WO2021197017A1 - 传输设备及数据传输方法 - Google Patents

传输设备及数据传输方法 Download PDF

Info

Publication number
WO2021197017A1
WO2021197017A1 PCT/CN2021/080232 CN2021080232W WO2021197017A1 WO 2021197017 A1 WO2021197017 A1 WO 2021197017A1 CN 2021080232 W CN2021080232 W CN 2021080232W WO 2021197017 A1 WO2021197017 A1 WO 2021197017A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection circuit
optocoupler
wire
ground wire
processor
Prior art date
Application number
PCT/CN2021/080232
Other languages
English (en)
French (fr)
Inventor
刘进
周杨
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21779529.3A priority Critical patent/EP4116725A4/en
Publication of WO2021197017A1 publication Critical patent/WO2021197017A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/58Testing of lines, cables or conductors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/46Monitoring; Testing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M11/00Telephonic communication systems specially adapted for combination with other electrical systems
    • H04M11/06Simultaneous speech and data transmission, e.g. telegraphic transmission over the same conductors
    • H04M11/066Telephone sets adapted for data transmision

Definitions

  • This application belongs to the field of data communication technology, and in particular relates to a transmission device and a data transmission method.
  • the power line communication modem commonly known as the power cat, is a device that uses power line communication (PLC) technology to transmit data and media signals over the power line.
  • the power cat can use the single input single output (SISO) mode to transmit data, that is, use a single transmitting antenna and a single receiving antenna to transmit data.
  • the SISO mode can transmit data through the live and neutral wires in the power grid. data.
  • the power cat can also use the SISO+ mode to improve noise interference to transmit data, that is, transmit data through the neutral and ground wires in the grid, so that it can pass through the ground.
  • the cable reduces the noise generated in the process of transmitting data.
  • the ground wire is not set in the power grid, when the power cat uses the default SISO+ mode for networking pairing, it will cause the need to switch to the SISO mode for pairing, resulting in a low success rate of networking pairing.
  • the embodiments of the present application provide a transmission device and a data transmission method, which can solve the problem that the transmission device needs to switch the transmission mode for pairing if the ground wire is not set in the power grid, resulting in a low success rate of network pairing.
  • an embodiment of the present application provides a transmission device, including: a processor, a detection circuit, a switch, a matching circuit, and a transformer;
  • the first input terminal of the processor is connected to the first output terminal of the detection circuit, and the second input terminal and the third input terminal of the processor are respectively connected to the first output terminal and the second output terminal of the matching circuit. Terminal connection, the output terminal of the processor is connected to the first terminal of the switch;
  • the first output terminal and the second output terminal of the transformer are respectively connected to the first input terminal and the second input terminal of the matching circuit, and the second input terminal of the transformer is connected to the second terminal of the switch, so The second output terminal of the detection circuit is connected to the ground wire;
  • the first input terminal of the detection circuit is connected to the neutral wire
  • the second input terminal of the detection circuit is connected to the live wire
  • the third terminal of the switch is connected to the ground wire or the live wire
  • the first input of the transformer The terminal is connected with the neutral line
  • the first input terminal of the detection circuit is connected to the live wire
  • the second input terminal of the detection circuit is connected to the neutral wire
  • the third terminal of the switch is connected to the ground wire or the neutral wire.
  • the input terminal is connected with the live wire
  • the processor is configured to control the detection circuit to detect the ground wire in the power network, and determine whether a ground wire is provided in the power network according to the signal output by the detection circuit; if the power network is not provided Ground wire, the processor controls the switch to connect with the live wire or the neutral wire in the power grid; if the ground wire is provided in the power grid, the processor controls the switch and the ground wire connect;
  • the transformer is used to convert high-voltage electricity in the power network into low-voltage power
  • the matching circuit is used to match the transmission equipment with other transmission equipment connected to the power network.
  • the switch may be a relay
  • the transformer may be a winding transformer
  • the processor may be a central processing unit (CPU).
  • the detection circuit includes: a first optocoupler, a second optocoupler, a pull-up resistor, a first diode, and a second diode.
  • Both the optical coupler and the second optical coupler include a light emitter and a light receiver;
  • the anode of the first diode is connected to the neutral line, and the cathode of the first diode is connected to the light emitter input end of the first optocoupler;
  • the anode of the second diode is connected to the live wire, and the cathode of the second diode is connected to the light emitter input end of the first optocoupler;
  • the light emitter output end of the first optocoupler is connected to the light receiver input end of the second optocoupler, the light receiver input end of the first optocoupler is connected to the first end of the pull-up resistor, the The output end of the light receiver of the first optocoupler is connected to the common end;
  • the first end of the pull-up resistor is connected to the first input end of the processor, and the second end of the pull-up resistor is connected to a high-potential power supply;
  • the light receiver output end of the second optocoupler is connected to the ground in the power grid, the light emitter input end of the second optocoupler is connected to the output end of the processor, and the second optocoupler emits light.
  • the output terminal of the converter is connected to the common terminal.
  • the light-emitting device may be a light-emitting diode
  • the light-receiving device may be a photosensitive triode
  • the detection circuit further includes: a first current-limiting resistor and a second current-limiting resistor;
  • the first current-limiting resistor is provided between the first diode and the light-emitting device input end of the first optocoupler, and the second current-limiting resistor is provided between the second diode and the Between the input ends of the illuminator of the first optocoupler.
  • the detection circuit further includes: a first safety capacitor and a second safety capacitor;
  • the first safety capacitor is connected in series between the neutral line and the anode of the first diode
  • the second safety capacitor is connected in series between the live wire and the anode of the second diode between.
  • the detection circuit further includes a protection circuit, and the protection circuit is connected in series between the live wire and the Between zero line
  • the protection circuit is composed of transient suppression diodes.
  • an embodiment of the present application provides a data transmission method, which is applied to the transmission device according to any one of the foregoing first aspects, and the method includes:
  • the detection circuit detects the ground wire in the power network
  • the processor receives the detection signal fed back by the detection circuit
  • the processor determines whether a ground wire is included in the power grid according to the detection signal
  • the processor controls the switch to be connected to the ground wire, the live wire or the neutral wire in the power grid according to the judgment result
  • the processor performs data transmission with a paired transmission device, and the paired transmission device is the processor that controls the matching circuit after the switch is connected to the ground wire, the live wire, or the neutral wire Matched.
  • the method before the detection circuit detects the ground wire of the power grid, the method further includes:
  • the processor sends a detection instruction to the detection circuit of the transmission equipment, so that the detection circuit detects the ground wire in the power network according to the detection instruction, and determines whether there is something in the power network. ⁇ The ground wire.
  • the detection circuit detecting the ground wire in the power grid includes:
  • the light emitter of the second photocoupler in the detection circuit can be turned on and emit light according to the detection instruction, so that the emitted light irradiates the light receiver of the second photocoupler;
  • the light receiver of the second optocoupler is connected to the ground of the power grid, the light receiver of the second optocoupler and the light emitter of the first optocoupler are turned on, so that the light receiver of the first optocoupler The light emitter emits light to illuminate the light receiver of the first photocoupler, and the light receiver of the first photocoupler is turned on, so that the potential of the first end of the pull-up resistor in the detection circuit drops.
  • the processor controls the switch and the ground wire in the power network according to the judgment result.
  • Live or neutral connection including:
  • the processor controls the switch to connect to the ground wire
  • the processor controls the switch to connect to the live wire or the neutral wire.
  • the embodiment of the application detects the ground wire in the power network through the detection circuit, and the processor can receive the detection signal fed back by the detection circuit, and according to the detection signal, determine whether the ground wire is included in the power network, and then control the switch and the power network according to the judgment result.
  • the ground wire, live wire or neutral wire is connected so that the transmission equipment can be connected with different power lines to use different transmission modes for data transmission.
  • the transmission equipment determines whether the power network that the transmission equipment is connected to includes a ground wire, so as to control the switch of the transmission equipment to connect with the ground wire, the live wire or the neutral wire according to the judgment result, and then different transmission modes can be adopted.
  • Pairing and networking with other transmission devices in the power network so that the transmission device can perform data transmission with the paired transmission device after networking, which improves the success rate of the transmission device pairing and networking, and reduces the need for the transmission device to switch the transmission mode again
  • the case of pairing and networking improves the efficiency of pairing and networking of transmission equipment.
  • FIG. 1 is a schematic diagram of a system architecture of a transmission system involved in a transmission device provided by an embodiment of the present application;
  • FIG. 2 is a structural block diagram of a transmission device provided by an embodiment of the present application.
  • FIG. 3 is a structural block diagram of a detection circuit provided by an embodiment of the present application.
  • FIG. 4 is a structural block diagram of another detection circuit provided by an embodiment of the present application.
  • FIG. 5 is a structural block diagram of yet another detection circuit provided by an embodiment of the present application.
  • FIG. 6 is a structural block diagram of yet another detection circuit provided by an embodiment of the present application.
  • FIG. 7 is a structural block diagram of yet another transmission device provided by an embodiment of the present application.
  • FIG. 8 is a structural block diagram of another transmission device provided by an embodiment of the present application.
  • FIG. 9 is a structural block diagram of yet another transmission device provided by an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of a data transmission method provided by an embodiment of the present application.
  • the power cat is set to SISO+ mode by default. After the power cat is powered on, the power cat can pair with other power cats in the power grid based on the neutral and ground wires required by the SISO+ mode, and determine whether the network is paired Success. If the pairing is not successful, you can continue to wait for other power cats in the grid to connect. If the pairing is not successful after waiting for a period of time, it means that there is no ground wire in the grid and data cannot be transmitted through the SISO+ mode, then the power cats You can switch to SISO mode for network pairing to realize data transmission.
  • the power cat cannot pre-determine whether the power network includes a ground wire. As a result, the power cat needs to be paired according to the default SISO+ mode. If the pairing fails, it can be determined that there is no ground wire in the power network, and then switch to SISO that does not require a ground wire. Modes are paired, resulting in a low success rate of power cats for network pairing.
  • a detection circuit is set in the transmission device (such as a power cat) to detect whether the power network includes a ground wire, and the processor in the transmission device controls the switch to connect to different power lines, so that the transmission device can be connected to different power lines.
  • Transfer data in transfer mode The transmission equipment adopts a method of first determining whether the power network includes a ground wire, and then selecting a transmission mode according to the judgment result, which improves the success rate of pairing and networking between the transmission equipment and other transmission equipment.
