WO2021194165A1 - Forest fire risk forecast method using artificial satellite data - Google Patents
Forest fire risk forecast method using artificial satellite data Download PDFInfo
- Publication number
- WO2021194165A1 WO2021194165A1 PCT/KR2021/003374 KR2021003374W WO2021194165A1 WO 2021194165 A1 WO2021194165 A1 WO 2021194165A1 KR 2021003374 W KR2021003374 W KR 2021003374W WO 2021194165 A1 WO2021194165 A1 WO 2021194165A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- forest fire
- vegetation
- risk
- satellite
- soil moisture
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B17/00—Fire alarms; Alarms responsive to explosion
- G08B17/005—Fire alarms; Alarms responsive to explosion for forest fires, e.g. detecting fires spread over a large or outdoors area
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/10—Artificial satellites; Systems of such satellites; Interplanetary vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/10—Artificial satellites; Systems of such satellites; Interplanetary vehicles
- B64G1/1021—Earth observation satellites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/66—Arrangements or adaptations of apparatus or instruments, not otherwise provided for
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C11/00—Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
- G01C11/04—Interpretation of pictures
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B17/00—Fire alarms; Alarms responsive to explosion
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/10—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
- Y02A40/28—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture specially adapted for farming
Definitions
- the present invention relates to a method for predicting forest fire risk using satellite data. More specifically, it relates to a forest fire risk forecasting method using satellite data, which can predict the risk of a local forest fire that is not easily accessible to humans by using vegetation information and soil moisture obtained by observation from a satellite.
- the Korea Forest Service also uses the Daily Weather Index (DWI) model to forecast the risk of forest fires using weather information such as humidity and wind speed and clinical information such as forest distribution information.
- DWI Daily Weather Index
- An object of the present invention is to provide a method for predicting forest fire risk using satellite data, which can predict the risk of forest fires to areas that are not easily accessible by humans using vegetation information and soil moisture obtained by observation from satellites.
- a forest fire risk forecasting method using satellite data implemented on a processor, the method comprising: obtaining vegetation information using data observed from the satellite; calculating soil moisture using the data observed from the satellite; A forest fire risk forecasting method using satellite data is provided, including the step of determining the risk of a forest fire from the vegetation information and the soil moisture.
- the vegetation information may include a vegetation temperature (Tc) according to the following [Equation].
- a passive microwave sensor may be mounted on the satellite, and in this case, the soil moisture may be calculated using a brightness temperature obtained through the passive microwave sensor.
- An infrared sensor may be mounted on the satellite.
- the soil moisture may be calculated using a brightness temperature calculated through the infrared sensor.
- the satellite may be equipped with an active microwave sensor, and in this case, the soil moisture may be calculated using backscattering coefficients obtained through the active microwave sensor.
- Determining the risk of occurrence of the forest fire comprises: calculating a vegetation stress index (Canopy Stress Index, CSI) according to the following [Equation];
- It may include the step of determining the risk of wildfire occurrence according to the vegetation stress index (Canopy Stress Index, CSI) value.
- CSI Cropy Stress Index
- CSI Canopy Stress Index
- vegetation information and soil moisture can be calculated using data observed from satellites to predict the risk of forest fires even in areas that are not easily accessible by humans.
- FIG. 1 is a flowchart of a forest fire risk forecasting method using satellite data according to an embodiment of the present invention.
- Figure 2 is a block diagram of a forest fire risk forecasting apparatus for performing a forest fire risk forecasting method using satellite data according to an embodiment of the present invention.
- FIG. 3 is a view showing a forest fire stress index in a method for predicting forest fire risk using satellite data according to an embodiment of the present invention.
- FIG. 1 is a flowchart of a forest fire risk forecasting method using satellite data according to an embodiment of the present invention.
- FIG. 2 is a block diagram of a forest fire risk forecasting apparatus for performing a forest fire risk forecasting method using satellite data according to an embodiment of the present invention.
- a forest fire risk forecasting method using satellite data is a forest fire risk forecasting method using satellite data implemented on a processor, the method comprising: obtaining vegetation information using data observed from the satellite; calculating soil moisture using the data observed from the satellite; and determining the risk of forest fire from the vegetation information and the soil moisture.
- the forest fire risk forecasting method determines the possibility of a wildfire using clinical information and weather information of a certain area. For example, it obtains clinical information such as a 1/25,000 scale numerical clinical map issued by the National Academy of Forest Sciences and weather information such as relative humidity, wind speed, and temperature from weather stations installed across the country, and predicts forest fire risk based on it. will do
- the vegetation information is obtained by using the data observed from the satellite (S100).
- Vegetation information is information about a group of plants growing on the surface of the earth, and the vegetation information of a certain area is indirectly grasped using data observed from satellites.
- Vegetation information that can be calculated using data observed from satellites includes vegetation index and canopy temperature. have.
- the vegetation index is an index for emphasizing the characteristic information of vegetation using signals in wavelength bands sensitive to vegetation and signals in wavelength bands that are not sensitive to vegetation observed from satellites.
- Normalized differential vegetation index NDVI
- emphasized vegetation index enhanced vegetation index; EVI
- the normalized differential vegetation index has a high value because the reflectivity in the near-infrared region is high in the case of a bush where vegetation grows vigorously, whereas the soil has a high value. There is almost no difference between the two reflectivity values, so it has a value close to 0.
- Vegetation temperature is a factor indirectly indicating the moisture level of vegetation, and means a temperature indicating the interaction between the atmosphere and vegetation.
- the vegetation temperature (Tc) can be calculated by the following [Equation 1].
- T c In order to calculate the vegetation temperature (T c), is required, such as a directional surface temperature (T R), the soil surface temperature (Ts) in accordance with the angle of view (view angle).
- T R directional surface temperature
- Ts soil surface temperature
- T R The directional surface temperature (T R ) according to the view angle is calculated by the above formula, where T B ( ⁇ ) is the directional brightness temperature measured by satellite at a specific angle of view ⁇ ,
- ⁇ ( ⁇ ) is the directional emissivity measured at the angle of view ⁇ , and represents the efficiency of energy release from the surface of an object during thermal radiation.
- T SKY It is a hemispherical melting point in the sky, and 2.7K, the amount of blackbody radiation that fills the universe, is applied.
- n in [Equation 1] can be calculated according to the above equation through the wavelength ( ⁇ ) of the sensor mounted on the artificial satellite that observed the brightness and temperature and the Plank function.
