens.
  • 2.11; the fifth lens has positive refractive power, which The ratio of the focal length f5 to the focal length EFL of the lens:
  • 1.37; the sixth lens has a negative refractive power, and the ratio of the focal length f6 to the focal length EFL of the lens:
  • 3.33; the focal length of the lens EFL The ratio of TTL to the total length of the lens:
  • 0.788; when the clear aperture of the iris is the first clear aperture, the aperture number F1 of the lens is 2.36, and the clear aperture of
  • the lens may include six lenses arranged from the object side to the image side, namely the first lens, the second lens, the third lens, the fourth lens, the fifth lens and the sixth lens.
  • the second lens has a negative refractive power, the ratio of its focal length f2 to the focal length of the lens EFL:
  • 5.23;
  • the third lens has a negative refractive power, the ratio of its focal length f3 to the focal length of the lens EFL:
  • 2.87;
  • the fourth lens has a positive refractive power, the ratio of its focal length f4 to the focal length of the lens EFL:
  • 12.04; the ratio of the focal length of the lens EFL to the total length of the lens TTL:
  • 0.81; when the clear aperture of the iris diaphragm is the first clear aperture, the aperture number F1 of the lens is 1.79, and when the clear aperture of the iris diaphragm is the
  • the lens may include five lenses arranged from the object side to the image side, namely the first lens, the second lens, the third lens, the fourth lens, and the fifth lens.
  • the second lens With negative refractive power, the ratio of the focal length f2 to the focal length EFL of the lens:
  • 1.97;
  • the third lens has a positive refractive power, and the ratio of the focal length f3 to the focal length EFL of the lens:
  • 3.41;
  • the fourth lens has a positive refractive power, and the ratio of its focal length f4 to the focal length of the lens EFL:
  • 1.20; the ratio of the focal length of the lens EFL to the total length of the lens TTL:
  • 0.74;
  • the clear aperture of the variable aperture is the first clear aperture
  • the aperture number F1 of the lens is 1.94, and when the clear aperture of the variable aperture is the first clear aperture, the aperture number F2 of the lens
  • the lens may include seven lenses arranged from the object side to the image side, namely the first lens, the second lens, the third lens, the fourth lens, the fifth lens, the sixth lens, and the first lens. Seven lenses, where the second lens has negative refractive power, and the ratio of its focal length f2 to the focal length EFL of the lens:
  • 2.51; the fifth lens has negative refractive power, and its focal length f5 is equal to the focal length EFL of the lens The ratio of:
  • 1.81; the sixth lens has a negative refractive power, and the ratio of its focal length f6 to the focal length of the lens EFL:
  • 2.31; the ratio of the focal length of the lens EFL to the total length of the lens TTL :
  • 0.814; when the clear aperture of the iris is the first clear aperture, the aperture number F1 of the lens is 2.31, and when the clear aperture of the iris is the first lens.
  • the present application also provides an electronic device, which includes a housing and the camera module in any of the foregoing possible embodiments, and the camera module can be specifically arranged in the housing.
  • the camera module of the electronic device can simultaneously realize full-pixel double-fold imaging and center-pixel double-fold or triple-fold imaging using a single lens, so that it can occupy space in the electronic device and improve the appearance quality of the electronic device.
  • FIG. 1 is a schematic structural diagram of a camera module provided by an embodiment of the application
  • Fig. 2a is a schematic structural diagram of the camera module shown in Fig. 1 when it is in a first imaging mode
  • FIG. 2b is a schematic structural diagram of the camera module shown in FIG. 1 when it is in a second imaging mode
  • Figure 3a is a schematic structural diagram of the first specific camera module when it is in the first imaging mode
  • Figure 3b is a schematic structural diagram of the first specific camera module when it is in the second imaging mode
  • Fig. 4a is an axial chromatic aberration curve diagram of the camera module shown in Fig. 3a;
  • Fig. 4b is an axial chromatic aberration curve diagram of the camera module shown in Fig. 3b;
  • Fig. 5a is a lateral chromatic aberration curve diagram of the camera module shown in Fig. 3a;
  • Fig. 5b is a graph of lateral chromatic aberration of the camera module shown in Fig. 3b;
  • Fig. 6a is an optical distortion curve diagram of the camera module shown in Fig. 3a;
  • Fig. 6b is an optical distortion curve diagram of the camera module shown in Fig. 3b;
  • Figure 7a is a schematic structural diagram of a second specific camera module when it is in the first imaging mode
  • FIG. 7b is a schematic structural diagram of the second specific camera module when it is in the second imaging mode
  • Fig. 8a is an axial chromatic aberration curve diagram of the camera module shown in Fig. 7a;
  • Fig. 8b is an axial chromatic aberration curve diagram of the camera module shown in Fig. 7b;
  • Fig. 9a is a lateral chromatic aberration curve diagram of the camera module shown in Fig. 7a;
  • Fig. 9b is a lateral chromatic aberration curve diagram of the camera module shown in Fig. 7b;
  • Fig. 10a is an optical distortion curve diagram of the camera module shown in Fig. 7a;
  • Fig. 10b is an optical distortion curve diagram of the camera module shown in Fig. 7b;
  • FIG. 11a is a schematic structural diagram of a third specific camera module when it is in the first imaging mode
  • FIG. 11b is a schematic structural diagram of a third specific camera module when it is in a second imaging mode
  • Fig. 12a is an axial chromatic aberration curve diagram of the camera module shown in Fig. 11a;
  • Fig. 12b is an axial chromatic aberration curve diagram of the camera module shown in Fig. 11b;
  • Fig. 13a is a lateral chromatic aberration curve diagram of the camera module shown in Fig. 11a;
  • Fig. 13b is a lateral chromatic aberration curve diagram of the camera module shown in Fig. 11b;
  • Fig. 14a is an optical distortion curve diagram of the camera module shown in Fig. 11a;
  • Fig. 14b is an optical distortion curve diagram of the camera module shown in Fig. 11b;
  • Figure 15a is a schematic structural diagram of a fourth specific camera module when it is in the first imaging mode
  • FIG. 15b is a schematic structural diagram of the fourth specific camera module when it is in the second imaging mode
  • Fig. 16a is an axial chromatic aberration curve diagram of the camera module shown in Fig. 15a;
  • Fig. 16b is an axial chromatic aberration curve diagram of the camera module shown in Fig. 15b;
  • Fig. 17a is a lateral chromatic aberration curve diagram of the camera module shown in Fig. 15a;
  • Fig. 17b is a lateral chromatic aberration curve diagram of the camera module shown in Fig. 15b;
  • Fig. 18a is an optical distortion curve diagram of the camera module shown in Fig. 15a;
  • Fig. 18b is an optical distortion curve diagram of the camera module shown in Fig. 15b;
  • Figure 19a is a schematic structural diagram of a fifth specific camera module when it is in the first imaging mode
  • FIG. 19b is a schematic structural diagram of the fifth specific camera module when it is in the second imaging mode
  • Fig. 20a is an axial chromatic aberration curve diagram of the camera module shown in Fig. 19a;
  • Fig. 20b is an axial chromatic aberration curve diagram of the camera module shown in Fig. 19b;
  • Fig. 21a is a lateral chromatic aberration curve diagram of the camera module shown in Fig. 19a;
  • FIG. 21b is a graph of lateral chromatic aberration of the camera module shown in FIG. 19b;
  • Fig. 22a is an optical distortion curve diagram of the camera module shown in Fig. 19a;
  • Fig. 22b is an optical distortion curve diagram of the camera module shown in Fig. 19b;
  • Figure 23a is a schematic structural diagram of a sixth specific camera module when it is in the first imaging mode
  • FIG. 23b is a schematic structural diagram of the sixth specific camera module when it is in the second imaging mode
  • Fig. 24a is an axial chromatic aberration curve diagram of the camera module shown in Fig. 23a;
  • Fig. 24b is an axial chromatic aberration curve diagram of the camera module shown in Fig. 23b;
  • Fig. 25a is a graph of lateral chromatic aberration of the camera module shown in Fig. 23a;
  • Fig. 25b is a graph of lateral chromatic aberration of the camera module shown in Fig. 23b;
  • Fig. 26a is an optical distortion curve diagram of the camera module shown in Fig. 23a;
  • Fig. 26b is an optical distortion curve diagram of the camera module shown in Fig. 23b;
  • FIG. 27a is a schematic structural diagram of the seventh specific camera module when it is in the first imaging mode
  • FIG. 27b is a schematic structural diagram of the seventh specific camera module when it is in the second imaging mode
  • Fig. 28a is an axial chromatic aberration curve diagram of the camera module shown in Fig. 27a;
  • Fig. 28b is an axial chromatic aberration curve diagram of the camera module shown in Fig. 27b;
  • Fig. 29a is a graph of lateral chromatic aberration of the camera module shown in Fig. 27a;
  • FIG. 29b is a graph of lateral chromatic aberration of the camera module shown in FIG. 27b;
  • Fig. 30a is an optical distortion curve diagram of the camera module shown in Fig. 27a;
  • Fig. 30b is an optical distortion curve diagram of the camera module shown in Fig. 27b;
  • Figure 31a is a schematic structural diagram of an eighth specific camera module when it is in the first imaging mode
  • FIG. 31b is a schematic structural diagram of the eighth specific camera module when it is in the second imaging mode
  • Fig. 32a is an axial chromatic aberration curve diagram of the camera module shown in Fig. 31a;
  • Fig. 32b is an axial chromatic aberration curve diagram of the camera module shown in Fig. 31b;
  • Fig. 33a is a lateral chromatic aberration curve diagram of the camera module shown in Fig. 31a;
  • Fig. 33b is a lateral chromatic aberration curve diagram of the camera module shown in Fig. 31b;
  • Fig. 34a is an optical distortion curve diagram of the camera module shown in Fig. 31a;
  • Fig. 34b is an optical distortion curve diagram of the camera module shown in Fig. 31b;
  • 35a is a schematic structural diagram of a ninth specific camera module when it is in the first imaging mode
  • FIG. 35b is a schematic structural diagram of a ninth specific camera module when it is in a second imaging mode
  • Fig. 36a is an axial chromatic aberration curve diagram of the camera module shown in Fig. 35a;
  • Fig. 36b is an axial chromatic aberration curve diagram of the camera module shown in Fig. 35b;
  • Fig. 37a is a lateral chromatic aberration curve diagram of the camera module shown in Fig. 35a;
  • Fig. 37b is a lateral chromatic aberration curve diagram of the camera module shown in Fig. 35b;
  • Fig. 38a is an optical distortion curve diagram of the camera module shown in Fig. 35a;
  • Fig. 38b is an optical distortion curve diagram of the camera module shown in Fig. 35b;
  • FIG. 39 is a schematic structural diagram of an electronic device provided by an embodiment of the application.
  • F#F-number F number/aperture is the relative value (the reciprocal of the relative aperture) derived from the focal length of the lens/the entrance pupil diameter of the lens.
  • TTL total track length The total length of the lens, specifically the distance from the surface of the lens closest to the subject to the imaging surface;
  • the back focal length of the lens is defined as the distance from the lens closest to the imaging surface to the photosensitive element
  • ⁇ angular resolution is defined as the reciprocal of the minimum angle that the optical system can resolve.
  • the minimum resolution angle is equal to the side length of the pixel divided by the focal length of the lens;
  • the optical power is equal to the difference between the image-side beam convergence and the object-side beam convergence.
  • a lens with a positive refractive power has a positive focal length and can converge light, and a lens with a negative refractive power has a negative focal length and can diverge the light;
  • the object side can be understood as the side close to the object to be taken, and the image side can be understood as the side close to the imaging surface;
  • the object side surface of the lens is the side surface of the lens close to the object to be taken, and the image side surface of the lens is the side surface of the lens close to the imaging surface;
  • the near optical axis can be understood as the area of the lens surface close to the optical axis.
  • the camera module provided in the embodiments of the present application can be applied to electronic equipment to enable the electronic equipment to realize functions such as image acquisition and video acquisition.
  • the electronic equipment may be a mobile phone, a tablet computer, or a laptop computer in the prior art. terminal. Take mobile phones as an example.
  • many models of mobile phones often use zooming methods that are equipped with multiple lenses with different focal lengths, combined with algorithm-based digital zoom to achieve hybrid optical zoom.
  • this zoom method can improve the zoom of the camera module
  • the size of the camera module will be too large due to the increase in the number of lenses, which will take up more body space and will also affect the appearance quality of the phone.
  • the embodiments of the present application provide a camera module and electronic equipment using the camera module.
  • the camera module can realize a main camera lens and a double or triple telephoto based on a single lens.
  • the lens is two-in-one, and the variable aperture can also be used to make double or triple imaging with a larger aperture to improve imaging quality.
  • FIG. 1 is a schematic structural diagram of a camera module provided by an embodiment of the application.
  • the camera module may include a lens L, a variable aperture ST, a photosensitive element, and a filter G1, where the lens L may include a plurality of lenses with optical power, and these lenses may be arranged in sequence from the object side to the image side;
  • the variable aperture ST is set on the object side of one of the lenses, and the aperture value of the lens L can be adjusted by changing its clear aperture.
  • the variable aperture ST can be located on the object side of the lens closest to the subject, or Between any other two adjacent lenses, this application does not specifically limit this.
  • the distance l between the iris ST and the imaging surface S1 of the lens L and the total length TTL of the lens satisfies: 0.5 ⁇
  • the filter G1 is set on the image side of the lens closest to the imaging surface S1, that is, between the lens and the imaging surface S1.
  • the photosensitive element is set on the imaging surface S1 of the lens L, which can be used for photoelectric conversion and A/D (analog/digital, analog signal/digital signal) of the optical signal of the incident light ) Conversion to transmit the converted electrical signal to the graphics processor or central processing unit of the electronic device through the substrate, so as to realize the functions of acquiring, converting, and processing optical images.
  • the number N of lenses included in the lens L of the embodiment of the present application satisfies: 5 ⁇ N ⁇ 9.
  • N may be 5, 6, 7, 8, 9, and these lenses may be aspherical.
  • Lens which can eliminate aberrations and improve imaging quality.
  • each lens can be made of resin to reduce the manufacturing process difficulty and cost of the lens; of course, in other embodiments of the present application, it can also be brought close to Part of the lens of the object is made of glass, and part of the lens close to the imaging surface is made of resin, which is not specifically limited in this application.
  • Figure 1 specifically shows the structure of a camera module using an eight-piece lens.
  • the lens L includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, a sixth lens L6, a seventh lens L7, and an eighth lens in sequence L8; where the second lens L2 has negative refractive power; the fifth lens L5 has positive refractive power, and the focal length f5 of the fifth lens L5 and the focal length EFL of the lens satisfy: 0.5 ⁇
  • the focal length f6 of the sixth lens L6 and the focal length EFL of the lens satisfy: 1 ⁇
  • variable aperture ST can adopt the variable aperture structure in the prior art, and the adjustment principle of its clear aperture can also be the same as that in the prior art, which will not be repeated here.
  • the clear aperture of the variable aperture ST can be adjusted to the first clear aperture and the second clear aperture.
  • the lens L The F number can be adjusted to F1 accordingly.
  • the clear aperture of the variable iris ST is the second clear aperture
  • the F number of the lens L can be adjusted to F2 accordingly, where F1 and F2 satisfy: F1 ⁇ F2.
  • F1 satisfies: 1.2 ⁇ F1 ⁇ 8
  • F2 satisfies: 1.1 ⁇ F2 ⁇ 4.
  • the camera module provided by the embodiment of the present application may include two imaging modes. Refer to Figures 2a and 2b together.
  • Figure 2a is a schematic structural diagram of the camera module in the first imaging mode
  • Figure 2b is the The schematic diagram of the structure when the camera module is in the second imaging mode.
  • the F number of the lens can be adjusted to F1 by adjusting the clear aperture of the iris diaphragm.
  • the F number of the lens can be adjusted to F2 by adjusting the clear aperture of the iris, and the photosensitive element is used to make the lens L performs imaging in part of its photosensitive area, and adjusts the angular resolution of the entire photosensitive area to n ⁇ .
  • the full-area imaging in the photosensitive area can be specifically understood as imaging using all pixels in the photosensitive area, that is, full-pixel imaging.
  • the part of the photosensitive area is used for imaging.
  • Area imaging can be understood as imaging using a partial area of the photosensitive area.
  • This partial area can be the central area of the photosensitive area or any other area. This application does not specifically limit this.
  • the lens L is in a partial area of the photosensitive area. When imaging, it is equivalent to reducing the angle of view of the lens, so it can achieve a telephoto-like shooting effect.
  • n can take the value 1, 2 or 3, and the change in the angular resolution can be implemented by controlling the size of the pixel output by the photosensitive element.
  • the pixel size output by the photosensitive element in the first imaging mode is P1
  • the pixel size output by the photosensitive element in the second imaging mode is P2.
  • the specific method for controlling the size of the pixel output by the photosensitive element in this embodiment is the same as that in the prior art, and the details are not repeated here.
  • the camera module can output an image with 8M to 32M pixels in the second imaging mode, which can effectively ensure the imaging quality.
  • the half-image height of the lens when the camera module is in the first imaging mode is Y1
  • the half-image height of the lens when the camera module is in the second imaging mode is Y2
  • Y1 and Y2 satisfy: 1 ⁇
  • the entrance pupil diameter of the lens is EPD1
  • the entrance pupil diameter of the lens is EPD2
  • EPD1 and EPD2 satisfy 0.25 ⁇
  • the focal length EFL of the lens and the total length of the lens TTL can meet: 0.5 ⁇
  • the camera module provided by the embodiments of the present application can achieve full-pixel imaging of the photosensitive area with an angular resolution of ⁇ in the first imaging mode, and can achieve an angular resolution of 2* in the second imaging mode.
  • the effective focal length of the lens is unchanged when switching between the two imaging modes, that is, using one lens to achieve full-pixel double imaging and central pixel double or double or Triple imaging, to achieve the two-in-one of the main camera lens and the double or triple telephoto lens; and, in the second imaging mode, the F number of the lens is switched from F1 to F2 by changing the clear aperture of the iris diaphragm , Making the center pixel imaging have a larger aperture and higher optical quality than ordinary double or triple lens It can satisfy 1 ⁇
  • Figures 3a and 3b show the first specific camera module, in which Figure 3a is a schematic structural diagram of the camera module in the first imaging mode, and Figure 3b is the camera module in the second imaging mode Schematic.
  • the lens of the camera module includes eight lenses with optical power, which are the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens in order from the object side.
  • L6, the seventh lens L7 and the eighth lens L8, the iris ST can be located on the object side of the first lens L1, and the filter G1 is located on the image side of the eighth lens L8.
  • each lens of the lens can be an aspheric lens, that is, the lens contains a total of 16 aspheric surfaces.
  • Table 1a is the radius of curvature, thickness, and refraction of each lens in the lens.
  • Table 1b shows the aspheric coefficient of each lens.
  • all extended aspheric surface types z can be defined by but not limited to the following aspheric surface formula:
  • z is the vector height of the aspheric surface
  • r is the normalized radial coordinate of the aspheric surface
  • r is equal to the actual radial coordinate of the aspheric surface divided by the normalized radius R
  • c is the spherical curvature of the aspheric surface vertex
  • K is the quadratic Surface constants
  • A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13 are aspherical coefficients.
