WO2021193805A1 - Waveguide with flexible substrate - Google Patents

Waveguide with flexible substrate Download PDF

Info

Publication number
WO2021193805A1
WO2021193805A1 PCT/JP2021/012481 JP2021012481W WO2021193805A1 WO 2021193805 A1 WO2021193805 A1 WO 2021193805A1 JP 2021012481 W JP2021012481 W JP 2021012481W WO 2021193805 A1 WO2021193805 A1 WO 2021193805A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
flexible substrate
slit
conductive layer
surface conductive
Prior art date
Application number
PCT/JP2021/012481
Other languages
French (fr)
Japanese (ja)
Inventor
翔 熊谷
森本 康夫
加賀谷 修
政洋 岸
眞平 長江
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to JP2022510649A priority Critical patent/JPWO2021193805A1/ja
Publication of WO2021193805A1 publication Critical patent/WO2021193805A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices

Definitions

  • This disclosure relates to a waveguide with a flexible substrate.
  • the next-generation 5G (5th Generation) system which is wireless wideband communication, uses radio waves in the millimeter-wave band.
  • a waveguide is used as a means for transmitting radio waves in the millimeter wave band (Patent Document 1 and Patent Document 2).
  • the high frequency signal transmitted from the base station through the waveguide is input to, for example, a circuit board or the like, and is radiated to the outside through the antenna.
  • a high frequency signal is input from a waveguide to a circuit board, it is desired to transmit it efficiently. Further, it is considered to use a flexible substrate as a circuit board.
  • the present disclosure provides a technique for inputting a high-frequency signal propagating through a waveguide to a flexible substrate.
  • the present disclosure includes a waveguide provided with a slit and a flexible substrate, and the flexible substrate is provided along the outer surface of the waveguide so that a part of the flexible substrate overlaps the slit. It is a waveguide with a flexible substrate into which a high-frequency signal propagated through the waveguide is input.
  • FIG. 1 is a perspective view of the waveguide 1 with a flexible substrate according to the first embodiment.
  • FIG. 2 is a perspective view of the waveguide 20 to which the flexible substrate 30 of the first embodiment is attached.
  • FIG. 3 is a cross-sectional view of the waveguide 1 with a flexible substrate according to the first embodiment.
  • the XYZ Cartesian coordinate system is set in the figure for convenience of explanation.
  • the cross mark in the circle of the coordinate axis indicates that the back side is positive with respect to the paper surface
  • the black circle mark in the circle indicates that the front side is positive with respect to the paper surface. ..
  • the coordinate system is defined for the sake of explanation, and does not limit the posture of the flexible substrate or the waveguide.
  • the Z-axis is the extending direction of the waveguide 20
  • the X-axis and the Y-axis are the directions perpendicular to the extending direction of the waveguide 20.
  • the waveguide 1 with a flexible substrate of the first embodiment is used when transmitting radio waves in the millimeter wave band used in the next-generation 5G system.
  • the waveguide 20 connects from the base station to the antenna installed in the space where the user is.
  • the antenna may be, for example, a patch antenna or a dipole antenna formed of a flexible substrate. Further, the antenna may be a slot antenna by opening a slot in the waveguide. Further, another waveguide may be connected to the tip of the waveguide 20. For example, another waveguide may be connected via a flexible substrate.
  • the band of the radio wave transmitted by the waveguide 20 of the first embodiment is, for example, 27.5 GHz to 29 GHz.
  • the center frequency is 28 GHz.
  • the band is divided and used every 400 MHz for each operator.
  • the frequency band is not limited to 27.5 GHz to 29 GHz, and may be, for example, a frequency band centered on 26 GHz or 39 GHz. Further, the frequency band is not limited to the millimeter wave band and may be another frequency band.
  • the waveguide 1 with a flexible substrate of the first embodiment includes a waveguide 20 whose end is short-circuited by a closing member 10 and a flexible substrate 30. Each element of the waveguide 1 with a flexible substrate will be described.
  • the waveguide 20 is a waveguide that serves as a waveguide for propagating radio waves in the millimeter wave band.
  • the waveguide 20 is a columnar tube extending in the direction in which radio waves propagate. In FIG. 3, the direction in which the radio wave propagates is the Z direction.
  • the waveguide 20 includes a dielectric tube 21 and a metal coating 22 that covers the outside of the dielectric tube 21.
  • the dielectric tube 21 is a member that functions as a transmission path through which radio waves propagate. In the waveguide 20, radio waves propagate through the dielectric tube 21.
  • the dielectric tube 21 is made of a dielectric, for example, a fluororesin.
  • a fluororesin polytetrafluoroethylene (PTFE (Polytetrafluoroalkoxy alkane)) or perfluoroalkoxy alkane (PFA (Perfluoroalkoxy alkane) can be used.
  • PTFE Polytetrafluoroalkoxy alkane
  • PFA Perfluoroalkoxy alkane
  • the outer diameter of the waveguide 20 is preferably 5 mm to 9 mm.
  • the outer diameter of the dielectric tube 21 is 1 mm to 2 mm thinner than the outer diameter of the waveguide 20.
  • the metal coating 22 is a member that defines a transmission line.
  • the metal coating 22 is formed of a conductive member, for example, copper.
  • the metal coating 22 is formed, for example, by plating.
  • the metal coating 22 is not limited to being formed by plating.
  • a copper foil or a metal net may be wound around the metal coating 22 to form the metal coating 22.
  • a coating with an insulating material may be further provided on the outside of the metal coating 22 of the waveguide 20.
  • the + Z side end of the waveguide 20 is closed by the closing member 10.
  • the closing member 10 is made of a conductive member, for example, copper or the like.
  • the closing member 10 is mechanically and electrically connected to the metal coating 22 of the waveguide 20 by, for example, soldering, brazing, applying a conductive paste, or the like.
  • the waveguide 20 is closed by the closing member 10, so that the end portion of the waveguide 20 is short-circuited.
  • the waveguide 20 has a slit 20p on the outer surface 20s1 of the waveguide 20.
  • the slit 20p serves as a passage path for deriving the radio waves propagating inside the waveguide 20 to the outside.
  • the slit 20p is provided at a position separated by a quarter of the wavelength from the short-circuit surface of the waveguide 20.
  • the center of the slit 20p is provided at a position separated by a quarter of the wavelength in the longitudinal direction ( ⁇ Z direction) of the waveguide 20 from the short-circuit surface on the inner surface of the closing member 10.
  • the flexible substrate 30 is, for example, a circuit board that processes a high-frequency signal transmitted from a base station via a waveguide 20.
  • the flexible substrate 30 is formed with lines and waveguides for propagating high-frequency signals.
  • a microstrip line or a coplanar line may be used as the line, or a substrate integrated waveguide (SIW (substrate integrated waveguide)) may be used as the waveguide.
  • SIW substrate integrated waveguide
  • the flexible substrate 30 may be flexible enough to be wound around a cylindrical waveguide without resistance, and the thickness of the flexible substrate 30 is preferably 0.012 mm or more and 0.8 mm or less. .. By thinning the flexible substrate 30, the flexibility of the flexible substrate 30 can be increased.
  • the dielectric of the flexible substrate 30 is formed of a fluororesin, a liquid crystal display, polyimide, or the like.
  • the fluororesin for example, perfluoroalkoxy alkane (PFA) can be used.
  • the flexible substrate 30 may include an amplifier on the substrate. Further, the flexible substrate 30 may include an antenna such as a patch antenna or a dipole antenna.
  • FIG. 4 is an enlarged cross-sectional view of the connection portion between the waveguide 20 and the flexible substrate 30 of the waveguide 1 with a flexible substrate of the first embodiment. Note that FIG. 4 shows a state before the flexible substrate 30 is wound around the waveguide 20 and attached.
  • the flexible substrate 30 constitutes a substrate integrated waveguide (SIW)
  • the flexible substrate 30 includes an upper surface conductive layer 31, a lower surface conductive layer 32, and a dielectric layer 33 sandwiched between the upper surface conductive layer 31 and the lower surface conductive layer 32.
  • the upper surface conductive layer 31 has a slot 30p.
  • the slot 30p has substantially the same shape as the slit 20p of the waveguide 20.
  • the flexible substrate 30 includes a via 35 that connects the upper surface conductive layer 31 and the lower surface conductive layer 32. Therefore, the upper surface conductive layer 31 and the lower surface conductive layer 32 of the flexible substrate 30 have the same potential.
  • the positions of the slit 20p of the waveguide 20 and the slot 30p of the flexible substrate 30 are aligned. Then, both sides of the slot 30p of the flexible substrate 30 are wound around the waveguide 20 to be attached.
  • a conductive paste may be applied or a conductive adhesive may be used for bonding.
  • Radio wave propagation characteristics from the waveguide 20 to the flexible substrate 30 The propagation characteristics when the radio wave propagating in the waveguide 20 propagates to the flexible substrate 30 will be described.
  • FIG. 5 is a diagram showing an analysis model for analyzing the propagation characteristics of the waveguide 1 with a flexible substrate of the first embodiment.
  • the waveguide MP is a waveguide corresponding to a portion where radio waves of the waveguide 20 propagate.
  • the extending direction of the waveguide MP is the Y-axis.
  • the directions perpendicular to the extending direction of the waveguide MP are the X-axis and the Z-axis.
  • the waveguide MP is modeled on a waveguide in which an inner diameter of 6 mm, an outer diameter of 7 mm, and a tube made of polytetrafluoroethylene (PTFE) and 0.01 mm of copper are wound.
  • Radio waves are incident on the waveguide MP from the incident surface SI.
  • the polarization in the Z direction (quasi-TE11 mode) is incident from the incident surface SI.
  • a reflection surface SR is formed on the waveguide MP.
  • the radio wave incident from the incident surface SI is reflected by the reflecting surface SR while propagating in the waveguide MP in the + Y direction. It is assumed that the reflective surface SR is a short-circuit surface.
  • a slit SL is provided in the + X direction of the waveguide MP. Radio waves in the waveguide MP are output from the slit SL to the outside of the waveguide MP. The center of the slit SL is provided at a position of a quarter of the wavelength of the radio wave in the ⁇ Y direction from the reflecting surface SR.
  • the wavelength of the radio wave was 28 GHz, and the distance from the center of the slit SL to the reflection surface in the Y-axis direction was 5 mm.
  • the length of the slit SL in the Y-axis direction is 4.35 mm, and the width (the length along the outer circumference of the waveguide MF on a plane perpendicular to the Y-axis) is 0.9 mm.
  • the waveguide MF is a waveguide corresponding to a portion of the flexible substrate 30 where radio waves propagate.
  • the waveguide MF models a substrate integrated waveguide (SIW) made in a flexible substrate with a width of 4.5 mm and a thickness of 0.2 mm.
  • SIW substrate integrated waveguide
  • the slit SL was used as a slot for a substrate integrated waveguide (SIW).
  • SIW substrate integrated waveguide
  • an iris post IP was provided in the middle of the waveguide of the flexible substrate.
  • each iris post IP in the Y-axis direction is 0.9 mm
  • the width length along the outer circumference of the waveguide MF on a plane perpendicular to the Y-axis
  • Radio waves are incident on the waveguide MF from the slit SL (slot).
  • the radio wave incident from the slit SL (slot) propagates in the waveguide MF and is output from the exit surface SO.
  • the radio wave of the TE10 mode of the exit surface SO was analyzed.
  • FIG. 6 is a diagram showing the results of analyzing the propagation characteristics of the waveguide with a flexible substrate according to the first embodiment.
  • the horizontal axis shows the frequency.
  • the vertical axis represents the transmission coefficient and the reflection coefficient in decibels.
  • the transmission coefficient T1 represents the ratio of the radio wave intensity emitted from the emitting surface SO to the radio wave intensity incident from the incident surface SI.
  • the reflection coefficient R1 represents the ratio of the radio wave intensity incident from the incident surface SI to the radio wave intensity reflected on the incident surface SI without emitting from the emitting surface SO.
  • the radio wave from the waveguide MP can be transmitted to the waveguide MF.
  • the radio waves can be transmitted from the waveguide 20 to the flexible substrate 30 by providing the waveguide 20 along the outer surface 20s1 so as to overlap the slit 20p of the waveguide 20.
  • the waveguide 20 is provided by providing the flexible substrate 30 along the outer surface 20s1 of the waveguide 20 so as to overlap the slit 20p of the waveguide 20.
  • the propagated high frequency signal can be input to the flexible substrate 30.
  • FIG. 7 is a cross-sectional view of the waveguide 2 with a flexible substrate according to the second embodiment.
  • FIG. 8 is an enlarged cross-sectional view of the connecting portion of the waveguide 2 with a flexible substrate of the second embodiment. Note that FIG. 8 shows the flexible substrate 130 wound around the waveguide 20 in an unfolded manner. Further, in FIG. 8, in order to explain the state in which the flexible substrate 130 is wound a plurality of times, the flexible substrate 130 is shown enlarged with respect to the waveguide 20.
  • the flexible substrate 130 is wound around the waveguide 20 a plurality of times. Specifically, it is laminated five times at the slit 20p of the waveguide 20.
  • the number of windings is not limited to 5 times, and may be 2 times or more.
  • the flexible substrate 130 has a microstrip line 130d formed as a line.
  • the flexible substrate 130 includes an upper surface conductive layer 131, a lower surface conductive layer 132, and a dielectric layer 133 sandwiched between the upper surface conductive layer 131 and the lower surface conductive layer 132. Further, a via 135 is provided to connect the upper surface conductive layer 131 and the lower surface conductive layer 132.
  • the numbers of the layers laminated at the position of the slit 20p of the waveguide 20 are represented by the numbers in parentheses.
  • the upper surface conductive layer 131 of the first layer of the flexible substrate 130 in contact with the waveguide 20 is represented as the upper surface conductive layer 131 (1).
  • the upper surface conductive layer 131, the lower surface conductive layer 132, and the dielectric layer 133 of the nth layer are referred to as the upper surface conductive layer 131 (n), the lower surface conductive layer 132 (n), and the dielectric layer 133 (n), respectively.
