WO2017057956A1 - System for power transmission line permitted heat capacity calculation and electric power-system analysis - Google Patents

System for power transmission line permitted heat capacity calculation and electric power-system analysis Download PDF

Info

Publication number
WO2017057956A1
WO2017057956A1 PCT/KR2016/010987 KR2016010987W WO2017057956A1 WO 2017057956 A1 WO2017057956 A1 WO 2017057956A1 KR 2016010987 W KR2016010987 W KR 2016010987W WO 2017057956 A1 WO2017057956 A1 WO 2017057956A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
transmission line
unit
heat capacity
analysis
Prior art date
Application number
PCT/KR2016/010987
Other languages
French (fr)
Korean (ko)
Inventor
이재걸
신정훈
송지영
한상욱
최장흠
고백경
안용호
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Publication of WO2017057956A1 publication Critical patent/WO2017057956A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/02Arrangements for measuring electric power or power factor by thermal methods, e.g. calorimetric
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks

Definitions

  • the present application relates to the calculation of transmission line allowable heat capacity and power system analysis system.
  • the power system analysis program developed at home and abroad does not provide a function that reflects the result of calculating the allowable heat capacity of the dynamic transmission line. Therefore, the user has to manually modify and input the transmission line heat capacity allowance according to the review conditions. It follows. In addition, different criteria can be applied under the same conditions depending on the subjectivity of the reviewer, making it difficult to guarantee objectivity of the analysis results.
  • Patent Document 1 discloses an apparatus and method for calculating a real-time power transmission capacity using meteorological information and trellis information, and collects meteorological information and trellis information and calculates the capacity of a transmission line in real time and provides a function of outputting the same. Characterized in that.
  • Patent Document 1 does not suggest a method of linking transmission capacity information calculated in real time using meteorological information and transmission power information with a system analysis program, and analyzing and minimizing the risk of collected weather information. have.
  • Patent Document 1 Korean Patent Publication No. 2015-0029160 (Published Date: 2015.03.18.)
  • the transmission line allowable heat capacity calculation and power system analysis system includes: an information acquisition module for acquiring atmospheric temperature information and transmission power information; A heat capacity calculation module for calculating a maximum allowable heat capacity of a transmission line based on the air temperature information and the power transmission information received from the information acquisition module; A system analysis module including a power system DB for storing equipment and state information of a power system and a power current analysis unit for calculating a tidal flow amount per transmission line to analyze a state of the power system; And a linkage analysis module for analyzing whether a transmission line is overloaded in connection with the heat capacity calculation module and the grid analysis module, and the air temperature information may include past day maximum temperature observation information measured at a plurality of observation points. have.
  • the present invention it is possible to examine whether the transmission line is overloaded by calculating the seasonal allowable heat capacity of the transmission line by using weather information and transmission power information and automatically linking the result with the system analysis program. Through this, it is possible to increase consistency and rationality in real-time system operation, armistice review, and system operation planning that utilize the results of power system analysis.
  • FIG. 1 is a block diagram of a transmission line allowable heat capacity calculation and power system analysis system according to an embodiment of the present invention.
  • FIG. 2 is a detailed configuration diagram of the heat capacity calculation module shown in FIG. 1.
  • FIG. 3 is a detailed configuration diagram of the overload analysis unit shown in FIG. 1.
  • FIG. 1 is a configuration diagram of a transmission line allowable heat capacity calculation and power system analysis system according to an embodiment of the present invention
  • Figure 2 is a detailed configuration of the heat capacity calculation module shown in Figure 1
  • Figure 3 is shown in Figure 1 Detailed configuration of the overload analysis section.
  • a transmission line allowable heat capacity calculation and power system analysis system 1000 includes an information acquisition module 1100, a heat capacity calculation module 1200, and a system analysis module 1300. And linkage analysis module 1400.
  • the information acquisition module 1100 is for acquiring meteorological information and transmission power information.
  • the information acquisition module 1100 acquires and manages air temperature information provided by a meteorological information provider such as the Meteorological Agency, and is provided by a TIS. It is possible to perform the function of acquiring and managing geographic information (ie, battery information) of the transmission line.
  • the information acquisition module 1100 may periodically update and store past daytime maximum temperature observation information provided by a meteorological information provider to acquire air temperature information, and transmit it to the heat capacity calculation module 1200 described later.
  • the past day maximum temperature observation information may include daytime maximum temperature data measured at a plurality of observation points.
  • the information acquisition module 1100 may acquire and store geographic information of a target transmission line to which the present invention is applied and transmit the same to the heat capacity calculation module 1200 described later.
  • the heat capacity calculation module 1200 calculates a maximum allowable heat capacity of a transmission line based on weather information and power transmission information received from the information acquisition module 1100, and includes a weather information analysis unit 1210 and a risk analysis unit 1220. ), The highest temperature calculation unit 1230, the geographic information management unit 1240 and the heat capacity calculation unit 1250 may be included.
  • the meteorological information analysis unit 1210 manages and analyzes atmospheric temperature information received from the information acquisition module 1100, and includes an acquisition unit 1211, a scheduler 1212, a storage unit 1213, and a processing unit 1214. It may include.
  • the acquisition unit 1211 may receive atmospheric temperature information (eg, past daytime maximum temperature observation information, etc.) from the information acquisition module 1100 at regular intervals, and store the same in the storage unit 1213.
  • atmospheric temperature information eg, past daytime maximum temperature observation information, etc.
  • the scheduler 1212 may set an information update cycle by the acquirer 1211.
  • the storage unit 1213 may store the atmospheric temperature information received by the acquisition unit 1211.
  • the processing unit 1214 may process the atmospheric temperature information stored in the storage unit 1213 in a predetermined format and provide the processed temperature to the risk analysis unit 1220.
  • the preset format may be a format requested by the user, and the air temperature information stored in the storage unit 1213 may be processed (eg, combined) according to the requested format and provided to the risk analysis unit 1220. Can be.
  • the risk analyzer 1220 quantitatively analyzes the uncertainty of the meteorological information provided from the meteorological information analyzer 1210 and may include a division unit 1221 and a distribution output unit 1222.
  • the division unit 1221 uses the atmospheric temperature information (eg, past day maximum temperature observation information, etc.) provided from the meteorological information analysis unit 1210 to calculate a probability distribution of regional and seasonal atmospheric temperatures (ie, maximum temperature). I can write it.
  • the probability distribution may be fitted based on past observation information and may follow a normal distribution.
  • the separator 1221 may also provide a goodness of fit function to verify the fitting result.
  • the distribution output unit 1222 may provide the probability distribution information on the regional and seasonal atmospheric temperatures (that is, the highest temperature) created by the division unit 1221 to the maximum temperature calculation unit 1230.
  • the maximum temperature calculation unit 1230 is for calculating regional and seasonal maximum temperatures for calculating an allowable heat capacity of a transmission line by reflecting a risk level designated by a user, and may include a comparison unit 1231 and a determination unit 1232. have.
  • the comparison unit 1231 may compare the probability distribution information for the regional and seasonal atmospheric temperatures (ie, the highest temperature) provided from the risk analysis unit 1220 with a risk level designated by the user.
  • the probability of error occurrence may be calculated by comparing the probability distribution information with the reference temperature as the risk level.
  • the ratio may be calculated as the ratio of the total number of past maximum temperature data and the number of maximum temperature data exceeding the reference temperature.
  • P risk is past the maximum temperature indicates the probability (%) that can be longer than the reference temperature
  • N is the history indicates the maximum temperature data number
  • n i denotes the number of data that is past the maximum temperature exceeds the reference temperature.