  • FIG. 1 is a schematic diagram of a system architecture of a transmission system related to a transmission device provided by an embodiment of the present application.
  • the transmission system may include: at least two transmission devices 110, at least one terminal device 120, and a router 130.
  • the router 130 is linked to one transmission device 110 of at least two transmission devices 110, each terminal device 120 is connected to one transmission device 110, and each transmission device 110 is connected through the power network in the transmission system.
  • the sum of the number of terminal devices 120 and the number of routers 130 may be greater than or equal to the number of transmission devices 110.
  • the transmission system includes 3 terminal devices 120 and 1 router 130, then 2, 3, or 4 transmission devices 110 can be provided. If there are 2 transmission devices 110, the router 130 can be connected to 1 transmission device. 110 connection, all three terminal devices 120 can be connected to another transmission device 110; if four transmission devices 110 are provided, the router 130 and each terminal device 120 can be connected to one transmission device 110.
  • the router 130 can be connected to the Internet to receive data and send data to the Internet.
  • the transmission device 110 can be connected to the router 130 through an unshielded twisted pair (UTP).
  • each terminal device 120 is also connected to the router 130. It can be connected to the transmission device 110 through UTP, and each transmission device 110 can be connected through a power network.
  • a ground wire may or may not be set in the power network.
  • the transmission device transmits data, it needs to detect whether there is a ground wire in the power network first. As a result, different transmission modes are selected to pair with other transmission devices and transmit data.
  • the transmission equipment is powered on based on the electric energy provided by the power grid and completes the startup. Then, according to the preset detection circuit, it detects whether there is a ground wire in the power grid. For the ground wire, SISO+ mode is used to pair with other transmission equipment, but if there is no ground wire in the power network, the SISO mode is used for pairing. After the pairing is successful, the transmission device can perform data transmission with other transmission devices that have been successfully paired in the transmission system.
  • the transmission device can be a power line communication modem, which can be plugged into a power socket to connect to the power grid.
  • the terminal device 120 may be a computing device such as a desktop computer, a notebook, a palmtop computer, and a cloud server.
  • the terminal device 120 may include, but is not limited to, a processor and a memory.
  • Those skilled in the art can understand that the embodiment of the present application is only an example of the terminal device 120, and does not constitute a limitation on the terminal device. It may include more or fewer components, or combine certain components, or different components, such as It can also include input and output devices, network access devices, and so on.
  • Fig. 2 is a structural block diagram of a transmission device provided by an embodiment of the present application. For ease of description, only parts related to the embodiment of the present application are shown.
  • the transmission device may include: a processor 210, a detection circuit 220, a switch 230, a matching circuit 240, and a transformer 250.
  • the first input terminal of the processor is connected with the first output terminal of the detection circuit
  • the second input terminal and the third input terminal of the processor are respectively connected with the first output terminal and the second output terminal of the matching circuit
  • the processor’s The output terminal is connected to the first terminal of the switch; the first output terminal and the second output terminal of the transformer are respectively connected to the first input terminal and the second input terminal of the matching circuit, and the second input terminal of the transformer is connected to the second terminal of the switch ,
  • the second output terminal of the detection circuit is connected to the ground wire.
  • the first input terminal of the detection circuit is connected to the neutral wire
  • the second input terminal of the detection circuit is connected to the live wire
  • the third terminal of the switch is connected to the ground wire or the live wire
  • the first input terminal of the transformer is connected to the neutral wire.
  • the first input end of the detection circuit is connected to the live wire
  • the second input end of the detection circuit is connected to the neutral wire
  • the third end of the switch is connected to the ground or neutral wire
  • the first input end of the transformer is connected to the live wire.
  • the processor is used to control the detection circuit to detect the ground wire in the power network, and determine whether there is a ground wire in the power network according to the signal output by the detection circuit. If the ground wire is not set in the power network, the processor can control the switch and the power network Live wire or neutral wire connection; if a ground wire is provided in the power network, the processor can control the switch to connect to the ground wire to use different transmission modes to match the transmission equipment and transmit data according to whether the ground wire is included in the power network.
  • the processor may be a CPU, and the processor may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), application specific integrated circuits (ASICs), ready-made programmable gate arrays (field -programmable gate array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor.
  • the transformer is used to convert the high-voltage power in the power network into low-voltage power
  • the matching circuit is used to match the transmission equipment with other transmission equipment connected to the power network.
  • the detection circuit of the transmission device is connected to the power grid, and the transmission device is powered on and turned on.
  • the processor of the transmission device can control the detection circuit to connect to the ground wire in the power grid.
  • the detection circuit can detect the ground wire according to the optocoupler device in the detection circuit and output a detection signal.
  • the processor can receive the detection signal and determine whether there is a ground wire in the power grid according to the level of the detection signal.
  • the optocoupler device is a device that transmits electrical signals as a medium, and the light-emitting device and the light-receiving device can be packaged in the same package.
  • the light emitter emits light
  • the light receiver generates a current after being irradiated by the light.
  • the output terminal can output the generated current, thus realizing the "electricity-optical-electricity" conversion, which uses light as the medium to input
  • the optocoupler whose end signal is coupled to the output end.
  • the optocoupler device has the advantages of small size, long life, no contact, strong anti-interference ability, insulation between the output end and the input end, and the ability to transmit signals in one direction.
  • the processor can control the switch to connect to the ground wire, so that the SISO+ mode can be used to transmit data. If the ground wire is not set in the power grid, the processor can control the switch to connect with the live wire, so as to use the SISO mode to transmit data.
  • the transformer can step down the high-voltage power in the connected power grid to obtain low-voltage power, so that the transmission device can be paired with other transmission devices connected to the power grid through the processor and the matching circuit. Other transmission devices that match the transmission device can then perform data transmission with each paired transmission device.
  • the processor can control the detection circuit to stop detecting the ground wire to avoid interference to the transmitted data. For example, it is possible to no longer provide a high-level signal to the optocoupler in the detection circuit, thereby controlling the detection circuit to stop detecting the ground wire.
  • the third end of the switch can be connected to the live wire or the ground wire according to the control signal sent by the processor, so that while the transformer is connected to the neutral wire, it can also be connected to the live wire or the ground wire through the switch, thereby passing the neutral wire and the ground wire. Wire, or neutral wire and live wire for pairing and data transmission.
  • the third terminal of the switch is connected to the live wire or the ground wire according to the control signal sent by the processor as an example for example.
  • the third end of the switch can be connected to the neutral wire or the ground wire according to the control signal sent by the processor, so that while the transformer is connected to the live wire, it can also be connected to the neutral wire or the ground wire through the switch, thereby passing the live wire and the ground wire. Wire, or neutral wire and live wire for pairing and data transmission.
  • the switch can be a relay, the first end of the relay can be connected to the processor, the second end can be connected to the transformer, and the third end can be connected to the live wire or the ground wire according to the control signal sent by the processor.
  • the transmission device transmits data through the live wire and the ground wire, the neutral wire and the ground wire, or the neutral wire and the live wire during the data transmission.
  • the two input terminals and the two output terminals of the matching circuit can also be connected to the power network.
  • the two input ends of the matching circuit can be connected to the neutral wire and the ground wire respectively, can also be connected to the live wire and the ground wire respectively, and can also be connected to the neutral wire and the live wire respectively, and the output
  • the terminal is similar to the input terminal and will not be repeated here.
  • the high-voltage power of the power network can be stepped down through a transformer to obtain low-voltage power, and then the matching circuit can be connected to the transformer.
  • the matching circuit and the processor can perform matching and data transmission of transmission equipment in a low-voltage environment.
  • the transformer can also include two input terminals and two output terminals.
  • the neutral line is connected to the first input terminal of the transformer, and correspondingly, the first output terminal corresponding to the first input terminal of the transformer is connected to the first input terminal of the matching circuit, and the first input terminal of the matching circuit is connected to the first input terminal of the matching circuit.
  • the output terminal is connected to the second input terminal of the processor.
  • the second input terminal of the transformer is connected to the second terminal of the switch.
  • the processor can control the switch to connect to the ground or live wire according to whether the power network includes a ground wire, so that the ground or live wire is connected to the second input terminal of the transformer, similarly ,
  • the second output terminal of the transformer is connected with the second input terminal of the matching circuit, and the second output terminal of the matching circuit is connected with the third input terminal of the processor.
  • the detection circuit can detect the ground wire in the power network based on the pre-set optocoupler device and other components, based on the detection instruction issued by the processor, and thereby feedback the detection signal to the processor.
  • the processor can determine whether the power network includes a ground wire according to the detection signal, and then control the switch to connect with the ground wire, the neutral wire or the live wire, and use the SISO+ mode or the SISO mode to transmit data.
  • the detection instruction sent by the processor may be an enable signal, and the embodiment of the present application does not limit the detection instruction.
  • the transmission device may also include a memory and a computer program stored in the memory and capable of running on at least one processor.
  • the processor implements any of the following data when the computer program is executed. Transmit the steps in the embodiment.
  • the memory may be an internal storage unit of the transmission device, such as a hard disk or memory of the transmission device.
  • the memory may also be an external storage device of the transmission device, such as a plug-in hard disk equipped on the transmission device, a smart media card (SMC), and a secure digital (SD) card. , Flash card, etc.
  • the memory may also include not only an internal storage unit of the transmission device, but also an external storage device.
  • the memory is used to store an operating system, an application program, a boot loader (BootLoader), data, and other programs, such as the program code of a computer program.
  • the memory can also be used to temporarily store data that has been output or will be output.
  • FIG. 3 is a structural block diagram of a detection circuit provided by an embodiment of the present application.
  • the detection circuit may include: a first optocoupler 2201, a second optocoupler 2202, a pull-up resistor 2203, The first diode 2204 and the second diode 2205.
  • the first optocoupler and the second optocoupler both include a light emitter and a light receiver.
  • the light emitter may be a light emitting diode
  • the light receiver may be a photosensitive triode.
  • the embodiment of the present application does not limit the light emitter and the light receiver. .
  • the anode of the first diode is connected to the neutral line
  • the cathode of the first diode is connected to the light-emitting device input end of the first optocoupler