  • the flexible substrate 130 is laminated a plurality of times in the slit 20p.
  • the flexible substrate 130 has a connecting portion 130a in which a part of the upper surface conductive layer 131 (1) of the first layer is removed and the dielectric layer 133 (1) of the first layer is exposed.
  • the slit 20p of the waveguide 20 comes into contact with the connecting portion 130a.
  • a microstrip line 130d is formed on the lower surface conductive layer 132 (1) of the first layer on the opposite side via the dielectric layer 133 (1) of the portion where the slit 20p of the waveguide 20 contacts. There is.
  • the upper surface conductive layer 131 and the lower surface conductive layer 132 are removed to expose the dielectric layer 133. That is, in the portion corresponding to the connecting portion 130a of the second layer to the fourth layer, the upper surface conductive layer 131 (2), the upper surface conductive layer 131 (3), the upper surface conductive layer 131 (4), and the lower surface conductive layer 132 (2). , The lower surface conductive layer 132 (3) and the lower surface conductive layer 132 (4) have been removed. The upper surface conductive layer 131 (5) and the lower surface conductive layer 132 (5) are formed at the portion corresponding to the connection portion 130a of the fifth layer. The upper surface conductive layer 131 (5) is a reflecting surface 130b that reflects radio waves incident from the connecting portion 130a.
  • the flexible substrate 130 By winding the flexible substrate 130 around the waveguide 20, the flexible substrate 130 is provided along the outer surface of the waveguide 20.
  • a conductive paste may be applied or a conductive adhesive may be used for bonding. Further, it is possible to prevent the radio wave from the slit 20p from leaking due to the contact between the metal coating 22 of the waveguide 20 and the upper surface conductive layer 131 (1) of the first layer of the flexible substrate 130.
  • FIG. 9 is a top view of the developed flexible substrate 130 of the second embodiment.
  • FIG. 10 is a bottom view of the developed flexible substrate 130 of the second embodiment.
  • Region RT1, region RT2, region RT3, and region RT4 indicate regions from which the upper surface conductive layer 131 of the flexible substrate 130 has been removed.
  • the area RT1 is an area corresponding to the connection portion 130a.
  • the region RT2, region RT3, and region RT4 are regions corresponding to the connection portion 130a when the flexible substrate 130 is wound around the waveguide 20.
  • the upper surface conductive layer 131 is also removed from the region overlapping the wiring portion of the microstrip line 130d.
  • the region RT5 represents a portion where the upper surface conductive layer 131 of the fifth layer is provided and becomes the reflection surface 130b.
  • the region RT1, region RT2, region RT3, region RT4, and region RT5 are provided at intervals corresponding to the circumference of the waveguide 20.
  • Region RB1, region RB2, region RB3, and region RB4 indicate regions from which the lower surface conductive layer 132 of the flexible substrate 130 has been removed.
  • Region RB1 is the region where the microstrip line 130d is formed.
  • the region RB2, the region RB3, and the region RB4 are regions corresponding to the connection portion 130a when the flexible substrate 130 is wound around the waveguide 20.
  • the region RT5 represents a portion where the lower surface conductive layer 132 of the fifth layer on the outer side of the reflective surface 130b is provided.
  • the region RB1, the region RB2, the region RB3, the region RB4, and the region RB5 are provided at intervals corresponding to the circumference of the waveguide 20.
  • the part corresponding to the connection portion 130a will be described.
  • the actual thickness of the upper surface conductive layer 131 and the lower surface conductive layer 132 is about 20 ⁇ m, whereas the actual thickness of the dielectric layer 133 is 200 ⁇ m.
  • the laminated flexible substrate 130 is brought into close contact with each other. That is, the portions corresponding to the connecting portion 130a between the lower surface conductive layer 132 (1) of the first layer and the upper surface conductive layer 131 (5) of the fifth layer are the dielectric layer 133 (2) and the dielectric layer 133 ( 3), the dielectric layer 133 (4) is adhered and laminated.
  • a gap is provided between the layers. Therefore, the outside of the microstrip line 130d can be regarded as a layer in which a plurality of dielectric layers 133 are laminated, specifically, a layer in which three layers are laminated.
  • the distance L1 between the microstrip line 130d and the reflecting surface 130b can be lengthened by laminating the dielectric layer 133 a plurality of times.
  • Electromagnetic field analysis was performed on the waveguide 2 with a flexible substrate of the second embodiment.
  • the dimensions of the slit 20p of the waveguide 20 were 5.4 mm in length and 0.5 mm in width
  • the flexible substrate 130 was a fluororesin substrate with a thickness of 0.2 mm
  • the conductive layer was copper
  • the wire width was 0.2 mm
  • resonance was performed.
  • the analysis was performed with the distance L1 of the vessel 130c set to 2.5 mm.
  • FIG. 11 is a diagram showing the results of analyzing the propagation characteristics of the waveguide 2 with a flexible substrate of the second embodiment.
  • the horizontal axis shows the frequency.
  • the vertical axis represents the transmission coefficient and the reflection coefficient in decibels.
  • the transmission coefficient T2 represents the ratio of the radio wave intensity transmitted through the microstrip line 130d to the radio wave intensity of the polarized wave (quasi-TE11 mode) in the Y direction in FIG. 7 incident on the waveguide 20.
  • the reflection coefficient R2 represents the ratio of the radio wave intensity reflected without being incident on the microstrip line 130d to the radio wave intensity of the polarized wave (quasi-TE11 mode) in the Y direction in FIG. 7 incident on the waveguide 20.
  • FIG. 12 is a cross-sectional view of the waveguide 3 with a flexible substrate according to the third embodiment.
  • the waveguide 220 includes a dielectric tube 221 and a metal coating 222 that covers the outside of the dielectric tube 221.
  • the dielectric tube 221 is a member that functions as a transmission line through which radio waves propagate.
  • radio waves propagate through the dielectric tube 221.
  • the metal coating 222 is a member that defines a transmission line. The materials of the dielectric tube 221 and the metal coating 222 are the same as those of the dielectric tube 21 and the metal coating 22 of the waveguide 20.
  • the waveguide 220 is provided with a plurality of slits. Specifically, the waveguide 220 has two slits 220p1 and a slit 220p2.
  • the slit 220p1 and the slit 220p2 serve as a passage path for deriving the radio wave propagating inside the waveguide 220 to the outside.
  • the slit 220p1 and the slit 220p2 are provided at positions separated by a quarter of the wavelength from the short-circuit surface of the waveguide 220.
  • Radio waves are input to the flexible substrate 230 from two places, the slit 220p1 and the slit 220p2. It is the same as the flexible substrate 30 and the flexible substrate 130 except that it is input from two places.
  • the flexible substrate 230 converts the polarization in two directions by inputting radio waves in the Y direction from the slit 220p1 (quasi-TE11 mode) and the polarization in the X direction from the slit 220p2 (quasi-TE11 mode). be able to.
  • a high frequency signal propagating in the waveguide can be input to the flexible substrate.
  • the waveguide with a flexible substrate of the present disclosure can be created by winding a flexible substrate around the waveguide.
  • the shape of the waveguide is not limited to a cylindrical shape.
  • the waveguide may be in the shape of a square cylinder.
  • a cavity may be provided inside the waveguide, or the dielectric tube may be omitted if the metal coating can stand on its own.
  • FIG. 13 is a cross-sectional view of the waveguide 4 with a flexible substrate according to the fourth embodiment.
  • the waveguide 320 includes a metal coating 322.
  • the metal coating 322 is a member that defines a transmission line. Since the metal coating 322 can stand on its own and retain its shape, the inside is hollow 321. That is, in the waveguide 320, the radio waves propagate through the air in the cavity 321.
  • a dielectric tube may be provided in the cavity 321 instead of the air in the cavity 321.
  • the material of the metal coating 322 is the same as that of the metal coating 22 of the waveguide 20.
  • the waveguide 320 includes a slit 320p.
  • a radio wave propagating through the cavity 321 is incident on the flexible substrate 330 from the slit 320p.
  • the flexible substrate 330 constitutes a substrate integrated waveguide (SIW).
  • the flexible substrate 330 includes an upper surface conductive layer 331, a lower surface conductive layer 332, and a dielectric layer 333 sandwiched between the upper surface conductive layer 331 and the lower surface conductive layer 332.
  • the flexible substrate 330 includes vias (not shown) in order to connect the upper surface conductive layer 331 and the lower surface conductive layer 332. Therefore, the upper surface conductive layer 331 and the lower surface conductive layer 332 of the flexible substrate 330 have the same potential.
  • the upper surface conductive layer 531 has a slot having substantially the same shape as the slit 320p. Radio waves from the slit 320p are introduced into the slot.
  • the conductive adhesive 350 is applied to the outer surface of the metal coating 322.
  • the conductive adhesive 350 is, for example, an anisotropic conductive film sheet in which fine metal particles are mixed with a resin.
  • the conductive adhesive 350 is applied while avoiding the slit 320p so as not to block the slit 320p. Further, the conductive adhesive 350 is applied so as to surround the slit 320p.
  • the conductive adhesive 350 is applied, the flexible substrate 330 is wound around the waveguide 320, and the conductive adhesive 350 is cured.
  • the flexible substrate 330 is fixed to the waveguide 320 by curing the conductive adhesive 350.
  • the metal coating 322 and the upper surface conductive layer 331 of the flexible substrate 330 can be electrically connected.
  • the conductive adhesive 350 so as to surround the slit 320p, it is possible to suppress the leakage of electromagnetic waves from the vicinity of the slit 320p.
  • FIG. 14 is a cross-sectional view of the waveguide 5 with a flexible substrate according to the fifth embodiment.
  • Solder 450 is applied to the outer surface of the metal coating 322 facing the flexible substrate 330.
  • the solder 450 is, for example, cream solder.
  • a protective sheet 460 is attached around the slit 320p so that the solder 450 does not block the slit 320p.
  • the protective sheet 460 is, for example, a polyimide tape.
  • FIG. 15 is a side view of the waveguide 320 of the waveguide 5 with a flexible substrate according to the fifth embodiment.
  • the protective sheet 460 is attached to the outer periphery of the slit 320p so that the solder 450 does not flow into the slit 320p and block it.
  • the protective sheet 460 is preferably as narrow as possible in order to prevent deterioration of radio wave propagation characteristics.
  • a protective sheet 460 is attached to the outer circumference of the slit 320p of the metal coating 322 of the waveguide 320. Then, the solder 450 is applied to the outer surface of the metal coating 322 of the waveguide 320 facing the flexible substrate 330. Next, the flexible substrate 330 is wound around the waveguide 320. Then, the waveguide 320 around which the flexible substrate 330 is wound is heated and then cooled to cure the solder 450.
  • the flexible substrate 330 is fixed to the waveguide 320 by curing the solder 450.
  • the metal coating 322 and the upper surface conductive layer 331 of the flexible substrate 330 can be electrically connected.
  • the protective sheet 460 can prevent the solder 450 from flowing into the slit 320p. Further, by providing the solder 450 so as to surround the slit 320p, it is possible to suppress leakage of electromagnetic waves from the vicinity of the slit 320p.
  • FIG. 16 is a cross-sectional view of the waveguide 6 with a flexible substrate according to the fifth embodiment.
  • the flexible substrate 530 constitutes a substrate integrated waveguide (SIW).
  • the flexible substrate 530 includes an upper surface conductive layer 531, a lower surface conductive layer 532, and a dielectric layer 533 sandwiched between the upper surface conductive layer 531 and the lower surface conductive layer 532.
  • the flexible substrate 530 is provided with a through hole 530th, which will be described later, in order to connect the upper surface conductive layer 531 and the lower surface conductive layer 532. Therefore, the upper surface conductive layer 531 and the lower surface conductive layer 532 of the flexible substrate 530 have the same potential.
  • FIG. 17 is a side view of the flexible substrate 530 of the waveguide 6 with the flexible substrate according to the sixth embodiment.
  • FIG. 17 is a side view of the flexible substrate 530 as viewed from the side of the upper surface conductive layer 531.
  • the upper surface conductive layer 531 has a slot 530p having substantially the same shape as the slit 320p. Radio waves from the slit 320p are introduced into the slot 530p. It has a plurality of through holes 530th so as to surround the slot 530p. The plurality of through holes 530th form a waveguide for the flexible substrate 530. Each of the plurality of through holes 530th electrically connects the upper surface conductive layer 531 and the lower surface conductive layer 532 and penetrates the dielectric layer 533.
  • a plurality of through holes for soldering 530sh are provided on the outside of the slots 530p of the plurality of through holes 530th.
  • Each of the plurality of solder through holes 530sh connects the upper surface conductive layer 531 and the lower surface conductive layer 532 and penetrates the dielectric layer 533.
  • the solder through hole 530sh has a larger diameter than the through hole 530th. Solder 450 is injected from the solder through hole 530sh.
  • the solder 450 is injected from the solder through hole 530sh.
  • the waveguide 320 around which the flexible substrate 530 is wound is heated and then cooled to cure the solder 450.
  • the solder 450 injected and heated from the through hole 530sh for solder flows into the through hole 530th due to the capillary phenomenon and does not reach the slit 320p and the slot 530p. Therefore, it is possible to prevent the solder 450 from blocking the slit 320p and the slot 530p.
  • the flexible substrate 530 is fixed to the waveguide 320 by curing the solder 450.
  • the metal coating 322 and the upper surface conductive layer 531 of the flexible substrate 530 can be electrically connected.
  • solder 450 so as to surround the slit 320p, leakage of electromagnetic waves from the vicinity of the slit 320p can be suppressed.