- T O is the brightness temperature input to the Plank function.
- SMAP Soil Moisture Active Passive
- f in [Equation 1] is the portion occupied by vegetation among the pixel data of the satellite, and is an LAI function.
- LAI is the leaf area index measured by satellite
- ⁇ is the view zenith angle measured by the LAI.
- a clumping factor can be considered in the above LAI.
- the canopy temperature calculated according to [Equation 1] is a factor representing the moisture level of vegetation, and the moisture content of the vegetation is indirectly calculated and can be used to predict the risk of a forest fire together with soil moisture.
- soil moisture refers to the amount of water contained in the soil, and it can be expressed as a percentage by expressing the volume of water among the total volume of soil, water, and air. Such soil moisture can be calculated on a global scale through satellites.
- the satellite is equipped with a microwave sensor so that passive microwaves or active microwaves can be observed.
- passive microwaves When passive microwaves are observed, soil moisture can be calculated through brightness temperature.
- active microwaves soil moisture can be calculated using backscattering coefficients.
- an infrared sensor may be mounted on the satellite, and it is also possible to calculate a brightness temperature from a value observed through the infrared sensor, and to calculate soil moisture therefrom.
- the soil moisture can indirectly confirm the moisture contained in the soil, and information on the combustibility of vegetation near the surface of the earth can be obtained together with the above-described vegetation information.
- the forest fire risk is determined from the vegetation information and soil moisture (S300).
- vegetation information is obtained using data observed from satellites, and by standardizing it with the calculated value of soil moisture in the area, information on the combustibility of vegetation on the ground can be obtained and the risk of forest fire can be determined through this. .
- the vegetation stress index (CSI) according to the following [Equation 2] is calculated, and the method of judging the risk of forest fire according to this is calculated. present.
- T C is the vegetation temperature and can be calculated according to [Equation 1] using the data observed from the satellite, and the soil moisture [%] observed by the satellite is the above-mentioned brightness temperature or backscattering index using the is calculated
- CSI Vegetation Stress Index
- 3 is a case in which the forest fire risk forecasting method using the satellite data is applied, and shows the vegetation stress index according to the fire area that has actually occurred.
- the vegetation stress index indicated by the red line For areas with a high risk forecast one week prior to the occurrence of the wildfire, such as the vegetation stress index indicated by the red line, the area actually damaged by the forest fire was large. After 4 days of the fire, the vegetation stress index was significantly reduced as shown in the blue line, and it was remarkably distinguished from the vegetation stress one week before the fire. .
- FIG. 2 is a block diagram of a forest fire risk forecasting apparatus for performing a forest fire risk forecasting method using satellite data according to an embodiment of the present invention.
- the forest fire risk forecasting method using satellite data may be implemented in a process including a computer .
- the database unit 12 may store data observed from satellites, vegetation information including vegetation temperature, soil moisture, and the like.
- the satellite may be equipped with a microwave sensor, and data observed therefrom may be stored in the database unit 12 .
- the database unit 12 may store data such as various geography, weather, vegetation information, and soil moisture in addition to the data observed by the microwave sensor.
- the calculator 14 calculates and obtains vegetation information using data observed from the satellite, and calculates soil moisture (%) using the data observed from the satellite.
- Vegetation information that can be calculated using data observed from satellites includes vegetation index and canopy temperature. have.
- Vegetation temperature (canopy temperature), as a factor representing the moisture degree of vegetation, may be calculated by the calculator 14 according to [Equation 1].
- the calculator 14 when the artificial satellite observes passive microwaves, can calculate soil moisture through the brightness temperature, and when observing active microwaves, backscattering coefficients Soil moisture can be calculated using
- the determination unit 16 determines the risk of occurrence of a forest fire from the vegetation information and the vegetation information and the soil moisture calculated by the calculation unit 14 .
- the determination unit 16 calculates the vegetation stress index (CSI) according to [Equation 2] above, and, accordingly, the risk of forest fire occurrence. provides a way to judge
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Aviation & Aerospace Engineering (AREA)
- Astronomy & Astrophysics (AREA)
- Radar, Positioning & Navigation (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Multimedia (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biodiversity & Conservation Biology (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Disclosed is a forest fire risk forecast method using artificial satellite data. According to one aspect of the present invention, provided is a forest fire risk forecast method using artificial satellite data, which is implemented on a processor, the forest fire risk forecast method using artificial satellite data comprising the steps of: obtaining vegetation information by using data observed by a artificial satellite; calculating soil moisture by using the data observed by the artificial satellite; and determining a forest fire outbreak risk from the vegetation information and the soil moisture.
Description
본 발명은 인공위성 데이터를 이용한 산불 위험 예보 방법에 관한 것이다. 보다 상세하게는, 인공위성에서 관측하여 획득된 식생 정보와 토양 수분을 이용하여 인간의 접근이 용이하지 않은 지역 산불 위험에 대한 예보를 할 수 있는, 인공위성 데이터를 이용한 산불 위험 예보 방법에 관한 것이다.The present invention relates to a method for predicting forest fire risk using satellite data. More specifically, it relates to a forest fire risk forecasting method using satellite data, which can predict the risk of a local forest fire that is not easily accessible to humans by using vegetation information and soil moisture obtained by observation from a satellite.
식생 및 낙엽이 건조한 상태에서 바람에 의해 순식간에 확산되는 대형 산불은 그 규모가 1000 ha 가 넘는데, 기후 변화와 관련하여, 미국, 캐나다, 호주, 아마존 등 국내외 안팎으로 산불의 규모가 대형화되는 추세이다. 이러한 대규모 산림 재난의 특징은 인간의 눈으로는 파악하기도 접근하기도 용이하지 않아 이에 대한 대책 또는 예보 관리가 꼭 필요하다. Large-scale wildfires spread by the wind in a dry state of vegetation and fallen leaves are over 1000 ha in size. . The characteristics of these large-scale forest disasters are not easy to grasp or approach with the human eye, so countermeasures or forecast management are essential.
우리 나라 산림청에서도 Daily Weather Index (DWI) 모델을 사용하여, 습도와 풍속 등 기상 정보와 산림 분포 정보 등의 임상정보를 이용하여 산불 위험에 대한 예보를 하고 있다.The Korea Forest Service also uses the Daily Weather Index (DWI) model to forecast the risk of forest fires using weather information such as humidity and wind speed and clinical information such as forest distribution information.
