WO2021196545A1 - 探测装置及方法 - Google Patents

探测装置及方法 Download PDF

Info

Publication number
WO2021196545A1
WO2021196545A1 PCT/CN2020/118986 CN2020118986W WO2021196545A1 WO 2021196545 A1 WO2021196545 A1 WO 2021196545A1 CN 2020118986 W CN2020118986 W CN 2020118986W WO 2021196545 A1 WO2021196545 A1 WO 2021196545A1
Authority
WO
WIPO (PCT)
Prior art keywords
receiving
emission
areas
light
module
Prior art date
Application number
PCT/CN2020/118986
Other languages
English (en)
French (fr)
Inventor
雷述宇
Original Assignee
宁波飞芯电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波飞芯电子科技有限公司 filed Critical 宁波飞芯电子科技有限公司
Priority to US17/914,822 priority Critical patent/US20230139585A1/en
Publication of WO2021196545A1 publication Critical patent/WO2021196545A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • G01S7/4815Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/4802Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • G01S7/4863Detector arrays, e.g. charge-transfer gates

Definitions

  • the present disclosure relates to the field of laser radar technology, and in particular to a detection device and method.
  • TOF time of flight
  • Direct Time of Flight and Indirect Time of Tlight (ITOF) are the detection methods based on TOF development.
  • the two detection methods have their own advantages in the process of use, and they are more and more popular. The wider the attention.
  • the existing ranging process whether for DTOF or ITOF, needs to consider the influence of the environment or other factors in the long-distance detection.
  • the existing detection method has the problem of low resolution of the lidar ranging.
  • the purpose of the present disclosure is to provide a detection device and method in order to improve the resolution of the existing lidar ranging from the above-mentioned shortcomings in the prior art.
  • an embodiment of the present disclosure provides a detection device, including: a light emitting module, a processing module, and a light receiving module, the light emitting module includes M emitting areas, and the light receiving module includes N receiving areas, Wherein, M and N are both integers greater than 0;
  • the light emitting module is configured to use the M emitting areas to output M channels of emitted light;
  • the light receiving module is configured to adopt N receiving areas, receive the reflected light information reflected by the detection target emitted by the M emitting areas, and send the reflected light information and the receiving time corresponding to the reflected light information To the processing module;
  • the processing module is configured to generate an emission sequence, the emission area outputs the emission light according to the emission order, the light receiving module receives reflected light information according to the emission order, and the processing module according to the emission order ,
  • the reflected light information and the corresponding receiving time of the reflected light information, the obtained image resolution is not less than the number of receiving areas N, and does not exceed the distance of the receiving area and the transmitting area multiplied by N ⁇ M image.
  • each of the emission areas includes K sub-emission areas, each of the sub-emission areas includes at least one emission unit, M is equal to N, and K is an integer greater than 0;
  • the light emitting module is specifically configured to cycle K times according to the emission sequence of each emitting unit to sequentially output M ⁇ K paths of emitted light through the M ⁇ K sub-emission regions;
  • the light receiving module is also configured to adopt N receiving areas, receive the M ⁇ K reflected light information of the emitted light reflected by the detection target in K times, and combine the reflected light information and the reflected light information.
  • the receiving time corresponding to the optical information is sent to the processing module; the processing module obtains an image resolution that does not exceed a distance of N ⁇ K according to the emission sequence, the reflected light information, and the receiving time corresponding to the reflected light information image.
  • the light emitting module includes at least one emitting array, and the number of columns of the emitting array is M; the light receiving module includes at least one receiving array, and the number of rows of the receiving array is N.
  • the light emitting module includes at least one emitting array, the number of rows of the emitting array is M; the light receiving module includes at least one receiving array, and the number of columns of the receiving array is N.
  • the optical transmitting module includes a plurality of transmitting units
  • the optical receiving module includes a plurality of receiving units
  • at least two of the transmitting units correspond to one of the receiving units of the optical receiving modules.
  • At least two of the transmitting units correspond to the same receiving unit of the light receiving module at different times, so that the reflected light information of the at least two transmitting units after being reflected by the detection target is the same Received by the receiving unit.
  • the number of the transmitting units is greater than the number of the receiving units.
  • the at least one emission area corresponds to the N emission areas in the light receiving module at the same time, and through the correspondence at different times, the processing module obtains a range image with an image resolution not exceeding N ⁇ M .
  • the processing module is further configured to determine the emission sequence of the M emission regions, and send the emission sequence to the light emitting module and the light receiving module.
  • the processing module is specifically configured to determine the emission sequence of the M emission regions according to a preset number sequence, a randomly generated sequence, or a sequence generated by using different functional relations.
  • the embodiments of the present disclosure provide a detection method, which is applied to the detection device described in the above-mentioned first aspect, and the detection method includes:
  • M emission regions output M emission lights
  • the emission sequence receiving the reflected light information emitted by the M emission areas and reflected by the detection target;
  • the image resolution obtained is not less than the number of receiving areas N, and does not exceed the receiving area multiplied by the transmitting area N ⁇ M distance image.
  • each of the emission areas includes K sub-emission areas, each of the sub-emission areas includes at least one emission unit, M is equal to N, and K is an integer greater than 0; according to the emission order, M emission areas Output M-channel emission light, including:
  • the receiving, in accordance with the emission sequence, the reflected light information emitted by the M emission areas and reflected by the detection target includes:
  • Adopt N receiving areas, and receive the M ⁇ K path reflected light information of the emitted light reflected by the detection target K times;
  • the resolution of the obtained image is not less than the number N of receiving areas, and does not exceed the receiving area and the transmitting area Multiply the N ⁇ M distance image, including:
  • the reflected light information and the receiving time corresponding to the reflected light information a distance image with an image resolution not exceeding N ⁇ K is obtained.
  • the light emitting module includes at least one emitting array, and the number of columns of the emitting array is M; the light receiving module includes at least one receiving array, and the number of rows of the receiving array is N.
  • the light emitting module includes at least one emitting array, the number of rows of the emitting array is M; the light receiving module includes at least one receiving array, and the number of columns of the receiving array is N.
  • the optical transmitting module includes a plurality of transmitting units
  • the optical receiving module includes a plurality of receiving units
  • at least two of the transmitting units correspond to one of the receiving units of the optical receiving modules.
  • At least two of the transmitting units correspond to the same receiving unit of the light receiving module at different times, so that the reflected light information of the at least two transmitting units after being reflected by the detection target is the same Received by the receiving unit.
  • the number of the transmitting units is greater than the number of the receiving units.
  • the at least one emitting area corresponds to the N emitting areas in the light receiving module at the same time, and through the correspondence at different times, a distance image with an image resolution not exceeding N ⁇ M is obtained.
  • the method further includes: determining the emission sequence of the M emission regions, and sending the emission sequence to the light emitting module and the light receiving module.
  • the generating and transmitting sequence includes:
  • the transmission sequence of the M transmission areas is determined.
  • the detection device may include a light emitting module, a processing module, and a light receiving module.
  • the light emitting module includes M emitting areas, and the light receiving module includes N receiving areas. And N are both integers greater than 0,
  • the processing module is configured to generate the emission sequence, the emission area outputs the emission light according to the emission order, the light receiving module receives the reflected light information according to the emission order, and receives the reflected light information and the reflected light information correspondingly
  • the time is sent to the processing module, and the processing module can calculate and obtain the distance data of the detection target according to the emission sequence, reflected light information and the corresponding receiving time of the reflected light information.
  • the N receiving areas receive the reflected light information reflected by the detection target emitted by the M emitting areas in time sharing, and send the reflected light information and the receiving time corresponding to the reflected light information to the processing module, and the processing module can according to the emission order, reflection
  • the receiving time corresponding to the light information and the reflected light information is processed and synthesized to the received reflected light information to synthesize an image.
  • the resolution is not less than the number of receiving areas N, and does not exceed the distance of the receiving area and the transmitting area multiplied by N ⁇ M Image, according to the distance image, the distance measurement result for the detection target can be output, which improves the accuracy of the distance measurement.
  • FIG. 1 is a schematic diagram of functional modules of a detection device provided by an embodiment of the disclosure
  • FIG. 2 is a schematic diagram of detection of a detection device provided by an embodiment of the disclosure.
  • FIG. 3 is a schematic diagram of detection of another detection device provided by an embodiment of the disclosure.
  • FIG. 4 is a schematic diagram of detection of yet another detection device provided by an embodiment of the disclosure.
  • FIG. 5 is a schematic flowchart of a detection method provided by an embodiment of the disclosure.
  • FIG. 1 is a schematic diagram of functional modules of a detection device provided by an embodiment of the disclosure.
  • the detection device includes: a light emitting module 210, a processing module 220, and a light receiving module 230.
  • the light emitting module 210 includes M emitting areas
  • the light receiving module 230 includes N receiving areas, where M and N Both are integers greater than 0.
  • the light emitting module 210 is configured to use M emitting areas to output M channels of emitted light; the light receiving module 230 is configured to use N receiving areas to receive the reflected light information emitted by the M emitting areas and reflected by the detection target, and reflect The receiving time corresponding to the light information and the reflected light information is sent to the processing module 220.
  • the light emitting module 210 includes M emitting areas means that the light emitting area can be divided into M emitting areas according to the area where the emitted light is output, and the M emitting areas can output M emitting light;
  • the light receiving module 230 includes The N receiving areas refer to that the corresponding receiving areas can be divided into N receiving areas, which are configured to receive the reflected light information reflected by the detection target 250 emitted by the M transmitting areas.
  • M and N may correspond to pixels in the emission area and the receiving area, respectively. Therefore, the maximum image resolution of the range image obtained in this manner is N ⁇ M.
  • M and N may not correspond to the pixels in the emission area and the receiving area.
  • the emission area includes multiple sub-emission areas
  • M can be the number of sub-emission areas
  • N is the pixel in the receiving area
  • M and N are selected.
  • the value can be equal.
  • the value of M can be 2, 5, or 8, etc.
  • the value of N can be 2, 5, or 8, etc..
  • the two can also be unequal.
  • the present disclosure is not limited here. The actual application scenario can be flexibly set.
  • the processing module 220 is configured to generate the emission sequence, the emission area outputs the emission light according to the emission order, the light receiving module 230 receives the reflected light information according to the emission order, and sends the reflected light information and the receiving time corresponding to the reflected light information to the processing module 220.