Landscapes

  • Waveguides (AREA)

Abstract

This waveguide with a flexible substrate includes a waveguide provided with a slit and a flexible substrate, wherein the flexible substrate is provided along an outer surface of the waveguide such that a part of the flexible substrate overlaps the slit, and a high frequency signal propagating from the slit through the waveguide is input to the flexible substrate.

Description

フレキシブル基板付き導波管Waveguide with flexible substrate
 本開示は、フレキシブル基板付き導波管に関する。 This disclosure relates to a waveguide with a flexible substrate.
 無線広帯域通信である次世代5G(5th Generation)システムでは、ミリ波帯の帯域の電波を使用する。 The next-generation 5G (5th Generation) system, which is wireless wideband communication, uses radio waves in the millimeter-wave band.
 ミリ波帯の帯域の電波を伝送する手段として、例えば、導波管が用いられている(特許文献1、特許文献2)。 For example, a waveguide is used as a means for transmitting radio waves in the millimeter wave band (Patent Document 1 and Patent Document 2).
特開平08-195605号公報Japanese Unexamined Patent Publication No. 08-195605 特開2017-228839号公報Japanese Unexamined Patent Publication No. 2017-228839
 基地局から導波管を通じて伝送された高周波信号は、例えば、回路基板等に入力され、アンテナを通して外部に放射される。導波管から回路基板への高周波信号の入力する際には、効率よく伝送することが望まれる。また、回路基板として、フレキシブル基板を使用することが検討されている。 The high frequency signal transmitted from the base station through the waveguide is input to, for example, a circuit board or the like, and is radiated to the outside through the antenna. When a high frequency signal is input from a waveguide to a circuit board, it is desired to transmit it efficiently. Further, it is considered to use a flexible substrate as a circuit board.
 本開示は、導波管を伝搬する高周波信号をフレキシブル基板に入力する技術を提供する。 The present disclosure provides a technique for inputting a high-frequency signal propagating through a waveguide to a flexible substrate.
 本開示は、スリットが設けられた導波管と、フレキシブル基板と、を備え、前記フレキシブル基板は、一部が前記スリットに重なるように、前記導波管の外面に沿って設けられ、前記スリットから前記導波管を伝搬した高周波信号が入力されるフレキシブル基板付き導波管である。 The present disclosure includes a waveguide provided with a slit and a flexible substrate, and the flexible substrate is provided along the outer surface of the waveguide so that a part of the flexible substrate overlaps the slit. It is a waveguide with a flexible substrate into which a high-frequency signal propagated through the waveguide is input.
 本開示によれば、導波管を伝搬する高周波信号をフレキシブル基板に入力する技術を提供できる。 According to the present disclosure, it is possible to provide a technique for inputting a high frequency signal propagating in a waveguide to a flexible substrate.
第1実施形態のフレキシブル基板付き導波管の斜視図である。It is a perspective view of the waveguide with a flexible substrate of 1st Embodiment. 第1実施形態のフレキシブル基板を取り付ける導波管の斜視図である。It is a perspective view of the waveguide to which the flexible substrate of 1st Embodiment is attached. 第1実施形態のフレキシブル基板付き導波管の断面図である。It is sectional drawing of the waveguide with a flexible substrate of 1st Embodiment. 第1実施形態のフレキシブル基板付き導波管の接続部分を拡大した断面図である。It is an enlarged cross-sectional view of the connection part of the waveguide with a flexible substrate of 1st Embodiment. 第1実施形態のフレキシブル基板付き導波管の伝搬特性を解析するための解析モデルを示す図である。It is a figure which shows the analysis model for analyzing the propagation characteristic of the waveguide with a flexible substrate of 1st Embodiment. 第1実施形態のフレキシブル基板付き導波管の伝搬特性を解析した結果を示す図である。It is a figure which shows the result of having analyzed the propagation characteristic of the waveguide with a flexible substrate of 1st Embodiment. 第2実施形態のフレキシブル基板付き導波管の断面図である。It is sectional drawing of the waveguide with a flexible substrate of 2nd Embodiment. 第2実施形態のフレキシブル基板付き導波管の接続部分を拡大した断面図である。It is an enlarged cross-sectional view of the connection part of the waveguide with a flexible substrate of 2nd Embodiment. 第2実施形態の展開したフレキシブル基板の上面図である。It is a top view of the developed flexible substrate of the 2nd Embodiment. 第2実施形態の展開したフレキシブル基板の下面図である。It is a bottom view of the developed flexible substrate of the 2nd Embodiment. 第2実施形態のフレキシブル基板付き導波管の伝搬特性を解析した結果を示す図である。It is a figure which shows the result of having analyzed the propagation characteristic of the waveguide with a flexible substrate of 2nd Embodiment. 第3実施形態のフレキシブル基板付き導波管の断面図である。It is sectional drawing of the waveguide with a flexible substrate of 3rd Embodiment. 第4実施形態のフレキシブル基板付き導波管の断面図である。It is sectional drawing of the waveguide with a flexible substrate of 4th Embodiment. 第5実施形態のフレキシブル基板付き導波管の断面図である。It is sectional drawing of the waveguide with a flexible substrate of 5th Embodiment. 第5実施形態のフレキシブル基板付き導波管の導波管の側面図である。It is a side view of the waveguide of the waveguide with a flexible substrate of 5th Embodiment. 第6実施形態のフレキシブル基板付き導波管の断面図である。It is sectional drawing of the waveguide with a flexible substrate of 6th Embodiment. 第6実施形態のフレキシブル基板付き導波管のフレキシブル基板の側面図である。It is a side view of the flexible substrate of the waveguide with the flexible substrate of the sixth embodiment.
 以下、図面を参照して本発明を実施するための形態について説明する。下記、各図面において、同一又は対応する構成部分には同一又は対応する符号を付し、重複した説明を省略する場合がある。なお、理解の容易のため、図面における各部の縮尺は、実際とは異なる場合がある。平行、直角、直交、水平、垂直、上下、左右などの方向には、実施形態の効果を損なわない程度のずれが許容される。角部の形状は、直角に限られず、弓状に丸みを帯びてもよい。平行、直角、直交、水平、垂直には、略平行、略直角、略直交、略水平、略垂直が含まれてもよい。 Hereinafter, a mode for carrying out the present invention will be described with reference to the drawings. In each of the drawings below, the same or corresponding components may be designated by the same or corresponding reference numerals, and duplicate description may be omitted. For ease of understanding, the scale of each part in the drawing may differ from the actual scale. In the directions of parallel, right angle, orthogonal, horizontal, vertical, up and down, left and right, etc., a deviation that does not impair the effect of the embodiment is allowed. The shape of the corner portion is not limited to a right angle, and may be rounded in a bow shape. Parallel, right-angled, orthogonal, horizontal, and vertical may include substantially parallel, substantially right-angled, substantially orthogonal, substantially horizontal, and substantially vertical.
 《第1実施形態》
 <フレキシブル基板付き導波管1>
 第1実施形態のフレキシブル基板付き導波管1は、導波管20にフレキシブル基板30が巻き付けられることにより、導波管20を伝播する高周波信号と接続する。導波管20にフレキシブル基板30が巻き付けられることにより、導波管20の外面20s1に沿って設けられる。図1は、第1実施形態のフレキシブル基板付き導波管1の斜視図である。図2は、第1実施形態のフレキシブル基板30を取り付ける導波管20の斜視図である。図3は、第1実施形態のフレキシブル基板付き導波管1の断面図である。
<< First Embodiment >>
<Wiguide tube with flexible substrate 1>
The waveguide 1 with a flexible substrate of the first embodiment is connected to a high frequency signal propagating in the waveguide 20 by winding the flexible substrate 30 around the waveguide 20. By winding the flexible substrate 30 around the waveguide 20, the flexible substrate 30 is provided along the outer surface 20s1 of the waveguide 20. FIG. 1 is a perspective view of the waveguide 1 with a flexible substrate according to the first embodiment. FIG. 2 is a perspective view of the waveguide 20 to which the flexible substrate 30 of the first embodiment is attached. FIG. 3 is a cross-sectional view of the waveguide 1 with a flexible substrate according to the first embodiment.
 なお、図には、説明の便宜のためXYZ直交座標系が設定されている。図面の紙面に対して垂直な座標軸については、座標軸の丸の中にバツ印は紙面に対して奥側が正、丸の中に黒丸印は紙面に対して手前側が正であることを表している。ただし、当該座標系は、説明のために定めるものであって、フレキシブル基板や導波管の姿勢について限定するものではない。なお、本開示では、特に説明しない限り、Z軸は導波管20の延在方向、X軸とY軸は導波管20の延在方向に垂直な方向となっている。 Note that the XYZ Cartesian coordinate system is set in the figure for convenience of explanation. Regarding the coordinate axes perpendicular to the paper surface of the drawing, the cross mark in the circle of the coordinate axis indicates that the back side is positive with respect to the paper surface, and the black circle mark in the circle indicates that the front side is positive with respect to the paper surface. .. However, the coordinate system is defined for the sake of explanation, and does not limit the posture of the flexible substrate or the waveguide. In the present disclosure, unless otherwise specified, the Z-axis is the extending direction of the waveguide 20, and the X-axis and the Y-axis are the directions perpendicular to the extending direction of the waveguide 20.
 第1実施形態のフレキシブル基板付き導波管1は、次世代5Gシステムに用いられるミリ波帯の帯域の電波を伝送する際に用いられる。例えば、導波管20は、基地局からユーザのいる空間に設置されたアンテナまで接続する。 The waveguide 1 with a flexible substrate of the first embodiment is used when transmitting radio waves in the millimeter wave band used in the next-generation 5G system. For example, the waveguide 20 connects from the base station to the antenna installed in the space where the user is.
 アンテナは、例えば、フレキシブル基板で形成されたパッチアンテナやダイポールアンテナでもよい。また、アンテナは導波管にスロットを開けてスロットアンテナでもよい。さらに、導波管20の先には、別の導波管がつながっていてもよい。例えば、フレキシブル基板を介して別の導波管がつながっていてもよい。 The antenna may be, for example, a patch antenna or a dipole antenna formed of a flexible substrate. Further, the antenna may be a slot antenna by opening a slot in the waveguide. Further, another waveguide may be connected to the tip of the waveguide 20. For example, another waveguide may be connected via a flexible substrate.
 第1実施形態の導波管20で伝送される電波の帯域は、例えば、27.5GHz~29GHzである。例えば、中心周波数は、28GHzである。当該帯域は、事業者ごとに400MHz毎に分割されて使用される。なお、周波数帯域は、27.5GHz~29GHzに限らず、例えば、26GHzや39GHzを中心とする周波数帯域でもよい。また、周波数帯域は、ミリ波帯に限らず他の周波数帯でもよい。 The band of the radio wave transmitted by the waveguide 20 of the first embodiment is, for example, 27.5 GHz to 29 GHz. For example, the center frequency is 28 GHz. The band is divided and used every 400 MHz for each operator. The frequency band is not limited to 27.5 GHz to 29 GHz, and may be, for example, a frequency band centered on 26 GHz or 39 GHz. Further, the frequency band is not limited to the millimeter wave band and may be another frequency band.
 第1実施形態のフレキシブル基板付き導波管1は、閉止部材10で端部を短絡された導波管20と、フレキシブル基板30と、を備える。フレキシブル基板付き導波管1の各要素について説明する。 The waveguide 1 with a flexible substrate of the first embodiment includes a waveguide 20 whose end is short-circuited by a closing member 10 and a flexible substrate 30. Each element of the waveguide 1 with a flexible substrate will be described.
  [導波管20]
 導波管20は、ミリ波帯の帯域の電波が伝搬する導波路となる導波管である。導波管20は、電波が伝搬する方向に延在する円柱状の管である。なお、図3では、電波が伝搬する方向は、Z方向である。
[Waveguide 20]
The waveguide 20 is a waveguide that serves as a waveguide for propagating radio waves in the millimeter wave band. The waveguide 20 is a columnar tube extending in the direction in which radio waves propagate. In FIG. 3, the direction in which the radio wave propagates is the Z direction.
 導波管20は、誘電体チューブ21と、誘電体チューブ21の外側を覆う金属被覆22と、を備える。 The waveguide 20 includes a dielectric tube 21 and a metal coating 22 that covers the outside of the dielectric tube 21.
 誘電体チューブ21は、電波が伝搬する伝送路として機能する部材である。導波管20において、誘電体チューブ21で電波が伝搬する。 The dielectric tube 21 is a member that functions as a transmission path through which radio waves propagate. In the waveguide 20, radio waves propagate through the dielectric tube 21.
 誘電体チューブ21は、誘電体、例えば、フッ素系樹脂で形成される。フッ素系樹脂としては、ポリテトラフルオロエチレン(PTFE(Polytetrafluoroethylene))やペルフルオロアルコキシアルカン(PFA(Perfluoroalkoxy alkane))を用いることができる。 The dielectric tube 21 is made of a dielectric, for example, a fluororesin. As the fluororesin, polytetrafluoroethylene (PTFE (Polytetrafluoroalkoxy alkane)) or perfluoroalkoxy alkane (PFA (Perfluoroalkoxy alkane)) can be used.
 なお、例えば、周波数帯域が28GHzの場合では、導波管20の外径は、5mm~9mmであることが好ましい。誘電体チューブ21の外径は、導波管20の外径より1mm~2mm細い。 For example, when the frequency band is 28 GHz, the outer diameter of the waveguide 20 is preferably 5 mm to 9 mm. The outer diameter of the dielectric tube 21 is 1 mm to 2 mm thinner than the outer diameter of the waveguide 20.
 金属被覆22は、伝送路を画定する部材である。金属被覆22は、導電性部材、例えば、銅、により形成される。金属被覆22は、例えば、メッキにより形成される。なお、メッキにより金属被覆22を形成するのに限らず、例えば、金属被覆22を形成するのに、銅箔又は金属網を巻き付けて形成してもよい。なお、導波管20の金属被覆22の外側に、更に、絶縁物による被覆を設けてもよい。 The metal coating 22 is a member that defines a transmission line. The metal coating 22 is formed of a conductive member, for example, copper. The metal coating 22 is formed, for example, by plating. The metal coating 22 is not limited to being formed by plating. For example, a copper foil or a metal net may be wound around the metal coating 22 to form the metal coating 22. In addition, a coating with an insulating material may be further provided on the outside of the metal coating 22 of the waveguide 20.
 導波管20の+Z側の端部は、閉止部材10で閉止される。閉止部材10は導電部材、例えば、銅等により形成される。閉止部材10は、例えば、はんだ付け、ロウ付け、導電性ペーストの塗布等により、導波管20の金属被覆22に機械的、電気的に接続される。導波管20は、閉止部材10により閉止されることにより、導波管20の端部が短絡される。 The + Z side end of the waveguide 20 is closed by the closing member 10. The closing member 10 is made of a conductive member, for example, copper or the like. The closing member 10 is mechanically and electrically connected to the metal coating 22 of the waveguide 20 by, for example, soldering, brazing, applying a conductive paste, or the like. The waveguide 20 is closed by the closing member 10, so that the end portion of the waveguide 20 is short-circuited.
 導波管20は、導波管20の外面20s1にスリット20pを有する。スリット20pは、導波管20の内部を伝搬する電波を外部に導出するための通過経路となる。スリット20pは、導波管20の短絡面から波長の四分の一離れた位置に設けられる。具体的は、閉止部材10の内面の短絡面から、導波管20の長手方向(-Z方向)に波長の四分の一離れた位置に、スリット20pの中心が設けられる。 The waveguide 20 has a slit 20p on the outer surface 20s1 of the waveguide 20. The slit 20p serves as a passage path for deriving the radio waves propagating inside the waveguide 20 to the outside. The slit 20p is provided at a position separated by a quarter of the wavelength from the short-circuit surface of the waveguide 20. Specifically, the center of the slit 20p is provided at a position separated by a quarter of the wavelength in the longitudinal direction (−Z direction) of the waveguide 20 from the short-circuit surface on the inner surface of the closing member 10.
