WO2021193758A1 - Bulk lens, light-emitting body, and method for designing bulk lens - Google Patents

Bulk lens, light-emitting body, and method for designing bulk lens Download PDF

Info

Publication number
WO2021193758A1
WO2021193758A1 PCT/JP2021/012370 JP2021012370W WO2021193758A1 WO 2021193758 A1 WO2021193758 A1 WO 2021193758A1 JP 2021012370 W JP2021012370 W JP 2021012370W WO 2021193758 A1 WO2021193758 A1 WO 2021193758A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
degrees
light
point
emission
Prior art date
Application number
PCT/JP2021/012370
Other languages
French (fr)
Japanese (ja)
Inventor
大塚 晃
玉置 智
Original Assignee
ラボ・スフィア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ラボ・スフィア株式会社 filed Critical ラボ・スフィア株式会社
Priority to JP2022510622A priority Critical patent/JP7267661B2/en
Publication of WO2021193758A1 publication Critical patent/WO2021193758A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/04Simple or compound lenses with non-spherical faces with continuous faces that are rotationally symmetrical but deviate from a true sphere, e.g. so called "aspheric" lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • a second aspect of the present invention is a planar light emission fixed in a predetermined positional relationship so as to be housed in a recess of the bulk type lens according to the first aspect and the bulk type lens according to the first aspect.
  • the gist is that it is a light emitting body including an element. Therefore, similarly to the bulk type lens according to the first aspect, in the light emitting body according to the second aspect, the normal direction of the light emitting surface passing through the center of the light emitting surface of the planar light emitting element is set as the optical axis, and this light is used.
  • FIG. 5 is a schematic cross-sectional view showing the loci of optical paths of a plurality of emitted light having a position deviated from the central light emitting point by a distance d as the light emitting point in the bulk type lens of FIG.
  • the bulk type lens 1e according to the first embodiment of the present invention is a bulk type lens 1e that houses a main light emitting portion of a planar light emitting element 91e such as an LED.
  • the bulk lens 1e according to the first embodiment includes an exit surface 36c formed of a curved surface whose curvature continuously changes, a bulk-shaped optical transmission unit 39e composed of an optical medium in contact with the exit surface 36c, and a bulk-shaped optical transmission unit 39e. It is composed of a rear outer wall surface 44e in contact with the optical transmission unit 39e, a ceiling portion 42e provided inside the optical transmission unit 39e, and a side wall 43e connected to the ceiling portion 42e. 43e) is provided.
  • the exit surface 36c constitutes a curved surface whose curvature continuously changes as an envelope surface of a plurality of arcs.
  • the normal direction of the light emitting surface passing through the center of the light emitting surface of the planar light emitting element 91e is defined as the “optical axis” of the bulk type lens 1e according to the first embodiment, the center point on the optical axis is defined.
  • the arc having a radius of curvature R 16 and the arc having a radius of curvature R 18 extend outward on the right side as a curved surface of the peripheral region 36 Co where the curvature continuously changes.
  • the curved surface of the peripheral region 36C o of the exit surface 36c is continuous with the curved surface of the central region 36C c as a curved surface whose curvature continuously changes.
  • the normal vector of the peripheral region 36C o of the exit surface 36c and the normal vector of the central region 36C c are different in direction and the center position of the radius of curvature thereof.
  • the exit surface 36c of the bulk lens 1e according to the first embodiment is a curved surface whose curvature changes continuously, a discontinuous line of curvature as shown by a two-dot chain line is actually a top view. It should be noted that it cannot be seen. Although it is not preferable because the design becomes difficult, an inflection point may be included in a part of the exit surface 36c as long as the curvature is continuous.
  • An "inflection point" is defined for a curve such as the exit surface 36c that appears in the cross section of FIG. 1B, is second-order differentiable, has a continuous second-order derivative, but changes the sign of the second-order derivative. It is a point.
  • the inflection point is the point where the angle of the tangent plane changes in the three-dimensional space. For example, an S-shaped curve such as a logistic curve or a Gombeltz curve may be included in the cross-sectional view.
  • an irradiation angle theta illum, fourth emission points in the peripheral region 36C o light incident from the incident point S 13, S 14 of a position away from the ceiling portion 42e is reflected by the rear outer wall surface 44e of the side wall 43e E 15, E
  • the inclination angle of the linear bus forming the side wall 43e may be designed, if necessary.
  • the ceiling portion 42e and the side wall 43e of the recesses (42e, 43e) are orthogonal to each other, and the angle formed by the generatrix of the side wall 43e with the ceiling portion 42e is fixed.
  • step S102 the numerical values of the first irradiation angle range and the second irradiation angle range are input.
  • the surface shape is located on the optical axis.
  • the light is incident from the incident points T 0 , T 11 , T 12 , T 13 and T 14 of the ceiling portion 42e.
  • the change in the irradiation angle ⁇ illum of the light from the corresponding conventional bulk lens can be made substantially proportional to the cosine function of the emission angle ⁇ rad from the light emitting surface.
  • FIG. 2 shows the locus of an optical path when the light emitting point is a position deviated from the central light emitting point of the planar light emitting element 91e by a distance d in the bulk type lens 1e according to the first embodiment.
  • a general 3W class planar LED for illumination is a planar light emitting element 91e
  • the irradiation angle ⁇ illum is widened by about 3 degrees on one side.
  • the irradiation angle range ⁇ illum by light whose emission point is a position deviated by a distance d from the central emission point is large for light having a large emission angle ⁇ rad from the planar light emitting element 91e.
  • the shape of the exit surface 36f is designed so that it emits in degrees.
  • the volumetric efficiency of the recesses (42 g, 43 g) is poor, and the uniformity of optical characteristics is also disadvantageous.
  • the irradiation angle ⁇ illum in the Y-direction increases as the X-axis approaches. Therefore, in order to realize a uniform illuminance distribution in a rectangular shape, it is necessary to correct so that the curvature of the exit surface 36g in the Y direction becomes smaller as it approaches the X axis.
  • the angle of is set.
  • the first irradiation angle range and the second irradiation angle range are the same.
  • the irradiation light spread width in the road width direction of the luminaire is about 24 degrees, and the center (optical axis) of the luminaire illuminates toward the median strip or the road center line.
  • the irradiation angle ⁇ illum with respect to the direction toward the positions of 1.5 m, 2 m, 2.5 m, 3 m, 3.5 m, 4 m, 4.5 m, and 5 m from the road shoulder and their relative light intensities are shown in Table 1. Since the relationship is as shown, it is difficult to design the irradiation angle ⁇ illum and the intensity distribution of the irradiation light.
  • the "relative light intensity” is the light intensity in the direction toward the position of the median strip or the road center line located 5 m from the shoulder of the road, and is a ratio based on this 1. Relative light intensity.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Led Device Packages (AREA)

Abstract

This bulk lens 1e includes: an emission surface 36c formed by a curved surface having a continuous curvature; an optical transmission part; a rear outer wall surface 44e; and a recess part that is formed by a ceiling part 42e and a side wall 43e provided inside the optical transmission part and accommodates a planar light emitting element 91e. The curvature of a central region is set so that a difference between an emission angle of light emitted from a first emission point of a central region of the emission surface 36c through the center of the ceiling part 42e and an emission angle of light emitted from a second emission point of the central region through the ceiling part 42e adjacent to the side wall 43e falls within a first emission angle range. The curvature of a peripheral region and the curvature of the rear outer wall surface 44e are set so that the difference between an emission angle of light incident from the uppermost side of the side wall 43e, reflected by the rear outer wall surface 44e, and emitted from a third emission point of the peripheral region of the emission surface 36c and an emission angle of light incident from a position away from the ceiling part 42e of the side wall 43e, reflected by the rear outer wall surface 44e, and emitted from a fourth emission point of the peripheral region falls within a second emission angle range.

