WO2021193893A1 - Culture medium and method for producing laccase - Google Patents

Culture medium and method for producing laccase Download PDF

Info

Publication number
WO2021193893A1
WO2021193893A1 PCT/JP2021/012768 JP2021012768W WO2021193893A1 WO 2021193893 A1 WO2021193893 A1 WO 2021193893A1 JP 2021012768 W JP2021012768 W JP 2021012768W WO 2021193893 A1 WO2021193893 A1 WO 2021193893A1
Authority
WO
WIPO (PCT)
Prior art keywords
medium
laccase
fungus
tempo
mass
Prior art date
Application number
PCT/JP2021/012768
Other languages
French (fr)
Japanese (ja)
Inventor
麻衣 志村
尚武 金野
凪左 和田
Original Assignee
トッパン・フォームズ株式会社
国立大学法人宇都宮大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021034473A external-priority patent/JP2021153575A/en
Application filed by トッパン・フォームズ株式会社, 国立大学法人宇都宮大学 filed Critical トッパン・フォームズ株式会社
Publication of WO2021193893A1 publication Critical patent/WO2021193893A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)

Definitions

  • the present invention relates to a medium and a method for producing laccase.
  • the present application claims priority based on Japanese Patent Application No. 2020-058272 filed in Japan on March 27, 2020 and Japanese Patent Application No. 2021-034473 filed in Japan on March 4, 2021. The contents are used here.
  • Laccase is an enzyme that is widely distributed in nature, and the main laccase-producing fungi include wood-rotting fungi, especially basidiomycetes and ascomycetes. Laccase has actions such as decomposition of lignin, oxidation of phenols such as urushiol, and polymerization, and is highly useful. Therefore, in the industrial world, it is used for removing lignin during pulp production, treating wastewater containing pigments, producing lacquer, and the like. Furthermore, it is expected that laccase will be used for decomposing environmental pollutants such as polychlorinated biphenyls (PCBs).
  • PCBs polychlorinated biphenyls
  • laccase has high industrial utility value, it cannot be expected to increase in production volume and has not been used on a large scale.
  • An object of the present invention is to provide a new means for producing laccase.
  • the present invention is a medium for growing a fungus, wherein the medium contains TEMPO-oxidized cellulose nanofibers, and the medium is a medium for causing the fungus to produce laccase by growing the fungus.
  • the medium is provided.
  • the fungus may be a mushroom.
  • the laccase may be bilirubin oxidase.
  • the present invention is a method for producing laccase, which comprises a step of causing the fungus to produce laccase by growing a fungus using a medium containing TEMPO-oxidized cellulose nanofibers. Provide a manufacturing method.
  • the medium according to one embodiment of the present invention is a medium for growing a fungus, and the medium is TEMPO-oxidized cellulose nanofibers (in this specification, it may be abbreviated as "TEMPO-oxidized CNF").
  • the medium is a medium for causing the fungus to produce laccase by growing the fungus. Since the medium of the present embodiment contains TEMPO-oxidized CNF, it is possible to make the fungus produce laccase having sufficiently high enzyme activity (laccase activity) by growing the fungus, which is a novel method. Achieve the production of laccase in Japan.
  • the enzymatic activity of laccase means laccase activity unless otherwise specified.
  • the fungus to which the medium of the present embodiment is used has a laccase-producing ability and is a laccase-producing bacterium.
  • the fungus grows utilizing TEMPO-oxidized CNF and produces laccase.
  • the fungus examples include wood-rotting fungi, aspergillus, and the like, and may be fruiting bodies (mushrooms). That is, in the present embodiment, the growth of the fungus includes both the culture of the microorganism and the cultivation (growth) of the fruiting body (mushroom).
  • Wood-destroying fungi decompose the major components of any wood, such as cellulose, hemicellulose and lignin, to cause decay.
  • wood-destroying fungi include white-rot fungi such as shiitake mushrooms, oyster mushrooms, maitake mushrooms, and eryngii; brown-decay fungi such as shiitake mushrooms, sardine mushrooms, and Namidatake mushrooms; microorganisms belonging to the genus Trichoderma, and microorganisms belonging to the genus Caetomium. Examples include soft-rot fungi.
  • Aspergillus is a microorganism belonging to the genus Aspergillus, and specific examples thereof include Aspergillus, White Jiuqu, and Black Jiuqu.
  • the fungus to be grown using the medium may be only one kind, two or more kinds, and when there are two or more kinds, the combination and ratio thereof can be arbitrarily adjusted.
  • mushrooms have high utility value by themselves and are particularly suitable as fungi that produce laccase. That is, the fungus is preferably a mushroom.
  • TEMPO Oxidized Cellulose Nanofiber is TEMPO, that is, by the catalytic action of 2,2,6,6-tetramethylpiperidine 1-oxyl (2,2,6,6-tetramethylpiperidine 1-oxyl).
  • CNF chemically modifying cellulose
  • cellulose nanofibers include cellulose or derivatives thereof, which are microfibrils or microfibril aggregates having a fiber width of 3 to 200 nm.
  • the ratio of the content of TEMPO-oxidized CNF to the total mass of the medium may be appropriately adjusted so as to improve the growth of the fungus, and is not particularly limited.
  • the ratio is preferably 0.05 to 4% by mass, more preferably 0.1 to 2.5% by mass, for example, 0.2 to 1.5% by mass, and 0. It may be any of 3 to 1% by mass.
  • the ratio is equal to or higher than the lower limit, the enzymatic activity of the laccase produced by the fungus becomes higher.
  • the ratio is not more than the upper limit value, the excessive use of TEMPO-oxidized CNF is further suppressed.
  • the enzymatic activity of laccase can be measured by a known method using a liquid containing laccase as an enzyme (sometimes referred to as "enzyme solution" in the present specification).
  • a liquid containing laccase as an enzyme
  • enzyme solution for example, ABTS, that is, 2,2'-azino-bis (3-ethylbenzothiazolin-6-sulfonic acid) diammonium salt (2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt.
  • C 18 H 16 N 4 S 4 (NH 4 ) 2 ) is used as a substrate, an ABTS aqueous solution, a buffer solution, and an enzyme solution are prepared, and the reaction solution obtained by mixing these is used as a sample. ..
  • ABTS is oxidized by the enzymatic action of laccase. Since the oxide of ABTS has a large absorbance at a wavelength of 420 nm, the aqueous solution of ABTS is originally transparent, but when it is oxidized by laccase, its color changes to blue.
  • the absorbance A 420 at a wavelength of 420 nm is continuously measured for this sample until a certain period of time (for example, several minutes) elapses, and within the range where A 420 increases linearly.
  • the amount of increase in absorbance ⁇ A 420 at a wavelength of 420 nm and the corresponding reaction time (min) are determined.
  • the enzyme activity of laccase can be calculated by substituting each numerical value into the following formula (i).
  • "36” is derived from the molar extinction coefficient of ABTS (36000M -1 ⁇ cm -1) at a wavelength of 420 nm.
  • [Laccase enzyme activity (U / mL)] ⁇ A 420 ⁇ [reaction solution volume (mL)] ⁇ / ⁇ [reaction time (min)] ⁇ 36 ⁇ [enzyme solution volume (mL)] ⁇ (i)
  • the total enzyme activity 1U of laccase is defined as the amount of enzyme that oxidizes 1 ⁇ mol of ABTS per minute by the above reaction, and satisfies the relationship of the following formula (ii).
  • [Total enzyme activity of laccase (U)] [Enzyme activity of laccase (U / mL)] x [Enzyme solution amount (mL)] (ii)
  • the medium may be either liquid or solid.
  • the TEMPO-oxidized CNF may be unevenly distributed in the medium, but it is preferably uniformly dispersed.
  • the TEMPO-oxidized CNF may be unevenly distributed in the medium or may be uniformly dispersed, but when the medium is unevenly distributed, the site where the fungus grows in the medium. It is preferable that the mixture is unevenly distributed in the region in the vicinity of and the region.
  • the medium may contain other components necessary for fungal growth.
  • the other components are not particularly limited and can be appropriately selected depending on the type of fungus and the like.
  • the other component may be, for example, either an organic component or an inorganic component.
  • the medium may be, for example, a known medium to which TEMPO-oxidized CNF is added.
  • the other components contained in the medium may be only one kind, two or more kinds, and when there are two or more kinds, the combination and ratio thereof can be arbitrarily adjusted.
  • Examples of the other components include base materials such as shavings and corn cobs; nutritional materials such as rice bran, bran, okara, corn bran, and bean skin; water; peptone; yeast extract; iron sulfate, magnesium sulfate, and dipotassium phosphate.
  • Examples thereof include metal salts such as potassium, sodium dihydrogen phosphate, disodium hydrogen phosphate, dipotassium hydrogen phosphate, calcium chloride, manganese sulfate (II), zinc sulfate, and copper sulfate (II).
  • metal salts those in which hydrate is present may be blended with the metal hydrate at the time of producing the medium.
  • the ratio of the content of the base material to the total mass of the medium in the medium may be appropriately adjusted so as to improve the growth of the fungus, and is not particularly limited.
  • the ratio is preferably 30 to 70% by mass, more preferably 35 to 65% by mass, and is, for example, 40 to 60% by mass or 45 to 55% by mass. May be good.
  • the ratio is equal to or higher than the lower limit, the fungus grows better and the amount of laccase produced increases.
  • the ratio is not more than the upper limit value, the excessive use of the base material is further suppressed.
  • the ratio of the content of the nutrient material to the total mass of the medium in the medium may be appropriately adjusted so as to improve the growth of the fungus, and is not particularly limited.
  • the ratio is preferably 3 to 40% by mass, more preferably 5 to 35% by mass, and is, for example, any one of 10 to 30% by mass and 15 to 25% by mass. May be good.
  • the ratio is equal to or higher than the lower limit, the fungus grows better and the amount of laccase produced increases.
  • the ratio is not more than the upper limit value, the excessive use of the nutritional material is further suppressed.
  • the ratio of the water content to the total mass of the medium in the medium may be appropriately adjusted so as to improve the growth of the fungus, and is not particularly limited. Among them, particularly in the case of a solid medium, the ratio is preferably 55 to 75% by mass, more preferably 60 to 70% by mass. When the ratio is equal to or higher than the lower limit, the effect of using water can be obtained more remarkably. When the ratio is equal to or less than the upper limit value, excessive use of water is further suppressed. In the examples described later, all of these conditions are satisfied.
  • the ratio of the water content to the total mass of the medium in the medium is preferably 89.5 to 99.3% by mass.
  • Peptone, yeast extract and metal salts are preferred as components in the liquid medium.
  • the ratio of the content of peptone to the total mass of the medium in the medium is preferably 0.5 to 5% by mass.
  • the ratio of the content of yeast extract to the total mass of the medium in the medium is preferably 0.05 to 0.5% by mass.
  • the ratio of the content of the metal salt to the total mass of the medium in the medium is preferably 0.1 to 1% by mass.
  • the ratio of the total content of one or more of the above-mentioned components of the medium to the total mass of the medium does not exceed 100% by mass.
  • the ratio of the total content of the TEMPO-oxidized CNF, the base material, the nutrient material and water to the total mass of the medium in the medium is , It may be appropriately adjusted so that the growth of the fungus becomes good, and is not particularly limited. Among them, the ratio is preferably 80 to 100% by mass, more preferably 85 to 100% by mass, further preferably 90 to 100% by mass, for example, 95 to 100% by mass. There may be. When the ratio is equal to or higher than the lower limit, the fungus grows better.
  • the ratio may be appropriately adjusted so that the growth of the fungus is good, and is not particularly limited. Among them, the ratio is preferably 90 to 100% by mass, more preferably 93 to 100% by mass, and may be, for example, 95 to 100% by mass. When the ratio is equal to or higher than the lower limit, the fungus grows better.
  • the cellulolytic bacterium is a bacterium having cellulase which is a cellulase hydrolyzing enzyme, and by using cellulase, cellulose is decomposed into glucose or oligosaccharide which is the final product. , Usually, it is disclosed that this end product is used as a nutrient source. Further, the publication discloses that the cellulolytic bacteria decompose TEMPO-oxidized CNF as cellulose by growing the cellulolytic bacteria using such a medium.
  • the publication does not disclose at all about causing laccase to produce laccase by using the culture medium for cellulose-degrading bacteria. And, in general, it cannot be said that cellulose-degrading bacteria always produce laccase. Further, the publication does not specifically disclose that fruiting bodies (mushrooms) are grown using the culture medium for cellulolytic bacteria.
  • the fungus grows using a specific range of CNF called TEMPO-oxidized CNF, produces laccase, and its enzymatic activity (laccase activity). ) Is high.
  • the medium of the present embodiment fruiting bodies (mushrooms) actually grow well and produce laccase with high enzymatic activity.
  • the medium of the present embodiment that brings out these laccase-producing characteristics of the fungus cannot be easily conceived from the contents of the above-mentioned gazette.
  • Patent Document 1 a specific species of laccase-producing filamentous fungus and a specific species of carotenoid-producing microorganism are used. , Is disclosed in combination.
  • this production method requires the use and control of carotenoid-producing microorganisms, and the process is complicated.
  • the enzymatic activity of laccase obtained by all the disclosed production methods including this production method is 80.3 to 10000 U / L.
  • the enzyme activity is, for example, 12 U / mL (12000 U / L) or more, 30 U / / without requiring the combined use of other microorganisms. It is possible to obtain laccases of mL (30,000 U / L) or more, and in a simplified process, laccases with remarkably high enzyme activity can be obtained.
  • laccases of mL (30,000 U / L) or more, and in a simplified process, laccases with remarkably high enzyme activity can be obtained.
  • the enzymatic activity of laccase obtained by using the medium of the present embodiment will be described in detail later.
  • the medium of the present embodiment contains TEMPO-oxidized CNF, it is possible to produce laccase having sufficiently high enzyme activity (laccase activity).
  • a CNF other than TEMPO-oxidized CNF for example, mechanically defibrated cellulose nanofibers (mechanically defibrated CNF) is used, such an effect cannot be obtained.
  • the mechanical defibration CNF is a cellulose nanofiber dispersion liquid (CNF) by subjecting a cellulose nanofiber precursor (CNF precursor) to a mechanical defibration treatment in a dispersion medium such as water without using TEMPO.
  • CNF produced by a production method having a step of obtaining a dispersion liquid).
  • the medium can be produced by blending TEMPO-oxidized CNF and the other components.
  • the compounding of each component can be carried out under temperature conditions of, for example, 15 to 40 ° C., and may be carried out at room temperature.
  • room temperature means a temperature that is not particularly cooled or heated, that is, a normal temperature, and examples thereof include a temperature of 15 to 25 ° C.
  • each component can be blended under normal pressure, for example.
  • the TEMPO-oxidized CNF used in the production of the medium may be blended in a pure product state by, for example, removal or purification, or may be in a state of a mixture with components other than the TEMPO-oxidized CNF by post-treatment. It may be blended as it is, or it may be blended as it is in the state of a mixture with components other than TEMPO oxide CNF obtained at the time of producing TEMPO oxide CNF.
  • the method for producing laccase according to an embodiment of the present invention is a step of causing the fungus to produce laccase by growing the fungus using a medium containing TEMPO-oxidized CNF (in the present specification, "laccase production”. It may be abbreviated as "process").
  • the medium used in the production method of the present embodiment is the medium according to one embodiment of the present invention described above.
  • the fungus used in the production method of the present embodiment is the fungus described above.
  • the growth of the fungus can be carried out by the same method as a known method for growing the fungus, except that, for example, the medium and the fungus are used. That is, the method of using the medium may be the same as the method of using a known medium.
  • the medium When the medium is liquid, the medium may be allowed to stand or shake (that is, shake culture) when the fungus grows. When the medium is solid, the medium may be allowed to stand during the growth of the fungus.
  • the fungus is inoculated into the obtained sterilized medium, and the inoculated fungus is grown in the sterilized medium or on the sterilized medium. It can be carried out.
  • fungal scraping treatment in which the fungus after inoculation is allowed to grow to some extent and a part of the grown fungus is removed in or on the medium.
  • the growth of fungi can be improved by performing the fungal scraping treatment.
  • the temperature at the time of fungal growth may be appropriately selected depending on the type of fungus, and is not particularly limited. Usually, the temperature during fungal growth is preferably 13 to 50 ° C, more preferably 15 to 35 ° C. When the temperature is within such a range, the growth rate of the fungus is further improved. When the fungal scraping treatment is performed, the temperature at the time of fungal growth may be the same or different before and after the fungal scraping treatment.
  • the relative humidity during fungal growth in the laccase production step may be appropriately selected depending on the type of fungus, and is not particularly limited. Usually, the relative humidity during fungal growth is preferably 50-99%, more preferably 60-85%. When the relative humidity is equal to or higher than the lower limit, the growth rate of the fungus is further improved. When the relative humidity is equal to or less than the upper limit value, it is possible to prevent the relative humidity from becoming excessive.
  • the humidity at the time of fungal growth may be the same or different before and after the fungal scraping treatment.
  • the growth time of the fungus may be appropriately selected according to the type of fungus, the temperature at the time of fungus growth, the relative humidity at the time of fungus growth, the mode of the medium (solid or liquid), and the like. Not limited. Usually, the growth time (number of days) of the fungus is preferably 10 to 180 days, more preferably 25 to 70 days. When the growth time is at least the lower limit value, the growth degree of the fungus is further improved. When the growth time is not more than the upper limit value, it is possible to prevent the time required for the laccase production step from becoming excessively long.
  • the fungus uses TEMPO-oxidized CNF in the medium to grow laccase well and produce laccase having sufficiently high enzyme activity.
  • the method for producing laccase of the present embodiment may include the laccase production step and other steps.
  • the other steps are not particularly limited and can be arbitrarily selected depending on the intended purpose.
  • Examples of the other step include a step of separating the produced laccase from the medium after the laccase production step (in the present specification, it may be abbreviated as "separation step").
  • the separation step can be performed, for example, by extracting or separating a liquid containing laccase (for example, an aqueous solution of laccase) from the medium after the laccase production step.
  • a liquid containing laccase for example, an aqueous solution of laccase
  • the laccase may be further precipitated in the liquid containing the laccase, and the precipitate of the laccase may be taken out from the liquid.
  • the fungus by using the medium, the fungus can produce laccase having sufficiently high enzyme activity, and laccase having sufficiently high enzyme activity can be produced.
  • the enzymatic activity of the laccase obtained by the production method of the present embodiment is preferably 12 U / mL or more, for example, 30 U / mL or more, 100 U / mL or more, 150 U / mL or more, 200 U / mL or more, 250 U / mL or more. It may be any of mL or more, 300 U / mL or more, and 340 U / mL or more.
  • the upper limit of the enzyme activity of the laccase obtained by the production method of the present embodiment is not particularly limited, but for example, laccase of 500 U / mL or less can be produced relatively easily.
  • the medium after growing fruiting bodies (mushrooms) and harvesting is generally called a waste fungus bed or the like, and is conventionally discarded.
  • the medium at this stage of this embodiment contains fungal-produced laccase. That is, the medium of the present embodiment is remarkably useful in that it not only grows fungi but also serves as a place for producing laccase, and is far superior to the conventional medium in terms of effective utilization.
  • An example of a preferred medium of the present embodiment is a medium for growing a fungus.
  • the medium is a solid medium containing TEMPO-oxidized cellulose nanofibers, a base material, a nutrient material, and water.
  • the ratio of the content of the TEMPO-oxidized cellulose nanofibers to the total mass of the medium is 0.05 to 4% by mass.
  • the ratio of the content of the base material to the total mass of the medium is 30 to 70% by mass.
  • the ratio of the content of the nutritional material to the total mass of the medium is 3 to 40% by mass.
  • the ratio of the water content to the total mass of the medium is 55 to 75% by mass.
  • the ratio of the total content of the TEMPO-oxidized cellulose nanofibers, the base material, the nutrient material and the water to the total mass of the medium does not exceed 100% by mass.
  • the medium include a medium that is a medium for causing the fungus to produce laccase by growing the fungus.
  • the medium is a liquid medium containing TEMPO-oxidized cellulose nanofibers, peptone, yeast extract, a metal salt, and water.
  • the ratio of the content of the TEMPO-oxidized cellulose nanofibers to the total mass of the medium is 0.05 to 4% by mass.
  • the ratio of the content of the peptone to the total mass of the medium is 0.5 to 5% by mass.
  • the ratio of the content of the yeast extract to the total mass of the medium is 0.05 to 0.5% by mass.
  • the ratio of the content of the metal salt to the total mass of the medium is 0.1 to 1% by mass.
  • the ratio of the water content to the total mass of the medium is 89.5 to 99.3% by mass.
  • the ratio of the total content of the TEMPO-oxidized cellulose nanofibers, peptone, yeast extract, metal salt and water to the total mass of the medium does not exceed 100% by mass.
  • the medium include a medium that is a medium for causing the fungus to produce laccase by growing the fungus.
  • the laccase may be bilirubin oxidase.
  • the bottle was taken out of the incubator, the lid was removed, and the surface of the medium was scraped to perform a fungal scraping treatment. And I put a lid on the bottle.
  • this medium was placed in an incubator together with the bottle, and the inoculum was grown on fruiting bodies (Oyster mushrooms) under the conditions of a temperature of 15 ° C. and a relative humidity of 90%, and laccase was produced on the mushrooms. The growing time during this period was 14 days. Based on the above, the laccase production step was carried out.
  • the bottle was then removed from the incubator, the lid was removed and the oyster mushrooms were harvested. From the above, a medium containing laccase was obtained.
  • the removed precipitate was added to sodium phosphate buffer (pH 7.0) (5 mL) having a concentration of 50 mM, and the mixture was stirred and suspended to obtain a crude enzyme solution. Based on the above, three kinds of crude enzyme solutions corresponding to the three kinds of samples taken out from the upper part, the middle part and the lower part of the medium were prepared.
  • An ABTS solution having an ABTS concentration of 10 mM was prepared by adding ABTS as a substrate to a sodium citrate buffer solution (pH 3.0) having a concentration of 50 mM and dissolving it. Obtained by mixing the ABTS solution (250 ⁇ L), sodium citrate buffer (pH 3.0) (730 ⁇ L) having a concentration of 50 mM, purified water (19 ⁇ L), and the crude enzyme solution (1 ⁇ L). The reaction solution (1 mL) was used as a sample. In the obtained sample, the concentration of ABTS was 2.5 mM and the concentration of sodium citrate was 36.5 mM.
  • Example 1 The medium and laccase were produced by the same method as in Example 1 except that TEMPO-oxidized CNF was not used when the medium was produced and the number of days for culturing the inoculum was 35 days instead of 30 days. , Medium was evaluated. The results are shown in FIG.
  • Example 2 The medium and laccase were produced by the same method as in Example 2 except that TEMPO-oxidized CNF was not used when the medium was produced and the number of days for culturing the inoculum was changed from 15 days to 20 days. , Medium was evaluated. The results are shown in FIG.
  • the enzymatic activity of the laccase produced by Oyster Mushroom was 45 U / mL or more (45 to 346 U / mL) in all the samples, which was extremely high. Focusing on the sample having the highest enzyme activity, in Examples 1 and 2, the enzyme activity of laccase was more than 220 U / mL, which was extremely high. Among them, in Example 1, the enzyme activity of laccase was 346 U / mL, which was particularly high. In Examples 1 and 2, since the type of medium is the same, the oyster mushroom used in Example 1 is superior to the oyster mushroom used in Example 2 in terms of producing laccase having high enzymatic activity. rice field.
  • Comparative Examples 1 and 2 the enzymatic activity of the laccase produced by Oyster Mushroom was extremely low. From the comparison of Example 1 and Comparative Example 1 and the comparison of Example 2 and Comparative Example 2, it can be confirmed that the presence or absence of TEMPO-oxidized CNF in the medium has a great influence on the degree of enzyme activity of laccase. rice field.
  • Example 3 ⁇ Production of medium >> Peptone with a concentration of 10 g / L, yeast extract with a concentration of 1.0 g / L, potassium dihydrogen phosphate with a concentration of 1.0 g / L, disodium hydrogen phosphate twelve hydrate with a concentration of 0.25 g / L , Calcium chloride dihydrate with a concentration of 13.2 mg / L, Manganese (II) sulfate pentahydrate with a concentration of 1.08 mg / L, Zinc sulfate heptahydrate with a concentration of 1.0 mg / L, Copper (II) sulfate pentahydrate with a concentration of 2.0 mg / L, iron (II) heptahydrate with a concentration of 0.1 g / L, magnesium sulfate heptahydrate with a concentration of 0.5 g / L , And TEMPO oxide CNF having a concentration of 5.0 g / L were mixed, and distilled water was
  • the sterilized medium obtained above was inoculated with the Hiratake NBRC104981 strain, and the inoculated sterilized medium was shaken at 26 ° C. and 100 rpm using a shaker to carry out shaking culture.
  • the laccase production step was performed.
  • the culture (shaking culture) was carried out for 30 days. From the above, a medium containing laccase was obtained.
  • the Hiratake NBRC104981 strain used here can be sold from the Biotechnology Center of the Product Evaluation Technology Infrastructure Organization.
  • Example 3 the enzymatic activity of the laccase produced by Oyster Mushroom was maximized on the 15th day after the start of culturing. At this time, the total activity in 50 mL of the medium was about 650 U, and the enzyme activity of laccase was 13.3 U / mL. Moreover, when the highly active laccase at this time was identified, it was bilirubin oxidase (EC 1.3.3.5). At this time, the crude enzyme solution obtained above is purified, and the target product separated by SDS polyacrylamide gel electrophoresis (SDS PAGE) is analyzed by liquid chromatography-mass spectrometry (LC / MS / MS). Identified that the laccase was bilirubin oxidase (EC 1.3.3.5).
  • SDS PAGE SDS polyacrylamide gel electrophoresis
  • Comparative Examples 3 to 6 the enzymatic activity of the laccase produced by Oyster Mushroom was clearly lower than that in Example 3.
  • the enzyme activity of laccase was maximized on the 15th day after the start of culturing, and the enzyme activity at this time was 6.8 U / mL.
  • Comparative Example 4 the enzyme activity of laccase was maximized on the 15th day after the start of culturing, and the enzyme activity at this time was 7.8 U / mL.
  • Comparative Example 5 the enzyme activity of laccase was maximized on the 7th day after the start of culturing, and the enzyme activity at this time was 1.9 U / mL.
  • the enzyme activity of laccase was maximized on the 15th day after the start of culturing, and the enzyme activity at this time was 6.7 U / mL.
  • the present invention can be used for the production of laccase.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Botany (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Mycology (AREA)
  • Molecular Biology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

A culture medium according to the present embodiment is for growing a fungus and for producing a laccase in the fungus by growing the fungus while including TEMPO-oxidized cellulose nanofibers. A method for producing a laccase according to the present embodiment includes a step for producing a laccase in a fungus by growing the fungus by using a culture medium that includes TEMPO-oxidized cellulose nanofibers.