  [フレキシブル基板30]
 フレキシブル基板30は、例えば、基地局から導波管20を介して伝送された高周波信号を処理する回路基板である。フレキシブル基板30には、高周波信号を伝搬するための線路や導波路が形成されている。例えば、線路としては、マイクロストリップラインやコプレーナーラインを用いてよいし、導波路としては基板集積導波管(SIW(substrate integrated waveguide))を用いてもよい。
[Flexible substrate 30]
The flexible substrate 30 is, for example, a circuit board that processes a high-frequency signal transmitted from a base station via a waveguide 20. The flexible substrate 30 is formed with lines and waveguides for propagating high-frequency signals. For example, a microstrip line or a coplanar line may be used as the line, or a substrate integrated waveguide (SIW (substrate integrated waveguide)) may be used as the waveguide.
 フレキシブル基板30は、円筒形の導波管に対して抵抗なく巻きつけられる程度の柔軟性を保持すればよく、フレキシブル基板30の厚さは0.012mm以上、0.8mm以下であることが好ましい。フレキシブル基板30を薄くすることにより、フレキシブル基板30の可撓性をあげることができる。また、フレキシブル基板30の誘電体は、フッ素系樹脂や液晶、ポリイミド等により形成される。フッ素系樹脂としては、例えば、ペルフルオロアルコキシアルカン(PFA)を用いることができる。 The flexible substrate 30 may be flexible enough to be wound around a cylindrical waveguide without resistance, and the thickness of the flexible substrate 30 is preferably 0.012 mm or more and 0.8 mm or less. .. By thinning the flexible substrate 30, the flexibility of the flexible substrate 30 can be increased. The dielectric of the flexible substrate 30 is formed of a fluororesin, a liquid crystal display, polyimide, or the like. As the fluororesin, for example, perfluoroalkoxy alkane (PFA) can be used.
 フレキシブル基板30は、基板上にアンプを備えてもよい。また、フレキシブル基板30は、パッチアンテナやダイポールアンテナ等のアンテナを備えてもよい。 The flexible substrate 30 may include an amplifier on the substrate. Further, the flexible substrate 30 may include an antenna such as a patch antenna or a dipole antenna.
 (導波管20とフレキシブル基板30との接続)
 図4は、第1実施形態のフレキシブル基板付き導波管1の導波管20とフレキシブル基板30との接続部分を拡大した断面図である。なお、図4は、導波管20にフレキシブル基板30を巻き付けて取り付ける前の状態を示している。
(Connection between the waveguide 20 and the flexible substrate 30)
FIG. 4 is an enlarged cross-sectional view of the connection portion between the waveguide 20 and the flexible substrate 30 of the waveguide 1 with a flexible substrate of the first embodiment. Note that FIG. 4 shows a state before the flexible substrate 30 is wound around the waveguide 20 and attached.
 フレキシブル基板30が基板集積導波管(SIW)を構成している例について説明する。フレキシブル基板30は、上面導電層31と、下面導電層32と、上面導電層31と下面導電層32に挟まれた誘電体層33と、を備える。上面導電層31には、スロット30pを有する。スロット30pは、導波管20のスリット20pと略同形状となっている。また、フレキシブル基板30は、上面導電層31と下面導電層32を接続するビア35を備える。したがって、フレキシブル基板30の上面導電層31と下面導電層32は同電位になっている。 An example in which the flexible substrate 30 constitutes a substrate integrated waveguide (SIW) will be described. The flexible substrate 30 includes an upper surface conductive layer 31, a lower surface conductive layer 32, and a dielectric layer 33 sandwiched between the upper surface conductive layer 31 and the lower surface conductive layer 32. The upper surface conductive layer 31 has a slot 30p. The slot 30p has substantially the same shape as the slit 20p of the waveguide 20. Further, the flexible substrate 30 includes a via 35 that connects the upper surface conductive layer 31 and the lower surface conductive layer 32. Therefore, the upper surface conductive layer 31 and the lower surface conductive layer 32 of the flexible substrate 30 have the same potential.
 図4に示すように、導波管20とフレキシブル基板30を接続する際には、導波管20のスリット20pとフレキシブル基板30のスロット30pの位置をあわせる。そして、フレキシブル基板30のスロット30pの両側を導波管20に巻き付けることにより取り付ける。巻き付ける際には、例えば、導電性ペーストを塗布したり、導電性接着剤で接着したりしてもよい。フレキシブル基板30を導波管20に巻き付けることにより、フレキシブル基板30の一部が導波管20のスリット20pと重なる。また、フレキシブル基板30を導波管20に巻き付けることにより、導波管20の外面に沿うようにフレキシブル基板30が設けられる。また、導波管20の金属被覆22と、フレキシブル基板30の上面導電層31が接触することにより、スリット20pからの電波が漏洩することを防止できる。 As shown in FIG. 4, when connecting the waveguide 20 and the flexible substrate 30, the positions of the slit 20p of the waveguide 20 and the slot 30p of the flexible substrate 30 are aligned. Then, both sides of the slot 30p of the flexible substrate 30 are wound around the waveguide 20 to be attached. When wrapping, for example, a conductive paste may be applied or a conductive adhesive may be used for bonding. By winding the flexible substrate 30 around the waveguide 20, a part of the flexible substrate 30 overlaps with the slit 20p of the waveguide 20. Further, by winding the flexible substrate 30 around the waveguide 20, the flexible substrate 30 is provided along the outer surface of the waveguide 20. Further, it is possible to prevent the radio wave from the slit 20p from leaking due to the contact between the metal coating 22 of the waveguide 20 and the upper surface conductive layer 31 of the flexible substrate 30.
 (導波管20からフレキシブル基板30への電波の伝搬特性)
 導波管20を伝搬する電波が、フレキシブル基板30に伝搬するときの伝搬特性について説明する。
(Radio wave propagation characteristics from the waveguide 20 to the flexible substrate 30)
The propagation characteristics when the radio wave propagating in the waveguide 20 propagates to the flexible substrate 30 will be described.
 図5は、第1実施形態のフレキシブル基板付き導波管1の伝搬特性を解析するための解析モデルを示す図である。 FIG. 5 is a diagram showing an analysis model for analyzing the propagation characteristics of the waveguide 1 with a flexible substrate of the first embodiment.
 導波路MPは、導波管20の電波が伝搬する部分に相当する導波路である。なお、図5では、導波路MPの延在方向をY軸としている。そして、導波路MPの延在方向に垂直な方向をX軸、Z軸としている。導波路MPは、内径が直径6mm、外径が直径7mm、材質はポリテトラフルオロエチレン(PTFE)のチューブに0.01mmの銅を巻き付けた導波路をモデル化した。導波路MPは、入射面SIから電波が入射される。本解析では、Z方向の偏波(準TE11モード)が入射面SIから入射する。また、導波路MPには、反射面SRが形成されている。入射面SIから入射した電波は、導波路MP内を+Y方向に伝搬しながら、反射面SRで反射される。なお、反射面SRは短絡面であるとする。導波路MPの+X方向には、スリットSLが設けられている。スリットSLから、導波路MP内の電波が導波路MPの外に出力される。なお、スリットSLの中心は、反射面SRから-Y方向に電波の波長の四分の一の位置に設けられている。本解析では、電波の波長は電波の周波数を28GHzとして、スリットSLの中心から当該反射面までのY軸方向の距離は5mmとした。スリットSLのY軸方向の長さは4.35mm、幅(Y軸に垂直な平面上で導波路MFの外周に沿う長さ)は0.9mmである。 The waveguide MP is a waveguide corresponding to a portion where radio waves of the waveguide 20 propagate. In FIG. 5, the extending direction of the waveguide MP is the Y-axis. The directions perpendicular to the extending direction of the waveguide MP are the X-axis and the Z-axis. The waveguide MP is modeled on a waveguide in which an inner diameter of 6 mm, an outer diameter of 7 mm, and a tube made of polytetrafluoroethylene (PTFE) and 0.01 mm of copper are wound. Radio waves are incident on the waveguide MP from the incident surface SI. In this analysis, the polarization in the Z direction (quasi-TE11 mode) is incident from the incident surface SI. Further, a reflection surface SR is formed on the waveguide MP. The radio wave incident from the incident surface SI is reflected by the reflecting surface SR while propagating in the waveguide MP in the + Y direction. It is assumed that the reflective surface SR is a short-circuit surface. A slit SL is provided in the + X direction of the waveguide MP. Radio waves in the waveguide MP are output from the slit SL to the outside of the waveguide MP. The center of the slit SL is provided at a position of a quarter of the wavelength of the radio wave in the −Y direction from the reflecting surface SR. In this analysis, the wavelength of the radio wave was 28 GHz, and the distance from the center of the slit SL to the reflection surface in the Y-axis direction was 5 mm. The length of the slit SL in the Y-axis direction is 4.35 mm, and the width (the length along the outer circumference of the waveguide MF on a plane perpendicular to the Y-axis) is 0.9 mm.
 導波路MFは、フレキシブル基板30の電波が伝搬する部分に相当する導波路である。導波路MFは、幅4.5mm、厚さ0.2mmのフレキシブル基板内に作られた基板集積導波管(SIW)をモデル化した。導波路MFは、スリットSLから電波が入射されるとともに、導波路MFの内部を電波が伝搬する。また、スリットSLを基板集積導波管(SIW)のスロットとした。また、フレキシブル基板の導波路の途中には、アイリスポストIPを設けた。アイリスポストIPそれぞれのY軸方向の長さは0.9mm、幅(Y軸に垂直な平面上で導波路MFの外周に沿う長さ)0.25mmである。導波路MFは、スリットSL(スロット)から電波が入射される。スリットSL(スロット)から入射された電波は、導波路MF内を伝搬して、出射面SOから出力される。本解析では、出射面SOのTE10モードの電波を解析した。 The waveguide MF is a waveguide corresponding to a portion of the flexible substrate 30 where radio waves propagate. The waveguide MF models a substrate integrated waveguide (SIW) made in a flexible substrate with a width of 4.5 mm and a thickness of 0.2 mm. In the waveguide MF, radio waves are incident from the slit SL, and the radio waves propagate inside the waveguide MF. Further, the slit SL was used as a slot for a substrate integrated waveguide (SIW). In addition, an iris post IP was provided in the middle of the waveguide of the flexible substrate. The length of each iris post IP in the Y-axis direction is 0.9 mm, and the width (length along the outer circumference of the waveguide MF on a plane perpendicular to the Y-axis) is 0.25 mm. Radio waves are incident on the waveguide MF from the slit SL (slot). The radio wave incident from the slit SL (slot) propagates in the waveguide MF and is output from the exit surface SO. In this analysis, the radio wave of the TE10 mode of the exit surface SO was analyzed.
 図6は、第1実施形態のフレキシブル基板付き導波管の伝搬特性を解析した結果を示す図である。横軸は周波数を示す。縦軸は、透過係数と反射係数をデジベルで表している。透過係数T1は、入射面SIから入射する電波強度に対する出射面SOから出射する電波強度の比率を表す。反射係数R1は、入射面SIから入射する電波強度に対する出射面SOから出射せずに入射面SIに反射される電波強度の比率を表す。 FIG. 6 is a diagram showing the results of analyzing the propagation characteristics of the waveguide with a flexible substrate according to the first embodiment. The horizontal axis shows the frequency. The vertical axis represents the transmission coefficient and the reflection coefficient in decibels. The transmission coefficient T1 represents the ratio of the radio wave intensity emitted from the emitting surface SO to the radio wave intensity incident from the incident surface SI. The reflection coefficient R1 represents the ratio of the radio wave intensity incident from the incident surface SI to the radio wave intensity reflected on the incident surface SI without emitting from the emitting surface SO.
 図6の結果から、スリットSLの位置を、反射面SRから四分の一の位置に設けることにより、導波路MPからの電波を導波路MFに電波を伝送できる。以上の結果のように、導波管20のスリット20pに重なるように、導波管20の外面20s1に沿って設けることにより、導波管20からフレキシブル基板30に電波を伝送できる。 From the result of FIG. 6, by providing the position of the slit SL at a position one-fourth of the reflection surface SR, the radio wave from the waveguide MP can be transmitted to the waveguide MF. As described above, the radio waves can be transmitted from the waveguide 20 to the flexible substrate 30 by providing the waveguide 20 along the outer surface 20s1 so as to overlap the slit 20p of the waveguide 20.
 (作用・効果)
 第1実施形態のフレキシブル基板付き導波管1において、フレキシブル基板30を、導波管20のスリット20pに重なるように、導波管20の外面20s1に沿って設けることによって、導波管20を伝搬した高周波信号をフレキシブル基板30に入力できる。
(Action / effect)
In the waveguide 1 with a flexible substrate of the first embodiment, the waveguide 20 is provided by providing the flexible substrate 30 along the outer surface 20s1 of the waveguide 20 so as to overlap the slit 20p of the waveguide 20. The propagated high frequency signal can be input to the flexible substrate 30.
 《第2実施形態》
 <フレキシブル基板付き導波管2>
 第2実施形態のフレキシブル基板付き導波管2は、導波管20にフレキシブル基板130が複数回巻き付けられることにより、導波管20を伝播する高周波信号と接続する。導波管20にフレキシブル基板130が巻き付けられることにより、導波管20の外面20s1に沿って設けられる。図7は、第2実施形態のフレキシブル基板付き導波管2の断面図である。図8は、第2実施形態のフレキシブル基板付き導波管2の接続部分を拡大した断面図である。なお、図8は、導波管20に巻き付けたフレキシブル基板130を展開して示している。また、図8では、フレキシブル基板130が複数回巻き付けられている状態を説明するために、フレキシブル基板130を導波管20に対して拡大して図示している。
<< Second Embodiment >>
<Wiguide tube with flexible substrate 2>
The waveguide 2 with a flexible substrate of the second embodiment is connected to a high frequency signal propagating in the waveguide 20 by winding the flexible substrate 130 around the waveguide 20 a plurality of times. By winding the flexible substrate 130 around the waveguide 20, the flexible substrate 130 is provided along the outer surface 20s1 of the waveguide 20. FIG. 7 is a cross-sectional view of the waveguide 2 with a flexible substrate according to the second embodiment. FIG. 8 is an enlarged cross-sectional view of the connecting portion of the waveguide 2 with a flexible substrate of the second embodiment. Note that FIG. 8 shows the flexible substrate 130 wound around the waveguide 20 in an unfolded manner. Further, in FIG. 8, in order to explain the state in which the flexible substrate 130 is wound a plurality of times, the flexible substrate 130 is shown enlarged with respect to the waveguide 20.
 第2実施形態のフレキシブル基板付き導波管2は、導波管20にフレキシブル基板130が複数回巻き付けられる。具体的には、導波管20のスリット20pのところで、5回積層されている。なお、巻き付ける回数については、5回に限らず、2回以上であればよい。 In the waveguide 2 with a flexible substrate of the second embodiment, the flexible substrate 130 is wound around the waveguide 20 a plurality of times. Specifically, it is laminated five times at the slit 20p of the waveguide 20. The number of windings is not limited to 5 times, and may be 2 times or more.
  [フレキシブル基板130]
 フレキシブル基板130は、線路として、マイクロストリップライン130dが形成されている。フレキシブル基板130は、上面導電層131と、下面導電層132と、上面導電層131と下面導電層132に挟まれた誘電体層133と、を備える。また、上面導電層131と下面導電層132とを接続するために、ビア135を備える。なお、図8では、導波管20のスリット20pの位置で積層した層の番号を括弧内の数字で表している。例えば、導波管20に接触するフレキシブル基板130の第1層の上面導電層131を上面導電層131(1)として表している。同様に、第n層の上面導電層131、下面導電層132、誘電体層133をそれぞれ上面導電層131(n)、下面導電層132(n)、誘電体層133(n)と表す。
[Flexible Substrate 130]