산불 위험을 예보하는데 있어 연료가 될 수 있는 나무와 수 년 간 산속에 쌓인 낙엽 같은 물질들의 연소성을 파악하는 것이 중요한데, 현재 이 산불 위험을 예보하는 방법에는 식생 연료의 연소성(fuel combustibility) 정보가 빠져 있다.In predicting the risk of forest fires, it is important to understand the combustibility of materials such as trees and fallen leaves accumulated in the mountains for many years that can be fueled. have.
또한, 인간의 접근이 용이하지 않은 대규모 산불에 대해 위험을 예측하는데 한계가 있다.In addition, there is a limit to predicting the risk of large-scale wildfires that are not easily accessible to humans.
본 발명은 인공위성에서 관측하여 획득된 식생 정보와 토양 수분을 이용하여 인간의 접근이 용이하지 않은 지역까지 산불 위험에 대한 예보를 할 수 있는, 인공위성 데이터를 이용한 산불 위험 예보 방법을 제공하는 것이다.An object of the present invention is to provide a method for predicting forest fire risk using satellite data, which can predict the risk of forest fires to areas that are not easily accessible by humans using vegetation information and soil moisture obtained by observation from satellites.
본 발명의 일 측면에 따르면, 프로세서상에서 구현되는 인공위성 데이터를 이용한 산불 위험 예보 방법으로서, 상기 인공위성에서 관측된 데이터를 이용하여 식생 정보(vegetation information)을 획득하는 단계와; 상기 인공위성에서 관측된 데이터를 이용하여 토양 수분(soil moisture)을 산출하는 단계와; 상기 식생 정보와 상기 토양 수분으로부터 산불 발생 위험을 판단하는 단계를 포함하는, 인공위성 데이터를 이용한 산불 위험 예보 방법이 제공된다.According to one aspect of the present invention, there is provided a forest fire risk forecasting method using satellite data implemented on a processor, the method comprising: obtaining vegetation information using data observed from the satellite; calculating soil moisture using the data observed from the satellite; A forest fire risk forecasting method using satellite data is provided, including the step of determining the risk of a forest fire from the vegetation information and the soil moisture.
상기 식생 정보는, 다음 [식]에 따른 식생 온도(Tc)를 포함할 수 있다.The vegetation information may include a vegetation temperature (Tc) according to the following [Equation].
[식][ceremony]
여기서,here,
여기서,here,
여기서,here,
여기서,here,
상기 인공위성에는 수동 마이크로웨이브(passive microwave) 센서가 탑재될 수 있으며, 이 경우, 상기 토양 수분은, 상기 수동 마이크로웨이브 센서를 통해 획득된 밝기 온도(brightness temperature)를 이용하여 산출될 수 있다.A passive microwave sensor may be mounted on the satellite, and in this case, the soil moisture may be calculated using a brightness temperature obtained through the passive microwave sensor.
상기 인공위성에는 적외선 센서가 탑재될 수 있으며, 이 경우, 상기 토양 수분은, 상기 적외선 센서를 통해 산출된 밝기 온도(brightness temperature)를 이용하여 산출될 수 있다.An infrared sensor may be mounted on the satellite. In this case, the soil moisture may be calculated using a brightness temperature calculated through the infrared sensor.
상기 인공위성에는 능동 마이크로웨이브(active microwave) 센서가 탑재될 수 있으며, 이 경우, 상기 토양 수분은, 상기 능동 마이크로웨이브 센서를 통해 획득된 후방 산란지수(backscattering coefficients)를 이용하여 산출될 수 있다.The satellite may be equipped with an active microwave sensor, and in this case, the soil moisture may be calculated using backscattering coefficients obtained through the active microwave sensor.
상기 산불 발생 위험을 판단하는 단계는, 아래의 [식]에 따라 식생 스트레스 지수(Canopy Stress Index, CSI)를 산출하는 단계와;Determining the risk of occurrence of the forest fire comprises: calculating a vegetation stress index (Canopy Stress Index, CSI) according to the following [Equation];
[식][ceremony]
상기 식생 스트레스 지수(Canopy Stress Index, CSI) 값에 따라 산불 발생 위험을 판단하는 단계를 포함할 수 있다.It may include the step of determining the risk of wildfire occurrence according to the vegetation stress index (Canopy Stress Index, CSI) value.
상기 식생 스트레스 지수(Canopy Stress Index, CSI) 값에 따라 산불 발생 위험을 판단하는 단계는, 상기 CSI 값이 120K/% 이상인 경우는 산불 발생 위험이 높다고 판단할 수 있다.In the step of determining the risk of occurrence of a forest fire according to the Canopy Stress Index (CSI) value, it may be determined that the risk of occurrence of a forest fire is high when the CSI value is 120K/% or more.
본 발명의 실시예에 따르면, 인공위성에서 관측된 데이터를 이용하여 식생 정보와 토양 수분을 산출하여 인간의 접근이 용이하지 않은 지역까지 산불 위험에 대한 예보를 할 수 있다.According to an embodiment of the present invention, vegetation information and soil moisture can be calculated using data observed from satellites to predict the risk of forest fires even in areas that are not easily accessible by humans.
도 1은 본 발명의 일 실시예에 따른 인공위성 데이터를 이용한 산불 위험 예보 방법의 순서도.1 is a flowchart of a forest fire risk forecasting method using satellite data according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 인공위성 데이터를 이용한 산불 위험 예보 방법을 수행하는 산불 위험 예보 장치의 블록도.Figure 2 is a block diagram of a forest fire risk forecasting apparatus for performing a forest fire risk forecasting method using satellite data according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 인공위성 데이터를 이용한 산불 위험 예보 방법으로 산불 스트레스 지수를 나타낸 도면.3 is a view showing a forest fire stress index in a method for predicting forest fire risk using satellite data according to an embodiment of the present invention.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.Since the present invention can apply various transformations and can have various embodiments, specific embodiments are illustrated in the drawings and described in detail in the detailed description. However, this is not intended to limit the present invention to specific embodiments, and it should be understood to include all modifications, equivalents and substitutes included in the spirit and scope of the present invention. In describing the present invention, if it is determined that a detailed description of a related known technology may obscure the gist of the present invention, the detailed description thereof will be omitted.
이하, 본 발명에 따른 인공위성 데이터를 이용한 산불 위험 예보 방법을 첨부한 도면을 참조하여 상세히 설명하기로 하며, 첨부한 도면을 참조하여 설명함에 있어서, 동일하거나 대응하는 구성 요소는 동일한 도면번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.Hereinafter, the forest fire risk forecasting method using satellite data according to the present invention will be described in detail with reference to the accompanying drawings, and in the description with reference to the accompanying drawings, the same or corresponding components are given the same reference numbers, A redundant description thereof will be omitted.