  • the second lens L2 has negative refractive power, and the ratio of its focal length f2 to the focal length EFL of the lens:
  • 1.70; the fifth lens L5 has positive refractive power, and its focal length f5 is equal to that of the lens.
  • 1.01; the sixth lens L6 has a negative refractive power, and the ratio of its focal length f6 to the focal length of the lens EFL:
  • 1.09; the focal length of the lens EFL and the total length of the lens
  • TTL
  • 0.8307.
  • the lens when the camera module is in the first imaging mode, the lens is imaging in the whole area of the photosensitive area, the half image height Y1 of the lens is 5.8mm, the entrance pupil diameter EPD1 is 3.0467mm, and the F number is 2.074;
  • the camera module when the camera module is switched to the second imaging mode, the lens is imaging in a part of the photosensitive area, the half image height Y2 of the lens is 2.86mm, the entrance pupil diameter EPD2 is 4.31mm, and the F number is 1.4758;
  • 0.708, the ratio of Y1 to Y2:
  • 2.028; in addition, when the camera is in the first imaging mode, the half-image height Y1 of the lens and the total length of the lens TTL The ratio of
  • 0.77, the ratio of the entrance pupil diameter EPD1 to the total length of the lens TTL:
  • FIGS. 3a and 3b The camera module shown in FIGS. 3a and 3b is simulated, and the simulation results will be described in detail below in conjunction with the accompanying drawings.
  • Figure 4a is the axial chromatic aberration curve diagram when the camera module is in the first imaging mode.
  • the figure shows the simulation results of the focal depth position of the color light with wavelengths of 650nm, 610nm, 555nm, 510nm, and 470nm respectively. It can be seen that the lens The axial chromatic aberration in the first imaging mode is controlled within a small range;
  • Figure 4b is the axial chromatic aberration curve diagram when the camera module is in the second imaging mode.
  • the figure shows the simulation results of the focal depth position of the color light with wavelengths of 650nm, 610nm, 555nm, 510nm, and 470nm respectively. It can be seen that the lens The axial chromatic aberration in the second imaging mode is controlled within a small range;
  • Figure 5a is a graph of the lateral chromatic aberration curve when the camera module is in the first imaging mode.
  • the five solid curves in the figure are 650nm, 610nm, 555nm, 510nm, 470nm wavelengths of color light, and the dashed line represents the diffraction limit range -1.4um ⁇ Between 1.4um, it can be seen that the lateral chromatic aberrations of the five rays are all within the diffraction limit;
  • Figure 5b is the lateral chromatic aberration curve diagram when the camera module is in the second imaging mode.
  • the five solid curves in the figure are 650nm, 610nm, 555nm, 510nm, 470nm wavelength color light, and the dashed line indicates the diffraction limit range -1.0um ⁇ Between 1.0um, it can be seen that the lateral chromatic aberrations of the five rays are all within the diffraction limit;
  • Figure 6a is the optical distortion curve diagram when the camera module is in the first imaging mode, showing the difference between the imaging distortion and the ideal shape.
  • the five solid curves in the figure are color light with wavelengths of 650nm, 610nm, 555nm, 510nm, and 470nm, respectively. It can be seen that the optical distortion can be controlled within a range of less than 2% in this mode;
  • Figure 6b is the optical distortion curve diagram when the camera module is in the second imaging mode, showing the difference between the imaging deformation and the ideal shape.
  • the five solid curves in the figure are color lights with wavelengths of 650nm, 610nm, 555nm, 510nm, and 470nm, respectively. It can be seen that the optical distortion can be controlled within a range of less than 2% in this mode.
  • Figures 7a and 7b show a second specific camera module, where Figure 7a is a schematic structural diagram of the camera module in the first imaging mode, and Figure 7b is a schematic diagram of the camera module in the second imaging mode Schematic.
  • the lens of the camera module includes eight lenses with optical power, which are the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens in order from the object side.
  • L6, the seventh lens L7 and the eighth lens L8, the iris stop ST may be located on the object side of the first lens L1, and the filter G1 is located on the image side of the eighth lens L8.
  • each lens of the lens can be an aspheric lens, that is, the lens includes a total of 16 aspheric surfaces.
  • Table 3a is the radius of curvature, thickness, and refraction of each lens in the lens.
  • Rate, Abbe coefficient, Table 3b is the aspheric coefficient of each lens.
  • all extended aspheric surface types z can be defined by but not limited to the following aspheric surface formula:
  • z is the vector height of the aspheric surface
  • r is the normalized radial coordinate of the aspheric surface
  • r is equal to the actual radial coordinate of the aspheric surface divided by the normalized radius R
  • c is the spherical curvature of the aspheric surface vertex
  • K is the quadratic Surface constants
  • A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13 are aspherical coefficients.
  • the second lens L2 has negative refractive power, and the ratio of its focal length f2 to the focal length EFL of the lens:
  • 1.71; the fifth lens L5 has positive refractive power, and its focal length f5 is equal to that of the lens.
  • 1.07; the sixth lens L6 has a negative refractive power, and the ratio of its focal length f6 to the focal length EFL of the lens:
  • 1.14; the focal length EFL of the lens and the total length of the lens
  • TTL
  • 0.830.
  • the lens when the camera module is in the first imaging mode, the lens is imaging in the whole area of the photosensitive area, the half image height Y1 of the lens is 5.8mm, the entrance pupil diameter EPD1 is 3.037mm, and the F number is 2.075;
  • the camera module when the camera module is switched to the second imaging mode, the lens is imaging in a part of the photosensitive area, the half image height Y2 of the lens is 2.86mm, the entrance pupil diameter EPD2 is 4.29mm, and the F number is 1.461;
  • 0.708, the ratio of Y1 to Y2:
  • 2.028; in addition, when the camera is in the first imaging mode, the half-image height Y1 of the lens and the total length of the lens TTL The ratio of
  • 0.77, the ratio of the entrance pupil diameter EPD1 to the total length of the lens TTL:
  • FIG. 7a and FIG. 7b The camera module shown in FIG. 7a and FIG. 7b is simulated, and the simulation results will be described in detail below with reference to the accompanying drawings.
  • Figure 8a is the axial chromatic aberration curve diagram when the camera module is in the first imaging mode.
  • the figure shows the simulation results of the focal depth position of the color light with wavelengths of 650nm, 610nm, 555nm, 510nm, and 470nm respectively. It can be seen that the lens The axial chromatic aberration in the first imaging mode is controlled within a small range;
  • Figure 8b is the axial chromatic aberration curve diagram when the camera module is in the second imaging mode.
  • the figure shows the simulation results of the focal depth position of the color light with wavelengths of 650nm, 610nm, 555nm, 510nm, and 470nm respectively. It can be seen that the lens The axial chromatic aberration in the second imaging mode is controlled within a small range;
  • Figure 9a is the lateral chromatic aberration curve diagram when the camera module is in the first imaging mode.
  • the five solid curves in the figure are 650nm, 610nm, 555nm, 510nm, 470nm wavelength color light, and the dotted line indicates the diffraction limit range -1.4um ⁇ Between 1.4um, it can be seen that the lateral chromatic aberration of the five rays is basically within the diffraction limit;
  • Figure 9b is a graph of the lateral chromatic aberration curve when the camera module is in the second imaging mode.
  • the five solid curves in the figure are 650nm, 610nm, 555nm, 510nm, 470nm wavelength color light, and the dotted line indicates the diffraction limit range -1.0um ⁇ Between 1.0um, it can be seen that the lateral chromatic aberration of the five rays is basically within the diffraction limit;
  • Figure 10a is the optical distortion curve diagram when the camera module is in the first imaging mode, showing the difference between the imaging deformation and the ideal shape.
  • the five solid-line curves in the figure are color light with wavelengths of 650nm, 610nm, 555nm, 510nm, and 470nm, respectively. It can be seen that the optical distortion can be controlled within a range of less than 2% in this mode;
  • Figure 10b is the optical distortion curve diagram when the camera module is in the second imaging mode, showing the difference between the imaging distortion and the ideal shape.
  • the five solid curves in the figure are color lights with wavelengths of 650nm, 610nm, 555nm, 510nm, and 470nm, respectively. It can be seen that the optical distortion can be controlled within a range of less than 2% in this mode.
  • Figures 11a and 11b show a third specific camera module, where Figure 11a is a schematic structural diagram of the camera module in the first imaging mode, and Figure 11b is a schematic diagram of the camera module in the second imaging mode Schematic.
  • the lens of the camera module includes eight lenses with optical power, which are the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens in order from the object side.
  • L6, the seventh lens L7, and the eighth lens L8, the variable diaphragm ST may be located on the object side of the first lens L1, and the filter G1 may be located on the image side of the eighth lens L8.
  • each lens of the lens can be an aspheric lens, that is, the lens includes a total of 16 aspheric surfaces.
  • Table 5a is the radius of curvature, thickness, and refraction of each lens in the lens.
  • Table 5b shows the aspheric coefficient of each lens.
  • all extended aspheric surface types z can be defined by but not limited to the following aspheric surface formula:
  • z is the vector height of the aspheric surface
  • r is the normalized radial coordinate of the aspheric surface
  • r is equal to the actual radial coordinate of the aspheric surface divided by the normalized radius R
  • c is the spherical curvature of the aspheric surface vertex
  • K is the quadratic Surface constants
  • A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13 are aspherical coefficients.
  • the second lens L2 has negative refractive power, and the ratio of its focal length f2 to the focal length EFL of the lens:
  • 2.452; the fifth lens L5 has positive refractive power, and its focal length f5 is equal to that of the lens.
  • 1.49; the sixth lens L6 has negative refractive power, and the ratio of its focal length f6 to the focal length EFL of the lens:
  • 4.052; the focal length EFL of the lens and the total length of the lens
  • TTL
  • 0.7269.
  • the lens when the camera module is in the first imaging mode, the lens is imaging in the whole area of the photosensitive area, the half image height Y1 of the lens is 5.8mm, the entrance pupil diameter EPD1 is 2.8mm, and the F number is 1.99;
  • the camera module when the camera module is switched to the second imaging mode, the lens is imaging in a part of the photosensitive area, the half image height Y2 of the lens is 3.00mm, the entrance pupil diameter EPD2 is 4.84mm, and the F number is 1.15;
  • 0.579, the ratio of Y1 to Y2:
  • 1.933;
  • the half-image height of the lens Y1 and the total length of the lens TTL The ratio of
  • 0.757, the ratio of the entrance pupil diameter EPD1 to the total length of the lens TTL:
  • FIG. 11a and FIG. 11b The camera module shown in FIG. 11a and FIG. 11b is simulated, and the simulation results will be described in detail below with reference to the accompanying drawings.
  • Figure 12a is the axial chromatic aberration curve diagram when the camera module is in the first imaging mode.
  • the figure shows the simulation results of the focal depth position of the color light with wavelengths of 650nm, 610nm, 555nm, 510nm, and 470nm respectively. It can be seen that the lens The axial chromatic aberration in the first imaging mode is controlled within a small range;
  • Figure 12b is the axial chromatic aberration curve diagram when the camera module is in the second imaging mode.
  • the figure shows the simulation results of the focus depth position of the color light with wavelengths of 650nm, 610nm, 555nm, 510nm, and 470nm respectively. It can be seen that the lens The axial chromatic aberration in the second imaging mode is controlled within a small range;
  • Figure 13a is the lateral chromatic aberration curve diagram when the camera module is in the first imaging mode.
  • the five solid curves in the figure are 650nm, 610nm, 555nm, 510nm, 470nm wavelength color light, and the dotted line indicates the diffraction limit range -1.3um ⁇ Between 1.3um, it can be seen that the lateral chromatic aberration of the five rays is basically within the diffraction limit;
  • Figure 13b is a graph of the lateral chromatic aberration curve when the camera module is in the second imaging mode.
  • the five solid curves in the figure are 650nm, 610nm, 555nm, 510nm, 470nm wavelengths of color light, and the dashed line represents the diffraction limit range -0.78um ⁇ Between 0.78um, it can be seen that the lateral chromatic aberration of the five rays is basically within the diffraction limit;
  • Figure 14a is the optical distortion curve diagram when the camera module is in the first imaging mode, showing the difference between the imaging deformation and the ideal shape.
  • the five solid curves in the figure are color lights with wavelengths of 650nm, 610nm, 555nm, 510nm, and 470nm, respectively. It can be seen that the optical distortion can be controlled within a range of less than 4% in this mode;
  • Figure 14b is the optical distortion curve diagram when the camera module is in the second imaging mode, showing the difference between the imaging distortion and the ideal shape.
  • the five solid-line curves in the figure are color light with wavelengths of 650nm, 610nm, 555nm, 510nm, and 470nm, respectively. It can be seen that the optical distortion can be controlled within a range of less than 4% in this mode.
  • Figures 15a and 15b show a fourth specific camera module, where Figure 15a is a schematic structural diagram of the camera module in the first imaging mode, and Figure 15b is a schematic diagram of the camera module in the second imaging mode Schematic.
  • the lens of the camera module includes eight lenses with optical power, which are the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens in order from the object side.
  • L6, the seventh lens L7 and the eighth lens L8, the iris ST can be located on the object side of the first lens L1, and the filter G1 is located on the image side of the eighth lens L8.
  • each lens of the lens can be an aspheric lens, that is, the lens includes a total of 16 aspheric surfaces.
  • Table 7a is the radius of curvature, thickness, and refraction of each lens in the lens.
  • Table 7b shows the aspheric coefficient of each lens.
  • all extended aspheric surface types z can be defined by but not limited to the following aspheric surface formula:
  • z is the vector height of the aspheric surface
  • r is the normalized radial coordinate of the aspheric surface
  • r is equal to the actual radial coordinate of the aspheric surface divided by the normalized radius R
  • c is the spherical curvature of the aspheric surface vertex
  • K is the quadratic Surface constants
  • A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13 are aspherical coefficients.
  • the second lens L2 has negative refractive power, and the ratio of its focal length f2 to the focal length EFL of the lens:
  • 1.99; the fifth lens L5 has positive refractive power, and its focal length f5 is equal to that of the lens.
  • 1.14; the sixth lens L6 has negative refractive power, and the ratio of its focal length f6 to the focal length EFL of the lens:
  • 1.22; the focal length EFL of the lens and the total length of the lens
  • TTL
  • 0.802.
  • FIGS. 15a and 15b The camera module shown in FIGS. 15a and 15b is simulated, and the simulation results are described in detail below in conjunction with the accompanying drawings.
  • Figure 16a is the axial chromatic aberration curve diagram when the camera module is in the first imaging mode.
  • the figure shows the simulation results of the focal depth position of the color light with wavelengths of 650nm, 610nm, 555nm, 510nm, and 470nm respectively. It can be seen that the lens The axial chromatic aberration in the first imaging mode is controlled within a small range;
  • Figure 16b is the axial chromatic aberration curve diagram when the camera module is in the second imaging mode.
  • the figure shows the simulation results of the focus depth position of the color light with wavelengths of 650nm, 610nm, 555nm, 510nm, and 470nm respectively. It can be seen that the lens The axial chromatic aberration in the second imaging mode is controlled within a small range;
  • Figure 17a is the lateral chromatic aberration curve diagram when the camera module is in the first imaging mode.
  • the five solid curves in the figure are 650nm, 610nm, 555nm, 510nm, 470nm wavelength color light, and the dotted line indicates the diffraction limit range -1.1um ⁇ Between 1.1um, it can be seen that the lateral chromatic aberration of the five rays is basically within the diffraction limit;
  • Figure 17b is the lateral chromatic aberration curve diagram when the camera module is in the second imaging mode.
  • the five solid curves in the figure are 650nm, 610nm, 555nm, 510nm, 470nm wavelength color light, and the dotted line indicates the diffraction limit range -1.1um ⁇ Between 1.1um, it can be seen that the lateral chromatic aberration of the five rays is basically within the diffraction limit;
  • Figure 18a is the optical distortion curve diagram when the camera module is in the first imaging mode, showing the difference between the imaging deformation and the ideal shape.
  • the five solid curves in the figure are 650nm, 610nm, 555nm, 510nm, 470nm wavelength color light can be It can be seen that the optical distortion can be controlled in the range of less than 2% in this mode;
  • Figure 18b is the optical distortion curve diagram when the camera module is in the second imaging mode, showing the difference between the imaging distortion and the ideal shape.
  • the five solid-line curves in the figure are color light with wavelengths of 650nm, 610nm, 555nm, 510nm, and 470nm, respectively. It can be seen that the optical distortion can be controlled within a range of less than 2% in this mode.
  • Figures 19a and 19b show a fifth specific camera module, in which Figure 19a is a schematic structural diagram of the camera module in the first imaging mode, and Figure 19b is a schematic diagram of the camera module in the second imaging mode Schematic.
  • the lens of the camera module includes eight lenses with optical power, which are the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens in order from the object side.
  • L6, the seventh lens L7 and the eighth lens L8, the iris stop ST may be located on the object side of the first lens L1, and the filter G1 is located on the image side of the eighth lens L8.
  • each lens of the lens can be an aspheric lens, that is, the lens contains 16 aspheric surfaces.
  • Table 9a is the radius of curvature, thickness, and refraction of each lens in the lens.
  • Table 9b shows the aspheric coefficient of each lens.
  • all extended aspheric surface types z can be defined by but not limited to the following aspheric surface formula:
  • z is the vector height of the aspheric surface
  • r is the normalized radial coordinate of the aspheric surface
  • r is equal to the actual radial coordinate of the aspheric surface divided by the normalized radius R
  • c is the spherical curvature of the aspheric surface vertex
  • K is the quadratic Surface constants
  • A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13 are aspherical coefficients.
  • the second lens L2 has negative refractive power, and the ratio of its focal length f2 to the focal length EFL of the lens:
  • 2.42; the fifth lens L5 has positive refractive power, and its focal length f5 is equal to that of the lens.
  • 1.49; the sixth lens L6 has a negative refractive power, and the ratio of its focal length f6 to the focal length of the lens EFL:
  • 4.01; the focal length of the lens EFL to the total length of the lens
  • 0.731.
  • FIGS. 19a and 19b The camera module shown in FIGS. 19a and 19b is simulated, and the simulation results will be described in detail below with reference to the accompanying drawings.
  • Figure 20a is the axial chromatic aberration curve diagram when the camera module is in the first imaging mode.
  • the figure shows the simulation results of the focal depth position of the color light with wavelengths of 650nm, 610nm, 555nm, 510nm, and 470nm respectively. It can be seen that the lens The axial chromatic aberration in the first imaging mode is controlled within a small range;
  • Figure 20b is the axial chromatic aberration curve diagram when the camera module is in the second imaging mode.
  • the figure shows the simulation results of the focal depth position of the color light with wavelengths of 650nm, 610nm, 555nm, 510nm, and 470nm respectively. It can be seen that the lens The axial chromatic aberration in the second imaging mode is controlled within a small range;
  • Figure 21a is the lateral chromatic aberration curve diagram when the camera module is in the first imaging mode.
  • the five solid curves in the figure are 650nm, 610nm, 555nm, 510nm, 470nm wavelength color light, and the dotted line indicates the diffraction limit range -2.7um ⁇ Between 2.7um, it can be seen that the lateral chromatic aberration of the five rays is basically within the diffraction limit;