Description

バルク型レンズ、発光体及びバルク型レンズの設計方法How to design bulk lenses, illuminants and bulk lenses
 面発光をする発光ダイオード(LED)などの高出力面状発光素子からの出射光を効率良く集光し、比較的狭い照射角で出射することが出来るバルク型レンズ、及びこのバルク型レンズと面状発光素子を組み合わせた発光体、更にはバルク型レンズの設計方法に関するものである。 A bulk type lens that can efficiently collect the light emitted from a high-output planar light emitting element such as a light emitting diode (LED) that emits surface light and emit it with a relatively narrow irradiation angle, and the bulk type lens and surface. The present invention relates to a light emitting body in which a diode is combined, and further to a method for designing a bulk type lens.
 平坦な発光面を有するLED光源の発光面からの放出光の強度は、発光面の法線方向からの傾きで定義される照射角の余弦関数で低下し、LED光源と照射位置の距離の2乗に反比例する。例えば道路照明において、路肩の照明器具から距離が長く離れた路面に向かって照射する場合は、照射光の光軸と路面なす角度が小さくなり、高い照度が得られない。一方、照明器具の直下ではLED光源と照射位置の距離が短く、照射光の光軸と路面なす角度が直角になるために照度が高くなる。よって、照明器具から離れた路面と照明器具の直下を、均一な照度にすることが難しい。 The intensity of the emitted light from the light emitting surface of an LED light source having a flat light emitting surface is reduced by the cosine function of the irradiation angle defined by the inclination of the light emitting surface from the normal direction, and is 2 of the distance between the LED light source and the irradiation position. It is inversely proportional to the power. For example, in road lighting, when irradiating a road surface that is a long distance away from the lighting equipment on the shoulder of the road, the angle between the optical axis of the irradiation light and the road surface becomes small, and high illuminance cannot be obtained. On the other hand, the distance between the LED light source and the irradiation position is short directly under the lighting equipment, and the illuminance is high because the angle formed by the optical axis of the irradiation light and the road surface is at a right angle. Therefore, it is difficult to make the illuminance uniform on the road surface away from the luminaire and directly under the luminaire.
 一方、集光効率を高めるために、図11に示すような第1出射面33と第2出射面34の接続部での曲率が不連続となる光学的設計のバルク型レンズ1dが知られている(特許文献1参照。)。図11に示す従来のバルク型レンズ1dでは、大出力用に構成された大面積のLED光源91dの中央に位置する中心発光点から出射し、照射角の小さい光路の光は凹部の天井部42dに入射してからバルク型レンズ1dの上部の第1出射面33から出射される。一方、中心発光点から大きな発光角で放出された光は、凹部の側壁43dから入射し、バルク型レンズ1dの後方外壁面44dで反射してから、バルク型レンズ1dの上部の第2出射面34から出射する。図12に破線で示した光路65-1’は、発光角は中心発光点から放出された光路65-1と同じであるが、LED光源91dの右側端部側の端部発光点から発光しているので、中心発光点から距離dだけずれている。光路65-1’は、凹部の側壁43dを入射面として、バルク型レンズ1dに入射して、バルク型レンズ1dの第2出射面34から出射する。 On the other hand, in order to improve the light collection efficiency, a bulk type lens 1d having an optical design in which the curvature at the connection portion between the first exit surface 33 and the second exit surface 34 as shown in FIG. 11 is discontinuous is known. (See Patent Document 1). In the conventional bulk lens 1d shown in FIG. 11, light emitted from a central light emitting point located at the center of a large-area LED light source 91d configured for high output, and light in an optical path having a small irradiation angle is emitted from a recessed ceiling portion 42d. After being incident on the bulk type lens 1d, it is emitted from the first exit surface 33 on the upper part of the bulk type lens 1d. On the other hand, the light emitted from the central emission point at a large emission angle is incident from the side wall 43d of the recess, reflected by the rear outer wall surface 44d of the bulk lens 1d, and then the second exit surface of the upper portion of the bulk lens 1d. Emit from 34. The optical path 65-1'shown by the broken line in FIG. 12 has the same emission angle as the optical path 65-1 emitted from the central emission point, but emits light from the end emission point on the right end side of the LED light source 91d. Therefore, it is deviated from the central light emitting point by a distance d. The optical path 65-1'is incident on the bulk lens 1d with the side wall 43d of the recess as the incident surface, and is emitted from the second exit surface 34 of the bulk lens 1d.
 図12に破線で示した光路65-2’は、発光角が中心発光点から出射する実線で示した光路65-2と同じで、LED光源91dの左側端部側を端部発光点として発光している。中心発光点から距離dだけずれて光路65-2’が開始しているので、光路65-2に対して当初設計した凹部の側壁43dとは異なる天井部42dに入射する。そして、光路65-2’の光は当初設計とは異なる第2出射面34の位置から出射する。従来のバルク型レンズ1dにおいて、LED光源91dの発光面の面積が大きい場合には、端部発光点から発光する光路の光が、当初設計と異なる出射面から、当初設計の照射角と異なる広い照射角で出射し、集光効率が低下する。この問題を避けるためには第1出射面33と第2出射面34の間隔を大きくすれば軽減できるが、バルク型レンズ1d形状が大きくなってしまうという新たな問題が発生する。 The optical path 65-2'shown by the broken line in FIG. 12 is the same as the optical path 65-2 whose emission angle is indicated by the solid line emitted from the central emission point, and emits light with the left end side of the LED light source 91d as the end emission point. doing. Since the optical path 65-2'starts at a distance d from the central light emitting point, it is incident on the ceiling portion 42d different from the side wall 43d of the recess originally designed for the optical path 65-2. Then, the light of the optical path 65-2'is emitted from a position of the second exit surface 34 different from the original design. In the conventional bulk type lens 1d, when the area of the light emitting surface of the LED light source 91d is large, the light of the optical path emitted from the end light emitting point is wide from the emission surface different from the initial design to the irradiation angle different from the initial design. It emits light at the irradiation angle, and the light collection efficiency decreases. In order to avoid this problem, it can be reduced by increasing the distance between the first exit surface 33 and the second exit surface 34, but a new problem arises in which the bulk type lens 1d shape becomes large.
 10万人規模の大競技場や道路照明等に用いる大きな面積の発光面を有するLED光源91dの場合は、端部発光点からの光まで考慮して、バルク型レンズ1dの照射角や照射光強度を設計することが求められる。しかしながら、図11に示す従来のバルク型レンズ1dでは、第1出射面33と第2出射面34の接続部での曲率が不連続であるので、複数の分散した発光点の位置を考慮して、バルク型レンズ1dの照射角や照射光強度を設計するのは難しい。このように従来のバルク型レンズ1dには、大競技場や道路照明等の広い照射面積への照明する場合において、集光効率が低下しやすいという問題があった。 In the case of the LED light source 91d having a large area light emitting surface used for a large stadium with a scale of 100,000 people, road lighting, etc., the irradiation angle and irradiation light of the bulk lens 1d are taken into consideration even from the end light emitting point. It is required to design the strength. However, in the conventional bulk lens 1d shown in FIG. 11, since the curvature at the connection portion between the first emission surface 33 and the second emission surface 34 is discontinuous, the positions of a plurality of dispersed light emitting points are taken into consideration. , It is difficult to design the irradiation angle and irradiation light intensity of the bulk lens 1d. As described above, the conventional bulk type lens 1d has a problem that the light collection efficiency tends to decrease when illuminating a wide irradiation area such as a large stadium or road lighting.
特開2005-93622号公報Japanese Unexamined Patent Publication No. 2005-93622
 本発明は、コンパクトな構造で、大面積の面状発光素子を用いても狭い照射角が実現可能で、且つ広い照射面積を均一性が優れた光強度分布で効率良く照明できるバルク型レンズ、バルク型レンズと面状発光素子を組み合わせた発光体、及びバルク型レンズの設計方法を提供することを目的とする。 The present invention is a bulk lens having a compact structure, capable of achieving a narrow irradiation angle even by using a large-area planar light emitting element, and efficiently illuminating a wide irradiation area with a light intensity distribution having excellent uniformity. It is an object of the present invention to provide a light emitting body in which a bulk type lens and a planar light emitting element are combined, and a method for designing a bulk type lens.
課題を解決すための手段Means to solve problems
 本発明の第1の態様は、面状発光素子の主発光部を収納するバルク型レンズに関する。この第1の態様に係るバルク型レンズは、(a) 曲率が連続して変化する湾曲面からなる出射面と、(b) この出射面に接する光学媒体からなる光伝送部と、(c) この光伝送部に接する後方外壁面と、(d) 光伝送部の内部に設けられた天井部及びこの天井部に接続する側壁で構成され、主発光部を収納する凹部を備える。第1の態様に係るバルク型レンズでは、面状発光素子の発光面の中心を通る、発光面の法線方向を光軸とし、この光軸からの傾斜角を照射角と定義した場合において、面状発光素子の発光面の中心から発光する光に対して、天井部の中央を通って出射面の中央領域の第1出射点から出射する光の照射角と、側壁に近い天井部を通って中央領域の第2出射点から出射する光の照射角の差を10度以内の第1照射角範囲となるように、第1及び第2出射点おける湾曲面に対する接平面の角度が設定されている。更に第1の態様に係るバルク型レンズでは、側壁の最上部から入射し後方外壁面の第1反射点で反射して出射面の周辺領域の第3出射点から出射する光の照射角と、側壁の天井部から離れた位置から入射した光が後方外壁面の第2反射点で反射して周辺領域の第4出射点から出射する照射角の差が10度以内の第2照射角範囲となるように、第3及び第4出射点おける湾曲面に対する接平面の角度と、第1及び第2反射点における後方外壁面の接平面の角度を設定されている。更に、第1の態様に係るバルク型レンズでは、第1照射角範囲と第2照射角範囲が同一にされている。 The first aspect of the present invention relates to a bulk type lens that houses a main light emitting portion of a planar light emitting element. The bulk lens according to the first aspect has (a) an exit surface composed of a curved surface whose curvature continuously changes, (b) an optical transmission unit composed of an optical medium in contact with the exit surface, and (c). It is composed of a rear outer wall surface in contact with the optical transmission unit, (d) a ceiling portion provided inside the optical transmission portion, and a side wall connected to the ceiling portion, and is provided with a recess for accommodating the main light emitting portion. In the bulk type lens according to the first aspect, when the normal direction of the light emitting surface passing through the center of the light emitting surface of the planar light emitting element is defined as the optical axis and the inclination angle from this optical axis is defined as the irradiation angle, For light emitted from the center of the light emitting surface of the planar light emitting element, the light emitted from the first emission point in the central region of the exit surface through the center of the ceiling portion and the irradiation angle of the light emitted from the first emission point and the ceiling portion near the side wall pass through. The angle of the tangent plane with respect to the curved surface at the first and second emission points is set so that the difference in the irradiation angles of the light emitted from the second emission point in the central region is within the first irradiation angle range of 10 degrees or less. ing. Further, in the bulk type lens according to the first aspect, the irradiation angle of light incident from the uppermost portion of the side wall, reflected by the first reflection point on the rear outer wall surface, and emitted from the third emission point in the peripheral region of the emission surface, and Light incident from a position away from the ceiling of the side wall is reflected by the second reflection point on the rear outer wall surface, and the difference in irradiation angle emitted from the fourth exit point in the peripheral region is within 10 degrees of the second irradiation angle range. Therefore, the angle of the tangent plane with respect to the curved surface at the third and fourth exit points and the angle of the tangent plane of the rear outer wall surface at the first and second reflection points are set. Further, in the bulk type lens according to the first aspect, the first irradiation angle range and the second irradiation angle range are the same.
 本発明の第2の態様は、第1の態様に係るバルク型レンズと、この第1の態様に係るバルク型レンズの凹部に収納されるように、規定の位置関係で固定された面状発光素子とを備える発光体であることを要旨とする。よって、第1の態様に係るバルク型レンズと同様に、第2の態様に係る発光体では、面状発光素子の発光面の中心を通る、発光面の法線方向を光軸とし、この光軸からの傾斜角を照射角と定義した場合において、面状発光素子の発光面の中心から発光する光に対して、天井部の中央を通って出射面の中央領域の第1出射点から出射する光の照射角と、側壁に近い天井部を通って中央領域の第2出射点から出射する光の照射角の差を10度以内の第1照射角範囲となるように、第1及び第2出射点おける湾曲面に対する接平面の角度が設定されている。更に第2の態様に係る発光体では、側壁の最上部から入射し後方外壁面の第1反射点で反射して出射面の周辺領域の第3出射点から出射する光の照射角と、側壁の天井部から離れた位置から入射した光が後方外壁面の第2反射点で反射して周辺領域の第4出射点から出射する照射角の差が10度以内の第2照射角範囲となるように、第3及び第4出射点おける湾曲面に対する接平面の角度と、第1及び第2反射点における後方外壁面の接平面の角度を設定されている。更に、第2の態様に係る発光体では、第1照射角範囲と第2照射角範囲が同一にされている。 A second aspect of the present invention is a planar light emission fixed in a predetermined positional relationship so as to be housed in a recess of the bulk type lens according to the first aspect and the bulk type lens according to the first aspect. The gist is that it is a light emitting body including an element. Therefore, similarly to the bulk type lens according to the first aspect, in the light emitting body according to the second aspect, the normal direction of the light emitting surface passing through the center of the light emitting surface of the planar light emitting element is set as the optical axis, and this light is used. When the angle of inclination from the axis is defined as the irradiation angle, the light emitted from the center of the light emitting surface of the planar light emitting element is emitted from the first emission point in the central region of the exit surface through the center of the ceiling portion. The first and first irradiation angles are such that the difference between the irradiation angle of the light to be emitted and the irradiation angle of the light emitted from the second exit point in the central region through the ceiling near the side wall is within 10 degrees of the first irradiation angle range. 2 The angle of the tangent plane with respect to the curved surface at the exit point is set. Further, in the light emitting body according to the second aspect, the irradiation angle of the light incident from the uppermost portion of the side wall, reflected by the first reflection point on the rear outer wall surface, and emitted from the third emission point in the peripheral region of the exit surface, and the side wall. The light incident from a position away from the ceiling is reflected by the second reflection point on the rear outer wall surface, and the difference in irradiation angle emitted from the fourth exit point in the peripheral region is within the second irradiation angle range of 10 degrees or less. As described above, the angle of the tangent plane with respect to the curved surface at the third and fourth exit points and the angle of the tangent plane of the rear outer wall surface at the first and second reflection points are set. Further, in the light emitting body according to the second aspect, the first irradiation angle range and the second irradiation angle range are the same.
 本発明の第3の態様は、(p) 曲率が連続して変化する湾曲面からなる出射面、この出射面に接する光学媒体からなる光伝送部、この光伝送部に接する後方外壁面、光伝送部の内部に設けられた天井部及びこの天井部に接続する側壁で構成され主発光部を収納する凹部を有する初期設計外形線を描くステップと、(q) この凹部に収納される面状発光素子の相対位置を決めるステップと、(r) 側壁の最上部から入射した光が後方外壁面に到達する第1反射点と、側壁の天井部から離れた位置から入射した光が後方外壁面に到達する第2反射点を決定するステップと、(s) 第1及び第2反射点で反射した光が、出射面の周辺領域に到達するように、第1及び第2反射点における後方外壁面の接平面の角度を設定するステップと、(t) 天井部の中央を通って出射面の中央領域の第1出射点から出射する光の照射角と、側壁に近い天井部を通って中央領域の第2出射点から出射する光の照射角の差を10度以内の第1照射角範囲となるように、第1及び第2出射点おける湾曲面に対する接平面の角度を設定するステップと、(u) 第1反射点で反射して出射面の周辺領域の第3出射点から出射する光の照射角と、第2反射点で反射して周辺領域の第4出射点から出射する照射角の差が10度以内の第2照射角範囲となるように、第3及び第4出射点おける湾曲面に対する接平面の角度と、第1及び第2反射点における後方外壁面の接平面の角度を設定するステップを含むバルク型レンズの設計方法であることを要旨とする。 A third aspect of the present invention is (p) an emission surface made of a curved surface whose curvature continuously changes, an optical transmission part made of an optical medium in contact with the emission surface, a rear outer wall surface in contact with the optical transmission part, and light. The step of drawing the initial design outline, which is composed of the ceiling part provided inside the transmission part and the side wall connected to this ceiling part and has a recess for accommodating the main light emitting portion, and (q) the surface shape accommodated in this recess. The steps to determine the relative position of the light emitting element, (r) the first reflection point where the light incident from the uppermost part of the side wall reaches the rear outer wall surface, and the light incident from the position away from the ceiling part of the side wall are the rear outer wall surface. The step of determining the second reflection point to reach (s) and the rear outside at the first and second reflection points so that the light reflected at the first and second reflection points reaches the peripheral region of the exit surface. The step of setting the angle of the tangent plane of the wall surface, (t) the irradiation angle of the light emitted from the first emission point in the central region of the emission surface through the center of the ceiling, and the center through the ceiling near the side wall. A step of setting the angle of the tangent plane with respect to the curved surface at the first and second emission points so that the difference between the irradiation angles of the light emitted from the second emission point of the region is within the first irradiation angle range of 10 degrees or less. , (U) The irradiation angle of the light reflected at the first reflection point and emitted from the third emission point in the peripheral region of the exit surface, and the irradiation reflected by the second reflection point and emitted from the fourth emission point in the peripheral region. The angle of the tangent plane with respect to the curved surface at the third and fourth exit points and the tangent plane of the rear outer wall surface at the first and second reflection points so that the angle difference is within the second irradiation angle range of 10 degrees or less. The gist is that it is a bulk type lens design method including a step of setting an angle.
 本発明によれば、発光面の面積の大きい面状発光素子の発光面の大きさを効率良く使うことが可能であり、コンパクトな構造により中心発光点から離れた位置から発光する光の影響を少なくし、狭い照射角で集光効率を高くし、且つ広い照射面積を均一性が優れた光強度分布で効率良く照明できるバルク型レンズ、発光体及びバルク型レンズの設計方法を提供することができる。 According to the present invention, it is possible to efficiently use the size of the light emitting surface of the planar light emitting element having a large light emitting surface area, and the compact structure affects the influence of light emitted from a position away from the central light emitting point. It is possible to provide a design method for a bulk type lens, a light emitter, and a bulk type lens that can efficiently illuminate a wide irradiation area with a light intensity distribution having excellent uniformity while reducing the number of light sources and increasing the light collection efficiency with a narrow irradiation angle. can.
本発明の第1実施形態に係るバルク型レンズ中を透過する複数の光路の軌跡を示す模式的な断面図である。It is a schematic cross-sectional view which shows the locus of a plurality of optical paths transmitted through the bulk type lens which concerns on 1st Embodiment of this invention. 第1実施形態に係るバルク型レンズの出射面の設計思想の概念を説明する模式的な断面図である。It is a schematic cross-sectional view explaining the concept of the design concept of the exit surface of the bulk type lens which concerns on 1st Embodiment. 第1実施形態に係るバルク型レンズに定義される出射面の区分を示す上面図(平面図)である。It is a top view (plan view) which shows the classification of the exit surface defined in the bulk type lens which concerns on 1st Embodiment. 第1実施形態に係るバルク型レンズの凹部に収納される半導体発光素子の構造を説明する模式的な断面図である。It is a schematic cross-sectional view explaining the structure of the semiconductor light emitting element housed in the recess of the bulk type lens which concerns on 1st Embodiment. 第1実施形態に係るバルク型レンズの設計方法の概略を説明する、簡略化されたフローチャートである。It is a simplified flowchart explaining the outline of the design method of the bulk type lens which concerns on 1st Embodiment. 第1実施形態に係るバルク型レンズにおいて、中心発光点から距離dだけずれた位置を発光点とする複数の出射光の光路の軌跡を示す模式的な断面図である。FIG. 5 is a schematic cross-sectional view showing the loci of optical paths of a plurality of emitted lights having a position deviated by a distance d from the central light emitting point in the bulk lens according to the first embodiment. 本発明の第2実施形態に係るバルク型レンズ中を透過する複数の光路の軌跡を示す模式的な断面図である。It is a schematic cross-sectional view which shows the locus of a plurality of optical paths transmitted through the bulk type lens which concerns on 2nd Embodiment of this invention. 第2実施形態に係るバルク型レンズにおいて、中心発光点から距離dだけずれた位置を発光点とする複数の出射光の光路の軌跡を示す模式的な断面図である。FIG. 5 is a schematic cross-sectional view showing the loci of optical paths of a plurality of emitted lights having a position deviated from the central light emitting point by a distance d as the light emitting point in the bulk type lens according to the second embodiment. 本発明の第3実施形態に係るバルク型レンズの光軸と直交するX軸方向に沿った断面における光路の軌跡を示す模式的な断面図である。It is a schematic cross-sectional view which shows the locus of an optical path in the cross section along the X-axis direction orthogonal to the optical axis of the bulk type lens which concerns on 3rd Embodiment of this invention. 第3実施形態に係るバルク型レンズの光軸及びX軸と直交するY軸方向に沿った断面における光路の軌跡を示す模式的な断面図である。It is a schematic cross-sectional view which shows the locus of an optical path in the cross section along the Y-axis direction orthogonal to the optical axis and the X-axis of the bulk type lens which concerns on 3rd Embodiment. 第3実施形態に係るバルク型レンズの底面から見た形状を示す模式的な底面図である。It is a schematic bottom view which shows the shape seen from the bottom surface of the bulk type lens which concerns on 3rd Embodiment. 本発明の第4実施形態に係るバルク型レンズの光軸と直交するX軸方向に沿った断面における光路の軌跡を示す模式的な断面図である。It is a schematic cross-sectional view which shows the locus of an optical path in the cross section along the X-axis direction orthogonal to the optical axis of the bulk type lens which concerns on 4th Embodiment of this invention. 第4実施形態に係るバルク型レンズの光軸及びX軸と直交するY軸方向に沿った断面における光路の軌跡を示す模式的な断面図である。It is a schematic cross-sectional view which shows the locus of an optical path in the cross section along the Y-axis direction orthogonal to the optical axis and the X-axis of the bulk type lens which concerns on 4th Embodiment. 第4実施形態に係るバルク型レンズの底面から見た形状を示す模式的な底面図である。It is a schematic bottom view which shows the shape seen from the bottom surface of the bulk type lens which concerns on 4th Embodiment. 従来のバルク型レンズ中を透過する複数の光路の軌跡を示す模式的な断面図である。It is a schematic cross-sectional view which shows the locus of a plurality of optical paths transmitted through a conventional bulk type lens. 図11のバルク型レンズにおいて、中心発光点から距離dだけずれた位置を発光点とする複数の出射光の光路の軌跡を示す模式的な断面図である。FIG. 5 is a schematic cross-sectional view showing the loci of optical paths of a plurality of emitted light having a position deviated from the central light emitting point by a distance d as the light emitting point in the bulk type lens of FIG.
 次に、図面を参照して、本発明の第1~第4実施形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。又、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることはもちろんである。 Next, the first to fourth embodiments of the present invention will be described with reference to the drawings. In the description of the drawings below, the same or similar parts are designated by the same or similar reference numerals. However, it should be noted that the drawings are schematic, and the relationship between the thickness and the plane dimensions, the ratio of the thickness of each layer, etc. are different from the actual ones. Therefore, the specific thickness and dimensions should be determined in consideration of the following explanation. In addition, it goes without saying that the drawings include parts having different dimensional relationships and ratios from each other.
 また、以下に示す第1~第4実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記のものに特定するものでない。本発明の技術的思想は、請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。 Further, the first to fourth embodiments shown below exemplify devices and methods for embodying the technical idea of the present invention, and the technical idea of the present invention is based on the material of the component parts. The shape, structure, arrangement, etc. are not specified as follows. The technical idea of the present invention may be modified in various ways within the technical scope specified by the claims.
(第1実施形態)
 本発明の第1実施形態に係るバルク型レンズ1eは、図1Aに示すように、LED等の面状発光素子91eの主発光部を収納するバルク型レンズ1eである。第1実施形態に係るバルク型レンズ1eは、 曲率が連続して変化する湾曲面からなる出射面36cと、この出射面36cに接する光学媒体からなる塊状(バルク状)の光伝送部39eと、この光伝送部39eに接する後方外壁面44eと、光伝送部39eの内部に設けられた天井部42e及びこの天井部42eに接続する側壁43eで構成され、主発光部を収納する凹部(42e,43e)を備える。後方外壁面44eは、 出射面36cに光学的に対向している。「光学的に対向」とは、出射面36cと後方外壁面44eがほぼ並行に対峙する必要はなく、後方外壁面44eで反射した光が出射面36cに到達するような関係であればよいという意味である。凹部(42e,43e)は、後方外壁面44eの一部から出射面36cの方向に沿って光伝送部39eの内部に天井部42eが位置するように、この天井部42eとこの天井部42eに接続する側壁43eで構成され、LED等の面状発光素子91eの主発光部を収納する。以下の説明において、便宜上後方外壁面44eは全反射条件で設計できるように説明しているが、光出射特性や外形などの条件により全反射条件にならない場合は、後方外壁面44eに反射率の高い金属膜等の鏡面反射処理を行った構造でも構わない。
(First Embodiment)
As shown in FIG. 1A, the bulk type lens 1e according to the first embodiment of the present invention is a bulk type lens 1e that houses a main light emitting portion of a planar light emitting element 91e such as an LED. The bulk lens 1e according to the first embodiment includes an exit surface 36c formed of a curved surface whose curvature continuously changes, a bulk-shaped optical transmission unit 39e composed of an optical medium in contact with the exit surface 36c, and a bulk-shaped optical transmission unit 39e. It is composed of a rear outer wall surface 44e in contact with the optical transmission unit 39e, a ceiling portion 42e provided inside the optical transmission unit 39e, and a side wall 43e connected to the ceiling portion 42e. 43e) is provided. The rear outer wall surface 44e optically faces the exit surface 36c. The term "optically opposed" means that the exit surface 36c and the rear outer wall surface 44e do not have to face each other in substantially parallel directions, and the light reflected by the rear outer wall surface 44e may reach the exit surface 36c. Meaning. The recesses (42e, 43e) are formed in the ceiling portion 42e and the ceiling portion 42e so that the ceiling portion 42e is located inside the optical transmission portion 39e along the direction of the exit surface 36c from a part of the rear outer wall surface 44e. It is composed of a side wall 43e to be connected, and houses a main light emitting portion of a planar light emitting element 91e such as an LED. In the following description, for the sake of convenience, the rear outer wall surface 44e is described so that it can be designed under the total reflection condition. A structure that has undergone specular reflection treatment such as a high metal film may be used.
 出射面36cの形状を規定する「曲率が連続して変化する湾曲面からなる」の表現は「なだらかな湾曲面」を数学的に定義したものである。例えば、図11及び図12に示した構造では、曲率半径の小さな第1出射面33と、第1出射面33の曲率半径よりも大きな曲率半径の第2出射面34が交わっており、第1出射面33と第2出射面34の交点において曲率が不連続である。図11及び図12に示した構造は立体形状であるので、図11及び図12の断面図上における第1出射面33と第2出射面34の曲率不連続点は3次元座標における曲率不連続線になる。これに対して、第1実施形態に係るバルク型レンズ1eの出射面36cは、曲率が連続して変化する湾曲面であるので、曲率不連続線は存在しない。   The expression "consisting of a curved surface whose curvature changes continuously" that defines the shape of the exit surface 36c is a mathematical definition of a "smooth curved surface". For example, in the structures shown in FIGS. 11 and 12, the first exit surface 33 having a small radius of curvature and the second exit surface 34 having a radius of curvature larger than the radius of curvature of the first exit surface 33 intersect, and the first The curvature is discontinuous at the intersection of the exit surface 33 and the second exit surface 34. Since the structures shown in FIGS. 11 and 12 have a three-dimensional shape, the curvature discontinuity points of the first exit surface 33 and the second exit surface 34 on the cross-sectional views of FIGS. 11 and 12 are curvature discontinuities in three-dimensional coordinates. Become a line. On the other hand, since the exit surface 36c of the bulk lens 1e according to the first embodiment is a curved surface whose curvature continuously changes, there is no curvature discontinuity line.
 例えば、図1Bに示すように、出射面36cは複数の円弧の包絡面として、曲率が連続して変化する湾曲面を構成している。図1Bでは面状発光素子91eの発光面の中心を通る発光面の法線方向を、第1実施形態に係るバルク型レンズ1eの「光軸」と定義したときに、光軸上の中心点Ov1を中心とする曲率半径R0の円弧、曲率半径R11の円弧、曲率半径R12=R11の円弧、曲率半径R13の円弧、曲率半径R14=R13の円弧の包絡面として、出射面36cの中央領域36Ccが構成され
 