  • the anode of the second diode is connected to the live wire
  • the anode of the second diode is connected to the live wire.
  • the cathode of the diode is also connected to the light emitter input end of the first optocoupler.
  • the illuminator output end of the first optocoupler is connected to the receiver input end of the second optocoupler
  • the receiver input end of the first optocoupler is connected to the first end of the pull-up resistor
  • the receiver output end of the first optocoupler is connected to the Public connection.
  • the first end of the pull-up resistor is also connected to the first input end of the processor, and the second end of the pull-up resistor is connected to the high-potential power supply.
  • the light receiver output end of the second optocoupler is connected to the ground wire in the power network, the light emitter input end of the second light coupler is connected to the output end of the processor, and the light emitter output end of the second optocoupler is connected to the common end.
  • the high-potential power supply may be provided according to the built-in power supply of the transmission device, and the common terminal is the ground potential of the high-potential power supply.
  • the common terminal may be the ground potential (GND potential) of the built-in circuit board of the transmission device.
  • the common terminal and high-potential power supply are not limited.
  • the light emitter of the second optocoupler can receive the detection instruction sent by the processor after the transmission device is connected to the power grid and is powered on, and emits light according to the detection instruction.
  • the light receiver of the second optocoupler makes the light receiver of the second optocoupler conduct in conjunction with the ground in the power grid.
  • the light receiver input end of the second optocoupler is connected to the light emitter output end of the first optocoupler, it can receive the high-potential signal output by the light emitter output end of the first optocoupler, and the second optocoupler
  • the output terminal of the light receiver is connected to the ground wire, so as to form a conduction loop, so that the light receiver of the second optocoupler is turned on, so that the light emitter of the first optocoupler can also be turned on.
  • the light receiver of the optocoupler and the ground wire form a loop, and the light emitter of the first optocoupler can emit light to illuminate the light receiver of the first optocoupler.
  • the receiver input end of the first optocoupler is connected to the pull-up resistor, and the receiver output end of the first optocoupler is connected to the common end, then the first optocoupler can be turned on after being irradiated, so that the high potential
  • the power supply, the pull-up resistor, the light receiver of the first optocoupler and the common terminal form a loop
  • the processor connected to the first end of the pull-up resistor can receive the low-level signal at the first end of the pull-up resistor, and the processor then According to the low-level signal, it can be determined that a ground wire is provided in the power network, thereby controlling the switch connected to the processor to be connected to the ground wire, and then adopting the SISO+ mode for pairing and data transmission.
  • the light receiver of the second optocoupler cannot be turned on, so that the light emitter of the first optocoupler cannot form a loop with the light receiver of the second optocoupler, and the light receiver of the first optocoupler cannot emit light. Illuminate the receiver of the first optocoupler, and the receiver of the first optocoupler cannot be turned on. Accordingly, if the processor cannot receive the low-level signal at the first end of the pull-up resistor, the processor can determine that there is no presence in the power grid. Ground wire, which can control the switch to connect with the live wire, use SISO mode for pairing and realize data transmission.
  • the light emitter of the second optocoupler can receive the stop instruction sent by the processor, so that the light emitter input terminal of the second optocoupler no longer inputs a high-level signal, then the second light The light-emitting device of the coupling no longer emits light to illuminate the light-receiver of the second optical coupling, thereby stopping the detection of the ground wire of the power grid, and avoiding the first optical coupling and the second optical coupling from affecting the pairing and data transmission of the transmission device.
  • the first diode and the second diode arranged between the first optocoupler and the neutral line of the live line can prevent the transmission on the live line and/or the neutral line.
  • the electrical signal including the data is back-filled, and it can prevent the short circuit of the neutral wire and the live wire.
  • FIG. 4 is a structural block diagram of another detection circuit provided by an embodiment of the present application.
  • the detection circuit may further include: a first current limiter.
  • the first current-limiting resistor is provided between the first diode and the light-emitting device input end of the first optocoupler
  • the second current-limiting resistor is provided between the second diode and the light-emitting device input end of the first optocoupler. between.
  • a current limiting resistor can be set between the first optocoupler and the neutral line of the live wire to prevent excessive current flowing through the first optocoupler from causing damage to the first optocoupler.
  • An optocoupler and other circuit components cause damage.
  • both the first current-limiting resistor and the second current-limiting resistor can be set as kiloohm-level resistors.
  • the first and second current-limiting resistors can also be set as resistors of other resistance values. There is no restriction on this.
  • FIG. 5 is a structural block diagram of another detection circuit provided by an embodiment of the present application. As shown in FIG. 5, the detection circuit may further include: Standard capacitor 2208 and second safety capacitor 2209.
  • the first safety capacitor is connected in series between the neutral line and the anode of the first diode, so that a safety capacitor is set between the neutral line and the ground line to avoid safety accidents caused by electric shock after the capacitor fails.
  • the second safety capacitor can be connected in series between the live wire and the anode of the second diode.
  • both the first safety capacitor and the second safety capacitor can be Y capacitors.
  • common mode interference during data transmission can also be suppressed, so as to improve the quality of data transmission.
  • a protective circuit can be set between the live wire and the neutral wire. See Figure 6, based on the detection circuit shown in Figure 3. 6 is a structural block diagram of another detection circuit provided by an embodiment of the present application. As shown in FIG. 6, the detection circuit may further include a protection circuit 2210, wherein the protection circuit is connected in series between the live wire and the neutral wire.
  • the protection circuit can be composed of transient suppression diodes, and the transient suppression diodes can include unipolar transient suppression diodes and bipolar transient suppression diodes.
  • Unipolar transient suppression diodes are used in DC environments and bipolar
  • the transient suppression diode is used in the AC environment, and the transmission equipment is used in the AC environment of the power grid, and the bipolar transient suppression diode can be selected to form the protective circuit.
  • FIG. 7 is a structural block diagram of yet another transmission device provided by an embodiment of the present application. As shown in FIG. 7, the detection circuit of the transmission device includes 3 to Figure 6 shows the various components.
  • the processor can send a high-level signal detection instruction to the light-emitting device of the second optocoupler, and the light-emitting device of the second optocoupler can emit light according to the high-level signal , So as to illuminate the light receiver of the second optocoupler.
  • the light receiver of the second optocoupler can interact with the first optocoupler when receiving the high-level signal output by the light emitter of the first optocoupler.
  • the light emitter of an optocoupler and the ground wire form a loop, so that the light receiver of the second optocoupler and the light emitter of the first optocoupler are turned on.
  • the light receiver of the first optocoupler is irradiated by the light emitter of the first optocoupler and can form a loop with the pull-up resistor.
  • the first end of the pull-up resistor is at a low potential, and the processor can receive the low potential signal. Therefore, it is determined that a ground wire is provided in the power network, and then the control switch is connected to the ground wire in the power network, so that the transmission equipment can be paired and data transmitted according to the ground wire and the neutral wire.
  • the processor can control the switch to connect to the live wire, so that the transmission device can be paired and data transmitted through the live wire and the ground wire.
  • the embodiments of this application only take the SISO+ mode of transmitting data between the neutral wire and the ground wire as an example for description, but in practical applications, the SISO+ mode of transmitting data between the live wire and the ground wire can also be used to transmit data, see Figure 8 and Figure 9, if the live wire and ground wire are used to transmit data, the circuit shown in Figure 8 can be used to connect the transmission equipment, that is, the first input of the detection circuit can be connected to the live wire, and the second input of the detection circuit The first output end of the detection circuit can be connected to the first input end of the processor, and the second output end of the detection circuit can be connected to the ground wire; the first input end of the transformer is connected to the live wire, and the first input end of the transformer is connected to the live wire.
  • An output terminal and a second output terminal are respectively connected to the first input terminal and the second input terminal of the matching circuit; the first terminal of the switch is connected to the output terminal of the processor, and the second terminal of the switch is connected to the second input terminal of the transformer ,
  • the third terminal of the switch can be connected to the ground wire or the neutral wire; the second input terminal and the third input terminal of the processor are respectively connected to the first output terminal and the second output terminal of the matching circuit.
  • the circuit shown in Figure 9 shows the various components included in the detection circuit shown in Figure 8.
  • the processor controls the switch so that the switch can be connected to the ground or The neutral wire is connected, and the live wire can be connected to the transformer through the first safety capacitor, so that the live wire is always connected to the transformer, and the switch can be connected to the ground wire or the neutral wire according to whether the power network includes the ground wire, thereby passing the live wire and the ground wire Use the SISO+ mode for data transmission, or use the SISO mode for data transmission through the live wire and the neutral wire, which will not be repeated here.
  • the transmission equipment detects the ground wire in the power network through the detection circuit, and the processor can receive the detection signal fed back by the detection circuit, and based on the detection signal, determine whether the ground wire is included in the power network. , And then according to the judgment result, the control switch is connected with the ground wire, the live wire or the neutral wire in the power network, so that the transmission equipment can be connected with different power lines, so as to adopt different transmission modes for data transmission.
  • the transmission equipment determines whether the power network that the transmission equipment is connected to includes a ground wire, so as to control the switch of the transmission equipment to connect with the ground wire, the live wire or the neutral wire according to the judgment result, and then different transmission modes can be adopted.
  • Pairing and networking with other transmission devices in the power network so that the transmission device can perform data transmission with the paired transmission device after networking, which improves the success rate of the transmission device pairing and networking, and reduces the need for the transmission device to switch the transmission mode again
  • the case of pairing and networking improves the efficiency of pairing and networking of transmission equipment.
  • the light emitters and light receivers of the first optocoupler and the second optocoupler in the detection circuit after receiving the detection instruction sent by the processor, can turn on and emit light according to the principle of the light emitter, the light receiver and the circuit forming the loop components. , Determine whether there is a ground wire in the power grid, and provide a method for detecting whether there is a ground wire in the power grid, and improve the efficiency of detecting whether the power grid includes a ground wire.
  • the electric signal including data transmitted in the neutral line and/or the live line can be prevented from backfilling, and the live line and the neutral line are prevented from being short-circuited;
  • Setting a current limiting resistor in the detection circuit can prevent excessive current flowing through the detection circuit from damaging the detection circuit; by setting the first safety capacitor and the second safety capacitor in the detection circuit, it can prevent electric shock after the capacitor fails;