Description

培地、及びラッカーゼの製造方法Method for producing medium and laccase
 本発明は、培地、及びラッカーゼの製造方法に関する。
 本願は、2020年3月27日に日本に出願された特願2020-058272号、及び2021年3月4日に日本に出願された特願2021-034473号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a medium and a method for producing laccase.
The present application claims priority based on Japanese Patent Application No. 2020-058272 filed in Japan on March 27, 2020 and Japanese Patent Application No. 2021-034473 filed in Japan on March 4, 2021. The contents are used here.
 ラッカーゼは自然界に広く分布する酵素であり、主なラッカーゼ産生菌類としては、木材腐朽菌、特に担子菌類及び子嚢菌類が挙げられる。ラッカーゼは、リグニンの分解、ウルシオール等のフェノール類の酸化、重合等の作用を有しており、有用性が高い。そのため産業界では、パルプの製造時におけるリグニンの除去、色素を含む廃水の処理、漆の製造等で利用されている。さらに、ポリ塩化ビフェニル(PCB)等の環境汚染物質の分解に、ラッカーゼを利用することも期待されている。 Laccase is an enzyme that is widely distributed in nature, and the main laccase-producing fungi include wood-rotting fungi, especially basidiomycetes and ascomycetes. Laccase has actions such as decomposition of lignin, oxidation of phenols such as urushiol, and polymerization, and is highly useful. Therefore, in the industrial world, it is used for removing lignin during pulp production, treating wastewater containing pigments, producing lacquer, and the like. Furthermore, it is expected that laccase will be used for decomposing environmental pollutants such as polychlorinated biphenyls (PCBs).
 その一方で、自然界から取り出せるラッカーゼの量には限りがある。発酵技術を利用したラッカーゼの合成も検討されているが、銅イオンや芳香族化合物等の添加剤の使用が必要であるため、環境汚染の懸念があり、発酵液の解毒処理が必要であるなど、実用性が高いとはいえない。
 このように、ラッカーゼは、産業上での利用価値が高いものの、生産量の増大を見込めず、大規模な利用には至っていない。
On the other hand, the amount of laccase that can be extracted from nature is limited. The synthesis of laccase using fermentation technology is also being considered, but since it is necessary to use additives such as copper ions and aromatic compounds, there is a concern about environmental pollution, and detoxification of the fermentation broth is necessary. , It cannot be said that it is highly practical.
As described above, although laccase has high industrial utility value, it cannot be expected to increase in production volume and has not been used on a large scale.
 これらとは異なるラッカーゼの製造方法としては、特定種のラッカーゼ生産性の糸状菌によるラッカーゼ生産のための発酵過程において、特定種のカロテノイド生産性の微生物を添加することによって、前記糸状菌によるラッカーゼの生産を促進し、ラッカーゼを製造する方法が開示されている(特許文献1参照)。この製造方法では、ラッカーゼ生産性の糸状菌と、カロテノイド生産性の微生物と、の組み合わせとして、アギタケ(Pleurotus ferulae)とスポリディオボラス・パラロゼウス(Sporidiobolus pararoseus)との組み合わせ;ヒラタケ(Pleurotus ostreatus)とロドトルラ・ムチラギノーザ(Rhodotorula mucilaginosa)との組み合わせ;レイシ(Ganoderma Lucidum)とロドトルラ・ムチラギノーザ(Rhodotorula mucilaginosa)との組み合わせ、のいずれかを採用する。 As a method for producing laccase different from these, in the fermentation process for laccase production by a specific species of laccase-producing filamentous fungus, a specific species of carotenoid-producing microorganism is added to produce the laccase by the specific species of filamentous fungus. A method for promoting production and producing laccase is disclosed (see Patent Document 1). In this production method, as a combination of a laccase-producing filamentous fungus and a carotenoid-producing microorganism, a combination of Agitake (Pleurotus ferulae) and Spolidiobolus pararoseus; Pleurotus and Pleurotus osteos A combination with Rhodotorula mucilaginosa; a combination of Rhodotorula Lucidum and Rhodotorula mucilaginosa is adopted.
日本国特許第6560301号公報Japanese Patent No. 6560301
 特許文献1で開示されている製造方法では、カロテノイド生産性の微生物ではなく、その抽出物や、β-カロテンを添加した場合の製造方法も開示されているが、カロテノイド生産性の微生物を添加した方が、より酵素活性の高いラッカーゼが得られている。しかし、その場合には、カロテノイド生産性の微生物の併用が必要であるため、この微生物の使用と管理の分だけ、工程が煩雑であるという問題点があった。そこで、これまでに無い、新規のラッカーゼの製造方法の開発が望まれていた。 In the production method disclosed in Patent Document 1, not a carotenoid-producing microorganism but an extract thereof and a production method when β-carotene is added are also disclosed, but a carotenoid-producing microorganism was added. The lacquerze having higher enzyme activity is obtained. However, in that case, since it is necessary to use a carotenoid-producing microorganism in combination, there is a problem that the process is complicated due to the use and control of this microorganism. Therefore, it has been desired to develop a new method for producing laccase, which has never existed before.
 本発明は、新規のラッカーゼの製造手段を提供することを課題とする。 An object of the present invention is to provide a new means for producing laccase.
 本発明は、真菌を生育させるための培地であって、前記培地は、TEMPO酸化セルロースナノファイバーを含有し、前記培地は、前記真菌を生育させることにより、前記真菌にラッカーゼを産生させるための培地である、培地を提供する。
 本発明の培地においては、前記真菌がキノコであってもよい。
 本発明の培地においては、前記ラッカーゼがビリルビンオキシダーゼであってもよい。
 本発明は、ラッカーゼの製造方法であって、前記製造方法は、TEMPO酸化セルロースナノファイバーを含有する培地を用いて、真菌を生育させることにより、前記真菌にラッカーゼを産生させる工程を有する、ラッカーゼの製造方法を提供する。
The present invention is a medium for growing a fungus, wherein the medium contains TEMPO-oxidized cellulose nanofibers, and the medium is a medium for causing the fungus to produce laccase by growing the fungus. The medium is provided.
In the medium of the present invention, the fungus may be a mushroom.
In the medium of the present invention, the laccase may be bilirubin oxidase.
The present invention is a method for producing laccase, which comprises a step of causing the fungus to produce laccase by growing a fungus using a medium containing TEMPO-oxidized cellulose nanofibers. Provide a manufacturing method.
 本発明によれば、新規のラッカーゼの製造手段が提供される。 According to the present invention, a novel means for producing laccase is provided.
実施例1~2及び比較例1~2で得られたラッカーゼの酵素活性の測定結果を示すグラフである。It is a graph which shows the measurement result of the enzyme activity of the laccase obtained in Examples 1 and 2 and Comparative Examples 1 and 2. 実施例3及び比較例3~6で得られたラッカーゼの酵素活性の測定結果を示すグラフである。It is a graph which shows the measurement result of the enzyme activity of the laccase obtained in Example 3 and Comparative Examples 3-6.
<<培地>>
 本発明の一実施形態に係る培地は、真菌を生育させるための培地であって、前記培地は、TEMPO酸化セルロースナノファイバー(本明細書においては、「TEMPO酸化CNF」と略記することがある)を含有し、前記培地は、前記真菌を生育させることにより、前記真菌にラッカーゼを産生させるための培地である。
 本実施形態の培地は、TEMPO酸化CNFを含有していることにより、真菌を生育させることによって、真菌に酵素活性(ラッカーゼ活性)が十分に高いラッカーゼを産生させることを可能としており、新規な方法でのラッカーゼの製造を実現する。
<< Medium >>
The medium according to one embodiment of the present invention is a medium for growing a fungus, and the medium is TEMPO-oxidized cellulose nanofibers (in this specification, it may be abbreviated as "TEMPO-oxidized CNF"). The medium is a medium for causing the fungus to produce laccase by growing the fungus.
Since the medium of the present embodiment contains TEMPO-oxidized CNF, it is possible to make the fungus produce laccase having sufficiently high enzyme activity (laccase activity) by growing the fungus, which is a novel method. Achieve the production of laccase in Japan.
 本明細書においては、ラッカーゼの酵素活性とは、特に断りのない限り、ラッカーゼ活性を意味する。 In the present specification, the enzymatic activity of laccase means laccase activity unless otherwise specified.
<真菌>
 本実施形態の培地の使用対象となる前記真菌は、ラッカーゼ産生能を有しており、ラッカーゼ産生菌である。
 前記真菌は、TEMPO酸化CNFを利用して生育し、ラッカーゼを産生する。
<Fungus>
The fungus to which the medium of the present embodiment is used has a laccase-producing ability and is a laccase-producing bacterium.
The fungus grows utilizing TEMPO-oxidized CNF and produces laccase.
 前記真菌としては、例えば、木材腐朽菌、麹菌等が挙げられ、子実体(キノコ)であってもよい。すなわち、本実施形態においては、真菌の生育には、微生物の培養と、子実体(キノコ)の栽培(生育)と、の両方が含まれる。 Examples of the fungus include wood-rotting fungi, aspergillus, and the like, and may be fruiting bodies (mushrooms). That is, in the present embodiment, the growth of the fungus includes both the culture of the microorganism and the cultivation (growth) of the fruiting body (mushroom).
 木材腐朽菌は、セルロース、ヘミセルロース及びリグニン等の、いずれかの木材の主要成分を分解して、腐朽を引き起こす。
 木材腐朽菌としては、例えば、シイタケ、ヒラタケ、マイタケ、エリンギ等の白色腐朽菌;オオウズラタケ、サルノコシカケ、ナミダタケ等の褐色腐朽菌;トリコデルマ(Trichoderma)属に属する微生物、カエトミウム(Caetomium)属に属する微生物等の軟腐朽菌等が挙げられる。
Wood-destroying fungi decompose the major components of any wood, such as cellulose, hemicellulose and lignin, to cause decay.
Examples of wood-destroying fungi include white-rot fungi such as shiitake mushrooms, oyster mushrooms, maitake mushrooms, and eryngii; brown-decay fungi such as shiitake mushrooms, sardine mushrooms, and Namidatake mushrooms; microorganisms belonging to the genus Trichoderma, and microorganisms belonging to the genus Caetomium. Examples include soft-rot fungi.
 麹菌は、アスペルギルス(Aspergillus)属に属する微生物であり、その具体例としては、黄麹菌、白麹菌、黒麹菌等が挙げられる。 Aspergillus is a microorganism belonging to the genus Aspergillus, and specific examples thereof include Aspergillus, White Jiuqu, and Black Jiuqu.
 前記培地を用いて生育させる真菌は、1種のみのであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は、任意に調節できる。 The fungus to be grown using the medium may be only one kind, two or more kinds, and when there are two or more kinds, the combination and ratio thereof can be arbitrarily adjusted.
 真菌のうち、キノコは、それ自体の利用価値が高く、ラッカーゼを産生させる真菌として、特に好適である。
 すなわち、前記真菌はキノコであることが好ましい。
Among the fungi, mushrooms have high utility value by themselves and are particularly suitable as fungi that produce laccase.
That is, the fungus is preferably a mushroom.
<TEMPO酸化セルロースナノファイバー>
 TEMPO酸化セルロースナノファイバー(TEMPO酸化CNF)とは、TEMPO、すなわち、2,2,6,6-テトラメチルピペリジン 1-オキシル(2,2,6,6-tetramethylpiperidine 1-oxyl)の触媒作用によって、セルロースを化学変性させて得られたセルロースナノファイバー(本明細書においては、「CNF」と略記することがある)である。
<TEMPO Oxidized Cellulose Nanofiber>
TEMPO Oxidized Cellulose Nanofiber (TEMPO Oxidized CNF) is TEMPO, that is, by the catalytic action of 2,2,6,6-tetramethylpiperidine 1-oxyl (2,2,6,6-tetramethylpiperidine 1-oxyl). Cellulose nanofibers obtained by chemically modifying cellulose (in this specification, they may be abbreviated as "CNF").
 セルロースナノファイバーとしては、例えば、セルロース若しくはその誘導体で、繊維幅が3~200nmのミクロフィブリル又はミクロフィブリル集合体となっているものが挙げられる。 Examples of cellulose nanofibers include cellulose or derivatives thereof, which are microfibrils or microfibril aggregates having a fiber width of 3 to 200 nm.
 前記培地において、前記培地の総質量に対する、TEMPO酸化CNFの含有量の割合は、真菌の生育が良好となるように適宜調節すればよく、特に限定されない。
 なかでも、前記割合は、0.05~4質量%であることが好ましく、0.1~2.5質量%であることがより好ましく、例えば、0.2~1.5質量%、及び0.3~1質量%のいずれかであってもよい。前記割合が前記下限値以上であることで、真菌が産生するラッカーゼの酵素活性が、より高くなる。前記割合が前記上限値以下であることで、TEMPO酸化CNFの過剰使用がより抑制される。
In the medium, the ratio of the content of TEMPO-oxidized CNF to the total mass of the medium may be appropriately adjusted so as to improve the growth of the fungus, and is not particularly limited.
Among them, the ratio is preferably 0.05 to 4% by mass, more preferably 0.1 to 2.5% by mass, for example, 0.2 to 1.5% by mass, and 0. It may be any of 3 to 1% by mass. When the ratio is equal to or higher than the lower limit, the enzymatic activity of the laccase produced by the fungus becomes higher. When the ratio is not more than the upper limit value, the excessive use of TEMPO-oxidized CNF is further suppressed.
 ラッカーゼの酵素活性は、酵素としてラッカーゼを含有する液体(本明細書においては、「酵素液」と称することがある)を用いて、公知の方法で測定できる。
 例えば、ABTS、すなわち、2,2’-アジノ-ビス(3-エチルベンゾチアゾリン-6-スルホン酸)ジアンモニウム塩(2,2’-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, C1816(NH)を基質として用い、ABTS水溶液と、緩衝液と、酵素液と、を用意し、これらを混合して得られた反応液を検体とする。この検体中では、ラッカーゼの酵素作用によって、ABTSが酸化されていく。ABTSの酸化物は、波長420nmでの吸光度が大きいため、ABTS水溶液は、本来は透明であるが、ラッカーゼにより酸化されると、その色が青色に変化する。混合後(換言すると反応開始後)、一定時間(例えば数分)が経過するまで、この検体について、波長420nmでの吸光度A420を継続的に測定し、A420が直線的に増大する範囲で、波長420nmでの吸光度の増加量ΔA420と、それに対応した反応時間(min)を求める。そして、下記式(i)に各数値を代入することにより、ラッカーゼの酵素活性を算出できる。式(i)中、「36」とは、波長420nmでのABTSのモル吸光係数(36000M-1・cm-1)に由来する。
 [ラッカーゼの酵素活性(U/mL)]={ΔA420×[反応液量(mL)]}/{[反応時間(min)]×36×[酵素液量(mL)]} (i)