  • the determination unit 1232 may determine a regional and seasonal maximum temperature, that is, a reference atmospheric temperature, based on the comparison result by the comparison unit 1231, and transmit the same to the geographic information management unit 1240.
  • the geographic information management unit 1240 manages transmission geographic information including the progress information of the transmission line, and may include an acquisition unit 1241, a selection unit 1242, and a matching unit 1243.
  • the acquirer 1241 may receive power supply information from the information acquisition module 1100.
  • the selector 1242 may select transmission information about the target transmission line from the transmission information received through the acquisition unit 1241.
  • the matching unit 1243 may match the region information and the seasonal maximum temperature calculated by the transmission cell information selected by the selection unit 1242 and the maximum temperature calculation unit 1230.
  • the heat capacity calculation unit 1250 is for calculating the maximum allowable heat capacity for each transmission line by combining the highest temperature and power transmission information, and may include an acquisition unit 1251 and a calculation unit 1252.
  • the acquisition unit 1251 may receive the transmission line type information from the power system DB 1310 and provide it to the calculation unit 1252.
  • the calculation unit 1252 may calculate the maximum allowable heat capacity of the target transmission line by using the seasonal maximum temperature information of the target transmission line received from the acquisition unit 1251.
  • the calculation unit 1252 may calculate the maximum allowable heat capacity using the transmission line allowable current calculation method proposed by IEEE std 738.
  • Equation 2 is a formula of the Steady-State Case heat balance model.
  • the left term in Equation 2 refers to the sum of heat lost on the surface of the conductor, and the right term means the sum of heat generated on the surface and inside of the conductor, which means a balance between heat loss and heat generation.
  • q c denotes convective heat loss and may be classified into natural convective heat loss and forced convective heat loss.
  • Natural convective heat loss is the occurrence of convective heat loss in the still air condition, and convective heat loss caused by external factors is caused by the blowing air condition at wind speeds of 1.2m / s or less. Means the occurrence of convective heat loss. The total convective heat loss is calculated as the sum of these two losses. Equations 4 and 5 calculate the convective heat loss due to external factors per unit length. In addition, Equation 6 calculates the natural convective heat loss per unit length, and Equation 7 represents the radiant heat loss in the heat balance model.
  • the system analysis module 1300 is for analyzing a power system, and may include a power system DB 1310 and a power current analysis unit 1320.
  • the power system DB 1310 is for storing power system equipment and state information.
  • the power system DB 1310 may store and manage a transmission network configuration, bus-line demand, and generator output information for calculating the power current.
  • the power system DB 1310 includes the line type information of the transmission line, it may be transmitted to the heat capacity calculation module 1200.
  • the power current analysis unit 1320 calculates the amount of tidal current for each transmission line by solving a power equation to analyze the state of the power system, and calculates the amount of active and reactive power tidal current and the magnitude of the current.
  • the magnitude of the current for each transmission line calculated by the power current analysis unit 1320 may be transmitted to the linkage analysis module 1400.
  • the linkage analysis module 1400 is to analyze whether the transmission line is overloaded in connection with each module described above, and may include an overload analysis unit 1410 and a result provider 1420.
  • the overload analysis unit 1410 compares the tidal flow amount of each transmission line received from the grid analysis module 1300 and the maximum allowable heat capacity of each transmission line calculated by the heat capacity calculation unit 1250 to analyze the degree of overload of the transmission line.
  • the maximum allowable heat capacity acquisition unit 1411, the algal calculation result acquisition unit 1412, a comparison unit 1413, and an analysis unit 1414 may be included.
  • the maximum allowable heat capacity acquisition unit 1411 may receive the maximum allowable heat capacity of the target transmission line from the heat capacity calculation module 1200.
  • the algae calculation result acquisition unit 1412 may receive a tidal flow amount (ie, the magnitude of the current) for each transmission line from the system analysis module 1300.
  • the comparison unit 1413 may compare the maximum allowable heat capacity of the transmission line and the amount of tidal current (ie, the magnitude of the current) of each transmission line received from the maximum allowable heat capacity acquisition unit 1411 and the tidal current calculation result acquisition unit 1412, respectively. . In this case, the above-described comparison may be performed with respect to the season selected by the user.
  • the analysis unit 1414 may analyze whether the transmission line is overloaded and the degree of the transmission line based on the comparison result of the comparison unit 1413. In this case, the analysis unit 1414 may quantitatively analyze the degree of risk for transmission line overload using the risk information received from the highest temperature calculation unit 1230.
  • the analysis unit 1414 may quantitatively analyze the degree of risk for overloading a transmission line according to Equation (8).
  • OL risk represents the overload rate (%) of the transmission line considering the risk
  • P powerflow represents the transmission line tidal flow (MW or MVA) as a result of tidal current calculation
  • P rating is the allowable heat capacity of the transmission line considering the air temperature ( MW or MVA)
  • P risk represents the probability (%) that the past maximum temperature would exceed the reference temperature.
  • the result providing unit 1420 is to provide the user with the analysis result by the overload analysis unit 1410.
  • the result providing unit 1420 may provide a screen for visually displaying overload occurrence information and risk information of a transmission line.
  • Embodiments of the invention described above may be implemented by a system including a computing device.
  • the computing device may be a personal computer, server computer, handheld or laptop device, mobile device (mobile phone, PDA, media player, etc.), multiprocessor system, consumer electronics, mini computer, mainframe computer, any tactical Distributed computing environments, including, but not limited to, integrated systems or devices.
  • the computing device may include at least one processing unit and a memory.
  • the processing unit may include, for example, a central processing unit (CPU), a graphics processing unit (GPU), a microprocessor, an application specific integrated circuit (ASIC), field programmable gate arrays (FPGA), and the like. It may have a plurality of cores.
  • the memory may be volatile memory (eg, RAM, etc.), nonvolatile memory (eg, ROM, flash memory, etc.), or a combination thereof.
  • the computing device may include additional storage.
  • Storage includes, but is not limited to, magnetic storage, optical storage, and the like.
  • Storage may store computer readable instructions for implementing one or more embodiments disclosed herein, and other computer readable instructions for implementing operating systems, application programs, and the like.
  • Computer readable instructions stored in the storage may be loaded into the memory for execution by the processing unit.
  • the computing device may include input device (s) and output device (s).
  • the input device (s) can include, for example, a keyboard, mouse, pen, voice input device, touch input device, infrared camera, video input device or any other input device.
  • the output device (s) may include, for example, one or more displays, speakers, printers or any other output device.
  • the computing device may use the input device or output device included in another computing device as the input device (s) or output device (s).
  • the computing device may also include communication connection (s) that enable the computing device to communicate with another device (eg, computing device).
  • the communication connection (s) may include a modem, a network interface card (NIC), an integrated network interface, a radio frequency transmitter / receiver, an infrared port, a USB connection, or another interface for connecting a computing device to another computing device.
  • the communication connection (s) may include a wired connection or a wireless connection.
  • Each component of the computing device described above may be connected by various interconnections such as a bus (eg, peripheral component interconnect (PCI), USB, firmware (IEEE 1394), optical bus structure, etc.), and a network May be interconnected by 1200.
  • a bus eg, peripheral component interconnect (PCI), USB, firmware (IEEE 1394), optical bus structure, etc.
  • IEEE 1394 firmware
  • optical bus structure etc.
  • network May be interconnected by 1200.
  • ком ⁇ онент generally refer to a computer-related entity that is hardware, a combination of hardware and software, software, or running software.
  • a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and / or a computer.
  • an application running on a controller and the controller can be a component.
  • One or more components may reside within a thread of process and / or execution, and the components may be localized on one computer and distributed between two or more computers.