  • Setting a protection circuit in the detection circuit can prevent the surge phenomenon from damaging the transmission equipment at the moment the transmission equipment is powered on, thereby improving the safety of the detection circuit and the transmission equipment.
  • the processor controls the detection circuit to stop detecting the ground wire in the power network, which prevents the detection circuit from continuously detecting the ground wire in the power network from affecting the transmitted data and improves The quality of the transmitted data.
  • FIG. 10 is a schematic flowchart of a data transmission method provided by an embodiment of the present application. As an example and not a limitation, the method may be applied to the foregoing transmission device. Referring to FIG. 10, the method includes:
  • Step 1001 Turn on the detection function.
  • the transmission device can adopt different transmission modes based on the wire conditions of the power network, pair with other transmission devices that are successfully paired and transmit data. If the power grid includes a ground wire, the transmission device can use the SISO+ mode with less interference to transmit data. If the power grid does not include a ground wire, the transmission device needs to use the SISO mode to transmit data.
  • the detection function can be turned on to detect whether the power grid includes a ground wire, so as to select different transmission modes for pairing and data transmission of the transmission device.
  • the power grid can provide power to the transmission device, and the transmission device can be powered on and complete the startup. After the startup, the transmission device can turn on the detection function to detect whether the transmission device is in the power grid.
  • the ground wire is included so that in the subsequent steps, the transmission device can use SISO mode or SISO+ mode to pair with other transmission devices and transmit data according to the detection result.
  • the processor of the transmission device may send a detection instruction to the detection circuit of the transmission device, so that the detection circuit can detect the ground wire in the power network according to the detection instruction to determine whether a ground wire is provided in the power network.
  • the detection circuit may include the second optocoupler as described in the above embodiments, and the second optocoupler may include a light emitter and a light receiver, and the processor may use a high-level signal as a detection instruction to the light emitter of the second optocoupler.
  • the light-emitting device can be turned on and emit light, thereby illuminating the light-receiver of the second optocoupler, So that in subsequent steps, it is possible to detect whether the power grid includes a ground wire based on the light receiver of the second optocoupler and other components of the detection circuit.
  • transmission devices are usually used in pairs.
  • one transmission device can be connected to a router, and another transmission device can be connected to a terminal device, and the terminal device can receive the router through the transmission device.
  • the data sent can also be forwarded by the router to the Internet through the transmission device.
  • Step 1002 The detection circuit detects the power grid.
  • the transmission equipment After the transmission equipment is powered on, it can detect whether the power network includes a ground wire.
  • the detection circuit of the transmission equipment can control the conduction of each component in the detection circuit according to the level signal sent by the processor of the transmission equipment, and generate and send The processor feeds back the detection signal including the detection result.
  • the detection circuit can detect whether the power grid is set according to the detection instruction through the first optocoupler and the second optocoupler in the detection circuit There is a ground wire, and the detection signal including the detection result is fed back to the processor through the pull-up resistor of the detection circuit.
  • the light emitter of the second optocoupler in the detection circuit can be turned on and emit light according to the detection instruction, so that the emitted light illuminates the light receiver of the second optocoupler. If connected, the light receiver of the second photocoupler and the light emitter of the first photocoupler are turned on, so that the light emitter of the first photocoupler emits light to illuminate the light receiver of the first photocoupler, and the light receiver of the first photocoupler is turned on , So that the potential of the first end of the pull-up resistor in the detection circuit drops.
  • the light-emitting device of the second optocoupler of the detection circuit can receive a detection instruction sent by the processor.
  • the detection instruction can be a high-level signal
  • the light-emitting device of the second optocoupler can be based on the potential difference formed by the high-level signal.
  • the light is turned on and irradiates the light receiver of the second photocoupler.
  • the light receiver output end of the second optocoupler can be connected to the ground wire, and the light receiver input end of the second optocoupler is connected to the light emitter output end of the first optocoupler, and the light receiver output end of the first optocoupler
  • the light-receiver input terminal of the second optocoupler is at a high level.
  • the light-receiver of the second optocoupler is connected to the ground wire, the light-receiver of the second optocoupler is connected to the ground wire. It can be turned on, so that the light emitter of the first optocoupler is also turned on to emit light, so as to illuminate the light receiver of the first optocoupler, and the light receiver of the first optocoupler is turned on under irradiation.
  • the pull-up resistor connected to the light receiver input end of the first optocoupler, when the light receiver is not turned on, the potential of the first end of the pull-up resistor is high, when the light receiver of the first optocoupler After being turned on, the potential of the first end of the pull-up resistor jumps from a high level to a low level due to the extremely small impedance of the light receiver.
  • the light receiver of the second optocoupler will not be turned on, the light emitter of the first optocoupler will not be turned on to emit light, and the light receiver of the first optocoupler will not be turned on.
  • the potential of the first end of the pull-up resistor will not change either.
  • Step 1003 The processor receives the detection signal fed back by the detection circuit.
  • the processor of the transmission device is connected to the first end of the pull-up resistor in the detection circuit, and the processor can detect the potential of the first end of the pull-up resistor, so as to use the potential signal as a detection signal fed back by the detection circuit.
  • the processor may send a stop instruction to the detection circuit, so that the detection circuit stops detecting whether the power network includes a ground wire, so as to avoid affecting the transmitted data.
  • the processor can stop sending a high-level signal to the detection circuit, but send a low-level signal, and the light emitter of the second optocoupler in the detection circuit is no longer turned on and emits light, so that the detection of the ground wire in the power grid can be stopped.
  • Step 1004 The processor determines whether a ground wire is included in the power grid.
  • the processor can detect the potential signal at the first end of the pull-up resistor, and determine whether the power grid includes a ground wire according to the level of the potential signal. If the power grid includes a ground wire, step 1005 can be performed to pair and transmit data in SISO+ mode However, if the power grid does not include a ground wire, step 1006 can be performed to pair and transmit data in the SISO mode.
  • the processor detects that the potential of the first end of the pull-up resistor jumps to a low level, it can determine that there is a ground wire in the power network; if the processor does not detect that the potential of the first end of the pull-up resistor changes, It means that the light receiver of the first optocoupler is not turned on, and it can be determined that the ground wire is not set in the power grid.
  • Step 1005 If the power grid includes a ground wire, the processor controls the switch to connect to the ground wire.
  • the processor determines that the power grid includes a ground wire, it can use the SISO+ mode to pair with other transmission equipment, and use the SISO+ mode to perform data transmission with other transmission equipment.
  • the processor can send a control signal to the switch, and the switch can be connected to the ground of the power grid according to the control signal.
  • Step 1006 If the power grid does not include a ground wire, the processor controls the switch to connect to the live wire or the neutral wire.
  • the processor can control the switch to connect with the live wire or the neutral wire, thereby pairing through the live wire and the neutral wire.
  • the switch is a relay, which is connected to the processor while being connected to the transformer. After receiving the control signal sent by the processor, the relay can be controlled to be connected to the live wire or the neutral wire according to the level of the control signal. SISO mode for paired transmission.
  • the switch can be set between the live wire and the ground wire, and the neutral wire is connected to the transformer; the switch can also be set between the neutral wire and the ground wire, and the live wire is connected to the transformer. Only the switch is arranged between the live wire and the ground wire as an example for description, the embodiment of the present application does not limit the arrangement of the switch.
  • Step 1007 The processor performs data transmission with the paired transmission device.
  • the paired transmission device is determined after the processor controls the matching circuit to perform matching after the switch is connected to the ground wire, the live wire or the neutral wire.
  • the transmission device After determining the transmission mode, the transmission device can use the selected mode to pair with other transmission devices for networking, and after the pairing is successful, it can perform data transmission with the successfully paired transmission device, thereby realizing data transmission through the wires in the power network.
  • the first transmission device and the second transmission device can use the above method to determine the transmission Mode, and pairing is performed based on the determined transmission mode. If the first transmission device detects the second transmission device, it can pair with the second transmission device according to a preset configuration file, thereby completing the pairing and networking of the transmission device.
  • the desktop computer can transmit data to the router through the first transmission device and the second transmission device, and can receive Internet data forwarded by the router, or through the router Forward the data sent by the desktop computer to the Internet.
  • the data transmission method detects the ground wire in the power network through the detection circuit, and the processor can receive the detection signal fed back by the detection circuit, and determine whether the power network includes the ground according to the detection signal. According to the judgment result, the control switch is connected to the ground, live or neutral in the power network so that the transmission equipment can be connected to different power lines, so that different transmission modes are used for data transmission. Before the transmission equipment is paired and networked, it determines whether the power network that the transmission equipment is connected to includes a ground wire, so as to control the switch of the transmission equipment to connect with the ground wire, the live wire or the neutral wire according to the judgment result, and then different transmission modes can be adopted.
  • Pairing and networking with other transmission devices in the power network so that the transmission device can perform data transmission with the paired transmission device after networking, which improves the success rate of the transmission device pairing and networking, and reduces the need for the transmission device to switch the transmission mode again
  • the case of pairing and networking improves the efficiency of pairing and networking of transmission equipment.
  • the light emitters and light receivers of the first optocoupler and the second optocoupler in the detection circuit after receiving the detection instruction sent by the processor, can turn on and emit light according to the principle of the light emitter, the light receiver and the circuit forming the loop components. , Determine whether there is a ground wire in the power grid, and provide a method for detecting whether there is a ground wire in the power grid, and improve the efficiency of detecting whether the power grid includes a ground wire.
  • the processor controls the detection circuit to stop detecting the ground wire in the power grid, which prevents the detection circuit from continuously detecting the ground wire in the power grid from affecting the transmitted data and improves the data transmission rate. quality.
  • circuit modules and algorithm steps of the examples described in combination with the embodiments disclosed herein can be implemented by electronic hardware or a combination of computer software and electronic hardware. Whether these functions are executed by hardware or software depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the disclosed transmission device and method may be implemented in other ways.
  • the above-described embodiments are only illustrative.
  • the division of each circuit module in a transmission device is only a logical function division.
  • there may be other division methods for example, multiple components may be combined. Or it can be integrated into another circuit module, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Transmitters (AREA)