 ここで、ラッカーゼの総酵素活性1Uは、上記の反応によって、1分間に1μmolのABTSを酸化する酵素量、と定義され、下記式(ii)の関係を満たす。
 [ラッカーゼの総酵素活性(U)]=[ラッカーゼの酵素活性(U/mL)]×[酵素液量(mL)] (ii)
The enzymatic activity of laccase can be measured by a known method using a liquid containing laccase as an enzyme (sometimes referred to as "enzyme solution" in the present specification).
For example, ABTS, that is, 2,2'-azino-bis (3-ethylbenzothiazolin-6-sulfonic acid) diammonium salt (2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt. , C 18 H 16 N 4 S 4 (NH 4 ) 2 ) is used as a substrate, an ABTS aqueous solution, a buffer solution, and an enzyme solution are prepared, and the reaction solution obtained by mixing these is used as a sample. .. In this sample, ABTS is oxidized by the enzymatic action of laccase. Since the oxide of ABTS has a large absorbance at a wavelength of 420 nm, the aqueous solution of ABTS is originally transparent, but when it is oxidized by laccase, its color changes to blue. After mixing (in other words, after the reaction starts), the absorbance A 420 at a wavelength of 420 nm is continuously measured for this sample until a certain period of time (for example, several minutes) elapses, and within the range where A 420 increases linearly. The amount of increase in absorbance ΔA 420 at a wavelength of 420 nm and the corresponding reaction time (min) are determined. Then, the enzyme activity of laccase can be calculated by substituting each numerical value into the following formula (i). In formula (i), "36" is derived from the molar extinction coefficient of ABTS (36000M -1 · cm -1) at a wavelength of 420 nm.
[Laccase enzyme activity (U / mL)] = {ΔA 420 × [reaction solution volume (mL)]} / {[reaction time (min)] × 36 × [enzyme solution volume (mL)]} (i)
Here, the total enzyme activity 1U of laccase is defined as the amount of enzyme that oxidizes 1 μmol of ABTS per minute by the above reaction, and satisfies the relationship of the following formula (ii).
[Total enzyme activity of laccase (U)] = [Enzyme activity of laccase (U / mL)] x [Enzyme solution amount (mL)] (ii)
 前記培地は、液状及び固形状のいずれであってもよい。
 前記培地が液状である場合、TEMPO酸化CNFは培地中で偏在していてもよいが、均一に分散していることが好ましい。
 前記培地が固形状である場合、TEMPO酸化CNFは培地中に偏在していてもよいし、均一に分散していてもよいが、偏在している場合には、培地中の真菌を生育させる部位とその近傍領域に、偏在していることが好ましい。
The medium may be either liquid or solid.
When the medium is liquid, the TEMPO-oxidized CNF may be unevenly distributed in the medium, but it is preferably uniformly dispersed.
When the medium is solid, the TEMPO-oxidized CNF may be unevenly distributed in the medium or may be uniformly dispersed, but when the medium is unevenly distributed, the site where the fungus grows in the medium. It is preferable that the mixture is unevenly distributed in the region in the vicinity of and the region.
<他の成分>
 前記培地は、TEMPO酸化CNF以外に、真菌の生育に必要な他の成分を含有していてもよい。
 前記他の成分は特に限定されず、真菌の種類等に応じて、適宜選択できる。
 前記他の成分は、例えば、有機成分及び無機成分のいずれであってもよい。
<Other ingredients>
In addition to TEMPO-oxidized CNF, the medium may contain other components necessary for fungal growth.
The other components are not particularly limited and can be appropriately selected depending on the type of fungus and the like.
The other component may be, for example, either an organic component or an inorganic component.
 前記培地は、例えば、公知の培地に、TEMPO酸化CNFが添加されたものであってもよい。 The medium may be, for example, a known medium to which TEMPO-oxidized CNF is added.
 前記培地が含有する前記他の成分は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は、任意に調節できる。 The other components contained in the medium may be only one kind, two or more kinds, and when there are two or more kinds, the combination and ratio thereof can be arbitrarily adjusted.
 前記他の成分としては、例えば、おが屑、コーンコブ等の基材;米ぬか、フスマ、オカラ、コーンブラン、豆皮等の栄養材;水;ペプトン;酵母エキス;硫酸鉄、硫酸マグネシウム、リン酸二水素カリウム、リン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸水素二カリウム、塩化カルシウム、硫酸マンガン(II)、硫酸亜鉛、硫酸銅(II)等の金属塩等が挙げられる。
 前記金属塩のうち、水和物が存在するものは、前記培地の製造時において、その金属水和物を配合してもよい。
Examples of the other components include base materials such as shavings and corn cobs; nutritional materials such as rice bran, bran, okara, corn bran, and bean skin; water; peptone; yeast extract; iron sulfate, magnesium sulfate, and dipotassium phosphate. Examples thereof include metal salts such as potassium, sodium dihydrogen phosphate, disodium hydrogen phosphate, dipotassium hydrogen phosphate, calcium chloride, manganese sulfate (II), zinc sulfate, and copper sulfate (II).
Among the metal salts, those in which hydrate is present may be blended with the metal hydrate at the time of producing the medium.
 前記培地が前記基材を含有する場合、前記培地において、前記培地の総質量に対する、基材の含有量の割合は、真菌の生育が良好となるように適宜調節すればよく、特に限定されない。
 なかでも、前記割合は、30~70質量%であることが好ましく、35~65質量%であることがより好ましく、例えば、40~60質量%、及び45~55質量%のいずれかであってもよい。前記割合が前記下限値以上であることで、真菌がより良好に生育し、ラッカーゼの産生量がより多くなる。前記割合が前記上限値以下であることで、基材の過剰使用がより抑制される。
When the medium contains the base material, the ratio of the content of the base material to the total mass of the medium in the medium may be appropriately adjusted so as to improve the growth of the fungus, and is not particularly limited.
Among them, the ratio is preferably 30 to 70% by mass, more preferably 35 to 65% by mass, and is, for example, 40 to 60% by mass or 45 to 55% by mass. May be good. When the ratio is equal to or higher than the lower limit, the fungus grows better and the amount of laccase produced increases. When the ratio is not more than the upper limit value, the excessive use of the base material is further suppressed.
 前記培地が前記栄養材を含有する場合、前記培地において、前記培地の総質量に対する、栄養材の含有量の割合は、真菌の生育が良好となるように適宜調節すればよく、特に限定されない。
 なかでも、前記割合は、3~40質量%であることが好ましく、5~35質量%であることがより好ましく、例えば、10~30質量%、及び15~25質量%のいずれかであってもよい。前記割合が前記下限値以上であることで、真菌がより良好に生育し、ラッカーゼの産生量がより多くなる。前記割合が前記上限値以下であることで、栄養材の過剰使用がより抑制される。
When the medium contains the nutrient material, the ratio of the content of the nutrient material to the total mass of the medium in the medium may be appropriately adjusted so as to improve the growth of the fungus, and is not particularly limited.
Among them, the ratio is preferably 3 to 40% by mass, more preferably 5 to 35% by mass, and is, for example, any one of 10 to 30% by mass and 15 to 25% by mass. May be good. When the ratio is equal to or higher than the lower limit, the fungus grows better and the amount of laccase produced increases. When the ratio is not more than the upper limit value, the excessive use of the nutritional material is further suppressed.
 前記培地が水を含有する場合、前記培地において、前記培地の総質量に対する、水の含有量の割合は、真菌の生育が良好となるように適宜調節すればよく、特に限定されない。
 なかでも、特に、固形状の培地の場合、前記割合は、55~75質量%であることが好ましく、60~70質量%であることがより好ましい。前記割合が前記下限値以上であることで、水を用いたことによる効果が、より顕著に得られる。前記割合が前記上限値以下であることで、水の過剰使用がより抑制される。後述する実施例では、いずれもこれらの条件を満たしている。
When the medium contains water, the ratio of the water content to the total mass of the medium in the medium may be appropriately adjusted so as to improve the growth of the fungus, and is not particularly limited.
Among them, particularly in the case of a solid medium, the ratio is preferably 55 to 75% by mass, more preferably 60 to 70% by mass. When the ratio is equal to or higher than the lower limit, the effect of using water can be obtained more remarkably. When the ratio is equal to or less than the upper limit value, excessive use of water is further suppressed. In the examples described later, all of these conditions are satisfied.
 前記培地が液状の場合、前記培地において、前記培地の総質量に対する、水の含有量の割合は、89.5~99.3質量%であることが好ましい。 When the medium is liquid, the ratio of the water content to the total mass of the medium in the medium is preferably 89.5 to 99.3% by mass.
 ペプトン、酵母エキス及び金属塩は、液状の培地での含有成分として好ましい。
 前記培地が液状の場合、前記培地において、前記培地の総質量に対する、ペプトンの含有量の割合は、0.5~5質量%であることが好ましい。
 前記培地が液状の場合、前記培地において、前記培地の総質量に対する、酵母エキスの含有量の割合は、0.05~0.5質量%であることが好ましい。
 前記培地が液状の場合、前記培地において、前記培地の総質量に対する、金属塩の含有量の割合は、0.1~1質量%であることが好ましい。
Peptone, yeast extract and metal salts are preferred as components in the liquid medium.
When the medium is liquid, the ratio of the content of peptone to the total mass of the medium in the medium is preferably 0.5 to 5% by mass.
When the medium is liquid, the ratio of the content of yeast extract to the total mass of the medium in the medium is preferably 0.05 to 0.5% by mass.
When the medium is liquid, the ratio of the content of the metal salt to the total mass of the medium in the medium is preferably 0.1 to 1% by mass.
 前記培地において、前記培地の総質量に対する、前記培地の1種又は2種以上の上述の含有成分の合計含有量の割合は、100質量%を超えない。 In the medium, the ratio of the total content of one or more of the above-mentioned components of the medium to the total mass of the medium does not exceed 100% by mass.
 前記培地がTEMPO酸化CNF、前記基材、前記栄養材及び水を含有する場合、前記培地において、前記培地の総質量に対する、TEMPO酸化CNF、基材、栄養材及び水の合計含有量の割合は、真菌の生育が良好となるように適宜調節すればよく、特に限定されない。
 なかでも、前記割合は、80~100質量%であることが好ましく、85~100質量%であることがより好ましく、90~100質量%であることがさらに好ましく、例えば、95~100質量%であってもよい。前記割合が前記下限値以上であることで、真菌がより良好に生育する。
When the medium contains TEMPO-oxidized CNF, the base material, the nutrient material and water, the ratio of the total content of the TEMPO-oxidized CNF, the base material, the nutrient material and water to the total mass of the medium in the medium is , It may be appropriately adjusted so that the growth of the fungus becomes good, and is not particularly limited.
Among them, the ratio is preferably 80 to 100% by mass, more preferably 85 to 100% by mass, further preferably 90 to 100% by mass, for example, 95 to 100% by mass. There may be. When the ratio is equal to or higher than the lower limit, the fungus grows better.
 前記培地がTEMPO酸化CNF、ペプトン、酵母エキス、金属塩及び水を含有する場合、前記培地において、前記培地の総質量に対する、TEMPO酸化CNF、ペプトン、酵母エキス、金属塩及び水の合計含有量の割合は、真菌の生育が良好となるように適宜調節すればよく、特に限定されない。
 なかでも、前記割合は、90~100質量%であることが好ましく、93~100質量%であることがより好ましく、例えば、95~100質量%であってもよい。前記割合が前記下限値以上であることで、真菌がより良好に生育する。
When the medium contains TEMPO oxide CNF, peptone, yeast extract, metal salt and water, the total content of TEMPO oxide CNF, peptone, yeast extract, metal salt and water in the medium with respect to the total mass of the medium. The ratio may be appropriately adjusted so that the growth of the fungus is good, and is not particularly limited.
Among them, the ratio is preferably 90 to 100% by mass, more preferably 93 to 100% by mass, and may be, for example, 95 to 100% by mass. When the ratio is equal to or higher than the lower limit, the fungus grows better.
 TEMPO酸化CNFを含有する培地としては、これまでに、「特開2019-41731号公報」において、セルロース分解菌用培地が開示されている。前記公報には、セルロース分解菌は、セルロースの加水分解酵素であるセルラーゼを有する菌類であり、セルラーゼを用いることによって、セルロースを最終産物であるグルコース又はオリゴ糖にまで分解すること、セルロース分解菌は、通常、この最終産物を栄養源として利用することが開示されている。また、前記公報には、このような培地を用いて、セルロース分解菌を生育させることにより、セルロース分解菌は、セルロースとしてTEMPO酸化CNFを分解することが、開示されている。
 しかし、前記公報には、前記セルロース分解菌用培地を用いて、セルロース分解菌にラッカーゼを産生させることについては、一切開示されていない。そして、一般的に、セルロース分解菌は、必ずラッカーゼを産生する、とはいえない。
 また、前記公報には、前記セルロース分解菌用培地を用いて、子実体(キノコ)を生育させることは、具体的に開示されていない。
As a medium containing TEMPO-oxidized CNF, a medium for cellulose-degrading bacteria has been disclosed in "Japanese Patent Laid-Open No. 2019-41731". In the above publication, the cellulolytic bacterium is a bacterium having cellulase which is a cellulase hydrolyzing enzyme, and by using cellulase, cellulose is decomposed into glucose or oligosaccharide which is the final product. , Usually, it is disclosed that this end product is used as a nutrient source. Further, the publication discloses that the cellulolytic bacteria decompose TEMPO-oxidized CNF as cellulose by growing the cellulolytic bacteria using such a medium.
