WO2021196142A1 - 资源调度方法、装置、接入网设备、终端和存储介质 - Google Patents

资源调度方法、装置、接入网设备、终端和存储介质 Download PDF

Info

Publication number
WO2021196142A1
WO2021196142A1 PCT/CN2020/083063 CN2020083063W WO2021196142A1 WO 2021196142 A1 WO2021196142 A1 WO 2021196142A1 CN 2020083063 W CN2020083063 W CN 2020083063W WO 2021196142 A1 WO2021196142 A1 WO 2021196142A1
Authority
WO
WIPO (PCT)
Prior art keywords
physical downlink
scheduling
scheduling delay
terminal
hybrid automatic
Prior art date
Application number
PCT/CN2020/083063
Other languages
English (en)
French (fr)
Inventor
牟勤
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202080000677.9A priority Critical patent/CN111527786B/zh
Priority to US17/915,835 priority patent/US20230156720A1/en
Priority to PCT/CN2020/083063 priority patent/WO2021196142A1/zh
Publication of WO2021196142A1 publication Critical patent/WO2021196142A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/535Allocation or scheduling criteria for wireless resources based on resource usage policies

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to a resource scheduling method, device, access network equipment, terminal, and storage medium.
  • Machine Type Communication is a typical representative of cellular IoT technology.
  • this technology has been widely used in smart cities, such as meter reading; smart agriculture, such as the collection of information such as temperature and humidity; smart transportation, such as shared bicycles and many other fields.
  • the embodiments of the present disclosure provide a resource scheduling method, device, access network equipment, terminal, and storage medium, which can make resource scheduling more flexible and optimize resource scheduling.
  • the technical solution is as follows:
  • a resource scheduling method including:
  • the physical downlink shared channel is sent based on the scheduling delay.
  • determining the scheduling delay between the physical downlink shared channel and the physical downlink control channel includes:
  • the scheduling delay is determined according to the corresponding relationship between the number of unavailable subframes and the possible scheduling delay; wherein the unavailable subframe is a subframe for which downlink channel transmission is not performed.
  • the unavailable subframe includes at least one of the following:
  • the switching subframe between uplink transmission and downlink transmission, and the subframe used for transmission of hybrid automatic repeat request feedback is the switching subframe between uplink transmission and downlink transmission, and the subframe used for transmission of hybrid automatic repeat request feedback.
  • determining the scheduling delay between the physical downlink shared channel and the physical downlink control channel includes:
  • the scheduling delay is determined according to the corresponding relationship between the hybrid automatic repeat request process number and the possible scheduling delay.
  • a hybrid automatic repeat request process number corresponds to one or more possible scheduling delays.
  • different hybrid automatic retransmission request process numbers correspond to the same or different possible scheduling delays.
  • the hybrid automatic repeat request process numbers of different groups correspond to different possible scheduling delays.
  • the method further includes:
  • the trigger condition includes at least one of the following:
  • the number of continuously scheduled hybrid automatic retransmission request processes exceeds the threshold; or,
  • the terminal has the ability to configure the scheduling delay.
  • the method further includes:
  • the first signaling is used to indicate that the terminal has the ability to configure the scheduling delay; or, the first signaling includes an identifier used to indicate that the terminal has the ability to configure the scheduling delay; or, the first signaling Let it be used to indicate that the terminal supports the preset feature; or, the first signaling includes an identifier used to indicate that the terminal supports the preset feature.
  • a resource scheduling method including:
  • the physical downlink shared channel After receiving the physical downlink control channel, the physical downlink shared channel is received based on the scheduling delay.
  • determining the scheduling delay between the physical downlink shared channel and the physical downlink control channel includes:
  • the scheduling delay is determined according to the corresponding relationship between the number of unavailable subframes and the possible scheduling delay; wherein the unavailable subframe is a subframe for which downlink channel transmission is not performed.
  • the unavailable subframe includes at least one of the following:
  • the switching subframe between uplink transmission and downlink transmission, and the subframe used for transmission of hybrid automatic repeat request feedback is the switching subframe between uplink transmission and downlink transmission, and the subframe used for transmission of hybrid automatic repeat request feedback.
  • determining the scheduling delay between the physical downlink shared channel and the physical downlink control channel includes:
  • the scheduling delay is determined according to the corresponding relationship between the hybrid automatic repeat request process number and the possible scheduling delay.
  • a hybrid automatic repeat request process number corresponds to one or more possible scheduling delays.
  • different hybrid automatic retransmission request process numbers correspond to the same or different possible scheduling delays.
  • the hybrid automatic repeat request process numbers of different groups correspond to different possible scheduling delays.
  • the method further includes:
  • the trigger condition includes at least one of the following:
  • the number of continuously scheduled hybrid automatic retransmission request processes exceeds the threshold; or,
  • the terminal has the ability to configure the scheduling delay.
  • the method further includes:
  • the first signaling is used to indicate that the terminal has the ability to configure the scheduling delay; or, the first signaling includes an identifier used to indicate that the terminal has the ability to configure the scheduling delay; or, the first signaling Let it be used to indicate that the terminal supports the preset feature; or, the first signaling includes an identifier used to indicate that the terminal supports the preset feature.
  • a resource scheduling device including:
  • a processing module configured to determine a scheduling delay between a physical downlink shared channel and a physical downlink control channel, wherein the physical downlink shared channel and the physical downlink control channel correspond to at least two different possible scheduling delays;
  • the transmission module is configured to send the physical downlink shared channel based on the scheduling delay after sending the physical downlink control channel.
  • a resource scheduling device including:
  • a processing module configured to determine a scheduling delay between a physical downlink shared channel and a physical downlink control channel, wherein the physical downlink shared channel and the physical downlink control channel correspond to at least two different possible scheduling delays;
  • the transmission module is configured to receive the physical downlink shared channel based on the scheduling delay after receiving the physical downlink control channel.
  • an access network device comprising: a processor; a memory for storing executable instructions of the processor; wherein the processor is configured to load And execute the executable instructions to implement the aforementioned resource scheduling method.
  • a terminal including: a processor; a memory for storing executable instructions of the processor; wherein the processor is configured to load and execute the executable Instructions to implement the aforementioned resource scheduling method.
  • a computer-readable storage medium which can execute the aforementioned resource scheduling method when the instructions in the computer-readable storage medium are executed by a processor.
  • the access network device determines the scheduling delay between the physical downlink shared channel and the physical downlink control channel, and then uses the scheduling delay to perform downlink channel transmission. Since the scheduling delay is selected and configured from at least two different possible scheduling delays, different scheduling delays can be determined based on different scenarios, thereby making resource scheduling more flexible and optimizing resource scheduling.
  • FIG. 1 shows a block diagram of a communication system provided by an exemplary embodiment of the present disclosure
  • Fig. 2 is a flowchart showing a resource scheduling method according to an exemplary embodiment
  • Fig. 3 is a flowchart showing a resource scheduling method according to an exemplary embodiment
  • Fig. 4 is a flowchart showing a method for determining a scheduling delay according to an exemplary embodiment
  • Fig. 5 is a flowchart showing a method for determining a scheduling delay according to an exemplary embodiment
  • Fig. 6 is a flowchart showing a resource scheduling method according to an exemplary embodiment
  • Fig. 7 is a schematic structural diagram showing a resource scheduling device according to an exemplary embodiment
  • Fig. 8 is a schematic structural diagram showing a resource scheduling device according to an exemplary embodiment
  • Fig. 9 is a block diagram showing a terminal according to an exemplary embodiment
  • Fig. 10 is a block diagram showing an access network device according to an exemplary embodiment.
  • FIG. 1 shows a block diagram of a communication system provided by an exemplary embodiment of the present disclosure.
  • the communication system may include: an access network 12 and a terminal 13.
  • the access network 12 includes several access network devices 120.
  • the access network device 120 may be a base station, which is a device deployed in an access network to provide a wireless communication function for a terminal.
  • the base station may include various forms of macro base stations, micro base stations, relay stations, access points, and so on.
  • the names of devices with base station functions may be different.
  • 5G New Radio (NR) systems they are called gNodeB or gNB. With the evolution of communication technology, the name "base station” may be described and will change.
  • access network equipment For the convenience of description, the above-mentioned devices that provide wireless communication functions for terminals are collectively referred to as access network equipment hereinafter.
  • the terminal 13 may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to wireless modems, as well as various forms of user equipment, mobile stations (MS), Terminal and so on.
  • the access network device 120 and the terminal 13 communicate with each other through a certain air interface technology, such as a Uu interface.
  • Half-Duplex Frequency Division Duplexing (HD-FDD) MTC terminal is a half-duplex MTC terminal.
  • the half-duplex here means that at a certain moment, the terminal can only send or receive data.
  • the MTC terminal follows a relatively single scheduling delay. As shown in Table 1, assuming that the MTC physical downlink control channel (MPDCCH) is sent in subframe n, then the MTC physical downlink shared channel (MPDSCH) is sent in subframe n+2 . For example, C1 in the MPDCCH is transmitted in the 0th subframe, and D1 in the corresponding MPDSCH is transmitted in the 2nd subframe.
  • MPDCCH MTC physical downlink control channel
  • MPDSCH MTC physical downlink shared channel
  • Hybrid Automatic Repeat reQuest (HARQ, Hybrid Automatic Repeat reQuest) feedback
  • Table 1 When the terminal switches from downlink to uplink, the switching delay takes 1 ms (corresponding to the first in Table 1 5 subframes), and the HARQ feedback transmission at the same time requires at least 1ms (corresponding to the 6th subframe in Table 1). After the transmission is completed, the terminal's switching delay from uplink to downlink requires 1ms (corresponding to the 7th subframe in Table 1).
  • the two subframes before HARQ feedback (corresponding to the third and fourth subframes in Table 1) cannot be transmitted by MPDCCH. That is, the transmission of MPDCCH needs to be interrupted 2ms in advance. Therefore, this single fixed scheduling delay is not conducive to resource scheduling. For example, in the example in Table 1, the entire transmission will be interrupted for at least 5ms, which lengthens the active time of the terminal, which is not conducive to the power saving of the terminal and the improvement of the transmission rate.
  • Fig. 2 is a flow chart showing a method for resource scheduling according to an exemplary embodiment. Referring to Figure 2, the method includes the following steps:
  • the access network device determines the scheduling delay between the physical downlink shared channel and the physical downlink control channel.
  • the physical downlink shared channel and the physical downlink control channel correspond to at least two different possible scheduling delays.
  • the possible scheduling delay here refers to the scheduling delay that may be selected.
  • the scheduling delay that may be selected may be a preset scheduling delay or a scheduling delay calculated in real time.
  • the access network equipment can select different scheduling delays for resource scheduling, thereby optimizing the resource scheduling scheme, thereby increasing the transmission rate and reducing the total terminal power consumption.
  • step 102 after sending the physical downlink control channel, the access network device sends the physical downlink shared channel based on the scheduling delay.
  • the access network device determines the scheduling delay between the physical downlink shared channel and the physical downlink control channel, and then uses the scheduling delay to perform downlink channel transmission. Since the scheduling delay is selected and configured from at least two different possible scheduling delays, different scheduling delays can be determined based on different scenarios, thereby making resource scheduling more flexible and optimizing resource scheduling.
  • the scheduling delay between the physical downlink shared channel and the physical downlink control channel may be determined by any of the following methods:
  • One of multiple scheduling delays is determined through negotiation between the terminal and the network side (access network equipment); for example, the terminal suggests one of the multiple possible scheduling delays to the network side, or any other terminal negotiates with the network side Mode;
  • the terminal and the network side are both equipped with the same possible scheduling delay configuration information, the terminal reports to the network side, it is recommended to use one of the possible scheduling delay; when reporting, you can report the possible scheduling time
  • the identification of the delay can also report the parameter value of the possible scheduling delay; in some embodiments, only the terminal is configured with configuration information of the possible scheduling delay, and the terminal sends the parameter value of the proposed scheduling delay to the network side;
  • the network side configures the terminal through instructions; for example, the network side informs the terminal side to use one of multiple possible scheduling delays through a downlink control instruction or any appropriate signaling; in some embodiments, both the terminal and the network side have For the same configuration information of possible scheduling delays, the network side uses signaling to instruct the terminal to use one of the possible scheduling delays;
  • the network side configures the terminal scheduling delay parameter value through instructions; for example, the network side informs the terminal to use one scheduling delay through downlink control signaling or any appropriate signaling, and the scheduling delay is multiple possible scheduling delays One of; in some embodiments, only the network side is configured with configuration information that is likely to schedule the delay, and the network side directly sends the parameter value of the scheduling delay to the terminal through signaling.
  • determining the scheduling delay between the physical downlink shared channel and the physical downlink control channel includes:
  • the scheduling delay is determined according to the corresponding relationship between the number of unavailable subframes and the possible scheduling delay; wherein the unavailable subframe is a subframe for which downlink channel transmission is not performed.
  • the unavailable subframes are subframes 5, 6, and 7, and the number of unavailable subframes is 3.
  • the scheduling delay is determined to be 5ms, as shown in C4 and The difference between D4 is 5ms, and the difference between C5 and D5 is 5ms.
  • MPDCCH can be transmitted on subframes 3 and 4, so that the overall transmission time is shortened, the transmission rate is increased, and the terminal power consumption is reduced.
  • the MPDCCH is sent, if the second subframe is an available subframe thereafter, the original scheduling delay is adopted. For example, the MPDCCH is sent in the 0th subframe and the MPDSCH is in the second subframe. After the MPDCCH is sent, if the second subframe is an unavailable subframe, then the corresponding MPDSCH is delayed until the user's first available subframe.
  • the correspondence between the number of unavailable subframes and the possible scheduling delay can be determined by any of the following methods:
  • the network side or the terminal determines the correspondence between the number of unavailable subframes and the possible scheduling delay through an agreement