Abstract

A system for power transmission line permitted heat capacity calculation and electric power-system analysis is disclosed. The system for power transmission line permitted heat capacity calculation and electric power-system analysis comprises: an information acquisition module for acquiring ambient temperature information and power transmission geographical information; a heat capacity calculation module for calculating a maximum permitted heat capacity of a power transmission line on the basis of the ambient temperature information and power transmission geographical information received from the information acquisition module; a system analysis module comprising an electric power-system DB for storing information on equipment and states of the electric power-system, and a power flow analysis unit for calculating power flow volume for each power transmission line in order to analyze a state of the electric power-system; a cooperative analysis module for analyzing whether or not an overload is applied to the power transmission line in cooperation with the heat capacity calculation module and the system analysis module, wherein the ambient temperature information may include past daytime highest temperature observation information measured at a plurality of observation points.

Description

송전선로 허용 열용량 산정 및 전력계통 해석 시스템 Calculation of allowable heat capacity of transmission line and power system analysis system
본 출원은 송전선로 허용 열용량 산정 및 전력계통 해석 시스템에 관한 것이다.The present application relates to the calculation of transmission line allowable heat capacity and power system analysis system.
대기온도를 반영한 동적 송전선로 허용 열용량 적용 방법은 실계통 운영에 반영하는 방식과 운영계획 및 휴전계획을 수립하는 단계에서 반영하는 방식으로 구분된다. 이처럼 계통운영과 계획(운영계획 및 휴전계획) 수립에 반영하기 위해서는 계통운영시스템(EMS) 계통해석 프로그램 등과의 연계가 필요하다.The application of allowable heat capacity of dynamic transmission line reflecting the air temperature is divided into the method reflected in the actual system operation and the method applied in the stage of establishing the operation plan and the truce plan. In order to reflect the system operation and plan (operation plan and ceasefire plan), it is necessary to link with the system operation system (EMS) system analysis program.
그러나, 현재까지 국내외에서 개발된 전력계통 해석 프로그램은 동적 송전선로 허용 열용량 산정 결과를 반영하는 기능을 제공하지 못하므로, 사용자가 검토 조건에 맞게 수동으로 송전선로 열용량 허용 기준치를 수정, 입력해야 하는 불편함이 따른다. 뿐만 아니라, 검토자의 주관에 따라 동일한 조건에서도 상이한 기준을 적용할 수 있으므로 해석 결과에 대한 객관성 담보가 어렵게 된다.However, the power system analysis program developed at home and abroad does not provide a function that reflects the result of calculating the allowable heat capacity of the dynamic transmission line. Therefore, the user has to manually modify and input the transmission line heat capacity allowance according to the review conditions. It follows. In addition, different criteria can be applied under the same conditions depending on the subjectivity of the reviewer, making it difficult to guarantee objectivity of the analysis results.
또한, 기상정보는 높은 불확실성을 포함하고 있으므로, 송전선로 허용 열용량 산정과 활용에 대한 리스크를 정량적으로 분석 및 관리하기 위한 기술도 필요하나, 이러한 기술이 부재하고 이에 따라 동적 송전선로 허용 열용량을 적용함에 있어서 어려움이 따른다.In addition, since weather information includes high uncertainty, there is also a need for a technique for quantitatively analyzing and managing risks for calculating and utilizing transmission line allowable heat capacity. In difficulty.
하기의 특허문헌 1은 기상정보 및 송전지리정보를 이용한 실시간 송전용량산정장치 및 방법을 개시하고 있으며, 기상정보와 송전지리정보를 수집하여 실시간으로 송전선로의 용량을 산정하고 이를 출력하는 기능을 제공하는 것을 특징으로 한다.Patent Document 1 below discloses an apparatus and method for calculating a real-time power transmission capacity using meteorological information and trellis information, and collects meteorological information and trellis information and calculates the capacity of a transmission line in real time and provides a function of outputting the same. Characterized in that.
그러나, 특허문헌 1에서는 기상정보와 송전지리정보를 이용하여 실시간으로 산정된 송전용량정보를 계통해석 프로그램과 연계하는 방식, 그리고 수집된 기상정보의 리스크를 분석하고 이를 최소화 하기 위한 방안은 제시하지 못하고 있다.However, Patent Document 1 does not suggest a method of linking transmission capacity information calculated in real time using meteorological information and transmission power information with a system analysis program, and analyzing and minimizing the risk of collected weather information. have.
(특허문헌 1) 한국공개특허 제2015-0029160호 (공개일: 2015.03.18.)(Patent Document 1) Korean Patent Publication No. 2015-0029160 (Published Date: 2015.03.18.)
따라서, 당해 기술분야에서는 기상정보와 송전지리정보를 이용하여 실시간으로 산정된 송전선로 허용 열용량을 계통해석 프로그램과 연계하고, 기상정보의 리스크를 분석하여 이를 최소화하기 위한 방안이 요구되고 있다.Therefore, in the technical field, there is a demand for a method for minimizing the risk of meteorological information by linking a transmission line allowable heat capacity calculated in real time using meteorological information and transmission power information with a systematic analysis program.
상기 과제를 해결하기 위해서, 본 발명의 일 실시예는 송전선로 허용 열용량 산정 및 전력계통 해석 시스템을 제공한다. 상기 송전선로 허용 열용량 산정 및 전력계통 해석 시스템은, 대기온도 정보와 송전지리정보를 취득하는 정보 취득 모듈; 상기 정보 취득 모듈로부터 수신한 대기온도 정보 및 송전지리정보를 기초로 송전선로의 최대허용 열용량을 산정하는 열용량 산정 모듈; 전력계통의 설비 및 상태 정보를 저장하는 전력계통 DB와 상기 전력계통의 상태를 분석하기 위해 송전선로별 조류량을 산정하는 전력조류 해석부를 포함하는 계통해석 모듈; 및 상기 열용량 산정 모듈 및 상기 계통해석 모듈과 연계하여 송전선로의 과부하 여부를 분석하는 연계 분석 모듈을 포함하며, 상기 대기온도 정보는 복수의 관측 지점에서 측정된 과거 낮 최고기온 관측정보를 포함할 수 있다.In order to solve the above problems, an embodiment of the present invention provides a transmission line allowable heat capacity calculation and power system analysis system. The transmission line allowable heat capacity calculation and power system analysis system includes: an information acquisition module for acquiring atmospheric temperature information and transmission power information; A heat capacity calculation module for calculating a maximum allowable heat capacity of a transmission line based on the air temperature information and the power transmission information received from the information acquisition module; A system analysis module including a power system DB for storing equipment and state information of a power system and a power current analysis unit for calculating a tidal flow amount per transmission line to analyze a state of the power system; And a linkage analysis module for analyzing whether a transmission line is overloaded in connection with the heat capacity calculation module and the grid analysis module, and the air temperature information may include past day maximum temperature observation information measured at a plurality of observation points. have.
덧붙여 상기한 과제의 해결수단은, 본 발명의 특징을 모두 열거한 것이 아니다. 본 발명의 다양한 특징과 그에 따른 장점과 효과는 아래의 구체적인 실시형태를 참조하여 보다 상세하게 이해될 수 있을 것이다.In addition, the solution of the said subject does not enumerate all the characteristics of this invention. Various features of the present invention and the advantages and effects thereof may be understood in more detail with reference to the following specific embodiments.
본 발명의 일 실시예에 따르면, 기상정보와 송전지리정보를 이용하여 송전선로의 계절별 허용 열용량을 산정하고 그 결과를 계통해석 프로그램과 자동적으로 연계함으로써 송전선로 과부하 발생여부를 검토할 수 있도록 한다. 이를 통해, 전력계통 해석 결과를 활용하는 실시간 계통운영, 휴전검토 및 계통운영 계획수립에 일관성과 합리성을 증대시킬 수 있다.According to an embodiment of the present invention, it is possible to examine whether the transmission line is overloaded by calculating the seasonal allowable heat capacity of the transmission line by using weather information and transmission power information and automatically linking the result with the system analysis program. Through this, it is possible to increase consistency and rationality in real-time system operation, armistice review, and system operation planning that utilize the results of power system analysis.
또한, 통계적인 기법을 이용한 기상정보의 리스크 분석과 그 결과를 이용하여 대기온도 적용 기준을 선정할 수 있는 방법을 제공함으로써 계통운영의 리스크 요소를 최소화 할 수 있다.In addition, it is possible to minimize the risk factor of the system operation by providing a method to select the air temperature application criteria using the statistical analysis of the risk of weather information and the results.
도 1은 본 발명의 일 실시예에 따른 송전선로 허용 열용량 산정 및 전력계통 해석 시스템의 구성도이다.1 is a block diagram of a transmission line allowable heat capacity calculation and power system analysis system according to an embodiment of the present invention.
도 2는 도 1에 도시된 열용량 산정 모듈의 상세 구성도이다.FIG. 2 is a detailed configuration diagram of the heat capacity calculation module shown in FIG. 1.
도 3은 도 1에 도시된 과부하 분석부의 상세 구성도이다.3 is a detailed configuration diagram of the overload analysis unit shown in FIG. 1.