However, the publication does not disclose at all about causing laccase to produce laccase by using the culture medium for cellulose-degrading bacteria. And, in general, it cannot be said that cellulose-degrading bacteria always produce laccase.
Further, the publication does not specifically disclose that fruiting bodies (mushrooms) are grown using the culture medium for cellulolytic bacteria.
 これに対して、本実施形態の培地を用いて、真菌を生育させることにより、真菌はTEMPO酸化CNFという特定範囲のCNFを利用して生育し、ラッカーゼを産生し、しかもその酵素活性(ラッカーゼ活性)が高い。
 また、本実施形態の培地を用いることで、子実体(キノコ)は、実際に良好に生育し、酵素活性が高いラッカーゼを産生する。
 真菌のこれらラッカーゼ産生特性を引き出す本実施形態の培地は、前記公報の記載内容からは、容易に想到し得るものではない。
On the other hand, by growing the fungus using the medium of the present embodiment, the fungus grows using a specific range of CNF called TEMPO-oxidized CNF, produces laccase, and its enzymatic activity (laccase activity). ) Is high.
In addition, by using the medium of the present embodiment, fruiting bodies (mushrooms) actually grow well and produce laccase with high enzymatic activity.
The medium of the present embodiment that brings out these laccase-producing characteristics of the fungus cannot be easily conceived from the contents of the above-mentioned gazette.
 一方、ラッカーゼの製造方法としては、先の説明のとおり、「特許第6560301号公報(前記特許文献1)」において、特定種のラッカーゼ生産性の糸状菌と、特定種のカロテノイド生産性の微生物と、を併用する方法が開示されている。しかし、この製造方法では、先の説明のとおり、カロテノイド生産性の微生物の使用と管理が必要であり、工程が煩雑である。そして、前記公報には、この製造方法も含めて、開示されているすべての製造方法で得られるラッカーゼの酵素活性は、80.3~10000U/Lとなっている。 On the other hand, as a method for producing laccase, as described above, in "Patent No. 6560301 (Patent Document 1)", a specific species of laccase-producing filamentous fungus and a specific species of carotenoid-producing microorganism are used. , Is disclosed in combination. However, as described above, this production method requires the use and control of carotenoid-producing microorganisms, and the process is complicated. In the above publication, the enzymatic activity of laccase obtained by all the disclosed production methods including this production method is 80.3 to 10000 U / L.
 これに対して、本実施形態の培地を用いて、真菌を生育させることにより、他の微生物の併用は必須とせずに、酵素活性が、例えば、12U/mL(12000U/L)以上、30U/mL(30000U/L)以上等のラッカーゼを得ることが可能であり、簡略化された工程で、酵素活性が際立って高いラッカーゼが得られる。
 本実施形態の培地を用いて得られるラッカーゼの酵素活性については、後ほど詳しく説明する。
On the other hand, by growing the fungus using the medium of the present embodiment, the enzyme activity is, for example, 12 U / mL (12000 U / L) or more, 30 U / / without requiring the combined use of other microorganisms. It is possible to obtain laccases of mL (30,000 U / L) or more, and in a simplified process, laccases with remarkably high enzyme activity can be obtained.
The enzymatic activity of laccase obtained by using the medium of the present embodiment will be described in detail later.
 本実施形態の培地は、TEMPO酸化CNFを含有していることにより、酵素活性(ラッカーゼ活性)が十分に高いラッカーゼを産生させることが可能となっている。これに対して、TEMPO酸化CNF以外のCNF、例えば、機械解繊セルロースナノファイバー(機械解繊CNF)を用いた場合には、このような効果は得られない。 Since the medium of the present embodiment contains TEMPO-oxidized CNF, it is possible to produce laccase having sufficiently high enzyme activity (laccase activity). On the other hand, when a CNF other than TEMPO-oxidized CNF, for example, mechanically defibrated cellulose nanofibers (mechanically defibrated CNF) is used, such an effect cannot be obtained.
 前記機械解繊CNFは、TEMPOを用いることなく、水等の分散媒中で、セルロースナノファイバー前駆体(CNF前駆体)に対して機械解繊処理を行うことにより、セルロースナノファイバー分散液(CNF分散液)を得る工程を有する製造方法で製造されたCNFである。 The mechanical defibration CNF is a cellulose nanofiber dispersion liquid (CNF) by subjecting a cellulose nanofiber precursor (CNF precursor) to a mechanical defibration treatment in a dispersion medium such as water without using TEMPO. CNF produced by a production method having a step of obtaining a dispersion liquid).
 前記培地は、TEMPO酸化CNFと、前記他の成分と、を配合することで製造できる。
 各成分の配合は、例えば、15~40℃の温度条件下で行うことができ、常温下で行ってもよい。
 本明細書において、「常温」とは、特に冷やしたり、熱したりしない温度、すなわち平常の温度を意味し、例えば、15~25℃の温度等が挙げられる。
 また、各成分の配合は、例えば、常圧下で行うことができる。
The medium can be produced by blending TEMPO-oxidized CNF and the other components.
The compounding of each component can be carried out under temperature conditions of, for example, 15 to 40 ° C., and may be carried out at room temperature.
In the present specification, "room temperature" means a temperature that is not particularly cooled or heated, that is, a normal temperature, and examples thereof include a temperature of 15 to 25 ° C.
Further, each component can be blended under normal pressure, for example.
 前記培地の製造時に用いるTEMPO酸化CNFは、例えば、取り出し若しくは精製によって、純品となっている状態で配合してもよいし、後処理によって、TEMPO酸化CNF以外の成分との混合物の状態となっているものを配合してもよいし、TEMPO酸化CNFの製造時に得られた、TEMPO酸化CNF以外の成分との混合物の状態となっているものを、そのまま配合してもよい。 The TEMPO-oxidized CNF used in the production of the medium may be blended in a pure product state by, for example, removal or purification, or may be in a state of a mixture with components other than the TEMPO-oxidized CNF by post-treatment. It may be blended as it is, or it may be blended as it is in the state of a mixture with components other than TEMPO oxide CNF obtained at the time of producing TEMPO oxide CNF.
<<ラッカーゼの製造方法>>
 本発明の一実施形態に係るラッカーゼの製造方法は、TEMPO酸化CNFを含有する培地を用いて、真菌を生育させることにより、前記真菌にラッカーゼを産生させる工程(本明細書においては、「ラッカーゼ産生工程」と略記することがある)を有する。
 本実施形態の製造方法で用いる前記培地は、先に説明した、本発明の一実施形態に係る培地である。
 本実施形態の製造方法で用いる前記真菌は、先に説明した真菌である。
<< Manufacturing method of laccase >>
The method for producing laccase according to an embodiment of the present invention is a step of causing the fungus to produce laccase by growing the fungus using a medium containing TEMPO-oxidized CNF (in the present specification, "laccase production". It may be abbreviated as "process").
The medium used in the production method of the present embodiment is the medium according to one embodiment of the present invention described above.
The fungus used in the production method of the present embodiment is the fungus described above.
 前記ラッカーゼ産生工程において、真菌の生育は、例えば、前記培地及び真菌を用いる点を除けば、菌類を生育させる公知の方法と同じ方法で行うことができる。すなわち、前記培地の使用方法は、公知の培地の使用方法と同じであってもよい。 In the laccase production step, the growth of the fungus can be carried out by the same method as a known method for growing the fungus, except that, for example, the medium and the fungus are used. That is, the method of using the medium may be the same as the method of using a known medium.
 前記培地が液状である場合には、真菌の生育時には、前記培地を静置してもよいし、振とう(すなわち、振とう培養)してもよい。
 前記培地が固形状である場合には、真菌の生育時には、前記培地を静置しておけばよい。
When the medium is liquid, the medium may be allowed to stand or shake (that is, shake culture) when the fungus grows.
When the medium is solid, the medium may be allowed to stand during the growth of the fungus.
 前記ラッカーゼ産生工程は、例えば、前記培地を滅菌処理した後、得られた滅菌済み培地に真菌を植菌し、滅菌済み培地中又は滅菌済み培地上で、植菌した真菌を生育させることで、行うことができる。 In the laccase production step, for example, after sterilizing the medium, the fungus is inoculated into the obtained sterilized medium, and the inoculated fungus is grown in the sterilized medium or on the sterilized medium. It can be carried out.
 前記ラッカーゼ産生工程においては、例えば、植菌後の真菌をある程度生育させておき、培地中又は培地上の、生育した真菌の一部を取り除く、所謂「菌掻き処理」を行うことが好ましい。菌掻き処理を行うことによって、真菌の生育度を向上させることができる。
 真菌として子実体(キノコ)を生育させる場合には、例えば、植菌した種菌を生育させ、子実体としての形態での生育がはっきりとは認められない段階で、菌掻き処理を行うことが好ましい。このようにすることで、子実体の生育度が顕著に向上する。
In the laccase production step, for example, it is preferable to carry out a so-called "fungal scraping treatment" in which the fungus after inoculation is allowed to grow to some extent and a part of the grown fungus is removed in or on the medium. The growth of fungi can be improved by performing the fungal scraping treatment.
When growing fruiting bodies (mushrooms) as fungi, for example, it is preferable to grow inoculated inoculum and perform fungal scraping treatment at a stage where growth in the form of fruiting bodies is not clearly observed. .. By doing so, the growth rate of fruiting bodies is remarkably improved.
 前記ラッカーゼ産生工程において、真菌生育時の温度は、真菌の種類に応じて適宜選択すればよく、特に限定されない。
 通常、真菌生育時の温度は、13~50℃であることが好ましく、15~35℃であることがより好ましい。前記温度がこのような範囲内であることで、真菌の生育度がより向上する。
 菌掻き処理を行う場合には、菌掻き処理の前後で、真菌生育時の温度は、同じであってもよいし、異なっていてもよい。
In the laccase production step, the temperature at the time of fungal growth may be appropriately selected depending on the type of fungus, and is not particularly limited.
Usually, the temperature during fungal growth is preferably 13 to 50 ° C, more preferably 15 to 35 ° C. When the temperature is within such a range, the growth rate of the fungus is further improved.
When the fungal scraping treatment is performed, the temperature at the time of fungal growth may be the same or different before and after the fungal scraping treatment.
 前記培地が固形状の場合、前記ラッカーゼ産生工程において、真菌生育時の相対湿度は、真菌の種類に応じて適宜選択すればよく、特に限定されない。
 通常、真菌生育時の相対湿度は、50~99%であることが好ましく、60~85%であることがより好ましい。前記相対湿度が前記下限値以上であることで、真菌の生育度がより向上する。前記相対湿度が前記上限値以下であることで、相対湿度が過剰となることが避けられる。
 菌掻き処理を行う場合には、菌掻き処理の前後で、真菌生育時の湿度は、同じであってもよいし、異なっていてもよい。
When the medium is in a solid state, the relative humidity during fungal growth in the laccase production step may be appropriately selected depending on the type of fungus, and is not particularly limited.
Usually, the relative humidity during fungal growth is preferably 50-99%, more preferably 60-85%. When the relative humidity is equal to or higher than the lower limit, the growth rate of the fungus is further improved. When the relative humidity is equal to or less than the upper limit value, it is possible to prevent the relative humidity from becoming excessive.
When the fungal scraping treatment is performed, the humidity at the time of fungal growth may be the same or different before and after the fungal scraping treatment.
 前記ラッカーゼ産生工程において、真菌の生育時間は、真菌の種類、真菌生育時の温度、真菌生育時の相対湿度、培地の態様(固形状又は液状)等に応じて、適宜選択すればよく、特に限定されない。
 通常、真菌の生育時間(日数)は、10~180日間であることが好ましく、25~70日間であることがより好ましい。前記生育時間が前記下限値以上であることで、真菌の生育度がより向上する。前記生育時間が前記上限値以下であることで、前記ラッカーゼ産生工程の所要時間が過剰な長さとなることが避けられる。
In the laccase production step, the growth time of the fungus may be appropriately selected according to the type of fungus, the temperature at the time of fungus growth, the relative humidity at the time of fungus growth, the mode of the medium (solid or liquid), and the like. Not limited.
Usually, the growth time (number of days) of the fungus is preferably 10 to 180 days, more preferably 25 to 70 days. When the growth time is at least the lower limit value, the growth degree of the fungus is further improved. When the growth time is not more than the upper limit value, it is possible to prevent the time required for the laccase production step from becoming excessively long.
 前記ラッカーゼ産生工程においては、真菌が前記培地中のTEMPO酸化CNFを利用して、良好に生育し、酵素活性が十分に高いラッカーゼを産生する。 In the laccase production step, the fungus uses TEMPO-oxidized CNF in the medium to grow laccase well and produce laccase having sufficiently high enzyme activity.
 本実施形態のラッカーゼの製造方法は、前記ラッカーゼ産生工程と、それ以外の他の工程と、を有していてもよい。
 前記他の工程は、特に限定されず、目的に応じて任意に選択できる。
 前記他の工程としては、例えば、前記ラッカーゼ産生工程後の前記培地から、産生されたラッカーゼを分離する工程(本明細書においては、「分離工程」と略記することがある)等が挙げられる。
The method for producing laccase of the present embodiment may include the laccase production step and other steps.
The other steps are not particularly limited and can be arbitrarily selected depending on the intended purpose.