  • the network side or the terminal determines the correspondence between the number of unavailable subframes and the possible scheduling delay through negotiation between the terminal and the network side;
  • the network side configures the terminal through instructions so that the terminal obtains the corresponding relationship.
  • the unavailability can be determined by any of the foregoing methods. Which one of the corresponding relationships between the number of subframes and the possible scheduling delay; that is, one of the multiple possible scheduling delays can be determined through a protocol; the terminal and the network side are negotiated to determine which of the multiple scheduling delays is one.
  • the instruction can be sent through high-level signaling.
  • the high-layer signaling may be RRC high-layer signaling.
  • the unavailable subframe includes at least one of the following:
  • the switching subframe between uplink transmission and downlink transmission, and the subframe used for transmission of hybrid automatic repeat request feedback is the switching subframe between uplink transmission and downlink transmission, and the subframe used for transmission of hybrid automatic repeat request feedback.
  • subframes 5 and 7 are switching subframes between uplink transmission and downlink transmission
  • subframe 6 is a subframe for transmitting hybrid automatic repeat request feedback.
  • the access network device may notify the terminal which subframes are unavailable subframes.
  • the notification method can be implemented by high-level signaling.
  • the high-level signaling here may be radio resource control (Radio Resource Control, RRC) high-level signaling.
  • RRC Radio Resource Control
  • determining the scheduling delay between the physical downlink shared channel and the physical downlink control channel includes:
  • the scheduling delay is determined according to the corresponding relationship between the HARQ process number and the possible scheduling delay.
  • the possible scheduling delay corresponding to the hybrid automatic repeat request process number 1 to 8 is 2 ms
  • the possible scheduling delay corresponding to the hybrid automatic repeat request process number 9 to 14 is 5 ms.
  • the scheduling delay corresponding to the hybrid automatic repeat request process number 1-8 is 2ms
  • the scheduling delay corresponding to the hybrid automatic repeat request process number 9-14 is Nms.
  • N can be determined according to whether there are unavailable subframes and the number of unavailable subframes.
  • the HARQ feedback transmission occupies 3 subframes, and the switching delay of 1ms on both sides of the uplink and downlink switching is added, and the scheduling delay here is 5ms.
  • different hybrid automatic retransmission request process numbers correspond to the same or different possible scheduling delays.
  • hybrid automatic repeat request process numbers 1 to 8 correspond to a possible scheduling delay of 2 ms
  • hybrid automatic repeat request process numbers 1 to 8 correspond to a scheduling delay of Nms, which corresponds to multiple possible scheduling delays.
  • the scheduling delay can be adjusted in different scenarios, for example, from 2ms to 5ms, etc., so as to facilitate resource scheduling.
  • different scenarios include different numbers of unavailable subframes.
  • the corresponding scheduling delay can be set to different.
  • the number of unavailable subframes is 3, and the scheduling delay can be 5ms. If the number of unavailable subframes in other scenarios is 4, the scheduling delay can be 6ms.
  • the scheduling delay is determined based on the number of unavailable subframes, so that the scheduling delay is more in line with the current scenario, so that the overall transmission time is shortened, the transmission rate is increased, and the terminal power consumption is reduced.
  • hybrid automatic retransmission request process numbers correspond to the same or different possible scheduling delays.
  • hybrid automatic repeat request process numbers 1 and 8 correspond to the same possible scheduling delay
  • hybrid automatic repeat request process numbers 8 and 9 correspond to different possible scheduling delays.
  • the hybrid automatic repeat request process numbers of different groups correspond to different possible scheduling delays.
  • Table 3 the hybrid automatic retransmission request process numbers 1 to 8 are grouped into one group, and the hybrid automatic repeat request process numbers 9 to 14 are grouped into one group, and the possible scheduling delays corresponding to the two groups are different.
  • the corresponding relationship between the hybrid automatic retransmission request process number and the possible scheduling delay in Tables 3 and 4 is only an example.
  • the scheduling delay can be other values, or the hybrid automatic retransmission request process The numbers are divided into more groups, and even each group of hybrid automatic retransmission request process numbers corresponds to more scheduling delays.
  • the corresponding relationship between the hybrid automatic repeat request process number and the possible scheduling delay can be determined by any of the following methods:
  • the network side or the terminal determines the correspondence between the hybrid automatic repeat request process number and the possible scheduling delay through an agreement
  • the network side or the terminal determines the correspondence between the hybrid automatic repeat request process number and the possible scheduling delay through negotiation between the terminal and the network side;
  • the network side configures the terminal through instructions so that the terminal obtains the corresponding relationship.
  • the method further includes:
  • the scheduling delay is determined according to the solution provided in this application only when the transmission environment reaches the trigger condition.
  • a fixed scheduling delay such as 2 ms, can be used. This design makes the system design more flexible, taking into account the operation of devices that cannot be flexibly determined for scheduling delays, so that these devices that can only use fixed scheduling delays can also operate normally.
  • the trigger condition includes:
  • the number of continuously scheduled hybrid automatic retransmission request processes exceeds the threshold.
  • MTC there may be multiple parallel hybrid automatic retransmission request processes.
  • the flexible scheduling solution provided in this application is adopted.
  • the number of continuously scheduled hybrid automatic repeat request processes is the number of scheduling information continuously sent by the access network device, and the number of scheduling information continuously received by the terminal.
  • the trigger condition includes:
  • the terminal has the ability to configure the scheduling delay.
  • the access network equipment and the terminal adopt the aforementioned scheme to determine the scheduling delay for transmission.
  • the method further includes:
  • the first signaling is used to indicate that the terminal has the ability to configure the scheduling delay; or, the first signaling includes an identifier used to indicate that the terminal has the ability to configure the scheduling delay; or, the first signaling Let it be used to indicate that the terminal supports the preset feature; or, the first signaling is used to indicate that the terminal supports the identification of the preset feature.
  • the terminal can report its own capabilities to enable the access network device to know whether it can support the flexible configuration of the scheduling delay, that is, the aforementioned first signaling.
  • the first signaling can be sent by limiting terminal capability information (UE Capability information) in the specification, and this information can be sent using any appropriate signaling, such as RRC high-level signaling.
  • UE Capability information limiting terminal capability information
  • the first signaling can indicate whether the terminal supports the flexible configuration of the scheduling delay in a variety of ways. For example, in the first signaling, 1 and 0 are used to indicate that the flexible configuration of scheduling delay is supported and not supported, respectively, so that the access network device can directly determine whether the solution of the present disclosure can be used to determine the scheduling delay. For another example, if the terminal reports that it supports a certain feature, the access network device considers that the terminal supports flexible scheduling delay. For example, the flexible scheduling delay is associated with the 14 HARQ process support. When the first signaling includes support for the 14 HARQ process, the access network device considers that the terminal supports the flexible scheduling delay configuration.
  • Fig. 3 is a flow chart showing a method for resource scheduling according to an exemplary embodiment. Referring to Figure 3, the method includes the following steps:
  • step 201 the terminal determines the scheduling delay between the physical downlink shared channel and the physical downlink control channel.
  • the physical downlink shared channel and the physical downlink control channel correspond to at least two different possible scheduling delays.
  • the terminal can select different scheduling delays for resource scheduling, thereby optimizing the resource scheduling scheme, thereby increasing the transmission rate and reducing the total terminal power consumption.
  • step 202 after receiving the physical downlink control channel, the terminal receives the physical downlink shared channel based on the scheduling delay.
  • the terminal determines the scheduling delay between the physical downlink shared channel and the physical downlink control channel, and then uses the scheduling delay to perform downlink channel transmission. Since the scheduling delay is selected and configured from at least two different possible scheduling delays, different scheduling delays can be determined based on different scenarios, thereby making resource scheduling more flexible and optimizing resource scheduling.
  • determining the scheduling delay between the physical downlink shared channel and the physical downlink control channel includes:
  • the scheduling delay is determined according to the corresponding relationship between the number of unavailable subframes and the possible scheduling delay; wherein the unavailable subframe is a subframe for which downlink channel transmission is not performed.
  • the unavailable subframe includes at least one of the following:
  • the switching subframe between uplink transmission and downlink transmission, and the subframe used for transmission of hybrid automatic repeat request feedback is the switching subframe between uplink transmission and downlink transmission, and the subframe used for transmission of hybrid automatic repeat request feedback.
  • the terminal may receive which subframes notified by the access network device are unavailable subframes.
  • the notification method can be implemented by high-level signaling.
  • the high-level signaling here may be RRC high-level signaling.
  • the terminal can determine the number of unusable subframes.
  • determining the scheduling delay between the physical downlink shared channel and the physical downlink control channel includes:
  • the scheduling delay is determined according to the corresponding relationship between the hybrid automatic repeat request process number and the possible scheduling delay.
  • different hybrid automatic retransmission request process numbers correspond to the same or different possible scheduling delays.
  • different hybrid automatic retransmission request process numbers correspond to the same or different possible scheduling delays.
  • the hybrid automatic repeat request process numbers of different groups correspond to different possible scheduling delays.
  • the corresponding relationship between the hybrid automatic repeat request process number and the possible scheduling delay can be determined by any of the following methods:
  • the network side or the terminal determines the correspondence between the hybrid automatic repeat request process number and the possible scheduling delay through an agreement
  • the network side or the terminal determines the correspondence between the hybrid automatic repeat request process number and the possible scheduling delay through negotiation between the terminal and the network side;
  • the network side configures the terminal through instructions so that the terminal obtains the corresponding relationship.
  • the method further includes:
  • the trigger condition includes:
  • the number of continuously scheduled hybrid automatic retransmission request processes exceeds the threshold.
  • the trigger condition includes:
  • the terminal has the ability to configure the scheduling delay.
  • the method further includes:
  • the first signaling is used to indicate that the terminal has the ability to configure the scheduling delay; or, the first signaling includes an identifier used to indicate that the terminal has the ability to configure the scheduling delay; or, the first signaling Let it be used to indicate that the terminal supports the preset feature; or, the first signaling is used to indicate that the terminal supports the identification of the preset feature.
  • the steps of determining the scheduling delay between the physical downlink shared channel and the physical downlink control channel are basically the same in the resource scheduling process of the access network equipment and the terminal.
  • the following takes the access network device as an example to describe the method for determining the scheduling delay between the terminal and the access network device provided in the embodiment of the present disclosure:
  • Fig. 4 is a flowchart showing a method for determining a scheduling delay according to an exemplary embodiment.
  • step 101 includes:
  • Step 111 The access network device determines the number of unavailable subframes, where the unavailable subframes are subframes for which downlink channel transmission is not performed.
  • the unavailable subframe includes at least one of the following:
  • the switching subframe between uplink transmission and downlink transmission, and the subframe used for transmission of hybrid automatic repeat request feedback is the switching subframe between uplink transmission and downlink transmission, and the subframe used for transmission of hybrid automatic repeat request feedback.
  • subframes 5 and 7 are switching subframes between uplink transmission and downlink transmission
  • subframe 6 is a subframe for transmitting hybrid automatic repeat request feedback.
  • Step 112 The access network device determines the scheduling delay according to the corresponding relationship between the number of unavailable subframes and the possible scheduling delay.
  • the correspondence between the number of unavailable subframes and the possible scheduling delay may include: when the number of unavailable subframes is 0, the scheduling delay is 2ms; the number of unavailable subframes and the possible scheduling The corresponding relationship of the delay may include: when the number of unacceptable subframes is 3, the scheduling delay is 5 ms, and so on.
  • the unavailable subframes are subframes 5, 6, and 7, and the number of unavailable subframes is 3.
  • the scheduling delay is determined to be 5ms, as shown in C4 and The difference between D4 is 5ms, and the difference between C5 and D5 is 5ms.
  • MPDCCH can be transmitted on subframes 3 and 4, so that the overall transmission time is shortened, the transmission rate is increased, and the terminal power consumption is reduced.
  • the correspondence between the number of unavailable subframes and the possible scheduling delay can be determined by any of the following methods:
  • the network side or the terminal determines the correspondence between the number of unavailable subframes and the possible scheduling delay through an agreement
  • the network side or the terminal determines the correspondence between the number of unavailable subframes and the possible scheduling delay through negotiation between the terminal and the network side;
  • the network side configures the terminal through instructions so that the terminal obtains the corresponding relationship.
  • the unavailability can be determined by any of the foregoing methods. Which one of the corresponding relationships between the number of subframes and the possible scheduling delay; that is, one of the multiple possible scheduling delays can be determined through a protocol; the terminal and the network side are negotiated to determine which of the multiple scheduling delays is one.
  • the instruction can be sent through high-level signaling.
  • the high-layer signaling may be RRC high-layer signaling.
  • Fig. 5 is a flowchart showing a method for determining a scheduling delay according to an exemplary embodiment.
  • step 101 includes:
  • Step 121 The access network device determines the hybrid automatic repeat request process number.
  • the access network device will carry the hybrid automatic repeat request process number in the downlink control channel sent to the terminal. Therefore, the access network device can naturally determine the hybrid automatic repeat request process number, and the terminal side only needs to obtain it from the downlink control channel.
  • Step 122 The access network device determines the scheduling delay according to the corresponding relationship between the hybrid automatic repeat request process number and the possible scheduling delay.
  • the possible scheduling delay corresponding to the hybrid automatic repeat request process number 1 to 8 is 2 ms
  • the possible scheduling delay corresponding to the hybrid automatic repeat request process number 9 to 14 is 5 ms.
  • hybrid automatic repeat request process numbers 1 to 8 correspond to a possible scheduling delay of 2 ms