  • the processing module 220 obtains a distance image whose image resolution is not less than the number N of receiving areas and does not exceed the receiving area and the transmitting area multiplied by N ⁇ M according to the emission sequence, the reflected light information and the receiving time corresponding to the reflected light information.
  • the M emitting regions in the light emitting module 210 can output the emitted light according to the emission sequence.
  • the light receiving module 230 can adopt N Receiving areas, according to the emission sequence, receiving the reflected light information emitted by the M emitting areas and reflected by the detection target 250, and sending the reflected light information and the receiving time corresponding to the reflected light information to the processing module 220, and the processing module 220 can be based on the reflection The receiving time corresponding to the light information and the reflected light information is calculated to obtain the distance data of the detection target 250.
  • the M emission areas output M emission light in accordance with the emission order (for example, each emission area emits sequentially or randomly), and the N receiving areas receive each emission light reflected by the detection target 250 according to the emission order.
  • the reflected light information, and the reflected light information of each channel of emitted light reflected by the detection target 250 and its corresponding receiving time are sent to the processing module 220 through the light receiving module 230.
  • the processing module 220 can Obtain a range image with an image resolution of N; for the output M channels of emitted light, the processing module 220 can obtain a range image with an image resolution of N ⁇ M. Therefore, the processing module 220 can obtain an image resolution not lower than the number of receiving areas. N, and does not exceed the distance image of the receiving area and the transmitting area multiplied by N ⁇ M, that is, an image resolution higher than the number of receiving areas can be obtained, and the accuracy of the ranging of the detection device is improved.
  • M emission regions can also be used to output X-channel emission light, and the value of X can be an integer greater than 0 and less than M. For example, when M is 8, X is The value can be 6.
  • the reflected light information reflected by the detection target 250 emitted by the X emitting areas is received, and the reflected light information and the receiving time corresponding to the reflected light information are sent to the processing module 220 for processing
  • the module 220 can obtain a distance image with an image resolution of N ⁇ X according to the emission sequence, the reflected light information and the receiving time corresponding to the reflected light information, that is, the image resolution can be obtained not less than the number of receiving areas N, and not exceeding the receiving area Multiply the N ⁇ M distance image with the emission area.
  • the detection device may include a light emitting module, a processing module, and a light receiving module.
  • the light emitting module includes M emitting areas, and the light receiving module includes N receiving areas.
  • M and N are both integers greater than 0,
  • the processing module is configured to generate the emission sequence, the emission area outputs the emission light according to the emission order, and the light receiving module receives the reflected light information according to the emission order, and combines the reflected light information and the reflected light information
  • the corresponding receiving time is sent to the processing module, and the processing module can calculate and obtain the distance data of the detection target according to the emission sequence, reflected light information and the corresponding receiving time of the reflected light information.
  • the N receiving areas receive the reflected light information reflected by the detection target emitted by the M emitting areas in time sharing, and send the reflected light information and the receiving time corresponding to the reflected light information to the processing module, and then the processing module can be based on the emission
  • the sequence, reflected light information and the receiving time corresponding to the reflected light information are processed and synthesized to synthesize the received reflected light information to synthesize an image with a resolution not less than the number of receiving areas N, and not exceeding the receiving area and the emitting area multiplied by N ⁇
  • the distance image of M based on the distance image, can output the distance measurement result for the detection target, which improves the accuracy of the distance measurement.
  • the detection device provided by the embodiment of the present disclosure, since the M emitting regions corresponding to the light emitting module output the emitted light in a time-sharing manner, the maximum instantaneous current generated when the emitted light is output can be reduced, so that the driving current is more smooth. , Improve the heat dissipation effect of the light emitting module. Moreover, in the case of improving the resolution of the detection device, the embodiments of the present disclosure do not add other light receiving modules. Therefore, the size of the detection device can be reduced to a certain extent, and the applicability of the detection device is improved.
  • the detection device provided by the embodiment of the present disclosure is not only applicable to the long-distance detection mode, but in actual use, part of the M emission areas can be controlled to output the emitted light according to actual needs to realize the short-distance detection mode.
  • part of the M emission areas can be controlled to output the emitted light according to actual needs to realize the short-distance detection mode.
  • the output by controlling the output to adapt to low-power detection at close range, in this mode, only part of a transmitting area is transmitted once, and the image resolution can be obtained even lower than the number of receiving areas.
  • this disclosure does not exclude this application.
  • each emission area includes K sub-emission areas, each sub-emission area includes at least one emission unit, M is equal to N, and K is an integer greater than 0; the optical emission module 210 is specifically configured to circulate according to the emission order of each emission unit K times sequentially through M ⁇ K sub-emission areas to output M ⁇ K channel emission light;
  • the light receiving module 230 is also configured to adopt N receiving areas, and receive the M ⁇ K reflected light information of the emitted light reflected by the detection target 250 for K times, and correspond to the reflected light information and reflected light information of each path.
  • the receiving time is sent to the processing module 220; the processing module 220 obtains a distance image whose image resolution does not exceed N ⁇ K according to the emission sequence, the reflected light information, and the receiving time corresponding to the reflected light information.
  • the light emitting module 210 can be divided into M emitting areas, and the value of M can be the same as N
  • each emission area may include K sub-emission areas
  • the processing module 220 can obtain a range image with an image resolution not exceeding N ⁇ K.
  • the emission sequence in the present disclosure may be the emission sequence of each emission area according to the division method of the light emission module 210.
  • the emission sequence may be The emission order of each sub-emission area, of course, if each sub-emission area includes at least one emission unit, the emission order may be the emission order of each emission unit, which is not limited in the present disclosure.
  • the above process can also be understood as dividing the emission area into N emission areas corresponding to the same pixels in the receiving area, each emission area includes K sub-emission areas, and each sub-emission area includes at least one emission unit.
  • transmit units with the same encoding in all sub-transmission areas constitute a transmission area, and then all the transmission units form a total of M transmission areas, and then the M transmission areas are generated according to the processing module 220
  • the emission sequence thus emits emission light sequentially or randomly.
  • one emission area of the M emission areas emits once, and the processing module 220 can obtain a range image with an image resolution of N; each emission area of the M emission areas Both emit and output M emission lights.
  • the processing module 220 can obtain M emission results, thereby obtaining a range image with a maximum image resolution of M ⁇ N. As mentioned earlier, one emission area of the M emission areas When part of the area is fired once, a range image with an image resolution lower than N can be obtained, and a short-distance low-power detection effect can be achieved.
  • FIG. 2 is a schematic diagram of a detection method of a detection device provided by an embodiment of the disclosure.
  • the values of M, N, and K can be 9, 9 and 4, respectively.
  • the light emitting module 210 can include 9 emitting areas, and each emitting area includes 4 sub-emission areas, which can be labeled in turn 1, 2, 3, and 4, each sub-emission area includes at least one emission unit (e.g., emission pixel), and the light emission module 210 is specifically configured to follow the emission order of each emission unit (e.g., 1 ⁇ 2 ⁇ 3 ⁇ 4 sequential emission) 4 times in turn to output 9*4 channels of emitted light through 9*4 sub-emission areas.
  • each emission unit e.g., 1 ⁇ 2 ⁇ 3 ⁇ 4 sequential emission
  • the light receiving module 230 is also configured to use 9 receiving areas, and 4 cycles to receive the emitted light and detect the target 250 reflected light of 9*4 channels, and send each channel of reflected light information and the corresponding receiving time of the reflected light information to the processing module 220.
  • the processing module 220 can, according to the corresponding receiving time of each channel of reflected light information and reflected light information, Obtain a distance image with an image resolution not exceeding 9*4.
  • each transmission area has 4 transmission units, and each transmission unit is coded (different coding methods can be used to form different patterns or random codes, which are not limited by the present invention), wherein different transmission areas code the same transmission unit An emission area is reconstituted, so the emission area of the light emission module 210 is finally divided into four emission areas.
  • the light transmitting module 210 includes at least one transmitting array, the number of columns of the transmitting array is M; the light receiving module 230 includes at least one receiving array, and the number of rows of the receiving array is N (each column of the transmitting array may contain at least For a transmitting unit, each row of the receiving array may contain at least one receiving unit).
  • each column of the transmitting array contains only one transmitting unit, and each row of the receiving array contains only one receiving unit.
  • the case of including more than one transmitting unit or receiving unit is similar to the case of one. This disclosure will No longer.
  • the light emitting module 210 includes at least one emitting array.
  • the emitting array can be divided according to pixels, the emitting array can be an emitting array of 1 ⁇ M pixels, that is, the row of pixels in the emitting array can be 1, and the column of pixels can be M.
  • M emitting regions are used for divisional emission; correspondingly, the light receiving module 230 may include at least one receiving array, which may be an N ⁇ 1 pixel emitting array, that is, the row of pixels in the receiving array If it is N, the column pixel can be 1, and the light receiving module 230 adopts N receiving regions to emit.
  • FIG. 3 is a schematic diagram of detection of another detection device provided by an embodiment of the disclosure.
  • the transmitting array can be divided into M transmitting areas from left to right, each transmitting area contains a transmitting unit, and the receiving array can be divided into N receiving areas from top to bottom, and each receiving area contains b
  • the M emitting areas can output M emission light according to the emission sequence (for example, sequential emission or random emission). It should be noted that when the M emission areas output the emission light, each time Only one emission area can output emission light, for example, emission area i. After the output emission light is reflected on the detection target 250, it can be received by the N receiving areas of the receiving array to obtain a column vector with a dimension of N ⁇ 1.
  • the column vector can represent the reflected light information of the emitted light output by the emission area reflected by the detection target 250.
  • the image information of the i-th column in the range image with an image resolution of N ⁇ M can be determined; according to the foregoing During the process, the M emission areas continue to emit until all emission areas output emission light, and N receiving areas are used to receive the corresponding reflected light information.
  • the processing module 220 is based on the emission order and reflected light information of the M emission areas. The receiving time corresponding to the reflected light information can determine the image information of each column in the range image with the image resolution of N ⁇ M, and finally obtain a complete frame of the range image with the image resolution of N ⁇ M.
  • the light emitting module 210 includes at least one emitting array, and the number of rows of the emitting array is M; the light receiving module 230 includes at least one receiving array, and the number of columns of the receiving array is N (each row of the emitting array may contain at least For a transmitting unit, each column of the receiving array may include at least one receiving unit).