The flexible substrate 130 has a microstrip line 130d formed as a line. The flexible substrate 130 includes an upper surface conductive layer 131, a lower surface conductive layer 132, and a dielectric layer 133 sandwiched between the upper surface conductive layer 131 and the lower surface conductive layer 132. Further, a via 135 is provided to connect the upper surface conductive layer 131 and the lower surface conductive layer 132. In FIG. 8, the numbers of the layers laminated at the position of the slit 20p of the waveguide 20 are represented by the numbers in parentheses. For example, the upper surface conductive layer 131 of the first layer of the flexible substrate 130 in contact with the waveguide 20 is represented as the upper surface conductive layer 131 (1). Similarly, the upper surface conductive layer 131, the lower surface conductive layer 132, and the dielectric layer 133 of the nth layer are referred to as the upper surface conductive layer 131 (n), the lower surface conductive layer 132 (n), and the dielectric layer 133 (n), respectively.
 フレキシブル基板130は、スリット20pにおいて複数回積層される。フレキシブル基板130は、第1層の上面導電層131(1)の一部が除去され、第1層の誘電体層133(1)が露出する接続部130aを有する。接続部130aには、導波管20のスリット20pが接触する。また、導波管20のスリット20pが接触する部分の誘電体層133(1)を介した反対側には、第1層の下面導電層132(1)に、マイクロストリップライン130dが形成されている。そして、第2層から第4層の接続部130aに対応する部分では、上面導電層131と下面導電層132は、除去されて誘電体層133が露出する。すなわち、第2層から第4層の接続部130aに対応する部分では、上面導電層131(2)、上面導電層131(3)、上面導電層131(4)、下面導電層132(2)、下面導電層132(3)、下面導電層132(4)は、除去されている。第5層の接続部130aに対応する部分では、上面導電層131(5)、下面導電層132(5)は形成される。上面導電層131(5)は、接続部130aから入射された電波を反射する反射面130bとなる。 The flexible substrate 130 is laminated a plurality of times in the slit 20p. The flexible substrate 130 has a connecting portion 130a in which a part of the upper surface conductive layer 131 (1) of the first layer is removed and the dielectric layer 133 (1) of the first layer is exposed. The slit 20p of the waveguide 20 comes into contact with the connecting portion 130a. Further, a microstrip line 130d is formed on the lower surface conductive layer 132 (1) of the first layer on the opposite side via the dielectric layer 133 (1) of the portion where the slit 20p of the waveguide 20 contacts. There is. Then, in the portion corresponding to the connecting portion 130a of the second layer to the fourth layer, the upper surface conductive layer 131 and the lower surface conductive layer 132 are removed to expose the dielectric layer 133. That is, in the portion corresponding to the connecting portion 130a of the second layer to the fourth layer, the upper surface conductive layer 131 (2), the upper surface conductive layer 131 (3), the upper surface conductive layer 131 (4), and the lower surface conductive layer 132 (2). , The lower surface conductive layer 132 (3) and the lower surface conductive layer 132 (4) have been removed. The upper surface conductive layer 131 (5) and the lower surface conductive layer 132 (5) are formed at the portion corresponding to the connection portion 130a of the fifth layer. The upper surface conductive layer 131 (5) is a reflecting surface 130b that reflects radio waves incident from the connecting portion 130a.
 フレキシブル基板130を導波管20に巻き付けることにより、導波管20の外面に沿うようにフレキシブル基板130が設けられる。巻き付ける際には、例えば、導電性ペーストを塗布したり、導電性接着剤で接着したりしてもよい。また、導波管20の金属被覆22と、フレキシブル基板130の第1層の上面導電層131(1)が接触することにより、スリット20pからの電波が漏洩することを防止できる。 By winding the flexible substrate 130 around the waveguide 20, the flexible substrate 130 is provided along the outer surface of the waveguide 20. When wrapping, for example, a conductive paste may be applied or a conductive adhesive may be used for bonding. Further, it is possible to prevent the radio wave from the slit 20p from leaking due to the contact between the metal coating 22 of the waveguide 20 and the upper surface conductive layer 131 (1) of the first layer of the flexible substrate 130.
 図8に示す積層構造を形成するフレキシブル基板130を図9と図10に示す。図9は、第2実施形態の展開したフレキシブル基板130の上面図である。図10は、第2実施形態の展開したフレキシブル基板130の下面図である。 The flexible substrate 130 forming the laminated structure shown in FIG. 8 is shown in FIGS. 9 and 10. FIG. 9 is a top view of the developed flexible substrate 130 of the second embodiment. FIG. 10 is a bottom view of the developed flexible substrate 130 of the second embodiment.
 領域RT1、領域RT2、領域RT3、領域RT4は、フレキシブル基板130の上面導電層131が除去された領域を示している。領域RT1は、接続部130aに相当する領域である。領域RT2、領域RT3、領域RT4は、フレキシブル基板130を導波管20に巻き付けたときに、接続部130aに対応する領域である。なお、領域RT2は、マイクロストリップライン130dの配線部分と重なる領域についても、上面導電層131が除去されている。領域RT5は、第5層の上面導電層131が設けられ、反射面130bとなる部分を表す。なお、領域RT1、領域RT2、領域RT3、領域RT4、領域RT5は、導波管20の円周に相当する間隔離れて設けられている。 Region RT1, region RT2, region RT3, and region RT4 indicate regions from which the upper surface conductive layer 131 of the flexible substrate 130 has been removed. The area RT1 is an area corresponding to the connection portion 130a. The region RT2, region RT3, and region RT4 are regions corresponding to the connection portion 130a when the flexible substrate 130 is wound around the waveguide 20. In the region RT2, the upper surface conductive layer 131 is also removed from the region overlapping the wiring portion of the microstrip line 130d. The region RT5 represents a portion where the upper surface conductive layer 131 of the fifth layer is provided and becomes the reflection surface 130b. The region RT1, region RT2, region RT3, region RT4, and region RT5 are provided at intervals corresponding to the circumference of the waveguide 20.
 領域RB1、領域RB2、領域RB3、領域RB4は、フレキシブル基板130の下面導電層132が除去された領域を示している。領域RB1は、マイクロストリップライン130dが形成される領域である。領域RB2、領域RB3、領域RB4は、フレキシブル基板130を導波管20に巻き付けたときに、接続部130aに対応する領域である。領域RT5は、反射面130bの外側の第5層の下面導電層132が設けられている部分を表す。なお、領域RB1、領域RB2、領域RB3、領域RB4、領域RB5は、導波管20の円周に相当する間隔離れて設けられている。 Region RB1, region RB2, region RB3, and region RB4 indicate regions from which the lower surface conductive layer 132 of the flexible substrate 130 has been removed. Region RB1 is the region where the microstrip line 130d is formed. The region RB2, the region RB3, and the region RB4 are regions corresponding to the connection portion 130a when the flexible substrate 130 is wound around the waveguide 20. The region RT5 represents a portion where the lower surface conductive layer 132 of the fifth layer on the outer side of the reflective surface 130b is provided. The region RB1, the region RB2, the region RB3, the region RB4, and the region RB5 are provided at intervals corresponding to the circumference of the waveguide 20.
 接続部130aに対応する部分について説明する。上面導電層131と下面導電層132の実際の厚さは20μm程度であるのに対して、誘電体層133の実際の厚さは200μmである。更に、フレキシブル基板130を導波管20に巻き付けることにより、積層されたフレキシブル基板130は各層の間が密着される。すなわち、第1層の下面導電層132(1)と第5層の上面導電層131(5)の間の接続部130aに対応する部分は、誘電体層133(2)、誘電体層133(3)、誘電体層133(4)が密着して積層される。なお、図8では、層の関係を明確にするために、層間に隙間を空けて示している。したがって、マイクロストリップライン130dの外側は、誘電体層133が複数層積層された層、具体的には3層積層された層と見なすことができる。 The part corresponding to the connection portion 130a will be described. The actual thickness of the upper surface conductive layer 131 and the lower surface conductive layer 132 is about 20 μm, whereas the actual thickness of the dielectric layer 133 is 200 μm. Further, by winding the flexible substrate 130 around the waveguide 20, the laminated flexible substrate 130 is brought into close contact with each other. That is, the portions corresponding to the connecting portion 130a between the lower surface conductive layer 132 (1) of the first layer and the upper surface conductive layer 131 (5) of the fifth layer are the dielectric layer 133 (2) and the dielectric layer 133 ( 3), the dielectric layer 133 (4) is adhered and laminated. In FIG. 8, in order to clarify the relationship between the layers, a gap is provided between the layers. Therefore, the outside of the microstrip line 130d can be regarded as a layer in which a plurality of dielectric layers 133 are laminated, specifically, a layer in which three layers are laminated.
 マイクロストリップライン130dと反射面130bとの距離L1は、誘電体層133を複数回積層することにより長くすることができる。 The distance L1 between the microstrip line 130d and the reflecting surface 130b can be lengthened by laminating the dielectric layer 133 a plurality of times.
 第2実施形態のフレキシブル基板付き導波管2について電磁界解析を行った。解析は、導波管20のスリット20pの寸法を長さ5.4mm、幅0.5mm、フレキシブル基板130を厚さ0.2mmのフッ素樹脂基板、導電層は銅、線幅0.2mm、共振器130cの距離L1を2.5mmとして解析を行った。 Electromagnetic field analysis was performed on the waveguide 2 with a flexible substrate of the second embodiment. In the analysis, the dimensions of the slit 20p of the waveguide 20 were 5.4 mm in length and 0.5 mm in width, the flexible substrate 130 was a fluororesin substrate with a thickness of 0.2 mm, the conductive layer was copper, the wire width was 0.2 mm, and resonance was performed. The analysis was performed with the distance L1 of the vessel 130c set to 2.5 mm.
 図11は、第2実施形態のフレキシブル基板付き導波管2の伝搬特性を解析した結果を示す図である。横軸は周波数を示す。縦軸は、透過係数と反射係数をデジベルで表している。透過係数T2は、導波管20に入射される図7中のY方向の偏波(準TE11モード)の電波強度に対するマイクロストリップライン130dに透過する電波強度の比率を表す。反射係数R2は、導波管20に入射される図7中のY方向の偏波(準TE11モード)の電波強度に対するマイクロストリップライン130dに入射せず反射される電波強度の比率を表す。 FIG. 11 is a diagram showing the results of analyzing the propagation characteristics of the waveguide 2 with a flexible substrate of the second embodiment. The horizontal axis shows the frequency. The vertical axis represents the transmission coefficient and the reflection coefficient in decibels. The transmission coefficient T2 represents the ratio of the radio wave intensity transmitted through the microstrip line 130d to the radio wave intensity of the polarized wave (quasi-TE11 mode) in the Y direction in FIG. 7 incident on the waveguide 20. The reflection coefficient R2 represents the ratio of the radio wave intensity reflected without being incident on the microstrip line 130d to the radio wave intensity of the polarized wave (quasi-TE11 mode) in the Y direction in FIG. 7 incident on the waveguide 20.
 図11の結果から、周波数28GHzにおいて、導波管20からマイクロストリップライン130dに効率よく信号を伝搬させることがわかる。 From the results of FIG. 11, it can be seen that the signal is efficiently propagated from the waveguide 20 to the microstrip line 130d at a frequency of 28 GHz.
 《第3実施形態》
 <フレキシブル基板付き導波管3>
 第3実施形態のフレキシブル基板付き導波管3は、導波管220にフレキシブル基板230が巻き付けられることにより、導波管220を伝播する高周波信号と接続する。第3実施形態のフレキシブル基板付き導波管3では、導波管220の二カ所に設けられたスリット220p1とスリット220p2からフレキシブル基板230に電波が入射される。図12は、第3実施形態のフレキシブル基板付き導波管3の断面図である。
<< Third Embodiment >>
<Wiguide tube with flexible substrate 3>
The waveguide 3 with a flexible substrate of the third embodiment is connected to a high frequency signal propagating in the waveguide 220 by winding the flexible substrate 230 around the waveguide 220. In the waveguide 3 with a flexible substrate of the third embodiment, radio waves are incident on the flexible substrate 230 from the slits 220p1 and the slits 220p2 provided at two locations of the waveguide 220. FIG. 12 is a cross-sectional view of the waveguide 3 with a flexible substrate according to the third embodiment.
 導波管220は、誘電体チューブ221と、誘電体チューブ221の外側を覆う金属被覆222と、を備える。 The waveguide 220 includes a dielectric tube 221 and a metal coating 222 that covers the outside of the dielectric tube 221.
 誘電体チューブ221は、電波が伝搬する伝送路として機能する部材である。導波管220において、誘電体チューブ221で電波が伝搬する。金属被覆222は、伝送路を画定する部材である。なお、誘電体チューブ221と金属被覆222の材質等については、導波管20の誘電体チューブ21と金属被覆22と同様である。 The dielectric tube 221 is a member that functions as a transmission line through which radio waves propagate. In the waveguide 220, radio waves propagate through the dielectric tube 221. The metal coating 222 is a member that defines a transmission line. The materials of the dielectric tube 221 and the metal coating 222 are the same as those of the dielectric tube 21 and the metal coating 22 of the waveguide 20.
 導波管220は、スリットが複数設けられる。具体的には、導波管220は、2つのスリット220p1とスリット220p2を有する。スリット220p1とスリット220p2は、導波管220の内部を伝搬する電波を外部に導出するための通過経路となる。スリット220p1とスリット220p2は、導波管220の短絡面から波長の四分の一離れた位置に設けられる。 The waveguide 220 is provided with a plurality of slits. Specifically, the waveguide 220 has two slits 220p1 and a slit 220p2. The slit 220p1 and the slit 220p2 serve as a passage path for deriving the radio wave propagating inside the waveguide 220 to the outside. The slit 220p1 and the slit 220p2 are provided at positions separated by a quarter of the wavelength from the short-circuit surface of the waveguide 220.
 フレキシブル基板230は、スリット220p1とスリット220p2の二カ所から電波が入力される。二カ所から入力される以外は、フレキシブル基板30、フレキシブル基板130と同様である。 Radio waves are input to the flexible substrate 230 from two places, the slit 220p1 and the slit 220p2. It is the same as the flexible substrate 30 and the flexible substrate 130 except that it is input from two places.
 フレキシブル基板230は、スリット220p1からY方向の偏波(準TE11モード)が、スリット220p2からX方向の偏波(準TE11モード)の電波が入力されることにより、2方向の偏波を変換することができる。 The flexible substrate 230 converts the polarization in two directions by inputting radio waves in the Y direction from the slit 220p1 (quasi-TE11 mode) and the polarization in the X direction from the slit 220p2 (quasi-TE11 mode). be able to.
 <作用・効果>
 本開示の導波管と、フレキシブル基板と、を備えるフレキシブル基板付き導波管によれば、導波管を伝搬する高周波信号をフレキシブル基板に入力できる。本開示のフレキシブル基板付き導波管は、導波管にフレキシブル基板を巻き付けることにより作成できる。
<Action / effect>
According to the waveguide with a flexible substrate including the waveguide and the flexible substrate of the present disclosure, a high frequency signal propagating in the waveguide can be input to the flexible substrate. The waveguide with a flexible substrate of the present disclosure can be created by winding a flexible substrate around the waveguide.
 <変形例>
 導波管の形状については、円筒状に限らない。例えば、導波管は角筒状でもよい。また、導波管の内部に空洞を備えてもよいし、金属被覆が自立できる場合には誘電体チューブは無くてもよい。
<Modification example>
The shape of the waveguide is not limited to a cylindrical shape. For example, the waveguide may be in the shape of a square cylinder. Further, a cavity may be provided inside the waveguide, or the dielectric tube may be omitted if the metal coating can stand on its own.