  • hybrid automatic repeat request process numbers 1 to 8 correspond to a scheduling delay of Nms, which corresponds to multiple possible scheduling delays.
  • the scheduling delay can be adjusted in different scenarios, for example, from 2ms to 5ms, etc., so as to facilitate resource scheduling.
  • different scenarios include different numbers of unavailable subframes.
  • the corresponding scheduling delay can be set to different.
  • the number of unavailable subframes is 3, and the scheduling delay can be 5ms. If the number of unavailable subframes in other scenarios is 4, the scheduling delay can be 6ms.
  • the scheduling delay is determined based on the number of unavailable subframes, so that the scheduling delay is more in line with the current scenario, so that the overall transmission time is shortened, the transmission rate is increased, and the terminal power consumption is reduced.
  • hybrid automatic retransmission request process numbers correspond to the same or different possible scheduling delays.
  • hybrid automatic repeat request process numbers 1 and 8 correspond to the same possible scheduling delay
  • hybrid automatic repeat request process numbers 8 and 9 correspond to different possible scheduling delays.
  • the hybrid automatic repeat request process numbers of different groups correspond to different possible scheduling delays.
  • Table 3 the hybrid automatic retransmission request process numbers 1 to 8 are grouped into one group, and the hybrid automatic repeat request process numbers 9 to 14 are grouped into one group, and the possible scheduling delays corresponding to the two groups are different.
  • the corresponding relationship between the hybrid automatic retransmission request process number and the possible scheduling delay in Tables 3 and 4 is only an example.
  • the scheduling delay can be other values, or the hybrid automatic retransmission request process The numbers are divided into more groups, and even each group of hybrid automatic retransmission request process numbers corresponds to more scheduling delays.
  • the corresponding relationship between the hybrid automatic repeat request process number and the possible scheduling delay can be determined by any of the following methods:
  • the network side or the terminal determines the correspondence between the hybrid automatic repeat request process number and the possible scheduling delay through an agreement
  • the network side or the terminal determines the correspondence between the hybrid automatic repeat request process number and the possible scheduling delay through negotiation between the terminal and the network side;
  • the network side configures the terminal through instructions so that the terminal obtains the corresponding relationship.
  • Fig. 6 is a flow chart showing a method for resource scheduling according to an exemplary embodiment. Referring to Figure 6, the method includes the following steps:
  • Step 301 The terminal sends the first signaling; the access network device receives the first signaling.
  • the terminal can report its own capabilities to enable the access network device to know whether it can support the flexible configuration of the scheduling delay, that is, the aforementioned first signaling.
  • the first signaling is used to indicate that the terminal has the ability to configure scheduling delay; or, the first signaling includes an identifier used to indicate that the terminal has the ability to configure scheduling delay; or, the first signaling uses To indicate that the terminal supports the preset feature; or, the first signaling is used to indicate that the terminal supports the identification of the preset feature.
  • the first signaling can be sent by limiting terminal capability information in the specification, and this information can be sent using any appropriate signaling, such as RRC high-level signaling.
  • the first signaling can indicate whether the terminal supports the flexible configuration of the scheduling delay in a variety of ways. For example, in the first signaling, 1 and 0 are used to respectively indicate that the flexible configuration of the scheduling delay is supported and not supported, so that the access network device can directly determine whether the solution of the present disclosure can be used to determine the scheduling delay. For another example, if the terminal reports that it supports a certain feature, the access network device considers that the terminal supports flexible scheduling delay. For example, the flexible scheduling delay is associated with the 14 HARQ process support. When the first signaling includes support for the 14 HARQ process, the access network device considers that the terminal supports the flexible scheduling delay configuration.
  • Step 302 The terminal determines whether the current transmission environment meets the trigger condition.
  • the trigger condition includes: the number of continuously scheduled hybrid automatic retransmission request processes exceeds a threshold.
  • MTC there may be multiple parallel hybrid automatic retransmission request processes.
  • the flexible scheduling solution provided in this application is adopted.
  • the trigger condition includes: the terminal has the ability to configure the scheduling delay.
  • the access network equipment and the terminal adopt the aforementioned scheme to determine the scheduling delay for transmission.
  • the trigger condition may be one or two of the above examples.
  • the number of continuously scheduled hybrid automatic repeat request processes can be obtained through the PDCCH sent by the access network device to the terminal, and whether the terminal supports the flexible configuration of the scheduling delay can be obtained from its own information.
  • Step 303 When the trigger condition is reached, the terminal determines the scheduling delay between the physical downlink shared channel and the physical downlink control channel.
  • the physical downlink shared channel and the physical downlink control channel correspond to at least two different possible scheduling delays.
  • the terminal can determine whether the trigger condition is reached after obtaining information such as the number of continuously scheduled hybrid automatic retransmission request processes and whether the terminal supports flexible configuration of the scheduling delay.
  • the terminal can use a fixed scheduling delay (such as 2 ms) for resource scheduling.
  • step 303 For the detailed process of step 303, refer to steps 111-112 or steps 121-122.
  • Step 304 After receiving the physical downlink control channel, the terminal receives the physical downlink shared channel based on the scheduling delay.
  • the terminal when it is determined that the scheduling delay is 5ms, the terminal receives C4 of MPDCCH in subframe 3, and then receives D4 of MPDSCH in subframe 8.
  • the terminal receives C5 of MPDCCH in subframe 4, and then in subframe 9.
  • Receive D5 of MPDSCH That is, after receiving the physical downlink control channel, the terminal delays the time corresponding to the scheduling delay to receive the physical downlink shared channel.
  • Step 305 The access network device determines whether the current transmission environment meets the trigger condition.
  • the solution for the access network device to determine whether the trigger condition is reached is the same as that of the terminal. Therefore, refer to step 302 for the detailed process.
  • Step 306 When the trigger condition is reached, the access network device determines the scheduling delay between the physical downlink shared channel and the physical downlink control channel.
  • step 306 For the detailed process of step 306, refer to step 303.
  • Step 307 After sending the physical downlink control channel, the access network device sends the physical downlink shared channel based on the scheduling delay.
  • step 307 For the detailed process of step 307, refer to step 304.
  • Fig. 7 is a schematic structural diagram of a resource scheduling device according to an exemplary embodiment.
  • the device has the function of realizing the access network equipment in the above method embodiment, and this function can be realized by hardware, or by hardware executing corresponding software.
  • the device includes: a processing module 501 and a transmission module 502.
  • the processing module 501 is configured to determine the scheduling delay between the physical downlink shared channel and the physical downlink control channel, where the physical downlink shared channel and the physical downlink control channel correspond to at least two different possible scheduling delays;
  • the transmission module 502 is configured to send the physical downlink shared channel based on the scheduling delay after sending the physical downlink control channel.
  • the processing module 501 is configured to determine the scheduling delay according to the corresponding relationship between the number of unavailable subframes and the possible scheduling delay; wherein the unavailable subframe is a subframe for which downlink channel transmission is not performed .
  • the unavailable subframe includes at least one of the following:
  • the switching subframe between uplink transmission and downlink transmission, and the subframe used for transmission of hybrid automatic repeat request feedback is the switching subframe between uplink transmission and downlink transmission, and the subframe used for transmission of hybrid automatic repeat request feedback.
  • the processing module 501 is configured to determine the scheduling delay according to the corresponding relationship between the hybrid automatic repeat request process number and the possible scheduling delay.
  • a hybrid automatic repeat request process number corresponds to one or more possible scheduling delays.
  • different hybrid automatic retransmission request process numbers correspond to the same or different possible scheduling delays.
  • the hybrid automatic repeat request process numbers of different groups correspond to different possible scheduling delays.
  • the transmission module 502 is further configured to send the corresponding relationship between the hybrid automatic repeat request process number and the possible scheduling delay through high-layer signaling.
  • the processing module 501 is further configured to determine the scheduling delay between the physical downlink shared channel and the physical downlink control channel in response to reaching a trigger condition;
  • the trigger condition includes at least one of the following:
  • the number of continuously scheduled hybrid automatic retransmission request processes exceeds the threshold; or,
  • the terminal has the ability to configure the scheduling delay.
  • the transmission module 502 is further configured to receive first signaling; the first signaling is used to indicate that the terminal has the ability to configure scheduling delay; or, the first signaling includes a The terminal has the identifier of the ability to configure the scheduling delay; or, the first signaling is used to indicate that the terminal supports the preset feature; or, the first signaling is used to indicate the identifier that the terminal supports the preset feature.
  • Fig. 8 is a schematic structural diagram of a resource scheduling device according to an exemplary embodiment.
  • the device has the function of realizing the terminal in the above method embodiment, and the function can be realized by hardware, or by hardware executing corresponding software.
  • the device includes: a processing module 601 and a transmission module 602.
  • the processing module 601 is configured to determine the scheduling delay between the physical downlink shared channel and the physical downlink control channel, where the physical downlink shared channel and the physical downlink control channel correspond to at least two different possible scheduling delays;
  • the transmission module 602 is configured to receive the physical downlink shared channel based on the scheduling delay after receiving the physical downlink control channel.
  • the processing module 601 is configured to determine the scheduling delay according to the corresponding relationship between the number of unavailable subframes and the possible scheduling delay; wherein the unavailable subframe is a subframe for which downlink channel transmission is not performed .
  • the unavailable subframe includes at least one of the following:
  • the switching subframe between uplink transmission and downlink transmission, and the subframe used for transmission of hybrid automatic repeat request feedback is the switching subframe between uplink transmission and downlink transmission, and the subframe used for transmission of hybrid automatic repeat request feedback.
  • the processing module 601 is configured to determine the scheduling delay according to the corresponding relationship between the hybrid automatic repeat request process number and the possible scheduling delay.
  • a hybrid automatic repeat request process number corresponds to one or more possible scheduling delays.
  • different hybrid automatic retransmission request process numbers correspond to the same or different possible scheduling delays.
  • the hybrid automatic repeat request process numbers of different groups correspond to different possible scheduling delays.
  • the transmission module 602 is further configured to receive the corresponding relationship between the hybrid automatic repeat request process number and the possible scheduling delay through high-level signaling.
  • processing module 601 is further configured to: when the trigger condition is reached, determine the scheduling delay between the physical downlink shared channel and the physical downlink control channel;
  • the trigger condition includes at least one of the following:
  • the number of continuously scheduled hybrid automatic retransmission request processes exceeds the threshold; or,
  • the terminal has the ability to configure the scheduling delay.
  • the transmission module 602 is further configured to send the first signaling
  • the first signaling is used to indicate that the terminal has the ability to configure the scheduling delay; or, the first signaling includes an identifier used to indicate that the terminal has the ability to configure the scheduling delay; or, the first signaling Let it be used to indicate that the terminal supports the preset feature; or, the first signaling is used to indicate that the terminal supports the identification of the preset feature.
  • Fig. 9 is a block diagram showing a terminal 700 according to an exemplary embodiment.
  • the terminal 700 may include: a processor 701, a receiver 702, a transmitter 703, a memory 704, and a bus 705.
  • the processor 701 includes one or more processing cores, and the processor 701 executes various functional applications and information processing by running software programs and modules.
  • the receiver 702 and the transmitter 703 may be implemented as a communication component, and the communication component may be a communication chip.
  • the memory 704 is connected to the processor 701 through the bus 705.
  • the memory 704 may be used to store at least one instruction, and the processor 701 is used to execute the at least one instruction to implement each step in the foregoing method embodiment.
  • the memory 704 can be implemented by any type of volatile or non-volatile storage device or a combination thereof.
  • the volatile or non-volatile storage device includes, but is not limited to: magnetic disks or optical disks, electrically erasable and programmable Read-only memory (EEPROM), erasable programmable read-only memory (EPROM), static anytime access memory (SRAM), read-only memory (ROM), magnetic memory, flash memory, programmable read-only memory (PROM) .
  • a computer-readable storage medium stores at least one instruction, at least one program, code set, or instruction set, and the at least one instruction, the At least one program, the code set, or the instruction set is loaded and executed by the processor to implement the downlink control channel transmission method provided by the foregoing method embodiments.
  • Fig. 10 is a block diagram showing an access network device 800 according to an exemplary embodiment.
  • the access network device 800 may include a processor 801, a receiver 802, a transmitter 803, and a memory 804.
  • the receiver 802, the transmitter 803, and the memory 804 are respectively connected to the processor 801 through a bus.
  • the processor 801 includes one or more processing cores, and the processor 801 executes the method executed by the access network device in the resource scheduling method provided by the embodiment of the present disclosure by running software programs and modules.
  • the memory 804 can be used to store software programs and modules. Specifically, the memory 804 may store the operating system 8041, an application module 8042 required by at least one function.
  • the receiver 802 is used to receive communication data sent by other devices, and the transmitter 803 is used to send communication data to other devices.
  • a computer-readable storage medium stores at least one instruction, at least one program, code set, or instruction set, and the at least one instruction, the At least one program, the code set, or the instruction set is loaded and executed by the processor to implement the resource scheduling method provided by the foregoing method embodiments.
  • An exemplary embodiment of the present disclosure also provides a resource scheduling system.
  • the resource scheduling system includes a terminal and an access network device.
  • the terminal is the terminal provided in the embodiment shown in FIG. 9.
  • the access network device is the access network device provided in the embodiment shown in FIG. 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开是关于一种资源调度方法、装置、接入网设备、终端和存储介质,属于通信技术领域。所述方法包括:确定物理下行共享信道和物理下行控制信道之间的调度时延,其中所述物理下行共享信道和物理下行控制信道对应至少两个不同的可能调度时延;在发送所述物理下行控制信道后,基于所述调度时延进行所述物理下行共享信道的发送。