  • each row of the transmitting array contains only one transmitting unit, and each column of the receiving array contains only one receiving unit.
  • the case of including more than one transmitting unit or receiving unit is similar to the case of one. This disclosure will No longer.
  • the emission array can be an emission array of M ⁇ 1 pixels, that is, the row pixels in the emission array can be M, and the column pixels can be 1.
  • the light emission module 210 uses M emission arrays.
  • Regional zone emission; correspondingly, the light receiving module 230 may include at least one receiving array, which may be a receiving array of 1 ⁇ N pixels, that is, the row of pixels in the receiving array may be 1, and the column of pixels may be N.
  • the receiving module 230 uses N receiving areas to partition transmissions.
  • this division method please refer to the relevant part of the foregoing method embodiment, which will not be repeated in this disclosure.
  • FIG. 4 is a schematic diagram of detection of another detection device provided by an embodiment of the disclosure.
  • the transmitting array can be divided into M transmitting areas from top to bottom, each transmitting area contains a transmitting unit, and the receiving array can be divided into N receiving areas from left to right, and each receiving area contains b
  • the M emitting areas can output M emission light according to the emission sequence (for example, sequential emission or random emission). It should be noted that when the M emission areas output the emission light, each time Only one emission area can output emission light, for example, emission area j. After being reflected on the detection target 250, the output emission light can be received by the N receiving areas of the receiving array to obtain a row vector with a dimension of 1 ⁇ N.
  • the row vector can represent the reflected light information of the emitted light output by the emission area reflected by the detection target 250, and the image information of the j-th line in the range image information with an image resolution of M ⁇ N can be determined according to the reflected light information;
  • the M emitting areas continue to emit until all emitting areas output the emitted light, and the N receiving areas are used to receive the corresponding reflected light information.
  • the processing module 220 reflects the light according to the emission order of the M emitting areas.
  • the receiving time corresponding to the information and the reflected light information can determine the image information of each line in the range image with the image resolution of M ⁇ N, and finally obtain the complete range image with the image resolution of M ⁇ N.
  • a and b in the foregoing may be the same or different, and the specific value may be 1 or a value of 1 or more.
  • the optical transmitting module 210 includes multiple transmitting units
  • the optical receiving module 230 includes multiple receiving units, and at least two transmitting units correspond to one receiving unit in the optical receiving module 230.
  • At least two transmitting units correspond to the same receiving unit of the light receiving module 230 at different times, so that the reflected light information of the emitted light of the at least two transmitting units after being reflected by the detection target 250 is received by the same receiving unit .
  • the transmitting unit may be a semiconductor laser or a solid-state laser, of course, it may also be a transmitting pixel, etc.; the receiving unit may include a photodiode array or an avalanche photodiode array, etc., which is not limited in the present disclosure.
  • a transmitting area may include one or more transmitting units, and a receiving area may include one or more receiving units.
  • the light emitting module 210 may include 9 emission areas, each emission area includes 4 sub-emission areas, and each sub-emission area includes an emission unit (for example, an emission pixel).
  • the transmitting units are numbered 1, 2, 3, and 4; the light receiving module 230 may include 9 receiving areas, and each receiving area includes 1 receiving unit.
  • the light emission module 210 can make the emission unit with emission number 1 in each emission area output emission light according to the emission sequence. 9 channels of emitted light will be output. These 9 channels of emitted light are reflected by the detection target 250 to generate reflected light information. Then, the 9 receiving units of the light receiving module 230 can correspondingly receive 9 channels of reflected light information.
  • each receiving unit can also be divided according to the number of sub-transmission areas included in each transmission area.
  • the receiving area of each receiving unit can be divided into 4 sub-transmission areas.
  • the receiving areas for example, can be numbered 1, 2, 3, and 4.
  • Each sub-receiving area corresponds to receiving the reflected light information emitted by a sub-transmitting area and reflected by the detection target 250, that is, the sub-receiving area numbered 1 in each receiving area.
  • the receiving area corresponds to the reflected light information reflected by the detection target 250 emitted by the sub-emission area numbered 1 in the receiving area; according to the above process, the emission unit numbered 2 in each emitting area outputs the emitted light, and each receiving area
  • the sub-receiving area numbered 2 corresponds to the reflected light information reflected by the detection target 250 emitted by the sub-emission area numbered 2 in the receiving emission area. In this way, the light emitting module 210 can output 9*4 channels of emitted light through 4 shots.
  • the first emission area includes 4 sub-emission areas, each sub-emission area includes one emission unit, that is, the first emission area includes 4 emission units, and the emitted light output by the four reflection units
  • the reflected light information reflected by the detection target 250 can all be received by the first receiving area.
  • the receiving area includes one receiving unit. In this way, at least two transmitting units can correspond to one receiving unit in the light receiving module 230.
  • the processing module 220 can obtain image information that is not less than the number N of receiving areas and does not exceed the N ⁇ M resolution multiplied by the receiving area and the transmitting area. The resolution of lidar ranging.
  • the number of transmitting units is greater than the number of receiving units.
  • the present disclosure does not limit the number of transmitting units in the light transmitting module 210 and the number of receiving units in the light receiving module 230.
  • the number of transmitting units may be greater than the number of receiving units.
  • the number of transmitting units in the optical transmitting module 210 can be 36, and the number of receiving units in the optical receiving module 230 can be 9, and the number of transmitting units is greater than the number of receiving units, but this is not the case. It can be flexibly set according to actual application scenarios.
  • At least one emission area corresponds to the N emission areas in the light receiving module 230 at the same time, and the processing module 220 obtains a range image with an image resolution not exceeding N ⁇ M through the correspondence at different times.
  • At least one emitting area corresponds to the N emitting areas in the light receiving module 230 at the same time, that is, the reflected light information of the emitted light output by the at least one emitting area at the same time reflected by the detection target 250 can pass through the light receiving module 230
  • the light receiving module 230 can send the reflected light information and the receiving time corresponding to the reflected light information to the processing module 220. In this way, through the correspondence at different times, the processing module 220 can obtain no more than N ⁇ M Resolution image information.
  • the processing module 220 is further configured to determine the emission order of the M emission areas, and send the emission order to the light emitting module and the light receiving module 230.
  • the transmission sequence of the transmission area may be determined by the processing module 220.
  • the transmission sequence may be random transmission, sequential transmission, etc., but is not limited to this, and may include other transmission sequences according to actual application scenarios.
  • the processing module 220 is specifically configured to determine the emission sequence of the M emission regions according to a preset number sequence, a randomly generated sequence, or a sequence generated by using different functional relations.
  • the method for determining the emission sequence is not limited to the above.
  • the emission sequence can also be input by user input, so that the requirements for the emission sequence of the light emitting module 210 in different application scenarios can be met. , Improve the applicability of the detection device.
  • the determined transmission sequence may be sequential transmission, transmission according to a preset rule, or random transmission.
  • the corresponding emission sequence may be sequential emission: 1 ⁇ 2 ⁇ 3 ⁇ 4 ⁇ 5 ⁇ 6, that is, the first emission area outputs the emitted light first, followed by the second emission area. , No. 3, No. 4, No. 5, and No. 6; or, the transmission sequence can also be transmitted according to a preset rule: 1 ⁇ 3 ⁇ 5 ⁇ 2 ⁇ 4 ⁇ 6, that is, the numbers are odd numbers (1, 3, and No. 5) is launched first, and the even-numbered (No. 2, No. 4, and No. 6) launch areas are launched later; or, it can be random launch: 1 ⁇ 2 ⁇ 5 ⁇ 6 ⁇ 3 ⁇ 4, this disclosure It is not limited here, and the transmission sequence can be determined in a corresponding manner according to the actual application scenario.
  • FIG. 5 is a schematic flow chart of a detection method provided by an embodiment of the disclosure.
  • the detection method can be applied to the aforementioned detection device.
  • the basic principle and technical effects of the method are the same as those of the aforementioned corresponding device embodiment.
  • this For parts not mentioned in the embodiment please refer to the corresponding content in the embodiment of the detection device.
  • the detection method may include:
  • the M emission regions output M emission lights.
  • S103 According to the emission sequence, receive the reflected light information emitted by the M emission areas and reflected by the detection target.
  • the reflected light information and the receiving time corresponding to the reflected light information obtain an image with a resolution of not less than the number N of receiving areas and not exceeding a distance image of the receiving area and the transmitting area multiplied by N ⁇ M.
  • each emission area includes K sub-emission areas, each sub-emission area includes at least one emission unit, M is equal to N, and K is an integer greater than 0; according to the emission order, the M emission areas output M emission lights, including: Circulate K times according to the emission sequence of each emission unit to sequentially output M ⁇ K channels of emitted light through M ⁇ K sub-emitting areas;
  • receiving the reflected light information reflected by the detection target emitted by the M emission areas includes: adopting N receiving areas and looping K times to receive the M ⁇ K path reflection light information of the emitted light reflected by the detection target;
  • the reflected light information and the receiving time corresponding to the reflected light information the image resolution is not less than the number of receiving areas N, and does not exceed the distance image of the receiving area and the transmitting area multiplied by N ⁇ M, including: according to the transmitting order , The reflected light information and the corresponding receiving time of the reflected light information, to obtain a distance image with an image resolution not exceeding N ⁇ K.
  • the optical transmitting module includes at least one transmitting array, and the number of columns of the transmitting array is M; the optical receiving module includes at least one receiving array, and the number of rows of the receiving array is N.
  • the light emitting module includes at least one emitting array, and the number of rows of the emitting array is M; the light receiving module includes at least one receiving array, and the number of columns of the receiving array is N.
  • the optical transmitting module includes a plurality of transmitting units
  • the optical receiving module includes a plurality of receiving units
  • at least two transmitting units correspond to one receiving unit of the optical receiving module.
  • the at least two transmitting units correspond to the same receiving unit of the light receiving module at different times, so that the reflected light information of the emitted light of the at least two transmitting units after being reflected by the detection target is received by the same receiving unit.
  • the number of transmitting units is greater than the number of receiving units.
  • At least one emission area corresponds to N emission areas in the light receiving module at the same time, and the processing module obtains a distance image with an image resolution not exceeding N ⁇ M through the correspondence at different times.
  • the above method further includes: determining the emission sequence of the M emission regions, and sending the emission sequence to the light emitting module and the light receiving module.
  • the foregoing generating and transmitting sequence includes:
  • the transmission sequence of the M transmission areas is determined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种探测装置及方法,涉及激光雷达技术领域。其中,探测装置可以包括光发射模块(210)、处理模块(220)以及光接收模块(230),光发射模块(210)包括M个发射区域,光接收模块(230)包括N个接收区域,M和N均为大于0的整数,M个发射区域分时输出M路发射光,N个接收区域分时接收M个发射区域发射的经探测目标(250)反射的反射光信息,并将反射光信息和反射光信息对应的接收时间发送给处理模块(220),进而处理模块(220)可以根据发射顺序、反射光信息和反射光信息对应的接收时间对所接收反射光信息进行处理合成,以合成一张图像分辨率不低于接收区域数N,且不超过接收区域与发射区域相乘N×M的距离图像,根据距离图像可以输出针对探测目标(250)的测距结果,提高测距的准确性。