도 1은 본 발명의 일 실시예에 따른 인공위성 데이터를 이용한 산불 위험 예보 방법의 순서도이다. 그리고, 도 2는 본 발명의 일 실시예에 따른 인공위성 데이터를 이용한 산불 위험 예보 방법을 수행하는 산불 위험 예보 장치의 블록도이다.1 is a flowchart of a forest fire risk forecasting method using satellite data according to an embodiment of the present invention. And, FIG. 2 is a block diagram of a forest fire risk forecasting apparatus for performing a forest fire risk forecasting method using satellite data according to an embodiment of the present invention.
본 실시예에 따른 인공위성 데이터를 이용한 산불 위험 예보 방법은, 프로세서상에서 구현되는 인공위성 데이터를 이용한 산불 위험 예보 방법으로서, 상기 인공위성에서 관측된 데이터를 이용하여 식생 정보(vegetation information)을 획득하는 단계와; 상기 인공위성에서 관측된 데이터를 이용하여 토양 수분(soil moisture)을 산출하는 단계와; 상기 식생 정보와 상기 토양 수분으로부터 산불 발생 위험을 판단하는 단계를 포함한다.A forest fire risk forecasting method using satellite data according to this embodiment is a forest fire risk forecasting method using satellite data implemented on a processor, the method comprising: obtaining vegetation information using data observed from the satellite; calculating soil moisture using the data observed from the satellite; and determining the risk of forest fire from the vegetation information and the soil moisture.
일반적으로 산불 위험 예보 방법은 일정 지역의 임상 정보와 기상 정보 등을 이용하여 산불 발생 가능성을 판단하게 된다. 예를 들면, 국립산림과학원에서 발행하는 1/25,000 축척의 수치임상도 등의 임상 정보와, 전국에 설치된 기상관측소로부터 상대습도, 풍속, 온도 등의 기상 정보를 획득하여 이를 기초로 산불 위험을 예보하게 된다. In general, the forest fire risk forecasting method determines the possibility of a wildfire using clinical information and weather information of a certain area. For example, it obtains clinical information such as a 1/25,000 scale numerical clinical map issued by the National Academy of Forest Sciences and weather information such as relative humidity, wind speed, and temperature from weather stations installed across the country, and predicts forest fire risk based on it. will do
그런데, 이러한 산불 위험 예보는 산불에서 연소되는 나무나 낙엽 등의 식생 연료의 연소성(fuel combustibility)에 대한 정보가 빠져 있어 실질적인 산불 위험 예보가 이루지지 않고 있다.However, in this forest fire risk forecast, information on fuel combustibility of vegetation fuel, such as wood or fallen leaves, burned in a forest fire is missing, so a practical forest fire risk forecast is not achieved.
본 실시예에서는 인공위성에서 관측되는 데이터를 통해 산출할 수 있는 식생 정보와 토양수분에 대한 정보를 이용함으로써 식생의 연소성이 고려된 산불 위험 예보를 제공할 수 있다. 즉, 수분을 함유하고 있는 식생의 식생 정보와 토양수분을 이용하여 간접적으로 지표면에서 식생의 연소성에 대한 정보를 획득함으로써 인간의 접근할 수 없는 보다 넓은 지역까지 산불 위험에 대한 예보를 수행할 수 있다.In this embodiment, it is possible to provide a forest fire risk forecast in consideration of the combustibility of vegetation by using information on vegetation information and soil moisture that can be calculated through data observed from artificial satellites. In other words, it is possible to forecast the risk of forest fire to a wider area inaccessible to humans by indirectly acquiring information on the combustibility of vegetation on the surface using vegetation information and soil moisture containing moisture. .
이하에서는 도 1의 순서도에 따라, 인공위성 데이터를 이용한 산불 위험 예보 방법을 자세히 설명하기로 한다.Hereinafter, according to the flowchart of FIG. 1 , a method for predicting forest fire risk using satellite data will be described in detail.
먼저, 인공위성에서 관측된 데이터를 이용하여 식생 정보(vegetation information)을 획득한다(S100). 식생 정보는 지표면에 생육하고 있는 식물 집단에 대한 정보로서, 인공위성에서 관측된 데이터를 이용하여 일정 지역의 식생 정보를 간접적으로 파악하고 있다.First, the vegetation information is obtained by using the data observed from the satellite (S100). Vegetation information is information about a group of plants growing on the surface of the earth, and the vegetation information of a certain area is indirectly grasped using data observed from satellites.
지표면을 덮고 있는 식생(vegetation)에는 생육을 위한 수분을 함유하고 있기 때문에 식생의 건조 정도를 파악하면 후술할 토양수분에 대한 정보와 함께 산불 위험을 예측할 수 있다.Since vegetation covering the surface of the earth contains moisture for growth, it is possible to predict the risk of forest fires along with information on soil moisture, which will be described later, by understanding the degree of drying of the vegetation.
인공위성에서 관측된 데이터를 이용하여 산출할 수 있는 식생 정보로는 식생 지수(vegetation index), 식생 온도(canopy temperature) 등이 있으며 이러한 식생 정보로부터 수분이 함유된 식생에 대한 정보를 간접적으로 산출할 수 있다.Vegetation information that can be calculated using data observed from satellites includes vegetation index and canopy temperature. have.
식생 지수는 인공위성에서 관측되는 식생에 민감한 파장대에서의 신호와 민감하지 않은 파장대에서의 신호를 이용하여 식생의 특성정보를 강조하기 위한 지수로서, 정규 식생지수(normalized differential vegetation index; NDVI), 강조 식생지수(enhanced vegetation index; EVI) 등을 의미한다. 예를 들면, 정규 식생지수(normalized differential vegetation index; NDVI)에서 식생이 왕성하게 성장하는 수풀과 같은 경우에는 근적외 영역에서의 반사도가 높기 때문에 정규식생지수는 높은 값을 가지는 반면, 토양의 경우에는 두 반사도 값의 차이가 거의 없어 0에 가까운 값을 가지게 된다.The vegetation index is an index for emphasizing the characteristic information of vegetation using signals in wavelength bands sensitive to vegetation and signals in wavelength bands that are not sensitive to vegetation observed from satellites. Normalized differential vegetation index (NDVI), emphasized vegetation index (enhanced vegetation index; EVI) and the like. For example, the normalized differential vegetation index (NDVI) has a high value because the reflectivity in the near-infrared region is high in the case of a bush where vegetation grows vigorously, whereas the soil has a high value. There is almost no difference between the two reflectivity values, so it has a value close to 0.