13>R11>R0                          ……(1a)
14>R12>R0                          ……(1b)
 
 
の関係をなしている。
For example, as shown in FIG. 1B, the exit surface 36c constitutes a curved surface whose curvature continuously changes as an envelope surface of a plurality of arcs. In FIG. 1B, when the normal direction of the light emitting surface passing through the center of the light emitting surface of the planar light emitting element 91e is defined as the “optical axis” of the bulk type lens 1e according to the first embodiment, the center point on the optical axis is defined. As an encircling surface of an arc with a radius of curvature R 0 centered on O v1, an arc with a radius of curvature R 11, an arc with a radius of curvature R 12 = R 11, an arc with a radius of curvature R 13, and an arc with a radius of curvature R 14 = R 13. , The central region 36C c of the exit surface 36c is configured.
R 13 > R 11 > R 0 …… (1a)
R 14 > R 12 > R 0 …… (1b)


Has a relationship.
 一方、光軸上の中心点Ov2を中心とする曲率半径R15の円弧、曲率半径R16=R15の円弧の包絡面が、出射面36cの中央領域36Ccの包絡面に連続することにより、出射面36cの周辺領域36Coが構成されているので、曲率が連続して変化する湾曲面になっているが、
 
15>R13                                ……(2a)
16>R15                                ……(2b)
 
 
の関係をなしている。
On the other hand, the arc of curvature radius R 15 around the center point O v2 on the optical axis, the circular arc of the envelope surface of the curvature radius R 16 = R 15 is continuous to the envelope surface of the central region 36C c of the exit surface 36c that As a result, the peripheral region 36C o of the exit surface 36c is formed, so that the curvature is a curved surface that continuously changes.

R 15 > R 13 …… (2a)
R 16 > R 15 …… (2b)


Has a relationship.
 又、周辺領域36Coを構成する包絡面は、凹部(42e,43e)の天井部42eの左側端部に中心点Ov3を有する曲率半径R17の円弧、凹部の天井部42eの右側端部に中心点Ov4を有する曲率半径R18=R17の円弧の包絡面と連続するように構成され、
 
17>R13                                ……(3a)
18>R15                                ……(3b)
 
の関係をなしている。このため、曲率半径R15の円弧と曲率半径R17の円弧は、曲率が連続して変化する周辺領域36Coの湾曲面として、更に左側の外方に広がっている。又、湾曲面半径R16の円弧と曲率半径R18の円弧は、曲率が連続して変化する周辺領域36Coの湾曲面として、更に右側の外方に広がっている。そして、出射面36cの周辺領域36Coの湾曲面は、中央領域36Ccの湾曲面と曲率が連続して変化する湾曲面として連続している。図1Bから分かるように、出射面36cの周辺領域36Coの法線ベクトルと、中央領域36Ccの法線ベクトルとは方向と、その曲率半径の中心位置が異なる。
The envelope surface forming the peripheral region 36C o is an arc having a radius of curvature R 17 having a center point O v3 at the left end of the ceiling portion 42e of the recess (42e, 43e), and the right end of the ceiling portion 42e of the recess. It is configured to be continuous with the envelope of an arc with a radius of curvature R 18 = R 17 having a center point O v4 at.