  • Figure 21b is the lateral chromatic aberration curve diagram when the camera module is in the second imaging mode.
  • the five solid curves in the figure are 650nm, 610nm, 555nm, 510nm, 470nm wavelength color light, and the dotted line indicates the diffraction limit range -0.78um ⁇ Between 0.78um, it can be seen that the lateral chromatic aberration of the five rays is basically within the diffraction limit;
  • Figure 22a is the optical distortion curve diagram when the camera module is in the first imaging mode, showing the difference between the imaging distortion and the ideal shape.
  • the five solid-line curves in the figure are color light with wavelengths of 650nm, 610nm, 555nm, 510nm, and 470nm, respectively. It can be seen that the optical distortion can be controlled in the range of less than 3% in this mode;
  • Figure 22b is the optical distortion curve diagram when the camera module is in the second imaging mode, showing the difference between the imaging distortion and the ideal shape.
  • the five solid-line curves in the figure are color lights with wavelengths of 650nm, 610nm, 555nm, 510nm, and 470nm, respectively. It can be seen that the optical distortion can be controlled within a range of less than 2% in this mode.
  • Figures 23a and 23b show a sixth specific camera module, in which Figure 23a is a schematic structural diagram of the camera module in the first imaging mode, and Figure 23b is a schematic diagram of the camera module in the second imaging mode Schematic.
  • the lens of the camera module includes nine lenses with optical power, from the object side, the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens in order.
  • L6, the seventh lens L7, the eighth lens L8 and the ninth lens L9, the variable aperture ST may be located on the object side of the first lens L1, and the filter G1 is located on the image side of the ninth lens L9.
  • each lens of the lens can be an aspheric lens, that is, the lens includes a total of 18 aspheric surfaces.
  • Table 9a is the radius of curvature, thickness, and refraction of each lens in the lens.
  • Table 11b shows the aspheric coefficient of each lens.
  • all extended aspheric surface types z can be defined by but not limited to the following aspheric surface formula:
  • z is the vector height of the aspheric surface
  • r is the normalized radial coordinate of the aspheric surface
  • r is equal to the actual radial coordinate of the aspheric surface divided by the normalized radius R
  • c is the spherical curvature of the aspheric surface vertex
  • K is the quadratic Surface constants
  • A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13 are aspherical coefficients.
  • the second lens L2 has negative refractive power, and the ratio of its focal length f2 to the focal length EFL of the lens:
  • 2.11; the fifth lens L5 has positive refractive power, and its focal length f5 is equal to that of the lens.
  • 1.37; the sixth lens L6 has negative refractive power, and the ratio of its focal length f6 to the focal length EFL of the lens:
  • 3.33; the focal length EFL of the lens and the total length of the lens
  • TTL
  • 0.788.
  • the lens when the camera module is in the first imaging mode, the lens is imaging in the whole area of the photosensitive area, the half image height Y1 of the lens is 5.1mm, the entrance pupil diameter EPD1 is 3.0mm, and the F number is 2.36;
  • the camera module when the camera module is switched to the second imaging mode, the lens is imaging in a part of the photosensitive area, the half image height Y2 of the lens is 2.5mm, the entrance pupil diameter EPD2 is 5.0mm, and the F number is 1.42;
  • 0.6, the ratio of Y1 to Y2:
  • 2.04; in addition, when the camera is in the first imaging mode, the half-image height of the lens Y1 and the total length of the lens TTL The ratio of
  • 0.57, the ratio of the entrance pupil diameter EPD1 to the total length of the lens TTL:
  • FIGS. 23a and 23b The camera module shown in FIGS. 23a and 23b is simulated, and the simulation results will be described in detail below with reference to the accompanying drawings.
  • Figure 24a is the axial chromatic aberration curve diagram when the camera module is in the first imaging mode.
  • the figure shows the simulation results of the focus depth position of the color light with wavelengths of 650nm, 610nm, 555nm, 510nm, and 470nm respectively. It can be seen that the lens The axial chromatic aberration in the first imaging mode is controlled within a small range;
  • Figure 24b is the axial chromatic aberration curve diagram when the camera module is in the second imaging mode.
  • the figure shows the simulation results of the focus depth position of the color light with wavelengths of 650nm, 610nm, 555nm, 510nm, and 470nm respectively. It can be seen that the lens The axial chromatic aberration in the second imaging mode is controlled within a small range;
  • Figure 25a is the lateral chromatic aberration curve diagram when the camera module is in the first imaging mode.
  • the five solid curves in the figure are 650nm, 610nm, 555nm, 510nm, 470nm wavelength color light, and the dotted line indicates the diffraction limit range -1.6um ⁇ Between 1.6um, it can be seen that the lateral chromatic aberrations of the five rays are all within the diffraction limit;
  • Figure 25b is the lateral chromatic aberration curve diagram when the camera module is in the second imaging mode.
  • the five solid curves in the figure are 650nm, 610nm, 555nm, 510nm, 470nm wavelength color light, and the dashed line indicates the diffraction limit range -0.95um ⁇ Between 0.95um, it can be seen that the lateral chromatic aberrations of the five rays are all within the diffraction limit;
  • Figure 26a is the optical distortion curve diagram when the camera module is in the first imaging mode, showing the difference between the imaging deformation and the ideal shape.
  • the five solid-line curves in the figure are color lights with wavelengths of 650nm, 610nm, 555nm, 510nm, and 470nm, respectively. It can be seen that the optical distortion can be controlled in the range of less than 1% in this mode;
  • Figure 26b is the optical distortion curve diagram when the camera module is in the second imaging mode, showing the difference between the imaging distortion and the ideal shape.
  • the five solid-line curves in the figure are color light with wavelengths of 650nm, 610nm, 555nm, 510nm, and 470nm, respectively. It can be seen that the optical distortion can be controlled in the range of less than 1% in this mode.
  • Figures 27a and 27b show a seventh specific camera module, where Figure 27a is a schematic structural diagram of the camera module in the first imaging mode, and Figure 27b is a schematic diagram of the camera module in the second imaging mode Schematic.
  • the lens of the camera module includes six lenses with optical power, from the object side, they are the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens.
  • L6 the variable aperture ST may be located on the object side of the first lens L1, and the filter G1 is located on the image side of the sixth lens L6.
  • each lens of the lens can be an aspheric lens, that is, the lens includes a total of 12 aspheric surfaces.
  • Table 13a is the radius of curvature, thickness, and refraction of each lens in the lens.
  • Table 13b shows the aspheric coefficient of each lens.
  • all extended aspheric surface types z can be defined by but not limited to the following aspheric surface formula:
  • z is the vector height of the aspheric surface
  • r is the normalized radial coordinate of the aspheric surface
  • r is equal to the actual radial coordinate of the aspheric surface divided by the normalized radius R
  • c is the spherical curvature of the aspheric surface vertex
  • K is the quadratic Surface constants
  • A2, A3, A4, A5, A6, A7, A8, A9, A10 are aspherical coefficients.
  • the second lens L2 has negative refractive power, and the ratio of its focal length f2 to the focal length EFL of the lens:
  • 5.23; the third lens L3 has negative refractive power, and its focal length f3 is equal to that of the lens.
  • 2.87; the fourth lens L4 has a positive refractive power, and the ratio of its focal length f4 to the focal length EFL of the lens:
  • 12.04; the focal length EFL of the lens and the total length of the lens
  • TTL
  • 0.81.
  • the lens when the camera module is in the first imaging mode, the lens is imaging in the whole area of the photosensitive area, the half image height Y1 of the lens is 3.8mm, the entrance pupil diameter EPD1 is 3.0mm, and the F number is 1.79;
  • the camera module when the camera module is switched to the second imaging mode, the lens is imaging in a part of the photosensitive area, the half image height Y2 of the lens is 2.0mm, the entrance pupil diameter EPD2 is 3.8mm, and the F number is 1.41;
  • 0.789, the ratio of Y1 to Y2:
  • 1.9; in addition, when the camera is in the first imaging mode, the half-image height Y1 of the lens and the total length of the lens TTL The ratio of
  • 0.56, the ratio of the entrance pupil diameter EPD1 to the total length of the lens TTL:
  • FIG. 27a and FIG. 27b The camera module shown in FIG. 27a and FIG. 27b is simulated, and the simulation results will be described in detail below with reference to the accompanying drawings.
  • Figure 28a is the axial chromatic aberration curve diagram when the camera module is in the first imaging mode.
  • the figure shows the simulation results of the focal depth position of the color light with wavelengths of 650nm, 610nm, 555nm, 510nm, and 470nm respectively. It can be seen that the lens The axial chromatic aberration in the first imaging mode is controlled within a small range;
  • Figure 28b is the axial chromatic aberration curve diagram when the camera module is in the second imaging mode.
  • the figure shows the simulation results of the focus depth position of the color light with wavelengths of 650nm, 610nm, 555nm, 510nm, and 470nm respectively. It can be seen that the lens The axial chromatic aberration in the second imaging mode is controlled within a small range;
  • Figure 29a is the lateral chromatic aberration curve diagram when the camera module is in the first imaging mode.
  • the five solid curves in the figure are 650nm, 610nm, 555nm, 510nm, 470nm wavelength color light, and the dotted line represents the diffraction limit range -1.2um ⁇ Between 1.2um, it can be seen that the lateral chromatic aberrations of the five rays are all within the diffraction limit;
  • Figure 29b is a graph of lateral chromatic aberration when the camera module is in the second imaging mode.
  • the five solid curves in the figure are 650nm, 610nm, 555nm, 510nm, 470nm wavelengths of color light, and the dashed line represents the diffraction limit range -0.95um ⁇ Between 0.95um, it can be seen that the lateral chromatic aberration of the five rays is basically within the diffraction limit;
  • Figure 30a is the optical distortion curve diagram when the camera module is in the first imaging mode, showing the difference between the imaging deformation and the ideal shape.
  • the five solid curves in the figure are color light with wavelengths of 650nm, 610nm, 555nm, 510nm, and 470nm, respectively. It can be seen that the optical distortion can be controlled within a range of less than 1.2% in this mode;
  • Figure 30b is the optical distortion curve diagram when the camera module is in the second imaging mode, showing the difference between the imaging deformation and the ideal shape.
  • the five solid-line curves in the figure are color lights with wavelengths of 650nm, 610nm, 555nm, 510nm, and 470nm, respectively. It can be seen that the optical distortion can be controlled within a range of less than 1.2% in this mode.
  • Figures 31a and 31b show an eighth specific camera module, where Figure 31a is a schematic structural diagram of the camera module in the first imaging mode, and Figure 31b is a schematic diagram of the camera module in the second imaging mode Schematic.
  • the lens of the camera module includes five lenses with optical power, which are the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, and the fifth lens L5 in order from the object side.
  • the ST can be specifically located between the first lens L1 and the second lens L2, and the filter G1 is located on the image side of the sixth lens L6.
  • each lens of the lens can be an aspheric lens, that is, the lens includes a total of 10 aspheric surfaces.
  • Table 15a is the radius of curvature, thickness, and refraction of each lens in the lens.
  • Table 15b shows the aspheric coefficient of each lens.
  • all extended aspheric surface types z can be defined by but not limited to the following aspheric surface formula:
  • z is the vector height of the aspheric surface
  • r is the normalized radial coordinate of the aspheric surface
  • r is equal to the actual radial coordinate of the aspheric surface divided by the normalized radius R
  • c is the spherical curvature of the aspheric surface vertex
  • K is the quadratic Surface constants
  • A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13 are aspherical coefficients.
  • the second lens L2 has negative refractive power, and the ratio of its focal length f2 to the focal length EFL of the lens:
  • 1.97; the third lens L3 has positive refractive power, and its focal length f3 is equal to that of the lens.
  • 3.41; the fourth lens L4 has a positive refractive power, and the ratio of its focal length f4 to the focal length of the lens EFL:
  • 1.20; the focal length of the lens EFL and the total length of the lens TTL
  • 0.74.
  • FIG. 31a and FIG. 31b The camera module shown in FIG. 31a and FIG. 31b is simulated, and the simulation results will be described in detail below with reference to the accompanying drawings.
  • Figure 32a is the axial chromatic aberration curve diagram when the camera module is in the first imaging mode.
  • the figure shows the simulation results of the focal depth position of the color light with wavelengths of 650nm, 610nm, 555nm, 510nm, and 470nm respectively. It can be seen that the lens The axial chromatic aberration in the first imaging mode is controlled within a small range;
  • Figure 32b is the axial chromatic aberration curve diagram when the camera module is in the second imaging mode.
  • the figure shows the simulation results of the focal depth position of the color light with wavelengths of 650nm, 610nm, 555nm, 510nm, and 470nm respectively. It can be seen that the lens The axial chromatic aberration in the second imaging mode is controlled within a small range;
  • Figure 33a is the lateral chromatic aberration curve diagram when the camera module is in the first imaging mode.
  • the five solid curves in the figure are 650nm, 610nm, 555nm, 510nm, 470nm wavelength color light, and the dashed line indicates the diffraction limit range -1.3um ⁇ Between 1.3um, it can be seen that the lateral chromatic aberrations of the five rays are all within the diffraction limit;
  • Figure 33b is a graph of the lateral chromatic aberration curve when the camera module is in the second imaging mode.
  • the five solid curves in the figure are 650nm, 610nm, 555nm, 510nm, 470nm wavelength color light, and the dotted line represents the diffraction limit range -0.98um ⁇ Between 0.98um, it can be seen that the lateral chromatic aberrations of the five rays are all within the diffraction limit;
  • Figure 34a is the optical distortion curve diagram when the camera module is in the first imaging mode, showing the difference between the imaging deformation and the ideal shape.
  • the five solid-line curves in the figure are color light with wavelengths of 650nm, 610nm, 555nm, 510nm, and 470nm, respectively. It can be seen that the optical distortion can be controlled within a range of less than 2.5% in this mode;
  • Figure 34b is the optical distortion curve diagram when the camera module is in the second imaging mode, showing the difference between the imaging deformation and the ideal shape.
  • the five solid-line curves in the figure are color light with wavelengths of 650nm, 610nm, 555nm, 510nm, and 470nm, respectively. It can be seen that the optical distortion can be controlled within a range of less than 2.5% in this mode.
  • Figures 35a and 35b show a ninth specific camera module, in which Figure 35a is a schematic structural diagram of the camera module in the first imaging mode, and Figure 35b is a schematic diagram of the camera module in the second imaging mode Schematic.
  • the lens of the camera module includes seven lenses with optical power, which are the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens in order from the object side.
  • L6 and the seventh lens L7, the variable aperture ST may be located on the object side of the first lens L1, and the filter G1 is located on the image side of the seventh lens L7.
  • each lens of the lens can be an aspheric lens, that is, the lens includes a total of 14 aspheric surfaces.
  • Table 17a is the radius of curvature, thickness, and refraction of each lens in the lens.
  • Table 17b shows the aspheric coefficient of each lens.
  • all extended aspheric surface types z can be defined by but not limited to the following aspheric surface formula:
  • z is the vector height of the aspheric surface
  • r is the normalized radial coordinate of the aspheric surface
  • r is equal to the actual radial coordinate of the aspheric surface divided by the normalized radius R
  • c is the spherical curvature of the aspheric surface vertex
  • K is the quadratic Surface constants
  • A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13 are aspherical coefficients.
  • the second lens L2 has negative refractive power, and the ratio of its focal length f2 to the focal length EFL of the lens:
  • 2.51; the fifth lens L5 has negative refractive power, and its focal length f5 is equal to that of the lens.
  • 1.81; the sixth lens L6 has a negative refractive power, and the ratio of its focal length f6 to the focal length of the lens EFL:
  • 2.31; the focal length of the lens EFL and the lens’s
  • 0.814.
  • FIGS. 35a and 35b The camera module shown in FIGS. 35a and 35b is simulated, and the simulation results will be described in detail below with reference to the accompanying drawings.
  • Figure 36a is the axial chromatic aberration curve diagram when the camera module is in the first imaging mode.
  • the figure shows the simulation results of the focal depth position of the color light with wavelengths of 650nm, 610nm, 555nm, 510nm, and 470nm respectively. It can be seen that the lens The axial chromatic aberration in the first imaging mode is controlled within a small range;
  • Figure 36b is the axial chromatic aberration curve diagram when the camera module is in the second imaging mode.
  • the figure shows the simulation results of the focal depth position of the color light with wavelengths of 650nm, 610nm, 555nm, 510nm, and 470nm respectively. It can be seen that the lens The axial chromatic aberration in the second imaging mode is controlled within a small range;
  • Figure 37a is the lateral chromatic aberration curve diagram when the camera module is in the first imaging mode.
  • the five solid curves in the figure are color lights with wavelengths of 650nm, 610nm, 555nm, 510nm, and 470nm, respectively, and the dashed line indicates the diffraction limit range -1.55um ⁇ Between 1.55um, it can be seen that the lateral chromatic aberration of the five rays is basically within the diffraction limit;
  • Figure 37b is a graph of the lateral chromatic aberration curve when the camera module is in the second imaging mode.
  • the five solid curves in the figure are color lights with wavelengths of 650nm, 610nm, 555nm, 510nm, and 470nm, respectively, and the dashed line indicates the diffraction limit range -1.1um ⁇ Between 1.1um, it can be seen that the lateral chromatic aberrations of the five rays are all within the diffraction limit;
  • Figure 38a is the optical distortion curve diagram when the camera module is in the first imaging mode, showing the difference between the imaging distortion and the ideal shape.
  • the five solid-line curves in the figure are color light with wavelengths of 650nm, 610nm, 555nm, 510nm, and 470nm, respectively. It can be seen that the optical distortion can be controlled within a range of less than 2% in this mode;
  • Figure 38b is the optical distortion curve diagram when the camera module is in the second imaging mode, showing the difference between the imaging deformation and the ideal shape.
  • the five solid curves in the figure are color light with wavelengths of 650nm, 610nm, 555nm, 510nm, and 470nm, respectively. It can be seen that the optical distortion can be controlled within a range of less than 2% in this mode.
  • the structure and simulation effect of the seventh specific zoom lens, the eighth specific zoom lens, and the ninth specific zoom lens can be seen that the camera module provided in the embodiment of the present application works in two different imaging modes. A better imaging effect can be obtained.
  • an embodiment of the present application also provides an electronic device 100, which may be a common terminal such as a mobile phone, a tablet computer, or a notebook computer in the prior art.
  • the electronic device 100 includes a housing 110 and the camera module 120 in any of the foregoing embodiments, and the camera module 120 can be disposed in the housing 110.
  • the camera module 120 of the electronic device 100 can use one lens to simultaneously realize full-pixel double- or triple-imaging and central pixel double- or triple-imaging, thereby reducing its occupied space in the electronic device 100 and improving the electronic device 100.
  • the appearance quality is provided.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Lenses (AREA)
  • Lens Barrels (AREA)