Abstract

本申请适用于数据通信技术领域,提供了一种传输设备及数据传输方法,所述传输设备包括:处理器、检测电路、开关、匹配电路和变压器;处理器分别与匹配电路、检测电路和开关连接,检测电路分别与电力网、变压器和开关连接,变压器分别与开关和匹配电路连接。传输设备在进行配对组网之前,确定传输设备接入的电力网中是否包括地线,并根据判断结果控制传输设备的开关与地线、火线或零线连接,从而可以采用不同的传输模式与电力网中的其他传输设备进行配对组网,以便在组网后传输设备可以与配对的传输设备进行数据传输,提高了传输设备进行配对组网的成功率,减少了传输设备需要切换传输模式再次进行配对组网的情况,提高了传输设备配对组网的效率。

Description

传输设备及数据传输方法
本申请要求于2020年3月31日提交国家知识产权局、申请号为202010243582.1、申请名称为“传输设备及数据传输方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于数据通信技术领域,尤其涉及一种传输设备及数据传输方法。
背景技术
电力线通讯调制解调器,俗称电力猫,是采用电力线通信(power line communication,PLC)技术通过电力线传输数据和媒体信号的设备。电力猫可以采用单输入单输出(single input single output,SISO)模式传输数据,也即是采用单根发射天线和单根接收天线传输数据的模式,SISO模式可以通过电网中的火线和零线传输数据。为了减少电网噪声和电网中电器的噪声的影响,基于SISO模式,电力猫还可以采用改善噪声干扰的SISO+模式传输数据,也即是通过电网中的零线与地线传输数据,从而可以通过地线减少传输数据的过程中所产生的噪声。但是,若电网中并未设置地线,则电力猫在通过默认的SISO+模式进行组网配对时,会造成需要切换至SISO模式进行配对的情况,从而造成组网配对成功率较低的问题。
发明内容
本申请实施例提供了一种传输设备及数据传输方法,可以解决若电网中并未设置地线,传输设备需要切换传输模式进行配对的情况,造成组网配对成功率较低的问题。
第一方面,本申请实施例提供了一种传输设备,包括:处理器、检测电路、开关、匹配电路和变压器;
所述处理器的第一输入端与所述检测电路的第一输出端连接,所述处理器的第二输入端和第三输入端分别与所述匹配电路的第一输出端和第二输出端连接,所述处理器的输出端与所述开关的第一端连接;
所述变压器的第一输出端和第二输出端分别与所述匹配电路的第一输入端和第二输入端连接,所述变压器的第二输入端与所述开关的第二端连接,所述检测电路的第二输出端与地线连接;
若所述检测电路的第一输入端与零线连接,则所述检测电路的第二输入端与火线连接,所述开关的第三端与地线或火线连接,所述变压器的第一输入端与零线连接;
若所述检测电路的第一输入端与火线连接,则所述检测电路的第二输入端与零线连接,所述开关的第三端与地线或零线连接,所述变压器的第一输入端与火线连接;
所述处理器用于控制所述检测电路对所述电力网中的地线进行检测,并根据所述检测电路输出的信号确定所述电力网中是否设置有地线;若所述电力网中未设置所述地线,则所述处理器控制所述开关与所述电力网中的火线或零线连接;若所述电力网 中设置有所述地线,则所述处理器控制所述开关与所述地线连接;
所述变压器用于将所述电力网中的高压电转换为低压电,所述匹配电路用于将所述传输设备与其他接入所述电力网的传输设备进行匹配。
示例性的,该开关可以为继电器,该变压器可以为绕组变压器,该处理器可以为中央处理器(central processing unit,CPU)。
在第一方面的第一种可能的实现方式中,所述检测电路包括:第一光耦、第二光耦、上拉电阻、第一二极管和第二二极管,所述第一光耦和所述第二光耦均包括发光器和受光器;
所述第一二极管的正极与所述零线连接,所述第一二极管的负极与所述第一光耦的发光器输入端连接;
所述第二二极管的正极与所述火线连接,所述第二二极管的负极与所述第一光耦的发光器输入端连接;
所述第一光耦的发光器输出端与所述第二光耦的受光器输入端连接,所述第一光耦的受光器输入端与所述上拉电阻的第一端连接,所述第一光耦的受光器输出端与公共端连接;
所述上拉电阻的第一端与所述处理器的第一输入端连接,所述上拉电阻的第二端与高电位电源连接;
所述第二光耦的受光器输出端与所述电力网中的地线连接,所述第二光耦的发光器输入端与所述处理器的输出端连接,所述第二光耦的发光器输出端与所述公共端连接。
示例性的,发光器可以为发光二极管,受光器可以为光敏三极管。
基于第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述检测电路还包括:第一限流电阻和第二限流电阻;
所述第一限流电阻设置在所述第一二极管和所述第一光耦的发光器输入端之间,所述第二限流电阻设置在所述第二二极管和所述第一光耦的发光器输入端之间。
基于第一方面的第一种可能的实现方式,在第一方面的第三种可能的实现方式中,所述检测电路还包括:第一安规电容和第二安规电容;
所述第一安规电容串接在所述零线和所述第一二极管的正极之间,所述第二安规电容串接在所述火线和所述第二二极管的正极之间。
基于第一方面的第一种可能的实现方式,在第一方面的第四种可能的实现方式中,所述检测电路还包括:防护电路,所述防护电路串接在所述火线和所述零线之间;
所述防护电路由瞬态抑制二极管组成。
第二方面,本申请实施例提供了一种数据传输方法,应用于如上述第一方面任一所述的传输设备,所述方法包括:
所述检测电路对电力网中的地线进行检测;
所述处理器接收所述检测电路反馈的检测信号;
所述处理器根据所述检测信号,判断电力网中是否包括地线;
所述处理器根据判断结果,控制所述开关与所述电力网中的所述地线、火线或零线连接;
所述处理器与配对的传输设备进行数据传输,所述配对的传输设备是所述处理器在所述开关与所述地线、所述火线或所述零线连接后,控制所述匹配电路进行匹配得到的。
在第二方面的第一种可能的实现方式中,在所述检测电路对电力网在的地线进行检测之前,所述方法还包括:
所述处理器向所述传输设备的所述检测电路发送检测指令,使得所述检测电路根据所述检测指令对所述电力网中的所述地线进行检测,确定所述电力网中是否设置有所述地线。
基于第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,所述检测电路对电力网中的地线进行检测,包括:
所述检测电路中第二光耦的发光器可以根据检测指令导通发光,使得发出的光线对所述第二光耦的受光器进行照射;
若所述第二光耦的受光器与所述电力网的地线连接,则所述第二光耦的受光器和所述第一光耦的发光器导通,使得所述第一光耦的发光器发光对所述第一光耦的受光器进行照射,所述第一光耦的受光器导通,使得所述检测电路中所述上拉电阻的第一端的电位下降。
基于第二方面的上述任一可能的实现方式,在第二方面的第三种可能的实现方式中,所述处理器根据判断结果,控制所述开关与所述电力网中的所述地线、火线或零线连接,包括:
若所述电力网包括所述地线,所述处理器控制所述开关与所述地线连接;
若所述电力网不包括所述地线,所述处理器控制所述开关与所述火线或所述零线连接。
本申请实施例与现有技术相比存在的有益效果是:
本申请实施例通过检测电路对电力网中的地线进行检测,处理器则可以接收检测电路反馈的检测信号,并根据检测信号,判断电力网中是否包括地线,再根据判断结果,控制开关与电力网中的地线、火线或零线连接,以便传输设备可以与不同电力线连接,从而采用不同的传输模式进行数据传输。传输设备在进行配对组网之前,通过确定传输设备接入的电力网中是否包括地线,从而根据判断结果控制传输设备的开关与地线、火线或零线连接,进而可以采用不同的传输模式,与电力网中的其他传输设备进行配对组网,以便在组网后传输设备可以与配对的传输设备进行数据传输,提高了传输设备进行配对组网的成功率,减少了传输设备需要切换传输模式再次进行配对组网的情况,提高了传输设备配对组网的效率。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的传输设备所涉及的传输系统的系统架构示意图;
图2是本申请实施例提供的一种传输设备的结构框图;
图3是本申请实施例提供的一种检测电路的结构框图;
图4是本申请实施例提供的另一种检测电路的结构框图;
图5是本申请实施例提供的又一种检测电路的结构框图;
图6是本申请实施例提供的又一种检测电路的结构框图;
图7是本申请实施例提供的又一种传输设备的结构框图;
图8是本申请实施例提供的另一种传输设备的结构框图;
图9是本申请实施例提供的又一种传输设备的结构框图;
图10是本申请实施例提供的一种数据传输方法的示意性流程图。
具体实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。
以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“所述”、“上述”和“该”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。
相关技术中,电力猫默认设置为SISO+模式,电力猫在上电开机后,电力猫可以基于SISO+模式所需的零线和地线与电网中的其他电力猫进行配对,并判断是否组网配对成功,若并未配对成功,则可以继续等待电网中的其他电力猫接入,若等待一段时间后仍未配对成功,则说明电网中不存在地线,无法通过SISO+模式传输数据,则电力猫可以切换至SISO模式进行组网配对,从而实现数据传输。
上述方式中电力猫无法预先确定电力网中是否包括地线,导致电力猫需要先根据默认设置的SISO+模式进行配对,若配对失败,才可以确定电力网中不存在地线,再切换无需地线的SISO模式进行配对,导致电力猫进行组网配对的成功率较低。
而本申请实施例中,传输设备(如电力猫)中通过设置检测电路检测电力网中是否包括地线,并通过传输设备中的处理器控制开关与不同的电力线连接,使得传输设备可以在不同的传输模式下传输数据。传输设备采用先确定电力网是否包括地线,再根据判断结果选取传输模式的方式,提高了传输设备与其他传输设备进行配对组网的成功率。
图1是本申请实施例提供的传输设备所涉及的传输系统的系统架构示意图,如图1所示,该传输系统可以包括:至少两个传输设备110、至少一个终端设备120和路由器130。
其中,路由器130与至少两个传输设备110中的一个传输设备110链路连接,每个终端设备120均与一个传输设备110连接,而各个传输设备110通过传输系统中的电力网连接。
而且,终端设备120与路由器130的数目之和,可以大于或等于传输设备110的数目。例如,传输系统中包括3个终端设备120和1个路由器130,则可以设置2个、3个或4个传输设备110,若设置有2个传输设备110,则路由器130可以与1个传输 设备110连接,3个终端设备120均可以与另一个传输设备110连接;若设置有4个传输设备110,则路由器130和每个终端设备120均可以与一个传输设备110连接。
另外,路由器130可以与互联网连接,用于接收数据,并向互联网发送数据,传输设备110可以通过非屏蔽双绞线(unshielded twisted pair,UTP)与路由器130连接,类似的,各个终端设备120也可以通过UTP与传输设备110连接,而各个传输设备110之间则可以通过电力网连接。
需要说明的是,受到不同环境的限制,电力网中可能设置有地线,也可能并未设置地线,则传输设备在传输数据的过程中,需要先检测电力网中是否存在地线,以便根据检测结果选取不同的传输模式与其他传输设备配对并传输数据。
在一种可能的实现方式中,传输设备在接入电力网后,传输设备基于电力网提供的电能上电并完成开机,之后根据预先设置的检测电路,检测电力网中是否设置有地线,若设置有地线,则采用SISO+模式与其他传输设备进行配对,但是若电力网中并未设置有地线,则采用SISO模式进行配对。在配对成功后,该传输设备即可与传输系统中配对成功的其他传输设备进行数据传输。
例如,该传输设备可以为电力线通讯调制解调器,可以采用插入电源插座的方式接入电力网。
另外,需要说明的是,在实际应用中,终端设备120可以是桌上型计算机、笔记本、掌上电脑及云端服务器等计算设备。该终端设备120可包括,但不仅限于,处理器和存储器。本领域技术人员可以理解,本申请实施例仅仅是终端设备120的举例,并不构成对终端设备的限定,可以包括更多或更少的部件,或者组合某些部件,或者不同的部件,例如还可以包括输入输出设备、网络接入设备等。
