WO2021196778A1 - 温度响应型聚甲基丙烯酸羟乙酯及制备方法 - Google Patents

温度响应型聚甲基丙烯酸羟乙酯及制备方法 Download PDF

Info

Publication number
WO2021196778A1
WO2021196778A1 PCT/CN2020/140468 CN2020140468W WO2021196778A1 WO 2021196778 A1 WO2021196778 A1 WO 2021196778A1 CN 2020140468 W CN2020140468 W CN 2020140468W WO 2021196778 A1 WO2021196778 A1 WO 2021196778A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
solution
methyl
responsive
polyhydroxyethyl methacrylate
Prior art date
Application number
PCT/CN2020/140468
Other languages
English (en)
French (fr)
Inventor
黄文艳
朱迪
蒋必彪
薛小强
杨宏军
江力
蒋其民
Original Assignee
常州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常州大学 filed Critical 常州大学
Priority to US17/414,969 priority Critical patent/US11377508B2/en
Publication of WO2021196778A1 publication Critical patent/WO2021196778A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/20Esters of polyhydric alcohols or phenols, e.g. 2-hydroxyethyl (meth)acrylate or glycerol mono-(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/10Esters
    • C08F120/20Esters of polyhydric alcohols or polyhydric phenols, e.g. 2-hydroxyethyl (meth)acrylate or glycerol mono-(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D139/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Coating compositions based on derivatives of such polymers
    • C09D139/04Homopolymers or copolymers of monomers containing heterocyclic rings having nitrogen as ring member
    • C09D139/06Homopolymers or copolymers of N-vinyl-pyrrolidones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/32Polymerisation in water-in-oil emulsions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/28Oxygen or compounds releasing free oxygen
    • C08F4/32Organic compounds
    • C08F4/34Per-compounds with one peroxy-radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/40Redox systems
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/20Esters of polyhydric alcohols or polyhydric phenols, e.g. 2-hydroxyethyl (meth)acrylate or glycerol mono-(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen

Definitions

  • the invention belongs to the field of functional polymer preparation in polymer synthesis, and specifically relates to a temperature-responsive polyhydroxyethyl methacrylate and a preparation method.
  • Temperature-responsive polymers can be divided into low critical phase transition temperature (LCST) type and high critical phase transition temperature (UCST) type.
  • LCST type polymer refers to a type of polymer in which the polymer solution changes from soluble and clear to insoluble and turbid, or the hydrogel changes from swelling to shrinking. The temperature at which the solution or gel changes suddenly Low critical phase transition temperature.
  • Poly(N-isopropylacrylamide) is a typical LCST type polymer.
  • UCST polymers When the temperature is lowered, the polymer solution will change from soluble and clear to insoluble and turbid, or the hydrogel will change from swelling to shrinking. The temperature at which a sudden change occurs is the high critical phase transition temperature.
  • common UCST-type polymers include polymethacrylamide (PMAM), poly(N-acrylamide) (PNAGA), polyacrylamide (PAM) and their copolymers. Most of these polymers will only have a UCST temperature response when the cross-linked hydrogel is swelled in water, and the formation of a cross-linked structure means that it cannot be reshaped.
  • PHEMA Polyhydroxyethyl methacrylate
  • the purpose of the present invention is to provide a temperature-responsive polyhydroxyethyl methacrylate and a preparation method thereof.
  • the reaction system of the method is simple and easy to operate, the polymerization rate is fast, and the obtained polyhydroxyethyl methacrylate has a high molecular weight.
  • 2-methyl-N-[3-(methyl-phenyl-amino)-propyl]-acrylamide (MPAEMA) or 2-methyl-N- [3-(Methyl-phenyl-amino)-propyl]-propionamide (MEMA) is a reducing agent monomer to form a redox initiation system
  • water and toluene are the media
  • non-ionic surfactants are emulsifiers
  • Hydroxyethyl acrylate is a polymerized monomer, which is reacted at room temperature to obtain temperature-responsive polyhydroxyethyl methacrylate through free radical inverse emulsion polymerization.
  • the polymerization system is simple, easy to operate, and short reaction time.
  • the absorbance-temperature curve of the polyhydroxyethyl methacrylate solution during the cooling process was measured by an ultraviolet-visible spectrophotometer, and it was found that the isopropanol solution of polyhydroxyethyl methacrylate and the n-propylene of polyhydroxyethyl methacrylate During the cooling process of the alcohol solution, the absorbance suddenly increased within a certain temperature range, while the absorbance of the polymer methanol solution and the polymer ethanol solution did not change significantly during the cooling process from 40°C to 0°C.
  • the preparation method of 2-methyl-N-[3-(methyl-phenyl-amino)-propyl]-acrylamide is: separately N-(3-aminopropyl)-N-methylaniline (Commercially available), triethylamine and methacrylic acid chloride are dissolved in tetrahydrofuran to prepare a dilute solution with a concentration of 1g/10mL.
  • the preparation method of 2-methyl-N-[3-(methyl-phenyl-amino)-propyl]-propionamide is: separately N-(3-aminopropyl)-N-methylaniline (market (Sold), triethylamine and isobutyryl chloride are dissolved in tetrahydrofuran to prepare a dilute solution with a concentration of 1g/10mL.
  • the concentration of the aqueous monomer solution is 25%; the molar ratio of the oxidant to the reducing agent is 1:1; the ratio of the amount of the reducing agent monomer to the polymerized monomer is 1:80-1:200; the mass ratio of water to toluene is 1:1;
  • the nonionic surfactant is a compound emulsifier of Tween80 and Span85, the total mass of Tween80 and Span85 is 10% of the mass of toluene, and the mass ratio of Tween80 and Span85 is 1:1;
  • the polymerization reaction temperature is 25°C, and the polymerization reaction time is 1-8 hours.
  • the weight average molecular weight of the obtained polyhydroxyethyl methacrylate is 133000-2442000g/mol; the obtained polyhydroxyethyl methacrylate is used for temperature-responsive smart materials, and its isopropanol solution or n-propanol solution is in the cooling process
  • the absorbance increases suddenly within a certain temperature range, and it is temperature responsive.
  • the concentration of the polymer in the propanol solution is 1-15mg/mL
  • the temperature range of polymer solution temperature response test is 0-40°C;
  • the temperature range where the absorbance of the polymer solution changes suddenly is 2-25°C;
  • the cloud point temperature of the polymer in the propanol solution ranges from 2 to 23°C.
  • dibenzoyl peroxide and 2-methyl-N-[3-(methyl-phenyl-amino)-propyl]-acrylamide (or 2-methyl-N-[3- (Methyl-phenyl-amino)-propyl]-propionamide) constitutes a redox initiation system.
  • the polymerization of hydroxyethyl methacrylate is initiated at room temperature and pressure to generate temperature-responsive polymethyl Hydroxyethyl acrylate.
  • suitable inverse emulsion polymerization reaction conditions the polymerization speed is fast, the reaction time is short, and the monomer conversion rate is high.
  • the obtained polyhydroxyethyl methacrylate has a high molecular weight, and the molecular weight and high critical phase transition temperature can be adjusted according to the polymerization reaction conditions.
  • the whole system is simple and stable, with mild conditions and easy operation, which is suitable for the promotion of large-scale applications.
  • the present invention has the following beneficial technical effects:
  • the reducing agent monomer used in the method of the present invention is simple to synthesize and easy to purify; the entire reaction system is simple and stable, the reaction conditions are mild, there is no need to control temperature, the operation is simple and easy, the impact on the environment is small, and the energy consumption is low. , Suitable for industrialized mass production.
  • the method of the present invention has a short reaction time, a high monomer conversion rate, and the obtained polyhydroxyethyl methacrylate has a high molecular weight and can be controlled in a wide range.
  • PHEMA with higher molecular weight was synthesized by inverse emulsion polymerization, and the temperature response of UCST was observed for the first time in isopropanol and n-propanol solutions. It can be used as a temperature-responsive smart material, which broadens the synthesis method of smart materials And the scope of application.
  • Figure 1 is a graph showing the relationship between the absorbance of the isopropanol solution of the polymers obtained in Examples 1 and 2 and the temperature.
  • Figure 2 is a graph showing the relationship between the absorbance of the isopropanol solution of the polymers obtained in Examples 3 and 4 and the temperature.
  • Figure 3 is a graph showing the relationship between the absorbance of the isopropanol solution of the polymers obtained in Examples 5 and 6 and the temperature.
  • the specific process is: adding hydroxyethyl methacrylate (0.0400mol) Dissolve in water (300wt% hydroxyethyl methacrylate) to prepare an aqueous solution of hydroxyethyl methacrylate (25wt%).
  • Demulsification is demulsified with tetrahydrofuran, washed with water three times and then dried, and purified three times and dried to obtain a polymer.
  • the absolute weight average molecular weight of the polymer M w.MALLS 133000 g/mol is measured by dynamic and static light scattering.
  • the preparation method of 2-methyl-N-[3-(methyl-phenyl-amino)-propyl]-propionamide is: separately N-(3-aminopropyl)-N-methylaniline (market (Sold), triethylamine and isobutyryl chloride are dissolved in tetrahydrofuran to prepare a dilute solution with a concentration of 1g/10mL.