Abstract

一种摄像头模组(120),以在采用一颗镜头(L)的基础上实现混合变倍的拍摄效果。摄像头模组(120)包括镜头(L),可变光圈(ST)及感光元件,镜头(L)包括多片透镜;可变光圈(ST)位于其中一片透镜的物侧,可变光圈(ST)的通光孔径被调节为第一通光孔径时,镜头(L)的光圈数为F1;可变光圈(ST)的通光孔径被调节为第二通光孔径时,镜头(L)的光圈数为F2,F1≥F2;感光元件设置于镜头(L)的成像面,感光元件包括感光区;摄像头模组(120)在第一成像模式下,镜头的光圈数为F1,感光元件用于使镜头(L)在感光区的全区域成像,并调整全区域的角分辨率为δ;在第二成像模式下,镜头(L)的光圈数为F2,感光元件用于使镜头(L)在感光区的部分区域成像,并调整部分区域的角分辨率为nδ,1≤n≤3。还公开了一种电子设备(100)。

Description

一种摄像头模组及电子设备
相关申请的交叉引用
本申请要求在2020年03月31日提交中国专利局、申请号为202010246620.9、申请名称为“一种摄像头模组及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子设备技术领域,尤其涉及到一种摄像头模组及电子设备。
背景技术
为了提升手机的产品竞争力,集成高性能镜头已成为当前手机的重要发展趋势,手机镜头的拍摄焦段、解析度、成像质量等方面都需要有更进一步的提升,因此单个焦段的镜头以及数码变焦的方式已经不能满足消费者的需求。目前市场上发布的手机镜头高倍光变基本都是“跳跃式”变焦,即通过分别搭载多颗不同焦距的镜头,配合基于算法的数码变焦,实现混合光学变焦,这就导致手机的镜头数量越来越多,不仅会占用更多的机身空间,也会影响手机的外观品质。
发明内容
本申请提供了一种摄像头模组及电子设备,用以在采用一颗镜头的基础上实现混合变倍的拍摄效果,此外还可以提高成像质量。
第一方面,本申请提供了一种摄像头模组,该摄像头模组可包括镜头、可变光圈和感光元件,其中,镜头可包括沿物侧到像侧排列的多片透镜;可变光圈可设置于其中一片透镜的物侧,可变光圈的通光孔径可调节为第一通光孔径和第二通光孔径,当可变光圈的通光孔径为第一通光孔径时,可将镜头的光圈数调整为F1,当可变光圈的通光孔径为第二通光孔径时,可将镜头的光圈数调整为F2,F1与F2满足:F1≥F2;感光元件设置于镜头的成像面,感光元件包括感光区。摄像头模组可包括两个成像模式,分别为第一成像模式和第二成像模式,在第一成像模式下,镜头的光圈数为F1,感光元件可用于使镜头在感光区的全区域成像,并调整感光区的全区域的角分辨率为δ;在第二成像模式下,镜头的光圈数为F2,感光元件可用于使所述镜头在所述感光区的部分区域成像,并调整感光区的部分区域的角分辨率为nδ,n为大于或等于1且小于或等于3的自然数。
上述方案中,摄像头模组在第一成像模式时可实现角分辨率为δ的感光区全像素成像,在第二成像模式时可实现角分辨率为2*δ或3*δ的感光区部分像素成像,并且在两个成像模式之间切换时镜头的有效焦距是不变的,即利用一颗镜头同时实现了全像素一倍成像和部分像素二倍或三倍成像,实现主摄镜头和二倍或三倍长焦镜头的二合一;并且,在第二成像模式下,通过改变可变光圈的通光孔径将镜头的F数由F1切换到F2,使得中心像素成像相比于普通的二倍或三倍镜头具有更大的光圈,更高的光学品质。
在一些可能的实施方案中,在100lp/mm时所述镜头在所述感光区的全区域成像的衍射极限为MTF1L,在100lp/mm时所述镜头在所述感光区的部分区域成像的衍射极限为 MTF2L,MTF1L与MTF2L满足:1≤|MTF2L/MTF1L|≤3。
在一些可能的实施方案中,镜头所包含的透镜的数量N满足:5≤N≤9。
在一些可能的实施方案中,所述可变光圈的通光孔径为所述第一通光孔径时,所述镜头的光圈数F1满足:1.2≤F1≤8;所述可变光圈的通光孔径为所述第二通光孔径时,所述镜头的光圈数F2满足:1.1≤F2≤4。
在一些可能的实施方案中,所述镜头在所述感光区的全区域成像时所述镜头的半像高为Y1,所述镜头在所述感光区的部分区域成像时所述镜头的半像高为Y2,Y1与Y2满足:1≤|Y1/Y2|≤3。
在一些可能的实施方案中,所述镜头在所述感光区的全区域成像时所述感光元件输出的像元大小为P1,所述镜头在所述感光区的部分区域成像时所述感光元件输出的像元大小为P2;
当n=1时,P1与P2满足:P1/P2=1;
当n=2时,P1与P2满足:P1/P2=4;
当n=3时,P1与P2满足:P1/P2=9。
在一些可能的实施方案中,所述镜头在所述感光区的全区域成像时所述镜头的半像高Y1与所述镜头的总长TTL满足:0.5≤|Y1/TTL|≤1.5。
在一些可能的实施方案中,所述可变光圈与所述镜头的成像面之间的距离l与所述镜头的总长TTL满足:0.5≤|l/TTL|≤1.2,即可变光圈可以设置于最靠近被摄物的透镜的物侧,也可以设置于其它相邻的两片透镜之间。
在一些可能的实施方案中,所述镜头在所述感光区的部分区域以角分辨率为nδ成像时输出的图像的像素为8M~32M像素,可有效保证成像质量。
在一些可能的实施方案中,所述镜头在所述感光区的全区域成像时的入瞳直径为EPD1,所述镜头在所述感光区的部分区域成像时的入瞳直径为EPD2,EPD1与EPD2满足:0.25≤|EPD1/EPD2|≤1。
在一些可能的实施方案中,所述镜头的焦距EFL与所述镜头的总长TTL满足:0.5≤|EFL/TTL|≤1.2。
在一些可能的实施方案中,镜头可包括沿物侧到像侧排列的八片透镜,分别为第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜和第八透镜;其中,第二透镜具有负光焦度;第五透镜具有正光焦度,且第五透镜的焦距f5与镜头的焦距EFL满足:0.5≤|f5/EFL|≤1.2;第六透镜具有负光焦度,第六透镜的焦距f6与镜头的焦距EFL满足:1≤|f6/EFL|≤100;第八透镜的物侧表面近光轴处为凹面,像侧表面近光轴处为凹面。
在一些可能的实施方案中,八片透镜可分别为非球面透镜,从而可以消除像差,提高成像质量,此时,各个透镜均可采用树脂材质,以降低镜头的制作工艺难度以及制作成本。
当镜头包括八片透镜时,镜头的具体结构形式可以为如下几种:
第二透镜具有负光焦度,其焦距f2与镜头的焦距EFL的比值:|f2/EFL|=1.70;第五透镜具有正光焦度,其焦距f5与镜头的焦距EFL的比值:|f5/EFL|=1.01;第六透镜具有负光焦度,其焦距f6与镜头的焦距EFL的比值:|f6/EFL|=1.09;镜头的焦距EFL与镜头的总长TTL的比值:|EFL/TTL|=0.8307;可变光圈的通光孔径为第一通光孔径时,镜头的光圈数F1为2.074,可变光圈的通光孔径为第一通光孔径时,镜头的光圈数F2为1.4758;或
第二透镜具有负光焦度,其焦距f2与镜头的焦距EFL的比值:|f2/EFL|=1.71;第五透 镜具有正光焦度,其焦距f5与镜头的焦距EFL的比值:|f5/EFL|=1.07;第六透镜具有负光焦度,其焦距f6与镜头的焦距EFL的比值:|f6/EFL|=1.14;镜头的焦距EFL与镜头的总长TTL的比值:|EFL/TTL|=0.830;可变光圈的通光孔径为第一通光孔径时,镜头的光圈数F1为2.075,可变光圈的通光孔径为第一通光孔径时,镜头的光圈数F2为1.461;或
第二透镜具有负光焦度,其焦距f2与镜头的焦距EFL的比值:|f2/EFL|=2.452;第五透镜具有正光焦度,其焦距f5与镜头的焦距EFL的比值:|f5/EFL|=1.49;第六透镜具有负光焦度,其焦距f6与镜头的焦距EFL的比值:|f6/EFL|=4.052;镜头的焦距EFL与镜头的总长TTL的比值:|EFL/TTL|=0.7269;可变光圈的通光孔径为第一通光孔径时,镜头的光圈数F1为1.99,可变光圈的通光孔径为第一通光孔径时,镜头的光圈数F2为1.15;或
第二透镜具有负光焦度,其焦距f2与镜头的焦距EFL的比值:|f2/EFL|=1.99;第五透镜具有正光焦度,其焦距f5与镜头的焦距EFL的比值:|f5/EFL|=1.14;第六透镜具有负光焦度,其焦距f6与镜头的焦距EFL的比值:|f6/EFL|=1.22;镜头的焦距EFL与镜头的总长TTL的比值:|EFL/TTL|=0.802;可变光圈的通光孔径为第一通光孔径时,镜头的光圈数F1为1.65,可变光圈的通光孔径为第一通光孔径时,镜头的光圈数F2为1.58;或
第二透镜具有负光焦度,其焦距f2与镜头的焦距EFL的比值:|f2/EFL|=2.42;第五透镜具有正光焦度,其焦距f5与镜头的焦距EFL的比值:|f5/EFL|=1.49;第六透镜具有负光焦度,其焦距f6与镜头的焦距EFL的比值:|f6/EFL|=4.01;镜头的焦距EFL与镜头的总长TTL的比值:|EFL/TTL|=0.731;可变光圈的通光孔径为第一通光孔径时,镜头的光圈数F1为3.97,可变光圈的通光孔径为第一通光孔径时,镜头的光圈数F2为1.14。
在一些可能的实施方案中,镜头可包括沿物侧到像侧排列的九片透镜,分别为第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜、第八透镜和第九透镜,其中,第二透镜具有负光焦度,其焦距f2与镜头的焦距EFL的比值:|f2/EFL|=2.11;第五透镜具有正光焦度,其焦距f5与镜头的焦距EFL的比值:|f5/EFL|=1.37;第六透镜具有负光焦度,其焦距f6与镜头的焦距EFL的比值:|f6/EFL|=3.33;镜头的焦距EFL与镜头的总长TTL的比值:|EFL/TTL|=0.788;可变光圈的通光孔径为第一通光孔径时,镜头的光圈数F1为2.36,可变光圈的通光孔径为第一通光孔径时,镜头的光圈数F2为1.42。
在一些可能的实施方案中,镜头可包括沿物侧到像侧排列的六片透镜,分别为第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜,其中,第二透镜具有负光焦度,其焦距f2与镜头的焦距EFL的比值:|f2/EFL|=5.23;第三透镜具有负光焦度,其焦距f3与镜头的焦距EFL的比值:|f3/EFL|=2.87;第四透镜具有正光焦度,其焦距f4与镜头的焦距EFL的比值:|f4/EFL|=12.04;镜头的焦距EFL与镜头的总长TTL的比值:|EFL/TTL|=0.81;可变光圈的通光孔径为第一通光孔径时,镜头的光圈数F1为1.79,可变光圈的通光孔径为第一通光孔径时,镜头的光圈数F2为1.41。
在一些可能的实施方案中,镜头可包括沿物侧到像侧排列的五片透镜,分别为第一透镜、第二透镜、第三透镜、第四透镜和第五透镜,其中,第二透镜具有负光焦度,其焦距f2与镜头的焦距EFL的比值:|f2/EFL|=1.97;第三透镜具有正光焦度,其焦距f3与镜头的焦距EFL的比值:|f5/EFL|=3.41;第四透镜具有正光焦度,其焦距f4与镜头的焦距EFL的比值:|f4/EFL|=1.20;镜头的焦距EFL与镜头的总长TTL的比值:|EFL/TTL|=0.74;可变光圈的通光孔径为第一通光孔径时,镜头的光圈数F1为1.94,可变光圈的通光孔径为第一通光孔径时,镜头的光圈数F2为1.45。
在一些可能的实施方案中,镜头可包括沿物侧到像侧排列的七片透镜,分别为第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜,其中,第二透镜具有负光焦度,其焦距f2与镜头的焦距EFL的比值:|f2/EFL|=2.51;第五透镜具有负光焦度,其焦距f5与镜头的焦距EFL的比值:|f5/EFL|=1.81;第六透镜具有负光焦度,其焦距f6与镜头的焦距EFL的比值:|f6/EFL|=2.31;镜头的焦距EFL与镜头的总长TTL的比值:|EFL/TTL|=0.814;可变光圈的通光孔径为第一通光孔径时,镜头的光圈数F1为2.31,可变光圈的通光孔径为第一通光孔径时,镜头的光圈数F2为1.59。
第二方面,本申请还提供了一种电子设备,该电子设备包括壳体以及前述任一可能的实施方案中的摄像头模组,摄像头模组具体可设置于壳体内。该电子设备的摄像头模组可利用一颗镜头同时实现了全像素一倍成像和中心像素二倍或三倍成像,从而可以其在电子设备内的占用空间,提高电子设备的外观品质。
附图说明
图1为本申请一实施例提供的摄像头模组的结构示意图;
图2a为图1中所示的摄像头模组处于第一成像模式时的结构示意图;
图2b为图1中所示的摄像头模组处于第二成像模式时的结构示意图;
图3a为第一种具体的摄像头模组处于第一成像模式时的结构示意图;
图3b为第一种具体的摄像头模组处于第二成像模式时的结构示意图;
图4a为图3a所示的摄像头模组的轴向色差曲线图;
图4b为图3b所示的摄像头模组的轴向色差曲线图;
图5a为图3a所示的摄像头模组的横向色差曲线图;
图5b为图3b所示的摄像头模组的横向色差曲线图;
图6a为图3a所示的摄像头模组的光学畸变曲线图;
图6b为图3b所示的摄像头模组的光学畸变曲线图;
图7a为第二种具体的摄像头模组处于第一成像模式时的结构示意图;
图7b为第二种具体的摄像头模组处于第二成像模式时的结构示意图;
图8a为图7a所示的摄像头模组的轴向色差曲线图;
图8b为图7b所示的摄像头模组的轴向色差曲线图;
图9a为图7a所示的摄像头模组的横向色差曲线图;
图9b为图7b所示的摄像头模组的横向色差曲线图;
图10a为图7a所示的摄像头模组的光学畸变曲线图;
图10b为图7b所示的摄像头模组的光学畸变曲线图;
图11a为第三种具体的摄像头模组处于第一成像模式时的结构示意图;
图11b为第三种具体的摄像头模组处于第二成像模式时的结构示意图;
图12a为图11a所示的摄像头模组的轴向色差曲线图;
图12b为图11b所示的摄像头模组的轴向色差曲线图;
图13a为图11a所示的摄像头模组的横向色差曲线图;
图13b为图11b所示的摄像头模组的横向色差曲线图;
图14a为图11a所示的摄像头模组的光学畸变曲线图;
图14b为图11b所示的摄像头模组的光学畸变曲线图;
图15a为第四种具体的摄像头模组处于第一成像模式时的结构示意图;
图15b为第四种具体的摄像头模组处于第二成像模式时的结构示意图;
图16a为图15a所示的摄像头模组的轴向色差曲线图;
图16b为图15b所示的摄像头模组的轴向色差曲线图;
图17a为图15a所示的摄像头模组的横向色差曲线图;
图17b为图15b所示的摄像头模组的横向色差曲线图;
图18a为图15a所示的摄像头模组的光学畸变曲线图;
图18b为图15b所示的摄像头模组的光学畸变曲线图;
图19a为第五种具体的摄像头模组处于第一成像模式时的结构示意图;
图19b为第五种具体的摄像头模组处于第二成像模式时的结构示意图;
图20a为图19a所示的摄像头模组的轴向色差曲线图;
图20b为图19b所示的摄像头模组的轴向色差曲线图;
图21a为图19a所示的摄像头模组的横向色差曲线图;
图21b为图19b所示的摄像头模组的横向色差曲线图;
图22a为图19a所示的摄像头模组的光学畸变曲线图;
图22b为图19b所示的摄像头模组的光学畸变曲线图;
图23a为第六种具体的摄像头模组处于第一成像模式时的结构示意图;
图23b为第六种具体的摄像头模组处于第二成像模式时的结构示意图;
图24a为图23a所示的摄像头模组的轴向色差曲线图;
图24b为图23b所示的摄像头模组的轴向色差曲线图;
图25a为图23a所示的摄像头模组的横向色差曲线图;
图25b为图23b所示的摄像头模组的横向色差曲线图;
图26a为图23a所示的摄像头模组的光学畸变曲线图;
图26b为图23b所示的摄像头模组的光学畸变曲线图;
图27a为第七种具体的摄像头模组处于第一成像模式时的结构示意图;
图27b为第七种具体的摄像头模组处于第二成像模式时的结构示意图;
图28a为图27a所示的摄像头模组的轴向色差曲线图;
图28b为图27b所示的摄像头模组的轴向色差曲线图;
图29a为图27a所示的摄像头模组的横向色差曲线图;
图29b为图27b所示的摄像头模组的横向色差曲线图;
图30a为图27a所示的摄像头模组的光学畸变曲线图;
图30b为图27b所示的摄像头模组的光学畸变曲线图;
图31a为第八种具体的摄像头模组处于第一成像模式时的结构示意图;
图31b为第八种具体的摄像头模组处于第二成像模式时的结构示意图;
图32a为图31a所示的摄像头模组的轴向色差曲线图;
图32b为图31b所示的摄像头模组的轴向色差曲线图;
图33a为图31a所示的摄像头模组的横向色差曲线图;
图33b为图31b所示的摄像头模组的横向色差曲线图;
图34a为图31a所示的摄像头模组的光学畸变曲线图;
图34b为图31b所示的摄像头模组的光学畸变曲线图;
图35a为第九种具体的摄像头模组处于第一成像模式时的结构示意图;
图35b为第九种具体的摄像头模组处于第二成像模式时的结构示意图;
图36a为图35a所示的摄像头模组的轴向色差曲线图;
图36b为图35b所示的摄像头模组的轴向色差曲线图;
图37a为图35a所示的摄像头模组的横向色差曲线图;
图37b为图35b所示的摄像头模组的横向色差曲线图;
图38a为图35a所示的摄像头模组的光学畸变曲线图;
图38b为图35b所示的摄像头模组的光学畸变曲线图;
图39为本申请实施例提供的电子设备的结构示意图。
具体实施方式
为方便理解本申请实施例提供的摄像头模组,首先对本申请中涉及到的相关英文简写以及名词概念进行简单说明:
F#F-number F数/光圈,是镜头的焦距/镜头的入瞳直径得出的相对值(相对孔径的倒数),光圈F值愈小,在同一单位时间内的进光量便愈多,光圈F值越大,景深愈小,拍照的背景内容将会虚化,类似长焦镜头的效果;
EFL effect focal length镜头的有效焦距;
FOV field of view视场角;
TTL total track length镜头的总长,具体指镜头最靠近被摄物的表面至成像面的距离;
BFL back focal length镜头的后焦长度,定义为镜头最靠近成像面的镜片至感光元件的距离;
MTF modulation transfer function调制传递函数;
EPD entrance pupil diameter入瞳直径;
δ角分辨率,定义为光学系统能够分辨的最小角度的倒数,最小分辨角度的大小等于像元的边长大小除以镜头的焦距;
光焦度,等于像侧光束会聚度与物侧光束会聚度之差,正光焦度的透镜具有正的焦距、可使光线聚拢,负光焦度的透镜具有负的焦距、可使光线发散;
物侧可以理解为靠近被摄取物的一侧,像侧可以理解为靠近成像面的一侧;
透镜的物侧表面为透镜靠近被摄取物的一侧表面,透镜的像侧表面为透镜靠近成像面的一侧表面;
近光轴处可以理解为透镜表面靠近光轴的区域。
为了方便理解本申请实施例提供的摄像头模组,首先说明一下其应用场景。本申请实施例提供的摄像头模组可应用于电子设备中,用于使电子设备实现图像采集及视频采集等功能,其中,电子设备可以为现有技术中的手机、平板电脑或者笔记本电脑等常见终端。以手机为例,目前很多型号的手机常采用的变焦方式是通过搭载多颗不同焦距的镜头,配合基于算法的数码变焦,实现混合光学变焦,这种变焦方式虽然可以达到提高摄像头模组的变焦范围的目的,但另一方面也会由于镜头数量增多而导致摄像头模组的尺寸过大,这样就会占用更多的机身空间,并且还会影响手机的外观品质。
基于此,本申请实施例提供了一种摄像头模组以及应用该摄像头模组的电子设备,该摄像头模组可在采用单颗镜头的基础上,实现主摄镜头和二倍或三倍长焦镜头的二合一, 并且还可利用可变光圈使二倍或三倍成像时具有更大的光圈,提高成像质量。
参考图1所示,图1为本申请一实施例提供的摄像头模组的结构示意图。该摄像头模组可包括镜头L、可变光圈ST、感光元件和滤光片G1,其中,镜头L可包括多片具有光焦度的透镜,这些透镜具体可沿物侧到像侧依次排列;可变光圈ST设置于其中一片透镜的物侧,可通过改变其通光孔径来调整镜头L的光圈值,具体实施时,可变光圈ST可位于最靠近被摄物的透镜的物侧,或者其它任意相邻的两片透镜之间,本申请对此不做具体限制,示例性地,可变光圈ST与镜头L的成像面S1之间的距离l与镜头的总长TTL满足:0.5≤|l/TTL|≤1.2;滤光片G1设置于最靠近成像面S1的透镜的像侧,即该片透镜与成像面S1之间,可用于过滤光线中的红外光,以提高镜头L的有效分辨率和色彩还原性,使成像更加清晰、稳定;感光元件设置于镜头L的成像面S1,可用于对入射光线的光信号进行光电转换以及A/D(analog/digital,模拟信号/数字信号)转换,以将转换的电信号通过基板传输至电子设备的图形处理器或者中央处理器中,从而实现对光学影像的获取、转换和处理等功能。
继续参考图1,本申请实施例的镜头L所包含的透镜数量N满足:5≤N≤9,示例性地,N可以为5,6,7,8,9,这些透镜分别可以为非球面透镜,从而可以消除像差,提高成像质量,此时,各个透镜均可采用树脂材质,以降低镜头的制作工艺难度以及制作成本;当然,在本申请的其它实施例中,还可以使靠近被摄物的部分透镜采用玻璃材质,使靠近成像面的部分透镜采用树脂材质,本申请对此不作具体限制。图1中具体示出了采用八片式镜头的摄像头模组的结构。沿物侧到像侧,该镜头L依次包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7和第八透镜L8;其中,第二透镜L2具有负光焦度;第五透镜L5具有正光焦度,且第五透镜L5的焦距f5与镜头的焦距EFL满足:0.5≤|f5/EFL|≤1.2;第六透镜L6具有负光焦度,第六透镜L6的焦距f6与镜头的焦距EFL满足:1≤|f6/EFL|≤100;第八透镜L8的物侧表面近光轴处为凹面,像侧表面近光轴处为凹面。
此外,可变光圈ST可采用现有技术中的可变光圈结构,其通光孔径的调节原理也可与现有技术中的相同,此处不过多赘述。在本申请实施例中,可变光圈ST的通光孔径可被调节为第一通光孔径和第二通光孔径,当可变光圈ST的通光孔径为第一通光孔径时,镜头L的F数可相应地调节为F1,当可变光圈ST的通光孔径为第二通光孔径时,镜头L的F数可相应地调节为F2,其中,F1与F2之间满足:F1≥F2,示例性地,F1满足:1.2≤F1≤8;F2满足:1.1≤F2≤4。