图2是本申请实施例提供的一种传输设备的结构框图,为了便于说明,仅示出了与本申请实施例相关的部分。如图2所示,该传输设备可以包括:处理器210、检测电路220、开关230、匹配电路240和变压器250。
其中,处理器的第一输入端与检测电路的第一输出端连接,处理器的第二输入端和第三输入端分别与匹配电路的第一输出端和第二输出端连接,处理器的输出端与开关的第一端连接;变压器的第一输出端和第二输出端分别与匹配电路的第一输入端和第二输入端连接,变压器的第二输入端与开关的第二端连接,检测电路的第二输出端与地线连接。
若检测电路的第一输入端与零线连接,则检测电路的第二输入端与火线连接,开关的第三端与地线或火线连接,变压器的第一输入端与零线连接。
若检测电路的第一输入端与火线连接,则检测电路的第二输入端与零线连接,开关的第三端与地线或零线连接,变压器的第一输入端与火线连接。
处理器用于控制检测电路对电力网中的地线进行检测,并根据检测电路输出的信号确定电力网中是否设置有地线,若电力网中并未设置地线,则处理器可以控制开关与电力网中的火线或零线连接;若电力网中设置有地线,则处理器可以控制开关与地线连接,以根据电力网中是否包括地线采用不同的传输模式对传输设备进行匹配以及数据传输。
例如,处理器可以是CPU,该处理器还可以是其他通用处理器、数字信号处理器 (digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field-programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。其中通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
而且,变压器用于将电力网中的高压电转换为低压电,匹配电路用于将传输设备与其他接入电力网的传输设备进行匹配。
在一种可能实施方式中,传输设备在接入电力网后,传输设备的检测电路与电力网连接,传输设备完成上电并开机,之后,传输设备的处理器可以控制检测电路对电力网中的地线进行检测,检测电路可以根据检测电路中的光耦器件对地线进行检测,并输出检测信号,则处理器可以接收该检测信号,并根据该检测信号的电位高低确定电力网中是否存在地线。
其中,光耦器件是以光为媒介来传输电信号的器件,可以将发光器与受光器封装在同一管壳内。当输入端加电信号时发光器发出光线,受光器受到光线照射之后就产生电流,则输出端可以输出产生的电流,从而实现了“电—光—电”转换,是以光为媒介把输入端信号耦合到输出端的光电耦合器,光耦器件具有体积小、寿命长、无触点,抗干扰能力强,输出端和输入端之间绝缘,可以单向传输信号等优势。
若电力网中存在地线,处理器可以控制开关与地线连接,从而可以采用SISO+模式传输数据。若电力网中并未设置地线,则处理器可以控制开关与火线连接,从而采用SISO模式传输数据。
在连接完毕后,变压器可以对接入的电力网中的高压电进行降压,得到低压电,从而可以通过处理器和匹配电路,对该传输设备和其他与电力网连接的传输设备进行配对,确定与该传输设备相匹配的其他传输设备,进而可以与各个配对的传输设备进行数据传输。
需要说明的是,在实际应用中,在检测电路检测电力网是否包括地线后,处理器可以控制检测电路停止对地线进行检测,避免对传输的数据造成干扰。例如,可以不再向检测电路中的光耦提供高电平信号,从而控制检测电路停止检测地线。
另外,开关的第三端可以根据处理器发送的控制信号,与火线或者地线连接,使得变压器在与零线连接的同时,还可以通过开关与火线或者地线连接,从而通过零线和地线,或者零线和火线进行配对和数据传输。图2中即以开关的第三端根据处理器发送的控制信号与火线或者地线连接为例,进行示例性说明。
或者,开关的第三端可以根据处理器发送的控制信号,与零线或者地线连接,使得变压器在与火线连接的同时,还可以通过开关与零线或者地线连接,从而通过火线和地线,或者零线和火线进行配对和数据传输。
例如,开关可以为继电器,则继电器的第一端可以与处理器连接,第二端可以与变压器连接,第三端则可以根据处理器发出的控制信号,与火线或地线连接。
进一步地,传输设备在传输数据的过程中是通过火线和地线、零线和地线、或者零线和火线进行传输的,匹配电路的两个输入端和两个输出端也可以与电力网中的任意两个电线相对应,也即是,匹配电路的两个输入端可以分别与零线和地线连接,也可以分别与火线和地线连接,还可以分别与零线和火线连接,输出端与输入端类似, 在此不再赘述。
而且,在将电力网与匹配电路连接时,为了避免电力网的高压电对匹配电路造成损毁,可以通过变压器对电力网的高压电进行降压,得到低压电,再将匹配电路与变压器连接,以便匹配电路和处理器可以在低压环境下进行传输设备的匹配和数据传输。与匹配电路类似的,变压器也可以包括两个输入端和两个输出端。
例如,参见图2,零线与变压器的第一输入端连接,相应的,与变压器的第一输入端相对应的第一输出端与匹配电路的第一输入端连接,而匹配电路的第一输出端与处理器的第二输入端连接。变压器的第二输入端与开关的第二端连接,处理器可以根据电力网中是否包括地线,控制开关与地线或火线连接,使得地线或火线与变压器的第二输入端连接,类似的,变压器的第二输出端与匹配电路的第二输入端连接,匹配电路的第二输出端与处理器的第三输入端连接。
另外,检测电路在检测地线的过程中,可以根据预先设置的光耦器件和其他元器件,基于处理器发出的检测指令,对电力网中的地线进行检测,从而向处理器反馈检测信号,处理器可以根据该检测信号确定电力网是否包括地线,进而控制开关与地线、零线或火线连接,采用SISO+模式或者SISO模式传输数据。
其中,处理器发送的检测指令可以为使能信号,本申请实施例对检测指令不做限定。
需要说明的是,在实际应用中,传输设备还可以包括存储器以及存储在存储器中并可在至少一个处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现下述任意各个数据传输实施例中的步骤。
存储器在一些实施例中可以是传输设备的内部存储单元,例如传输设备的硬盘或内存。所述存储器在另一些实施例中也可以是传输设备的外部存储设备,例如传输设备上配备的插接式硬盘,智能存储卡(smart media card,SMC),安全数字(secure digital,SD)卡,闪存卡(flash card)等。进一步地,存储器还可以既包括传输设备的内部存储单元,也包括外部存储设备。存储器用于存储操作系统、应用程序、引导装载程序(BootLoader)、数据以及其他程序等,例如计算机程序的程序代码等。存储器还可以用于暂时地存储已经输出或者将要输出的数据。
参见图3,图3是本申请实施例提供的一种检测电路的结构框图,如图3所示,该检测电路可以包括:第一光耦2201、第二光耦2202、上拉电阻2203、第一二极管2204和第二二极管2205。
其中,第一光耦和第二光耦均包括发光器和受光器,例如,该发光器可以为发光二极管,该受光器可以为光敏三极管,本申请实施例对发光器和受光器不做限定。
如图3所示,第一二极管的正极与零线连接,第一二极管的负极与第一光耦的发光器输入端连接,第二二极管的正极与火线连接,第二二极管的负极也与第一光耦的发光器输入端连接。第一光耦的发光器输出端与第二光耦的受光器输入端连接,第一光耦的受光器输入端与上拉电阻的第一端连接,第一光耦的受光器输出端与公共端连接。上拉电阻的第一端还与处理器的第一输入端连接,上拉电阻的第二端与高电位电源连接。第二光耦的受光器输出端与电力网中的地线连接,第二光耦的发光器输入端与处理器的输出端连接,第二光耦的发光器输出端与公共端连接。
其中,该高电位电源可以根据传输设备内置的电源提供,该公共端是针对高电位电源的地电位,例如,该公共端可以为传输设备内置电路板的地电位(GND电位),本申请实施例对公共端和高电位电源不做限定。
相应的,检测电路在检测电力网是否包括地线的过程中,第二光耦的发光器可以接收传输设备在接入电力网完成上电开机后处理器发送的检测指令,并根据该检测指令发光照射第二光耦的受光器,使得第二光耦的受光器结合电力网中的地线导通。
若电力网中存在地线,且第二光耦的受光器输入端与第一光耦的发光器输出端连接,可以接收第一光耦的发光器输出端输出的高电位信号,第二光耦的受光器输出端与地线连接,从而可以形成导通回路,使得第二光耦的受光器导通,进而使得第一光耦的发光器也能够导通,与零线、火线、第二光耦的受光器和地线形成回路,则第一光耦的发光器可以发光照射第一光耦的受光器。
相应的,第一光耦的受光器输入端与上拉电阻连接,第一光耦的受光器输出端与公共端连接,则第一光耦的在受到照射后可以导通,从而由高电位电源、上拉电阻、第一光耦的受光器和公共端形成回路,则与上拉电阻的第一端连接的处理器可以接收上拉电阻的第一端的低电平信号,处理器则可以根据该低电平信号确定电力网中设置有地线,从而控制与处理器连接的开关与地线连接,进而采用SISO+模式进行配对并实现数据传输。
若电力网中不存在地线,则第二光耦的受光器无法导通,使得第一光耦的发光器无法与第二光耦的受光器形成回路,则第一光耦的发光器无法发光照射第一光耦的受光器,第一光耦的受光器也无法导通,相应的,处理器无法接收上拉电阻的第一端的低电平信号,处理器则可以确定电力网中不存在地线,从而可以控制开关与火线连接,采用SISO模式进行配对并实现数据传输。
需要说明的是,在检测地线完毕后,第二光耦的发光器可以接收处理器发送的停止指令,使得第二光耦的发光器输入端不再输入高电平信号,则第二光耦的发光器不再发光照射第二光耦的受光器,从而停止对电力网的地线进行检测,避免第一光耦和第二光耦对传输设备的配对和数据传输造成影响。
而且,传输设备在进行配对和数据传输的过程中,可以通过设置在第一光耦和火线零线之间的第一二极管和第二二极管,防止在火线和/或零线传输的包括数据的电信号反灌,而且可以防止零线和火线短路。
另外,参见图4,基于图3所示的检测电路,图4是本申请实施例提供的另一种检测电路的结构框图,如图4所示,该检测电路还可以包括:第一限流电阻2206和第二限流电阻2207。
其中,第一限流电阻设置在第一二极管和第一光耦的发光器输入端之间,第二限流电阻设置在第二二极管和第一光耦的发光器输入端之间。
由于电力网输出的是高压电,为了避免电压电流过大导致检测电路损毁,可以在第一光耦和火线零线之间设置限流电阻,防止流过第一光耦的电流过大对第一光耦以及其他电路元器件造成损毁。
例如,第一限流电阻和第二限流电阻均可以设置为千欧级的电阻,当然,第一限流电阻和第二限流电阻也可以设置为其他阻值的电阻,本申请实施例对此不做限定。
进一步地,参见图5,基于图3所示的检测电路,图5是本申请实施例提供的又一种检测电路的结构框图,如图5所示,该检测电路还可以包括:第一安规电容2208和第二安规电容2209。
其中,第一安规电容串接在零线和第一二极管的正极之间,从而实现在零线和地线之间设置安规电容,避免在电容失效后出现电击造成安全事故。类似的,第二安规电容可以串接在火线和第二二极管的正极之间。
而且,第一安规电容和第二安规电容均可以为Y电容,在避免出现电击的情况下,还可以对传输数据过程中出现的共模干扰进行抑制,以提高传输数据的质量。
需要说明的是,为了避免传输设备在上电瞬间出现浪涌现象,对传输设备造成损毁,可以在火线和零线之间设置防护电路,参见图6,基于图3所示的检测电路,图6是本申请实施例提供的又一种检测电路的结构框图,如图6所示,该检测电路还可以包括:防护电路2210,其中,该防护电路串接在火线和零线之间。
例如,该防护电路可以由瞬态抑制二极管组成,而瞬态抑制二极管可以包括单极性瞬态抑制二极管和双极性瞬态抑制二极管,单极性瞬态抑制二极管应用于直流环境,双极性瞬态抑制二极管应用于交流环境,而传输设备应用于电力网的交流环境中,可以选取双极性瞬态抑制二极管组成防护电路。
参见图7,基于图3至图6分别示出的检测电路,图7是本申请实施例提供的又一种传输设备的结构框图,如图7所示,传输设备的检测电路中包括如图3至图6所示的各个元器件。
当传输设备接入电力网后,传输设备上电开机,则处理器可以向第二光耦的发光器发送高电平信号的检测指令,第二光耦的发光器可以根据该高电平信号发光,从而对第二光耦的受光器进行照射,若电力网中设置有地线,第二光耦的受光器在接收第一光耦的发光器输出的高电平信号的情况下,可以与第一光耦的发光器和地线形成回路,从而使得第二光耦的受光器和第一光耦的发光器导通。相应的,第一光耦的受光器受到第一光耦的发光器的照射,可以与上拉电阻形成回路,上拉电阻的第一端处于低电位,则处理器可以接收该低电位信号,从而确定电力网中设置有地线,进而控制开关与电力网中的地线连接,以便能够根据地线和零线对传输设备进行配对和数据传输。