  • polyhydroxyethyl methacrylate was prepared by inverse emulsion polymerization (others are the same as in Example 1), and the polymer was measured by dynamic and static light scattering
  • the absolute weight average molecular weight M w.MALLS 1605000 g/mol.
  • the absorbance was measured using an ultraviolet-visible spectrophotometer. After that, the temperature was gradually lowered, and the absorbance was measured after 10 minutes of equilibration at each temperature. The test found that the absorbance of the solution increased suddenly in the range of 12°C-14°C during the cooling process, which proved its temperature responsiveness.
  • polyhydroxyethyl methacrylate was prepared by inverse emulsion polymerization (others are the same as in Example 1), and the polymer was measured by dynamic and static light scattering
  • the absolute weight average molecular weight M w.MALLS 2442000g/mol.
  • the absorbance was measured using an ultraviolet-visible spectrophotometer. After that, the temperature was gradually lowered, and the absorbance was measured after 10 minutes of equilibration at each temperature. The test found that the absorbance of the solution increased suddenly in the range of 16°C-17°C during the cooling process, which proved its temperature responsiveness.
  • the preparation method of 2-methyl-N-[3-(methyl-phenyl-amino)-propyl]-acrylamide is: separately N-(3-aminopropyl)-N-methylaniline (market (Sold), triethylamine and methacrylic acid chloride are dissolved in tetrahydrofuran to prepare a dilute solution with a concentration of 1g/10mL.
  • polyhydroxyethyl methacrylate was prepared by inverse emulsion polymerization (others are the same as in Example 1), and the polymer was measured by dynamic and static light scattering
  • the absolute weight average molecular weight M w.MALLS 1671000 g/mol.
  • the solution is placed in an oven at 60°C for more than 24 hours to ensure that the polymer is fully dissolved in the solvent isopropanol and weighed at any time to supplement the volatile solvent to keep the concentration of the solution unchanged.
  • the absorbance was measured using an ultraviolet-visible spectrophotometer. After that, the temperature was gradually lowered, and the absorbance was measured after 10 minutes of equilibration at each temperature. The test found that the absorbance of the solution increased suddenly in the range of 13°C-15°C during the cooling process, which proved its temperature responsiveness.
  • polyhydroxyethyl methacrylate was prepared by inverse emulsion polymerization (others are the same as in Example 1), and the polymer was measured by dynamic and static light scattering
  • M w.MALLS 1605000 g/mol.
  • the solution is placed in an oven at 60°C for more than 24 hours to ensure that the polymer is fully dissolved in the solvent isopropanol and weighed at any time to supplement the volatile solvent to keep the concentration of the solution unchanged.
  • the absorbance was measured using an ultraviolet-visible spectrophotometer. After that, the temperature was gradually lowered, and the absorbance was measured after 10 minutes of equilibration at each temperature. The test found that the absorbance of the solution increased suddenly in the range of 19°C-25°C during the cooling process, which proved its temperature responsiveness.
  • polyhydroxyethyl methacrylate was prepared by inverse emulsion polymerization (others are the same as in Example 1), and the polymer was measured by dynamic and static light scattering
  • the absolute weight average molecular weight M w.MALLS 1671000 g/mol.
  • the solution is placed in an oven at 60°C for more than 24 hours to ensure that the polymer is fully dissolved in the solvent isopropanol, and weighed at any time to supplement the volatile solvent to keep the concentration of the solution unchanged.
  • the absorbance was measured using an ultraviolet-visible spectrophotometer. After that, the temperature was gradually lowered, and the absorbance was measured after 10 minutes of equilibration at each temperature. The test found that the absorbance of the solution increased suddenly in the range of 21°C-24°C during the cooling process, which proved its temperature responsiveness.
  • polyhydroxyethyl methacrylate was prepared by inverse emulsion polymerization (others are the same as in Example 1), and the polymer was measured by dynamic and static light scattering
  • the absolute weight average molecular weight M w.MALLS 133000g/mol.
  • the absorbance was measured using an ultraviolet-visible spectrophotometer. After that, the temperature was gradually lowered, and the absorbance was measured after 10 minutes of equilibration at each temperature. The test found that the absorbance of the solution increased suddenly in the range of 8°C-10°C during the cooling process, which proved its temperature responsiveness.
  • polyhydroxyethyl methacrylate was prepared by inverse emulsion polymerization (others are the same as in Example 1), and the polymer was measured by dynamic and static light scattering
  • the absolute weight average molecular weight M w.MALLS 1671000 g/mol.
  • the absorbance was measured using an ultraviolet-visible spectrophotometer. After that, the temperature was gradually lowered, and the absorbance was measured after 10 minutes of equilibration at each temperature. The test found that the absorbance of the solution increased suddenly in the range of 19°C-22°C during the cooling process, which proved its temperature responsiveness.
  • polyhydroxyethyl methacrylate was prepared by inverse emulsion polymerization (others are the same as in Example 1), and the polymer was measured by dynamic and static light scattering
  • the absolute weight average molecular weight M w.MALLS 133000g/mol.
  • the absorbance was measured using an ultraviolet-visible spectrophotometer. After that, the temperature was gradually lowered, and the absorbance was measured after 10 minutes of equilibration at each temperature. The test found that the absorbance of the solution in the vicinity of 0°C-40°C did not change significantly during the cooling process.
  • polyhydroxyethyl methacrylate was prepared by inverse emulsion polymerization (others are the same as in Example 1), and the polymer was measured by dynamic and static light scattering
  • the absolute weight average molecular weight M w.MALLS 133000g/mol.
  • the absorbance was measured using an ultraviolet-visible spectrophotometer. After that, the temperature was gradually lowered, and the absorbance was measured after 10 minutes of equilibration at each temperature. The test found that the absorbance of the solution in the vicinity of 0°C-40°C did not change significantly during the cooling process.
  • polyhydroxyethyl methacrylate was prepared by inverse emulsion polymerization (others are the same as in Example 1), and the polymer was measured by dynamic and static light scattering
  • the absolute weight average molecular weight M w.MALLS 2442000g/mol.
  • the absorbance was measured using an ultraviolet-visible spectrophotometer. After that, the temperature was gradually lowered, and the absorbance was measured after 10 minutes of equilibration at each temperature. The test found that the absorbance of the solution in the vicinity of 0°C-40°C did not change significantly during the cooling process.
  • polyhydroxyethyl methacrylate was prepared by inverse emulsion polymerization (others are the same as in Example 1), and the polymer was measured by dynamic and static light scattering
  • the absolute weight average molecular weight M w.MALLS 133000g/mol. Weigh 1 mg of polymer and dissolve it in butanol. To prepare a 1 mg/mL solution, polyhydroxyethyl methacrylate cannot be dissolved in butanol.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