이하, 첨부된 도면을 참조하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 바람직한 실시예를 상세히 설명한다. 다만, 본 발명의 바람직한 실시예를 상세하게 설명함에 있어, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다. 또한, 유사한 기능 및 작용을 하는 부분에 대해서는 도면 전체에 걸쳐 동일한 부호를 사용한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. However, in describing the preferred embodiment of the present invention in detail, if it is determined that the detailed description of the related known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted. In addition, the same reference numerals are used throughout the drawings for parts having similar functions and functions.
덧붙여, 명세서 전체에서, 어떤 부분이 다른 부분과 '연결'되어 있다고 할 때, 이는 '직접적으로 연결'되어 있는 경우뿐만 아니라, 그 중간에 다른 소자를 사이에 두고 '간접적으로 연결'되어 있는 경우도 포함한다. 또한, 어떤 구성요소를 '포함'한다는 것은, 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.In addition, throughout the specification, when a part is 'connected' to another part, it is not only 'directly connected' but also 'indirectly connected' with another element in between. Include. In addition, the term 'comprising' of an element means that the element may further include other elements, not to exclude other elements unless specifically stated otherwise.
도 1은 본 발명의 일 실시예에 따른 송전선로 허용 열용량 산정 및 전력계통 해석 시스템의 구성도이고, 도 2는 도 1에 도시된 열용량 산정 모듈의 상세 구성도이며, 도 3은 도 1에 도시된 과부하 분석부의 상세 구성도이다.1 is a configuration diagram of a transmission line allowable heat capacity calculation and power system analysis system according to an embodiment of the present invention, Figure 2 is a detailed configuration of the heat capacity calculation module shown in Figure 1, Figure 3 is shown in Figure 1 Detailed configuration of the overload analysis section.
도 1 내지 도 3을 참조하면, 발명의 일 실시예에 따른 송전선로 허용 열용량 산정 및 전력계통 해석 시스템(1000)은 정보 취득 모듈(1100), 열용량 산정 모듈(1200), 계통해석 모듈(1300) 및 연계 분석 모듈(1400)을 포함할 수 있다.1 to 3, a transmission line allowable heat capacity calculation and power system analysis system 1000 according to an embodiment of the present invention includes an information acquisition module 1100, a heat capacity calculation module 1200, and a system analysis module 1300. And linkage analysis module 1400.
정보 취득 모듈(1100)은 기상정보와 송전지리정보를 취득하기 위한 것으로, 기상청 등의 기상정보 제공기관에서 제공하는 대기온도 정보를 취득 및 관리하는 기능과, 송변전 지리정보시스템(TGIS) 등에서 제공하는 송전선로의 지리정보(즉, 송전지리정보)를 취득 및 관리하는 기능을 수행할 수 있다.The information acquisition module 1100 is for acquiring meteorological information and transmission power information. The information acquisition module 1100 acquires and manages air temperature information provided by a meteorological information provider such as the Meteorological Agency, and is provided by a TIS. It is possible to perform the function of acquiring and managing geographic information (ie, battery information) of the transmission line.
예를 들어, 정보 취득 모듈(1100)은 대기온도 정보를 취득하기 위해 기상정보 제공기관에서 제공하는 과거 낮 최고기온 관측정보를 주기적으로 업데이트 및 저장하고 후술하는 열용량 산정 모듈(1200)로 전송할 수 있다. 여기서, 과거 낮 최고기온 관측정보는 복수의 관측 지점에서 측정된 낮 최고온도 데이터를 포함할 수 있다.For example, the information acquisition module 1100 may periodically update and store past daytime maximum temperature observation information provided by a meteorological information provider to acquire air temperature information, and transmit it to the heat capacity calculation module 1200 described later. . Here, the past day maximum temperature observation information may include daytime maximum temperature data measured at a plurality of observation points.
또한, 정보 취득 모듈(1100)은 본 발명이 적용되는 대상 송전선로의 지리정보를 취득 및 저장하고 후술하는 열용량 산정 모듈(1200)로 전송할 수 있다.In addition, the information acquisition module 1100 may acquire and store geographic information of a target transmission line to which the present invention is applied and transmit the same to the heat capacity calculation module 1200 described later.
열용량 산정 모듈(1200)은 정보 취득 모듈(1100)로부터 수신한 기상정보와 송전지리정보를 기초로 송전선로의 최대허용 열용량을 산정하기 위한 것으로, 기상정보 분석부(1210), 리스크 분석부(1220), 최고기온 산정부(1230), 지리정보 관리부(1240) 및 열용량 산정부(1250)를 포함할 수 있다.The heat capacity calculation module 1200 calculates a maximum allowable heat capacity of a transmission line based on weather information and power transmission information received from the information acquisition module 1100, and includes a weather information analysis unit 1210 and a risk analysis unit 1220. ), The highest temperature calculation unit 1230, the geographic information management unit 1240 and the heat capacity calculation unit 1250 may be included.
기상정보 분석부(1210)는 정보 취득 모듈(1100)로부터 수신한 대기온도 정보를 관리 및 분석하기 위한 것으로, 취득부(1211), 스케쥴러(1212), 저장부(1213) 및 가공부(1214)를 포함할 수 있다.The meteorological information analysis unit 1210 manages and analyzes atmospheric temperature information received from the information acquisition module 1100, and includes an acquisition unit 1211, a scheduler 1212, a storage unit 1213, and a processing unit 1214. It may include.
취득부(1211)는 일정 주기마다 정보 취득 모듈(1100)로부터 대기온도 정보(예를 들어, 과거 낮 최고기온 관측정보 등)를 수신하여 저장부(1213)에 저장할 수 있다.The acquisition unit 1211 may receive atmospheric temperature information (eg, past daytime maximum temperature observation information, etc.) from the information acquisition module 1100 at regular intervals, and store the same in the storage unit 1213.
스케쥴러(1212)는 취득부(1211)에 의한 정보 업데이트 주기를 설정할 수 있다.The scheduler 1212 may set an information update cycle by the acquirer 1211.
저장부(1213)는 취득부(1211)에 의해 수신한 대기온도 정보를 저장할 수 있다.The storage unit 1213 may store the atmospheric temperature information received by the acquisition unit 1211.
가공부(1214)는 저장부(1213)에 저장된 대기온도 정보를 기 설정된 형식으로 가공하여 리스크 분석부(1220)로 제공할 수 있다. 여기서, 기 설정된 형식은 사용자에 의해 요청된 형식일 수 있으며, 저장부(1213)에 저장된 대기온도 정보는 요청된 형식에 맞게 가공(예를 들어, 조합)되어 리스크 분석부(1220)로 제공될 수 있다.The processing unit 1214 may process the atmospheric temperature information stored in the storage unit 1213 in a predetermined format and provide the processed temperature to the risk analysis unit 1220. Here, the preset format may be a format requested by the user, and the air temperature information stored in the storage unit 1213 may be processed (eg, combined) according to the requested format and provided to the risk analysis unit 1220. Can be.
리스크 분석부(1220)는 기상정보 분석부(1210)로부터 제공된 기상정보의 불확실성을 정량적으로 분석하기 위한 것으로, 구분부(1221) 및 분포 출력부(1222)를 포함할 수 있다.The risk analyzer 1220 quantitatively analyzes the uncertainty of the meteorological information provided from the meteorological information analyzer 1210 and may include a division unit 1221 and a distribution output unit 1222.
구분부(1221)는 기상정보 분석부(1210)로부터 제공된 대기온도 정보(예를 들어, 과거 낮 최고기온 관측정보 등)를 이용하여 지역별 및 계절별 대기온도(즉, 최고기온)에 대한 확률분포를 작성할 수 있다. 여기서, 확률분포는 과거 관측정보를 기초로 피팅(fitting)하며, 정규분포의 형태를 따를 수 있다. 그러나, 반드시 이로 제한되는 것은 아니며, 사용자의 지정에 따라 상이한 분포함수가 적용될 수도 있다. 또한, 구분부(1221)는 피팅 결과를 검증할 수 있도록 적합도 검증(Goodness of Fit) 기능도 제공할 수 있다.The division unit 1221 uses the atmospheric temperature information (eg, past day maximum temperature observation information, etc.) provided from the meteorological information analysis unit 1210 to calculate a probability distribution of regional and seasonal atmospheric temperatures (ie, maximum temperature). I can write it. Here, the probability distribution may be fitted based on past observation information and may follow a normal distribution. However, the present invention is not necessarily limited thereto, and different distribution functions may be applied according to a user's designation. In addition, the separator 1221 may also provide a goodness of fit function to verify the fitting result.
분포 출력부(1222)는 구분부(1221)에 의해 작성된 지역별 및 계절별 대기온도(즉, 최고기온)에 대한 확률분포 정보를 최고기온 산정부(1230)로 제공할 수 있다.The distribution output unit 1222 may provide the probability distribution information on the regional and seasonal atmospheric temperatures (that is, the highest temperature) created by the division unit 1221 to the maximum temperature calculation unit 1230.
최고기온 산정부(1230)는 사용자에 의해 지정된 리스크 수준을 반영하여 송전선로 허용 열용량 산정을 위한 지역별 및 계절별 최고기온을 산정하기 위한 것으로, 비교부(1231) 및 결정부(1232)를 포함할 수 있다.The maximum temperature calculation unit 1230 is for calculating regional and seasonal maximum temperatures for calculating an allowable heat capacity of a transmission line by reflecting a risk level designated by a user, and may include a comparison unit 1231 and a determination unit 1232. have.