本申请实施例提供的摄像头模组可包括两种成像模式,一并参考图2a和图2b所示,其中,图2a为该摄像头模组处于第一成像模式时的结构示意图,图2b为该摄像头模组处于第二成像模式时的结构示意图。当摄像头模组处于第一工作模式时,可通过调整可变光圈的通光孔径将镜头的F数调整为F1,感光元件用于使可使镜头L在其感光区的全区域进行成像,并将感光区的全区域的角分辨率调整为δ;当摄像头模组处于第二工作模式时,可通过调整可变光圈的通光孔径将镜头的F数调整为F2,感光元件用于使镜头L在其感光区的部分区域进行成像,并将感光区的全区域的角分辨率调整为nδ。需要说明的是,上述第一成像模式中,在感光区的全区域成像具体可理解为利用感光区内的全部像素进行成像,即全像素成像,上述第二成像模式中,在感光区的部分区域成像则可理解为利用感光区内的部分区域的像素进行成像,该部分区域可以为感光区的中心区域或者其它任意区域,本 申请对此不做具体限制,镜头L在感光区的部分区域成像时,相当于缩小了镜头的视场角,因此可实现类似长焦的拍摄效果。
上述实施例中,n可以取值为1,2或3,角分辨率的大小变化具体可通过控制感光元件输出的像元的大小来实现。例如,在第一成像模式下感光元件输出的像元大小为P1,在第二成像模式下感光元件输出的像元大小为P2,当P1与P2满足:P1/P2=1时,镜头可在两种成像模式下以相同的角分辨率进行成像,此时n=1;当P1与P2满足:P1/P2=4时,镜头可在第二成像模式下实现角分辨率为2*δ的成像;当P1与P2满足:P1/P2=9时,镜头可在第二成像模式下实现角分辨率为3*δ的成像。应当说明的是,该实施例中控制感光元件输出的像元的大小的具体方式与现有技术中的相同,此处不过多赘述。
在本申请一个具体的实施例中,摄像头模组在第二成像模式下可输出8M~32M像素的图像,可有效保证成像质量。
在采用上述结构时,摄像头模组处于第一成像模式时镜头的半像高为Y1,摄像头模组处于第二成像模式时镜的半像高为Y2,Y1与Y2满足:1≤|Y1/Y2|≤3;摄像头模组处于第一成像模式时镜头的入瞳直径为EPD1,摄像头模组处于第二成像模式时镜头的入瞳直径为EPD2,EPD1与EPD2满足0.25≤|EPD1/EPD2|≤1。
此外,镜头的焦距EFL与镜头的总长TTL可满足:0.5≤|EFL/TTL|≤1.2;摄像头模组处于第一成像模式时镜头的半像高为Y1与镜头的总长TTL可满足:0.5≤|Y1/TTL|≤1.5。
通过以上描述可以看出,本申请实施例提供的摄像头模组在第一成像模式时可实现角分辨率为δ的感光区全像素成像,在第二成像模式时可实现角分辨率为2*δ或3*δ的感光区中心像素成像,并且在两个成像模式之间切换时镜头的有效焦距是不变的,即利用一颗镜头同时实现了全像素一倍成像和中心像素二倍或三倍成像,实现主摄镜头和二倍或三倍长焦镜头的二合一;并且,在第二成像模式下,通过改变可变光圈的通光孔径将镜头的F数由F1切换到F2,使得中心像素成像相比于普通的二倍或三倍镜头具有更大的光圈,更高的光学品质,在100lp/mm时中心像素成像的衍射极限MTF2L与全像素成像的衍射极限MTF1L之间可满足1≤|MTF2L/MTF1L|≤3。
为方便理解本申请实施例提供的变焦镜头的效果,下面结合具体的实施例对摄像头模组的成像效果进行详细的说明。
图3a和图3b示出了第一种具体的摄像头模组,其中,图3a为该摄像头模组处于第一成像模式时的结构示意图,图3b为该摄像头模组处于第二成像模式时的结构示意图。该摄像头模组的镜头包括八片具有光焦度的透镜,从物侧起依次为第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7和第八透镜L8,可变光圈ST具体可位于第一透镜L1的物侧,滤光片G1则位于第八透镜L8的像侧。
本申请实施例中镜头的各透镜均可为非球面透镜,即镜头共包含16个非球面,一并参考表1a和表1b,其中,表1a为镜头中各透镜的曲率半径、厚度、折射率、阿贝系数,表1b为各透镜的非球面系数。
表1a
Figure PCTCN2021084783-appb-000001
Figure PCTCN2021084783-appb-000002
表1b
Figure PCTCN2021084783-appb-000003
Figure PCTCN2021084783-appb-000004
表1b中所示的镜头的16个非球面中,所有扩展非球面面型z可利用但不限于以下非球面公式进行限定:
Figure PCTCN2021084783-appb-000005
其中,z为非球面的矢高,r为非球面的归一化径向坐标,r等于非球面的实际径向坐标除以归一化半径R,c为非球面顶点球曲率,K为二次曲面常数,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13为非球面系数。
本申请实施例中,第二透镜L2具有负光焦度,其焦距f2与镜头的焦距EFL的比值:|f2/EFL|=1.70;第五透镜L5具有正光焦度,其焦距f5与镜头的焦距EFL的比值:|f5/EFL|=1.01;第六透镜L6具有负光焦度,其焦距f6与镜头的焦距EFL的比值:|f6/EFL|=1.09;镜头的焦距EFL与镜头的总长TTL的比值:|EFL/TTL|=0.8307。
继续参考图3a所示,当摄像头模组处于第一成像模式时,镜头在感光区的全区域成像,镜头的半像高Y1为5.8mm,入瞳直径EPD1为3.0467mm,F数为2.074;参考图3b所示,当摄像头模组切换为第二成像模式时,镜头在感光区的部分区域成像,镜头的半像高Y2为2.86mm,入瞳直径EPD2为4.31mm,F数为1.4758;其中,EPD1与EPD2的比值:|EPD1/EPD2|=0.708,Y1与Y2的比值:|Y1/Y2|=2.028;此外,摄像头处于第一成像模式时镜头的半像高Y1与镜头的总长TTL的比值:|Y1/TTL|=0.77,入瞳直径EPD1与镜头的总长TTL的比值:|EPD1/TTL|=0.4056。镜头的各项基本参数具体请参考表2所示。
表2
Figure PCTCN2021084783-appb-000006
对图3a和图3b所示的摄像头模组进行仿真,下面结合附图详细说明其仿真结果。
图4a为摄像头模组处于第一成像模式时的轴向色差曲线图,图中分别示出了650nm、610nm、555nm、510nm、470nm波长的颜色光聚焦深度位置的仿真结果,可以看出,镜头在第一成像模式下的轴向色差控制在一个很小的范围内;
图4b为摄像头模组处于第二成像模式时的轴向色差曲线图,图中分别示出了650nm、610nm、555nm、510nm、470nm波长的颜色光聚焦深度位置的仿真结果,可以看出,镜头在第二成像模式下的轴向色差控制在一个很小的范围内;
图5a为摄像头模组处于第一成像模式时的横向色差曲线图,图中的五条实线曲线分别为650nm、610nm、555nm、510nm、470nm波长的颜色光,虚线表示衍射极限范围-1.4um~1.4um之间,可以看出,五条光线的横向色差均在衍射极限内;
图5b为摄像头模组处于第二成像模式时的横向色差曲线图,图中的五条实线曲线分别为650nm、610nm、555nm、510nm、470nm波长的颜色光,虚线表示衍射极限范围-1.0um~1.0um之间,可以看出,五条光线的横向色差均在衍射极限内;
图6a为摄像头模组处于第一成像模式时的光学畸变曲线图,表示成像变形与理想形状的差异,图中的五条实线曲线分别为650nm、610nm、555nm、510nm、470nm波长的颜色光,可以看出在该模式下可将光学畸变控制在小于2%的范围内;
图6b为摄像头模组处于第二成像模式时的光学畸变曲线图,表示成像变形与理想形状的差异,图中的五条实线曲线分别为650nm、610nm、555nm、510nm、470nm波长的颜色光,可以看出在该模式下可将光学畸变控制在小于2%的范围内。
图7a和图7b示出了第二种具体的摄像头模组,其中,图7a为该摄像头模组处于第一成像模式时的结构示意图,图7b为该摄像头模组处于第二成像模式时的结构示意图。该摄像头模组的镜头包括八片具有光焦度的透镜,从物侧起依次为第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7和第八透镜L8,可变光圈ST具体可位于第一透镜L1的物侧,滤光片G1则位于第八透镜L8的像侧。
本申请实施例中镜头的各透镜均可为非球面透镜,即镜头共包含16个非球面,一并参考表3a和表3b,其中,表3a为镜头中各透镜的曲率半径、厚度、折射率、阿贝系数,表3b为各透镜的非球面系数。
表3a
Figure PCTCN2021084783-appb-000007
表3b
Figure PCTCN2021084783-appb-000008
Figure PCTCN2021084783-appb-000009
表3b中所示的镜头的16个非球面中,所有扩展非球面面型z可利用但不限于以下非球面公式进行限定:
Figure PCTCN2021084783-appb-000010
其中,z为非球面的矢高,r为非球面的归一化径向坐标,r等于非球面的实际径向坐标除以归一化半径R,c为非球面顶点球曲率,K为二次曲面常数,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13为非球面系数。
本申请实施例中,第二透镜L2具有负光焦度,其焦距f2与镜头的焦距EFL的比值:|f2/EFL|=1.71;第五透镜L5具有正光焦度,其焦距f5与镜头的焦距EFL的比值:|f5/EFL|=1.07;第六透镜L6具有负光焦度,其焦距f6与镜头的焦距EFL的比值:|f6/EFL|=1.14;镜头的焦距EFL与镜头的总长TTL的比值:|EFL/TTL|=0.830。
继续参考图7a所示,当摄像头模组处于第一成像模式时,镜头在感光区的全区域成像,镜头的半像高Y1为5.8mm,入瞳直径EPD1为3.037mm,F数为2.075;参考图7b所示,当摄像头模组切换为第二成像模式时,镜头在感光区的部分区域成像,镜头的半像高Y2为2.86mm,入瞳直径EPD2为4.29mm,F数为1.461;其中,EPD1与EPD2的比值:|EPD1/EPD2|=0.708,Y1与Y2的比值:|Y1/Y2|=2.028;此外,摄像头处于第一成像模式时镜头的半像高Y1与镜头的总长TTL的比值:|Y1/TTL|=0.77,入瞳直径EPD1与镜头的总长TTL的比值:|EPD1/TTL|=0.4053。镜头的各项基本参数具体请参考表4所示。
表4
Figure PCTCN2021084783-appb-000011
Figure PCTCN2021084783-appb-000012
对图7a和图7b所示的摄像头模组进行仿真,下面结合附图详细说明其仿真结果。
图8a为摄像头模组处于第一成像模式时的轴向色差曲线图,图中分别示出了650nm、610nm、555nm、510nm、470nm波长的颜色光聚焦深度位置的仿真结果,可以看出,镜头在第一成像模式下的轴向色差控制在一个很小的范围内;
图8b为摄像头模组处于第二成像模式时的轴向色差曲线图,图中分别示出了650nm、610nm、555nm、510nm、470nm波长的颜色光聚焦深度位置的仿真结果,可以看出,镜头在第二成像模式下的轴向色差控制在一个很小的范围内;
图9a为摄像头模组处于第一成像模式时的横向色差曲线图,图中的五条实线曲线分别为650nm、610nm、555nm、510nm、470nm波长的颜色光,虚线表示衍射极限范围-1.4um~1.4um之间,可以看出,五条光线的横向色差基本在衍射极限内;
图9b为摄像头模组处于第二成像模式时的横向色差曲线图,图中的五条实线曲线分别为650nm、610nm、555nm、510nm、470nm波长的颜色光,虚线表示衍射极限范围-1.0um~1.0um之间,可以看出,五条光线的横向色差基本在衍射极限内;
图10a为摄像头模组处于第一成像模式时的光学畸变曲线图,表示成像变形与理想形状的差异,图中的五条实线曲线分别为650nm、610nm、555nm、510nm、470nm波长的颜色光,可以看出在该模式下可将光学畸变控制在小于2%的范围内;
图10b为摄像头模组处于第二成像模式时的光学畸变曲线图,表示成像变形与理想形状的差异,图中的五条实线曲线分别为650nm、610nm、555nm、510nm、470nm波长的颜色光,可以看出在该模式下可将光学畸变控制在小于2%的范围内。
图11a和图11b示出了第三种具体的摄像头模组,其中,图11a为该摄像头模组处于第一成像模式时的结构示意图,图11b为该摄像头模组处于第二成像模式时的结构示意图。该摄像头模组的镜头包括八片具有光焦度的透镜,从物侧起依次为第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7和第八透镜L8,可变光圈具体ST可位于第一透镜L1的物侧,滤光片G1则位于第八透镜L8的像侧。
本申请实施例中镜头的各透镜均可为非球面透镜,即镜头共包含16个非球面,一并参考表5a和表5b,其中,表5a为镜头中各透镜的曲率半径、厚度、折射率、阿贝系数,表5b为各透镜的非球面系数。
表5a
Figure PCTCN2021084783-appb-000013
Figure PCTCN2021084783-appb-000014
表5b
Figure PCTCN2021084783-appb-000015
Figure PCTCN2021084783-appb-000016
表5b中所示的镜头的16个非球面中,所有扩展非球面面型z可利用但不限于以下非球面公式进行限定:
Figure PCTCN2021084783-appb-000017
其中,z为非球面的矢高,r为非球面的归一化径向坐标,r等于非球面的实际径向坐标除以归一化半径R,c为非球面顶点球曲率,K为二次曲面常数,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13为非球面系数。
本申请实施例中,第二透镜L2具有负光焦度,其焦距f2与镜头的焦距EFL的比值:|f2/EFL|=2.452;第五透镜L5具有正光焦度,其焦距f5与镜头的焦距EFL的比值:|f5/EFL|=1.49;第六透镜L6具有负光焦度,其焦距f6与镜头的焦距EFL的比值:|f6/EFL|=4.052;镜头的焦距EFL与镜头的总长TTL的比值:|EFL/TTL|=0.7269。
继续参考图11a所示,当摄像头模组处于第一成像模式时,镜头在感光区的全区域成像,镜头的半像高Y1为5.8mm,入瞳直径EPD1为2.8mm,F数为1.99;参考图11b所示,当摄像头模组切换为第二成像模式时,镜头在感光区的部分区域成像,镜头的半像高Y2为3.00mm,入瞳直径EPD2为4.84mm,F数为1.15;其中,EPD1与EPD2的比值:|EPD1/EPD2|=0.579,Y1与Y2的比值:|Y1/Y2|=1.933;此外,摄像头处于第一成像模式时镜头的半像高Y1与镜头的总长TTL的比值:|Y1/TTL|=0.757,入瞳直径EPD1与镜头的总长TTL的比值:|EPD1/TTL|=0.3656。镜头的各项基本参数具体请参考表6所示。
表6
Figure PCTCN2021084783-appb-000018
对图11a和图11b所示的摄像头模组进行仿真,下面结合附图详细说明其仿真结果。
图12a为摄像头模组处于第一成像模式时的轴向色差曲线图,图中分别示出了650nm、610nm、555nm、510nm、470nm波长的颜色光聚焦深度位置的仿真结果,可以看出,镜头在第一成像模式下的轴向色差控制在一个很小的范围内;
图12b为摄像头模组处于第二成像模式时的轴向色差曲线图,图中分别示出了650nm、610nm、555nm、510nm、470nm波长的颜色光聚焦深度位置的仿真结果,可以看出,镜头在第二成像模式下的轴向色差控制在一个很小的范围内;
图13a为摄像头模组处于第一成像模式时的横向色差曲线图,图中的五条实线曲线分别为650nm、610nm、555nm、510nm、470nm波长的颜色光,虚线表示衍射极限范围-1.3um~1.3um之间,可以看出,五条光线的横向色差基本在衍射极限内;
图13b为摄像头模组处于第二成像模式时的横向色差曲线图,图中的五条实线曲线分别为650nm、610nm、555nm、510nm、470nm波长的颜色光,虚线表示衍射极限范围 -0.78um~0.78um之间,可以看出,五条光线的横向色差基本在衍射极限内;
图14a为摄像头模组处于第一成像模式时的光学畸变曲线图,表示成像变形与理想形状的差异,图中的五条实线曲线分别为650nm、610nm、555nm、510nm、470nm波长的颜色光,可以看出在该模式下可将光学畸变控制在小于4%的范围内;
图14b为摄像头模组处于第二成像模式时的光学畸变曲线图,表示成像变形与理想形状的差异,图中的五条实线曲线分别为650nm、610nm、555nm、510nm、470nm波长的颜色光,可以看出在该模式下可将光学畸变控制在小于4%的范围内。
图15a和图15b示出了第四种具体的摄像头模组,其中,图15a为该摄像头模组处于第一成像模式时的结构示意图,图15b为该摄像头模组处于第二成像模式时的结构示意图。该摄像头模组的镜头包括八片具有光焦度的透镜,从物侧起依次为第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7和第八透镜L8,可变光圈ST具体可位于第一透镜L1的物侧,滤光片G1则位于第八透镜L8的像侧。
本申请实施例中镜头的各透镜均可为非球面透镜,即镜头共包含16个非球面,一并参考表7a和表7b,其中,表7a为镜头中各透镜的曲率半径、厚度、折射率、阿贝系数,表7b为各透镜的非球面系数。
表7a
Figure PCTCN2021084783-appb-000019
表7b
Figure PCTCN2021084783-appb-000020
Figure PCTCN2021084783-appb-000021
表7b中所示的镜头的16个非球面中,所有扩展非球面面型z可利用但不限于以下非球面公式进行限定:
Figure PCTCN2021084783-appb-000022
其中,z为非球面的矢高,r为非球面的归一化径向坐标,r等于非球面的实际径向坐标除以归一化半径R,c为非球面顶点球曲率,K为二次曲面常数,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13为非球面系数。
本申请实施例中,第二透镜L2具有负光焦度,其焦距f2与镜头的焦距EFL的比值:|f2/EFL|=1.99;第五透镜L5具有正光焦度,其焦距f5与镜头的焦距EFL的比值:|f5/EFL|=1.14;第六透镜L6具有负光焦度,其焦距f6与镜头的焦距EFL的比值:|f6/EFL|=1.22;镜头的焦距EFL与镜头的总长TTL的比值:|EFL/TTL|=0.802。
继续参考图15a所示,当摄像头模组处于第一成像模式时,镜头在感光区的全区域成像,镜头的半像高Y1为5.4mm,入瞳直径EPD1为3.62mm,F数为1.65;参考图15b所示,当摄像头模组切换为第二成像模式时,镜头在感光区的部分区域成像,镜头的半像高Y2为5.3mm,入瞳直径EPD2为3.774mm,F数为1.58;其中,EPD1与EPD2的比值:|EPD1/EPD2|=0.96,Y1与Y2的比值:|Y1/Y2|=1.02;此外,摄像头处于第一成像模式时镜头的半像高Y1与镜头的总长TTL的比值:|Y1/TTL|=0.724,入瞳直径EPD1与镜头的总长TTL的比值:|EPD1/TTL|=0.486。镜头的各项基本参数具体请参考表8所示。
表8
Figure PCTCN2021084783-appb-000023
Figure PCTCN2021084783-appb-000024
对图15a和图15b所示的摄像头模组进行仿真,下面结合附图详细说明其仿真结果。
图16a为摄像头模组处于第一成像模式时的轴向色差曲线图,图中分别示出了650nm、610nm、555nm、510nm、470nm波长的颜色光聚焦深度位置的仿真结果,可以看出,镜头在第一成像模式下的轴向色差控制在一个很小的范围内;
图16b为摄像头模组处于第二成像模式时的轴向色差曲线图,图中分别示出了650nm、610nm、555nm、510nm、470nm波长的颜色光聚焦深度位置的仿真结果,可以看出,镜头在第二成像模式下的轴向色差控制在一个很小的范围内;
图17a为摄像头模组处于第一成像模式时的横向色差曲线图,图中的五条实线曲线分别为650nm、610nm、555nm、510nm、470nm波长的颜色光,虚线表示衍射极限范围-1.1um~1.1um之间,可以看出,五条光线的横向色差基本在衍射极限内;
图17b为摄像头模组处于第二成像模式时的横向色差曲线图,图中的五条实线曲线分别为650nm、610nm、555nm、510nm、470nm波长的颜色光,虚线表示衍射极限范围-1.1um~1.1um之间,可以看出,五条光线的横向色差基本在衍射极限内;
图18a为摄像头模组处于第一成像模式时的光学畸变曲线图,表示成像变形与理想形状的差异,图中的五条实线曲线分别为650nm、610nm、555nm、510nm、470nm波长的颜色光可以看出在该模式下可将光学畸变控制在小于2%的范围内;
图18b为摄像头模组处于第二成像模式时的光学畸变曲线图,表示成像变形与理想形状的差异,图中的五条实线曲线分别为650nm、610nm、555nm、510nm、470nm波长的颜色光,可以看出在该模式下可将光学畸变控制在小于2%的范围内。
图19a和图19b示出了第五种具体的摄像头模组,其中,图19a为该摄像头模组处于第一成像模式时的结构示意图,图19b为该摄像头模组处于第二成像模式时的结构示意图。该摄像头模组的镜头包括八片具有光焦度的透镜,从物侧起依次为第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7和第八透镜L8,可变光圈ST具体可位于第一透镜L1的物侧,滤光片G1则位于第八透镜L8的像侧。
本申请实施例中镜头的各透镜均可为非球面透镜,即镜头共包含16个非球面,一并参考表9a和表9b,其中,表9a为镜头中各透镜的曲率半径、厚度、折射率、阿贝系数,表9b为各透镜的非球面系数。
表9a
Figure PCTCN2021084783-appb-000025
Figure PCTCN2021084783-appb-000026
表9b
Figure PCTCN2021084783-appb-000027
Figure PCTCN2021084783-appb-000028
表9b中所示的镜头的16个非球面中,所有扩展非球面面型z可利用但不限于以下非球面公式进行限定:
Figure PCTCN2021084783-appb-000029