本发明属于聚合物合成领域,具体涉及一种温度响应型聚甲基丙烯酸羟乙酯及制备方法。以过氧化二苯甲酰为氧化剂、2-甲基-N-[3-(甲基-苯基-氨基)-丙基]-丙烯酰胺或2-甲基-N-[3-(甲基-苯基-氨基)-丙基]-丙酰胺为还原剂单体组成氧化还原引发体系,水和甲苯为介质,非离子型表面活性剂为乳化剂,甲基丙烯酸羟乙酯为单体,室温常压下聚合反应,得到聚甲基丙烯酸羟乙酯,其醇溶液具有高临界相变温度。本发明聚合体系简单且稳定,聚合成本较低,操作易行,条件温和,对环境的影响较小,能耗低,产品的分子量与高临界相变温度在一定范围内可控。对温度响应性聚合物的理论研究和规模化应用具有重要的意义。

Description

温度响应型聚甲基丙烯酸羟乙酯及制备方法 技术领域
本发明属于聚合物合成中功能聚合物制备领域,具体涉及一种温度响应型聚甲基丙烯酸羟乙酯及制备方法。
背景技术
智能材料是对环境具有可感知、可响应能力的材料,是集自检测、自判断和自处理功能于一体的新型材料。温度响应型聚合物作为一种重要且具有潜力的智能材料,在药物释放、组织工程和分离提纯等领域都具有广泛的开发与利用。温度响应型聚合物可分为低临界相变温度(LCST)型和高临界相变温度(UCST)型两大类。
LCST型聚合物是指当温度升高时,聚合物溶液会由溶解澄清变为不溶浑浊、或水凝胶从溶胀变为收缩的一类聚合物,溶液或凝胶发生突变时的温度即为低临界相变温度。聚(N-异丙基丙烯酰胺)即为典型的LCST型聚合物。
UCST型聚合物则相反,当温度降低时,聚合物溶液会由溶解澄清变为不溶浑浊、或水凝胶从溶胀变为收缩,发生突变时的温度即为高临界相变温度。目前常见的UCST型聚合物有聚甲基丙烯酰胺(PMAM)、聚(N-丙烯酰丙烯酰胺)(PNAGA)、聚丙烯酰胺(PAM)及其共聚物。大多数此类聚合物只有形成交联的水凝胶溶胀在水中时才会有UCST温度响应现象,而形成交联结构意味着无法重复成型。
聚甲基丙烯酸羟乙酯(PHEMA)具有高透光,高吸水,无毒等优点,但是目前对其聚合过程的控制能力不足,因此合成的大多数为低分子量的线型PHEMA或交联的PHEMA水凝胶。
发明内容
本发明的目的在于提供了一种温度响应型聚甲基丙烯酸羟乙酯及制备方法方法,该方法反应体系简单易操作,聚合速率快,所得聚甲基丙烯酸羟乙酯分子量高。以过氧化二苯甲酰(BPO)为氧化剂、2-甲基-N-[3-(甲基-苯基-氨基)-丙基]-丙烯酰胺(MPAEMA)或2-甲基-N-[3-(甲基-苯基-氨基)-丙基]-丙酰胺(MEMA)为还原剂单体组成氧化还原引发体系,水和甲苯为介质,非离子型表面活性剂为乳化剂,甲基丙烯酸羟乙酯为聚合单体,通过自由基反相乳液聚合,在室温下反应得到温度响应型聚甲基丙烯酸羟乙酯。聚合体系简单,操作易行,反应时间短。通过紫外-可见光分光光度计测定聚甲基丙烯酸羟乙酯溶液在降温过程中的吸光度-温度曲线,发现聚甲基丙烯酸羟乙酯的异丙醇溶液和聚甲基丙烯酸羟乙酯的正丙醇溶液降温过程中在一定温度范围内吸光度发生突增,而聚合物甲醇溶液与聚合物乙醇溶液在从40℃到0℃的降温过程中吸光度没有明显变化。
其中,2-甲基-N-[3-(甲基-苯基-氨基)-丙基]-丙烯酰胺的制备方法为:分别将N-(3-氨丙基)-N-甲基苯胺(市售)、三乙胺与甲基丙烯酰氯溶解在四氢呋喃中配制成浓度为1g/10mL的稀溶液。按N-(3-氨丙基)-N-甲基苯胺:三乙胺:甲基丙烯酰氯的摩尔比为4:6:5称取溶液,将N-(3-氨丙基)-N-甲基苯胺溶液与三乙胺溶液在0-5℃下共混并剧烈搅拌,同时将甲基丙烯酰氯溶液缓慢滴入其中。反应24小时后过滤出滤液,旋转蒸发除去溶剂后得到粗产物,将粗产物溶解在乙醚中并滴入冰正己烷内重结晶,即可得到还原剂单体MPAEMA。
2-甲基-N-[3-(甲基-苯基-氨基)-丙基]-丙酰胺的制备方法为:分别将N-(3-氨丙基)-N-甲基苯胺(市售)、三乙胺与异丁酰氯溶解在四氢呋喃中配制成浓度为1g/10mL的稀溶液。按N-(3-氨丙基)-N-甲基苯胺:三乙胺:异丁酰氯的摩尔比为 1:1.5:1.2称取溶液,将N-(3-氨丙基)-N-甲基苯胺溶液与三乙胺溶液在0-5℃下共混并剧烈搅拌,同时将异丁酰氯溶液缓慢滴入其中。反应24小时后过滤出滤液,旋转蒸发除去溶剂后得到粗产物,将粗产物溶解在乙醚中并滴入冰正己烷内重结晶,即可得到模型还原剂MEMA。
单体的水溶液浓度为25%;氧化剂与还原剂的摩尔比为1:1;还原剂单体和聚合单体的物质的量比为1:80-1:200;水和甲苯的质量比为1:1;
非离子型表面活性剂为Tween80和Span85复配乳化剂,Tween80和Span85的总质量为甲苯质量的10%,Tween80和Span85的质量比为1:1;
所述聚合反应温度为25℃,聚合反应时间为1-8小时。
得到的聚甲基丙烯酸羟乙酯的重均分子量为133000-2442000g/mol;所得聚甲基丙烯酸羟乙酯用于温度响应型智能材料,其异丙醇溶液或正丙醇溶液在降温过程中在一定的温度范围内吸光度发生突增,具有温度响应性。
聚合物在丙醇溶液中的浓度为1-15mg/mL;
聚合物溶液温度响应性测试的温度范围为0-40℃;
聚合物溶液的吸光度发生突变的温度范围为2-25℃;
聚合物在丙醇溶液中的浊点温度范围为2-23℃。
本发明中,以过氧化二苯甲酰和2-甲基-N-[3-(甲基-苯基-氨基)-丙基]-丙烯酰胺(或2-甲基-N-[3-(甲基-苯基-氨基)-丙基]-丙酰胺)组成氧化还原引发体系,在反相乳液聚合条件下,室温常压引发甲基丙烯酸羟乙酯聚合,生成温度响应型聚甲基丙烯酸羟乙酯。采用合适的反相乳液聚合反应条件,聚合速度快,反应时间短,单体转化率高。所得聚甲基丙烯酸羟乙酯的分子量高,分子量与高临界相变温度可根据聚合反应条件调节。整个体系简单且稳定,条件温和,操作易行,适用于进行规模化应用的推广。