Examples of the other step include a step of separating the produced laccase from the medium after the laccase production step (in the present specification, it may be abbreviated as "separation step").
 前記分離工程は、例えば、前記ラッカーゼ産生工程後の前記培地から、ラッカーゼを含有する液体(例えば、ラッカーゼの水溶液)を抽出又は分離することにより、行うことができる。
 前記分離工程においては、さらに、前記ラッカーゼを含有する液体中でラッカーゼを沈殿させ、ラッカーゼの沈殿を前記液体から取り出してもよい。
The separation step can be performed, for example, by extracting or separating a liquid containing laccase (for example, an aqueous solution of laccase) from the medium after the laccase production step.
In the separation step, the laccase may be further precipitated in the liquid containing the laccase, and the precipitate of the laccase may be taken out from the liquid.
 本実施形態の製造方法によれば、前記培地を用いることにより、真菌に酵素活性が十分に高いラッカーゼを産生させることでき、酵素活性が十分に高いラッカーゼを製造できる。
 例えば、本実施形態の製造方法で得られるラッカーゼの酵素活性は、好ましくは12U/mL以上であり、例えば、30U/mL以上、100U/mL以上、150U/mL以上、200U/mL以上、250U/mL以上、300U/mL以上、及び340U/mL以上のいずれかであってもよい。
 一方、本実施形態の製造方法で得られるラッカーゼの酵素活性の上限値は、特に限定されないが、例えば、500U/mL以下のラッカーゼは、比較的容易に製造できる。
According to the production method of the present embodiment, by using the medium, the fungus can produce laccase having sufficiently high enzyme activity, and laccase having sufficiently high enzyme activity can be produced.
For example, the enzymatic activity of the laccase obtained by the production method of the present embodiment is preferably 12 U / mL or more, for example, 30 U / mL or more, 100 U / mL or more, 150 U / mL or more, 200 U / mL or more, 250 U / mL or more. It may be any of mL or more, 300 U / mL or more, and 340 U / mL or more.
On the other hand, the upper limit of the enzyme activity of the laccase obtained by the production method of the present embodiment is not particularly limited, but for example, laccase of 500 U / mL or less can be produced relatively easily.
 真菌を生育させた後、例えば、子実体(キノコ)を生育させ、収穫した後の培地は、一般的には廃菌床等と呼ばれ、従来であれば、廃棄されるものである。しかし、本実施形態のこの段階の培地は、真菌が産生したラッカーゼを含有している。すなわち、本実施形態の培地は、真菌を生育させるだけでなく、ラッカーゼの産生の場ともなっており、従来の培地よりも有効活用の点で俄然優れている点で、顕著に有用である。 After growing the fungus, for example, the medium after growing fruiting bodies (mushrooms) and harvesting is generally called a waste fungus bed or the like, and is conventionally discarded. However, the medium at this stage of this embodiment contains fungal-produced laccase. That is, the medium of the present embodiment is remarkably useful in that it not only grows fungi but also serves as a place for producing laccase, and is far superior to the conventional medium in terms of effective utilization.
 本実施形態の好ましい培地の一例としては、真菌を生育させるための培地であって、
 前記培地は、TEMPO酸化セルロースナノファイバーと、基材と、栄養材と、水と、を含有する固形状の培地であり、
 前記培地において、前記培地の総質量に対する、前記TEMPO酸化セルロースナノファイバーの含有量の割合が、0.05~4質量%であり、
 前記培地において、前記培地の総質量に対する、前記基材の含有量の割合が、30~70質量%であり、
 前記培地において、前記培地の総質量に対する、前記栄養材の含有量の割合が、3~40質量%であり、
 前記培地において、前記培地の総質量に対する、前記水の含有量の割合が、55~75質量%であり、
 ただし、前記培地において、前記培地の総質量に対する、前記TEMPO酸化セルロースナノファイバー、基材、栄養材及び水の合計含有量の割合は、100質量%を超えず、
 前記培地は、前記真菌を生育させることにより、前記真菌にラッカーゼを産生させるための培地である、培地が挙げられる。
An example of a preferred medium of the present embodiment is a medium for growing a fungus.
The medium is a solid medium containing TEMPO-oxidized cellulose nanofibers, a base material, a nutrient material, and water.
In the medium, the ratio of the content of the TEMPO-oxidized cellulose nanofibers to the total mass of the medium is 0.05 to 4% by mass.
In the medium, the ratio of the content of the base material to the total mass of the medium is 30 to 70% by mass.
In the medium, the ratio of the content of the nutritional material to the total mass of the medium is 3 to 40% by mass.
In the medium, the ratio of the water content to the total mass of the medium is 55 to 75% by mass.
However, in the medium, the ratio of the total content of the TEMPO-oxidized cellulose nanofibers, the base material, the nutrient material and the water to the total mass of the medium does not exceed 100% by mass.
Examples of the medium include a medium that is a medium for causing the fungus to produce laccase by growing the fungus.
 本実施形態の好ましい培地の他の例としては、真菌を生育させるための培地であって、
 前記培地は、TEMPO酸化セルロースナノファイバーと、ペプトンと、酵母エキスと、金属塩と、水と、を含有する液状の培地であり、
 前記培地において、前記培地の総質量に対する、前記TEMPO酸化セルロースナノファイバーの含有量の割合が、0.05~4質量%であり、
 前記培地において、前記培地の総質量に対する、前記ペプトンの含有量の割合が、0.5~5質量%であり、
 前記培地において、前記培地の総質量に対する、前記酵母エキスの含有量の割合が、0.05~0.5質量%であり、
 前記培地において、前記培地の総質量に対する、前記金属塩の含有量の割合が、0.1~1質量%であり、
 前記培地において、前記培地の総質量に対する、前記水の含有量の割合が、89.5~99.3質量%であり、
 ただし、前記培地において、前記培地の総質量に対する、前記TEMPO酸化セルロースナノファイバー、ペプトン、酵母エキス、金属塩及び水の合計含有量の割合は、100質量%を超えず、
 前記培地は、前記真菌を生育させることにより、前記真菌にラッカーゼを産生させるための培地である、培地が挙げられる。
 この培地においては、前記ラッカーゼがビリルビンオキシダーゼであってもよい。
Another example of the preferred medium of the present embodiment is a medium for growing a fungus.
The medium is a liquid medium containing TEMPO-oxidized cellulose nanofibers, peptone, yeast extract, a metal salt, and water.
In the medium, the ratio of the content of the TEMPO-oxidized cellulose nanofibers to the total mass of the medium is 0.05 to 4% by mass.
In the medium, the ratio of the content of the peptone to the total mass of the medium is 0.5 to 5% by mass.
In the medium, the ratio of the content of the yeast extract to the total mass of the medium is 0.05 to 0.5% by mass.
In the medium, the ratio of the content of the metal salt to the total mass of the medium is 0.1 to 1% by mass.
In the medium, the ratio of the water content to the total mass of the medium is 89.5 to 99.3% by mass.
However, in the medium, the ratio of the total content of the TEMPO-oxidized cellulose nanofibers, peptone, yeast extract, metal salt and water to the total mass of the medium does not exceed 100% by mass.
Examples of the medium include a medium that is a medium for causing the fungus to produce laccase by growing the fungus.
In this medium, the laccase may be bilirubin oxidase.
 以下、具体的実施例により、本発明についてより詳細に説明する。ただし、本発明は、以下に示す実施例に、何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to specific examples. However, the present invention is not limited to the examples shown below.
[実施例1]
<<培地の製造>>
 保水したおが屑(327g)、米ぬか(130g)、水(193g)及びTEMPO酸化CNF(4g)を混合することにより、TEMPO酸化セルロースナノファイバーを含有する培地(654g)を得た。
[Example 1]
<< Production of medium >>
By mixing the retained sawdust (327 g), rice bran (130 g), water (193 g) and TEMPO oxidized CNF (4 g), a medium (654 g) containing TEMPO oxidized cellulose nanofibers was obtained.
<<ラッカーゼの製造>>
<培地の滅菌処理>
 上記で得られた培地の全量を、透明なキノコ栽培用のビンに充填し、培地の中心部に穴を1つ開け、ビンに蓋をした。
 次いで、ビンごとこの培地をオートクレーブ装置内に設置し、98℃、1時間の条件下で培地を予備滅菌処理した後、引き続き120℃、45分の条件下で培地を滅菌処理した。
 次いで、オートクレーブ装置内の温度を80℃まで下げてから、ビンをクリーンベンチ内に移動させ、ビン(培地)の温度が15℃になるまで静置した。
 以上により、滅菌済み培地を得た。
<< Manufacture of laccase >>
<Sterilization of medium>
The entire amount of the medium obtained above was filled in a transparent mushroom cultivation bottle, a hole was made in the center of the medium, and the bottle was covered.
Next, the medium was placed in an autoclave device together with the bottle, and the medium was pre-sterilized under the conditions of 98 ° C. for 1 hour, and then the medium was sterilized under the conditions of 120 ° C. for 45 minutes.
Then, after lowering the temperature in the autoclave device to 80 ° C., the bottle was moved into the clean bench and allowed to stand until the temperature of the bottle (medium) reached 15 ° C.
From the above, a sterilized medium was obtained.
<真菌の生育(ラッカーゼの製造)>
 前記クリーンベンチ内において、上記で得られた滅菌済み培地が充填されているビンの蓋を開け、滅菌済み培地上に、ヒラタケの種菌H67号(10g)を載せた。
 次いで、直ちにビンに蓋をして、ビンごとこの植菌済み滅菌済み培地をインキュベーター内に設置し、温度20℃、相対湿度70%の条件下で種菌を30日間培養した。
<Growth of fungi (manufacturing of laccase)>
In the clean bench, the lid of the bottle filled with the sterilized medium obtained above was opened, and the inoculum H67 (10 g) of Oyster Mushroom was placed on the sterilized medium.
Then, the bottle was immediately covered, and the inoculated sterilized medium was placed in the incubator together with the bottle, and the inoculum was cultured for 30 days under the conditions of a temperature of 20 ° C. and a relative humidity of 70%.
 次いで、ビンをインキュベーター内から取り出し、蓋を外して、培地の表面を削ることにより、菌掻き処理を行った。そして、ビンに蓋をした。
 次いで、ビンごとこの培地をインキュベーター内に設置し、温度15℃、相対湿度90%の条件下で、種菌を子実体(ヒラタケ)に生育させ、ヒラタケにラッカーゼ産生させた。この間の生育時間は14日間であった。
 以上により、前記ラッカーゼ産生工程を行った。
Next, the bottle was taken out of the incubator, the lid was removed, and the surface of the medium was scraped to perform a fungal scraping treatment. And I put a lid on the bottle.
Next, this medium was placed in an incubator together with the bottle, and the inoculum was grown on fruiting bodies (Oyster mushrooms) under the conditions of a temperature of 15 ° C. and a relative humidity of 90%, and laccase was produced on the mushrooms. The growing time during this period was 14 days.
Based on the above, the laccase production step was carried out.
 次いで、ビンをインキュベーター内から取り出し、蓋を外して、ヒラタケを収穫した。
 以上により、ラッカーゼを含有する培地を得た。
The bottle was then removed from the incubator, the lid was removed and the oyster mushrooms were harvested.
From the above, a medium containing laccase was obtained.
<<培地の評価>>
<粗酵素液の調製>
 ヒラタケを収穫後のビン内の培地のうち、上部、中部及び下部からそれぞれサンプルを取り出し、このサンプル(15g)を、濃度が10mMであるリン酸ナトリウム緩衝液(pH7.0)(30mL)中に添加し、得られた混合液を、シェーカーを用いて、127rpm、4℃の条件で一晩振とうした。
 次いで、この振とう後の混合液を、10000G、30分、4℃の条件で遠心分離することにより、混合液から固形分を除去した。
<< Evaluation of medium >>
<Preparation of crude enzyme solution>
Samples were taken from the upper, middle and lower parts of the medium in the bottle after harvesting Oyster Mushroom, and this sample (15 g) was placed in sodium phosphate buffer (pH 7.0) (30 mL) having a concentration of 10 mM. The mixture was added and the resulting mixture was shaken overnight at 127 rpm and 4 ° C. using a shaker.
Then, the mixed solution after shaking was centrifuged at 10000 G for 30 minutes at 4 ° C. to remove solid content from the mixed solution.
 次いで、この固形分を除去後の液体に対して、その液量に対して5質量%の量のベントナイトを添加し、得られた混合液を4℃で30分撹拌した。
 次いで、この撹拌後の混合液を、10000G、30分、4℃の条件で遠心分離することにより、混合液から細かい不溶物を除去した。
Next, bentonite in an amount of 5% by mass with respect to the amount of the liquid after removing the solid content was added, and the obtained mixed solution was stirred at 4 ° C. for 30 minutes.
Then, the mixed solution after stirring was centrifuged at 10000 G for 30 minutes at 4 ° C. to remove fine insoluble matter from the mixed solution.
 次いで、この不溶物を除去後の液体に対して、濃度が70質量%である飽和硫酸アンモニウム水溶液を添加して、タンパク質を沈殿させ、この沈殿を含む液体を、10000G、30分、4℃の条件で遠心分離することにより、沈殿を取り出した。
 ここまでの工程は、前記分離工程に相当する。
Next, a saturated aqueous solution of ammonium sulfate having a concentration of 70% by mass was added to the liquid after removing the insoluble matter to precipitate the protein, and the liquid containing this precipitate was prepared under the conditions of 10000 G for 30 minutes and 4 ° C. The precipitate was taken out by centrifugation in.
The steps up to this point correspond to the separation step.
 この取り出した沈殿を、濃度が50mMであるリン酸ナトリウム緩衝液(pH7.0)(5mL)中に添加し、撹拌して懸濁させることにより、粗酵素液を得た。
 以上により、培地の上部、中部及び下部からそれぞれ取り出した3種のサンプルに対応した、3種の粗酵素液を調製した。
The removed precipitate was added to sodium phosphate buffer (pH 7.0) (5 mL) having a concentration of 50 mM, and the mixture was stirred and suspended to obtain a crude enzyme solution.
Based on the above, three kinds of crude enzyme solutions corresponding to the three kinds of samples taken out from the upper part, the middle part and the lower part of the medium were prepared.
<ラッカーゼの酵素活性の測定>