R 17 > R 13 …… (3a)
R 18 > R 15 …… (3b)

Has a relationship. Therefore, the arc having the radius of curvature R 15 and the arc having the radius of curvature R 17 further extend outward on the left side as the curved surface of the peripheral region 36 Co where the curvature continuously changes. Further, the arc having a radius of curvature R 16 and the arc having a radius of curvature R 18 extend outward on the right side as a curved surface of the peripheral region 36 Co where the curvature continuously changes. The curved surface of the peripheral region 36C o of the exit surface 36c is continuous with the curved surface of the central region 36C c as a curved surface whose curvature continuously changes. As can be seen from FIG. 1B, the normal vector of the peripheral region 36C o of the exit surface 36c and the normal vector of the central region 36C c are different in direction and the center position of the radius of curvature thereof.
 ただし、図1Bに示した中心点Ov1,Ov2,Ov3,Ov4の位置や、曲率半径R15,R16,R17,R18の大きさを、大小関係等は、設計概念を模式的に示す例示に過ぎず、実際の設計に際しては異なる中心点の位置や曲率半径大きさや大小関係が採用されることは勿論である。特に、後述する式(4)で示すフレネ=セレの公式が示すように、曲率半径R15,R16,R17,R18の大きさや中心点Ov1,Ov2,Ov3,Ov4の位置等は、法線ベクトルの方向に依存する。法線ベクトルの方向は、接平面の角度で決まり、接平面の角度は、スネルの法則によって、所望の照射角θillumに対して決定される。即ち、図1Bに示した中心点Ov1,Ov2,Ov3,Ov4の位置等は、スネルの法則によって決まる実際の設計に用いられる中心点の位置とは異なるものである。 However, the positions of the center points O v1 , O v2 , O v3 , and O v4 shown in Fig. 1B and the sizes of the radii of curvature R 15 , R 16 , R 17 , and R 18 are based on the design concept. It is merely an example schematically shown, and it goes without saying that different positions of center points, magnitudes of radius of curvature, and magnitude relationships are adopted in actual design. In particular, as the official Fresnel = selector represented by the formula (4) described later, the radius of curvature R 15, R 16, R 17 , R 18 size and the center point O v1, O v2, the O v3, O v4 The position and the like depend on the direction of the normal vector. The direction of the normal vector is determined by the angle of the tangent plane, and the angle of the tangent plane is determined by Snell's law with respect to the desired irradiation angle θ illum . That is, the positions of the center points O v1 , O v2 , O v3 , and O v4 shown in FIG. 1B are different from the positions of the center points used in the actual design determined by Snell's law.
 一般には、現実の設計に関しては周辺領域36Coの曲率を定義する曲率半径R15,R16,R17,R18の大きさを、光軸と法線ベクトルの方向を等しくする円弧の曲率半径R0よりも大きくすることが好ましい。図1Cのバルク型レンズ1eの上面図には、説明の便宜上、中央領域36Ccと周辺領域36Coの境界を模式的に2点鎖線(仮想線)で示している。しかし、第1実施形態に係るバルク型レンズ1eの出射面36cは、曲率が連続して変化する湾曲面であるので、上面図として、実際には2点鎖線で示すような曲率不連続線は見えないことに留意が必要である。なお、設計が難しくなるので好ましくはないが、曲率が連続していれば、出射面36cの一部に変曲点が含まれていてもよい。「変曲点」とは、図1Bの断面図において現れる出射面36cのような曲線に関して定義され、二階微分可能で、二階の導関数が連続であるが、二階の導関数の符号が変化する点である。変曲点は3次元空間では接平面の角度の増減が入れ替わる点である。例えばロジスティック曲線やゴンベルツ曲線のようなS字型カーブが断面図に含まれていてもよい。 In general, for actual design, the radius of curvature of an arc that defines the curvature of the peripheral region 36 Co o and makes the magnitudes of radius R 15 , R 16 , R 17 , and R 18 equal to the direction of the optical axis and the normal vector. It is preferably larger than R 0. In the top view of the bulk lens 1e of FIG. 1C, the boundary between the central region 36C c and the peripheral region 36C o is schematically shown by a two-dot chain line (virtual line) for convenience of explanation. However, since the exit surface 36c of the bulk lens 1e according to the first embodiment is a curved surface whose curvature changes continuously, a discontinuous line of curvature as shown by a two-dot chain line is actually a top view. It should be noted that it cannot be seen. Although it is not preferable because the design becomes difficult, an inflection point may be included in a part of the exit surface 36c as long as the curvature is continuous. An "inflection point" is defined for a curve such as the exit surface 36c that appears in the cross section of FIG. 1B, is second-order differentiable, has a continuous second-order derivative, but changes the sign of the second-order derivative. It is a point. The inflection point is the point where the angle of the tangent plane changes in the three-dimensional space. For example, an S-shaped curve such as a logistic curve or a Gombeltz curve may be included in the cross-sectional view.
 図1Bに示すように、第1実施形態に係るバルク型レンズ1eは、面状発光素子91eの発光面の中心から出射する光に対して、天井部42eの中央の入射点T0を通って出射面36cの中央領域36Ccの第1出射点E0から出射する光の照射角θillumと、側壁43eに近い天井部42eの入射点T13,T14を通って中央領域36Ccの第2出射点E13,E14から出射する光の照射角θillumの差を10度以内の第1照射角範囲となるように、第1出射点E0及び第2出射点E13,E14における湾曲面に対する接平面の角度を設定されている。なお、「照射角θillum」は、面状発光素子91eの発光面の法線方向からの傾きで定義される。面状発光素子91eの発光面の中心を通る発光面の法線方向を、第1実施形態に係るバルク型レンズ1eの光軸としているので、「照射角θillum」は光軸からの傾斜角と同義である。「曲率ベクトル」は「接線ベクトル」を微分することで求められ、「曲率」は曲率ベクトルの絶対値である。又曲率ベクトルは出射点における出射面36cの法線ベクトルであり、接線ベクトルに直交する。 As shown in FIG. 1B, the bulk type lens 1e according to the first embodiment passes through the incident point T 0 at the center of the ceiling portion 42e with respect to the light emitted from the center of the light emitting surface of the planar light emitting element 91e. The irradiation angle θ illum of the light emitted from the first emission point E 0 of the central region 36C c of the emission surface 36c and the incident points T 13 and T 14 of the ceiling portion 42e near the side wall 43e are passed through the central region 36C c . 2 The first emission point E 0 and the second emission points E 13 and E 14 so that the difference between the irradiation angles θ illum of the light emitted from the emission points E 13 and E 14 is within the first irradiation angle range of 10 degrees or less. The angle of the tangent plane with respect to the curved surface in is set. The “irradiation angle θ illum ” is defined by the inclination of the light emitting surface of the planar light emitting element 91e from the normal direction. Since the normal direction of the light emitting surface passing through the center of the light emitting surface of the planar light emitting element 91e is the optical axis of the bulk lens 1e according to the first embodiment, the “irradiation angle θ illum ” is the inclination angle from the optical axis. Is synonymous with. The "curvature vector" is obtained by differentiating the "tangent vector", and the "curvature" is the absolute value of the curvature vector. The curvature vector is a normal vector of the exit surface 36c at the exit point and is orthogonal to the tangent vector.
 簡単化のためにバルク型レンズ1eの3次元構造を、図1Bに示した断面図上の2次元構造で光路を設計するとする。図1Bに示した2次元構造の表現において、出射面36cの接線方向を指す単位ベクトルをT、出射面36cの主法線方向を指す単位ベクトルをN、出射面36cの従法線方向を指す単位ベクトルをBとすると、よく知られているように、フレネ=セレの公式は、以下の式(4)で表される。
Figure JPOXMLDOC01-appb-M000001
 
 式(4)で、d/ds は、出射面36cの弧長についての微分を表し、κは出射面36cの曲率、τは出射面36cの捩率(れいりつ)を表す。捩率は、図1Bに単純化した出射面36cを示す平面曲線における曲率の空間版に相当する。
For the sake of simplicity, it is assumed that the three-dimensional structure of the bulk lens 1e is designed with the two-dimensional structure on the cross-sectional view shown in FIG. 1B. In the representation of the two-dimensional structure shown in FIG. 1B, the unit vector pointing to the tangential direction of the exit surface 36c is T, the unit vector pointing to the main normal direction of the exit surface 36c is N, and the unit vector pointing to the normal direction of the exit surface 36c is indicated. As is well known, assuming that the unit vector is B, the Frenet-Sele formula is expressed by the following equation (4).
Figure JPOXMLDOC01-appb-M000001

In equation (4), d / ds represents the derivative of the arc length of the exit surface 36c, κ represents the curvature of the exit surface 36c, and τ represents the torsion of the exit surface 36c. The torsion of a curve corresponds to the spatial version of the curvature in the plane curve showing the exit surface 36c simplified in FIG. 1B.
 なお、従法線ベクトルBは、接線ベクトルTと主法線ベクトルの外積である:
 
B=T×N             ……(5)
 
 フレネ=セレの公式から、天井部42eの中央の入射点T0を通って出射面36cの中央領域36Ccの第1出射点E0から出射する光の照射角θillumと、側壁43eに近い天井部42eの入射点T13,T14を通って中央領域36Ccの第2出射点E13,E14から出射する光の照射角θillumの差を10度以内の第1照射角範囲とすることは、第1出射点E0及び第2出射点E13,E14における中央領域36Ccの曲率半径を設計することになる。
The normal vector B is the outer product of the tangent vector T and the main normal vector:

B = T × N …… (5)