비교부(1231)는 리스크 분석부(1220)로부터 제공된 지역별 및 계절별 대기온도(즉, 최고기온)에 대한 확률분포 정보와 사용자에 의해 지정된 리스크 수준을 비교할 수 있다. 여기서, 리스크 수준으로 확률분포 정보와 기준온도를 비교하여 에러발생 확률을 산정할 수 있다. 또는, 수학식 1과 같이 총 과거 최고온도 데이터 개수와 기준온도를 초과하는 최고온도 데이터 개수의 비율로 산정할 수도 있다.The comparison unit 1231 may compare the probability distribution information for the regional and seasonal atmospheric temperatures (ie, the highest temperature) provided from the risk analysis unit 1220 with a risk level designated by the user. Here, the probability of error occurrence may be calculated by comparing the probability distribution information with the reference temperature as the risk level. Alternatively, as shown in Equation 1, the ratio may be calculated as the ratio of the total number of past maximum temperature data and the number of maximum temperature data exceeding the reference temperature.
Figure PCTKR2016010987-appb-M000001
Figure PCTKR2016010987-appb-M000001
여기서, Prisk는 과거 최고기온이 기준온도를 초과할 수 있는 확률(%)을 나타내고, N은 과거 최고기온 데이터 개수를 나타내고, ni는 과거 최고기온이 기준온도를 초과하는 데이터 개수를 나타낸다.Here, P risk is past the maximum temperature indicates the probability (%) that can be longer than the reference temperature, N is the history indicates the maximum temperature data number, n i denotes the number of data that is past the maximum temperature exceeds the reference temperature.
결정부(1232)는 비교부(1231)에 의한 비교 결과를 기초로 지역별 및 계절별 최고기온, 즉 기준 대기온도를 결정하고 이를 지리정보 관리부(1240)로 전송할 수 있다. The determination unit 1232 may determine a regional and seasonal maximum temperature, that is, a reference atmospheric temperature, based on the comparison result by the comparison unit 1231, and transmit the same to the geographic information management unit 1240.
지리정보 관리부(1240)는 송전선로의 경과지 정보를 포함하는 송전 지리정보를 관리하기 위한 것으로, 취득부(1241), 선별부(1242) 및 매칭부(1243)를 포함할 수 있다.The geographic information management unit 1240 manages transmission geographic information including the progress information of the transmission line, and may include an acquisition unit 1241, a selection unit 1242, and a matching unit 1243.
취득부(1241)는 정보 취득 모듈(1100)로부터 송전지리정보를 수신할 수 있다.The acquirer 1241 may receive power supply information from the information acquisition module 1100.
선별부(1242)는 취득부(1241)를 통해 수신한 송전지리정보 중에서 대상 송전선로에 대한 송전지리정보를 선별할 수 있다.The selector 1242 may select transmission information about the target transmission line from the transmission information received through the acquisition unit 1241.
매칭부(1243)는 선별부(1242)에 의해 선별된 송전지리정보와 최고기온 산정부(1230)에 의해 산정된 지역별 및 계절별 최고기온을 매칭할 수 있다.The matching unit 1243 may match the region information and the seasonal maximum temperature calculated by the transmission cell information selected by the selection unit 1242 and the maximum temperature calculation unit 1230.
열용량 산정부(1250)는 최고기온 및 송전지리정보를 조합하여 송전선로별 최대허용 열용량을 산정하기 위한 것으로, 취득부(1251) 및 산정부(1252)를 포함할 수 있다.The heat capacity calculation unit 1250 is for calculating the maximum allowable heat capacity for each transmission line by combining the highest temperature and power transmission information, and may include an acquisition unit 1251 and a calculation unit 1252.
취득부(1251)는 전력계통 DB(1310)로부터 대상 송전선로 선종정보를 전송받아 산정부(1252)로 제공할 수 있다.The acquisition unit 1251 may receive the transmission line type information from the power system DB 1310 and provide it to the calculation unit 1252.
산정부(1252)는 취득부(1251)로부터 전달받은 대상 송전선로에 대해 해당 지역의 계절별 최고기온 정보를 이용하여 대상 송전선로의 최대허용 열용량을 산정할 수 있다.The calculation unit 1252 may calculate the maximum allowable heat capacity of the target transmission line by using the seasonal maximum temperature information of the target transmission line received from the acquisition unit 1251.
예를 들어, 산정부(1252)는 IEEE std 738에서 제시하는 송전선로 허용전류 산정 방법을 사용하여 최대허용 열용량을 산정할 수 있다.For example, the calculation unit 1252 may calculate the maximum allowable heat capacity using the transmission line allowable current calculation method proposed by IEEE std 738.
수학식 2는 Steady-State Case 열 균형 모델(Thermal Model)을 수식화 한 것이다. 수학식 2의 좌 항은 도체의 표면에서 손실되는 열의 총 합을 의미하고, 우 항은 도체의 표면과 내부에서 발생되는 열의 총합을 의미하며, 이는 곧 열 손실과 열 발생의 균형을 의미한다. Equation 2 is a formula of the Steady-State Case heat balance model. The left term in Equation 2 refers to the sum of heat lost on the surface of the conductor, and the right term means the sum of heat generated on the surface and inside of the conductor, which means a balance between heat loss and heat generation.
Figure PCTKR2016010987-appb-M000002
Figure PCTKR2016010987-appb-M000002
또한, 이를 이용하여 수학식 3과 같이 열 균형을 유지할 수 있는 최대허용 전류량을 산정할 수 있다.In addition, it is possible to calculate the maximum allowable current amount that can maintain the heat balance as shown in Equation (3).
Figure PCTKR2016010987-appb-M000003
Figure PCTKR2016010987-appb-M000003
여기서, qc는 대류열 손실을 의미하며 자연적인(Natural) 대류열 손실과 외부 요인에 의한(Forced) 대류열 손실로 구분될 수 있다. 자연적인 대류열 손실은 바람이 없는 상태(Still Air Condition)에서의 대류열 손실 발생분이며, 외부요인에 의한 대류열 손실은 1.2m/s이하의 풍속에서 바람에 의하여(Blowing Air Condition) 발생되는 대류열 손실 발생분을 의미한다. 총 대류열 손실은 이 두 가지 손실의 합으로 산정하는데, 수학식 4 및 5는 단위 길이당 외부요인에 의한 대류열 손실을 산정하는 것이다. 또한, 수학식 6은 단위 길이당 자연적인 대류열 손실을 산정하는 것이며, 수학식 7은 열균형 모델에서 방사열 손실을 의미하는 것이다.Here, q c denotes convective heat loss and may be classified into natural convective heat loss and forced convective heat loss. Natural convective heat loss is the occurrence of convective heat loss in the still air condition, and convective heat loss caused by external factors is caused by the blowing air condition at wind speeds of 1.2m / s or less. Means the occurrence of convective heat loss. The total convective heat loss is calculated as the sum of these two losses. Equations 4 and 5 calculate the convective heat loss due to external factors per unit length. In addition, Equation 6 calculates the natural convective heat loss per unit length, and Equation 7 represents the radiant heat loss in the heat balance model.
Figure PCTKR2016010987-appb-M000004
Figure PCTKR2016010987-appb-M000004
Figure PCTKR2016010987-appb-M000005
Figure PCTKR2016010987-appb-M000005
Figure PCTKR2016010987-appb-M000006
Figure PCTKR2016010987-appb-M000006
Figure PCTKR2016010987-appb-M000007
Figure PCTKR2016010987-appb-M000007
계통해석 모듈(1300)은 전력계통을 해석하기 위한 것으로, 전력계통 DB(1310) 및 전력조류 해석부(1320)를 포함할 수 있다.The system analysis module 1300 is for analyzing a power system, and may include a power system DB 1310 and a power current analysis unit 1320.
전력계통 DB(1310)는 전력계통 설비 및 상태 정보를 저장하기 위한 것이다.The power system DB 1310 is for storing power system equipment and state information.
예를 들어, 전력계통 DB(1310)는 전력조류 계산을 위한 송전망 구성, 모선별 수요 그리고 발전기 출력 정보 등을 저장 및 관리할 수 있다. 또한, 전력계통 DB(1310)는 송전선로의 선종정보를 포함하고 있으며, 이를 열용량 산정 모듈(1200)로 전송할 수 있다.For example, the power system DB 1310 may store and manage a transmission network configuration, bus-line demand, and generator output information for calculating the power current. In addition, the power system DB 1310 includes the line type information of the transmission line, it may be transmitted to the heat capacity calculation module 1200.
전력조류 해석부(1320)는 전력계통의 상태를 분석하기 위해 전력방정식의 해를 구하여 송전선로별 조류량을 구하기 위한 것으로, 유효 및 무효전력 조류량과 전류의 크기를 산정할 수 있다. 전력조류 해석부(1320)에 의해 산정된 송전선로별 전류의 크기는 연계 분석 모듈(1400)로 전송될 수 있다.The power current analysis unit 1320 calculates the amount of tidal current for each transmission line by solving a power equation to analyze the state of the power system, and calculates the amount of active and reactive power tidal current and the magnitude of the current. The magnitude of the current for each transmission line calculated by the power current analysis unit 1320 may be transmitted to the linkage analysis module 1400.
연계 분석 모듈(1400)은 상술한 각 모듈과 연계하여 송전선로의 과부하 여부를 분석하기 위한 것으로, 과부하 분석부(1410) 및 결과 제공부(1420)를 포함할 수 있다.The linkage analysis module 1400 is to analyze whether the transmission line is overloaded in connection with each module described above, and may include an overload analysis unit 1410 and a result provider 1420.
과부하 분석부(1410)는 계통해석 모듈(1300)로부터 수신한 송전선로별 조류량과 열용량 산정부(1250)에 의해 산정된 송전선로별 최대허용 열용량을 비교하여 송전선로의 과부하 정도를 분석하기 위한 것으로, 최대허용 열용량 취득부(1411), 조류계산 결과 취득부(1412), 비교부(1413) 및 분석부(1414)를 포함할 수 있다.The overload analysis unit 1410 compares the tidal flow amount of each transmission line received from the grid analysis module 1300 and the maximum allowable heat capacity of each transmission line calculated by the heat capacity calculation unit 1250 to analyze the degree of overload of the transmission line. The maximum allowable heat capacity acquisition unit 1411, the algal calculation result acquisition unit 1412, a comparison unit 1413, and an analysis unit 1414 may be included.
최대허용 열용량 취득부(1411)는 열용량 산정 모듈(1200)로부터 대상 송전선로의 최대허용 열용량을 수신할 수 있다.The maximum allowable heat capacity acquisition unit 1411 may receive the maximum allowable heat capacity of the target transmission line from the heat capacity calculation module 1200.