식생 온도(canopy temperature)는, 간접적으로 식생의 수분 정도를 나타내는 인자로서, 대기와 식생 간의 상호작용을 나타내는 온도를 의미한다. Vegetation temperature (canopy temperature) is a factor indirectly indicating the moisture level of vegetation, and means a temperature indicating the interaction between the atmosphere and vegetation.
본 실시예에서는 식생 정보로서 식생 온도(Tc)를 사용하여 산불 위험을 예보하는 방법에 대해서 설명하기로 한다.In this embodiment, a method of predicting the risk of a forest fire using the vegetation temperature (Tc) as the vegetation information will be described.
식생 온도(Tc)는 다음 [식 1]로 산출될 수 있다.The vegetation temperature (Tc) can be calculated by the following [Equation 1].
[식 1][Equation 1]
여기서,here,
여기서,here,
여기서,here,
여기서,here,
식생 온도(T
c)를 계산하기 위해서는, 화각(view angle)에 따른 지향성 표면 온도(T
R), 토양 표면 온도(Ts) 등이 필요하다.In order to calculate the vegetation temperature (T c), is required, such as a directional surface temperature (T R), the soil surface temperature (Ts) in accordance with the angle of view (view angle).
화각(view angle)에 따른 지향성 표면 온도(T
R)은 상기 식으로 산출되는데, 이 때, T
B(θ)는 특정 화각 θ에서 인공위성으로 측정하는 지향성 밝기 온도이고,The directional surface temperature (T R ) according to the view angle is calculated by the above formula, where T B (θ) is the directional brightness temperature measured by satellite at a specific angle of view θ,
ε(θ)는 화각 θ에서 측정한 지향성 방사율로서, 열 복사 시 한 물체의 표면에서 에너지 방출의 효율성을 나타낸다. T
SKY 하늘 반구형 용융점이며, 우주를 채우고 있는 흑체 방사선량인 2.7K가 적용된다. ε(θ) is the directional emissivity measured at the angle of view θ, and represents the efficiency of energy release from the surface of an object during thermal radiation. T SKY It is a hemispherical melting point in the sky, and 2.7K, the amount of blackbody radiation that fills the universe, is applied.
상기 [식 1]의 n은 밝기 온도를 관측한 인공위성에 탑재된 센서의 파장(λ)과 Plank 함수를 통해 상기 식에 따라 산출될 수 있다. T
O는 Plank 함수에 입력되는 밝기 온도로서 Soil Moisture Active Passive(SMAP) 위성의 경우 21cm 파장 조건 즉, λ=210000μm에서 측정한 밝기 온도 T
O = 190 ~ 315K 영역에서는 n = 1을 적용할 수 있다. n in [Equation 1] can be calculated according to the above equation through the wavelength (λ) of the sensor mounted on the artificial satellite that observed the brightness and temperature and the Plank function. T O is the brightness temperature input to the Plank function. For Soil Moisture Active Passive (SMAP) satellites, n = 1 can be applied in the 21 cm wavelength condition, that is, the brightness temperature measured at λ = 210000 μm, T O = 190 ~ 315K. .
그리고, 상기 [식 1]의 f는, 인공위성의 화소 자료 중 식생이 차지하는 부분으로서, LAI 함수이다. LAI는 인공위성으로 측정한 엽면적 지수(Leaf Area Index)이고, φ는 그 LAI를 측정한 보기 천정 각도(view zenith angle)이다. 식생 지역에 대해서는, 위의 LAI에 군집인수(clumping factor)를 고려할 수 있다. And, f in [Equation 1] is the portion occupied by vegetation among the pixel data of the satellite, and is an LAI function. LAI is the leaf area index measured by satellite, and φ is the view zenith angle measured by the LAI. For vegetated areas, a clumping factor can be considered in the above LAI.
상기 [식 1]에 따라 산출된 식생 온도(canopy temperature)는 식생의 수분 정도를 나타내는 인자로서, 식생의 수분 함량이 간접적으로 산출되어 토양수분과 함께 산불 위험을 예보하는데 사용할 수 있다.The canopy temperature calculated according to [Equation 1] is a factor representing the moisture level of vegetation, and the moisture content of the vegetation is indirectly calculated and can be used to predict the risk of a forest fire together with soil moisture.
다음에, 인공위성에서 관측된 데이터를 이용하여 토양 수분(soil moisture)을 산출한다(S200). 토양 수분이란, 토양 속에 포함 되어있는 물의 양을 의미하는 것으로서, 토양, 물, 공기 전체 부피 중 물의 부피로 표현되어 %로 나타낼 수 있다. 이러한 토양 수분은 인공위성을 통하여 전 지구적 스케일로 산출할 수 있다. Next, using the data observed from the satellite calculates soil moisture (soil moisture) (S200). Soil moisture refers to the amount of water contained in the soil, and it can be expressed as a percentage by expressing the volume of water among the total volume of soil, water, and air. Such soil moisture can be calculated on a global scale through satellites.
인공위성에는 마이크로웨이브 센서가 탑재되어 수동 마이크로웨이브(passive microwave) 또는 능동 마이크로웨이브(active microwave)를 관측할 수 있는데, 수동 마이크로웨이브를 관측하는 경우는 밝기 온도(brightness temperature)를 통해 토양수분을 산출할 수 있고, 능동 마이크로웨이브를 관측하는 경우는 후방 산란지수(backscattering coefficients)를 이용하여 토양수분을 산출할 수 있다.The satellite is equipped with a microwave sensor so that passive microwaves or active microwaves can be observed. When passive microwaves are observed, soil moisture can be calculated through brightness temperature. In the case of observing active microwaves, soil moisture can be calculated using backscattering coefficients.
한편, 인공위성에는 적외선 센서가 탑재될 수 있으며, 적외선 센서를 통해 관측된 값으로 밝기 온도(brightness temperature)를 산출하고, 이로부터 토양 수분을 산출하는 것도 가능하다.On the other hand, an infrared sensor may be mounted on the satellite, and it is also possible to calculate a brightness temperature from a value observed through the infrared sensor, and to calculate soil moisture therefrom.