Description

探测装置及方法
相关申请的交叉引用
本公开要求于2020年04月01日提交中国专利局的申请号为CN202010253020.5、名称为“探测装置及方法”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及激光雷达技术领域,特别涉及一种探测装置及方法。
背景技术
随着激光雷达的技术发展,飞行时间测距法(Time of flight,TOF)被受到了越来越多的关注,TOF原理是通过给目标物连续发送光脉冲,然后用传感器接收从物体返回的光,通过探测光脉冲的飞行(往返)时间来得到目标物距离。
而直接飞行时间探测(Direct Time of flight,DTOF)和间接飞行时间探测(Indirect Time of Tlight,ITOF)作为基于TOF发展的探测方式,两种探测方式在使用过程中各有优势,受到了越来越广泛的关注。
但现有的测距过程,不管是对于DTOF或者ITOF,都需要考虑远距离探测中受到环境或者其他因素的影响,现有的探测方式存在激光雷达测距的分辨率较低的问题。
发明内容
本公开的目的在于,针对上述现有技术中的不足,提供一种探测装置及方法,以提高现有激光雷达测距的分辨率。
为实现上述目的,本公开实施例采用的技术方案如下:
第一方面,本公开实施例提供了一种探测装置,包括:光发射模块、处理模块以及光接收模块,所述光发射模块包括M个发射区域,所述光接收模块包括N个接收区域,其中,M和N均为大于0的整数;
所述光发射模块,配置成采用所述M个发射区域输出M路发射光;
所述光接收模块,配置成采用N个接收区域,接收所述M个发射区域发射的经探测目标反射的反射光信息,并将所述反射光信息和所述反射光信息对应的接收时间发送给所述处理模块;
所述处理模块,配置成生成发射顺序,所述发射区域依照所述发射顺序输出所述发射光,所述光接收模块依照所述发射顺序接收反射光信息,所述处理模块根据所述发射顺序、所述反射光信息和所述反射光信息对应的接收时间,获得图像分辨率不低于所述接收区域数N,且不超过所述接收区域与所述发射区域相乘N×M的距离图像。
可选地,各所述发射区域包括K个子发射区域,各所述子发射区域包括至少一个发射 单元,M等于N,K为大于0的整数;
所述光发射模块,具体配置成根据各所述发射单元的发射顺序循环K次依次通过M×K个所述子发射区域输出M×K路发射光;
相应地,所述光接收模块,还配置成采用N个接收区域,循环K次接收所述发射光经探测目标反射的M×K路反射光信息,并将所述反射光信息和所述反射光信息对应的接收时间发送给所述处理模块;所述处理模块根据所述发射顺序、所述反射光信息和所述反射光信息对应的接收时间,获得图像分辨率不超过N×K的距离图像。
可选地,所述光发射模块包括至少一个发射阵列,所述发射阵列的列数为M;所述光接收模块包括至少一个接收阵列,所述接收阵列的行数为N。
可选地,所述光发射模块包括至少一个发射阵列,所述发射阵列的行数为M;所述光接收模块包括至少一个接收阵列,所述接收阵列的列数为N。
可选地,所述光发射模块包括多个发射单元,所述光接收模块包括多个接收单元,至少两个所述发射单元对应所述光接收模块中的一个所述接收单元。
可选地,至少两个所述发射单元在不同时刻与所述光接收模块的相同接收单元相对应,使得所述至少两个发射单元的发射光经过探测目标反射后的反射光信息被相同的接收单元所接收。
可选地,所述发射单元的数量大于所述接收单元的数量。
可选地,所述至少一个发射区域在同一时刻对应于所述光接收模块中的N个发射区域,通过不同时刻的对应,所述处理模块,获得图像分辨率不超过N×M的距离图像。
可选地,所述处理模块,还配置成确定所述M个发射区域的发射顺序,并向所述光发射模块和所述光接收模块发送所述发射顺序。
可选地,所述处理模块,具体配置成根据预设的数列,随机产生的序列或者利用不同的函数关系式产生的序列确定M个发射区域的发射顺序。
第二方面,本公开实施例提供了一种探测方法,应用于上述第一方面所述的探测装置,所述探测方法包括:
生成发射顺序;
依照所述发射顺序,M个发射区域输出M路发射光;
依照所述发射顺序,接收所述M个发射区域发射的经探测目标反射的反射光信息;
根据所述发射顺序、所述反射光信息和所述反射光信息对应的接收时间,获得图像分辨率不低于所述接收区域数N,且不超过所述接收区域与所述发射区域相乘N×M的距离图像。
可选地,各所述发射区域包括K个子发射区域,各所述子发射区域包括至少一个发射单元,M等于N,K为大于0的整数;所述依照所述发射顺序,M个发射区域输出M路发射光,包括:
根据各所述发射单元的发射顺序循环K次依次通过M×K个所述子发射区域输出M×K路发射光;
相应地,所述依照所述发射顺序,接收所述M个发射区域发射的经探测目标反射的反射光信息,包括:
采用N个接收区域,循环K次接收所述发射光经探测目标反射的M×K路反射光信息;
所述根据所述发射顺序、所述反射光信息和所述反射光信息对应的接收时间,获得图像分辨率不低于所述接收区域数N,且不超过所述接收区域与所述发射区域相乘N×M的距离图像,包括:
根据所述发射顺序、所述反射光信息和所述反射光信息对应的接收时间,获得图像分辨率不超过N×K的距离图像。
可选地,所述光发射模块包括至少一个发射阵列,所述发射阵列的列数为M;所述光接收模块包括至少一个接收阵列,所述接收阵列的行数为N。
可选地,所述光发射模块包括至少一个发射阵列,所述发射阵列的行数为M;所述光接收模块包括至少一个接收阵列,所述接收阵列的列数为N。
可选地,所述光发射模块包括多个发射单元,所述光接收模块包括多个接收单元,至少两个所述发射单元对应所述光接收模块中的一个所述接收单元。
可选地,至少两个所述发射单元在不同时刻与所述光接收模块的相同接收单元相对应,使得所述至少两个发射单元的发射光经过探测目标反射后的反射光信息被相同的接收单元所接收。
可选地,所述发射单元的数量大于所述接收单元的数量。
可选地,所述至少一个发射区域在同一时刻对应于所述光接收模块中的N个发射区域,通过不同时刻的对应,获得图像分辨率不超过N×M的距离图像。
可选地,所述方法还包括:确定所述M个发射区域的发射顺序,并向所述光发射模块和所述光接收模块发送所述发射顺序。
可选地,所述生成发射顺序,包括:
根据预设的数列,随机产生的序列或者利用不同的函数关系式产生的序列确定M个发射区域的发射顺序。
本公开的有益效果是:
本公开实施例提供的一种探测装置及方法,该探测装置可以包括光发射模块、处理模块以及光接收模块,光发射模块包括M个发射区域,光接收模块包括N个接收区域,其中,M和N均为大于0的整数,处理模块,配置成生成发射顺序,发射区域依照发射顺序输出发射光,光接收模块依照发射顺序接收反射光信息,并将反射光信息和反射光信息对应的接收时间发送给处理模块,处理模块根据发射顺序、反射光信息和反射光信息对应的接收时间,可以计算获取探测目标的距离数据,在此过程中,由于M个发射区域分时输出M路发射光,N个接收区域分时接收M个发射区域发射的经探测目标反射的反射光信息,并将反射光信息和反射光信息对应的接收时间发送给处理模块,进而处理模块可以根据发射顺序、反射光信息和反射光信息对应的接收时间对所接收反射光信息进行处理合成,以合成一张图像分辨率不低于接收区域数N,且不超过接收区域与发射区域相乘N×M的距离图像,根据该距离图像可以输出针对该探测目标的测距结果,提高测距的准确性。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本公开的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本公开实施例提供的一种探测装置的功能模块示意图;
图2为本公开实施例提供的一种探测装置的探测示意图;
图3为本公开实施例提供的另一种探测装置的探测示意图;
图4为本公开实施例提供的又一种探测装置的探测示意图;
图5为本公开实施例提供的一种探测方法的流程示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本公开实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本公开的实施例的详细描述并非旨在限制要求保护的本公开的范围,而是仅仅表示本公开的选定实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
图1为本公开实施例提供的一种探测装置的功能模块示意图。如图1所示,该探测装置包括:光发射模块210、处理模块220以及光接收模块230,光发射模块210包括M个发射区域,光接收模块230包括N个接收区域,其中,M和N均为大于0的整数。
光发射模块210,配置成采用M个发射区域输出M路发射光;光接收模块230,配置成采用N个接收区域,接收M个发射区域发射的经探测目标反射的反射光信息,并将反射光信息和反射光信息对应的接收时间发送给处理模块220。
其中,本公开实施例中光发射模块210包括M个发射区域指的是根据输出发射光的区域可以划分为M个发射区域,通过M个发射区域可以输出M路发射光;光接收模块230包括N个接收区域指的是可以将其对应的接收区域划分为N个接收区域,配置成接收M个发射区域发射的经探测目标250反射的反射光信息。
当然,本公开实施例在此并不限定M和N的取值,M和N可以分别对应发射区域和接收区域的像素,因此按照该方式获得的距离图像的最大图像分辨率为N×M。当然,M和N也可以不对应发射区域和接收区域的像素,例如,发射区域包括多个子发射区域,M可以为子发射区域的个数,而N为接收区域的像素,M和N的取值可以相等,可选地,M的取值可以为2、5或8等,N的取值可以为2、5或8等,当然两者也可以不相等,本公开在此不作限定,根据实际的应用场景可以灵活设置。