According to the Frenet-Serret formula, the irradiation angle θ illum of the light emitted from the first emission point E 0 in the central region 36 C c of the emission surface 36 c through the entrance point T 0 in the center of the ceiling portion 42e is close to the side wall 43e. The difference between the irradiation angles θ illum of the light emitted from the second emission points E 13 and E 14 in the central region 36 C c through the incident points T 13 and T 14 of the ceiling portion 42e is set to the first irradiation angle range within 10 degrees. This is to design the radius of curvature of the central region 36 C c at the first exit point E 0 and the second exit points E 13 and E 14.
 又、側壁43eの最上部側の入射点S11,S12から入射し後方外壁面44eの第1反射点B11,B12で反射して出射面36cの周辺領域36Coの第3出射点E17,E18から出射する光の照射角θillumと、側壁43eの天井部42eから離れた位置の入射点S13,S14から入射した光が後方外壁面44eの第2反射点B13,B14で反射して周辺領域36Coの第4出射点E15,E16から出射する照射角θillumの差が10度以内の第2照射角範囲となるように、第3出射点E17,E18及び第4出射点E15,E16における湾曲面に対する接平面の角度と、第1及び第2反射点B11,B12,B13,B14における後方反射面44に対する接平面の角度と、必要に応じて、側壁43eを構成する直線状の母線の傾斜角が設定されている。フレネ=セレの公式を考慮すると、このことは、第3出射点E17,E18及び第4出射点E15,E16における中央領域36Ccの曲率半径及び第1及び第2反射点B11,B12,B13,B14における後方反射面44の曲率半径を設計することになる。更に、第1実施形態に係るバルク型レンズ1eでは、第1照射角範囲と第2照射角範囲を同一になるように設定される。 Further, it is incident from the incident points S 11 and S 12 on the uppermost side of the side wall 43e and reflected at the first reflection points B 11 and B 12 on the rear outer wall surface 44e, and is reflected by the third emission point of the peripheral region 36C o of the emission surface 36c. The irradiation angle θ illum of the light emitted from E 17 and E 18 and the incident points S 13 and S 14 at positions away from the ceiling portion 42 e of the side wall 43 e are the second reflection points B 13 of the rear outer wall surface 44 e. as the difference in the irradiation angle theta illum emitted from the fourth emission point E 15, E 16 of the peripheral region 36C o is reflected by B 14 is the second irradiation angle range within 10 degrees, the third output point E The angle of the tangent plane with respect to the curved surface at 17 , E 18 and the fourth exit points E 15 and E 16 , and the tangent plane with respect to the rear reflection surface 44 at the first and second reflection points B 11 , B 12 , B 13 and B 14. And, if necessary, the inclination angle of the linear bus line forming the side wall 43e is set. Considering the Frenet-Serret formula, this means that the radius of curvature of the central region 36 C c at the third exit points E 17 , E 18 and the fourth exit points E 15 , E 16 and the first and second reflection points B 11 , B 12 , B 13 and B 14 will design the radius of curvature of the rear reflecting surface 44. Further, in the bulk type lens 1e according to the first embodiment, the first irradiation angle range and the second irradiation angle range are set to be the same.
 図1Aに示すように、第1実施形態に係るバルク型レンズ1eに収納される面状発光素子91eは素子実装基板92eの上に搭載され、素子実装基板92eは、素子実装基板92eよりも大面積のプリント基板93eの上に搭載されている。プリント基板93eは、プリント基板93eよりも大面積の金属板94eの上に搭載され、プリント基板93eと金属板94eの積層構造をなしている。第1実施形態に係るバルク型レンズ1eは、バルク型レンズ1eの左側に突出し、バルク型レンズ1eの光伝送部39eと一体化している第1固定用足場95eと、バルク型レンズ1eの右側に突出し、バルク型レンズ1eの光伝送部39eと一体化している第2固定用足場96eを有している。第1固定用足場95e及び第2固定用足場96eは、それぞれ後方外壁面44eと出射面36cの間で接続されている。 As shown in FIG. 1A, the planar light emitting element 91e housed in the bulk lens 1e according to the first embodiment is mounted on the element mounting substrate 92e, and the element mounting substrate 92e is larger than the element mounting substrate 92e. It is mounted on the printed circuit board 93e of the area. The printed circuit board 93e is mounted on a metal plate 94e having a larger area than the printed circuit board 93e, and has a laminated structure of the printed circuit board 93e and the metal plate 94e. The bulk lens 1e according to the first embodiment is projected on the left side of the bulk lens 1e and is integrated with the optical transmission unit 39e of the bulk lens 1e on the first fixing scaffold 95e and on the right side of the bulk lens 1e. It has a second fixing scaffold 96e that protrudes and is integrated with the optical transmission unit 39e of the bulk lens 1e. The first fixing scaffold 95e and the second fixing scaffold 96e are connected between the rear outer wall surface 44e and the exit surface 36c, respectively.
 第1固定用足場95e及び第2固定用足場96eは、それぞれ四角柱の形状をなしている。第1固定用足場95e及び第2固定用足場96eを、動物のワニの両足に例えると、ワニの胴に相当する塊状の光伝送部39eが、第1固定用足場95e及び第2固定用足場96eに支えられ浮き上がった構造に擬制できる。第1固定用足場95eの中央には、四角柱の柱軸方向に貫通する円筒状の第1貫通孔97eが開孔され、第2固定用足場96eの中央にも、第1貫通孔97eと平行に貫通する円筒状の第2貫通孔98eが開孔されている。プリント基板93eと金属板94eとの積層構造は、第1貫通孔97e及び第2貫通孔98eに対応する2つの位置に、それぞれ貫通孔が開孔されている。第1貫通孔97e及び第1貫通孔97eに連続するプリント基板93eと金属板94eの左側の貫通孔に、ビス等の固定具を貫通させ、第2貫通孔98e及び第2貫通孔98に連続するプリント基板93eと金属板94eの右側の貫通孔にも固定具を貫通させることにより、バルク型レンズ1eは、プリント基板93eを介して金属板94eにワニ型の固定がされる。 The first fixing scaffold 95e and the second fixing scaffold 96e each have the shape of a quadrangular prism. If the first fixing scaffold 95e and the second fixing scaffold 96e are compared to both feet of an animal crocodile, the massive optical transmission unit 39e corresponding to the body of the crocodile is the first fixing scaffold 95e and the second fixing scaffold. It can be imitated as a floating structure supported by 96e. A cylindrical first through hole 97e penetrating in the column axis direction of the square pillar is opened in the center of the first fixing scaffold 95e, and a first through hole 97e is also formed in the center of the second fixing scaffold 96e. A cylindrical second through hole 98e that penetrates in parallel is opened. In the laminated structure of the printed circuit board 93e and the metal plate 94e, through holes are opened at two positions corresponding to the first through hole 97e and the second through hole 98e, respectively. A fixture such as a screw is passed through the through holes on the left side of the printed circuit board 93e and the metal plate 94e that are continuous with the first through holes 97e and the first through holes 97e, and are continuous with the second through holes 98e and the second through holes 98. By passing the fixture through the through hole on the right side of the printed circuit board 93e and the metal plate 94e, the bulk lens 1e is fixed to the metal plate 94e via the printed circuit board 93e.
 図1Dは、面状発光素子91eの主発光部を説明する図であり、上面から光が放出されるLEDの構成の一例を示す。図1Dに例示した面状発光素子91eは、たとえばGaAs基板918上に形成されたバッファ層917と、スペーサ層916と、n型コンタクト層915と、n型バリア層914と、活性層913と、p型バリア層912と、p型コンタクト層911とを備えている。p型コンタクト層911の上面からn型コンタクト層915の中央付近に至るまでの側部がたとえばメサエッチングなどの手段により除去されており、それにより露出させられたn型コンタクト層915の上面にn型電極922が、p型コンタクト層911の上面にp型電極921がそれぞれ設けられている。 FIG. 1D is a diagram for explaining the main light emitting portion of the planar light emitting element 91e, and shows an example of the configuration of an LED in which light is emitted from the upper surface. The planar light emitting device 91e illustrated in FIG. 1D includes, for example, a buffer layer 917 formed on a GaAs substrate 918, a spacer layer 916, an n-type contact layer 915, an n-type barrier layer 914, and an active layer 913. It includes a p-type barrier layer 912 and a p-type contact layer 911. The side portion from the upper surface of the p-type contact layer 911 to the vicinity of the center of the n-type contact layer 915 has been removed by means such as mesa etching, and n on the upper surface of the n-type contact layer 915 exposed thereby. The mold electrode 922 is provided with the p-type electrode 921 on the upper surface of the p-type contact layer 911, respectively.
 図1Dに示すように構成された面状発光素子91eにおいては、p型コンタクト層911の上面におけるp型電極921の開口部が面状の発光面をなし、図1A及び図1Bに示した光路66-1,66-2,66-3,66-4,……の光が、発光面上に定義される多数(無限数)の発光点から放出される。図1Dに示した例で説明すれば、p型電極921の開口部に露出した発光面が、「面状発光素子91eの主発光部」の一例となるが、図1Dに示す構造に限定されるものではない。白色LEDの場合は、図1Dのp型電極921の開口部に露出した発光面の上に、更に蛍光剤が塗布、若しくは蛍光剤の層が構成される。この蛍光剤の上面が発光面となる。このような白色LEDでは、蛍光剤とこの蛍光剤を収納する容器の上部端部であって、発光面となる蛍光剤を額縁状に囲む枠の部分が、「面状発光素子91eの主発光部」の他の一例になる。 In the planar light emitting element 91e configured as shown in FIG. 1D, the opening of the p-type electrode 921 on the upper surface of the p-type contact layer 911 forms a planar light emitting surface, and the optical path shown in FIGS. 1A and 1B. Lights of 66-1, 66-2, 66-3, 66-4, ... Are emitted from a large number (infinite number) of light emitting points defined on the light emitting surface. Explaining with the example shown in FIG. 1D, the light emitting surface exposed in the opening of the p-type electrode 921 is an example of the “main light emitting portion of the planar light emitting element 91e”, but is limited to the structure shown in FIG. 1D. It's not something. In the case of a white LED, a fluorescent agent is further applied or a layer of the fluorescent agent is formed on the light emitting surface exposed at the opening of the p-type electrode 921 in FIG. 1D. The upper surface of this fluorescent agent serves as a light emitting surface. In such a white LED, the portion of the upper end of the fluorescent agent and the container for storing the fluorescent agent, which surrounds the fluorescent agent as the light emitting surface in a frame shape, is "the main light emission of the planar light emitting element 91e". It is another example of "department".
 バルク型レンズ1eの凹部(42e,43e)の天井部42eは、凸レンズ状であると、光軸方向への集光性が高くなり、より広い発光角θradの面状発光素子91eからの光を、バルク型レンズ1eから小さい照射角θillumで出射できる。面状発光素子91eからの発光角θradの大きな光では天井部42eでの反射率が高くなる。このため、面状発光素子91eの発光面の面積が大きい場合は、中心発光点から距離dだけずれた位置を発光点とする光の影響も大きくなる。一方、従来のバルク型レンズの凹部の天井部が凹レンズ状であると、面状発光素子91eのより多くの発光角θradの光を、バルク型レンズの出射面方向に屈折させて入射することが出来る。しかし、小さい照射角θillumでバルク型レンズのから出射することが出来るのは、面状発光素子91eからの、より狭い発光角θradの光だけとなる。 If the ceiling portion 42e of the recesses (42e, 43e) of the bulk lens 1e has a convex lens shape, the light condensing property in the optical axis direction becomes high, and the light from the planar light emitting element 91e having a wider light emission angle θ rad. Can be emitted from the bulk lens 1e with a small irradiation angle θ illum. Light with a large emission angle θ rad from the planar light emitting element 91e has a high reflectance at the ceiling portion 42e. Therefore, when the area of the light emitting surface of the planar light emitting element 91e is large, the influence of light whose light emitting point is a position deviated by a distance d from the central light emitting point is also large. On the other hand, if the ceiling of the recess of the conventional bulk lens is concave, light with a larger emission angle θ rad of the planar light emitting element 91e is refracted in the direction of the emission surface of the bulk lens and incident. Can be done. However, only light with a narrower emission angle θ rad from the planar light emitting element 91e can be emitted from the bulk lens with a small irradiation angle θ illum.
 第1実施形態に係るバルク型レンズ1eのように、面状発光素子91eからの発光角θradの大きい光は凹部(42e,43e)の側壁43eから入射してバルク型レンズ1eの後方外壁面44eで反射させて、バルク型レンズ1eの出射面36cから出射する。後方外壁面44eで反射させる方式のバルク型レンズ1eでは、面状発光素子91eから出射するほぼすべての光を、狭い照射角θillumで出射させることが出来るので、第1実施形態に係るバルク型レンズ1eでは、凹部の側壁43eは設計が容易な母線が直線である2次曲面が好ましい。凹部の天井部42eの外形をなす曲線上のすべての点を通り,一定直線に平行なすべての母線によってつくられる2次曲面 (線織面 )は柱面である。凹部の天井部42eの外形をなす曲線上のすべての点と,凹部の天井部42eの上にない一定点とを結んだすべての母線によってつくられる2次曲面 (線織面)は錐面である。 Like the bulk lens 1e according to the first embodiment, light having a large emission angle θ rad from the planar light emitting element 91e is incident from the side wall 43e of the recesses (42e, 43e) and is incident on the rear outer wall surface of the bulk lens 1e. It is reflected by 44e and emitted from the exit surface 36c of the bulk lens 1e. In the bulk type lens 1e of the type that is reflected by the rear outer wall surface 44e, almost all the light emitted from the planar light emitting element 91e can be emitted with a narrow irradiation angle θ illum , so that the bulk type according to the first embodiment can be emitted. In the lens 1e, the side wall 43e of the concave portion preferably has a quadric curved surface having a straight generatrix, which is easy to design. The quadric surface (ruled surface) formed by all the generatrix parallel to a constant straight line passing through all the points on the curve forming the outer shape of the ceiling portion 42e of the recess is a pillar surface. The quadric surface (ruled surface) created by all the generatrix connecting all the points on the curve that form the outer shape of the ceiling portion 42e of the recess and the fixed points that are not on the ceiling portion 42e of the recess is a conical surface. be.