 《第4実施形態》
 <フレキシブル基板付き導波管4>
 第4実施形態のフレキシブル基板付き導波管4は、導波管320にフレキシブル基板330が巻き付けられることにより、導波管320を伝播する高周波信号と接続する。第4実施形態のフレキシブル基板付き導波管4では、フレキシブル基板330は、導電性接着剤350により導波管320に接着される。図13は、第4実施形態のフレキシブル基板付き導波管4の断面図である。
<< Fourth Embodiment >>
<Wiguide tube with flexible substrate 4>
The waveguide 4 with a flexible substrate of the fourth embodiment is connected to a high frequency signal propagating in the waveguide 320 by winding the flexible substrate 330 around the waveguide 320. In the waveguide 4 with a flexible substrate of the fourth embodiment, the flexible substrate 330 is adhered to the waveguide 320 by the conductive adhesive 350. FIG. 13 is a cross-sectional view of the waveguide 4 with a flexible substrate according to the fourth embodiment.
 導波管320は、金属被覆322を備える。金属被覆322は、伝送路を画定する部材である。金属被覆322は、自立して形状を保持できることから、内部は空洞321になっている。すなわち、導波管320においては、電波は、空洞321の空気を伝搬する。なお、空洞321の空気に換えて、空洞321に誘電体チューブを備えてもよい。なお、金属被覆322の材質等については、導波管20の金属被覆22と同様である。 The waveguide 320 includes a metal coating 322. The metal coating 322 is a member that defines a transmission line. Since the metal coating 322 can stand on its own and retain its shape, the inside is hollow 321. That is, in the waveguide 320, the radio waves propagate through the air in the cavity 321. A dielectric tube may be provided in the cavity 321 instead of the air in the cavity 321. The material of the metal coating 322 is the same as that of the metal coating 22 of the waveguide 20.
 導波管320は、スリット320pを備える。スリット320pからフレキシブル基板330に、空洞321を伝搬した電波が入射される。 The waveguide 320 includes a slit 320p. A radio wave propagating through the cavity 321 is incident on the flexible substrate 330 from the slit 320p.
 フレキシブル基板330は、基板集積導波管(SIW)を構成する。フレキシブル基板330は、上面導電層331と、下面導電層332と、上面導電層331と下面導電層332に挟まれた誘電体層333と、を備える。なお、上面導電層331と下面導電層332とを接続するために、フレキシブル基板330は図示しないビアを備える。したがって、フレキシブル基板330の上面導電層331と下面導電層332は同電位になっている。 The flexible substrate 330 constitutes a substrate integrated waveguide (SIW). The flexible substrate 330 includes an upper surface conductive layer 331, a lower surface conductive layer 332, and a dielectric layer 333 sandwiched between the upper surface conductive layer 331 and the lower surface conductive layer 332. The flexible substrate 330 includes vias (not shown) in order to connect the upper surface conductive layer 331 and the lower surface conductive layer 332. Therefore, the upper surface conductive layer 331 and the lower surface conductive layer 332 of the flexible substrate 330 have the same potential.
 上面導電層531は、スリット320pと略同形状のスロットを有する。当該スロットに、スリット320pからの電波が導入される。 The upper surface conductive layer 531 has a slot having substantially the same shape as the slit 320p. Radio waves from the slit 320p are introduced into the slot.
 金属被覆322の外側の面には、導電性接着剤350が塗布される。導電性接着剤350は、例えば、樹脂に微細な金属粒子を混合した異方性導電膜シートである。導電性接着剤350は、スリット320pを塞がないように、スリット320pを回避して塗布される。また、スリット320pを囲むように、導電性接着剤350が塗布される。 The conductive adhesive 350 is applied to the outer surface of the metal coating 322. The conductive adhesive 350 is, for example, an anisotropic conductive film sheet in which fine metal particles are mixed with a resin. The conductive adhesive 350 is applied while avoiding the slit 320p so as not to block the slit 320p. Further, the conductive adhesive 350 is applied so as to surround the slit 320p.
 導電性接着剤350を塗布して、フレキシブル基板330を導波管320に巻き付けて、導電性接着剤350を硬化する。導電性接着剤350を硬化することにより、フレキシブル基板330を導波管320に固定する。導電性接着剤350を用いて、導波管320とフレキシブル基板330とを固定することにより、金属被覆322とフレキシブル基板330の上面導電層331との間を電気的に接続できる。 The conductive adhesive 350 is applied, the flexible substrate 330 is wound around the waveguide 320, and the conductive adhesive 350 is cured. The flexible substrate 330 is fixed to the waveguide 320 by curing the conductive adhesive 350. By fixing the waveguide 320 and the flexible substrate 330 using the conductive adhesive 350, the metal coating 322 and the upper surface conductive layer 331 of the flexible substrate 330 can be electrically connected.
 また、スリット320pを囲むように、導電性接着剤350が塗布されることにより、スリット320p付近からの電磁波の漏れを抑制できる。 Further, by applying the conductive adhesive 350 so as to surround the slit 320p, it is possible to suppress the leakage of electromagnetic waves from the vicinity of the slit 320p.
 《第5実施形態》
 <フレキシブル基板付き導波管5>
 第5実施形態のフレキシブル基板付き導波管5は、導波管320にフレキシブル基板330が巻き付けられることにより、導波管320を伝播する高周波信号と接続する。第5実施形態のフレキシブル基板付き導波管5では、フレキシブル基板330は、はんだ450により導波管320に接着される。図14は、第5実施形態のフレキシブル基板付き導波管5の断面図である。
<< Fifth Embodiment >>
<Wiguide tube with flexible substrate 5>
The waveguide 5 with a flexible substrate of the fifth embodiment is connected to a high frequency signal propagating in the waveguide 320 by winding the flexible substrate 330 around the waveguide 320. In the waveguide 5 with a flexible substrate of the fifth embodiment, the flexible substrate 330 is adhered to the waveguide 320 by the solder 450. FIG. 14 is a cross-sectional view of the waveguide 5 with a flexible substrate according to the fifth embodiment.
 金属被覆322の外側のフレキシブル基板330と対向する面には、はんだ450が塗布される。はんだ450は、例えば、クリームはんだである。はんだ450がスリット320pを塞がないように、スリット320pの周りに保護シート460を貼付する。保護シート460は、例えば、ポリイミドテープである。 Solder 450 is applied to the outer surface of the metal coating 322 facing the flexible substrate 330. The solder 450 is, for example, cream solder. A protective sheet 460 is attached around the slit 320p so that the solder 450 does not block the slit 320p. The protective sheet 460 is, for example, a polyimide tape.
 図15は、第5実施形態のフレキシブル基板付き導波管5の導波管320の側面図である。保護シート460は、スリット320pにはんだ450が流れ込んで塞がないように、スリット320pの外周に貼付される。なお、保護シート460は、電波の伝搬特性の劣化を防止するために、できるだけ狭い方が望ましい。 FIG. 15 is a side view of the waveguide 320 of the waveguide 5 with a flexible substrate according to the fifth embodiment. The protective sheet 460 is attached to the outer periphery of the slit 320p so that the solder 450 does not flow into the slit 320p and block it. The protective sheet 460 is preferably as narrow as possible in order to prevent deterioration of radio wave propagation characteristics.
 導波管320の金属被覆322のスリット320pの外周に、保護シート460を貼付する。そして、導波管320の金属被覆322の外面のフレキシブル基板330と対向する面にはんだ450を塗布する。次に、フレキシブル基板330を導波管320に巻き付ける。そして、フレキシブル基板330を巻き付けた導波管320を加熱してから冷却して、はんだ450を硬化させる。 A protective sheet 460 is attached to the outer circumference of the slit 320p of the metal coating 322 of the waveguide 320. Then, the solder 450 is applied to the outer surface of the metal coating 322 of the waveguide 320 facing the flexible substrate 330. Next, the flexible substrate 330 is wound around the waveguide 320. Then, the waveguide 320 around which the flexible substrate 330 is wound is heated and then cooled to cure the solder 450.
 はんだ450が硬化することにより、フレキシブル基板330を導波管320に固定する。はんだ450を用いて、導波管320とフレキシブル基板330とを固定することにより、金属被覆322とフレキシブル基板330の上面導電層331との間を電気的に接続できる。 The flexible substrate 330 is fixed to the waveguide 320 by curing the solder 450. By fixing the waveguide 320 and the flexible substrate 330 using the solder 450, the metal coating 322 and the upper surface conductive layer 331 of the flexible substrate 330 can be electrically connected.
 また、保護シート460により、スリット320pにはんだ450が流れ込むことを防止できる。また、はんだ450がスリット320pを囲むように設けられることにより、スリット320p付近からの電磁波の漏れを抑制できる。 Further, the protective sheet 460 can prevent the solder 450 from flowing into the slit 320p. Further, by providing the solder 450 so as to surround the slit 320p, it is possible to suppress leakage of electromagnetic waves from the vicinity of the slit 320p.
 《第6実施形態》
 <フレキシブル基板付き導波管6>
 第6実施形態のフレキシブル基板付き導波管6は、導波管320にフレキシブル基板530が巻き付けられることにより、導波管320を伝播する高周波信号と接続する。第6実施形態のフレキシブル基板付き導波管6では、フレキシブル基板530は、はんだ450により導波管320に接着される。図16は、第5実施形態のフレキシブル基板付き導波管6の断面図である。
<< 6th Embodiment >>
<Waveguide 6 with flexible substrate>
The waveguide 6 with a flexible substrate of the sixth embodiment is connected to a high frequency signal propagating in the waveguide 320 by winding the flexible substrate 530 around the waveguide 320. In the waveguide 6 with a flexible substrate of the sixth embodiment, the flexible substrate 530 is adhered to the waveguide 320 by the solder 450. FIG. 16 is a cross-sectional view of the waveguide 6 with a flexible substrate according to the fifth embodiment.
 フレキシブル基板530は、基板集積導波管(SIW)を構成する。フレキシブル基板530は、上面導電層531と、下面導電層532と、上面導電層531と下面導電層532に挟まれた誘電体層533と、を備える。なお、上面導電層531と下面導電層532とを接続するために、フレキシブル基板530は後述するスルーホール530thを備える。したがって、フレキシブル基板530の上面導電層531と下面導電層532は同電位になっている。 The flexible substrate 530 constitutes a substrate integrated waveguide (SIW). The flexible substrate 530 includes an upper surface conductive layer 531, a lower surface conductive layer 532, and a dielectric layer 533 sandwiched between the upper surface conductive layer 531 and the lower surface conductive layer 532. The flexible substrate 530 is provided with a through hole 530th, which will be described later, in order to connect the upper surface conductive layer 531 and the lower surface conductive layer 532. Therefore, the upper surface conductive layer 531 and the lower surface conductive layer 532 of the flexible substrate 530 have the same potential.
 図17は、第6実施形態のフレキシブル基板付き導波管6のフレキシブル基板530の側面図である。図17は、フレキシブル基板530を上面導電層531の側からみた側面図である。 FIG. 17 is a side view of the flexible substrate 530 of the waveguide 6 with the flexible substrate according to the sixth embodiment. FIG. 17 is a side view of the flexible substrate 530 as viewed from the side of the upper surface conductive layer 531.
 上面導電層531は、スリット320pと略同形状のスロット530pを有する。当該スロット530pに、スリット320pからの電波が導入される。スロット530pを囲むように、複数のスルーホール530thを有する。複数のスルーホール530thは、フレキシブル基板530の導波路を形成する。複数のスルーホール530thのそれぞれは、上面導電層531と下面導電層532を電気的に接続し、誘電体層533を貫通する。 The upper surface conductive layer 531 has a slot 530p having substantially the same shape as the slit 320p. Radio waves from the slit 320p are introduced into the slot 530p. It has a plurality of through holes 530th so as to surround the slot 530p. The plurality of through holes 530th form a waveguide for the flexible substrate 530. Each of the plurality of through holes 530th electrically connects the upper surface conductive layer 531 and the lower surface conductive layer 532 and penetrates the dielectric layer 533.
 複数のスルーホール530thのスロット530pに対して外側に、複数のはんだ用スルーホール530shを有する。複数のはんだ用スルーホール530shのそれぞれは、上面導電層531と下面導電層532を接続し、誘電体層533を貫通する。はんだ用スルーホール530shは、スルーホール530thより径が大きい。はんだ用スルーホール530shからはんだ450が注入される。 A plurality of through holes for soldering 530sh are provided on the outside of the slots 530p of the plurality of through holes 530th. Each of the plurality of solder through holes 530sh connects the upper surface conductive layer 531 and the lower surface conductive layer 532 and penetrates the dielectric layer 533. The solder through hole 530sh has a larger diameter than the through hole 530th. Solder 450 is injected from the solder through hole 530sh.
 フレキシブル基板530を導波管320に巻き付ける。そして、はんだ用スルーホール530shからはんだ450を注入する。次に、フレキシブル基板530を巻き付けた導波管320を加熱してから冷却して、はんだ450を硬化させる。このときに、はんだ用スルーホール530shから注入して加熱されたはんだ450は、スルーホール530thの内部に毛細管現象により流れ込んで、スリット320p及びスロット530pまで到達しない。したがって、はんだ450が、スリット320p及びスロット530pを塞ぐことを防止できる。 Wrap the flexible substrate 530 around the waveguide 320. Then, the solder 450 is injected from the solder through hole 530sh. Next, the waveguide 320 around which the flexible substrate 530 is wound is heated and then cooled to cure the solder 450. At this time, the solder 450 injected and heated from the through hole 530sh for solder flows into the through hole 530th due to the capillary phenomenon and does not reach the slit 320p and the slot 530p. Therefore, it is possible to prevent the solder 450 from blocking the slit 320p and the slot 530p.
 はんだ450が硬化することにより、フレキシブル基板530を導波管320に固定する。はんだ450を用いて、導波管320とフレキシブル基板530とを固定することにより、金属被覆322とフレキシブル基板530の上面導電層531との間を電気的に接続できる。 The flexible substrate 530 is fixed to the waveguide 320 by curing the solder 450. By fixing the waveguide 320 and the flexible substrate 530 using the solder 450, the metal coating 322 and the upper surface conductive layer 531 of the flexible substrate 530 can be electrically connected.
 また、はんだ450がスリット320pを囲むように設けられることにより、スリット320p付近からの電磁波の漏れを抑制できる。 Further, by providing the solder 450 so as to surround the slit 320p, leakage of electromagnetic waves from the vicinity of the slit 320p can be suppressed.
 なお、今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の請求の範囲及びその主旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。 It should be considered that the embodiment disclosed this time is an example in all respects and is not restrictive. The above embodiments may be omitted, replaced or modified in various forms without departing from the scope of the appended claims and their gist.
 本願は、日本特許庁に2020年3月27日に出願された基礎特許出願2020-058876号の優先権を主張するものであり、その全内容を参照によりここに援用する。 This application claims the priority of Basic Patent Application No. 2020-058876 filed with the Japan Patent Office on March 27, 2020, the entire contents of which are incorporated herein by reference.
   1、2、3、4、5、6 フレキシブル基板付き導波管
   20、220、320 導波管
   20p、220p1、220p2、320p スリット
   30、130、230、330、530 フレキシブル基板
   30p、530p スロット
  130b 反射面
  130c 共振器
  130d マイクロストリップライン
  133 誘電体層
1, 2, 3, 4, 5, 6 Waveguides with flexible substrates 20, 220, 320 Waveguides 20p, 220p1, 220p2, 320p Slits 30, 130, 230, 330, 530 Flexible substrates 30p, 530p Slots 130b Reflection Surface 130c Resonator 130d Microstrip Line 133 Dielectric Layer