处理模块220,配置成生成发射顺序,发射区域依照发射顺序输出发射光,光接收模块230依照该发射顺序接收反射光信息,并将该反射光信息和反射光信息对应的接收时间发送给处理模块220,处理模块220根据发射顺序、反射光信息和反射光信息对应的接收时间,获得图像分辨率不低于接收区域数N,且不超过接收区域与发射区域相乘N×M的距离图像。
其中,光发射模块210接收到该发射顺序后,可以使光发射模块210中M个发射区域依照该发射顺序输出发射光,输出的发射光经探测目标250反射后,光接收模块230可以采用N个接收区域,依照该发射顺序接收M个发射区域发射的经探测目标250反射的反射光信息,并将反射光信息和反射光信息对应的接收时间发送给处理模块220,处理模块220可以根据反射光信息和反射光信息对应的接收时间,计算获取探测目标250的距离数据。
需要说明的是,由于M个发射区域依照发射顺序(比如,各发射区域依次发射或随机发射)输出M路发射光,而N个接收区域依照发射顺序接收每路发射光经探测目标250反射的反射光信息,并通过光接收模块230将每路发射光经探测目标250反射的反射光信息和其对应的接收时间发送给处理模块220,那么,对于输出的每路发射光,处理模块220可以获得图像分辨率为N的距离图像;对于输出的M路发射光,处理模块220可以获得图 像分辨率为N×M的距离图像,因此,处理模块220可以获得图像分辨率不低于接收区域数N,且不超过接收区域与发射区域相乘N×M的距离图像,也即可以获得高于接收区域数的图像分辨率,提高探测装置的测距的准确性。
其中,需要说明的是,根据实际的应用场景,也可以采用M个发射区域输出X路发射光,X的取值可以为大于0小于M的整数,比如,M取值为8时,X取值可以为6,此时采用N个接收区域,接收X个发射区域发射的经探测目标250反射的反射光信息,并将反射光信息和反射光信息对应的接收时间发送给处理模块220,处理模块220根据发射顺序、反射光信息和反射光信息对应的接收时间可以获取图像分辨率为N×X的距离图像,也即可以获得图像分辨率不低于接收区域数N,且不超过接收区域与发射区域相乘N×M的距离图像。
综上所述,本公开实施例所提供的探测装置中,该探测装置可以包括光发射模块、处理模块以及光接收模块,光发射模块包括M个发射区域,光接收模块包括N个接收区域,其中,M和N均为大于0的整数,处理模块,配置成生成发射顺序,发射区域依照发射顺序输出发射光,光接收模块依照发射顺序接收反射光信息,并将反射光信息和反射光信息对应的接收时间发送给处理模块,处理模块根据发射顺序、反射光信息和反射光信息对应的接收时间,可以计算获取探测目标的距离数据,在此过程中,由于M个发射区域分时输出M路发射光,N个接收区域分时接收M个发射区域发射的经探测目标反射的反射光信息,并将反射光信息和反射光信息对应的接收时间发送给处理模块,进而处理模块可以根据发射顺序、反射光信息和反射光信息对应的接收时间对所接收反射光信息进行处理合成,以合成一张图像分辨率不低于接收区域数N,且不超过接收区域与发射区域相乘N×M的距离图像,根据该距离图像可以输出针对该探测目标的测距结果,提高测距的准确性。
此外,本公开实施例所提供的探测装置中,由于光发射模块所对应的M个发射区域分时输出发射光,因此,可以降低输出发射光时产生的瞬时电流最大值,使得驱动电流更加平缓,提高光发射模块的散热效果。且本公开实施例在提升探测装置的分辨率的情况下,也未增加其他的光接收模块,因此,可以在一定程度上减小探测装置的尺寸,提高探测装置的适用性。当然,本公开实施例所提供的探测装置不仅可以适用于远距离探测模式,在实际使用过程中可以按照实际需求分区域控制M个发射区域中的部分发射区域输出发射光实现近距离探测模式,比如,通过控制输出适应近距离的低功率探测,在此种模式下仅一个发射区域的部分区域发射一次,可以获得图像分辨率甚至低于接收区域数N距离图像,进而可以获取到相应的近距离探测结果,本公开并不排除该应用。
可选地,各发射区域包括K个子发射区域,各子发射区域包括至少一个发射单元,M 等于N,K为大于0的整数;光发射模块210,具体配置成根据各发射单元的发射顺序循环K次依次通过M×K个子发射区域输出M×K路发射光;
相应地,光接收模块230,还配置成采用N个接收区域,循环K次接收发射光经探测目标250反射的M×K路反射光信息,并将每路反射光信息和反射光信息对应的接收时间发送给处理模块220;处理模块220根据发射顺序、反射光信息和反射光信息对应的接收时间,获得图像分辨率不超过N×K的距离图像。
其中,若光接收区域的数量为N,此时,若想获得图像分辨率大于该接收区域数N的距离图像时,可以将光发射模块210分成M个发射区域,M的取值可以与N相等,各发射区域可以包括K个子发射区域,则处理模块220可以获得图像分辨率不超过N×K的距离图像,具体获取过程可参见下述内容。此外,需要说明的是,本公开中的发射顺序,根据光发射模块210划分方式,该发射顺序可以是各发射区域的发射顺序,若发射区域包括至少一个子发射区域,则该发射顺序可以是各子发射区域的发射顺序,当然,若各子发射区域包括至少一个发射单元,该发射顺序可以是各发射单元的发射顺序,本公开在此不作限定。
上述过程也可以理解为将发射区域按照接收区域的像素划分为对应相同的N个发射区域,各发射区域包括K个子发射区域,各子发射区域包括至少一个发射单元,其中,对K个子发射区域的发射单元进行编码,可选地,所有子发射区域中编码相同的发射单元构成一个发射区域,进而所有发射单元总体形成一共M个发射区域,之后M个发射区域按照所述处理模块220生成的发射顺序从而顺序或者随机发出发射光,在实际工作中M个发射区域中的一个发射区域发射一次,所述处理模块220可以获得图像分辨率为N的距离图像;M个发射区域每个发射区域都发射,输出M路发射光,所述处理模块220可以获得M次的发射结果,从而最高获得图像分辨率为M×N的距离图像,如之前所述,M个发射区域中的一个发射区域部分区域发射一次,可以获得图像分辨率低于N的距离图像,实现近距离低功率的探测效果。
图2为本公开实施例提供的一种探测装置的探测方式示意图。其中,M、N及K的取值可以分别为9、9及4,如图2所示,光发射模块210可以包括9个发射区域,各发射区域包括4个子发射区域,可以依次对其标号为1、2、3及4,各子发射区域包括至少一个发射单元(比如,发射像元),则光发射模块210具体配置成根据各发射单元的发射顺序(比如,1→2→3→4的依次发射)循环4次依次通过9*4个子发射区域输出9*4路发射光,对应地,光接收模块230,还配置成采用9个接收区域,循环4次接收发射光经探测目标250反射的9*4路反射光,并将各路反射光信息和反射光信息对应的接收时间发送给处理 模块220,处理模块220可以根据每路反射光信息和反射光信息对应的接收时间,获得图像分辨率不超过9*4的距离图像。
同样按照上述也可以理解为接收区域数量为9=3*3,但是发射单元为36=6*6,因此可以按照接收区域数量将光发射模块210的发射区域分为9=3*3的发射区域,每个发射区域中有4个发射单元,将每一个发射单元编码(可以采用不同的编码方式形成不同图案或者无规则编码,本发明并不限定),其中不同发射区域编码相同的发射单元重新构成一个发射区域,因而光发射模块210的发射区域最终被分为4个发射区域,4个发射区域可以按照前述阐述的方式输出发射光,进而处理模块200可以获得图像分辨率不低于9=3*3的距离图像,也可以最高获得图像分辨率为36=9*4=(3*3)*4的距离图像,当然上述只是举例描述,实际上可以依照使用情况具体设置N和M的值,按照具体情况实现超分辨率的效果。
可选地,光发射模块210包括至少一个发射阵列,发射阵列的列数为M;光接收模块230包括至少一个接收阵列,接收阵列的行数为N(每一个发射阵列的列中可至少包含一个发射单元,每一个接收阵列的行中可至少包含一个接收单元),以下以一个特殊情况进行说明。比如,每一个发射阵列的列只包含一个发射单元,每一个接收阵列的行只包含一个接收单元的情况进行描述,包含多于一个发射单元或接收单元的情况类似于一个的情况,本公开将不再赘述。
其中,光发射模块210包括至少一个发射阵列,可以根据像素对发射阵列进行划分时,该发射阵列可以为1×M个像素的发射阵列,也即发射阵列中行像素可以是1,列像素可以是M,在光发射模块210采用M个发射区域分区发射;对应地,光接收模块230可以包括至少一个接收阵列,该接收阵列可以为N×1个像素的发射阵列,也即接收阵列中行像素可以是N,列像素可以是1,在光接收模块230采用N个接收区域分区发射。
图3为本公开实施例提供的另一种探测装置的探测示意图。如图3所示,发射阵列从左到右可以分为M个发射区域,每个发射区域包含a个发射单元,接收阵列从上到下可以分为N个接收区域,每个接收区域包含b个接收单元,则对于发射阵列来说,M个发射区域可以根据发射顺序(比如,依次发射或者随机发射)输出M路发射光,需要说明的是,M个发射区域输出发射光时,每次只能有一个发射区域输出发射光,比如,发射区域i,所输出的发射光在探测目标250上反射后可以通过接收阵列的N个接收区域接收,得到一个维度为N×1的列向量,该列向量可以表示该发射区域输出的发射光经探测目标250反射的反射光信息,根据该反射光信息即可确定图像分辨率为N×M的距离图像中第i列的图像信息;依据前述的过程,M个发射区域继续发射,直到所有发射区域都输出发射光,并 使用N个接收区域接收所对应的反射光信息,最后,处理模块220根据M个发射区域的发射顺序、反射光信息和反射光信息对应的接收时间,可以确定图像分辨率为N×M的距离图像中每一列的图像信息,最终得到完整的一帧图像分辨率为N×M的距离图像。