其中,z为非球面的矢高,r为非球面的归一化径向坐标,r等于非球面的实际径向坐 标除以归一化半径R,c为非球面顶点球曲率,K为二次曲面常数,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13为非球面系数。
本申请实施例中,第二透镜L2具有负光焦度,其焦距f2与镜头的焦距EFL的比值:|f2/EFL|=2.42;第五透镜L5具有正光焦度,其焦距f5与镜头的焦距EFL的比值:|f5/EFL|=1.49;第六透镜L6具有负光焦度,其焦距f6与镜头的焦距EFL的比值:|f6/EFL|=4.01;镜头的焦距EFL与镜头的总长TTL的比值:|EFL/TTL|=0.731。
继续参考图18a所示,当摄像头模组处于第一成像模式时,镜头在感光区的全区域成像,镜头的半像高Y1为5.8mm,入瞳直径EPD1为1.4mm,F数为3.97;参考图18b所示,当摄像头模组切换为第二成像模式时,镜头在感光区的部分区域成像,镜头的半像高Y2为1.95mm,入瞳直径EPD2为4.84mm,F数为1.14;其中,EPD1与EPD2的比值:|EPD1/EPD2|=0.289,Y1与Y2的比值:|Y1/Y2|=2.97;此外,摄像头处于第一成像模式时镜头的半像高Y1与镜头的总长TTL的比值:|Y1/TTL|=0.762,入瞳直径EPD1与镜头的总长TTL的比值:|EPD1/TTL|=0.184。镜头的各项基本参数具体请参考表10所示。
表10
Figure PCTCN2021084783-appb-000030
对图19a和图19b所示的摄像头模组进行仿真,下面结合附图详细说明其仿真结果。
图20a为摄像头模组处于第一成像模式时的轴向色差曲线图,图中分别示出了650nm、610nm、555nm、510nm、470nm波长的颜色光聚焦深度位置的仿真结果,可以看出,镜头在第一成像模式下的轴向色差控制在一个很小的范围内;
图20b为摄像头模组处于第二成像模式时的轴向色差曲线图,图中分别示出了650nm、610nm、555nm、510nm、470nm波长的颜色光聚焦深度位置的仿真结果,可以看出,镜头在第二成像模式下的轴向色差控制在一个很小的范围内;
图21a为摄像头模组处于第一成像模式时的横向色差曲线图,图中的五条实线曲线分别为650nm、610nm、555nm、510nm、470nm波长的颜色光,虚线表示衍射极限范围-2.7um~2.7um之间,可以看出,五条光线的横向色差基本在衍射极限内;
图21b为摄像头模组处于第二成像模式时的横向色差曲线图,图中的五条实线曲线分别为650nm、610nm、555nm、510nm、470nm波长的颜色光,虚线表示衍射极限范围-0.78um~0.78um之间,可以看出,五条光线的横向色差基本在衍射极限内;
图22a为摄像头模组处于第一成像模式时的光学畸变曲线图,表示成像变形与理想形 状的差异,图中的五条实线曲线分别为650nm、610nm、555nm、510nm、470nm波长的颜色光,可以看出在该模式下可将光学畸变控制在小于3%的范围内;
图22b为摄像头模组处于第二成像模式时的光学畸变曲线图,表示成像变形与理想形状的差异,图中的五条实线曲线分别为650nm、610nm、555nm、510nm、470nm波长的颜色光,可以看出在该模式下可将光学畸变控制在小于2%的范围内。
图23a和图23b示出了第六种具体的摄像头模组,其中,图23a为该摄像头模组处于第一成像模式时的结构示意图,图23b为该摄像头模组处于第二成像模式时的结构示意图。该摄像头模组的镜头包括九片具有光焦度的透镜,从物侧起依次为第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、第八透镜L8和第九透镜L9,可变光圈ST具体可位于第一透镜L1的物侧,滤光片G1则位于第九透镜L9的像侧。
本申请实施例中镜头的各透镜均可为非球面透镜,即镜头共包含18个非球面,一并参考表11a和表11b,其中,表9a为镜头中各透镜的曲率半径、厚度、折射率、阿贝系数,表11b为各透镜的非球面系数。
表11a
Figure PCTCN2021084783-appb-000031
Figure PCTCN2021084783-appb-000032
表11b
Figure PCTCN2021084783-appb-000033
Figure PCTCN2021084783-appb-000034
表11b中所示的镜头的18个非球面中,所有扩展非球面面型z可利用但不限于以下非球面公式进行限定:
Figure PCTCN2021084783-appb-000035
其中,z为非球面的矢高,r为非球面的归一化径向坐标,r等于非球面的实际径向坐标除以归一化半径R,c为非球面顶点球曲率,K为二次曲面常数,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13为非球面系数。
本申请实施例中,第二透镜L2具有负光焦度,其焦距f2与镜头的焦距EFL的比值:|f2/EFL|=2.11;第五透镜L5具有正光焦度,其焦距f5与镜头的焦距EFL的比值:|f5/EFL|=1.37;第六透镜L6具有负光焦度,其焦距f6与镜头的焦距EFL的比值:|f6/EFL|=3.33;镜头的焦距EFL与镜头的总长TTL的比值:|EFL/TTL|=0.788。
继续参考图23a所示,当摄像头模组处于第一成像模式时,镜头在感光区的全区域成像,镜头的半像高Y1为5.1mm,入瞳直径EPD1为3.0mm,F数为2.36;参考图23b所示,当摄像头模组切换为第二成像模式时,镜头在感光区的部分区域成像,镜头的半像高Y2为2.5mm,入瞳直径EPD2为5.0mm,F数为1.42;其中,EPD1与EPD2的比值: |EPD1/EPD2|=0.6,Y1与Y2的比值:|Y1/Y2|=2.04;此外,摄像头处于第一成像模式时镜头的半像高Y1与镜头的总长TTL的比值:|Y1/TTL|=0.57,入瞳直径EPD1与镜头的总长TTL的比值:|EPD1/TTL|=0.33。镜头的各项基本参数具体请参考表12所示。
表12
Figure PCTCN2021084783-appb-000036
对图23a和图23b所示的摄像头模组进行仿真,下面结合附图详细说明其仿真结果。
图24a为摄像头模组处于第一成像模式时的轴向色差曲线图,图中分别示出了650nm、610nm、555nm、510nm、470nm波长的颜色光聚焦深度位置的仿真结果,可以看出,镜头在第一成像模式下的轴向色差控制在一个很小的范围内;
图24b为摄像头模组处于第二成像模式时的轴向色差曲线图,图中分别示出了650nm、610nm、555nm、510nm、470nm波长的颜色光聚焦深度位置的仿真结果,可以看出,镜头在第二成像模式下的轴向色差控制在一个很小的范围内;
图25a为摄像头模组处于第一成像模式时的横向色差曲线图,图中的五条实线曲线分别为650nm、610nm、555nm、510nm、470nm波长的颜色光,虚线表示衍射极限范围-1.6um~1.6um之间,可以看出,五条光线的横向色差均在衍射极限内;
图25b为摄像头模组处于第二成像模式时的横向色差曲线图,图中的五条实线曲线分别为650nm、610nm、555nm、510nm、470nm波长的颜色光,虚线表示衍射极限范围-0.95um~0.95um之间,可以看出,五条光线的横向色差均在衍射极限内;
图26a为摄像头模组处于第一成像模式时的光学畸变曲线图,表示成像变形与理想形状的差异,图中的五条实线曲线分别为650nm、610nm、555nm、510nm、470nm波长的颜色光,可以看出在该模式下可将光学畸变控制在小于1%的范围内;
图26b为摄像头模组处于第二成像模式时的光学畸变曲线图,表示成像变形与理想形状的差异,图中的五条实线曲线分别为650nm、610nm、555nm、510nm、470nm波长的颜色光,可以看出在该模式下可将光学畸变控制在小于1%的范围内。
图27a和图27b示出了第七种具体的摄像头模组,其中,图27a为该摄像头模组处于第一成像模式时的结构示意图,图27b为该摄像头模组处于第二成像模式时的结构示意图。该摄像头模组的镜头包括六片具有光焦度的透镜,从物侧起依次为第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6,可变光圈ST具体可位于第 一透镜L1的物侧,滤光片G1则位于第六透镜L6的像侧。
本申请实施例中镜头的各透镜均可为非球面透镜,即镜头共包含12个非球面,一并参考表13a和表13b,其中,表13a为镜头中各透镜的曲率半径、厚度、折射率、阿贝系数,表13b为各透镜的非球面系数。
表13a
Figure PCTCN2021084783-appb-000037
表13b
Figure PCTCN2021084783-appb-000038
Figure PCTCN2021084783-appb-000039
表13b中所示的镜头的12个非球面中,所有扩展非球面面型z可利用但不限于以下非球面公式进行限定:
Figure PCTCN2021084783-appb-000040
其中,z为非球面的矢高,r为非球面的归一化径向坐标,r等于非球面的实际径向坐标除以归一化半径R,c为非球面顶点球曲率,K为二次曲面常数,A2,A3,A4,A5,A6,A7,A8,A9,A10为非球面系数。
本申请实施例中,第二透镜L2具有负光焦度,其焦距f2与镜头的焦距EFL的比值:|f2/EFL|=5.23;第三透镜L3具有负光焦度,其焦距f3与镜头的焦距EFL的比值:|f3/EFL|=2.87;第四透镜L4具有正光焦度,其焦距f4与镜头的焦距EFL的比值:|f4/EFL|=12.04;镜头的焦距EFL与镜头的总长TTL的比值:|EFL/TTL|=0.81。
继续参考图27a所示,当摄像头模组处于第一成像模式时,镜头在感光区的全区域成像,镜头的半像高Y1为3.8mm,入瞳直径EPD1为3.0mm,F数为1.79;参考图27b所示,当摄像头模组切换为第二成像模式时,镜头在感光区的部分区域成像,镜头的半像高Y2为2.0mm,入瞳直径EPD2为3.8mm,F数为1.41;其中,EPD1与EPD2的比值:|EPD1/EPD2|=0.789,Y1与Y2的比值:|Y1/Y2|=1.9;此外,摄像头处于第一成像模式时镜头的半像高Y1与镜头的总长TTL的比值:|Y1/TTL|=0.56,入瞳直径EPD1与镜头的总长TTL的比值:|EPD1/TTL|=0.445。镜头的各项基本参数具体请参考表12所示。
表14
Figure PCTCN2021084783-appb-000041
对图27a和图27b所示的摄像头模组进行仿真,下面结合附图详细说明其仿真结果。
图28a为摄像头模组处于第一成像模式时的轴向色差曲线图,图中分别示出了650nm、610nm、555nm、510nm、470nm波长的颜色光聚焦深度位置的仿真结果,可以看出,镜头在第一成像模式下的轴向色差控制在一个很小的范围内;
图28b为摄像头模组处于第二成像模式时的轴向色差曲线图,图中分别示出了650nm、610nm、555nm、510nm、470nm波长的颜色光聚焦深度位置的仿真结果,可以看出,镜头在第二成像模式下的轴向色差控制在一个很小的范围内;
图29a为摄像头模组处于第一成像模式时的横向色差曲线图,图中的五条实线曲线分别为650nm、610nm、555nm、510nm、470nm波长的颜色光,虚线表示衍射极限范围-1.2um~1.2um之间,可以看出,五条光线的横向色差均在衍射极限内;
图29b为摄像头模组处于第二成像模式时的横向色差曲线图,图中的五条实线曲线分别为650nm、610nm、555nm、510nm、470nm波长的颜色光,虚线表示衍射极限范围-0.95um~0.95um之间,可以看出,五条光线的横向色差基本在衍射极限内;
图30a为摄像头模组处于第一成像模式时的光学畸变曲线图,表示成像变形与理想形状的差异,图中的五条实线曲线分别为650nm、610nm、555nm、510nm、470nm波长的颜色光,可以看出在该模式下可将光学畸变控制在小于1.2%的范围内;
图30b为摄像头模组处于第二成像模式时的光学畸变曲线图,表示成像变形与理想形状的差异,图中的五条实线曲线分别为650nm、610nm、555nm、510nm、470nm波长的颜色光,可以看出在该模式下可将光学畸变控制在小于1.2%的范围内。
图31a和图31b示出了第八种具体的摄像头模组,其中,图31a为该摄像头模组处于第一成像模式时的结构示意图,图31b为该摄像头模组处于第二成像模式时的结构示意图。该摄像头模组的镜头包括五片具有光焦度的透镜,从物侧起依次为第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4和第五透镜L5,可变光圈ST具体可位于第一透镜L1与第二透镜L2之间,滤光片G1则位于第六透镜L6的像侧。
本申请实施例中镜头的各透镜均可为非球面透镜,即镜头共包含10个非球面,一并参考表15a和表15b,其中,表15a为镜头中各透镜的曲率半径、厚度、折射率、阿贝系数,表15b为各透镜的非球面系数。
表15a
Figure PCTCN2021084783-appb-000042
Figure PCTCN2021084783-appb-000043
表15b
Figure PCTCN2021084783-appb-000044
表15b中所示的镜头的10个非球面中,所有扩展非球面面型z可利用但不限于以下非球面公式进行限定:
Figure PCTCN2021084783-appb-000045
其中,z为非球面的矢高,r为非球面的归一化径向坐标,r等于非球面的实际径向坐标除以归一化半径R,c为非球面顶点球曲率,K为二次曲面常数,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13为非球面系数。
本申请实施例中,第二透镜L2具有负光焦度,其焦距f2与镜头的焦距EFL的比值:|f2/EFL|=1.97;第三透镜L3具有正光焦度,其焦距f3与镜头的焦距EFL的比值:|f5/EFL|=3.41;第四透镜L4具有正光焦度,其焦距f4与镜头的焦距EFL的比值:|f4/EFL|=1.20;镜头的焦距EFL与镜头的总长TTL的比值:|EFL/TTL|=0.74。
继续参考图31a所示,当摄像头模组处于第一成像模式时,镜头在感光区的全区域成像,镜头的半像高Y1为5.0mm,入瞳直径EPD1为3.27mm,F数为1.94;参考图31b所示,当摄像头模组切换为第二成像模式时,镜头在感光区的部分区域成像,镜头的半像高Y2为2.5mm,入瞳直径EPD2为4.36mm,F数为1.45;其中,EPD1与EPD2的比值:|EPD1/EPD2|=0.75,Y1与Y2的比值:|Y1/Y2|=2;此外,摄像头处于第一成像模式时镜头的半像高Y1与镜头的总长TTL的比值:|Y1/TTL|=0.59,入瞳直径EPD1与镜头的总长TTL的比值:|EPD1/TTL|=0.39。镜头的各项基本参数具体请参考表16所示。
表16
Figure PCTCN2021084783-appb-000046
对图31a和图31b所示的摄像头模组进行仿真,下面结合附图详细说明其仿真结果。
图32a为摄像头模组处于第一成像模式时的轴向色差曲线图,图中分别示出了650nm、610nm、555nm、510nm、470nm波长的颜色光聚焦深度位置的仿真结果,可以看出,镜头在第一成像模式下的轴向色差控制在一个很小的范围内;
图32b为摄像头模组处于第二成像模式时的轴向色差曲线图,图中分别示出了650nm、610nm、555nm、510nm、470nm波长的颜色光聚焦深度位置的仿真结果,可以看出,镜头在第二成像模式下的轴向色差控制在一个很小的范围内;
图33a为摄像头模组处于第一成像模式时的横向色差曲线图,图中的五条实线曲线分别为650nm、610nm、555nm、510nm、470nm波长的颜色光,虚线表示衍射极限范围-1.3um~1.3um之间,可以看出,五条光线的横向色差均在衍射极限内;
图33b为摄像头模组处于第二成像模式时的横向色差曲线图,图中的五条实线曲线分别为650nm、610nm、555nm、510nm、470nm波长的颜色光,虚线表示衍射极限范围-0.98um~0.98um之间,可以看出,五条光线的横向色差均在衍射极限内;
图34a为摄像头模组处于第一成像模式时的光学畸变曲线图,表示成像变形与理想形状的差异,图中的五条实线曲线分别为650nm、610nm、555nm、510nm、470nm波长的颜色光,可以看出在该模式下可将光学畸变控制在小于2.5%的范围内;
图34b为摄像头模组处于第二成像模式时的光学畸变曲线图,表示成像变形与理想形状的差异,图中的五条实线曲线分别为650nm、610nm、555nm、510nm、470nm波长的颜色光,可以看出在该模式下可将光学畸变控制在小于2.5%的范围内。
图35a和图35b示出了第九种具体的摄像头模组,其中,图35a为该摄像头模组处于第一成像模式时的结构示意图,图35b为该摄像头模组处于第二成像模式时的结构示意图。该摄像头模组的镜头包括七片具有光焦度的透镜,从物侧起依次为第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和第七透镜L7,可变光圈ST具体可位于第一透镜L1的物侧,滤光片G1则位于第七透镜L7的像侧。
本申请实施例中镜头的各透镜均可为非球面透镜,即镜头共包含14个非球面,一并参考表17a和表17b,其中,表17a为镜头中各透镜的曲率半径、厚度、折射率、阿贝系数,表17b为各透镜的非球面系数。
表17a
Figure PCTCN2021084783-appb-000047
Figure PCTCN2021084783-appb-000048
表17b
Figure PCTCN2021084783-appb-000049
Figure PCTCN2021084783-appb-000050
表17b中所示的镜头的14个非球面中,所有扩展非球面面型z可利用但不限于以下非球面公式进行限定:
Figure PCTCN2021084783-appb-000051
其中,z为非球面的矢高,r为非球面的归一化径向坐标,r等于非球面的实际径向坐标除以归一化半径R,c为非球面顶点球曲率,K为二次曲面常数,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13为非球面系数。
本申请实施例中,第二透镜L2具有负光焦度,其焦距f2与镜头的焦距EFL的比值:|f2/EFL|=2.51;第五透镜L5具有负光焦度,其焦距f5与镜头的焦距EFL的比值:|f5/EFL|=1.81;第六透镜L6具有负光焦度,其焦距f6与镜头的焦距EFL的比值:|f6/EFL|=2.31;镜头的焦距EFL与镜头的总长TTL的比值:|EFL/TTL|=0.814。
继续参考图35a所示,当摄像头模组处于第一成像模式时,镜头在感光区的全区域成像,镜头的半像高Y1为5.8mm,入瞳直径EPD1为3.0mm,F数为2.31;参考图35b所示,当摄像头模组切换为第二成像模式时,镜头在感光区的部分区域成像,镜头的半像高Y2为2.9mm,入瞳直径EPD2为4.35mm,F数为1.59;其中,EPD1与EPD2的比值:|EPD1/EPD2|=0.69,Y1与Y2的比值:|Y1/Y2|=2.0;此外,摄像头处于第一成像模式时镜头的半像高Y1与镜头的总长TTL的比值:|Y1/TTL|=0.682,入瞳直径EPD1与镜头的总长TTL的比值:|EPD1/TTL|=0.353。镜头的各项基本参数具体请参考表18所示。
表18
Figure PCTCN2021084783-appb-000052
Figure PCTCN2021084783-appb-000053
对图35a和图35b所示的摄像头模组进行仿真,下面结合附图详细说明其仿真结果。
图36a为摄像头模组处于第一成像模式时的轴向色差曲线图,图中分别示出了650nm、610nm、555nm、510nm、470nm波长的颜色光聚焦深度位置的仿真结果,可以看出,镜头在第一成像模式下的轴向色差控制在一个很小的范围内;
图36b为摄像头模组处于第二成像模式时的轴向色差曲线图,图中分别示出了650nm、610nm、555nm、510nm、470nm波长的颜色光聚焦深度位置的仿真结果,可以看出,镜头在第二成像模式下的轴向色差控制在一个很小的范围内;
图37a为摄像头模组处于第一成像模式时的横向色差曲线图,图中的五条实线曲线分别为650nm、610nm、555nm、510nm、470nm波长的颜色光,虚线表示衍射极限范围-1.55um~1.55um之间,可以看出,五条光线的横向色差基本在衍射极限内;
图37b为摄像头模组处于第二成像模式时的横向色差曲线图,图中的五条实线曲线分别为650nm、610nm、555nm、510nm、470nm波长的颜色光,虚线表示衍射极限范围-1.1um~1.1um之间,可以看出,五条光线的横向色差均在衍射极限内;
图38a为摄像头模组处于第一成像模式时的光学畸变曲线图,表示成像变形与理想形状的差异,图中的五条实线曲线分别为650nm、610nm、555nm、510nm、470nm波长的颜色光,可以看出在该模式下可将光学畸变控制在小于2%的范围内;
图38b为摄像头模组处于第二成像模式时的光学畸变曲线图,表示成像变形与理想形状的差异,图中的五条实线曲线分别为650nm、610nm、555nm、510nm、470nm波长的颜色光,可以看出在该模式下可将光学畸变控制在小于2%的范围内。
由上述第一种具体的变焦镜头、第二种具体的变焦镜头、第三种具体的变焦镜头、第四种具体的变焦镜头、第五种具体的变焦镜头、第六种具体的变焦镜头、第七种具体的变焦镜头、第八种具体的变焦镜头及第九种具体的变焦镜头的结构及仿真效果可以看出,本申请实施例提供的摄像头模组在两种不同的成像模式下均可获得较好的成像效果。
参考图39所示,本申请实施例还提供了一种电子设备100,该电子设备100可以为现有技术中的手机、平板电脑或者笔记本电脑等常见终端。电子设备100包括壳体110以及前述任一实施例中的摄像头模组120,摄像头模组120可设置于壳体110内。该电子设备100的摄像头模组120可利用一颗镜头同时实现了全像素一倍成像和中心像素二倍或三倍成像,从而可以减小其在电子设备100内的占用空间,提高电子设备100的外观品质。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (18)