与现有技术相比,本发明具有以下有益的技术效果:
1、本发明方法中所使用的还原剂单体合成简单,易于提纯;整个反应体系简单且稳定,反应条件温和,勿需控温,操作简单易行,对环境的影响较小,能耗低,适合应用于工业化大规模生产。
2、本发明方法反应时间短,单体转化率高,所得聚甲基丙烯酸羟乙酯的分子量高且可以在较宽范围内进行调控。
3、通过反相乳液聚合合成了分子量较高的PHEMA,并首次在异丙醇与正丙醇溶液中观测其UCST温度响应现象,可以作为温度响应型智能材料使用,拓宽了智能材料的合成方法与应用范围。
附图说明
图1为例1、2所得聚合物的异丙醇溶液吸光度与温度的关系图。
图2为例3、4所得聚合物的异丙醇溶液吸光度与温度的关系图。
图3为例5、6所得聚合物的异丙醇溶液吸光度与温度的关系图。
具体实施方式
下面结合实施例对本发明做进一步描述,但不限于此。
实施例1
按[HEMA]:[MEMA]:[BPO]=40:1:1配比通过反相乳液聚合制备聚甲基丙烯酸羟乙酯,具体过程为:将甲基丙烯酸羟乙酯(0.0400mol)加入到水(300wt%甲基丙烯酸羟乙酯)中溶解,配置成甲基丙烯酸羟乙酯水溶液(25wt%)。将甲基丙烯酸羟乙酯水溶液加入到放有甲苯(400wt%甲基丙烯酸羟乙酯)、Span85(5wt%甲苯)、Tween80(5wt%甲苯)、还原剂单体MEMA(0.0010mol)的反应瓶中,搅拌均匀并抽真空排氧后,加入氧化剂BPO(0.0010mol),置于25℃水浴锅中反应8小时,测得甲基丙烯酸羟乙酯转化率为94.3%。用四氢呋喃破乳, 经三次水洗后烘干,再经三次提纯后烘干,得到聚合物。通过动静态光散射测得聚合物的绝对重均分子量M w.MALLS=133000g/mol。
称取1mg聚合物溶解在异丙醇中,配置成1mg/mL的溶液,称量并记录溶液质量。溶液在60℃烘箱中放置24h以上,确保聚合物充分溶解在溶剂异丙醇中,并且随时称重,补充挥发的溶剂,使溶液浓度保持不变。在7℃下平衡1h后,使用紫外-可见光分光光度计测定其吸光度。之后逐步降温,每个温度下平衡10min后,测定其吸光度。测试发现降温过程中溶液在2℃-3℃附近范围内吸光度出现突增,证明其具有温度响应性。
2-甲基-N-[3-(甲基-苯基-氨基)-丙基]-丙酰胺的制备方法为:分别将N-(3-氨丙基)-N-甲基苯胺(市售)、三乙胺与异丁酰氯溶解在四氢呋喃中配制成浓度为1g/10mL的稀溶液。按N-(3-氨丙基)-N-甲基苯胺:三乙胺:异丁酰氯的摩尔比为1:1.5:1.2称取溶液,将N-(3-氨丙基)-N-甲基苯胺溶液与三乙胺溶液在0-5℃下共混并剧烈搅拌,同时将异丁酰氯溶液缓慢滴入其中。反应24小时后过滤出滤液,旋转蒸发除去溶剂后得到粗产物,将粗产物溶解在乙醚中并滴入冰正己烷内重结晶,即可得到模型还原剂MEMA。
实施例2
按[HEMA]:[MEMA]:[BPO]=200:1:1配比通过反相乳液聚合制备聚甲基丙烯酸羟乙酯(其他同实施例1),通过动静态光散射测得聚合物的绝对重均分子量M w.MALLS=1605000g/mol。称取1mg聚合物溶解在异丙醇中,配置成1mg/mL的溶液,称量并记录溶液质量。溶液在60℃烘箱中放置24h以上,确保聚合物充分溶解在溶剂异丙醇中,并且随时称重,补充挥发的溶剂,使溶液浓度保持不变。在18℃下平衡1h后,使用紫外-可见光分光光度计测定其吸光度。之后逐步降温,每个温度下平衡10min后,测定其吸光度。测试发现降温过程 中溶液在12℃-14℃附近范围内吸光度出现突增,证明其具有温度响应性。
实施例3
按[HEMA]:[MPAEMA]:[BPO]=80:1:1配比通过反相乳液聚合制备聚甲基丙烯酸羟乙酯(其他同实施例1),通过动静态光散射测得聚合物的绝对重均分子量M w.MALLS=2442000g/mol。称取1mg聚合物溶解在异丙醇中,配置成1mg/mL的溶液,称量并记录溶液质量。溶液在60℃烘箱中放置24h以上,确保聚合物充分溶解在溶剂异丙醇中,并且随时称重,补充挥发的溶剂,使溶液浓度保持不变。在20℃下平衡1h后,使用紫外-可见光分光光度计测定其吸光度。之后逐步降温,每个温度下平衡10min后,测定其吸光度。测试发现降温过程中溶液在16℃-17℃附近范围内吸光度出现突增,证明其具有温度响应性。
2-甲基-N-[3-(甲基-苯基-氨基)-丙基]-丙烯酰胺的制备方法为:分别将N-(3-氨丙基)-N-甲基苯胺(市售)、三乙胺与甲基丙烯酰氯溶解在四氢呋喃中配制成浓度为1g/10mL的稀溶液。按N-(3-氨丙基)-N-甲基苯胺:三乙胺:甲基丙烯酰氯的摩尔比为4:6:5称取溶液,将N-(3-氨丙基)-N-甲基苯胺溶液与三乙胺溶液在0-5℃下共混并剧烈搅拌,同时将甲基丙烯酰氯溶液缓慢滴入其中。反应24小时后过滤出滤液,旋转蒸发除去溶剂后得到粗产物,将粗产物溶解在乙醚中并滴入冰正己烷内重结晶,即可得到还原剂单体MPAEMA。
实施例4
按[HEMA]:[MPAEMA]:[BPO]=120:1:1配比通过反相乳液聚合制备聚甲基丙烯酸羟乙酯(其他同实施例1),通过动静态光散射测得聚合物的绝对重均分子量M w.MALLS=1671000g/mol。称取1mg聚合物溶解在异丙醇中,配置成1mg/mL的溶液,称量并记录溶液质量。溶液在60℃烘箱中放置24h以上,确保聚合物充分溶解在溶剂异丙醇中,并且随时称重,补充挥发的溶剂,使溶液 浓度保持不变。在18℃下平衡1h后,使用紫外-可见光分光光度计测定其吸光度。之后逐步降温,每个温度下平衡10min后,测定其吸光度。测试发现降温过程中溶液在13℃-15℃附近范围内吸光度出现突增,证明其具有温度响应性。