이러한 토양수분은 토양에 함유된 수분을 간접적으로 확인할 수 있는 것으로서 상술한 식생 정보와 함께 지표면 인근에서의 식생의 연소성에 대한 정보를 획득할 수 있다.The soil moisture can indirectly confirm the moisture contained in the soil, and information on the combustibility of vegetation near the surface of the earth can be obtained together with the above-described vegetation information.
다음에, 식생 정보와 토양 수분으로부터 산불 발생 위험을 판단한다(S300). 상술한 방식에 따라 인공위성에서 관측된 데이터를 이용하여 식생 정보를 획득하고, 해당 지역의 토양수분 산출값으로 표준화하여 지표면에서의 식생의 연소성에 대한 정보를 얻어 이를 통해 산불 발생 위험을 판단할 수 있다.Next, the forest fire risk is determined from the vegetation information and soil moisture (S300). According to the method described above, vegetation information is obtained using data observed from satellites, and by standardizing it with the calculated value of soil moisture in the area, information on the combustibility of vegetation on the ground can be obtained and the risk of forest fire can be determined through this. .
본 실시예에서는 이러한 산불 발생 위험의 판단의 근거를 정량적으로 제시하기 위해 아래의 [식 2]에 따른 식생 스트레스 지수(Canopy Stress Index, CSI)를 산출하고, 이에 따라 산불 발생 위험을 판단하는 방법을 제시한다.In this embodiment, in order to quantitatively present the basis for judging the risk of such a forest fire, the vegetation stress index (CSI) according to the following [Equation 2] is calculated, and the method of judging the risk of forest fire according to this is calculated. present.
[식 2][Equation 2]
[식 2]에서 T
C는 식생 온도로서 인공위성에서 관측된 데이터를 활용하여 상기 [식 1]에 따라 산출할 수 있고, 인공위성 관측 토양수분[%]는 상술한 밝기 온도나 후방 산란지수를 이용하여 산출된다.In [Equation 2], T C is the vegetation temperature and can be calculated according to [Equation 1] using the data observed from the satellite, and the soil moisture [%] observed by the satellite is the above-mentioned brightness temperature or backscattering index using the is calculated
출원인의 연구에 따르면, 산출된 식생 스트레스 지수(CSI)의 값이 120K/% 이상인 경우는 산불 발생 위험이 높다고 판단할 수 있고, 80~120K/%는 주의, 20~80K/%는 중간, 20K/%이하에서는 산불 발생 위험도가 낮다고 판단할 수 있다. According to the study of the applicant, when the calculated Vegetation Stress Index (CSI) value is 120K/% or higher, it can be judged that the risk of forest fire is high, 80~120K/% is caution, 20~80K/% is medium, 20K Below /%, it can be judged that the risk of forest fire is low.
도 3은 상기의 인공위성 데이터를 이용한 산불 위험 예보 방법을 적용한 사례로, 실제 발생했던 산불 피해 면적(Fire Area)에 따른 식생 스트레스 지수를 나타낸 것이다.3 is a case in which the forest fire risk forecasting method using the satellite data is applied, and shows the vegetation stress index according to the fire area that has actually occurred.
빨간 색 라인으로 표시된 식생 스트레스 지수와 같이 산불 발생 일주일 전 위험 예보가 크게 나타난 지역에 대해 실제로 산불 피해 면적이 크게 나타났다. 산불 발생 4일 후에는 파란 색 라인과 같이 식생 스트레스 지수가 현저하게 감소되어 산불 발생 일주일 전 식생 스트레스와 현저하게 구별됨으로써 식생 스트레스 지수가 낙엽과 나무 등 지표의 가연성을 신뢰성 있게 예측함을 알 수 있다.For areas with a high risk forecast one week prior to the occurrence of the wildfire, such as the vegetation stress index indicated by the red line, the area actually damaged by the forest fire was large. After 4 days of the fire, the vegetation stress index was significantly reduced as shown in the blue line, and it was remarkably distinguished from the vegetation stress one week before the fire. .
도 2는 본 발명의 일 실시예에 따른 인공위성 데이터를 이용한 산불 위험 예보 방법을 수행하는 산불 위험 예보 장치의 블록도로서, 컴퓨터를 포함한 프로세스상에서 인공위성 데이터를 이용한 산불 위험 예보 방법이 구현될 수 있을 것이다.2 is a block diagram of a forest fire risk forecasting apparatus for performing a forest fire risk forecasting method using satellite data according to an embodiment of the present invention. The forest fire risk forecasting method using satellite data may be implemented in a process including a computer .
도 2에는 데이터베이스부(12), 연산부(14), 판단부(16)가 도시되어 있다.2 , the database unit 12 , the calculation unit 14 , and the determination unit 16 are illustrated.
데이터베이스부(12)는, 인공위성에서 관측된 데이터, 식생 온도를 포함한 식생 정보, 토양 수분 등 저장할 수 있다. 인공위성에는 마이크로웨이브 센서가 탑재될 수 있으며 이로부터 관측된 데이터가 데이터베이스부(12)에 저장될 수 있다. 물론, 데이터베이스부(12)는 마이크로웨이브 센서에서 관측된 데이터 이외에 각종 지리, 기상, 식생 정보, 토양 수분 등의 데이터가 저장될 수 있다.The database unit 12 may store data observed from satellites, vegetation information including vegetation temperature, soil moisture, and the like. The satellite may be equipped with a microwave sensor, and data observed therefrom may be stored in the database unit 12 . Of course, the database unit 12 may store data such as various geography, weather, vegetation information, and soil moisture in addition to the data observed by the microwave sensor.
연산부(14)는, 인공위성에서 관측된 데이터를 이용하여 식생 정보(vegetation information)을 연산하여 획득하고, 인공위성에서 관측된 데이터를 이용하여 토양 수분(%)을 산출한다. The calculator 14 calculates and obtains vegetation information using data observed from the satellite, and calculates soil moisture (%) using the data observed from the satellite.
인공위성에서 관측된 데이터를 이용하여 산출할 수 있는 식생 정보로는 식생 지수(vegetation index), 식생 온도(canopy temperature) 등이 있으며 이러한 식생 정보로부터 수분이 함유된 식생에 대한 정보를 간접적으로 산출할 수 있다.Vegetation information that can be calculated using data observed from satellites includes vegetation index and canopy temperature. have.
식생 온도(canopy temperature)는, 식생의 수분 정도를 나타내는 인자로서, 상기 [식 1]에 따라 연산부(14)에서 산출될 수 있다.Vegetation temperature (canopy temperature), as a factor representing the moisture degree of vegetation, may be calculated by the calculator 14 according to [Equation 1].