조류계산 결과 취득부(1412)는 계통해석 모듈(1300)로부터 송전선로별 조류량(즉, 전류의 크기)를 수신할 수 있다.The algae calculation result acquisition unit 1412 may receive a tidal flow amount (ie, the magnitude of the current) for each transmission line from the system analysis module 1300.
비교부(1413)는 최대허용 열용량 취득부(1411) 및 조류계산 결과 취득부(1412)로부터 각각 전달받은 송전선로의 최대허용 열용량 및 송전선로별 조류량(즉, 전류의 크기)을 비교할 수 있다. 이 경우, 사용자에 의해 선택된 계절에 대해 상술한 비교를 수행할 수 있다.The comparison unit 1413 may compare the maximum allowable heat capacity of the transmission line and the amount of tidal current (ie, the magnitude of the current) of each transmission line received from the maximum allowable heat capacity acquisition unit 1411 and the tidal current calculation result acquisition unit 1412, respectively. . In this case, the above-described comparison may be performed with respect to the season selected by the user.
분석부(1414)는 비교부(1413)의 비교 결과를 기초로 송전선로의 과부하 발생여부 및 정도를 분석할 수 있다. 이 경우, 분석부(1414)는 최고기온 산정부(1230)로부터 전달받은 리스크 정보를 이용하여 송전선로 과부하 발생에 대한 리스크 정도를 정량적으로 분석할 수 있다.The analysis unit 1414 may analyze whether the transmission line is overloaded and the degree of the transmission line based on the comparison result of the comparison unit 1413. In this case, the analysis unit 1414 may quantitatively analyze the degree of risk for transmission line overload using the risk information received from the highest temperature calculation unit 1230.
예를 들어, 분석부(1414)는 수학식 8에 따라 송전선로의 과부하 발생에 대한 리스크 정도를 정량적으로 분석할 수 있다.For example, the analysis unit 1414 may quantitatively analyze the degree of risk for overloading a transmission line according to Equation (8).
Figure PCTKR2016010987-appb-M000008
Figure PCTKR2016010987-appb-M000008
여기서, OLrisk는 리스크를 고려한 송전선로의 과부하율(%)을 나타내고, Ppowerflow는 조류계산 결과인 송전선로 조류량(MW 또는 MVA)을 나타내고, Prating은 대기온도를 고려한 송전선로 허용 열용량(MW 또는 MVA)을 나타내며, Prisk는 과거 최고기온이 기준온도를 초과할 수 있는 확률(%)을 나타낸다.Here, OL risk represents the overload rate (%) of the transmission line considering the risk, P powerflow represents the transmission line tidal flow (MW or MVA) as a result of tidal current calculation, and P rating is the allowable heat capacity of the transmission line considering the air temperature ( MW or MVA), and P risk represents the probability (%) that the past maximum temperature would exceed the reference temperature.
결과 제공부(1420)는 과부하 분석부(1410)에 의한 분석 결과를 사용자에게 제공하기 위한 것이다.The result providing unit 1420 is to provide the user with the analysis result by the overload analysis unit 1410.
예를 들어, 결과 제공부(1420)는 송전선로의 과부하 발생정보 및 리스크 정보를 시각적으로 표시하는 화면을 제공할 수 있다.For example, the result providing unit 1420 may provide a screen for visually displaying overload occurrence information and risk information of a transmission line.
상술한 본 발명의 실시예는 컴퓨팅 디바이스를 포함하는 시스템에 의해 구현될 수 있다. 예를 들어, 컴퓨팅 디바이스는 개인 컴퓨터, 서버 컴퓨터, 핸드헬드 또는 랩탑 디바이스, 모바일 디바이스(모바일폰, PDA, 미디어 플레이어 등), 멀티프로세서 시스템, 소비자 전자기기, 미니 컴퓨터, 메인프레임 컴퓨터, 임의의 전술된 시스템 또는 디바이스를 포함하는 분산 컴퓨팅 환경 등을 포함하지만, 이것으로 한정되는 것은 아니다.Embodiments of the invention described above may be implemented by a system including a computing device. For example, the computing device may be a personal computer, server computer, handheld or laptop device, mobile device (mobile phone, PDA, media player, etc.), multiprocessor system, consumer electronics, mini computer, mainframe computer, any tactical Distributed computing environments, including, but not limited to, integrated systems or devices.
컴퓨팅 디바이스는 적어도 하나의 프로세싱 유닛 및 메모리를 포함할 수 있다. 여기서, 프로세싱 유닛은 예를 들어 중앙처리장치(CPU), 그래픽처리장치(GPU), 마이크로프로세서, 주문형 반도체(Application Specific Integrated Circuit, ASIC), Field Programmable Gate Arrays(FPGA) 등을 포함할 수 있으며, 복수의 코어를 가질 수 있다. 메모리는 휘발성 메모리(예를 들어, RAM 등), 비휘발성 메모리(예를 들어, ROM, 플래시 메모리 등) 또는 이들의 조합일 수 있다.The computing device may include at least one processing unit and a memory. Here, the processing unit may include, for example, a central processing unit (CPU), a graphics processing unit (GPU), a microprocessor, an application specific integrated circuit (ASIC), field programmable gate arrays (FPGA), and the like. It may have a plurality of cores. The memory may be volatile memory (eg, RAM, etc.), nonvolatile memory (eg, ROM, flash memory, etc.), or a combination thereof.
또한, 컴퓨팅 디바이스는 추가적인 스토리지를 포함할 수 있다. 스토리지는 자기 스토리지, 광학 스토리지 등을 포함하지만 이것으로 한정되지 않는다. 스토리지에는 본 명세서에 개진된 하나 이상의 실시예를 구현하기 위한 컴퓨터 판독 가능한 명령이 저장될 수 있고, 운영 시스템, 애플리케이션 프로그램 등을 구현하기 위한 다른 컴퓨터 판독 가능한 명령도 저장될 수 있다. 스토리지에 저장된 컴퓨터 판독 가능한 명령은 프로세싱 유닛에 의해 실행되기 위해 메모리에 로딩될 수 있다.In addition, the computing device may include additional storage. Storage includes, but is not limited to, magnetic storage, optical storage, and the like. Storage may store computer readable instructions for implementing one or more embodiments disclosed herein, and other computer readable instructions for implementing operating systems, application programs, and the like. Computer readable instructions stored in the storage may be loaded into the memory for execution by the processing unit.
또한, 컴퓨팅 디바이스는 입력 디바이스(들) 및 출력 디바이스(들)를 포함할 수 있다. 여기서, 입력 디바이스(들)는 예를 들어 키보드, 마우스, 펜, 음성 입력 디바이스, 터치 입력 디바이스, 적외선 카메라, 비디오 입력 디바이스 또는 임의의 다른 입력 디바이스 등을 포함할 수 있다. 또한, 출력 디바이스(들)는 예를 들어 하나 이상의 디스플레이, 스피커, 프린터 또는 임의의 다른 출력 디바이스 등을 포함할 수 있다. 또한, 컴퓨팅 디바이스는 다른 컴퓨팅 디바이스에 구비된 입력 디바이스 또는 출력 디바이스를 입력 디바이스(들) 또는 출력 디바이스(들)로서 사용할 수도 있다.In addition, the computing device may include input device (s) and output device (s). Here, the input device (s) can include, for example, a keyboard, mouse, pen, voice input device, touch input device, infrared camera, video input device or any other input device. In addition, the output device (s) may include, for example, one or more displays, speakers, printers or any other output device. In addition, the computing device may use the input device or output device included in another computing device as the input device (s) or output device (s).
또한, 컴퓨팅 디바이스는 컴퓨팅 디바이스가 다른 디바이스(예를 들어, 컴퓨팅 디바이스)와 통신할 수 있게 하는 통신접속(들)을 포함할 수 있다. 여기서, 통신 접속(들)은 모뎀, 네트워크 인터페이스 카드(NIC), 통합 네트워크 인터페이스, 무선 주파수 송신기/수신기, 적외선 포트, USB 접속 또는 컴퓨팅 디바이스를 다른 컴퓨팅 디바이스에 접속시키기 위한 다른 인터페이스를 포함할 수 있다. 또한, 통신 접속(들)은 유선 접속 또는 무선 접속을 포함할 수 있다.The computing device may also include communication connection (s) that enable the computing device to communicate with another device (eg, computing device). Here, the communication connection (s) may include a modem, a network interface card (NIC), an integrated network interface, a radio frequency transmitter / receiver, an infrared port, a USB connection, or another interface for connecting a computing device to another computing device. . In addition, the communication connection (s) may include a wired connection or a wireless connection.
상술한 컴퓨팅 디바이스의 각 구성요소는 버스 등의 다양한 상호접속(예를 들어, 주변 구성요소 상호접속(PCI), USB, 펌웨어(IEEE 1394), 광학적 버스 구조 등)에 의해 접속될 수도 있고, 네트워크(1200)에 의해 상호접속될 수도 있다.Each component of the computing device described above may be connected by various interconnections such as a bus (eg, peripheral component interconnect (PCI), USB, firmware (IEEE 1394), optical bus structure, etc.), and a network May be interconnected by 1200.
본 명세서에서 사용되는 "구성요소", "모듈", "시스템", "인터페이스" 등과 같은 용어들은 일반적으로 하드웨어, 하드웨어와 소프트웨어의 조합, 소프트웨어, 또는 실행중인 소프트웨어인 컴퓨터 관련 엔티티를 지칭하는 것이다. 예를 들어, 구성요소는 프로세서 상에서 실행중인 프로세스, 프로세서, 객체, 실행 가능물(executable), 실행 스레드, 프로그램 및/또는 컴퓨터일 수 있지만, 이것으로 한정되는 것은 아니다. 예를 들어, 컨트롤러 상에서 구동중인 애플리케이션 및 컨트롤러 모두가 구성요소일 수 있다. 하나 이상의 구성요소는 프로세스 및/또는 실행의 스레드 내에 존재할 수 있으며, 구성요소는 하나의 컴퓨터 상에서 로컬화될 수 있고, 둘 이상의 컴퓨터 사이에서 분산될 수도 있다.As used herein, terms such as "component", "module", "system", "interface", etc. generally refer to a computer-related entity that is hardware, a combination of hardware and software, software, or running software. For example, a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and / or a computer. For example, both an application running on a controller and the controller can be a component. One or more components may reside within a thread of process and / or execution, and the components may be localized on one computer and distributed between two or more computers.
본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 본 발명에 따른 구성요소를 치환, 변형 및 변경할 수 있다는 것이 명백할 것이다.The present invention is not limited by the above-described embodiment and the accompanying drawings. It will be apparent to those skilled in the art that the present invention may be substituted, modified, and changed in accordance with the present invention without departing from the spirit of the present invention.