Description

资源调度方法、装置、接入网设备、终端和存储介质 技术领域
本公开涉及通信技术领域,尤其涉及一种资源调度方法、装置、接入网设备、终端和存储介质。
背景技术
近年来,物联网蓬勃发展,为人类的生活和工作带来了诸多便利。其中,机器类通信(Machine Type Communication,MTC)是蜂窝物联网技术的典型代表。目前,这项技术已经广泛用于智慧城市,例如抄表;智慧农业,例如温度湿度等信息的采集;智慧交通,例如共享单车等诸多领域。
发明内容
本公开实施例提供了一种资源调度方法、装置、接入网设备、终端和存储介质,可以使得资源调度更加灵活,优化了资源调度。所述技术方案如下:
根据本公开实施例的一方面,提供一种资源调度方法,所述方法包括:
确定物理下行共享信道和物理下行控制信道之间的调度时延,其中所述物理下行共享信道和物理下行控制信道对应至少两个不同的可能调度时延;
在发送所述物理下行控制信道后,基于所述调度时延进行所述物理下行共享信道的发送。
可选地,确定物理下行共享信道和物理下行控制信道之间的调度时延,包括:
根据不可用子帧的数量和所述可能调度时延的对应关系,确定调度时延;其中所述不可用子帧是不进行下行信道传输的子帧。
可选地,所述不可用子帧包括以下中的至少一种:
上行传输与下行传输之间的切换子帧、用于传输混合自动重传请求反馈的子帧。
可选地,确定物理下行共享信道和物理下行控制信道之间的调度时延,包括:
根据混合自动重传请求进程号和所述可能调度时延的对应关系,确定调度时延。
可选地,一个混合自动重传请求进程号对应,一个或多个可能调度时延。
可选地,不同的混合自动重传请求进程号,对应相同的或不同的可能调度时延。
可选地,不同的混合自动重传请求进程号分组,不同分组的混合自动重传请求进程号对应不同的可能调度时延。
可选地,所述方法还包括:
响应于达到触发条件,确定所述物理下行共享信道和物理下行控制信道之间的调度时延;
所述触发条件包括以下的至少一种:
连续调度的混合自动重传请求进程数量超过门限值;或,
终端具有配置调度时延的能力。
可选地,所述方法还包括:
接收第一信令;
所述第一信令用于指示所述终端具有配置调度时延的能力;或,所述第一信令包括用于指示终端具有配置调度时延的能力的标识;或,所述第一信令用于指示终端支持预设特性;或,所述第一信令包括用于指示所述终端支持预设特性的标识。
根据本公开实施例的另一方面,提供一种资源调度方法,所述方法包括:
确定物理下行共享信道和物理下行控制信道之间的调度时延,其中所述物理下行共享信道和物理下行控制信道对应至少两个不同的可能调度时延;
在接收所述物理下行控制信道后,基于所述调度时延进行所述物理下行共享信道的接收。
可选地,确定物理下行共享信道和物理下行控制信道之间的调度时延,包括:
根据不可用子帧的数量和所述可能调度时延的对应关系,确定调度时延;其中所述不可用子帧是不进行下行信道传输的子帧。
可选地,所述不可用子帧包括以下中的至少一种:
上行传输与下行传输之间的切换子帧、用于传输混合自动重传请求反馈的 子帧。
可选地,确定物理下行共享信道和物理下行控制信道之间的调度时延,包括:
根据混合自动重传请求进程号和所述可能调度时延的对应关系,确定调度时延。
可选地,一个混合自动重传请求进程号对应,一个或多个可能调度时延。
可选地,不同的混合自动重传请求进程号,对应相同的或不同的可能调度时延。
可选地,不同的混合自动重传请求进程号分组,不同分组的混合自动重传请求进程号对应不同的可能调度时延。
可选地,所述方法还包括:
响应于达到触发条件,确定所述物理下行共享信道和物理下行控制信道之间的调度时延;
所述触发条件包括以下的至少一种:
连续调度的混合自动重传请求进程数量超过门限值;或,
终端具有配置调度时延的能力。
可选地,所述方法还包括:
发送第一信令;
所述第一信令用于指示所述终端具有配置调度时延的能力;或,所述第一信令包括用于指示终端具有配置调度时延的能力的标识;或,所述第一信令用于指示终端支持预设特性;或,所述第一信令包括用于指示所述终端支持预设特性的标识。
根据本公开实施例的另一方面,提供一种资源调度装置,所述装置包括:
处理模块,被配置为确定物理下行共享信道和物理下行控制信道之间的调度时延,其中所述物理下行共享信道和物理下行控制信道对应至少两个不同的可能调度时延;
传输模块,被配置为在发送所述物理下行控制信道后,基于所述调度时延进行所述物理下行共享信道的发送。
根据本公开实施例的另一方面,提供一种资源调度装置,所述装置包括:
处理模块,被配置为确定物理下行共享信道和物理下行控制信道之间的调度时延,其中所述物理下行共享信道和物理下行控制信道对应至少两个不同的可能调度时延;
传输模块,被配置为在接收所述物理下行控制信道后,基于所述调度时延进行所述物理下行共享信道的接收。
根据本公开实施例的另一方面,提供一种接入网设备,所述接入网设备包括:处理器;用于存储处理器可执行指令的存储器;其中,所述处理器被配置为加载并执行所述可执行指令以实现前述资源调度方法。
根据本公开实施例的另一方面,提供一种终端,所述终端包括:处理器;用于存储处理器可执行指令的存储器;其中,所述处理器被配置为加载并执行所述可执行指令以实现前述资源调度方法。
根据本公开实施例的另一方面,提供一种计算机可读存储介质,当所述计算机可读存储介质中的指令由处理器执行时,能够执行如前所述的资源调度方法。
在本公开实施例中,通过接入网设备通过确定物理下行共享信道和物理下行控制信道之间的调度时延,然后采用该调度时延进行下行信道的传输。由于调度时延是在至少两个不同的可能调度时延中选取配置的,因此,基于在不同场景下可以确定出不同的调度时延,从而使得资源调度更加灵活,优化了资源调度。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1示出的是本公开一个示意性实施例提供的通信系统的框图;
图2是根据一示例性实施例示出的一种资源调度方法的流程图;
图3是根据一示例性实施例示出的一种资源调度方法的流程图;
图4是根据一示例性实施例示出的一种调度时延确定方法的流程图;
图5是根据一示例性实施例示出的一种调度时延确定方法的流程图;
图6是根据一示例性实施例示出的一种资源调度方法的流程图;
图7是根据一示例性实施例示出的一种资源调度装置的结构示意图;
图8是根据一示例性实施例示出的一种资源调度装置的结构示意图;
图9是根据一示例性实施例示出的一种终端的框图;
图10是根据一示例性实施例示出的一种接入网设备的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
图1示出的是本公开一个示意性实施例提供的通信系统的框图,如图1所示,该通信系统可以包括:接入网12和终端13。
接入网12中包括若干接入网设备120。接入网设备120可以是基站,基站是一种部署在接入网中用以为终端提供无线通信功能的装置。基站可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,在5G新空口(NR,New Radio)系统中,称为gNodeB或者gNB。随着通信技术的演进,“基站”这一名称可能描述,会变化。为方便描述,下文中将上述为终端提供无线通信功能的装置统称为接入网设备。
终端13可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备,移动台(Mobile Station,MS),终端等等。为方便描述,上面提到的设备统称为终端。接入网设备120与终端13之间通过某种空口技术互相通信,例如Uu接口。
半双工频分复用(Half Duplex Fequency Division Duplexing,HD-FDD)MTC终端是一种半双工的MTC终端。这里的半双工是指在某个时刻,终端只能进行 数据的发送或者数据的接收。
MTC终端遵循比较单一的调度时延。如表1所示,假设MTC物理下行控制信道(MTC physical downlink control channel,MPDCCH)在子帧n发送,那么MTC物理下行共享信道(MTC physical downlink shared channel,MPDSCH)会在子帧n+2发送。例如,MPDCCH中的C1在第0子帧传输,其对应的MPDSCH中的D1在第2子帧传输。
表1
Figure PCTCN2020083063-appb-000001
对于HD-FDD MTC来说,当终端需要进行混合自动重传请求(HARQ,Hybrid Automatic Repeat reQuest)反馈时,参见表1,终端由下行切换到上行,切换时延需要1ms(对应表1中第5个子帧),同时传输HARQ反馈,至少需要1ms(对应表1中第6个子帧),传输完成后终端从上行切换到下行切换时延需要1ms(对应表1中第7个子帧)。另外由于在这3ms不能接受MPDSCH,而MPDCCH和MPDSCH间的调度时延为2ms,导致在终端进行HARQ反馈前的两个子帧(对应表1中第3、4个子帧)无法进行MPDCCH的传输,也即MPDCCH的传输需要提前2ms中断。因此,这种单一固定的调度时延,不利于资源的调度。如在表1的例子中,整个传输至少会中断5ms,拉长了终端的活跃时间(active time),不利于终端的功率节省以及传输速率的提高。
本公开实施例描述的通信系统以及业务场景是为了更加清楚地说明本公开实施例的技术方案,并不构成对本公开实施例提供的技术方案的限定,本领域普通技术人员可知,随着通信系统的演变和新业务场景的出现,本公开实施例提供的技术方案对于类似的技术问题,同样适用。
图2是根据一示例性实施例示出的一种资源调度方法的流程图。参见图2,该方法包括以下步骤:
在步骤101中,接入网设备确定物理下行共享信道和物理下行控制信道之间的调度时延。
在本公开实施例中,物理下行共享信道和物理下行控制信道对应至少两个不同的可能调度时延。这里的可能调度时延是指可能被选用的调度时延,可能被选用的调度时延既可以是预设好的调度时延,也可以是实时计算得出的调度时延。在不同场景下,接入网设备可以选取不同的调度时延进行资源调度,从而优化了资源调度方案,从而可以提高传输速率,降低总终端功耗。
在步骤102中,接入网设备在发送所述物理下行控制信道后,基于所述调度时延进行所述物理下行共享信道的发送。
在本公开实施例中,通过接入网设备通过确定物理下行共享信道和物理下行控制信道之间的调度时延,然后采用该调度时延进行下行信道的传输。由于调度时延是在至少两个不同的可能调度时延中选取配置的,因此,基于在不同场景下可以确定出不同的调度时延,从而使得资源调度更加灵活,优化了资源调度。
在本公开实施例中,所述物理下行共享信道和物理下行控制信道之间的调度时延,可以通过以下的任一种方式确定:
通过协议确定多个可能调度时延中的一个;例如,可以根据不同的场景,或不同的信道情况,或不同的业务类型,或其他任何因素;
通过终端与网络侧(接入网设备)协商确定多个调度时延中的一个;例如,终端建议多个可能调度时延中的一个给网络侧,或其他任何终端与网络侧进行双方协商的方式;在一些实施例中,终端和网络侧都设有相同的可能调度时延的配置信息,终端上报给网络侧,建议采用其中的一个可能调度时延;在上报时,可以上报可能调度时延的标识,也可以上报可能调度时延的参数值;在一些实施例中,只有终端配置有可能调度时延的配置信息,终端将建议的调度时延的参数值发送给网络侧;
网络侧通过指令配置给终端;例如,网络侧通过下行控制指令或是任何恰当的信令通知终端侧使用多个可能调度时延中的一个;在一些实施例中,终端和网络侧都设有相同的可能调度时延的配置信息,网络侧通过信令指示终端采用其中的一个可能调度时延;
网络侧通过指令配置给终端调度时延的参数值;例如,网络侧通过下行控制信令或是任何恰当的信令通知终端使用一个调度时延,而该调度时延为多个可能调度时延中的一个;在一些实施例中,只有网络侧配置有可能调度时延的配置信息,网络侧通过信令直接将调度时延的参数值发送给终端。
可选地,确定物理下行共享信道和物理下行控制信道之间的调度时延,包括:
根据不可用子帧的数量和所述可能调度时延的对应关系,确定调度时延;其中所述不可用子帧是不进行下行信道传输的子帧。
例如,如表2所示,不可用的子帧为子帧5、6和7,不可用子帧的数量为3个,在此基础上,调度时延确定为5ms,如表2中C4和D4相差5ms,C5和D5相差5ms。调度时延确定为5ms后,相比于表1的调度时延设置,MPDCCH可以在子帧3和4上传输,从而使得整体传输时间变短,传输速率提升,终端功率消耗降低。
表2
Figure PCTCN2020083063-appb-000002