또한, 연산부(14)는, 인공위성이 수동 마이크로웨이브를 관측하는 경우는 밝기 온도(brightness temperature)를 통해 토양수분을 산출할 수 있고, 능동 마이크로웨이브를 관측하는 경우는 후방 산란지수(backscattering coefficients)를 이용하여 토양수분을 산출할 수 있다.In addition, the calculator 14, when the artificial satellite observes passive microwaves, can calculate soil moisture through the brightness temperature, and when observing active microwaves, backscattering coefficients Soil moisture can be calculated using
판단부(16)는 연산부(14)에서 산출된 식생 정보와 식생 정보와 토양 수분으로부터 산불 발생 위험을 판단한다. 본 실시예에서는 산불 발생 위험의 판단의 근거를 정량적으로 제시하기 위해 판단부(16)에서 상기의 [식 2]에 따른 식생 스트레스 지수(Canopy Stress Index, CSI)를 산출하고, 이에 따라 산불 발생 위험을 판단하는 방법을 제시한다.The determination unit 16 determines the risk of occurrence of a forest fire from the vegetation information and the vegetation information and the soil moisture calculated by the calculation unit 14 . In this embodiment, in order to quantitatively present the basis for the determination of the risk of forest fire occurrence, the determination unit 16 calculates the vegetation stress index (CSI) according to [Equation 2] above, and, accordingly, the risk of forest fire occurrence. provides a way to judge
이상에서는 본 발명의 실시예를 참조하여 설명하였지만, 해당 기술 분야에서 통상의 지식을 가진 자라면 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 쉽게 이해할 수 있을 것이다.Although the above has been described with reference to the embodiments of the present invention, those skilled in the art can variously modify the present invention within the scope without departing from the spirit and scope of the present invention described in the claims below. and can be changed.
Claims (7)
- 프로세서상에서 구현되는 인공위성 데이터를 이용한 산불 위험 예보 방법으로서,As a forest fire risk forecasting method using satellite data implemented on a processor,상기 인공위성에서 관측된 데이터를 이용하여 식생 정보(vegetation information)을 획득하는 단계와;obtaining vegetation information using the data observed from the satellite;상기 인공위성에서 관측된 데이터를 이용하여 토양 수분(soil moisture)을 산출하는 단계와;calculating soil moisture using the data observed from the satellite;상기 식생 정보와 상기 토양 수분으로부터 산불 발생 위험을 판단하는 단계를 포함하는, 인공위성 데이터를 이용한 산불 위험 예보 방법.A forest fire risk forecasting method using satellite data, comprising the step of determining the risk of a forest fire from the vegetation information and the soil moisture.
- 제1항에 있어서,According to claim 1,상기 식생 정보는, The vegetation information is다음 [식]에 따른 식생 온도(Tc)를 포함하는 것을 특징으로 하는, 인공위성 데이터를 이용한 산불 위험 예보 방법.Forest fire risk forecasting method using satellite data, characterized in that it includes the vegetation temperature (Tc) according to the following [Equation].[식][ceremony]여기서,here,여기서,here,여기서,here,여기서,here,
- 제1항에 있어서,According to claim 1,상기 인공위성에는 수동 마이크로웨이브(passive microwave) 센서가 탑재되며,The satellite is equipped with a passive microwave sensor,상기 토양 수분은,The soil moisture is상기 수동 마이크로웨이브 센서를 통해 획득된 밝기 온도(brightness temperature)를 이용하여 산출되는 것을 특징으로 하는, 인공위성 데이터를 이용한 산불 위험 예보 방법.Wildfire risk forecasting method using satellite data, characterized in that calculated using the brightness temperature (brightness temperature) obtained through the passive microwave sensor.
- 제1항에 있어서,According to claim 1,상기 인공위성에는 적외선 센서가 탑재되며,The satellite is equipped with an infrared sensor,상기 토양 수분은,The soil moisture is상기 적외선 센서를 통해 획득된 밝기 온도(brightness temperature)를 이용하여 산출되는 것을 특징으로 하는, 인공위성 데이터를 이용한 산불 위험 예보 방법.Forest fire risk forecasting method using satellite data, characterized in that calculated using the brightness temperature (brightness temperature) obtained through the infrared sensor.
- 제1항에 있어서,According to claim 1,상기 인공위성에는 능동 마이크로웨이브(active microwave) 센서가 탑재되며,The satellite is equipped with an active microwave sensor,상기 토양 수분은,The soil moisture is상기 능동 마이크로웨이브 센서를 통해 획득된 후방 산란지수(backscattering coefficients)를 이용하여 산출되는 것을 특징으로 하는, 인공위성 데이터를 이용한 산불 위험 예보 방법.Wildfire risk forecasting method using satellite data, characterized in that calculated using the backscattering coefficients (backscattering coefficients) obtained through the active microwave sensor.
- 제2항에 있어서,3. The method of claim 2,상기 산불 발생 위험을 판단하는 단계는,The step of determining the risk of occurrence of a forest fire,아래의 [식]에 따라 식생 스트레스 지수(Canopy Stress Index, CSI)를 산출하는 단계와;Calculating a vegetation stress index (Canopy Stress Index, CSI) according to the following [Equation];[식][ceremony]상기 식생 스트레스 지수(Canopy Stress Index, CSI) 값에 따라 산불 발생 위험을 판단하는 단계를 포함하는, 인공위성 데이터를 이용한 산불 위험 예보 방법.A method of predicting forest fire risk using satellite data, comprising the step of determining the risk of forest fire occurrence according to the vegetation stress index (Canopy Stress Index, CSI) value.