可选地,光发射模块210包括至少一个发射阵列,发射阵列的行数为M;光接收模块230包括至少一个接收阵列,接收阵列的列数为N(每一个发射阵列的行中可至少包含一个发射单元,每一个接收阵列的列中可至少包含一个接收单元),以下以一个特殊情况进行说明。比如,每一个发射阵列的行只包含一个发射单元,每一个接收阵列的列只包含一个接收单元的情况进行描述,包含多于一个发射单元或接收单元的情况类似于一个的情况,本公开将不再赘述。
当然,根据像素对发射阵列进行划分时,该发射阵列可以为M×1个像素的发射阵列,也即发射阵列中行像素可以是M,列像素可以是1,在光发射模块210采用M个发射区域分区发射;对应地,光接收模块230可以包括至少一个接收阵列,该接收阵列可以为1×N个像素的接收阵列,也即接收阵列中行像素可以是1,列像素可以是N,在光接收模块230采用N个接收区域分区发射。对于该种划分方式,可参见前述方法实施例的相关部分,本公开在此不再赘述。
图4为本公开实施例提供的又一种探测装置的探测示意图。如图4所示,发射阵列从上到下可以分为M个发射区域,每个发射区域包含a个发射单元,接收阵列从左到右可以分为N个接收区域,每个接收区域包含b个接收单元,则对于发射阵列来说,M个发射区域可以根据发射顺序(比如,依次发射或者随机发射)输出M路发射光,需要说明的是,M个发射区域输出发射光时,每次只能有一个发射区域输出发射光,比如,发射区域j,所输出的发射光在探测目标250上反射后可以通过接收阵列的N个接收区域接收,得到一个维度为1×N的行向量,该行向量可以表示该发射区域输出的发射光经探测目标250反射的反射光信息,根据该反射光信息即可确定图像分辨率为M×N的距离图像信息中第j行的图像信息;依据前述的过程,M个发射区域继续发射,直到所有发射区域都输出发射光,并使用N个接收区域接收所对应的反射光信息,最后,处理模块220根据M个发射区域的发射顺序、反射光信息和反射光信息对应的接收时间,可以确定图像分辨率为M×N的距离图像中每一行的图像信息,最终得到完整的图像分辨率为M×N的距离图像。
需要说明的是,前述中的a和b值可以相同也可以不相同,具体数值可以为1或者1以上的数值。
可选地,光发射模块210包括多个发射单元,光接收模块230包括多个接收单元,至少两个发射单元对应光接收模块230中的一个接收单元。
可选地,至少两个发射单元在不同时刻与光接收模块230的相同接收单元相对应,使得至少两个发射单元的发射光经过探测目标250反射后的反射光信息被相同的接收单元所接收。
其中,发射单元可以是半导体激光器或固体激光器,当然,也可以是发射像元等;接收单元可以包括光电二极管阵列或雪崩光电二极管阵列等,本公开在此不作限定。
需要说明的是,一个发射区域可以包括一个或多个发射单元,一个接收区域可以包括一个或多个接收单元。如图2所示,光发射模块210可以包括9个发射区域,各发射区域包括4个子发射区域,每个子发射区域包括一个发射单元(比如,发射像元),依次对各子发射区域中的发射单元标号为1、2、3及4;光接收模块230可以包括9个接收区域,各接收区域包括1个接收单元。
若各发射单元的发射顺序为1→2→3→4依次发射,可选地,光发射模块210可以根据该发射顺序让每个发射区域中发射编号为1的发射单元输出发射光,此时将输出9路发射光,这9路发射光经探测目标250发生反射产生反射光信息,那么,通过光接收模块230的9个接收单元可以对应接收9路反射光信息。
需要说明的是,也可以根据各发射区域所包括的子发射区域数量,对各接收单元进行划分,比如,在本公开实施例中,可以将各接收单元的接收区域进行划分,划分为4个子接收区域,比如,可以对其编号为1、2、3及4,每个子接收区域对应接收一个子发射区域发射的经探测目标250反射的反射光信息,即各接收区域中编号为1的子接收区域对应接收发射区域中编号为1的子发射区域发射的经探测目标250反射的反射光信息;根据上述过程,每个发射区域中发射编号为2的发射单元输出发射光,各接收区域中编号为2的子接收区域对应接收发射区域中编号为2的子发射区域发射的经探测目标250反射的反射光信息,如此,光发射模块210通过4次发射可以输出9*4路发射光。其中,以第一发射区域为例,第一发射区域包括4个子发射区域,各子发射区域包括一个发射单元,即该第一发射区域包括4个发射单元,这4个反射单元输出的发射光经探测目标250反射的反射光信息可以均被第一接收区域所接收,该接收区域包括1个接收单元,如此,使得至少两个发个单元可对应光接收模块230中的一个接收单元,实现接收单元的共用,处理模块220可以获得不低于接收区域数N,且不超过接收区域与发射区域相乘N×M分辨率的图像信息,获得高于光接收模块230像素数目的测距精度,提高激光雷达测距的分辨率。
可选地,发射单元的数量大于接收单元的数量。
此外,需要说明的是,本公开在此并不限定光发射模块210中发射单元的数量以及光接收模块230中接收单元的数量,可选地,发射单元的数量可以大于接收单元的数量。如 前述实施例所述,光发射模块210中发射单元的数量可以为36个,光接收模块230中接收单元的数量可以为9个,发射单元的数量大于接收单元的数量,但不以此为限,根据实际的应用场景可以灵活设置。
可选地,至少一个发射区域在同一时刻对应于光接收模块230中的N个发射区域,通过不同时刻的对应,处理模块220,获得图像分辨率不超过N×M的距离图像。
其中,至少一个发射区域在同一时刻对应于光接收模块230中的N个发射区域,也即至少一个发射区域在同一时刻输出的发射光经探测目标250反射的反射光信息可以通过光接收模块230中的N个发射区域进行接收,光接收模块230可以将反射光信息和反射光信息对应的接收时间发送给处理模块220,如此,通过不同时刻的对应,处理模块220可以获得不超过N×M分辨率的图像信息。
可选地,处理模块220,还配置成确定M个发射区域的发射顺序,并向光发射模块和光接收模块230发送发射顺序。
其中,发射区域的发射顺序可以通过处理模块220确定,该发射顺序可以是随机发射,顺序发射等,但不以此为限,根据实际的应用场景可以包括其他发射顺序。
可选地,处理模块220,具体配置成根据预设的数列,随机产生的序列或者利用不同的函数关系式产生的序列确定M个发射区域的发射顺序。
需要说明的是,发射顺序的确定方式并不仅限于上述所述,在实际应用过程中,也可以通过用户输入的方式输入发射顺序,使得可以满足不同应用场景下对光发射模块210发射顺序的要求,提高探测装置的适用性。
可选地,所确定的发射顺序可以是顺序发射、按预设规律发射或随机发射等。比如,光发射模块210包括6个发射区域时,其对应的发射顺序可以为顺序发射:1→2→3→4→5→6,也即1号发射区域先输出发射光,其次是2号、3号、4号、5号和6号;或者,该发射顺序也可以按照按预设规律发射:1→3→5→2→4→6,即编号为奇数(1号、3号和5号)的发射区域先发射,编号为偶数(2号、4号和6号)的发射区域后发射;又或者,可以是随机发射:1→2→5→6→3→4,本公开在此不作限定,根据实际的应用场景可以选择相应的方式确定发射顺序。
图5为本公开实施例提供的一种探测方法的流程示意图,该探测方法可以应用于前述探测装置,该方法基本原理及产生的技术效果与前述对应的装置实施例相同,为简要描述,本实施例中未提及部分,可参考探测装置实施例中的相应内容。如图5所示,该探测方法可以包括:
S101、生成发射顺序。
S102、依照发射顺序,M个发射区域输出M路发射光。
S103、依照发射顺序,接收M个发射区域发射的经探测目标反射的反射光信息。
S104、根据发射顺序、反射光信息和反射光信息对应的接收时间,获得图像分辨率不低于接收区域数N,且不超过接收区域与发射区域相乘N×M的距离图像。
可选地,各发射区域包括K个子发射区域,各子发射区域包括至少一个发射单元,M等于N,K为大于0的整数;依照发射顺序,M个发射区域输出M路发射光,包括:根据各发射单元的发射顺序循环K次依次通过M×K个子发射区域输出M×K路发射光;
相应地,依照发射顺序,接收M个发射区域发射的经探测目标反射的反射光信息,包括:采用N个接收区域,循环K次接收发射光经探测目标反射的M×K路反射光信息;
根据发射顺序、反射光信息和反射光信息对应的接收时间,获得图像分辨率不低于接收区域数N,且不超过接收区域与发射区域相乘N×M的距离图像,包括:根据发射顺序、反射光信息和反射光信息对应的接收时间,获得图像分辨率不超过N×K的距离图像。
可选地,光发射模块包括至少一个发射阵列,发射阵列的列数为M;光接收模块包括至少一个接收阵列,接收阵列的行数为N。
可选地,光发射模块包括至少一个发射阵列,发射阵列的行数为M;光接收模块包括至少一个接收阵列,接收阵列的列数为N。
可选地,光发射模块包括多个发射单元,光接收模块包括多个接收单元,至少两个发射单元对应光接收模块中的一个接收单元。
可选地,至少两个发射单元在不同时刻与光接收模块的相同接收单元相对应,使得至少两个发射单元的发射光经过探测目标反射后的反射光信息被相同的接收单元所接收。
可选地,发射单元的数量大于接收单元的数量。
可选地,至少一个发射区域在同一时刻对应于光接收模块中的N个发射区域,通过不同时刻的对应,处理模块,获得图像分辨率不超过N×M的距离图像。
可选地,上述方法还包括:确定M个发射区域的发射顺序,并向光发射模块和光接收模块发送发射顺序。
可选地,上述生成发射顺序,包括:
根据预设的数列,随机产生的序列或者利用不同的函数关系式产生的序列确定M个发射区域的发射顺序。
上述方法应用于前述实施例提供的探测装置,其实现原理和技术效果类似,在此不再赘述。
需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含, 从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换和改进等,均应包含在本公开的保护范围之内。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换和改进等,均应包含在本公开的保护范围之内。