 主発光部を収納する凹部(42e,43e)は、後述する図7及び図10に示したように円筒形もしくは円錐台の形状を基本とする。しかし、円筒形もしくは円錐台は例示であり、円筒形もしくは円錐台に限定されるものではない。例えば、設計が複雑化することをいとわなければ、円筒の側面の母線が直線でないように設定してもよい。或いは、円筒や円錐台の上面を、曲率半径の大きな湾曲面状にする等の変形例も可能である。このように、円筒形もしくは円錐台の基本形状に種々のトポロジを加える変形も可能ではあるが、円筒形もしくは円錐台を変形する際に曲率半径の小さな湾曲面状の変形にする場合は、光路の設計が困難になることに留意が必要である。 The recesses (42e, 43e) for accommodating the main light emitting portion are basically in the shape of a cylinder or a truncated cone as shown in FIGS. 7 and 10 described later. However, the cylindrical shape or the truncated cone is an example, and the present invention is not limited to the cylindrical shape or the truncated cone. For example, if you are willing to complicate the design, you may set the generatrix on the side of the cylinder to be non-straight. Alternatively, a modified example such as making the upper surface of a cylinder or a truncated cone into a curved surface having a large radius of curvature is also possible. In this way, it is possible to add various topologies to the basic shape of a cylinder or a truncated cone, but when deforming a cylinder or a truncated cone, if the deformation is a curved surface with a small radius of curvature, the optical path It should be noted that the design of the is difficult.
 第1実施形態に係るバルク型レンズ1eの設計をより容易にするためには、凹部の側壁43eを3面以上の複数の平面で構成してもよい。側壁43eが、4つの平面からなるときは、凹部(42e,43e)は直方体になる。複数の平面の数が20面以上の多数の面になってくると円柱面に近づいてくる。凹部の側壁43eは、入射面での屈折角が大きい方がバルク型レンズ1eの後方外壁面44dの直径を小さく出来る。凹部の天井部42eと側壁43eとのなす角が、90度より大きくなると、第1実施形態に係るバルク型レンズ1eの金型での製作が難しくなる。このため、第1実施形態に係るバルク型レンズ1eでは、光軸とほぼ並行の直線状の母線の方向とし、凹部(42e,43e)を円筒状とすることが好ましい。 In order to facilitate the design of the bulk lens 1e according to the first embodiment, the side wall 43e of the recess may be composed of a plurality of planes having three or more planes. When the side wall 43e is composed of four planes, the recesses (42e, 43e) are rectangular parallelepipeds. When the number of a plurality of planes becomes a large number of planes of 20 or more, it approaches a cylindrical plane. The diameter of the rear outer wall surface 44d of the bulk lens 1e can be reduced when the side wall 43e of the recess has a large refraction angle on the incident surface. If the angle formed by the ceiling portion 42e and the side wall 43e of the recess is larger than 90 degrees, it becomes difficult to manufacture the bulk lens 1e according to the first embodiment with a mold. Therefore, in the bulk lens 1e according to the first embodiment, it is preferable that the direction of the linear bus line is substantially parallel to the optical axis and the recesses (42e, 43e) are cylindrical.
 凹部(42e,43e)が円筒状の場合、例えば、凹部の天井部42eの直径は6mm、側壁の高さは3mm、凹部の天井部42eから出射面36の頂部までの高さ15mm、面状発光素子91eの発光面から凹部の天井部42eまでの距離が3mm程度の値で設計できる。出射面36cと後方外壁面44eとを接続する光学媒体としては、例えば光学用アクリル樹脂が採用可能である。ただし、光学媒体は透明であれば何でも良い。例えば、ポリカーボネートは耐熱性に優れており、ガラスは耐熱性も信頼性も優れているので、ポリカーボネートやガラス等も第1実施形態に係るバルク型レンズ1eの光学媒体として好適な材料である。以上のとおり、第1実施形態に係るバルク型レンズ及び発光体によれば、発光面の面積の大きい面状発光素子の発光面の大きさを効率良く使うことが可能であり、中心発光点から離れた端部発光点等の位置から発光する光の影響を少なくし、狭い照射角で集光効率を高くし、且つ広い照射面積を均一性が優れた光強度分布で効率良く照明できるコンパクトな構造が提供できる。 When the recesses (42e, 43e) are cylindrical, for example, the diameter of the ceiling portion 42e of the recess is 6 mm, the height of the side wall is 3 mm, the height from the ceiling portion 42e of the recess to the top of the exit surface 36 is 15 mm, and the surface shape. The distance from the light emitting surface of the light emitting element 91e to the ceiling portion 42e of the recess can be designed with a value of about 3 mm. As the optical medium that connects the exit surface 36c and the rear outer wall surface 44e, for example, an optical acrylic resin can be adopted. However, the optical medium may be any transparent medium. For example, polycarbonate has excellent heat resistance, and glass has excellent heat resistance and reliability. Therefore, polycarbonate, glass, and the like are also suitable materials as an optical medium for the bulk lens 1e according to the first embodiment. As described above, according to the bulk type lens and the light emitting body according to the first embodiment, it is possible to efficiently use the size of the light emitting surface of the planar light emitting element having a large area of the light emitting surface, and from the central light emitting point. Compact that reduces the influence of light emitted from a position such as a distant end emission point, increases the light collection efficiency with a narrow irradiation angle, and efficiently illuminates a wide irradiation area with a light intensity distribution with excellent uniformity. Structure can be provided.
 =第1実施形態に係るバルク型レンズの設計方法=
 面状発光素子91eの発光面の中心から出射する光に対して、天井部42eの中央の入射点T0を通って出射面36cの中央領域36Ccの第1出射点E0から出射する光の照射角θillumと、側壁43eに近い天井部42eの入射点T13,T14を通って中央領域36Ccの第2出射点E13,E14から出射する光の照射角θillumの差を10度以内の第1照射角範囲となるようにするためには、幾何光学上の作図や、光学シミュレータを用いた自動設計等により、第1出射点E0及び第2出射点E13,E14における湾曲面に対する接平面の角度を決めればよい。例えば、幾何光学を用いた作図を試行錯誤するヒューリスティックな方法や、量子計算機による揺らぎを付与した光学シミュレータ等の種々の手法で、接平面の角度を決めることが可能である。
= Bulk type lens design method according to the first embodiment =
With respect to the light emitted from the center of the light emitting surface of the planar light emitting element 91e, the light emitted from the first emission point E 0 in the central region 36 C c of the exit surface 36 c through the incident point T 0 in the center of the ceiling portion 42e. an irradiation angle theta illum of the difference in the irradiation angle theta illum of the light emitted from the second emitting point E 13, E 14 in the central region 36C c through an incident point T 13, T 14 of the ceiling portion 42e close to the side wall 43e In order to make the first irradiation angle range within 10 degrees, the first exit point E 0 and the second exit point E 13 by geometrical optical drawing and automatic design using an optical simulator, etc. The angle of the tangent plane with respect to the curved surface at E 14 may be determined. For example, it is possible to determine the angle of the tangent plane by various methods such as a heuristic method in which drawing using geometrical optics is tried and errored, and an optical simulator in which fluctuations are applied by a quantum computer.
 又、側壁43eの最上部側の入射点S11,S12から入射し後方外壁面44eで反射して出射面36cの周辺領域36Coの第3出射点E17,E18から出射する光の照射角θillumと、側壁43eの天井部42eから離れた位置の入射点S13,S14から入射した光が後方外壁面44eで反射して周辺領域36Coの第4出射点E15,E16から出射する照射角θillumの差が10度以内の第2照射角範囲となるようにするのも、幾何光学上の作図や、光学シミュレータを用い、第3出射点E17,E18及び第4出射点E15,E16における湾曲面に対する接平面の角度と、第1及び第2反射点B11,B12,B13,B14における後方反射面44の接平面の角度とを設計すればよい。場合によっては、必要に応じて、側壁43eを構成する直線状の母線の傾斜角も設計すればよい。 Further, the light emitted from the third emission points E 17 and E 18 of the peripheral region 36 Co o of the emission surface 36c, which is incident from the incident points S 11 and S 12 on the uppermost side of the side wall 43e and reflected by the rear outer wall surface 44e. an irradiation angle theta illum, fourth emission points in the peripheral region 36C o light incident from the incident point S 13, S 14 of a position away from the ceiling portion 42e is reflected by the rear outer wall surface 44e of the side wall 43e E 15, E It is also possible to make the difference between the irradiation angles θ illum emitted from 16 within the second irradiation angle range within 10 degrees by using geometrical optics drawing and an optical simulator to use the third emission points E 17 , E 18 and Design the angle of the tangent plane with respect to the curved surface at the fourth exit points E 15 and E 16 and the angle of the tangent plane of the rear reflection surface 44 at the first and second reflection points B 11 , B 12 , B 13 and B 14. do it. In some cases, the inclination angle of the linear bus forming the side wall 43e may be designed, if necessary.
 例えば、図1Eのフローチャートに示すように、まずステップS101において、出射面36cと、この出射面36cに接する光伝送部39eと、この光伝送部39eに接する後方外壁面44eと、光伝送部39eの内部に設けられた天井部42e及びこの天井部42eに接続する側壁43eで構成され、主発光部を収納する凹部(42e,43e)を備える構造の初期設計外形線を描く。図1Eのフローチャートでは、簡略化のため、凹部(42e,43e)の天井部42eと側壁43eとは直交し、側壁43eの母線が天井部42eとなす角度は固定であるとして、説明する。図1Eのフローチャートで省略した側壁43eの母線が天井部42eとなす角度を変更する工程が加わる場合は、設計の自由度が増大するが、上述したように製造工程が複雑化する。次に、ステップS102において、第1照射角範囲と第2照射角範囲の数値を入力する。第1照射角範囲と第2照射角範囲の値は、互いにほぼ同一であることが望ましいが、設計仕様に要求される条件によっては、2~5度の差があっても構わない。次に、ステップS103において、凹部(42e,43e)の内部に面状発光素子91eを挿入し、凹部(42e,43e)と面状発光素子91eとの相対位置を決定する。 For example, as shown in the flowchart of FIG. 1E, first, in step S101, the exit surface 36c, the optical transmission unit 39e in contact with the emission surface 36c, the rear outer wall surface 44e in contact with the optical transmission unit 39e, and the optical transmission unit 39e. The initial design outline of the structure is drawn, which is composed of a ceiling portion 42e provided inside the above and a side wall 43e connected to the ceiling portion 42e, and has recesses (42e, 43e) for accommodating the main light emitting portion. In the flowchart of FIG. 1E, for simplification, the ceiling portion 42e and the side wall 43e of the recesses (42e, 43e) are orthogonal to each other, and the angle formed by the generatrix of the side wall 43e with the ceiling portion 42e is fixed. When the step of changing the angle formed by the bus of the side wall 43e omitted from the flowchart of FIG. 1E with the ceiling portion 42e is added, the degree of freedom in design is increased, but the manufacturing process is complicated as described above. Next, in step S102, the numerical values of the first irradiation angle range and the second irradiation angle range are input. It is desirable that the values of the first irradiation angle range and the second irradiation angle range are substantially the same as each other, but there may be a difference of 2 to 5 degrees depending on the conditions required for the design specifications. Next, in step S103, the planar light emitting element 91e is inserted into the concave portion (42e, 43e), and the relative position between the concave portion (42e, 43e) and the planar light emitting element 91e is determined.
 ステップS103で凹部(42e,43e)と面状発光素子91eとの相対位置が決定されると、ステップS104において、天井部42eの入射点T0,T11,T12,T13,T14や側壁43eの入射点S11,S12,S13,S14を凹部(42e,43e)への入力位置が決定される。更に、側壁43eの最上部側の入射点S11,S12から入射して後方外壁面44eに到達し、後方外壁面44eで反射する光の起点となる第1反射点B11,B12の位置を決定する。ステップS104においては、同時に、天井部42eから離れた位置の入射点S13,S14から入射した光が後方外壁面44eに到達し、後方外壁面44eで反射する光の起点となる第2反射点B13,B14の位置が決定される。その後、ステップS105において、第1反射点B11,B12で反射した光、及び第2反射点B13,B14で反射した光が、共に周辺領域36Coに到達するように、第1及び第2反射点B11,B12,B13,B14における後方反射面44の曲率を、それぞれ決定する。ステップS105で「曲率を決定する」ということは、数学的には曲率半径を決定すること、或いは第1及び第2反射点B11,B12,B13,B14における後方反射面44への接平面の角度を決定することと等価である。 When the relative positions of the recesses (42e, 43e) and the planar light emitting element 91e are determined in step S103, in step S104, the incident points T 0 , T 11 , T 12 , T 13 , T 14 and the ceiling portion 42e are determined. input position of the incident point of the side wall 43e S 11, S 12, S 13, S 14 into the recess (42e, 43e) are determined. Further, of the first reflection points B 11 and B 12 which are incident from the incident points S 11 and S 12 on the uppermost side of the side wall 43e, reach the rear outer wall surface 44e, and are the starting points of the light reflected by the rear outer wall surface 44e. Determine the position. Step In S104, at the same time, light incident from the incident point S 13, S 14 of a position away from the ceiling portion 42e reaches the rear outer wall surface 44e, a second reflection as a starting point of the light reflected by the rear outer wall surface 44e The positions of points B 13 and B 14 are determined. Thereafter, in step S105, so that the light reflected by the first reflection point B 11, B 12, and the light reflected by the second reflection point B 13, B 14, and reaches the peripheral region 36C o both, the first and The curvature of the rear reflection surface 44 at the second reflection points B 11 , B 12 , B 13 , and B 14 is determined, respectively. To "determine the curvature" in step S105 is to mathematically determine the radius of curvature, or to the rear reflection plane 44 at the first and second reflection points B 11 , B 12 , B 13 , and B 14. Equivalent to determining the angle of the tangent plane.