 濃度が50mMであるクエン酸ナトリウム緩衝液(pH3.0)に、基質としてABTSを添加し、溶解させることにより、ABTSの濃度が10mMであるABTS溶液を調製した。
 前記ABTS溶液(250μL)と、濃度が50mMであるクエン酸ナトリウム緩衝液(pH3.0)(730μL)と、精製水(19μL)と、前記粗酵素液(1μL)と、を混合し、得られた反応液(1mL)を検体とした。得られた検体において、ABTSの濃度は2.5mMであり、クエン酸ナトリウムの濃度は36.5mMであった。
<Measurement of enzyme activity of laccase>
An ABTS solution having an ABTS concentration of 10 mM was prepared by adding ABTS as a substrate to a sodium citrate buffer solution (pH 3.0) having a concentration of 50 mM and dissolving it.
Obtained by mixing the ABTS solution (250 μL), sodium citrate buffer (pH 3.0) (730 μL) having a concentration of 50 mM, purified water (19 μL), and the crude enzyme solution (1 μL). The reaction solution (1 mL) was used as a sample. In the obtained sample, the concentration of ABTS was 2.5 mM and the concentration of sodium citrate was 36.5 mM.
 上記で得られた3種の検体について、波長420nmで3分間、吸光度を測定した。そして、波長420nmでの吸光度の増加量ΔA420と、反応時間(min)を求め、前記式(i)により、ラッカーゼの酵素活性(U/mL)を求めた。結果を図1に示す。図1中、「上」、「中」、「下」とは、それぞれ培地のサンプルの取り出し部位を意味する。 The absorbances of the three types of samples obtained above were measured at a wavelength of 420 nm for 3 minutes. Then, the amount of increase in absorbance ΔA 420 at a wavelength of 420 nm and the reaction time (min) were determined, and the enzymatic activity (U / mL) of laccase was determined by the above formula (i). The results are shown in FIG. In FIG. 1, "upper", "middle", and "lower" mean the extraction sites of the culture medium samples, respectively.
<<培地の製造、ラッカーゼの製造、及び培地の評価>>
[実施例2]
 ヒラタケの種菌として、H67号に代えてKH-83号を用いた点と、種菌の培養日数を30日間に代えて15日間とした点、以外は、実施例1の場合と同じ方法で、培地及びラッカーゼを製造し、培地を評価した。結果を図1に示す。
<< Production of medium, production of laccase, and evaluation of medium >>
[Example 2]
As the inoculum of Oyster Mushroom, KH-83 was used instead of H67, and the inoculum was cultured for 15 days instead of 30 days. And laccase was prepared and the medium was evaluated. The results are shown in FIG.
[比較例1]
 培地の製造時に、TEMPO酸化CNFを用いなかった点と、種菌の培養日数を30日間に代えて35日間とした点、以外は、実施例1の場合と同じ方法で、培地及びラッカーゼを製造し、培地を評価した。結果を図1に示す。
[Comparative Example 1]
The medium and laccase were produced by the same method as in Example 1 except that TEMPO-oxidized CNF was not used when the medium was produced and the number of days for culturing the inoculum was 35 days instead of 30 days. , Medium was evaluated. The results are shown in FIG.
[比較例2]
 培地の製造時に、TEMPO酸化CNFを用いなかった点と、種菌の培養日数を15日間に代えて20日間とした点、以外は、実施例2の場合と同じ方法で、培地及びラッカーゼを製造し、培地を評価した。結果を図1に示す。
[Comparative Example 2]
The medium and laccase were produced by the same method as in Example 2 except that TEMPO-oxidized CNF was not used when the medium was produced and the number of days for culturing the inoculum was changed from 15 days to 20 days. , Medium was evaluated. The results are shown in FIG.
 図1から明らかなように、実施例1~2においては、ヒラタケが産生したラッカーゼの酵素活性は、すべての検体で45U/mL以上(45~346U/mL)となっており、極めて高かった。最も酵素活性が高い検体に着目すると、実施例1~2においては、ラッカーゼの酵素活性が220U/mL超となっており、極めて高かった。なかでも、実施例1においては、ラッカーゼの酵素活性が346U/mLとなっており、特に高かった。
 実施例1~2においては、培地の種類が同じであるため、実施例1で用いたヒラタケの方が、実施例2で用いたヒラタケよりも、酵素活性が高いラッカーゼの産生の点で優れていた。
As is clear from FIG. 1, in Examples 1 and 2, the enzymatic activity of the laccase produced by Oyster Mushroom was 45 U / mL or more (45 to 346 U / mL) in all the samples, which was extremely high. Focusing on the sample having the highest enzyme activity, in Examples 1 and 2, the enzyme activity of laccase was more than 220 U / mL, which was extremely high. Among them, in Example 1, the enzyme activity of laccase was 346 U / mL, which was particularly high.
In Examples 1 and 2, since the type of medium is the same, the oyster mushroom used in Example 1 is superior to the oyster mushroom used in Example 2 in terms of producing laccase having high enzymatic activity. rice field.
 これに対して、比較例1~2においては、ヒラタケが産生したラッカーゼの酵素活性は、極めて低かった。実施例1及び比較例1の比較、並びに実施例2及び比較例2の比較から、培地のTEMPO酸化CNFの含有の有無が、ラッカーゼの酵素活性の程度に大きな影響を及ぼしていることを確認できた。 On the other hand, in Comparative Examples 1 and 2, the enzymatic activity of the laccase produced by Oyster Mushroom was extremely low. From the comparison of Example 1 and Comparative Example 1 and the comparison of Example 2 and Comparative Example 2, it can be confirmed that the presence or absence of TEMPO-oxidized CNF in the medium has a great influence on the degree of enzyme activity of laccase. rice field.
[実施例3]
<<培地の製造>>
 濃度が10g/Lのペプトン、濃度が1.0g/Lの酵母エキス、濃度が1.0g/Lのリン酸二水素カリウム、濃度が0.25g/Lのリン酸水素二ナトリウム十二水和物、濃度が13.2mg/Lの塩化カルシウム二水和物、濃度が1.08mg/Lの硫酸マンガン(II)五水和物、濃度が1.0mg/Lの硫酸亜鉛七水和物、濃度が2.0mg/Lの硫酸銅(II)五水和物、濃度が0.1g/Lの硫酸鉄(II)七水和物、濃度が0.5g/Lの硫酸マグネシウム七水和物、及び濃度が5.0g/LのTEMPO酸化CNFを混合し、さらに蒸留水を添加することで、全体の液量を50mLに調節した。
 次いで、得られた水溶液のpHを6.00に調節することにより、TEMPO酸化CNFを含有する培地を得た。
[Example 3]
<< Production of medium >>
Peptone with a concentration of 10 g / L, yeast extract with a concentration of 1.0 g / L, potassium dihydrogen phosphate with a concentration of 1.0 g / L, disodium hydrogen phosphate twelve hydrate with a concentration of 0.25 g / L , Calcium chloride dihydrate with a concentration of 13.2 mg / L, Manganese (II) sulfate pentahydrate with a concentration of 1.08 mg / L, Zinc sulfate heptahydrate with a concentration of 1.0 mg / L, Copper (II) sulfate pentahydrate with a concentration of 2.0 mg / L, iron (II) heptahydrate with a concentration of 0.1 g / L, magnesium sulfate heptahydrate with a concentration of 0.5 g / L , And TEMPO oxide CNF having a concentration of 5.0 g / L were mixed, and distilled water was further added to adjust the total liquid volume to 50 mL.
Then, the pH of the obtained aqueous solution was adjusted to 6.00 to obtain a medium containing TEMPO-oxidized CNF.
<<ラッカーゼの製造>>
<培地の滅菌処理>
 上記で得られた培地を、121℃で20分オートクレーブ滅菌することにより、滅菌済み培地を得た。
<< Manufacture of laccase >>
<Sterilization of medium>
The medium obtained above was autoclaved at 121 ° C. for 20 minutes to obtain a sterilized medium.
<真菌の生育(ラッカーゼの製造)>
 上記で得られた滅菌済み培地に、ヒラタケNBRC104981株を植菌し、シェーカーを用いて、この植菌済み滅菌済み培地を26℃、100rpmの条件で振とうすることにより、振とう培養を行い、前記ラッカーゼ産生工程を行った。培養(振とう培養)は30日間行った。
 以上により、ラッカーゼを含有する培地を得た。
 なお、ここで用いたヒラタケNBRC104981株は、独立行政法人製品評価技術基盤機構バイオテクノロジーセンターより分譲可能である。
<Growth of fungi (manufacturing of laccase)>
The sterilized medium obtained above was inoculated with the Hiratake NBRC104981 strain, and the inoculated sterilized medium was shaken at 26 ° C. and 100 rpm using a shaker to carry out shaking culture. The laccase production step was performed. The culture (shaking culture) was carried out for 30 days.
From the above, a medium containing laccase was obtained.
The Hiratake NBRC104981 strain used here can be sold from the Biotechnology Center of the Product Evaluation Technology Infrastructure Organization.
<<培地の評価>>
<粗酵素液の調製>
 培養を開始してから30日が経過するまでの間に、適宜培地からサンプルを取り出し、このサンプル(1mL)を12000rpm(10020G)、4℃、30分の条件で遠心分離することにより、上清を得た。そして、この上清を粗酵素液とした。
 この工程は、前記分離工程に相当する。
<< Evaluation of medium >>
<Preparation of crude enzyme solution>
From the start of culturing until 30 days have passed, a sample is appropriately taken out from the medium, and this sample (1 mL) is centrifuged at 12000 rpm (10020 G) at 4 ° C. for 30 minutes to obtain a supernatant. Got Then, this supernatant was used as a crude enzyme solution.
This step corresponds to the separation step.
<ラッカーゼの酵素活性の測定>
 上記で得られた粗酵素液を用いて、実施例1の場合と同じ方法で、ラッカーゼの酵素活性(U/mL)を求めた。結果を図2に示す。
<Measurement of enzyme activity of laccase>
Using the crude enzyme solution obtained above, the enzyme activity (U / mL) of laccase was determined by the same method as in Example 1. The results are shown in FIG.
<<培地の製造、ラッカーゼの製造、及び培地の評価>>
[比較例3]
 培地の製造時に、TEMPO酸化CNFに代えて、同量のグルコースを用いた点以外は、実施例3の場合と同じ方法で、培地及びラッカーゼを製造し、培地を評価した。結果を図2に示す。
<< Production of medium, production of laccase, and evaluation of medium >>
[Comparative Example 3]
The medium and laccase were produced and evaluated by the same method as in Example 3 except that the same amount of glucose was used instead of TEMPO-oxidized CNF at the time of producing the medium. The results are shown in FIG.
[比較例4]
 培地の製造時に、TEMPO酸化CNFに代えて、同量の機械解繊CNFを用いた点以外は、実施例3の場合と同じ方法で、培地及びラッカーゼを製造し、培地を評価した。結果を図2に示す。
[Comparative Example 4]
The medium and laccase were produced and evaluated in the same manner as in Example 3 except that the same amount of mechanically defibrated CNF was used instead of TEMPO-oxidized CNF when producing the medium. The results are shown in FIG.
[比較例5]
 培地の製造時に、TEMPO酸化CNFに代えて、同量の粉末セルロースを用いた点以外は、実施例3の場合と同じ方法で、培地及びラッカーゼを製造し、培地を評価した。結果を図2に示す。
[Comparative Example 5]
The medium and laccase were produced and evaluated by the same method as in Example 3 except that the same amount of powdered cellulose was used instead of TEMPO-oxidized CNF at the time of producing the medium. The results are shown in FIG.
[比較例6]
 培地の製造時に、TEMPO酸化CNFに代えて、同量のセロウロン酸を用いた点以外は、実施例3の場合と同じ方法で、培地及びラッカーゼを製造し、培地を評価した。結果を図2に示す。
[Comparative Example 6]
The medium and laccase were produced and evaluated by the same method as in Example 3 except that the same amount of cellouronic acid was used instead of TEMPO-oxidized CNF at the time of producing the medium. The results are shown in FIG.
 図2から明らかなように、実施例3においては、ヒラタケが産生したラッカーゼの酵素活性が、培養を開始してから15日目に最大となった。このとき、培地50mL中の総活性が650U程度であり、ラッカーゼの酵素活性は13.3U/mLであった。また、このときの高活性のラッカーゼを特定したところ、ビリルビンオキシダーゼ(EC1.3.3.5)であった。このとき、上記で得られた粗酵素液を精製し、SDSポリアクリルアミドゲル電気泳動(SDS PAGE)法で分離した目的物を、液体クロマトグラフ質量分析法(LC/MS/MS)で分析することにより、ラッカーゼがビリルビンオキシダーゼ(EC1.3.3.5)であることを特定した。 As is clear from FIG. 2, in Example 3, the enzymatic activity of the laccase produced by Oyster Mushroom was maximized on the 15th day after the start of culturing. At this time, the total activity in 50 mL of the medium was about 650 U, and the enzyme activity of laccase was 13.3 U / mL. Moreover, when the highly active laccase at this time was identified, it was bilirubin oxidase (EC 1.3.3.5). At this time, the crude enzyme solution obtained above is purified, and the target product separated by SDS polyacrylamide gel electrophoresis (SDS PAGE) is analyzed by liquid chromatography-mass spectrometry (LC / MS / MS). Identified that the laccase was bilirubin oxidase (EC 1.3.3.5).
 これに対して、比較例3~6においては、ヒラタケが産生したラッカーゼの酵素活性は、実施例3の場合よりも明らかに低かった。
 比較例3においては、ラッカーゼの酵素活性が、培養を開始してから15日目に最大となり、このときの酵素活性は6.8U/mLであった。
 比較例4においては、ラッカーゼの酵素活性が、培養を開始してから15日目に最大となり、このときの酵素活性は7.8U/mLであった。
 比較例5においては、ラッカーゼの酵素活性が、培養を開始してから7日目に最大となり、このときの酵素活性は1.9U/mLであった。
 比較例6においては、ラッカーゼの酵素活性が、培養を開始してから15日目に最大となり、このときの酵素活性は6.7U/mLであった。
On the other hand, in Comparative Examples 3 to 6, the enzymatic activity of the laccase produced by Oyster Mushroom was clearly lower than that in Example 3.
In Comparative Example 3, the enzyme activity of laccase was maximized on the 15th day after the start of culturing, and the enzyme activity at this time was 6.8 U / mL.
In Comparative Example 4, the enzyme activity of laccase was maximized on the 15th day after the start of culturing, and the enzyme activity at this time was 7.8 U / mL.
In Comparative Example 5, the enzyme activity of laccase was maximized on the 7th day after the start of culturing, and the enzyme activity at this time was 1.9 U / mL.
In Comparative Example 6, the enzyme activity of laccase was maximized on the 15th day after the start of culturing, and the enzyme activity at this time was 6.7 U / mL.
 本発明は、ラッカーゼの製造に利用可能である。 The present invention can be used for the production of laccase.