实施例5
按[HEMA]:[MEMA]:[BPO]=200:1:1配比通过反相乳液聚合制备聚甲基丙烯酸羟乙酯(其他同实施例1),通过动静态光散射测得聚合物的绝对重均分子量M w.MALLS=1605000g/mol。称取1mg聚合物溶解在异丙醇中,配置成15mg/mL的溶液,称量并记录溶液质量。溶液在60℃烘箱中放置24h以上,确保聚合物充分溶解在溶剂异丙醇中,并且随时称重,补充挥发的溶剂,使溶液浓度保持不变。在28℃下平衡1h后,使用紫外-可见光分光光度计测定其吸光度。之后逐步降温,每个温度下平衡10min后,测定其吸光度。测试发现降温过程中溶液在19℃-25℃附近范围内吸光度出现突增,证明其具有温度响应性。
实施例6
按[HEMA]:[MPAEMA]:[BPO]=120:1:1配比通过反相乳液聚合制备聚甲基丙烯酸羟乙酯(其他同实施例1),通过动静态光散射测得聚合物的绝对重均分子量M w.MALLS=1671000g/mol。称取1mg聚合物溶解在异丙醇中,配置成15mg/mL的溶液,称量并记录溶液质量。溶液在60℃烘箱中放置24h以上,确保聚合物充分溶解在溶剂异丙醇中,并且随时称重,补充挥发的溶剂,使溶液浓度保持不变。在27℃下平衡1h后,使用紫外-可见光分光光度计测定其吸光度。之后逐步降温,每个温度下平衡10min后,测定其吸光度。测试发现降温过程中溶液在21℃-24℃附近范围内吸光度出现突增,证明其具有温度响应性。
实施例7
按[HEMA]:[MEMA]:[BPO]=40:1:1配比通过反相乳液聚合制备聚甲基丙烯酸羟乙酯(其他同实施例1),通过动静态光散射测得聚合物的绝对重均分子量M w.MALLS=133000g/mol。称取1mg聚合物溶解在正丙醇中,配置成5mg/mL的溶液,称量并记录溶液质量。溶液在60℃烘箱中放置24h以上,确保聚合物充分溶解在溶剂正丙醇中,并且随时称重,补充挥发的溶剂,使溶液浓度保持不变。在13℃下平衡1h后,使用紫外-可见光分光光度计测定其吸光度。之后逐步降温,每个温度下平衡10min后,测定其吸光度。测试发现降温过程中溶液在8℃-10℃附近范围内吸光度出现突增,证明其具有温度响应性。
实施例8
按[HEMA]:[MPAEMA]:[BPO]=120:1:1配比通过反相乳液聚合制备聚甲基丙烯酸羟乙酯(其他同实施例1),通过动静态光散射测得聚合物的绝对重均分子量M w.MALLS=1671000g/mol。称取1mg聚合物溶解在异丙醇中,配置成7.5mg/mL的溶液,称量并记录溶液质量。溶液在60℃烘箱中放置24h以上,确保聚合物充分溶解在溶剂异丙醇中,并且随时称重,补充挥发的溶剂,使溶液浓度保持不变。在24℃下平衡1h后,使用紫外-可见光分光光度计测定其吸光度。之后逐步降温,每个温度下平衡10min后,测定其吸光度。测试发现降温过程中溶液在19℃-22℃附近范围内吸光度出现突增,证明其具有温度响应性。
对比例1
按[HEMA]:[MEMA]:[BPO]=40:1:1配比通过反相乳液聚合制备聚甲基丙烯酸羟乙酯(其他同实施例1),通过动静态光散射测得聚合物的绝对重均分子量M w.MALLS=133000g/mol。称取1mg聚合物溶解在甲醇中,配置成1mg/mL的溶 液,称量并记录溶液质量。溶液在60℃烘箱中放置24h以上,确保聚合物充分溶解在溶剂甲醇中,并且随时称重,补充挥发的溶剂,使溶液浓度保持不变。在40℃下平衡1h后,使用紫外-可见光分光光度计测定其吸光度。之后逐步降温,每个温度下平衡10min后,测定其吸光度。测试发现降温过程中溶液在0℃-40℃附近范围内吸光度未出现明显变化。
对比例2
按[HEMA]:[MEMA]:[BPO]=40:1:1配比通过反相乳液聚合制备聚甲基丙烯酸羟乙酯(其他同实施例1),通过动静态光散射测得聚合物的绝对重均分子量M w.MALLS=133000g/mol。称取1mg聚合物溶解在乙醇中,配置成1mg/mL的溶液,称量并记录溶液质量。溶液在60℃烘箱中放置24h以上,确保聚合物充分溶解在溶剂乙醇中,并且随时称重,补充挥发的溶剂,使溶液浓度保持不变。在40℃下平衡1h后,使用紫外-可见光分光光度计测定其吸光度。之后逐步降温,每个温度下平衡10min后,测定其吸光度。测试发现降温过程中溶液在0℃-40℃附近范围内吸光度未出现明显变化。
对比例3
按[HEMA]:[MPAEMA]:[BPO]=80:1:1配比通过反相乳液聚合制备聚甲基丙烯酸羟乙酯(其他同实施例1),通过动静态光散射测得聚合物的绝对重均分子量M w.MALLS=2442000g/mol。称取1mg聚合物溶解在乙醇中,配置成1mg/mL的溶液,称量并记录溶液质量。溶液在60℃烘箱中放置24h以上,确保聚合物充分溶解在溶剂乙醇中,并且随时称重,补充挥发的溶剂,使溶液浓度保持不变。在40℃下平衡1h后,使用紫外-可见光分光光度计测定其吸光度。之后逐步降温,每个温度下平衡10min后,测定其吸光度。测试发现降温过程中溶液在0℃-40℃附近范围内吸光度未出现明显变化。
对比例4
按[HEMA]:[MEMA]:[BPO]=40:1:1配比通过反相乳液聚合制备聚甲基丙烯酸羟乙酯(其他同实施例1),通过动静态光散射测得聚合物的绝对重均分子量M w.MALLS=133000g/mol。称取1mg聚合物溶解在丁醇中,欲配置成1mg/mL的溶液,聚甲基丙烯酸羟乙酯不能在丁醇中溶解。
所述实施例为本发明的优选的实施方式,但本发明并不限于上述实施方式,在不背离本发明的实质内容的情况下,本领域技术人员能够做出的任何显而易见的改进、替换或变型均属于本发明的保护范围。