- 제6항에 있어서,7. The method of claim 6,상기 식생 스트레스 지수(Canopy Stress Index, CSI) 값에 따라 산불 발생 위험을 판단하는 단계는,The step of determining the risk of wildfire occurrence according to the vegetation stress index (Canopy Stress Index, CSI) value,상기 CSI 값이 120K/% 이상인 경우는 산불 발생 위험이 높다고 판단하는 것을 특징으로 하는, 인공위성 데이터를 이용한 산불 위험 예보 방법.When the CSI value is 120K/% or more, it is characterized in that it is determined that there is a high risk of forest fire.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200035272A KR102481827B1 (en) | 2020-03-23 | 2020-03-23 | Method for prediction of wildfire risk with satellite data |
KR10-2020-0035272 | 2020-03-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021194165A1 true WO2021194165A1 (en) | 2021-09-30 |
Family
ID=77892726
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2021/003374 WO2021194165A1 (en) | 2020-03-23 | 2021-03-18 | Forest fire risk forecast method using artificial satellite data |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102481827B1 (en) |
WO (1) | WO2021194165A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117037425A (en) * | 2023-08-07 | 2023-11-10 | 齐鲁高速(山东)装配有限公司 | Mine slope stability and environment monitoring and early warning method, system and terminal |
CN117037406A (en) * | 2023-07-28 | 2023-11-10 | 安徽龙讯信息科技有限公司 | Intelligent monitoring and early warning system for forest fire |
CN117783453A (en) * | 2024-02-27 | 2024-03-29 | 杨凌职业技术学院 | Real-time monitoring system for forestry fire prevention |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102034027A (en) * | 2010-12-16 | 2011-04-27 | 南京大学 | Method for assimilating remote sensing data of soil humidity in watershed scale |
KR20110100970A (en) * | 2010-03-05 | 2011-09-15 | 대한민국(기상청장) | System and method for detecting volumetric soil water content |
JP2014093063A (en) * | 2012-11-07 | 2014-05-19 | Pasco Corp | Prediction device of forest fire and prediction program of forest fire |
KR101484667B1 (en) * | 2014-07-23 | 2015-01-27 | 대한민국 | A method and system for fire detection using satellite observation |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101531364B1 (en) | 2013-12-06 | 2015-06-24 | 대한민국 | Method for forecasting big forest fire danger and the system |
-
2020
- 2020-03-23 KR KR1020200035272A patent/KR102481827B1/en active IP Right Grant
-
2021
- 2021-03-18 WO PCT/KR2021/003374 patent/WO2021194165A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110100970A (en) * | 2010-03-05 | 2011-09-15 | 대한민국(기상청장) | System and method for detecting volumetric soil water content |
CN102034027A (en) * | 2010-12-16 | 2011-04-27 | 南京大学 | Method for assimilating remote sensing data of soil humidity in watershed scale |
JP2014093063A (en) * | 2012-11-07 | 2014-05-19 | Pasco Corp | Prediction device of forest fire and prediction program of forest fire |
KR101484667B1 (en) * | 2014-07-23 | 2015-01-27 | 대한민국 | A method and system for fire detection using satellite observation |
Non-Patent Citations (1)
Title |
---|
SEONG, NOHUN , SEO, MINJI , LEE, KYEONG-SANG , LEE, CHANGSUK , KIM, HYUNJI , CHOI, SUNGWON , HAN, KYUNG-SOO: "A water stress evaluation over forest canopy using NDWI in Korean peninsula", KOREAN JOURNAL OF REMOTE SENSING, vol. 31, no. 2, 30 April 2015 (2015-04-30), pages 77 - 83, XP055854277, ISSN: 1225-6161, DOI: 10.7780/kjrs.2015.31.2.3 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117037406A (en) * | 2023-07-28 | 2023-11-10 | 安徽龙讯信息科技有限公司 | Intelligent monitoring and early warning system for forest fire |
CN117037406B (en) * | 2023-07-28 | 2024-04-30 | 安徽龙讯信息科技有限公司 | Intelligent monitoring and early warning system for forest fire |
CN117037425A (en) * | 2023-08-07 | 2023-11-10 | 齐鲁高速(山东)装配有限公司 | Mine slope stability and environment monitoring and early warning method, system and terminal |
CN117783453A (en) * | 2024-02-27 | 2024-03-29 | 杨凌职业技术学院 | Real-time monitoring system for forestry fire prevention |
CN117783453B (en) * | 2024-02-27 | 2024-05-10 | 杨凌职业技术学院 | Real-time monitoring system for forestry fire prevention |
Also Published As
Publication number | Publication date |
---|---|
KR20210118695A (en) | 2021-10-01 |
KR102481827B1 (en) | 2022-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021194165A1 (en) | Forest fire risk forecast method using artificial satellite data | |
WO2021015468A2 (en) | System and method for crop growth-oriented precise management of pest and weather damage | |
Kustas et al. | A two‐source approach for estimating turbulent fluxes using multiple angle thermal infrared observations | |
Halthore et al. | Models overestimate diffuse clear‐sky surface irradiance: A case for excess atmospheric absorption | |
WO2013100345A1 (en) | Method for predicting hourly climatic data to estimate cooling/heating load | |
Campbell | Use of phenology for examining provenance transfers in reforestation of Douglas-fir | |
PT1523738E (en) | System and method for territory thermal monitoring | |
WO2016200192A1 (en) | Apparatus and method for measuring dipping and mounting of overhead steel tower transmission line using terrestrial lidar | |
WO2019245122A1 (en) | System for monitoring, in real time, growth state of crop in greenhouse on basis of iot | |
WO2019245121A1 (en) | System for iot-based greenhouse environment management | |
CA2421874A1 (en) | Population monitoring system | |
WO2024210342A1 (en) | Drought analysis method using satellite images | |
WO2020045829A1 (en) | System for controlling environment of air conditioner-type closed plant factory and control method thereof | |
WO2022114608A1 (en) | System and method for managing green areas by using evi and gci | |
CN111505016A (en) | Method for estimating straw burning discharge list | |
Cheung et al. | Preliminary study on the temperature relationship at remotely-sensed tree canopy and below-canopy air and ground surface | |
CN106872043A (en) | A kind of soil moisture content monitoring method and system | |
CN114999091A (en) | Forestry monitoring and early warning system based on infrared thermal imaging technology | |
Richardson et al. | Remotely-sensed spectral indicators of sorghum development and their use in growth modeling | |
Cihlar et al. | GeoComp-n, an advanced system for the processing of coarse and medium resolution satellite data. Part 2: Biophysical products for Northern ecosystems | |
Kyle et al. | A comparison of two major Earth radiation budget data sets | |
Al-Aarajy et al. | Land Surface Temperature investigation of Babylon city between (2002-2022) using Remote Sensing and GIS Technique | |
Hogg | Modeling aspen responses to climatic warming and insect defoliation in western Canada | |
Nightingale et al. | Predicting tree diversity across the United States as a function of modeled gross primary production | |
Vogt et al. | The available energy over a Scots Pine plantation: What's up for partitioning? |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21774663 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21774663 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21774663 Country of ref document: EP Kind code of ref document: A1 |