需要说明的是,在表2所示的场景中,接入网设备在进行HARQ反馈传输时,进行调度时延的切换,也即从2ms切换为5ms。
参见表2,当MPDCCH发送后,如果在其后第二个子帧是可用子帧,那么采用原有的调度时延,比如MPDCCH在第0个子帧发送,MPDSCH在第2个子帧。当MPDCCH发送后,如果在其后第二个子帧是不可用子帧,那么所对应的MPDSCH则延迟到用户第一个可用的子帧发送。
在本公开实施例的所有实施例中,所述不可用子帧的数量和所述可能调度时延的对应关系,可以通过以下的任一种方式确定:
网络侧或终端通过协议确定不可用子帧的数量和所述可能调度时延的对应关系;
网络侧或终端通过终端与网络侧协商确定不可用子帧的数量和所述可能调度时延的对应关系;
网络侧通过指令配置给终端,使得终端获得该对应关系。
在本公开实施例的所有实施例中,在网络侧和终端确定了所述不可用子帧的数量和所述可能调度时延的对应关系后,可以通过前述的任一种方式确定采用不可用子帧的数量和所述可能调度时延的对应关系中的哪一项;即:可以通 过协议确定多个可能调度时延中的一个;通过终端与网络侧协商确定多个调度时延中的一个。
其中,指令可以通过高层信令发送。在本公开实施例中,高层信令可以为RRC高层信令。
可选地,所述不可用子帧包括以下中的至少一种:
上行传输与下行传输之间的切换子帧、用于传输混合自动重传请求反馈的子帧。
再次参见表2,其中子帧5和7为上行传输与下行传输之间的切换子帧,子帧6为用于传输混合自动重传请求反馈的子帧。
在本公开实施例中,接入网设备可以将哪些子帧为不可用子帧通知给终端。通知方式可以采用高层信令实现。这里的高层信令可以为无线资源控制(Radio Resource Control,RRC)高层信令。
可选地,确定物理下行共享信道和物理下行控制信道之间的调度时延,包括:
根据混合自动重传请求进程号(HARQ process number)和所述可能调度时延的对应关系,确定调度时延。
例如,如表3所示,混合自动重传请求进程号1~8对应的可能调度时延为2ms,混合自动重传请求进程号9~14对应的可能调度时延为5ms。
表3
HARQ process number 调度时延
1~8 2
9~14 5
再例如,如表4所示,混合自动重传请求进程号1~8对应的调度时延为2ms,混合自动重传请求进程号9~14对应的调度时延为Nms。N可以根据是否有不可用子帧以及不可用子帧的个数来确定。例如,HARQ反馈传输占用了3个子帧,那么加上上下行切换两边各1ms的切换时延,这里的调度时延为5ms。
表4
HARQ process number 调度时延
1~8 2
9~14 N
可选地,不同的混合自动重传请求进程号,对应相同的或不同的可能调度 时延。
参见表3,混合自动重传请求进程号1~8对应一个可能调度时延2ms,混合自动重传请求进程号1~8对应调度时延为Nms,相当于对应多个可能调度时延。
当对应多个可能调度时延时,在不同的场景下,可以使用多个可能调度时延中不同的调度时延。
在该实现方式中,混合自动重传请求进程号与多个可能调度时延对应时,在不同的场景下可以进行调度时延的调整,例如从2ms调整为5ms等,从而便于资源调度。
可选地,不同的场景包括不可用子帧的数量不同。
在该实现方式中,不可用子帧的数量不同则对应的调度时延可以设置成不同,例如在表2所示的场景下不可用子帧的数量为3,此时调度时延可以为5ms,若其他场景下不可用子帧的数量为4,则调度时延可以为6ms。基于不可用子帧的数量确定出调度时延,从而使得调度时延更符合当前场景,从而使得整体传输时间变短,传输速率提升,终端功率消耗降低。
可选地,不同的混合自动重传请求进程号,对应相同的或不同的可能调度时延。例如表3中,混合自动重传请求进程号1和8对应相同的可能调度时延,混合自动重传请求进程号8和9对应不同的可能调度时延。
可选地,不同的混合自动重传请求进程号分组,不同分组的混合自动重传请求进程号对应不同的可能调度时延。例如表3中,混合自动重传请求进程号1~8分为一组,混合自动重传请求进程号9~14分为一组,两组所对应的可能调度时延不同。当然,表3和表4中的混合自动重传请求进程号和可能调度时延的对应关系仅为举例,在其他实现方式中,调度时延可以采用其他数值,或者将混合自动重传请求进程号分为更多的分组,甚至每组混合自动重传请求进程号对应更多的调度时延等。
在本公开实施例的所有实施例中,所述混合自动重传请求进程号和所述可能调度时延的对应关系,可以通过以下的任一种方式确定:
网络侧或终端通过协议确定混合自动重传请求进程号和所述可能调度时延的对应关系;
网络侧或终端通过终端与网络侧协商确定混合自动重传请求进程号和所述可能调度时延的对应关系;
网络侧通过指令配置给终端,使得终端获得该对应关系。
可选地,该方法还包括:
响应于达到触发条件,确定所述物理下行共享信道和物理下行控制信道之间的调度时延。
在该实现方式中,只有在传输环境达到触发条件时,才按照本申请提供的方案进行调度时延的确定,在其他传输环境下,可以采用固定的调度时延,例如2ms。这种设计使得系统设计更加灵活,兼顾到不能灵活进行调度时延确定的设备的运行,使得这些只能使用固定调度时延的设备,也可以正常运行。
可选地,所述触发条件包括:
连续调度的混合自动重传请求进程数量超过门限值。
在MTC中,可以有多个并行的混合自动重传请求进程,当存在的混合自动重传请求进程的数量超过门限值时,才采用本申请提供的灵活调度的方案。
这里,连续调度的混合自动重传请求进程数量也即接入网设备连续发送的调度信息个数,终端连续接收的调度信息个数。
可选地,所述触发条件包括:
终端具有配置调度时延的能力。
如前所述,在系统设计时,需要考虑终端对该功能的支持,只有终端支持时,接入网设备和终端间采按照前述方案确定调度时延进行传输。
可选地,该方法还包括:
接收第一信令;
所述第一信令用于指示所述终端具有配置调度时延的能力;或,所述第一信令包括用于指示终端具有配置调度时延的能力的标识;或,所述第一信令用于指示终端支持预设特性;或,所述第一信令用于指示所述终端支持预设特性的标识。
在本公开实施例中,终端可以通过上报自己的能力来使得接入网设备知道自己能否支持调度时延的灵活配置,也即前述第一信令。
该第一信令可以通过在说明书里限定终端能力信息(UE Capability information)发送,该信息可以使用任何恰当的信令来发送,例如RRC高层信令。
如前所述,第一信令可以通过多种方式来指示终端是否持调度时延的灵活配置。例如,在该第一信令中,采用1和0分别表示支持和不支持调度时延的灵活配置,从而使得接入网设备可以直接确定能否使用本公开的方案确定调度 时延。再例如,终端上报支持某一种特性,那么接入网设备就认为终端支持灵活的调度时延。比如将灵活的调度时延同支持14 HARQ process关联,当第一信令包括对14 HARQ process的支持时,接入网设备就认为终端支持灵活的调度时延配置。
值得说明的是,前述步骤101~步骤102与上述可选步骤可以任意组合。
图3是根据一示例性实施例示出的一种资源调度方法的流程图。参见图3,该方法包括以下步骤:
在步骤201中,终端确定物理下行共享信道和物理下行控制信道之间的调度时延。
在本公开实施例中,物理下行共享信道和物理下行控制信道对应至少两个不同的可能调度时延。在不同场景下,终端可以选取不同的调度时延进行资源调度,从而优化了资源调度方案,从而可以提高传输速率,降低总终端功耗。
在步骤202中,终端在接收所述物理下行控制信道后,基于所述调度时延进行所述物理下行共享信道的接收。
在本公开实施例中,通过终端通过确定物理下行共享信道和物理下行控制信道之间的调度时延,然后采用该调度时延进行下行信道的传输。由于调度时延是在至少两个不同的可能调度时延中选取配置的,因此,基于在不同场景下可以确定出不同的调度时延,从而使得资源调度更加灵活,优化了资源调度。
可选地,确定物理下行共享信道和物理下行控制信道之间的调度时延,包括:
根据不可用子帧的数量和所述可能调度时延的对应关系,确定调度时延;其中所述不可用子帧是不进行下行信道传输的子帧。
可选地,所述不可用子帧包括以下中的至少一种:
上行传输与下行传输之间的切换子帧、用于传输混合自动重传请求反馈的子帧。
在本公开实施例中,终端可以接收接入网设备通知的哪些子帧为不可用子帧。通知方式可以采用高层信令实现。这里的高层信令可以为RRC高层信令。
例如,接入网设备通知的HARQ反馈占用的时间,例如占用的子帧。终端基于此可以确定不可用子帧的数量。
可选地,确定物理下行共享信道和物理下行控制信道之间的调度时延,包 括:
根据混合自动重传请求进程号和所述可能调度时延的对应关系,确定调度时延。
可选地,不同的混合自动重传请求进程号,对应相同的或不同的可能调度时延。
可选地,不同的混合自动重传请求进程号,对应相同的或不同的可能调度时延。
可选地,不同的混合自动重传请求进程号分组,不同分组的混合自动重传请求进程号对应不同的可能调度时延。
在本公开实施例的所有实施例中,所述混合自动重传请求进程号和所述可能调度时延的对应关系,可以通过以下的任一种方式确定:
网络侧或终端通过协议确定混合自动重传请求进程号和所述可能调度时延的对应关系;
网络侧或终端通过终端与网络侧协商确定混合自动重传请求进程号和所述可能调度时延的对应关系;
网络侧通过指令配置给终端,使得终端获得该对应关系。
可选地,该方法还包括:
确定当前传输环境是否达到触发条件;
响应于达到触发条件,确定所述物理下行共享信道和物理下行控制信道之间的调度时延。
可选地,所述触发条件包括:
连续调度的混合自动重传请求进程数量超过门限值。
可选地,所述触发条件包括:
终端具有配置调度时延的能力。
可选地,该方法还包括:
发送第一信令;
所述第一信令用于指示所述终端具有配置调度时延的能力;或,所述第一信令包括用于指示终端具有配置调度时延的能力的标识;或,所述第一信令用于指示终端支持预设特性;或,所述第一信令用于指示所述终端支持预设特性的标识。
值得说明的是,前述步骤201~步骤202与上述可选步骤可以任意组合。
基于图2和图3可以看出,接入网设备和终端在进行资源调度过程中,确定物理下行共享信道和物理下行控制信道之间的调度时延的步骤基本相同。下面以接入网设备为例,对本公开实施例提供终端和接入网设备确定调度时延的确定方案进行说明:
图4是根据一示例性实施例示出的一种调度时延确定方法的流程图。参见图4,步骤101包括:
步骤111,接入网设备确定不可用子帧的数量,所述不可用子帧是不进行下行信道传输的子帧。
可选地,所述不可用子帧包括以下中的至少一种:
上行传输与下行传输之间的切换子帧、用于传输混合自动重传请求反馈的子帧。
再次参见表2,其中子帧5和7为上行传输与下行传输之间的切换子帧,子帧6为用于传输混合自动重传请求反馈的子帧。
步骤112,接入网设备根据不可用子帧的数量和所述可能调度时延的对应关系,确定调度时延。
示例性地,不可用子帧的数量和所述可能调度时延的对应关系可以包括:不可以子帧的数量为0时,调度时延为2ms;不可用子帧的数量和所述可能调度时延的对应关系可以包括:不可以子帧的数量为3时,调度时延为5ms等。
例如,如表2所示,不可用的子帧为子帧5、6和7,不可用子帧的数量为3个,在此基础上,调度时延确定为5ms,如表2中C4和D4相差5ms,C5和D5相差5ms。调度时延确定为5ms后,相比于表1的调度时延设置,MPDCCH可以在子帧3和4上传输,从而使得整体传输时间变短,传输速率提升,终端功率消耗降低。
在本公开实施例的所有实施例中,所述不可用子帧的数量和所述可能调度时延的对应关系,可以通过以下的任一种方式确定:
网络侧或终端通过协议确定不可用子帧的数量和所述可能调度时延的对应关系;
网络侧或终端通过终端与网络侧协商确定不可用子帧的数量和所述可能调度时延的对应关系;
网络侧通过指令配置给终端,使得终端获得该对应关系。
在本公开实施例的所有实施例中,在网络侧和终端确定了所述不可用子帧的数量和所述可能调度时延的对应关系后,可以通过前述的任一种方式确定采用不可用子帧的数量和所述可能调度时延的对应关系中的哪一项;即:可以通过协议确定多个可能调度时延中的一个;通过终端与网络侧协商确定多个调度时延中的一个。
其中,指令可以通过高层信令发送。在本公开实施例中,高层信令可以为RRC高层信令。
图5是根据一示例性实施例示出的一种调度时延确定方法的流程图。参见图5,步骤101包括:
步骤121,接入网设备确定混合自动重传请求进程号。
在本公开实施例中,接入网设备会将混合自动重传请求进程号携带在发送给终端的下行控制信道中。因此,接入网设备自然可以确定混合自动重传请求进程号,而终端侧也只需从下行控制信道中获取即可得到。