Claims (9)

  1. 대기온도 정보와 송전지리정보를 취득하는 정보 취득 모듈;An information acquisition module for acquiring air temperature information and power transmission information;
    상기 정보 취득 모듈로부터 수신한 대기온도 정보 및 송전지리정보를 기초로 송전선로의 최대허용 열용량을 산정하는 열용량 산정 모듈;A heat capacity calculation module for calculating a maximum allowable heat capacity of a transmission line based on the air temperature information and the power transmission information received from the information acquisition module;
    전력계통의 설비 및 상태 정보를 저장하는 전력계통 DB와 상기 전력계통의 상태를 분석하기 위해 송전선로별 조류량을 산정하는 전력조류 해석부를 포함하는 계통해석 모듈; 및A system analysis module including a power system DB for storing equipment and state information of a power system and a power current analysis unit for calculating a tidal flow amount per transmission line to analyze a state of the power system; And
    상기 열용량 산정 모듈 및 상기 계통해석 모듈과 연계하여 송전선로의 과부하 여부를 분석하는 연계 분석 모듈을 포함하며,It includes a linkage analysis module for analyzing whether the transmission line is overloaded in connection with the heat capacity calculation module and the system analysis module,
    상기 대기온도 정보는 복수의 관측 지점에서 측정된 과거 낮 최고기온 관측정보를 포함하는 송전선로 허용 열용량 산정 및 전력계통 해석 시스템.The air temperature information is a transmission line allowance heat capacity calculation and power system analysis system including the past day maximum temperature observation information measured at a plurality of observation points.
  2. 제 1 항에 있어서, 상기 열용량 산정 모듈은,The method of claim 1, wherein the heat capacity calculation module,
    상기 정보 취득 모듈로부터 수신한 대기온도 정보를 관리 및 분석하는 기상정보 분석부;A weather information analyzer for managing and analyzing the air temperature information received from the information acquisition module;
    상기 기상정보 분석부로부터 제공된 대기온도 정보의 불확실성을 정량적으로 분석하는 리스크 분석부;A risk analyzer for quantitatively analyzing the uncertainty of air temperature information provided from the meteorological information analyzer;
    사용자에 의해 지정된 리스크 수준을 반영하여 지역별 및 계절별 최고기온을 산정하는 최고기온 산정부;A peak temperature calculation for estimating regional and seasonal peak temperatures reflecting the level of risk specified by the user;
    송전지리정보를 관리하는 지리정보 관리부; 및A geographic information manager that manages the transmission information; And
    상기 지역별 및 계절별 최고기온과 상기 송전지리정보를 조합하여 송전선로별 최대허용 열용량을 산정하는 열용량 산정부를 포함하는 송전선로 허용 열용량 산정 및 전력계통 해석 시스템.A transmission line allowable heat capacity calculation and power system analysis system including a heat capacity calculation unit for calculating the maximum allowable heat capacity for each transmission line by combining the regional and seasonal maximum temperature and the transmission power information.
  3. 제 2 항에 있어서, 상기 기상정보 분석부는,The method of claim 2, wherein the meteorological information analysis unit,
    일정 주기마다 상기 정보 취득 모듈로부터 대기온도 정보를 수신하여 업데이트하는 취득부;An acquisition unit that receives and updates atmospheric temperature information from the information acquisition module at predetermined intervals;
    상기 취득부에 의한 대기온도 정보 업데이트 주기를 설정하는 스케쥴러;A scheduler for setting an air temperature information update period by the acquisition unit;
    상기 취득부에 의해 수신한 대기온도 정보를 저장하는 저장부; 및A storage unit for storing the air temperature information received by the acquisition unit; And
    상기 저장부에 저장된 대기온도 정보를 기 설정된 형식으로 가공하여 상기 리스크 분석부로 제공하는 가공부를 포함하는 송전선로 허용 열용량 산정 및 전력계통 해석 시스템.A transmission line allowable heat capacity calculation and power system analysis system including a processing unit for processing the air temperature information stored in the storage unit in a predetermined format and providing the risk analysis unit.
  4. 제 2 항에 있어서, 상기 리스크 분석부는,The method of claim 2, wherein the risk analysis unit,
    상기 기상정보 분석부로부터 제공된 대기온도 정보를 이용하여 지역별 및 계절별 대기온도에 대한 확률분포를 작성하는 구분부; 및A division unit which prepares a probability distribution of regional and seasonal atmospheric temperatures using the atmospheric temperature information provided from the meteorological information analysis unit; And
    상기 지역별 및 계절별 대기온도에 대한 확률분포 정보를 상기 최고기온 산정부로 제공하는 분포 출력부를 포함하는 송전선로 허용 열용량 산정 및 전력계통 해석 시스템.Transmission line allowable heat capacity calculation and power system analysis system including a distribution output unit for providing the probability distribution information for the regional and seasonal air temperature to the highest temperature calculation unit.
  5. 제 2 항에 있어서, 상기 최고기온 산정부는,The method of claim 2, wherein the highest temperature calculation unit,
    상기 리스크 분석부로부터 제공된 지역별 및 계절별 대기온도에 대한 확률분포 정보와 사용자에 의해 지정된 리스크 수준을 비교하는 비교부; 및A comparison unit for comparing probability distribution information on regional and seasonal air temperatures provided by the risk analysis unit with a risk level designated by the user; And
    상기 비교부에 의한 비교 결과를 기초로 지역별 및 계절별 최고기온를 결정하여 상기 지리정보 관리부로 전송하는 결정부를 포함하며,Determining unit for determining the regional and seasonal maximum temperature based on the comparison result by the comparison unit and transmits to the geographic information management unit,
    상기 리스크 수준은 총 과거 최고온도 데이터 개수와 기준온도를 초과하는 최고온도 데이터 개수의 비율로 산정하는 송전선로 허용 열용량 산정 및 전력계통 해석 시스템.The risk level is calculated by the ratio of the total number of historical maximum temperature data and the maximum temperature data number exceeding the reference temperature allowable heat capacity calculation system and power system analysis system.
  6. 제 2 항에 있어서, 상기 지리정보 관리부는,The method of claim 2, wherein the geographic information management unit,
    상기 정보 취득 모듈로부터 송전지리정보를 수신하는 취득부;An acquisition unit for receiving power transmission information from the information acquisition module;
    상기 취득부를 통해 수신한 송전지리정보 중에서 대상 송전선로에 대한 송전지리정보를 선별하는 선별부; 및A sorting unit which selects the trellis information on the target transmission line from the trellis information received through the acquisition unit; And
    상기 선별부에 의해 선별된 송전지리정보와 상기 최고기온 산정부에 의해 산정된 지역별 및 계절별 최고기온을 매칭하는 매칭부를 포함하는 송전선로 허용 열용량 산정 및 전력계통 해석 시스템.A transmission line allowable heat capacity calculation and power system analysis system including a matching unit for matching the region-specific and seasonal maximum temperature calculated by the peak temperature calculation unit selected by the selection unit and the peak temperature calculation unit.
  7. 제 2 항에 있어서, 상기 열용량 산정부는,The method of claim 2, wherein the heat capacity calculation unit,
    상기 전력계통 DB로부터 대상 송전선로 선종정보를 전송받는 취득부; 및An acquisition unit for receiving line type information of a target transmission line from the power system DB; And
    상기 취득부로부터 전달받은 대상 송전선로에 대해 해당 지역의 계절별 최고기온 정보를 이용하여 상기 대상 송전선로의 최대허용 열용량을 산정하는 산정부를 포함하는 송전선로 허용 열용량 산정 및 전력계통 해석 시스템.A transmission line allowable heat capacity calculation and power system analysis system comprising a calculation unit for calculating the maximum allowable heat capacity of the target transmission line using the seasonal maximum temperature information of the target transmission line received from the acquisition unit.
  8. 제 1 항에 있어서, 상기 연계 분석 모듈은,The method of claim 1, wherein the linkage analysis module,
    상기 계통해석 모듈로부터 수신한 송전선로별 조류량과 상기 열용량 산정 모듈에 의해 산정된 송전선로의 최대허용 열용량을 비교하여 상기 송전선로의 과부하 정도를 분석하는 과부하 분석부; 및An overload analysis unit that analyzes the degree of overload of the transmission line by comparing the tidal flow amount of each transmission line received from the system analysis module with the maximum allowable heat capacity of the transmission line calculated by the heat capacity calculation module; And
    상기 과부하 분석부에 의한 분석 결과를 제공하는 결과 제공부를 포함하는 송전선로 허용 열용량 산정 및 전력계통 해석 시스템.Transmission line allowable heat capacity calculation and power system analysis system including a result providing unit for providing an analysis result by the overload analysis unit.
  9. 제 8 항에 있어서, 상기 과부하 분석부는,The method of claim 8, wherein the overload analysis unit,
    상기 열용량 산정 모듈로부터 상기 송전선로의 최대허용 열용량을 수신하는 최대허용 열용량 취득부;A maximum allowable heat capacity acquisition unit for receiving a maximum allowable heat capacity of the transmission line from the heat capacity calculation module;
    상기 계통해석 모듈로부터 송전선로별 조류량을 수신하는 조류계산 결과 취득부;A tidal current calculation result acquisition unit for receiving a tidal flow amount per transmission line from the system analysis module;
    상기 송전선로의 최대허용 열용량 및 상기 송전선로별 조류량을 비교하는 비교부; 및 A comparison unit for comparing the maximum allowable heat capacity of the transmission line and the tidal flow amount of each transmission line; And
    상기 비교부의 비교 결과를 기초로 상기 송전선로의 과부하 발생여부 및 정도를 분석하는 분석부를 포함하며,It includes an analysis unit for analyzing the occurrence and degree of overload of the transmission line based on the comparison result of the comparison unit,
    상기 분석부는 다음의 수학식The analysis unit is the following equation
    Figure PCTKR2016010987-appb-I000001
    Figure PCTKR2016010987-appb-I000001
    에 따라 상기 열용량 산정 모듈로부터 전달받은 리스크 정보를 이용하여 상기 송전선로의 과부하 발생에 대한 리스크 정도를 정량적으로 분석하며,According to the risk information received from the heat capacity calculation module to quantitatively analyze the degree of risk of overload occurrence of the transmission line,
    OLrisk는 리스크를 고려한 송전선로의 과부하율(%)을 나타내고, Ppowerflow는 송전선로 조류량(MW 또는 MVA)을 나타내고, Prating은 대기온도를 고려한 송전선로 허용 열용량(MW 또는 MVA)을 나타내며, Prisk는 과거 최고기온이 기준온도를 초과할 수 있는 확률(%)을 나타내는 송전선로 허용 열용량 산정 및 전력계통 해석 시스템.OL risk represents the overload rate (%) of the transmission line considering the risk, P powerflow represents the flow rate of the transmission line (MW or MVA), and P rating represents the allowable heat capacity (MW or MVA) of the transmission line considering the air temperature. , P risk is the historical high temperature heat capacity of transmission lines allow estimating the power system and analysis system to indicate the probability (%) that can exceed the reference temperature.
PCT/KR2016/010987 2015-09-30 2016-09-30 System for power transmission line permitted heat capacity calculation and electric power-system analysis WO2017057956A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150138046A KR101696222B1 (en) 2015-09-30 2015-09-30 System for estimating transmission capacity and analyzing electric power system
KR10-2015-0138046 2015-09-30