Claims (4)

  1.  真菌を生育させるための培地であって、
     前記培地は、TEMPO酸化セルロースナノファイバーを含有し、
     前記培地は、前記真菌を生育させることにより、前記真菌にラッカーゼを産生させるための培地である、培地。
    A medium for growing fungi
    The medium contains TEMPO-oxidized cellulose nanofibers and contains.
    The medium is a medium for causing the fungus to produce laccase by growing the fungus.
  2.  前記真菌がキノコである、請求項1に記載の培地。 The medium according to claim 1, wherein the fungus is a mushroom.
  3.  前記ラッカーゼがビリルビンオキシダーゼである、請求項1又は2に記載の培地。 The medium according to claim 1 or 2, wherein the laccase is bilirubin oxidase.
  4.  ラッカーゼの製造方法であって、
     前記製造方法は、TEMPO酸化セルロースナノファイバーを含有する培地を用いて、真菌を生育させることにより、前記真菌にラッカーゼを産生させる工程を有する、ラッカーゼの製造方法。
    It ’s a method of manufacturing laccase.
    The production method is a method for producing laccase, which comprises a step of causing the fungus to produce laccase by growing the fungus using a medium containing TEMPO-oxidized cellulose nanofibers.
PCT/JP2021/012768 2020-03-27 2021-03-26 Culture medium and method for producing laccase WO2021193893A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-058272 2020-03-27
JP2020058272 2020-03-27
JP2021034473A JP2021153575A (en) 2020-03-27 2021-03-04 Culture media and methods of laccase production
JP2021-034473 2021-03-04