步骤122,接入网设备根据混合自动重传请求进程号和所述可能调度时延的对应关系,确定调度时延。
例如,如表3所示,混合自动重传请求进程号1~8对应的可能调度时延为2ms,混合自动重传请求进程号9~14对应的可能调度时延为5ms。
示例性地,不同的混合自动重传请求进程号,对应相同的或不同的可能调度时延。
参见表3,混合自动重传请求进程号1~8对应一个可能调度时延2ms,混合自动重传请求进程号1~8对应调度时延为Nms,相当于对应多个可能调度时延。
当对应多个可能调度时延时,在不同的场景下,可以使用多个可能调度时延中不同的调度时延。
在该实现方式中,混合自动重传请求进程号与多个可能调度时延对应时,在不同的场景下可以进行调度时延的调整,例如从2ms调整为5ms等,从而便于资源调度。
可选地,不同的场景包括不可用子帧的数量不同。
在该实现方式中,不可用子帧的数量不同则对应的调度时延可以设置成不同,例如在表2所示的场景下不可用子帧的数量为3,此时调度时延可以为5ms,若其他场景下不可用子帧的数量为4,则调度时延可以为6ms。基于不可用子帧 的数量确定出调度时延,从而使得调度时延更符合当前场景,从而使得整体传输时间变短,传输速率提升,终端功率消耗降低。
可选地,不同的混合自动重传请求进程号,对应相同的或不同的可能调度时延。例如表3中,混合自动重传请求进程号1和8对应相同的可能调度时延,混合自动重传请求进程号8和9对应不同的可能调度时延。
可选地,不同的混合自动重传请求进程号分组,不同分组的混合自动重传请求进程号对应不同的可能调度时延。例如表3中,混合自动重传请求进程号1~8分为一组,混合自动重传请求进程号9~14分为一组,两组所对应的可能调度时延不同。当然,表3和表4中的混合自动重传请求进程号和可能调度时延的对应关系仅为举例,在其他实现方式中,调度时延可以采用其他数值,或者将混合自动重传请求进程号分为更多的分组,甚至每组混合自动重传请求进程号对应更多的调度时延等。
在本公开实施例的所有实施例中,所述混合自动重传请求进程号和所述可能调度时延的对应关系,可以通过以下的任一种方式确定:
网络侧或终端通过协议确定混合自动重传请求进程号和所述可能调度时延的对应关系;
网络侧或终端通过终端与网络侧协商确定混合自动重传请求进程号和所述可能调度时延的对应关系;
网络侧通过指令配置给终端,使得终端获得该对应关系。
图6是根据一示例性实施例示出的一种资源调度方法的流程图。参见图6,该方法包括以下步骤:
步骤301:终端发送第一信令;接入网设备接收第一信令。
在本公开实施例中,终端可以通过上报自己的能力来使得接入网设备知道自己能否支持调度时延的灵活配置,也即前述第一信令。第一信令用于指示所述终端具有配置调度时延的能力;或,所述第一信令包括用于指示终端具有配置调度时延的能力的标识;或,所述第一信令用于指示终端支持预设特性;或,所述第一信令用于指示所述终端支持预设特性的标识。
该第一信令可以通过在说明书里限定终端能力信息发送,该信息可以使用任何恰当的信令来发送,例如RRC高层信令。
如前所述,第一信令可以通过多种方式来指示终端是否持调度时延的灵活 配置。例如,在该第一信令中,采用1和0分别表示支持和不支持调度时延的灵活配置,从而使得接入网设备可以直接确定能否使用本公开的方案确定调度时延。再例如,终端上报支持某一种特性,那么接入网设备就认为终端支持灵活的调度时延。比如将灵活的调度时延同支持14 HARQ process关联,当第一信令包括对14 HARQ process的支持时,接入网设备就认为终端支持灵活的调度时延配置。
步骤302:终端确定当前传输环境是否达到触发条件。
示例性地,所述触发条件包括:连续调度的混合自动重传请求进程数量超过门限值。
在MTC中,可以有多个并行的混合自动重传请求进程,当存在的混合自动重传请求进程的数量超过门限值时,才采用本申请提供的灵活调度的方案。
示例性地,所述触发条件包括:终端具有配置调度时延的能力。
如前所述,在系统设计时,需要考虑终端对该功能的支持,只有终端支持时,接入网设备和终端间采按照前述方案确定调度时延进行传输。
在本公开实施例中,触发条件可以为上述示例中的一种或两种。其中,连续调度的混合自动重传请求进程数量可以通过接入网设备发送给终端的PDCCH获取到,终端是否支持调度时延的灵活配置可以从自身信息获取到。
步骤303:当达到所述触发条件时,终端确定物理下行共享信道和物理下行控制信道之间的调度时延。
在本公开实施例中,所述物理下行共享信道和物理下行控制信道对应至少两个不同的可能调度时延。
在该实现方式中,终端在获取到连续调度的混合自动重传请求进程数量,终端是否支持调度时延的灵活配置等信息后,即可确定是否达到所述触发条件。
需要说明的是,步骤302~303与前述步骤301之间没有先后关系。
当没有达到上述触发条件时,终端可以采用固定的调度时延(如2ms)进行资源调度。
步骤303的详细过程可以参见步骤111~112或步骤121~122。
步骤304:终端在接收所述物理下行控制信道后,基于所述调度时延进行所述物理下行共享信道的接收。
参见表2,例如在确定出调度时延为5ms时,终端在子帧3接收MPDCCH的C4,然后在子帧8接收MPDSCH的D4;终端在子帧4接收MPDCCH的C5, 然后在子帧9接收MPDSCH的D5。也即终端在接收所述物理下行控制信道后,延迟调度时延对应的时间进行所述物理下行共享信道的接收。
步骤305:接入网设备确定当前传输环境是否达到触发条件。
接入网设备确定是否达到触发条件的方案与终端相同,因此详细过程可以参见步骤302。
步骤306:当达到所述触发条件时,接入网设备确定物理下行共享信道和物理下行控制信道之间的调度时延。
步骤306的详细过程可以参见步骤303。
需要说明的是,步骤305~306与前述步骤302~303之间没有先后关系。
步骤307:接入网设备在发送所述物理下行控制信道后,基于所述调度时延进行所述物理下行共享信道的发送。
步骤307的详细过程可以参见步骤304。
图7是根据一示例性实施例示出的一种资源调度装置的结构示意图。该装置具有实现上述方法实施例中接入网设备的功能,该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。如图7所示,该装置包括:处理模块501和传输模块502。
其中,处理模块501,被配置为确定物理下行共享信道和物理下行控制信道之间的调度时延,其中所述物理下行共享信道和物理下行控制信道对应至少两个不同的可能调度时延;
传输模块502,被配置为在发送所述物理下行控制信道后,基于所述调度时延进行所述物理下行共享信道的发送。
可选地,处理模块501,被配置为根据不可用子帧的数量和所述可能调度时延的对应关系,确定调度时延;其中所述不可用子帧是不进行下行信道传输的子帧。
可选地,所述不可用子帧包括以下中的至少一种:
上行传输与下行传输之间的切换子帧、用于传输混合自动重传请求反馈的子帧。
可选地,处理模块501,被配置为根据混合自动重传请求进程号和所述可能调度时延的对应关系,确定调度时延。
可选地,一个混合自动重传请求进程号对应,一个或多个可能调度时延。
可选地,不同的混合自动重传请求进程号,对应相同的或不同的可能调度时延。
可选地,不同的混合自动重传请求进程号分组,不同分组的混合自动重传请求进程号对应不同的可能调度时延。
可选地,传输模块502,还被配置为通过高层信令发送所述混合自动重传请求进程号和所述可能调度时延的对应关系。
可选地,处理模块501,还被配置为响应于达到触发条件,确定所述物理下行共享信道和物理下行控制信道之间的调度时延;
所述触发条件包括以下的至少一种:
连续调度的混合自动重传请求进程数量超过门限值;或,
终端具有配置调度时延的能力。
可选地,传输模块502,还被配置为接收第一信令;所述第一信令用于指示所述终端具有配置调度时延的能力;或,所述第一信令包括用于指示终端具有配置调度时延的能力的标识;或,所述第一信令用于指示终端支持预设特性;或,所述第一信令用于指示所述终端支持预设特性的标识。
图8是根据一示例性实施例示出的一种资源调度装置的结构示意图。该装置具有实现上述方法实施例中终端的功能,该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。如图8所示,该装置包括:处理模块601和传输模块602。
其中,处理模块601,被配置为确定物理下行共享信道和物理下行控制信道之间的调度时延,其中所述物理下行共享信道和物理下行控制信道对应至少两个不同的可能调度时延;
传输模块602,被配置为在接收所述物理下行控制信道后,基于所述调度时延进行所述物理下行共享信道的接收。
可选地,处理模块601,被配置为根据不可用子帧的数量和所述可能调度时延的对应关系,确定调度时延;其中所述不可用子帧是不进行下行信道传输的子帧。
可选地,所述不可用子帧包括以下中的至少一种:
上行传输与下行传输之间的切换子帧、用于传输混合自动重传请求反馈的子帧。
可选地,处理模块601,被配置为根据混合自动重传请求进程号和所述可能调度时延的对应关系,确定调度时延。
可选地,一个混合自动重传请求进程号对应,一个或多个可能调度时延。
可选地,不同的混合自动重传请求进程号,对应相同的或不同的可能调度时延。
可选地,不同的混合自动重传请求进程号分组,不同分组的混合自动重传请求进程号对应不同的可能调度时延。
可选地,传输模块602,还被配置为通过高层信令接收所述混合自动重传请求进程号和所述可能调度时延的对应关系。
可选地,处理模块601,还被配置为;当达到所述触发条件时,确定所述物理下行共享信道和物理下行控制信道之间的调度时延;
所述触发条件包括以下的至少一种:
连续调度的混合自动重传请求进程数量超过门限值;或,
终端具有配置调度时延的能力。
可选地,传输模块602,还被配置为发送第一信令;
所述第一信令用于指示所述终端具有配置调度时延的能力;或,所述第一信令包括用于指示终端具有配置调度时延的能力的标识;或,所述第一信令用于指示终端支持预设特性;或,所述第一信令用于指示所述终端支持预设特性的标识。
图9是根据一示例性实施例示出的一种终端700的框图,该终端700可以包括:处理器701、接收器702、发射器703、存储器704和总线705。
处理器701包括一个或者一个以上处理核心,处理器701通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器702和发射器703可以实现为一个通信组件,该通信组件可以是一块通信芯片。
存储器704通过总线705与处理器701相连。
存储器704可用于存储至少一个指令,处理器701用于执行该至少一个指令,以实现上述方法实施例中的各个步骤。
此外,存储器704可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦 除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),静态随时存取存储器(SRAM),只读存储器(ROM),磁存储器,快闪存储器,可编程只读存储器(PROM)。
在示例性实施例中,还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现上述各个方法实施例提供的下行控制信道传输方法。
图10是根据一示例性实施例示出的一种接入网设备800的框图,接入网设备800可以包括:处理器801、接收机802、发射机803和存储器804。接收机802、发射机803和存储器804分别通过总线与处理器801连接。
其中,处理器801包括一个或者一个以上处理核心,处理器801通过运行软件程序以及模块以执行本公开实施例提供的资源调度方法中接入网设备所执行的方法。存储器804可用于存储软件程序以及模块。具体的,存储器804可存储操作系统8041、至少一个功能所需的应用程序模块8042。接收机802用于接收其他设备发送的通信数据,发射机803用于向其他设备发送通信数据。
在示例性实施例中,还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现上述各个方法实施例提供的资源调度方法。
本公开一示例性实施例还提供了一种资源调度系统,所述资源调度系统包括终端和接入网设备。所述终端为如图9所示实施例提供的终端。所述接入网设备为如图10所示实施例提供的接入网设备。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结 构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (23)