Claims (20)

  1. 一种探测装置,其特征在于,包括:光发射模块、处理模块以及光接收模块,所述光发射模块包括M个发射区域,所述光接收模块包括N个接收区域,其中,M和N均为大于0的整数;
    所述光发射模块,配置成采用所述M个发射区域输出M路发射光;
    所述光接收模块,配置成采用N个接收区域,接收所述M个发射区域发射的经探测目标反射的反射光信息,并将所述反射光信息和所述反射光信息对应的接收时间发送给所述处理模块;
    所述处理模块,配置成生成发射顺序,所述发射区域依照所述发射顺序输出所述发射光,所述光接收模块依照所述发射顺序接收反射光信息,所述处理模块根据所述发射顺序、所述反射光信息和所述反射光信息对应的接收时间,获得图像分辨率不低于所述接收区域数N,且不超过所述接收区域与所述发射区域相乘N×M的距离图像。
  2. 根据权利要求1所述的探测装置,其特征在于,各所述发射区域包括K个子发射区域,各所述子发射区域包括至少一个发射单元,M等于N,K为大于0的整数;
    所述光发射模块,具体配置成根据各所述发射单元的发射顺序循环K次依次通过M×K个所述子发射区域输出M×K路发射光;
    相应地,所述光接收模块,还配置成采用N个接收区域,循环K次接收所述发射光经探测目标反射的M×K路反射光信息,并将所述反射光信息和所述反射光信息对应的接收时间发送给所述处理模块;所述处理模块根据所述发射顺序、所述反射光信息和所述反射光信息对应的接收时间,获得图像分辨率不超过N×K的距离图像。
  3. 根据权利要求1所述的探测装置,其特征在于,所述光发射模块包括至少一个发射阵列,所述发射阵列的列数为M;所述光接收模块包括至少一个接收阵列,所述接收阵列的行数为N。
  4. 根据权利要求1所述的探测装置,其特征在于,所述光发射模块包括至少一个发射阵列,所述发射阵列的行数为M;所述光接收模块包括至少一个接收阵列,所述接收阵列的列数为N。
  5. 根据权利要求1所述的探测装置,其特征在于,所述光发射模块包括多个发射单元,所述光接收模块包括多个接收单元,至少两个所述发射单元对应所述光接收模块中的一个所述接收单元。
  6. 根据权利要求5所述的探测装置,其特征在于,至少两个所述发射单元在不同时刻与所述光接收模块的相同接收单元相对应,使得至少两个所述发射单元的发射光经过探测目标反射后的反射光信息被相同的接收单元所接收。
  7. 根据权利要求5所述的探测装置,其特征在于,所述发射单元的数量大于所述接收单元的数量。
  8. 根据权利要求3或4所述的探测装置,其特征在于,至少一个所述发射区域在同一时刻对应于所述光接收模块中的N个发射区域,通过不同时刻的对应,所述处理模块,获得图像分辨率不超过N×M的距离图像。
  9. 根据权利要求1-7任一项所述的探测装置,其特征在于,所述处理模块,还配置成确定所述M个发射区域的发射顺序,并向所述光发射模块和所述光接收模块发送所述发射顺序。
  10. 根据权利要求1-7任一项所述的探测装置,其特征在于,所述处理模块,具体配置成根据预设的数列,随机产生的序列或者利用不同的函数关系式产生的序列确定所述M个发射区域的发射顺序。
  11. 一种探测方法,其特征在于,应用于上述权利要求1-10任一项所述的探测装置,所述探测方法包括:
    生成发射顺序;
    依照所述发射顺序,M个发射区域输出M路发射光;
    依照所述发射顺序,接收所述M个发射区域发射的经探测目标反射的反射光信息;
    根据所述发射顺序、所述反射光信息和所述反射光信息对应的接收时间,获得图像分辨率不低于所述接收区域数N,且不超过所述接收区域与所述发射区域相乘N×M的距离图像。
  12. 根据权利要求11所述的探测方法,其特征在于,各所述发射区域包括K个子发射区域,各所述子发射区域包括至少一个发射单元,M等于N,K为大于0的整数;所述依照所述发射顺序,M个发射区域输出M路发射光,包括:
    根据各所述发射单元的发射顺序循环K次依次通过M×K个所述子发射区域输出M×K路发射光;
    相应地,所述依照所述发射顺序,接收所述M个发射区域发射的经探测目标反射的反射光信息,包括:
    采用N个接收区域,循环K次接收所述发射光经探测目标反射的M×K路反射光信息;
    所述根据所述发射顺序、所述反射光信息和所述反射光信息对应的接收时间,获得图像分辨率不低于所述接收区域数N,且不超过所述接收区域与所述发射区域相乘N×M的距离图像,包括:
    根据所述发射顺序、所述反射光信息和所述反射光信息对应的接收时间,获得图像分辨率不超过N×K的距离图像。
  13. 根据权利要求11所述的探测方法,其特征在于,所述光发射模块包括至少一个发射阵列,所述发射阵列的列数为M;所述光接收模块包括至少一个接收阵列,所述接收阵列的行数为N。
  14. 根据权利要求11所述的探测方法,其特征在于,所述光发射模块包括至少一个发射阵列,所述发射阵列的行数为M;所述光接收模块包括至少一个接收阵列,所述接收阵列的列数为N。
  15. 根据权利要求11所述的探测方法,其特征在于,所述光发射模块包括多个发射单元,所述光接收模块包括多个接收单元,至少两个所述发射单元对应所述光接收模块中的一个所述接收单元。
  16. 根据权利要求15所述的探测方法,其特征在于,至少两个所述发射单元在不同时刻与所述光接收模块的相同接收单元相对应,使得至少两个所述发射单元的发射光经过探测目标反射后的反射光信息被相同的接收单元所接收。
  17. 根据权利要求15所述的探测方法,其特征在于,所述发射单元的数量大于所述接收单元的数量。
  18. 根据权利要求13或14所述的探测方法,其特征在于,至少一个所述发射区域在同一时刻对应于所述光接收模块中的N个发射区域,通过不同时刻的对应,获得图像分辨率不超过N×M的距离图像。
  19. 根据权利要求11-17任一项所述的探测方法,其特征在于,所述方法还包括:确定所述M个发射区域的发射顺序,并向所述光发射模块和所述光接收模块发送所述发射顺序。
  20. 根据权利要求11-17任一项所述的探测方法,其特征在于,所述生成发射顺序,包括:
    根据预设的数列,随机产生的序列或者利用不同的函数关系式产生的序列确定所述M个发射区域的发射顺序。
PCT/CN2020/118986 2020-04-01 2020-09-29 探测装置及方法 WO2021196545A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/914,822 US20230139585A1 (en) 2020-04-01 2020-09-29 Detection apparatus and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010253020.5A CN111398976B (zh) 2020-04-01 2020-04-01 探测装置及方法
CN202010253020.5 2020-04-01