Publications (1)

Publication Number Publication Date
WO2017057956A1 true WO2017057956A1 (en) 2017-04-06

Family

ID=57835416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/010987 WO2017057956A1 (en) 2015-09-30 2016-09-30 System for power transmission line permitted heat capacity calculation and electric power-system analysis

Country Status (2)

Country Link
KR (1) KR101696222B1 (en)
WO (1) WO2017057956A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114493171A (en) * 2021-12-31 2022-05-13 国网山东省电力公司临沂供电公司 Method and system for generating dynamic capacity increasing equipment installation site selection scheme
CN116128309A (en) * 2023-04-11 2023-05-16 胜利油田利丰石油设备制造有限公司 Petroleum engineering well site operation maintenance management system based on Internet of things
CN117674159A (en) * 2024-02-01 2024-03-08 国网山东省电力公司济南供电公司 Method, system, equipment and medium for evaluating severity of expected accident of power system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001339861A (en) * 2000-05-31 2001-12-07 Rakunan Chin Transmittable capacity calculation system, optimum power flow calculation method, generator load allocation calculation method and program
JP2007189840A (en) * 2006-01-13 2007-07-26 Toshiba Corp Power system stabilizing apparatus
KR100964298B1 (en) * 2009-12-15 2010-06-16 한국전력거래소 A network analysis system
KR20140008768A (en) * 2012-07-11 2014-01-22 한국전력공사 Hvdc control system for non-steady state power system
KR20150029160A (en) * 2013-09-09 2015-03-18 한국전력공사 Apparatus and method for realtime transmission capacity estimation using weather data and tgis data

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001339861A (en) * 2000-05-31 2001-12-07 Rakunan Chin Transmittable capacity calculation system, optimum power flow calculation method, generator load allocation calculation method and program
JP2007189840A (en) * 2006-01-13 2007-07-26 Toshiba Corp Power system stabilizing apparatus
KR100964298B1 (en) * 2009-12-15 2010-06-16 한국전력거래소 A network analysis system
KR20140008768A (en) * 2012-07-11 2014-01-22 한국전력공사 Hvdc control system for non-steady state power system
KR20150029160A (en) * 2013-09-09 2015-03-18 한국전력공사 Apparatus and method for realtime transmission capacity estimation using weather data and tgis data

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114493171A (en) * 2021-12-31 2022-05-13 国网山东省电力公司临沂供电公司 Method and system for generating dynamic capacity increasing equipment installation site selection scheme
CN114493171B (en) * 2021-12-31 2023-11-28 国网山东省电力公司临沂供电公司 Method and system for generating installation site selection scheme of dynamic capacity-increasing equipment
CN116128309A (en) * 2023-04-11 2023-05-16 胜利油田利丰石油设备制造有限公司 Petroleum engineering well site operation maintenance management system based on Internet of things
CN117674159A (en) * 2024-02-01 2024-03-08 国网山东省电力公司济南供电公司 Method, system, equipment and medium for evaluating severity of expected accident of power system

Also Published As

Publication number Publication date
KR101696222B1 (en) 2017-01-13

Similar Documents

Publication Publication Date Title
WO2017057956A1 (en) System for power transmission line permitted heat capacity calculation and electric power-system analysis
CN112684400B (en) Electric energy meter operation error data monitoring method and system for small electric quantity station area
CN109861306A (en) Power transmission network power generation dispatching method and device
US11650263B1 (en) System for determining power consumption by devices
CN116704716B (en) Laboratory constant temperature and humidity abnormality alarm method and device and computer equipment
WO2021020691A1 (en) Power resource trade mediation management method
CN103608836B (en) The method and apparatus of energy expenditure on measurement computer system platform
CN111079298A (en) Power system dynamic hybrid simulation method and system based on ice wind weather conditions
CN111128357B (en) Hospital logistics energy consumption target object monitoring method and device and computer equipment
CN115017732A (en) Lightning protection analysis simulation step length calculation method, device, equipment and medium
CN109819470B (en) WIFI flow distribution system based on big data analysis
CN203551692U (en) General hardware platform for intelligent substation digital physical hybrid simulation
WO2012036339A1 (en) Single-phase line voltage calculating method of a smart electricity distribution operating system, and recording medium for same
CN116979997B (en) Dual-mode communication-based power distribution network automation method and system
CN220419441U (en) Data acquisition device and system
CN108011586A (en) Nominal operating temperature measuring system and nominal operating temperature measuring method
CN108334406A (en) Based on regional temperature differentiation across the energy saving load-balancing method of data center
US20240126355A1 (en) Hyperscale power control for improved datacenter utilization
CN117093429B (en) Method and system for evaluating stability of server
US20240004445A1 (en) System and method of automatic rack wise power measurement in a data centre
CN115453271A (en) Power distribution network problem diagnosis method, device, equipment and storage medium
CN114143341A (en) Modern building data collection platform for intelligent energy
CN117873716A (en) Resource evaluation method, device and storage medium
CN116859333A (en) Rectangular band-shaped distributed photovoltaic irradiance acquisition position determining method and device
CN106600155A (en) Method for controlling quality of meteorological factors at station based on cloud platform and intelligent chip

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16852102

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16852102

Country of ref document: EP

Kind code of ref document: A1