  1. 一种资源调度方法,其特征在于,所述方法包括:
    确定物理下行共享信道和物理下行控制信道之间的调度时延,其中所述物理下行共享信道和物理下行控制信道对应至少两个不同的可能调度时延;
    在发送所述物理下行控制信道后,基于所述调度时延进行所述物理下行共享信道的发送。
  2. 根据权利要求1所述的方法,其特征在于,确定物理下行共享信道和物理下行控制信道之间的调度时延,包括:
    根据不可用子帧的数量和所述可能调度时延的对应关系,确定调度时延;其中所述不可用子帧是不进行下行信道传输的子帧。
  3. 根据权利要求2所述的方法,其特征在于,所述不可用子帧包括以下中的至少一种:
    上行传输与下行传输之间的切换子帧、用于传输混合自动重传请求反馈的子帧。
  4. 根据权利要求1所述的方法,其特征在于,确定物理下行共享信道和物理下行控制信道之间的调度时延,包括:
    根据混合自动重传请求进程号和所述可能调度时延的对应关系,确定调度时延。
  5. 根据权利要求4所述的方法,其特征在于,一个混合自动重传请求进程号对应,一个或多个可能调度时延。
  6. 根据权利要求4所述的方法,其特征在于,不同的混合自动重传请求进程号,对应相同的或不同的可能调度时延。
  7. 根据权利要求4所述的方法,其特征在于,不同的混合自动重传请求进程号分组,不同分组的混合自动重传请求进程号对应不同的可能调度时延。
  8. 根据权利要求1至7任一项所述的方法,其特征在于,所述方法还包括:
    响应于达到触发条件,确定所述物理下行共享信道和物理下行控制信道之间的调度时延;
    所述触发条件包括以下的至少一种:
    连续调度的混合自动重传请求进程数量超过门限值;或,
    终端具有配置调度时延的能力。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    接收第一信令;
    所述第一信令用于指示所述终端具有配置调度时延的能力;或,所述第一信令包括用于指示终端具有配置调度时延的能力的标识;或,所述第一信令用于指示终端支持预设特性;或,所述第一信令包括用于指示所述终端支持预设特性的标识。
  10. 一种资源调度方法,其特征在于,所述方法包括:
    确定物理下行共享信道和物理下行控制信道之间的调度时延,其中所述物理下行共享信道和物理下行控制信道对应至少两个不同的可能调度时延;
    在接收所述物理下行控制信道后,基于所述调度时延进行所述物理下行共享信道的接收。
  11. 根据权利要求10所述的方法,其特征在于,确定物理下行共享信道和物理下行控制信道之间的调度时延,包括:
    根据不可用子帧的数量和所述可能调度时延的对应关系,确定调度时延;其中所述不可用子帧是不进行下行信道传输的子帧。
  12. 根据权利要求11所述的方法,其特征在于,所述不可用子帧包括以下中的至少一种:
    上行传输与下行传输之间的切换子帧、用于传输混合自动重传请求反馈的子帧。
  13. 根据权利要求10所述的方法,其特征在于,确定物理下行共享信道和物理下行控制信道之间的调度时延,包括:
    根据混合自动重传请求进程号和所述可能调度时延的对应关系,确定调度时延。
  14. 根据权利要求13所述的方法,其特征在于,一个混合自动重传请求进程号对应,一个或多个可能调度时延。
  15. 根据权利要求13所述的方法,其特征在于,不同的混合自动重传请求进程号,对应相同的或不同的可能调度时延。
  16. 根据权利要求13所述的方法,其特征在于,不同的混合自动重传请求进程号分组,不同分组的混合自动重传请求进程号对应不同的可能调度时延。
  17. 根据权利要求10至16任一项所述的方法,其特征在于,所述方法还包括:
    响应于达到触发条件,确定所述物理下行共享信道和物理下行控制信道之间的调度时延;
    所述触发条件包括以下的至少一种:
    连续调度的混合自动重传请求进程数量超过门限值;或,
    终端具有配置调度时延的能力。
  18. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    发送第一信令;
    所述第一信令用于指示所述终端具有配置调度时延的能力;或,所述第一信令包括用于指示终端具有配置调度时延的能力的标识;或,所述第一信令用于指示终端支持预设特性;或,所述第一信令包括用于指示所述终端支持预设特性的标识。
  19. 一种资源调度装置,其特征在于,所述装置包括:
    处理模块,被配置为确定物理下行共享信道和物理下行控制信道之间的调度时延,其中所述物理下行共享信道和物理下行控制信道对应至少两个不同的可能调度时延;
    传输模块,被配置为在发送所述物理下行控制信道后,基于所述调度时延进行所述物理下行共享信道的发送。
  20. 一种资源调度装置,其特征在于,所述装置包括:
    处理模块,被配置为确定物理下行共享信道和物理下行控制信道之间的调度时延,其中所述物理下行共享信道和物理下行控制信道对应至少两个不同的可能调度时延;
    传输模块,被配置为在接收所述物理下行控制信道后,基于所述调度时延进行所述物理下行共享信道的接收。
  21. 一种接入网设备,其特征在于,所述接入网设备包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为加载并执行所述可执行指令以实现权利要求1至9任一项所述的资源调度方法。
  22. 一种终端,其特征在于,所述终端包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为加载并执行所述可执行指令以实现权利要求10至18任一项所述的资源调度方法。
  23. 一种计算机可读存储介质,其特征在于,当所述计算机可读存储介质中的指令由处理器执行时,能够执行权利要求1至9任一所述的资源调度方法,或者,能够执行权利要求10至18任一项所述的资源调度方法。
PCT/CN2020/083063 2020-04-02 2020-04-02 资源调度方法、装置、接入网设备、终端和存储介质 WO2021196142A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080000677.9A CN111527786B (zh) 2020-04-02 2020-04-02 资源调度方法、装置、接入网设备、终端和存储介质
US17/915,835 US20230156720A1 (en) 2020-04-02 2020-04-02 Resource scheduling method, apparatus, access network device, terminal and storage medium
PCT/CN2020/083063 WO2021196142A1 (zh) 2020-04-02 2020-04-02 资源调度方法、装置、接入网设备、终端和存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/083063 WO2021196142A1 (zh) 2020-04-02 2020-04-02 资源调度方法、装置、接入网设备、终端和存储介质