Publications (1)

Publication Number Publication Date
WO2021196545A1 true WO2021196545A1 (zh) 2021-10-07

Family

ID=71437529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/118986 WO2021196545A1 (zh) 2020-04-01 2020-09-29 探测装置及方法

Country Status (3)

Country Link
US (1) US20230139585A1 (zh)
CN (1) CN111398976B (zh)
WO (1) WO2021196545A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111398976B (zh) * 2020-04-01 2022-08-23 宁波飞芯电子科技有限公司 探测装置及方法
WO2022016380A1 (zh) * 2020-07-21 2022-01-27 深圳市速腾聚创科技有限公司 激光雷达及自动驾驶设备
WO2022089464A1 (zh) * 2020-10-30 2022-05-05 宁波飞芯电子科技有限公司 一种探测方法及探测系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0717288B1 (en) * 1994-12-14 2000-03-15 Seiko Epson Corporation Light-sensing device
CN107656284A (zh) * 2017-09-26 2018-02-02 艾普柯微电子(上海)有限公司 测距装置及测距方法
CN109507670A (zh) * 2017-09-14 2019-03-22 三星电子株式会社 雷达图像处理方法、装置和系统
CN109597090A (zh) * 2018-12-13 2019-04-09 武汉万集信息技术有限公司 多波长激光雷达测距装置及方法
CN111398976A (zh) * 2020-04-01 2020-07-10 宁波飞芯电子科技有限公司 探测装置及方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3811283A1 (de) * 1988-04-02 1989-10-12 Licentia Gmbh Pulsdopplerradar
US5243553A (en) * 1991-07-02 1993-09-07 Loral Vought Systems Corporation Gate array pulse capture device
DE19923821A1 (de) * 1999-05-19 2000-11-23 Zeiss Carl Jena Gmbh Verfahren und Anordnung zur Lageerfassung einer mit einem Laser-Scanner abzutastenden Fläche
US7236235B2 (en) * 2004-07-06 2007-06-26 Dimsdale Engineering, Llc System and method for determining range in 3D imaging systems
CN100538394C (zh) * 2007-04-06 2009-09-09 清华大学 一种采用多发多收频分信号的宽带雷达及其成像方法
DE502008001493D1 (de) * 2008-11-21 2010-11-18 Sick Ag Optoelektronischer Sensor und Verfahren zur Messung von Entfernungen nach dem Lichtlaufzeitprinzip
US9921300B2 (en) * 2014-05-19 2018-03-20 Rockwell Automation Technologies, Inc. Waveform reconstruction in a time-of-flight sensor
DE102015209418A1 (de) * 2015-05-22 2016-11-24 Robert Bosch Gmbh Scanvorrichtung und Scanverfahren
CN104898107B (zh) * 2015-06-17 2017-06-20 西安电子科技大学 一种多发多收合成孔径激光雷达信号处理方法
US10708577B2 (en) * 2015-12-16 2020-07-07 Facebook Technologies, Llc Range-gated depth camera assembly
JP6556399B2 (ja) * 2017-02-27 2019-08-07 三菱電機株式会社 レーダ装置
CN207366739U (zh) * 2017-11-07 2018-05-15 北醒(北京)光子科技有限公司 一种固态面阵激光雷达装置
CN108107417A (zh) * 2017-11-07 2018-06-01 北醒(北京)光子科技有限公司 一种固态面阵激光雷达装置
RU2682174C1 (ru) * 2018-04-19 2019-03-15 Самсунг Электроникс Ко., Лтд. Антенная решетка миллиметрового диапазона для радиолокационной системы трехмерной визуалиации
KR102628655B1 (ko) * 2018-06-29 2024-01-24 삼성전자주식회사 레이더 구동 장치 및 방법
CN209911542U (zh) * 2019-03-18 2020-01-07 深圳市镭神智能系统有限公司 一种激光雷达
CN110244318B (zh) * 2019-04-30 2021-08-17 深圳市光鉴科技有限公司 基于异步ToF离散点云的3D成像方法
CN110412602A (zh) * 2019-07-02 2019-11-05 北醒(北京)光子科技有限公司 一种激光雷达探测方法及激光雷达
CN110501714A (zh) * 2019-08-16 2019-11-26 深圳奥锐达科技有限公司 一种距离探测器及距离探测方法
CN110596721B (zh) * 2019-09-19 2022-06-14 深圳奥锐达科技有限公司 双重共享tdc电路的飞行时间距离测量系统及测量方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0717288B1 (en) * 1994-12-14 2000-03-15 Seiko Epson Corporation Light-sensing device
CN109507670A (zh) * 2017-09-14 2019-03-22 三星电子株式会社 雷达图像处理方法、装置和系统
CN107656284A (zh) * 2017-09-26 2018-02-02 艾普柯微电子(上海)有限公司 测距装置及测距方法
CN109597090A (zh) * 2018-12-13 2019-04-09 武汉万集信息技术有限公司 多波长激光雷达测距装置及方法
CN111398976A (zh) * 2020-04-01 2020-07-10 宁波飞芯电子科技有限公司 探测装置及方法

Also Published As

Publication number Publication date
CN111398976A (zh) 2020-07-10
CN111398976B (zh) 2022-08-23
US20230139585A1 (en) 2023-05-04

Similar Documents

Publication Publication Date Title
WO2021196545A1 (zh) 探测装置及方法
WO2017130996A1 (ja) 距離測定装置
US8645099B2 (en) Depth sensor, depth estimation method using the same, and depth estimation device including the same
WO2020216143A1 (zh) 激光雷达的接收装置、激光雷达及其回波处理方法
CN102346250A (zh) 飞行时间成像器
US20210116549A1 (en) Distance measurement method and apparatus, and distance measurement sensor and distance measurement sensing array
JP7125968B2 (ja) 距離を光学的に測定するための方法およびデバイス
CN102193087A (zh) 发射装置及方法、接收装置及方法、物标探知装置及方法
CN110346781B (zh) 基于多激光束的雷达发射接收装置及激光雷达系统
WO2021016781A1 (zh) 三维图像传感器以及相关三维图像传感模组及手持装置
CN111556260A (zh) 图像传感器
CN111323787A (zh) 探测装置及方法
CN113484869A (zh) 探测装置及方法
US11243310B2 (en) Solid-state imaging device, solid-state imaging system, and method of driving the solid-state imaging device
KR102434786B1 (ko) 거리 측정을 위한 방법 및 디바이스
CN116338631B (zh) 控制激光雷达的方法、装置、电子设备及存储介质
US11181364B2 (en) Object detection system and method for a motor vehicle
CA3034418C (en) Method and device for optical distance measurement
JP7450809B2 (ja) Dtof検知モジュール、端末デバイス、および測距方法
KR20200082418A (ko) 지능형 라이다 장치
CN113447943A (zh) 距离成像设备和执行距离成像的方法
US20240151823A1 (en) Lidar controlling method and apparatus and electronic device
WO2024029486A1 (ja) 距離計測装置
EP3471086A1 (en) Image sensing circuit and image depth sensing system
US11818482B2 (en) Image sensor for measuring distance and camera module including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20929435

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20929435

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20929435

Country of ref document: EP

Kind code of ref document: A1