 そして、ステップS106において、第1出射点E0から出射する光の照射角θillumと、第2出射点E13,E14から出射する光の照射角θillumの差が10度以内の第1照射角範囲となるように、スネルの法則を用いて、第1出射点E0及び第2出射点E13,E14における中央領域36Ccの曲率を決定する。ステップS106で中央領域36Ccの「曲率を決定する」ということは、数学的には曲率半径を決定すること、中央領域36Ccの接平面の角度を決定することと等価である。なお、スネルの法則を用いて、第1出射点E0及び第2出射点E13,E14における中央領域36Ccの曲率を決定するということは、曲率は屈折率の関数であるので、光伝送部39eを構成する光学媒体に不均一に不純物を添加して、光伝送部39eの内部に屈折率の分布を形成し、この屈折率の分布の効果により、照射角θillumを制御してもよい。更にステップS107において、第3出射点E17,E18から出射する光の照射角θillumと、第4出射点E15,E16から出射する照射角θillumの差が10度以内の第2照射角範囲となるように、スネルの法則を用いて、第3出射点E17,E18及び第4出射点E15,E16における周辺領域36Coの曲率を決定する。 Then, in step S106, the irradiation angle theta illum of the light emitted from the first emitting point E 0, the difference in illumination angle theta illum of the light emitted from the second emitting point E 13, E 14 is within 10 degrees first Using Snell's law, the curvature of the central region 36 C c at the first exit point E 0 and the second exit points E 13 and E 14 is determined so as to be within the irradiation angle range. "Determining the curvature" of the central region 36C c in step S106 is mathematically equivalent to determining the radius of curvature and determining the angle of the tangent plane of the central region 36C c. It should be noted that determining the curvature of the central region 36C c at the first exit point E 0 and the second exit points E 13 and E 14 using Snell's law means that the curvature is a function of the refractive index, so that light is used. Irregular impurities are added to the optical medium constituting the transmission unit 39e to form a refractive index distribution inside the optical transmission unit 39e, and the irradiation angle θ illum is controlled by the effect of the refractive index distribution. May be good. Further, in step S107, the difference between the irradiation angles θ illum of the light emitted from the third emission points E 17 and E 18 and the irradiation angles θ illum emitted from the fourth emission points E 15 and E 16 is within 10 degrees. so that the irradiation angle range by using the Snell's law to determine the curvature of the peripheral region 36C o in the third emission point E 17, E 18, and fourth emission points E 15, E 16.
 なお、スネルの法則を用いて、第3出射点E17,E18及び第4出射点E15,E16における周辺領域36Coの曲率を決定するということは、光伝送部39eを構成する光学媒体に不均一に不純物を添加して、光伝送部39eの内部に屈折率の分布を形成し、この屈折率の分布の効果により、照射角θillumを制御してもよい。ステップS107で周辺領域36Coの「曲率を決定する」ということは、数学的には曲率半径を決定すること、周辺領域36Coの接平面の角度を決定することと等価である。 Incidentally, by using the Snell's law, that determines the curvature of the peripheral region 36C o in the third emission point E 17, E 18, and fourth emission points E 15, E 16 constitute the optical transmission section 39e optical An impurity may be added to the medium non-uniformly to form a refractive index distribution inside the optical transmission unit 39e, and the irradiation angle θ illum may be controlled by the effect of the refractive index distribution. "Determining the curvature" of the peripheral region 36C o in step S107 is mathematically equivalent to determining the radius of curvature and determining the angle of the tangent plane of the peripheral region 36C o.
 その後、ステップS108において、ステップS106において決定された中央領域36Ccの曲率とステップS107において決定された周辺領域36Coの曲率が連続するか否かを、確認する。中央領域36Ccの曲率と周辺領域36Coの曲率が連続しない場合は、ステップS111を経由してステップS105に戻り、第1及び第2反射点B11,B12,B13,B14における後方反射面44の代替え案を決定し、この代替え案でステップS106の中央領域36Ccの曲率及びステップS107における周辺領域36Coの曲率の代替え案を探索する。ステップS108→ステップS111→ステップS115のループを、中央領域36Ccの曲率と周辺領域36Coの曲率が連続になるまで繰り返す。 Then, in step S108, it is confirmed whether or not the curvature of the central region 36C c determined in step S106 and the curvature of the peripheral region 36C o determined in step S107 are continuous. If the curvature of the central region 36C c and the curvature of the peripheral region 36C o are not continuous, return to step S105 via step S111 and rearward at the first and second reflection points B 11 , B 12 , B 13 , and B 14. An alternative for the reflective surface 44 is determined, and this alternative is searched for an alternative for the curvature of the central region 36C c in step S106 and the curvature of the peripheral region 36C o in step S107. The loop of step S108 → step S111 → step S115 is repeated until the curvature of the central region 36C c and the curvature of the peripheral region 36C o become continuous.
 しかし、ステップS108→ステップS111→ステップS115のループの処理が一定回数繰り返してもステップS108において、中央領域36Ccの曲率と周辺領域36Coの曲率が連続する条件が確認されないときは、ステップS112を経由してステップS103に戻る。即ちステップS111では、ステップS108→ステップS111→ステップS105のループの処理回数が、あらかじめ設定した第1繰返最大数Nmax1に到達したかを計数し、第1繰返最大数Nmax1に到達したと判断されると、新たな分岐ループによってステップS103に戻る。そして、ステップS103で凹部(42e,43e)と面状発光素子91eとの新たな相対位置を代替え案として決定し、ステップS103→ステップS104→ステップS105→ステップS106→ステップS107→ステップS108の処理を繰り返す。 However, if the condition that the curvature of the central region 36C c and the curvature of the peripheral region 36C o are continuous is not confirmed in step S108 even if the loop processing of step S108 → step S111 → step S115 is repeated a certain number of times, step S112 is performed. The process returns to step S103. That is, in step S111, it is counted whether the number of loop processes of step S108 → step S111 → step S105 has reached the preset maximum number of repeats N max1 and has reached the maximum number of repeats N max1. If it is determined, the process returns to step S103 by a new branch loop. Then, in step S103, a new relative position between the recesses (42e, 43e) and the planar light emitting element 91e is determined as an alternative, and the processes of step S103 → step S104 → step S105 → step S106 → step S107 → step S108 are performed. repeat.
 ステップS108→ステップS111→ステップS112→ステップS103のループの処理を、一定回数繰り返してもステップS108において、中央領域36Ccの曲率と周辺領域36Coの曲率が連続する条件が確認されないときは、ステップS112を経由してステップS102に戻る。即ちステップS112では、ステップS108→ステップS111→→ステップS112→ステップS103のループの処理回数が、あらかじめ設定した第2繰返最大数Nmax2に到達したかを計数し、第2繰返最大数Nmax2に到達したと判断されると、更に新たな分岐ループによってステップS102に戻る。ステップS102では、第1照射角範囲と第2照射角範囲の数値を10度以内で再入力すればよい。ステップS102で、最初に第1照射角範囲と第2照射角範囲の数値を3度以内等厳格な値を入力した場合は、ループの処理を繰り返しても中央領域36Ccの曲率と周辺領域36Coの曲率が連続にならない場合がある。このような場合は、ステップS102で、第1照射角範囲と第2照射角範囲の数値を10度以内のより緩やかな値に再設定すればよい。 If the condition that the curvature of the central region 36C c and the curvature of the peripheral region 36C o are continuous is not confirmed in step S108 even if the loop processing of step S108 → step S111 → step S112 → step S103 is repeated a certain number of times, step S108. The process returns to step S102 via S112. That is, in step S112, it is counted whether the number of loop processes of step S108 → step S111 → → step S112 → step S103 has reached the preset second maximum number N max2 , and the second maximum number N When it is determined that max2 has been reached, the process returns to step S102 by a new branch loop. In step S102, the numerical values of the first irradiation angle range and the second irradiation angle range may be re-entered within 10 degrees. In step S102, when the values of the first irradiation angle range and the second irradiation angle range are first input as strict values such as within 3 degrees, the curvature of the central region 36C c and the peripheral region 36C even if the loop processing is repeated. The curvature of o may not be continuous. In such a case, in step S102, the numerical values of the first irradiation angle range and the second irradiation angle range may be reset to more gradual values within 10 degrees.
 又、第1照射角範囲と第2照射角範囲の値を完全に同一に設定した場合は、何度もループの処理を繰り返しても、ステップS108で中央領域36Ccの曲率と周辺領域36Coの曲率が連続にならない可能性が高くなる。このような場合は、ステップS102で第1照射角範囲と第2照射角範囲の値の一致の度合いが緩やかな条件、例えば2~5度の差があるように緩和すればよい。即ち、第1実施形態に係るバルク型レンズ1eの設計における「第1照射角範囲と第2照射角範囲が同一」とは、第1照射角範囲と第2照射角範囲との間に、2~5度の差を含むような条件等の、「実質的な同一」若しくは「同一と均等」の場合を含む意味である。なお、均一な屈折率分布の条件下で、ステップS108で中央領域36Ccの曲率と周辺領域36Coの曲率が連続にならない場合は、伝送部39eの屈折率の分布を不均一にして調整する方法もある。即ち、スネルの法則は屈折率に依存するので、光学媒体の特定の領域に局所的に不純物を添加する等により、光伝送部39eの内部に屈折率の分布を形成して、照射角θillumを調整してもよい。ステップS108において、中央領域36Ccの曲率と周辺領域36Coの曲が連続することが確認されたら、ステップS109において、出射面36cと後方外壁面44eに囲まれた塊状光伝送部39e以外の構造を決定すれば、第1実施形態に係るバルク型レンズ1eの設計が完了する。以上のとおり、第1実施形態に係るバルク型レンズの設計方法によれば、発光面の面積の大きい面状発光素子の発光面の大きさを効率良く使うことが可能であり、中心発光点から離れた端部発光点等の位置から発光する光の影響を少なくし、狭い照射角で集光効率を高くし、且つ広い照射面積を均一性が優れた光強度分布で効率良く照明できるコンパクトな構造が設計できる。 Further, when the values of the first irradiation angle range and the second irradiation angle range are set to be completely the same, the curvature of the central region 36C c and the peripheral region 36C o in step S108 even if the loop processing is repeated many times. There is a high possibility that the curvatures of will not be continuous. In such a case, in step S102, the degree of coincidence between the values of the first irradiation angle range and the second irradiation angle range may be relaxed so that there is a gentle condition, for example, a difference of 2 to 5 degrees. That is, in the design of the bulk lens 1e according to the first embodiment, "the first irradiation angle range and the second irradiation angle range are the same" means that 2 is between the first irradiation angle range and the second irradiation angle range. It means to include the case of "substantially the same" or "equal to the same" such as a condition including a difference of ~ 5 degrees. If the curvature of the central region 36C c and the curvature of the peripheral region 36C o are not continuous in step S108 under the condition of a uniform refractive index distribution, the refractive index distribution of the transmission unit 39e is adjusted to be non-uniform. There is also a method. That is, since Snell's law depends on the refractive index, a distribution of the refractive index is formed inside the optical transmission unit 39e by locally adding impurities to a specific region of the optical medium, and the irradiation angle θ illum. May be adjusted. When it is confirmed in step S108 that the curvature of the central region 36C c and the curvature of the peripheral region 36C o are continuous, in step S109, a structure other than the massive optical transmission unit 39e surrounded by the exit surface 36c and the rear outer wall surface 44e. Is determined, the design of the bulk lens 1e according to the first embodiment is completed. As described above, according to the bulk type lens design method according to the first embodiment, it is possible to efficiently use the size of the light emitting surface of the planar light emitting element having a large area of the light emitting surface, and from the central light emitting point. Compact that reduces the influence of light emitted from a position such as a distant end emission point, increases the light collection efficiency with a narrow irradiation angle, and efficiently illuminates a wide irradiation area with a light intensity distribution with excellent uniformity. The structure can be designed.
 =第1実施形態に係るバルク型レンズの光学設計の実施例=
 既に説明したとおり、第1照射角範囲と第2照射角範囲は10度以内であればよいが、より好ましい例として、第1照射角範囲と第2照射角範囲を8度以内とする場合を、第1実施形態に係るバルク型レンズ1eの設計の実施例として、以下に説明する。なお、既に説明したように、面状発光素子91eの発光面の中心を通る発光面の法線方向を、バルク型レンズ1eの「光軸」と定義して、実施例を説明する。上述したように、凹部の天井部42eの直径を6mm、側壁の高さを3mm、面状発光素子91eの発光面から天井部42eまでの距離を3mmとすると、光軸上に位置する面状発光素子91eの発光面の中央(中心点)に位置する発光点(以下において単に「中心発光点」と略記する。)から発光角θrad=約±45度以内の光は、図1Bに示したように、天井部42eの入射点T0,T11,T12,T13,T14から入射する。ここで「発光角θrad」は照射角θillumと同様に、面状発光素子91eの発光面の法線方向を基準にして測られるものとする。又、中心発光点からの発光角θrad=約±45度以上の光は、図1Bに示したように、側壁43eの入射点S11,S12,S13,S14から入射する。入射点T0,T11,T12,T13,T14から入射した光は出射面36cの中央領域36Ccから出射し、入射点S11,S12,S13,S14から入射した光は、後方外壁面44eで反射し、出射面36cの周辺領域36Coから出射する。
= Example of optical design of bulk lens according to the first embodiment =
As described above, the first irradiation angle range and the second irradiation angle range may be within 10 degrees, but as a more preferable example, the case where the first irradiation angle range and the second irradiation angle range are within 8 degrees is used. , An example of designing the bulk lens 1e according to the first embodiment will be described below. As described above, an embodiment will be described by defining the normal direction of the light emitting surface passing through the center of the light emitting surface of the planar light emitting element 91e as the “optical axis” of the bulk lens 1e. As described above, assuming that the diameter of the ceiling portion 42e of the recess is 6 mm, the height of the side wall is 3 mm, and the distance from the light emitting surface of the planar light emitting element 91e to the ceiling portion 42e is 3 mm, the surface shape is located on the optical axis. Light within a light emitting angle θ rad = about ± 45 degrees from a light emitting point located at the center (center point) of the light emitting surface of the light emitting element 91e (hereinafter, simply abbreviated as “center light emitting point”) is shown in FIG. 1B. As described above, the light is incident from the incident points T 0 , T 11 , T 12 , T 13 and T 14 of the ceiling portion 42e. Here, it is assumed that the “emission angle θ rad ” is measured with reference to the normal direction of the light emitting surface of the planar light emitting element 91e, similarly to the irradiation angle θ illum. Further, as shown in FIG. 1B, the light having an emission angle θ rad = about ± 45 degrees or more from the central emission point is incident from the incident points S 11 , S 12 , S 13 and S 14 on the side wall 43e. Light incident from incident points T 0 , T 11 , T 12 , T 13 and T 14 is emitted from the central region 36 C c of the exit surface 36 c, and is incident from incident points S 11 , S 12 , S 13 and S 14. Is reflected by the rear outer wall surface 44e and is emitted from the peripheral region 36C o of the exit surface 36c.