Claims (9)

  1. 一种温度响应型聚甲基丙烯酸羟乙酯,其特征在于,所述聚甲基丙烯酸羟乙酯的重均分子量为133000-2442000g/mol;所述聚甲基丙烯酸羟乙酯用于温度响应型智能材料,其异丙醇溶液或正丙醇溶液在降温过程中在2-25℃的温度范围内吸光度发生突增,具有温度响应性。
  2. 根据权利要求1所述的温度响应型聚甲基丙烯酸羟乙酯,其特征在于,所述聚甲基丙烯酸羟乙酯在丙醇溶液中的浓度为1-15mg/mL;聚甲基丙烯酸羟乙酯在丙醇溶液中的浊点温度范围为2-23℃。
  3. 一种温度响应型聚甲基丙烯酸羟乙酯的制备方法,其特征在于,所述制备方法为:采用过氧化二苯甲酰(BPO)为氧化剂、2-甲基-N-[3-(甲基-苯基-氨基)-丙基]-丙烯酰胺(MPAEMA)或2-甲基-N-[3-(甲基-苯基-氨基)-丙基]-丙酰胺(MEMA)为还原剂单体组成氧化还原引发体系,水和甲苯为介质,Tween80和Span85为乳化剂,甲基丙烯酸羟乙酯为聚合单体,通过自由基反相乳液聚合,在室温下反相乳液聚合反应得到温度响应型聚甲基丙烯酸羟乙酯。
  4. 根据权利要求3所述的温度响应型聚甲基丙烯酸羟乙酯的制备方法,其特征在于,所述2-甲基-N-[3-(甲基-苯基-氨基)-丙基]-丙烯酰胺的制备方法为:
    (1)分别将N-(3-氨丙基)-N-甲基苯胺、三乙胺与甲基丙烯酰氯溶解在四氢呋喃中配制成浓度为1g/10mL的稀溶液;
    (2)将N-(3-氨丙基)-N-甲基苯胺溶液与三乙胺溶液在0-5℃下共混并剧烈搅拌,同时将甲基丙烯酰氯溶液缓慢滴入其中,反应24小时后过滤出滤液,旋转蒸发除去溶剂后得到粗产物,将粗产物溶解在乙醚中并滴入冰正己烷内重结晶,即可得到还原剂单体MPAEMA,其中,N-(3-氨丙基)-N-甲基苯胺、三乙胺和甲基丙烯酰氯的摩尔比为4:6:5。
  5. 根据权利要求3所述的温度响应型聚甲基丙烯酸羟乙酯的制备方法,其 特征在于,所述2-甲基-N-[3-(甲基-苯基-氨基)-丙基]-丙酰胺的制备方法为:
    (1)分别将N-(3-氨丙基)-N-甲基苯胺、三乙胺与异丁酰氯溶解在四氢呋喃中配制成浓度为1g/10mL的稀溶液;
    (2)将N-(3-氨丙基)-N-甲基苯胺溶液与三乙胺溶液在0-5℃下共混并剧烈搅拌,同时将异丁酰氯溶液缓慢滴入其中,反应24小时后过滤出滤液,旋转蒸发除去溶剂后得到粗产物,将粗产物溶解在乙醚中并滴入冰正己烷内重结晶,即可得到模型还原剂MEMA,其中,N-(3-氨丙基)-N-甲基苯胺、三乙胺和异丁酰氯的摩尔比为1:1.5:1.2。
  6. 根据权利要求3所述的温度响应型聚甲基丙烯酸羟乙酯的制备方法,其特征在于,所述单体的水溶液浓度为25%;所述氧化剂与还原剂的摩尔比为1:1。
  7. 根据权利要求3所述的温度响应型聚甲基丙烯酸羟乙酯的制备方法,其特征在于,所述还原剂单体和聚合单体的物质的量比为1:80-1:200;所述的水和甲苯的质量比为1:1。
  8. 根据权利要求3所述的温度响应型聚甲基丙烯酸羟乙酯的制备方法,其特征在于,所述Tween80和Span85的总质量为甲苯质量的10%,其中,Tween80和Span85的质量比为1:1。
  9. 根据权利要求3所述的温度响应型聚甲基丙烯酸羟乙酯的制备方法,其特征在于,所述聚合反应温度为25℃,聚合反应时间为1-8小时。
PCT/CN2020/140468 2020-04-03 2020-12-29 温度响应型聚甲基丙烯酸羟乙酯及制备方法 WO2021196778A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/414,969 US11377508B2 (en) 2020-04-03 2020-12-29 Temperature-responsive poly(2-hydroxyethyl methacrylate) (PHEMA) and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010257834.6 2020-04-03
CN202010257834.6A CN111393562B (zh) 2020-04-03 2020-04-03 温度响应性聚甲基丙烯酸羟乙酯及制备方法

Publications (1)

Publication Number Publication Date
WO2021196778A1 true WO2021196778A1 (zh) 2021-10-07

Family

ID=71427899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/140468 WO2021196778A1 (zh) 2020-04-03 2020-12-29 温度响应型聚甲基丙烯酸羟乙酯及制备方法

Country Status (3)