若电力网中并未设置有地线,则按照上述方式进行检测后,处理器可以控制开关与火线连接,从而通过火线和地线对传输设备进行配对和数据传输。
需要说明的是,本申请实施例仅是以零线和地线传输数据的SISO+模式为例进行说明的,但是在实际应用中,还可以采用火线和地线传输数据的SISO+模式传输数据,参见图8和图9,若采用火线和地线传输数据,则可以采用如图8所示的电路对传输设备进行连接,即检测电路的第一输入端可以与火线连接,检测电路的第二输入端可以与零线连接,检测电路的第一输出端与处理器的第一输入端连接,检测电路的第二输出端可以与地线连接;变压器的第一输入端与火线连接,变压器的第一输出端和第二输出端分别与匹配电路的第一输入端和第二输入端连接;开关的第一端与处理器的输出端连接,开关的第二端与变压器的第二输入端连接,开关的第三端可以与地线或零线连接;处理器的第二输入端和第三输入端分别与匹配电路的第一输出端和第二输 出端连接。
图9所示的电路与图8所示的电路相比,对图8中所示的检测电路所包括的各个元器件进行了展示,通过处理器对开关进行控制,使得开关可以与地线或零线连接,而火线则可以通过第一安规电容与变压器连接,使得火线始终与变压器连接,开关则可以根据电力网中是否包括地线,与地线或零线连接,从而通过火线和地线采用SISO+模式进行数据传输,或者通过火线和零线采用SISO模式进行数据传输,在此不再赘述。
综上所述,本申请实施例提供的传输设备,通过检测电路对电力网中的地线进行检测,处理器则可以接收检测电路反馈的检测信号,并根据检测信号,判断电力网中是否包括地线,再根据判断结果,控制开关与电力网中的地线、火线或零线连接,以便传输设备可以与不同电力线连接,从而采用不同的传输模式进行数据传输。传输设备在进行配对组网之前,通过确定传输设备接入的电力网中是否包括地线,从而根据判断结果控制传输设备的开关与地线、火线或零线连接,进而可以采用不同的传输模式,与电力网中的其他传输设备进行配对组网,以便在组网后传输设备可以与配对的传输设备进行数据传输,提高了传输设备进行配对组网的成功率,减少了传输设备需要切换传输模式再次进行配对组网的情况,提高了传输设备配对组网的效率。
而且,检测电路中第一光耦和第二光耦的发光器和受光器,在收到处理器发送的检测指令后,可以根据发光器、受光器以及电路形成回路元器件导通发光的原理,判断电力网中是否设置有地线,提供了一种检测电力网中是否设置有地线的方法,提高了检测电力网是否包括地线的效率。
另外,通过在检测电路中设置第一二极管和第二二极管,可以防止零线和/或火线中传输的包括数据的电信号反灌,防止火线和零线短路;通过在检测电路中设置限流电阻可以防止流过检测电路的电流过大对检测电路造成损毁;通过在检测电路中设置第一安规电容和第二安规电容,可以在电容失效后防止出现电击现象;通过在检测电路中设置防护电路,可以在传输设备上电的瞬间防止浪涌现象对传输设备造成损毁,从而可以提高检测电路和传输设备的安全性。
需要说明的是,在确定电力网中是否包括地线后,处理器控制检测电路停止对电力网中的地线进行检测,避免了检测电路持续检测电力网中的地线对传输的数据造成影响,提高了传输数据的质量。
图10是本申请实施例提供的一种数据传输方法的示意性流程图,作为示例而非限定,该方法可以应用于上述传输设备中,参见图10,该方法包括:
步骤1001、开启检测功能。
在局域网中,传输设备可以基于电力网的电线情况采用不同的传输模式,与配对成功的其他传输设备进行配对并传输数据。若电力网中包括地线,则传输设备可以采用干扰较小的SISO+模式传输数据,若电力网中不包括地线,则传输设备需要采用SISO模式传输数据。
因此,为了确定传输数据所采用的传输模式,传输设备在接入电力网后,可以先开启检测功能,以便检测电力网中是否包括地线,从而选取不同的传输模式对传输设备进行配对以及数据传输。
在一种可能的实现方式中,若传输设备接入电力网,则电力网可以为传输设备提供电能,传输设备则可以上电并完成开机,开机之后,传输设备可以开启检测功能,以检测电力网中是否包括地线,以便在后续步骤中,传输设备可以根据检测结果采用SISO模式或SISO+模式与其他传输设备进行配对并传输数据。
可选的,传输设备的处理器可以向传输设备的检测电路发送检测指令,使得检测电路可以根据该检测指令对电力网中的地线进行检测,确定电力网中是否设置有地线。
例如,检测电路可以包括如上述实施例所述的第二光耦,第二光耦可以包括发光器和受光器,则处理器可以将高电平信号作为检测指令向第二光耦的发光器发送,使得第二光耦的发光器的输入端和输出端之间的电压差值大于发光器的电压阈值,则发光器可以导通并发光,从而对第二光耦的受光器进行照射,以便在后续步骤中,可以根据第二光耦的受光器和检测电路的其他元器件检测电力网中是否包括地线。
需要说明的是,在实际应用中,传输设备通常是成对使用的,例如,一个传输设备可以与路由器连接,而另一个传输设备则可以与终端设备连接,终端设备则可以通过传输设备接收路由器发送的数据,还可以通过传输设备由路由器向互联网转发终端设备发出的数据。
步骤1002、检测电路对电力网进行检测。
传输设备在上电之后可以对电力网中是否包括地线进行检测,则传输设备的检测电路可以根据传输设备的处理器发送的电平信号,控制检测电路中的各个元器件导通,生成并向处理器反馈包括检测结果的检测信号。
与步骤1001中处理器发送检测指令相对应的,检测电路在收到处理器发送的检测指令后,可以根据该检测指令,通过检测电路中的第一光耦和第二光耦检测电力网是否设置有地线,并通过检测的电路的上拉电阻向处理器反馈包括检测结果的检测信号。
可选的,检测电路中第二光耦的发光器可以根据检测指令导通发光,使得发出的光线对第二光耦的受光器进行照射,若第二光耦的受光器与电力网的地线连接,则第二光耦的受光器和第一光耦的发光器导通,使得第一光耦的发光器发光对第一光耦的受光器进行照射,第一光耦的受光器导通,使得检测电路中上拉电阻的第一端的电位下降。
例如,检测电路的第二光耦的发光器可以接收处理器发送的检测指令,该检测指令可以为高电平信号,则第二光耦的发光器则可以根据该高电平信号形成的电势差导通发光,并对第二光耦的受光器进行照射。
若电力网存在地线,则第二光耦的受光器输出端可以与地线连接,而且第二光耦的受光器输入端与第一光耦的发光器输出端连接,且第一光耦的发光器输入端与电力网的火线零线连接,则第二光耦的受光器输入端为高电平,在第二光耦的受光器与地线连接的情况下,第二光耦的受光器可以导通,使得第一光耦的发光器也导通发光,从而对第一光耦的受光器进行照射,第一光耦的受光器在照射下导通。
相应的,与第一光耦的受光器输入端连接的上拉电阻,在受光器并未导通时,上拉电阻的第一端的电位为高电平,当第一光耦的受光器导通后,由于受光器阻抗极小,上拉电阻的第一端的电位由高电平跳变至低电平。
但是,若电力网中不存在地线,则第二光耦的受光器不会导通,第一光耦的发光 器也不会导通发光,第一光耦的受光器也不会导通,上拉电阻的第一端的电位也不会发生变化。
步骤1003、处理器接收检测电路反馈的检测信号。
传输设备的处理器与检测电路中上拉电阻的第一端连接,则处理器可以检测上拉电阻第一端的电位,从而将该电位信号作为检测电路反馈的检测信号。
需要说明的是,处理器在确定电力网中是否包括地线后,可以向检测电路发送停止指令,使得检测电路停止检测电力网中是否包括地线,避免对传输的数据造成影响。例如,处理器可以停止向检测电路发送高电平信号,而是发送低电平信号,则检测电路中第二光耦的发光器不再导通发光,从而可以停止检测电力网中的地线。
步骤1004、处理器判断电力网中是否包括地线。
处理器可以检测上拉电阻第一端的电位信号,并根据该电位信号的高低电平确定电力网中是否包括地线,若电力网包括地线则可以执行步骤1005,采用SISO+模式进行配对并传输数据,但是,若电力网不包括地线,则可以执行步骤1006,采用SISO模式进行配对并传输数据。
例如,若处理器检测到上拉电阻第一端的电位跳变为低电平,则可以确定电力网中设置有地线;若处理器并未检测到上拉电阻第一端的电位发生变化,则说明第一光耦的受光器并未导通,可以确定电力网中并未设置地线。
步骤1005、若电力网包括地线,处理器控制开关与地线连接。
若处理器确定电力网中包括地线,则可以采用SISO+模式与其他传输设备配对,并采用SISO+模式与其他传输设备进行数据传输。相应的,处理器可以向开关发送控制信号,开关则可以根据该控制信号与电力网的地线连接。
步骤1006、若电力网不包括地线,处理器控制开关与火线或零线连接。
若电力网中不包括地线,说明传输设备无法采用SISO+模式进行配对传输,需要采用SISO模式进行配对传输,则处理器可以控制开关与火线或零线连接,从而通过火线和零线进行配对。
例如,开关为继电器,在与变压器连接的同时,还与处理器连接,当接收到处理器发送的控制信号后,可以根据控制信号的高低电平,控制继电器与火线或零线连接,从而采用SISO模式进行配对传输。
需要说明的是,在实际应用中开关可以设置在火线与地线之间,则零线与变压器连接;开关也可以设置在零线与地线之间,则火线与变压器连接,本申请实施例仅以开关设置在火线和地线之间为例进行说明,本申请实施例对开关的设置方式不做限定。
步骤1007、处理器与配对的传输设备进行数据传输。
其中,配对的传输设备是处理器在开关与地线、火线或零线连接后,控制匹配电路进行匹配后确定的。
传输设备在确定传输模式后,可以采用选取的模式与其他传输设备进行配对组网,并在配对成功后,可以与配对成功的传输设备进行数据传输,从而实现通过电力网中的电线传输数据。
例如,第一传输设备和第二传输设备均插入电源插座后,则可以认为第一传输设备和第二传输设备均接入电力网,则第一传输设备和第二传输设备可以采用上述方式 确定传输模式,并基于确定的传输模式进行配对,若第一传输设备检测到第二传输设备,则可根据预先设置的配置文件,与第二传输设备进行配对,从而完成传输设备的配对组网。
若第一传输设备与路由器连接,第二传输设备与台式电脑连接,则台式电脑可以通过第一传输设备和第二传输设备与路由器进行数据传输,可以接收路由器转发的互联网数据,也可以通过路由器向互联网转发台式电脑发送的数据。
综上所述,本申请实施例提供的数据传输方法,通过检测电路对电力网中的地线进行检测,处理器则可以接收检测电路反馈的检测信号,并根据检测信号,判断电力网中是否包括地线,再根据判断结果,控制开关与电力网中的地线、火线或零线连接,以便传输设备可以与不同电力线连接,从而采用不同的传输模式进行数据传输。传输设备在进行配对组网之前,通过确定传输设备接入的电力网中是否包括地线,从而根据判断结果控制传输设备的开关与地线、火线或零线连接,进而可以采用不同的传输模式,与电力网中的其他传输设备进行配对组网,以便在组网后传输设备可以与配对的传输设备进行数据传输,提高了传输设备进行配对组网的成功率,减少了传输设备需要切换传输模式再次进行配对组网的情况,提高了传输设备配对组网的效率。
而且,检测电路中第一光耦和第二光耦的发光器和受光器,在收到处理器发送的检测指令后,可以根据发光器、受光器以及电路形成回路元器件导通发光的原理,判断电力网中是否设置有地线,提供了一种检测电力网中是否设置有地线的方法,提高了检测电力网是否包括地线的效率。
另外,在确定电力网中是否包括地线后,处理器控制检测电路停止对电力网中的地线进行检测,避免了检测电路持续检测电力网中的地线对传输的数据造成影响,提高了传输数据的质量。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的电路模块及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的实施例中,应该理解到,所揭露的传输设备和方法,可以通过其它的方式实现。例如,以上所描述的实施例仅仅是示意性的,例如,传输设备中各个电路模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个元器件可以结合或者可以集成到另一个电路模块,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,均应包含在本申请的保护范围之内。