  1. 一种摄像头模组,其特征在于,包括镜头、可变光圈以及感光元件,其中:
    所述镜头包括沿物侧到像侧排列的多片透镜;
    所述可变光圈位于其中一片所述透镜的物侧,所述可变光圈的通光孔径是可调节的,在所述可变光圈的通光孔径被调节为第一通光孔径时,所述镜头的光圈数为F1;在所述可变光圈的通光孔径被调节为第二通光孔径时,所述镜头的光圈数为F2;F1与F2满足:F1≥F2;
    所述感光元件设置于所述镜头的成像面,所述感光元件朝向所述镜头的一面包括感光区;
    所述摄像头模组具有第一成像模式和第二成像模式,在所述第一成像模式下,所述镜头的光圈数为F1,所述感光元件用于使所述镜头在所述感光区的全区域成像,并调整所述感光区的全区域的角分辨率为δ;在所述第二成像模式下,所述镜头的光圈数为F2,所述感光元件用于使所述镜头在所述感光区的部分区域成像,并调整所述感光区的部分区域的角分辨率为nδ,n为大于或等于1且小于或等于3的自然数。
  2. 如权利要求1所述的摄像头模组,其特征在于,在100lp/mm时所述镜头在所述感光区的全区域成像的衍射极限为MTF1L,在100lp/mm时所述镜头在所述感光区的部分区域成像的衍射极限为MTF2L,MTF1L与MTF2L满足:1≤|MTF2L/MTF1L|≤3。
  3. 如权利要求1或2所述的摄像头模组,其特征在于,所述透镜的数量N满足:5≤N≤9。
  4. 如权利要求1~3任一项所述的摄像头模组,其特征在于,所述可变光圈的通光孔径为所述第一通光孔径时,所述镜头的光圈数F1满足:1.2≤F1≤8。
  5. 如权利要求1~4任一项所述的摄像头模组,其特征在于,所述可变光圈的通光孔径为所述第二通光孔径时,所述镜头的光圈数F2满足:1.1≤F2≤4。
  6. 如权利要求1~5任一项所述的摄像头模组,其特征在于,所述镜头在所述感光区的全区域成像时所述镜头的半像高为Y1,所述镜头在所述感光区的部分区域成像时所述镜头的半像高为Y2,Y1与Y2满足:1≤|Y1/Y2|≤3。
  7. 如权利要求1~6任一项所述的摄像头模组,其特征在于,所述镜头在所述感光区的全区域成像时所述感光元件输出的像元大小为P1,所述镜头在所述感光区的部分区域成像时所述感光元件输出的像元大小为P2;
    当n=1时,P1与P2满足:P1/P2=1;
    当n=2时,P1与P2满足:P1/P2=4;
    当n=3时,P1与P2满足:P1/P2=9。
  8. 如权利要求1~7任一项所述的摄像头模组,其特征在于,所述镜头在所述感光区的全区域成像时所述镜头的半像高Y1与所述镜头的总长TTL满足:0.5≤|Y1/TTL|≤1.5。
  9. 如权利要求1~8任一项所述的摄像头模组,其特征在于,所述可变光圈与所述镜头的成像面之间的距离l与所述镜头的总长TTL满足:0.5≤|l/TTL|≤1.2。
  10. 如权利要求1~9任一项所述的摄像头模组,其特征在于,所述镜头在所述感光区的部分区域以角分辨率为nδ成像时输出的图像的像素为8M~32M像素。
  11. 如权利要求1~10任一项所述的摄像头模组,其特征在于,所述镜头在所述感光区的全区域成像时的入瞳直径为EPD1,所述镜头在所述感光区的部分区域成像时的入瞳直径为EPD2,EPD1与EPD2满足:0.25≤|EPD1/EPD2|≤1。
  12. 如权利要求1~11任一项所述的摄像头模组,其特征在于,所述镜头的焦距EFL与所述镜头的总长TTL满足:0.5≤|EFL/TTL|≤1.2。
  13. 如权利要求1~12任一项所述的摄像头模组,其特征在于,所述镜头包括沿物侧到像侧排列的八片透镜,分别为第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜和第八透镜。
  14. 如权利要求13所述的摄像头模组,其特征在于,所述第二透镜具有负光焦度。
  15. 如权利要求13或14所述的摄像头模组,其特征在于,所述第八透镜的物侧表面近光轴处为凹面,所述第八透镜的像侧表面近光轴处为凹面。
  16. 如权利要求13~15任一项所述的摄像头模组,其特征在于,所述第五透镜具有正光焦度,所述第五透镜的焦距f5与所述镜头的焦距EFL满足:0.5≤|f5/EFL|≤1.2。
  17. 如权利要求13~16任一项所述的摄像头模组,其特征在于,所述第六透镜具有负光焦度,所述第六透镜的焦距f6与所述镜头的焦距EFL满足:1≤|f6/EFL|≤100。
  18. 一种电子设备,其特征在于,包括壳体以及如权利要求1~17任一项所述的摄像头模组,所述摄像头模组设置于所述壳体内。
PCT/CN2021/084783 2020-03-31 2021-03-31 一种摄像头模组及电子设备 WO2021197398A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP21779945.1A EP4119998A4 (en) 2020-03-31 2021-03-31 CAMERA MODULE AND ELECTRONIC DEVICE
KR1020227037617A KR20220149788A (ko) 2020-03-31 2021-03-31 카메라 모듈 및 전자 장치
JP2022559720A JP7475483B2 (ja) 2020-03-31 2021-03-31 カメラモジュールおよび電子デバイス
CN202180026070.2A CN115362403A (zh) 2020-03-31 2021-03-31 一种摄像头模组及电子设备
US17/955,686 US20230034285A1 (en) 2020-03-31 2022-09-29 Camera module and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010246620.9A CN113534403B (zh) 2020-03-31 2020-03-31 一种摄像头模组及电子设备
CN202010246620.9 2020-03-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/955,686 Continuation US20230034285A1 (en) 2020-03-31 2022-09-29 Camera module and electronic device