Claims (8)

  1.  スリットが設けられた導波管と、
     フレキシブル基板と、を備え、
     前記フレキシブル基板は、一部が前記スリットに重なるように、前記導波管の外面に沿って設けられ、前記スリットから前記導波管を伝搬した高周波信号が入力される、
    フレキシブル基板付き導波管。
    Waveguide with slits and
    With a flexible board,
    The flexible substrate is provided along the outer surface of the waveguide so that a part of the flexible substrate overlaps the slit, and a high frequency signal propagating through the waveguide is input from the slit.
    Waveguide with flexible substrate.
  2.  前記スリットは、前記導波管の短絡面から前記導波管を伝搬する電波の波長の四分の一の位置に設けられる、
    請求項1に記載のフレキシブル基板付き導波管。
    The slit is provided at a position of a quarter of the wavelength of the radio wave propagating through the waveguide from the short-circuit surface of the waveguide.
    The waveguide with a flexible substrate according to claim 1.
  3.  前記フレキシブル基板は、基板集積導波管を構成している、
    請求項1又は請求項2に記載のフレキシブル基板付き導波管。
    The flexible substrate constitutes a substrate integrated waveguide.
    The waveguide with a flexible substrate according to claim 1 or 2.
  4.  前記基板集積導波管は、スロットを備え、
     前記スリットと前記スロットとが重ね合わされて取り付けられる、
    請求項3記載のフレキシブル基板付き導波管。
    The substrate integrated waveguide has a slot and
    The slit and the slot are overlapped and attached.
    The waveguide with a flexible substrate according to claim 3.
  5.  前記フレキシブル基板は、マイクロストリップラインを備える、
    請求項1または請求項2に記載のフレキシブル基板付き導波管。
    The flexible substrate comprises a microstrip line.
    The waveguide with a flexible substrate according to claim 1 or 2.
  6.  前記フレキシブル基板は、前記スリットにおいて、複数回積層される、
    請求項5に記載のフレキシブル基板付き導波管。
    The flexible substrate is laminated a plurality of times in the slit.
    The waveguide with a flexible substrate according to claim 5.
  7.  前記フレキシブル基板は、前記スリットに対応する部分に、前記マイクロストリップラインと、誘電体層が複数層積層された層と、反射面と、を備える共振器が形成される、
    請求項6に記載のフレキシブル基板付き導波管。
    In the flexible substrate, a resonator including the microstrip line, a layer in which a plurality of dielectric layers are laminated, and a reflecting surface is formed in a portion corresponding to the slit.
    The waveguide with a flexible substrate according to claim 6.
  8.  前記スリットは、複数設けられる、
    請求項1から請求項7のいずれか一項に記載のフレキシブル基板付き導波管。
    A plurality of the slits are provided.
    The waveguide with a flexible substrate according to any one of claims 1 to 7.
PCT/JP2021/012481 2020-03-27 2021-03-25 Waveguide with flexible substrate WO2021193805A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022510649A JPWO2021193805A1 (en) 2020-03-27 2021-03-25