Claims (9)

  1. 一种传输设备,其特征在于,包括:处理器、检测电路、开关、匹配电路和变压器;
    所述处理器的第一输入端与所述检测电路的第一输出端连接,所述处理器的第二输入端和第三输入端分别与所述匹配电路的第一输出端和第二输出端连接,所述处理器的输出端与所述开关的第一端连接;
    所述变压器的第一输出端和第二输出端分别与所述匹配电路的第一输入端和第二输入端连接,所述变压器的第二输入端与所述开关的第二端连接,所述检测电路的第二输出端与地线连接;
    若所述检测电路的第一输入端与零线连接,则所述检测电路的第二输入端与火线连接,所述开关的第三端与地线或火线连接,所述变压器的第一输入端与零线连接;
    若所述检测电路的第一输入端与火线连接,则所述检测电路的第二输入端与零线连接,所述开关的第三端与地线或零线连接,所述变压器的第一输入端与火线连接;
    所述处理器用于控制所述检测电路对所述电力网中的地线进行检测,并根据所述检测电路输出的信号确定所述电力网中是否设置有地线;若所述电力网中未设置所述地线,则所述处理器控制所述开关与所述电力网中的火线或零线连接;若所述电力网中设置有所述地线,则所述处理器控制所述开关与所述地线连接;
    所述变压器用于将所述电力网中的高压电转换为低压电,所述匹配电路用于将所述传输设备与其他接入所述电力网的传输设备进行匹配。
  2. 如权利要求1所述的传输设备,其特征在于,所述检测电路包括:第一光耦、第二光耦、上拉电阻、第一二极管和第二二极管,所述第一光耦和所述第二光耦均包括发光器和受光器;
    所述第一二极管的正极与所述零线连接,所述第一二极管的负极与所述第一光耦的发光器输入端连接;
    所述第二二极管的正极与所述火线连接,所述第二二极管的负极与所述第一光耦的发光器输入端连接;
    所述第一光耦的发光器输出端与所述第二光耦的受光器输入端连接,所述第一光耦的受光器输入端与所述上拉电阻的第一端连接,所述第一光耦的受光器输出端与公共端连接;
    所述上拉电阻的第一端与所述处理器的第一输入端连接,所述上拉电阻的第二端与高电位电源连接;
    所述第二光耦的受光器输出端与所述电力网中的地线连接,所述第二光耦的发光器输入端与所述处理器的输出端连接,所述第二光耦的发光器输出端与所述公共端连接。
  3. 如权利要求2所述的传输设备,其特征在于,所述检测电路还包括:第一限流电阻和第二限流电阻;
    所述第一限流电阻设置在所述第一二极管和所述第一光耦的发光器输入端之间,所述第二限流电阻设置在所述第二二极管和所述第一光耦的发光器输入端之间。
  4. 如权利要求2所述的传输设备,其特征在于,所述检测电路还包括:第一安规电容和第二安规电容;
    所述第一安规电容串接在所述零线和所述第一二极管的正极之间,所述第二安规电容串接在所述火线和所述第二二极管的正极之间。
  5. 如权利要求2所述的传输设备,其特征在于,所述检测电路还包括:防护电路,所述防护电路串接在所述火线和所述零线之间;
    所述防护电路由瞬态抑制二极管组成。
  6. 一种数据传输方法,其特征在于,应用于如权利要求1至5任一所述的传输设备,所述方法包括:
    所述检测电路对电力网中的地线进行检测;
    所述处理器接收所述检测电路反馈的检测信号;
    所述处理器根据所述检测信号,判断电力网中是否包括地线;
    所述处理器根据判断结果,控制所述开关与所述电力网中的所述地线、火线或零线连接;
    所述处理器与配对的传输设备进行数据传输,所述配对的传输设备是所述处理器在所述开关与所述地线、所述火线或所述零线连接后,控制所述匹配电路进行匹配得到的。
  7. 如权利要求6所述的数据传输方法,其特征在于,在所述检测电路对电力网在的地线进行检测之前,所述方法还包括:
    所述处理器向所述传输设备的所述检测电路发送检测指令,使得所述检测电路根据所述检测指令对所述电力网中的所述地线进行检测,确定所述电力网中是否设置有所述地线。
  8. 如权利要求7所述的数据传输方法,其特征在于,所述检测电路对电力网中的地线进行检测,包括:
    所述检测电路中第二光耦的发光器根据检测指令导通发光,使得发出的光线对所述第二光耦的受光器进行照射;
    若所述第二光耦的受光器与所述电力网的地线连接,则所述第二光耦的受光器和所述第一光耦的发光器导通,使得所述第一光耦的发光器发光对所述第一光耦的受光器进行照射,所述第一光耦的受光器导通,使得所述检测电路中所述上拉电阻的第一端的电位下降。
  9. 如权利要求6至8任一项所述的数据传输方法,其特征在于,所述处理器根据判断结果,控制所述开关与所述电力网中的所述地线、火线或零线连接,包括:
    若所述电力网包括所述地线,所述处理器控制所述开关与所述地线连接;
    若所述电力网不包括所述地线,所述处理器控制所述开关与所述火线或所述零线连接。
PCT/CN2021/080232 2020-03-31 2021-03-11 传输设备及数据传输方法 WO2021197017A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21779529.3A EP4116725A4 (en) 2020-03-31 2021-03-11 TRANSMISSION DEVICE AND DATA TRANSMISSION METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010243582.1A CN113466745B (zh) 2020-03-31 2020-03-31 传输设备及数据传输方法
CN202010243582.1 2020-03-31

Publications (1)

Publication Number Publication Date
WO2021197017A1 true WO2021197017A1 (zh) 2021-10-07

Family

ID=77865593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/080232 WO2021197017A1 (zh) 2020-03-31 2021-03-11 传输设备及数据传输方法

Country Status (3)

Country Link
EP (1) EP4116725A4 (zh)
CN (1) CN113466745B (zh)
WO (1) WO2021197017A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230335102A1 (en) * 2022-04-15 2023-10-19 Chung-Liang Lin Active noise cancelling cord
US12014717B2 (en) * 2022-04-19 2024-06-18 Chung-Liang Lin Active noise cancelling cord

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1120272A (zh) * 1995-04-11 1996-04-10 潘之凯 利用电网低压线进行通讯的方法
CN1454414A (zh) * 2000-05-30 2003-11-05 阿斯科姆电力线通讯有限公司 耦合装置
US20080057866A1 (en) * 2006-08-24 2008-03-06 Sony Deutschland Gmbh Method for transmitting a signal on a power line network, transmitting unit, receiving unit and system
JP2008103854A (ja) * 2006-10-17 2008-05-01 Matsushita Electric Works Ltd 電力線搬送通信装置
CN201821345U (zh) * 2010-09-19 2011-05-04 北京意科通信技术有限责任公司 通过地线进行数据传输的系统
CN203933671U (zh) * 2014-05-21 2014-11-05 中兴通讯股份有限公司 一种智能家庭网关
CN106330734A (zh) * 2015-07-08 2017-01-11 杭州讯能科技有限公司 一种电力线载波通信路由装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4328523A1 (de) * 1993-08-25 1995-03-02 Telefunken Microelectron Vorrichtung zur Datenübertragung auf elektrischen Niederspannungsnetzen
CN2758783Y (zh) * 2004-12-29 2006-02-15 许源芳 一种地线检测装置及一种检知地线状况的接线板
JP4579037B2 (ja) * 2005-04-08 2010-11-10 三菱電機株式会社 電力線搬送通信モデムおよび信号トランス回路
CN1893404B (zh) * 2005-07-01 2010-09-08 海尔集团公司 串行通讯的方法及其接口电路
US9479221B2 (en) * 2009-06-29 2016-10-25 Sigma Designs Israel S.D.I. Ltd. Power line communication method and apparatus
US8604829B2 (en) * 2011-09-07 2013-12-10 Advanced Micro Devices, Inc. Low-power wide-tuning range common-mode driver for serial interface transmitters
US10340864B2 (en) * 2012-05-04 2019-07-02 Infineon Technologies Ag Transmitter circuit and method for controlling operation thereof
US9479222B2 (en) * 2014-07-23 2016-10-25 Qualcomm Incorporated Dynamic mode selection for MIMO powerline devices
CN110797718A (zh) * 2019-11-29 2020-02-14 杨爱国 一种带有地线智能通断和地线带电检测的漏电保护插头

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1120272A (zh) * 1995-04-11 1996-04-10 潘之凯 利用电网低压线进行通讯的方法
CN1454414A (zh) * 2000-05-30 2003-11-05 阿斯科姆电力线通讯有限公司 耦合装置
US20080057866A1 (en) * 2006-08-24 2008-03-06 Sony Deutschland Gmbh Method for transmitting a signal on a power line network, transmitting unit, receiving unit and system
JP2008103854A (ja) * 2006-10-17 2008-05-01 Matsushita Electric Works Ltd 電力線搬送通信装置
CN201821345U (zh) * 2010-09-19 2011-05-04 北京意科通信技术有限责任公司 通过地线进行数据传输的系统
CN203933671U (zh) * 2014-05-21 2014-11-05 中兴通讯股份有限公司 一种智能家庭网关
CN106330734A (zh) * 2015-07-08 2017-01-11 杭州讯能科技有限公司 一种电力线载波通信路由装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4116725A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230335102A1 (en) * 2022-04-15 2023-10-19 Chung-Liang Lin Active noise cancelling cord
US12014717B2 (en) * 2022-04-19 2024-06-18 Chung-Liang Lin Active noise cancelling cord

Also Published As

Publication number Publication date
CN113466745A (zh) 2021-10-01
EP4116725A4 (en) 2023-07-19
CN113466745B (zh) 2022-11-18
EP4116725A1 (en) 2023-01-11

Similar Documents

Publication Publication Date Title
RU2691218C2 (ru) Передача питания через питаемое устройство
US9548613B2 (en) Maintain power signature (MPS) from a powered device (PD) while power is drawn from another source
US20060034376A1 (en) System and method for detecting a device requiring power
US10620678B2 (en) System for transmitting power to a remote PoE subsystem by forwarding PD input voltage
US20200228353A1 (en) Energy-saving power sourcing method, power sourcing equipment, and powered device
CN102457384A (zh) 电源装置
TWI337464B (en) Transceiver device and method with saving power
WO2021197017A1 (zh) 传输设备及数据传输方法
CN214376427U (zh) 总线阻抗匹配电路及总线系统
CN107360005B (zh) 一种受电端设备及受电方法
US11528154B2 (en) Control method, powered device, and system
CN105572821B (zh) 一种低速率双发射sfp光模块
CN201898248U (zh) 一种实现网络供电设备端口互联的装置及系统
CN109445505B (zh) 一种dali总线供电电路
CN111628875B (zh) 一种以太网供电设备端口供电状态指示电路及供电设备
CN214069927U (zh) 一种通过直流电力载波方式传输信号的电路
CN109687863A (zh) Rs485芯片的驱动电路
CN209823751U (zh) 一种通过直流电源线斩波传输数据的系统
CN209447019U (zh) Rs485设备连接电路和系统
CN112491678A (zh) 数字电平传输电路及方法
CN213898592U (zh) 一种防夹手自动门光栅
CN205453784U (zh) 一种网络通信接口设备
WO2018155696A1 (ja) 通信システム
CN218416401U (zh) 一种双网口poe供电结构
JP2020187679A (ja) 直流電源装置及び電気機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21779529

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021779529

Country of ref document: EP

Effective date: 20221005

NENP Non-entry into the national phase

Ref country code: DE