Publications (1)

Publication Number Publication Date
WO2021193893A1 true WO2021193893A1 (en) 2021-09-30

Family

ID=77890348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012768 WO2021193893A1 (en) 2020-03-27 2021-03-26 Culture medium and method for producing laccase

Country Status (1)

Country Link
WO (1) WO2021193893A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116286413A (en) * 2023-02-24 2023-06-23 天津科技大学 Brevibacterium roseum strain capable of coloring and producing fragrance of soy sauce and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018000196A (en) * 2016-06-30 2018-01-11 江南大学 Method for promoting laccase production by microorganisms
JP2019041731A (en) * 2017-09-06 2019-03-22 トッパン・フォームズ株式会社 Culture medium for cellulose-decomposing bacteria

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018000196A (en) * 2016-06-30 2018-01-11 江南大学 Method for promoting laccase production by microorganisms
JP2019041731A (en) * 2017-09-06 2019-03-22 トッパン・フォームズ株式会社 Culture medium for cellulose-decomposing bacteria

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
REYES CAROLINA, POULIN ALEXANDRE, NYSTRÖM GUSTAV, SCHWARZE FRANCIS W. M. R., RIBERA JAVIER: "Enzyme Activities of Five White-Rot Fungi in the Presence of Nanocellulose", J. FUNGI, vol. 7, no. 222, 18 March 2021 (2021-03-18), pages 1 - 17, XP055861919 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116286413A (en) * 2023-02-24 2023-06-23 天津科技大学 Brevibacterium roseum strain capable of coloring and producing fragrance of soy sauce and application thereof
CN116286413B (en) * 2023-02-24 2024-05-28 天津科技大学 Brevibacterium roseum strain capable of coloring and producing fragrance of soy sauce and application thereof

Similar Documents

Publication Publication Date Title
Kachlishvili et al. Effect of nitrogen source on lignocellulolytic enzyme production by white-rot basidiomycetes under solid-state cultivation
Mikiashvili et al. Effects of carbon and nitrogen sources on Pleurotus ostreatus ligninolytic enzyme activity
Millati et al. Biological pretreatment of lignocelluloses with white-rot fungi and its applications: a review
Desai et al. Isolation of laccase producing fungi and partial characterization of laccase
Rahman et al. Production of ligninolytic enzymes by newly isolated bacteria from palm oil plantation soils
Wang et al. Effect of culture conditions on the production of ligninolytic enzymes by white rot fungi Phanerochaete chrysosporium (ATCC 20696) and separation of its lignin peroxidase
Ragunathan et al. Biological treatment of a pulp and paper industry effluent by Pleurotus spp.
Gorska et al. Production of ligninolytic enzymes by cultures of white rot fungi
WO2021193893A1 (en) Culture medium and method for producing laccase
Rahayu et al. Surfactant, nitrogen and carbon media optimization for Trichoderma asperellum LBKURCC1 laccase production by flask solid state fermentation of rice straw
JP2021153575A (en) Culture media and methods of laccase production
Ado et al. Production and optimization of laccase by Trametes sp. isolate B7 and its’ dye decolourization potential
Roushdy et al. Biotechnological approach for lignin peroxidase (lip) production from agricultural wastes (rice husk) by Cunninghamella elegans
CN107475150A (en) Composite flora that a kind of paper-making industrial waste water decolourizes and preparation method thereof
Selvam et al. Decolourization of azo dyes and dye industry effluents by lignin degrading fungus Trametes versicolor
Garcés et al. An alternative, banana peel-based medium used to investigate the catalytic properties of peroxidase from a fungus, Inonotus sp SP2, recently isolated in southern Chile
CN1948453A (en) Method of screening laccase endogenic bateria from Chinese sumac and preparing laccase through solid state fermentation
CN1764717A (en) A process for the isolation and acclimatization of bacteria for lignin degradation
JP2020141632A (en) Bacterium, processing method of biomass, and processing method of lignin
Ado et al. Optimization of total soluble protein production by Trametes sp. isolate b7 and enzymatic degradation of synthetic dyes
Ado et al. Utilization of Terminalia superba Sawdust as Substrate for Laccase Production by Trametes sp Isolate B7 under Solid State Fermentation
Mtui et al. Lignin-degrading enzymes from mycelial cultures of basidiomycete fungi isolated in Tanzania
JP3425453B2 (en) Pulp bleaching microorganism and pulp bleaching method using the same
KR20000043999A (en) Mass production method of laccase by the addition of alcohols during fermentation of white rot fungi
RU2021371C1 (en) Method of ligninolytic enzymes preparing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21775325

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21775325

Country of ref document: EP

Kind code of ref document: A1