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020058876 2020-03-27
JP2020-058876 2020-03-27

Publications (1)

Publication Number Publication Date
WO2021193805A1 true WO2021193805A1 (en) 2021-09-30

Family

ID=77891878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012481 WO2021193805A1 (en) 2020-03-27 2021-03-25 Waveguide with flexible substrate

Country Status (3)

Country Link
JP (1) JPWO2021193805A1 (en)
TW (1) TW202207517A (en)
WO (1) WO2021193805A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09172319A (en) * 1995-12-19 1997-06-30 Hisamatsu Nakano Circularly polarized wave micro strip line antenna and feeder system
JP2000244212A (en) * 1998-12-24 2000-09-08 Toyota Central Res & Dev Lab Inc Waveguide/transmission line converter
WO2010098393A1 (en) * 2009-02-25 2010-09-02 京セラ株式会社 Radio frequency module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09172319A (en) * 1995-12-19 1997-06-30 Hisamatsu Nakano Circularly polarized wave micro strip line antenna and feeder system
JP2000244212A (en) * 1998-12-24 2000-09-08 Toyota Central Res & Dev Lab Inc Waveguide/transmission line converter
WO2010098393A1 (en) * 2009-02-25 2010-09-02 京セラ株式会社 Radio frequency module

Also Published As

Publication number Publication date
TW202207517A (en) 2022-02-16
JPWO2021193805A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
JP4395103B2 (en) Waveguide substrate and high-frequency circuit module
JP5383796B2 (en) Connection structure for waveguide converter, method for manufacturing the same, and antenna device using the connection structure
Zhang et al. Integration of a 140 GHz packaged LTCC grid array antenna with an InP detector
US7248222B2 (en) High-frequency module
JP4584193B2 (en) Waveguide connection structure
JPH10173410A (en) Transmission circuit using strip line
KR102307953B1 (en) Broadband waveguide launch design on single layer PCB
JP6182422B2 (en) Connection structure with waveguide
JP6167008B2 (en) Connection structure with waveguide
JP2018101656A (en) Printed circuit board, optical module, and optical transmission device
JP2012213146A (en) High-frequency conversion circuit
WO2021193805A1 (en) Waveguide with flexible substrate
JP3732952B2 (en) High frequency transmission line connection method
WO2019203045A1 (en) High frequency line connection structure
US20170187098A1 (en) Transmission apparatus, wireless communication apparatus, and wireless communication system
JPH11214580A (en) Package for high-frequency element
JPH08250911A (en) High frequency air-tight module
JP6703442B2 (en) Power converter and antenna device including the same
WO2024009339A1 (en) Microstrip line-waveguide converter
WO2021192967A1 (en) Waveguide sealing member and waveguide with sealing member
JP7077137B2 (en) Transmission lines and connectors
JPH11186458A (en) Connecting structure for transmission path for high frequency and wiring board
US20240030580A1 (en) Electronic device and method of manufacturing electronic device
JP4821391B2 (en) Circuit board connection structure
JPH10313078A (en) Mounting structure for semiconductor device for high frequency

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21775121

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022510649

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21775121

Country of ref document: EP

Kind code of ref document: A1