Country Link
US (1) US11377508B2 (zh)
CN (1) CN111393562B (zh)
WO (1) WO2021196778A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111393562B (zh) 2020-04-03 2021-04-30 常州大学 温度响应性聚甲基丙烯酸羟乙酯及制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB841127A (en) * 1957-05-31 1960-07-13 Dow Chemical Co Inverse emulsion polymerisation of water-soluble monomers
US20040266965A1 (en) * 2000-03-31 2004-12-30 Avery Dennison Corporation Polymer powders, pressure sensitive adhesives and methods of making the same
WO2005103091A1 (en) * 2004-04-21 2005-11-03 Ciba Specialty Chemicals Water Treatments Limited Composition and method of preparing high solid emulsions
CN101550202A (zh) * 2008-03-31 2009-10-07 上海恒谊化工有限公司 一种新型反相乳液聚合物的制备方法
US20140370114A1 (en) * 2013-06-13 2014-12-18 Gwangju Institute Of Science And Technology Homopolymer nanoparticles by self-emulsion polymerization reaction and preparation method thereof
CN106573997A (zh) * 2014-08-08 2017-04-19 S.P.C.M.股份公司 通过反相悬浮或反相乳液聚合方法获得的水溶性羟烷基聚合物
CN111393562A (zh) * 2020-04-03 2020-07-10 常州大学 温度响应型聚甲基丙烯酸羟乙酯及制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB841127A (en) * 1957-05-31 1960-07-13 Dow Chemical Co Inverse emulsion polymerisation of water-soluble monomers
US20040266965A1 (en) * 2000-03-31 2004-12-30 Avery Dennison Corporation Polymer powders, pressure sensitive adhesives and methods of making the same
WO2005103091A1 (en) * 2004-04-21 2005-11-03 Ciba Specialty Chemicals Water Treatments Limited Composition and method of preparing high solid emulsions
CN101550202A (zh) * 2008-03-31 2009-10-07 上海恒谊化工有限公司 一种新型反相乳液聚合物的制备方法
US20140370114A1 (en) * 2013-06-13 2014-12-18 Gwangju Institute Of Science And Technology Homopolymer nanoparticles by self-emulsion polymerization reaction and preparation method thereof
CN106573997A (zh) * 2014-08-08 2017-04-19 S.P.C.M.股份公司 通过反相悬浮或反相乳液聚合方法获得的水溶性羟烷基聚合物
CN111393562A (zh) * 2020-04-03 2020-07-10 常州大学 温度响应型聚甲基丙烯酸羟乙酯及制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LONGENECKER RYAN, MU TINGTING, HANNA MARK, BURKE NICHOLAS A. D., STÖVER HARALD D. H.: "Thermally Responsive 2-Hydroxyethyl Methacrylate Polymers: Soluble-Insoluble and Soluble-Insoluble-Soluble Transitions", MACROMOLECULES, vol. 44, no. 22, 22 November 2011 (2011-11-22), pages 8962 - 8971, XP055854595, ISSN: 0024-9297, DOI: 10.1021/ma201528r *
PŘÁDNÝ MARTIN, MARTINOVÁ LENKA, MICHÁLEK JIŘÍ, FENCLOVÁ TAT’ÁNA, KRUMBHOLCOVÁ EVA: "Electrospinning of the hydrophilic poly (2-hydroxyethyl methacrylate) and its copolymers with 2-ethoxyethyl methacrylate", CENTRAL EUROPEAN JOURNAL OF CHEMISTRY, vol. 5, no. 3, 1 September 2007 (2007-09-01), pages 779 - 792, XP055854579, ISSN: 1895-1066, DOI: 10.2478/s11532-007-0021-0 *
QIMIN JIANG,YONGZHUANG DU,WENYAN HUANG,JIANHAI CHEN,HONGJUN YANG,XIAOQIANG XUE,LI JIANG,BIBIAO JIANG: "Radical polymerization in the presence of peroxide and reducing agent monomer for branched polymers", JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, vol. 57, no. 7, 1 April 2019 (2019-04-01), pages 883 - 840, XP055854585, ISSN: 0887-624X, DOI: 10.1002/pola.29334 *
TOMIC, S.L.J.,MICIC, M.M.,FILIPOVIC, J.M.,SULJOVRUJIC, E.H.: "Swelling and thermodynamic studies of temperature responsive 2-hydroxyethyl methacrylate/itaconic acid copolymeric hydrogels prepared via gamma radiation", RADIATION PHYSICS AND CHEMISTRY, vol. 76, no. 8-9, 24 May 2007 (2007-05-24), pages 1390 - 1394, XP022094657, ISSN: 0969-806X, DOI: 10.1016/j.radphyschem.2007.02.038 *

Also Published As

Publication number Publication date
CN111393562A (zh) 2020-07-10
CN111393562B (zh) 2021-04-30
US20220041770A1 (en) 2022-02-10
US11377508B2 (en) 2022-07-05

Similar Documents

Publication Publication Date Title
Dai et al. Polymerization-induced self-assembly via RAFT-mediated emulsion polymerization of methacrylic monomers
Semsarilar et al. Cationic polyelectrolyte-stabilized nanoparticles via RAFT aqueous dispersion polymerization
He et al. Multiple morphologies of PAA-b-PSt assemblies throughout RAFT dispersion polymerization of styrene with PAA macro-CTA
Ratcliffe et al. From a water-immiscible monomer to block copolymer nano-objects via a one-pot RAFT aqueous dispersion polymerization formulation
CN103145920B (zh) 一种温度、pH、紫外光多刺激响应半互穿网络纳米复合水凝胶的制备方法
CN101591403B (zh) 可逆加成断链链转移乳液聚合的制备方法
CN109651572B (zh) 一种双孔道亲水性双连续聚合物整体柱的制备方法
JP5746240B2 (ja) 温度応答性ポリマーの製造方法、温度応答性ポリマー、細胞培養器の製造方法、及び細胞培養器
CN102311514B (zh) 一种凝胶电解质制备方法,及含该凝胶电解质的电致变色器
Wang et al. Alkyl α-hydroxymethyl acrylate monomers for aqueous dispersion polymerization-induced self-assembly
Shahrokhinia et al. PhotoATRP-induced self-assembly (PhotoATR-PISA) enables simplified synthesis of responsive polymer nanoparticles in one-pot
Rymaruk et al. Raft dispersion polymerization of benzyl methacrylate in silicone oil using a silicone-based methacrylic stabilizer provides convenient access to spheres, worms, and vesicles
WO2021196778A1 (zh) 温度响应型聚甲基丙烯酸羟乙酯及制备方法
Marcinkowska et al. Ionogels by thiol-ene photopolymerization in ionic liquids: Formation, morphology and properties
Sugihara et al. Design of hydroxy-functionalized thermoresponsive copolymers: improved direct radical polymerization of hydroxy-functional vinyl ethers
CN104761673A (zh) 一种卡波姆及其制备方法
CN112341641B (zh) 一种双网络颗粒凝胶及其制备方法
US11814451B2 (en) Methods for preparing branched poly (2-hydroxyethyl methacrylate) at room temperature by inverse emulsion polymerization
CN106008779B (zh) 一种交联聚对苯乙烯磺酸钠凝胶微球制作方法
CN101864049A (zh) 一种高分子表面活性剂的制备方法
CN114656603B (zh) 一种支化结构水溶性聚合物的制备方法
CN111410612B (zh) 用于常温下氧化还原制备苯丙乳液的还原剂单体及其合成方法
CN102432722B (zh) 一种松香基规整聚合物的制备方法
CN114656592A (zh) 一种水溶性大分子光引发剂及其制备方法和用途
CN113133971A (zh) 一种布洛芬缓释微球及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20929219

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20929219

Country of ref document: EP

Kind code of ref document: A1