Publications (1)

Publication Number Publication Date
WO2021197398A1 true WO2021197398A1 (zh) 2021-10-07

Family

ID=77928329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/084783 WO2021197398A1 (zh) 2020-03-31 2021-03-31 一种摄像头模组及电子设备

Country Status (6)

Country Link
US (1) US20230034285A1 (zh)
EP (1) EP4119998A4 (zh)
JP (1) JP7475483B2 (zh)
KR (1) KR20220149788A (zh)
CN (2) CN113534403B (zh)
WO (1) WO2021197398A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180048820A1 (en) * 2014-08-12 2018-02-15 Amazon Technologies, Inc. Pixel readout of a charge coupled device having a variable aperture
CN109061838A (zh) * 2018-09-12 2018-12-21 广东旭业光电科技股份有限公司 一种光学成像镜头及电子设备
CN109752823A (zh) * 2017-11-08 2019-05-14 三星电机株式会社 光学成像系统
CN110073286A (zh) * 2016-12-08 2019-07-30 三星电子株式会社 包括光圈的相机模块以及包括该相机模块的电子装置
CN110927929A (zh) * 2019-12-13 2020-03-27 瑞声通讯科技(常州)有限公司 摄像光学镜头

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3902950B2 (ja) 2001-12-27 2007-04-11 キヤノン株式会社 撮像装置およびその撮像方法
JP4624065B2 (ja) 2004-10-13 2011-02-02 オリンパス株式会社 撮像装置
DE602005004544T2 (de) * 2005-09-19 2008-04-30 CRF Società Consortile per Azioni, Orbassano Multifunktioneller optischer Sensor mit einer an Mikrolinsen gekoppelten Matrix von Photodetektoren
JP5152758B2 (ja) 2008-04-14 2013-02-27 国立大学法人東京工業大学 移動体追跡カメラシステム
JP5510340B2 (ja) * 2011-01-06 2014-06-04 富士通株式会社 輻輳通知方法、輻輳通知装置および輻輳通知プログラム
JP2015040906A (ja) 2013-08-20 2015-03-02 株式会社ニコン 撮像装置およびプログラム
US9892355B2 (en) * 2015-05-20 2018-02-13 The Code Corporation Barcode-reading system
CN105005053B (zh) * 2015-07-13 2017-11-21 西安电子科技大学 基于led照明的随机散射关联成像系统及成像方法
JP6653111B2 (ja) 2018-05-07 2020-02-26 カンタツ株式会社 撮像レンズ
TWI684024B (zh) * 2018-07-04 2020-02-01 大立光電股份有限公司 攝影光學鏡組、取像裝置及電子裝置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180048820A1 (en) * 2014-08-12 2018-02-15 Amazon Technologies, Inc. Pixel readout of a charge coupled device having a variable aperture
CN110073286A (zh) * 2016-12-08 2019-07-30 三星电子株式会社 包括光圈的相机模块以及包括该相机模块的电子装置
CN109752823A (zh) * 2017-11-08 2019-05-14 三星电机株式会社 光学成像系统
CN109061838A (zh) * 2018-09-12 2018-12-21 广东旭业光电科技股份有限公司 一种光学成像镜头及电子设备
CN110927929A (zh) * 2019-12-13 2020-03-27 瑞声通讯科技(常州)有限公司 摄像光学镜头

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4119998A4 *

Also Published As

Publication number Publication date
CN113534403A (zh) 2021-10-22
US20230034285A1 (en) 2023-02-02
CN113534403B (zh) 2023-03-10
KR20220149788A (ko) 2022-11-08
CN115362403A (zh) 2022-11-18
JP7475483B2 (ja) 2024-04-26
EP4119998A4 (en) 2023-09-13
JP2023519998A (ja) 2023-05-15
EP4119998A1 (en) 2023-01-18

Similar Documents

Publication Publication Date Title
TWI432773B (zh) 攝影透鏡組
TWI421557B (zh) 攝像透鏡系統
TWI435135B (zh) 光學透鏡系統
TWI434096B (zh) 光學攝像透鏡組
TWI395990B (zh) 攝影用透鏡組
TWI421534B (zh) 可變焦距成像鏡頭
CN111208629A (zh) 光学系统、镜头模组和电子设备
CN111965789A (zh) 光学镜头、摄像装置及终端
CN114114645B (zh) 光学镜头、摄像模组及电子设备
CN115480364A (zh) 光学镜头、摄像模组及电子设备
CN211478744U (zh) 光学系统、镜头模组和电子设备
CN111983787A (zh) 光学成像镜头、摄像装置及电子设备
CN114415353B (zh) 光学系统、摄像模组及电子设备
CN114578525B (zh) 光学系统、镜头模组和电子设备
CN114002822B (zh) 光学镜头、摄像模组及电子设备
CN213023741U (zh) 一种光学镜头、摄像装置及终端
CN211786323U (zh) 光学系统、镜头模组及电子设备
WO2021197398A1 (zh) 一种摄像头模组及电子设备
CN114740604A (zh) 光学系统、摄像模组和电子设备
CN114460723A (zh) 光学系统、摄像模组及电子设备
CN114326052A (zh) 光学系统、取像模组及电子设备
CN210401819U (zh) 光学系统、镜头模组和电子设备
CN113703132A (zh) 光学系统、镜头模组和电子设备
CN114967040A (zh) 光学成像系统、取像模组及电子装置
CN112034591A (zh) 光学系统、摄像头模组和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21779945

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022559720

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227037617

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021779945

Country of ref document: EP

Effective date: 20221011

NENP Non-entry into the national phase

Ref country code: DE