Publications (1)

Publication Number Publication Date
WO2021196142A1 true WO2021196142A1 (zh) 2021-10-07

Family

ID=71911800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/083063 WO2021196142A1 (zh) 2020-04-02 2020-04-02 资源调度方法、装置、接入网设备、终端和存储介质

Country Status (3)

Country Link
US (1) US20230156720A1 (zh)
CN (1) CN111527786B (zh)
WO (1) WO2021196142A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4271082A4 (en) * 2021-01-11 2024-01-17 Huawei Technologies Co., Ltd. COMMUNICATION METHOD AND APPARATUS
WO2022151253A1 (en) * 2021-01-14 2022-07-21 Apple Inc. Half duplex frequency division duplex for new radio

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107046722A (zh) * 2016-02-05 2017-08-15 中兴通讯股份有限公司 调度定时间隔的确定方法及装置
WO2019047948A1 (en) * 2017-09-11 2019-03-14 Intel IP Corporation METHOD AND APPARATUS FOR RECOVERING FAULT AFTER BEAM FAILURE
CN110149681A (zh) * 2018-02-13 2019-08-20 华为技术有限公司 一种确定调度时延的方法及装置
CN110536459A (zh) * 2018-08-10 2019-12-03 中兴通讯股份有限公司 一种重复传输方法及装置、通信设备和存储介质

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5393875B2 (ja) * 2009-04-24 2014-01-22 チャイナ アカデミー オブ テレコミュニケーションズ テクノロジー Tddシステムバックホールリンク通信方法、デバイスおよびシステム
US10805061B2 (en) * 2015-07-20 2020-10-13 Lg Electronics Inc. Method and apparatus for handling MBSFN subframes for short TTI in wireless communication system
WO2017136004A1 (en) * 2016-02-05 2017-08-10 Intel IP Corporation Systems and methods for flexible time-domain resource mapping for npdcch and npdsch in nb-iot systems
CN108604945A (zh) * 2016-02-09 2018-09-28 瑞典爱立信有限公司 有效harq反馈的鲁棒性增强
EP3282749B1 (en) * 2016-08-11 2019-12-11 Nokia Technologies Oy Apparatus and method of signalling support for reduced latency operation and computer program therefor
CN106533629A (zh) * 2016-12-05 2017-03-22 珠海市魅族科技有限公司 时延模式的切换方法、切换装置、终端及基站
CN106506123B (zh) * 2016-12-29 2019-11-12 宇龙计算机通信科技(深圳)有限公司 一种指示方法和基站
CN108270514A (zh) * 2017-01-03 2018-07-10 中兴通讯股份有限公司 Pdsch资源的确定方法及装置、终端、基站
US11032844B2 (en) * 2017-06-22 2021-06-08 Qualcomm Incorporated Physical shared channel transmission to acknowledgement delay optimization
CN110856263B (zh) * 2019-06-29 2022-03-29 华为技术有限公司 一种调度切换方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107046722A (zh) * 2016-02-05 2017-08-15 中兴通讯股份有限公司 调度定时间隔的确定方法及装置
WO2019047948A1 (en) * 2017-09-11 2019-03-14 Intel IP Corporation METHOD AND APPARATUS FOR RECOVERING FAULT AFTER BEAM FAILURE
CN110149681A (zh) * 2018-02-13 2019-08-20 华为技术有限公司 一种确定调度时延的方法及装置
CN110536459A (zh) * 2018-08-10 2019-12-03 中兴通讯股份有限公司 一种重复传输方法及装置、通信设备和存储介质

Also Published As

Publication number Publication date
CN111527786B (zh) 2023-10-17
CN111527786A (zh) 2020-08-11
US20230156720A1 (en) 2023-05-18

Similar Documents

Publication Publication Date Title
CN107210873B (zh) 统一帧结构
US10966196B2 (en) Data transmission method, terminal device, and network device
JP2022050577A (ja) 低複雑度の狭帯域端末のためのランダムアクセス手順でのharqメッセージに割り当てられたリソースを示すための方法
WO2020143732A1 (zh) 发送和接收反馈信道的方法以及装置
CN112449763A (zh) 新无线电移动通信中v2x侧链路资源分配的方法及装置
EP3876565A1 (en) Data transmission method and device, and readable storage medium
US20200014496A1 (en) Method, device and system for data transmission
WO2018082577A1 (zh) 信息的发送、接收方法及装置、基站以及终端
CN114503501B (zh) 用于处理无线通信网络中已配置的和动态的下行链路传输的方法和装置
WO2021196142A1 (zh) 资源调度方法、装置、接入网设备、终端和存储介质
CN113517957A (zh) 一种harq信息传输方法及装置
CN107733578B (zh) 一种对下行数据进行反馈的方法及装置
CN111953593A (zh) 无线通信系统中用于确定分组的发送路径的方法及其装置
CN102595606B (zh) 一种配置和执行非连续接收的方法、系统和设备
KR20200108027A (ko) 중계 네트워크의 이중 조정 방법 및 중계 노드 디바이스
JP2022535332A (ja) データを伝送するための方法、端末デバイス及びネットワークデバイス
WO2019153266A1 (zh) 用于传输数据的方法和设备
WO2021046798A1 (zh) Ue能力信息的传输方法、装置和存储介质
WO2021142706A1 (zh) 资源冲突的解决方法、装置、终端和存储介质
WO2021097671A1 (zh) 辅助信息传输方法、装置、终端、接入网设备及存储介质
TW202131740A (zh) 用於處理實體上鏈路控制通道碰撞的裝置及方法
KR20230130015A (ko) 사이드링크 송신 및 수신을 수행하기 위한 방법 및디바이스
WO2019178833A1 (zh) 资源授权的方法和设备
US12004166B2 (en) Information transmission method and apparatus, device, and storage medium
US20240313908A1 (en) Hybrid automatic repeat request state discarding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20928675

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20928675

Country of ref document: EP

Kind code of ref document: A1