 図1A及び図1Bに光路66-1として示したように、中心発光点からの発光角θrad=約0度で放出される光は、バルク型レンズ1eの出射面36cから照射角θillum=0度で出射する。図1A及び図1Bには角度を明示していないが、図1Eに示した手順に従い、中心発光点から、45度より小さいが45度に比較的近い発光角θradで凹部の天井部42eから入射した光のバルク型レンズ1eからの照射角θillumは、約8度となるようにバルク型レンズ1eの出射面36cの形状を設計できる。一方、中心発光点から、45度より大きいが45度に比較的近い発光角θradで凹部の側壁43eから入射し、バルク型レンズ1eの後方外壁面44eで反射した光のバルク型レンズ1eからの照射角θillumを、約0度となるように、バルク型レンズ1eの出射面36cとバルク型レンズ1eの後方外壁面44eの形状を設計できる。又、中心発光点から90度よりも小さいが90度に比較的近い大きな発光角θradで凹部の側壁43eから入射してバルク型レンズ1eの後方外壁面44eで反射した光のバルク型レンズ1eからの照射角θillumを、約8度となるようにバルク型レンズ1eの出射面36cとバルク型レンズ1eの後方外壁面44eの形状を設計できる。 As shown as an optical path 66-1 in FIGS. 1A and 1B, the light emitted from the central emission point at an emission angle θ rad = about 0 degrees is emitted from the emission surface 36c of the bulk lens 1e at an irradiation angle θ illum =. It emits at 0 degrees. Although the angle is not specified in FIGS. 1A and 1B, according to the procedure shown in FIG. 1E, the emission angle is θ rad, which is smaller than 45 degrees but relatively close to 45 degrees, from the ceiling portion 42e of the recess. The shape of the exit surface 36c of the bulk lens 1e can be designed so that the irradiation angle θ illum from the bulk lens 1e of the incident light is about 8 degrees. On the other hand, from the central light emitting point, the light incident from the side wall 43e of the recess at an emission angle θ rad larger than 45 degrees but relatively close to 45 degrees and reflected by the rear outer wall surface 44e of the bulk lens 1e is transmitted from the bulk lens 1e. The shape of the exit surface 36c of the bulk lens 1e and the rear outer wall surface 44e of the bulk lens 1e can be designed so that the irradiation angle θ illum of the bulk lens 1e is about 0 degrees. Further, the bulk type lens 1e of the light incident from the side wall 43e of the recess and reflected by the rear outer wall surface 44e of the bulk type lens 1e at a large light emitting angle θ rad smaller than 90 degrees from the central light emitting point but relatively close to 90 degrees. The shape of the exit surface 36c of the bulk lens 1e and the rear outer wall surface 44e of the bulk lens 1e can be designed so that the irradiation angle θ illum from the lens 1e is about 8 degrees.
 天井部42eから入射する中心発光点からの発光角θrad=約0~45度で放出される光は、バルク型レンズ1eからの照射角θillumが、約0度から約8度の範囲で徐々に変化している。面状発光素子91eから発光角θrad=約45~約90度で放出される光は、天井部42eに近い入射点S11,S12からから入射した光路と、天井部42eから遠い入射点S13,S14からから入射した光路とが、周辺領域36Coにおける出射点の位置が、光軸からの距離に関して逆転している。周辺領域36Coにおいて、光軸の位置に近い第4出射点E15,E16を有するのは、発光角θradが90度より小さいが約90度に近い光である。図1Bにおいて、第4出射点E15,E16から出射する光の照射角θillum=約8度である。発光角θradが45度より大きいが、約45度に比較的近い発光角θradで側壁43eから入射した光が出射する第3出射点E17,E18の位置は、最も光軸から離れている。第3出射点E17,E18から出射する光の照射角θillum=約0度である。したがって、図1A及び図1Bにから分かるように、面状発光素子91eから発光角θrad=約45~約90度で放出される光に関しても、周辺領域36Coからの照射角θillum=約8度から0度まで範囲で徐々に変化している。 The light emitted from the central light emitting point incident from the ceiling 42e at an emission angle θ rad = about 0 to 45 degrees has an irradiation angle θ illum from the bulk lens 1e in the range of about 0 degrees to about 8 degrees. It is changing gradually. The light emitted from the planar light emitting element 91e at an emission angle θ rad = about 45 to about 90 degrees is the optical path incident from the incident points S 11 and S 12 near the ceiling portion 42e and the incident point far from the ceiling portion 42e. an optical path incident S 13, S 14 Karakara is, the position of the exit point in the peripheral region 36C o has reversed with respect to the distance from the optical axis. In the peripheral region 36C o, has a fourth output point E 15, E 16 close to the position of the optical axis, the light emitting angle theta rad is light close to 90 degrees less than about 90 degrees. In FIG. 1B, the irradiation angle θ illum of the light emitted from the fourth emission points E 15 and E 16 is about 8 degrees. Although the emission angle θ rad is larger than 45 degrees, the positions of the third emission points E 17 and E 18 where the light incident from the side wall 43e is emitted at the emission angle θ rad relatively close to about 45 degrees are farthest from the optical axis. ing. The irradiation angle θ illum of the light emitted from the third emission points E 17 and E 18 is about 0 degrees. Therefore, as can be seen from FIGS. 1A and 1B, even for the light emitted from the planar light emitting element 91e at an emission angle θ rad = about 45 to about 90 degrees, the irradiation angle θ illum from the peripheral region 36 Co o is about. It gradually changes in the range from 8 degrees to 0 degrees.
 面発光LEDを収納した従来のバルク型レンズから照射される光は、従来のバルク型レンズからの照射角θillumが大きくなると、ほぼ照射角θillumの余弦関数で照射光強度が低下する。更に、面発光LEDを収納した従来のバルク型レンズと照射位置の距離の2乗に反比例する。このため、従来のバルク型レンズから照射される光が均一な照度分布を持つようにするためには、照射光の強度分布の補正が必要になる。例えば、面発光LEDの発光面からの発光角θradに対する、従来のバルク型レンズの照射角θillumの変化の割合を、発光面からの発光角θradの余弦関数にほぼ比例させて小さくすると、従来のバルク型レンズからの照度分布がより均一になる。 When the irradiation angle θ illum from the conventional bulk lens increases, the light emitted from the conventional bulk lens containing the surface light emitting LED has a cosine function of the irradiation angle θ illum , and the irradiation light intensity decreases. Further, it is inversely proportional to the square of the distance between the conventional bulk lens containing the surface light emitting LED and the irradiation position. Therefore, in order for the light emitted from the conventional bulk lens to have a uniform illuminance distribution, it is necessary to correct the intensity distribution of the irradiation light. For example, if the ratio of the change in the irradiation angle θ illum of the conventional bulk type lens to the emission angle θ rad from the light emitting surface of the surface light emitting LED is reduced by approximately proportional to the cosine function of the emission angle θ rad from the light emitting surface. , The illuminance distribution from the conventional bulk type lens becomes more uniform.
 照射角θillum=±10度の従来のバルク型レンズで、発光面からの発光角θrad=0度、5度、10度、15度、20度、25度、30度、35度、40度、45度と変化した場合、対応する従来のバルク型レンズからの光の照射角θillumの変化を、発光面からの発光角θradの余弦関数にほぼ比例させることができる。発光角θradの余弦関数にほぼ比例させた場合、従来のバルク型レンズからの照射角θillum=0度、1.3度、2.5度、3.7度、4.9度、6.0度、7.1度、8.2度、9.1度、10度と、それぞれなる。第1実施形態に係るバルク型レンズ1eによれば、この従来のバルク型レンズに対する補正例と同じような手法で、第1実施形態に係るバルク型レンズ1eからの照射角θillumが補正されている。 With a conventional bulk lens with an irradiation angle of θ illum = ± 10 degrees, the emission angle from the light emitting surface is θ rad = 0 degrees, 5 degrees, 10 degrees, 15 degrees, 20 degrees, 25 degrees, 30 degrees, 35 degrees, 40 degrees. When the degree changes to 45 degrees, the change in the irradiation angle θ illum of the light from the corresponding conventional bulk lens can be made substantially proportional to the cosine function of the emission angle θ rad from the light emitting surface. When approximately proportional to the cosine function of the emission angle θ rad , the irradiation angles θ illum from a conventional bulk lens = 0 degrees, 1.3 degrees, 2.5 degrees, 3.7 degrees, 4.9 degrees, 6 It becomes 0.0 degree, 7.1 degree, 8.2 degree, 9.1 degree, 10 degree, respectively. According to the bulk type lens 1e according to the first embodiment, the irradiation angle θ illum from the bulk type lens 1e according to the first embodiment is corrected by the same method as the correction example for the conventional bulk type lens. There is.
 この様に側壁43e近くの天井部42eから入射した光が中央領域36Ccから出射する照射角θillum1と、天井部42eから離れた位置の側壁43eから入射した光が後方外壁面44eで反射して周辺領域36Coから出射する照射角θillum2をほぼ同じ角度とすると、天井部42eから入射した光の通る中央領域36Ccの部分と側壁43eから入射した光の通る周辺領域36Coの部分が滑らかに繋がった形状にすることが出来る。また、発光角θrad=約0~45度の光が、第1照射角範囲内の照射角θillum=0~8度、発光角θrad=約45~約90度の光が第2照射角範囲内の照射角θillum=0~8度で出射し、第1照射角範囲と第2照射角範囲が重なっているので、バルク型レンズ1eの照射角θillumと光強度分布の設計が容易である。 In this way, the light incident from the ceiling portion 42e near the side wall 43e is reflected by the irradiation angle θ illum1 emitted from the central region 36C c, and the light incident from the side wall 43e located away from the ceiling portion 42e is reflected by the rear outer wall surface 44e. Assuming that the irradiation angle θ illum 2 emitted from the peripheral region 36C o is approximately the same angle, the portion of the central region 36C c through which the light incident from the ceiling portion 42e passes and the portion of the peripheral region 36C o through which the light incident from the side wall 43e passes The shape can be smoothly connected. Further, light with an emission angle θ rad = about 0 to 45 degrees is irradiated with light with an irradiation angle θ illum = 0 to 8 degrees within the range of the first irradiation angle, and light with an emission angle θ rad = about 45 to about 90 degrees is second irradiated. Since the light is emitted at an irradiation angle θ illum within the angle range of 0 to 8 degrees and the first irradiation angle range and the second irradiation angle range overlap, the irradiation angle θ illum of the bulk lens 1e and the design of the light intensity distribution can be designed. It's easy.
 第1実施形態に係るバルク型レンズ1eによれば、発光面からの発光角θrad=0度、10度、20度、30度、40度、50度、60度、70度、80度の場合において、それぞれの照射角θillum=約0度、2度、4度、5.5度、7度、2度、4.5度、7度、8度に設計できる。第1実施形態に係るバルク型レンズ1eによれば、後方外壁面44eの反射はすべて全反射条件となったが、全反射条件にならない場合は、鏡面反射処理が必要になる。また、第1実施形態に係るバルク型レンズ1eのような後方外壁面44dの反射を利用するバルク型レンズでは、面状発光素子91eとバルク型レンズ1eの光軸及び高さの位置を合わせて固定するのが難しい。しかし、第1実施形態に係るバルク型レンズ1eには、光伝送部39eと一体化している第1固定用足場95e及び第2固定用足場96eが設けられている。第1固定用足場95eには第1貫通孔97eが開孔され、第2固定用足場96eには第2貫通孔98eが開孔されているので、固定用ネジを用いて、設計条件の位置に容易にバルク型レンズ1eを固定できる。 According to the bulk type lens 1e according to the first embodiment, the emission angles θ rad from the light emitting surface are 0 degrees, 10 degrees, 20 degrees, 30 degrees, 40 degrees, 50 degrees, 60 degrees, 70 degrees, and 80 degrees. In the case, each irradiation angle θ illum can be designed to be about 0 degree, 2 degree, 4 degree, 5.5 degree, 7 degree, 2 degree, 4.5 degree, 7 degree and 8 degree. According to the bulk type lens 1e according to the first embodiment, all the reflections on the rear outer wall surface 44e are under the total reflection condition, but if the total reflection condition is not satisfied, a specular reflection treatment is required. Further, in a bulk type lens that utilizes the reflection of the rear outer wall surface 44d such as the bulk type lens 1e according to the first embodiment, the positions of the optical axis and the height of the planar light emitting element 91e and the bulk type lens 1e are aligned. Difficult to fix. However, the bulk lens 1e according to the first embodiment is provided with a first fixing scaffold 95e and a second fixing scaffold 96e integrated with the optical transmission unit 39e. Since the first through hole 97e is opened in the first fixing scaffold 95e and the second through hole 98e is opened in the second fixing scaffold 96e, the position of the design condition is determined by using the fixing screw. The bulk type lens 1e can be easily fixed.
 =中心発光点からずれた位置での発光=
 第1実施形態に係るバルク型レンズ1eにおいて、面状発光素子91eの中心発光点から距離dだけずれた位置を発光点とする場合の光路の軌跡を図2に示す。一般的な3Wクラスの照明用面状LEDを、面状発光素子91eとすると、中心発光点から距離dだけずれた位置を発光点とする光は、最大ずれ距離dmax=±0.8mmとした場合には、照射角θillumは片側で約3度広くなる。第1実施形態に係るバルク型レンズ1eの光軸上面状発光素子91eの場合の片側照射角範囲Δθillum=±8度に設計できるので、3Wクラスの照明用面状LEDを、面状発光素子91eとして実装した場合の片側照射角範囲Δillum=約±11度とすると、照射角の両側拡がり幅は約22度になると予想される。
= Light emission at a position deviated from the central light emission point =
FIG. 2 shows the locus of an optical path when the light emitting point is a position deviated from the central light emitting point of the planar light emitting element 91e by a distance d in the bulk type lens 1e according to the first embodiment. Assuming that a general 3W class planar LED for illumination is a planar light emitting element 91e, the light whose emission point is located at a position deviated by a distance d from the central light emitting point has a maximum deviation distance d max = ± 0.8 mm. In this case, the irradiation angle θ illum is widened by about 3 degrees on one side. Since the one-sided irradiation angle range Δθ illum = ± 8 degrees in the case of the optical axis upper surface light emitting element 91e of the bulk type lens 1e according to the first embodiment can be designed, a 3W class planar LED for illumination can be used as a planar light emitting element. Assuming that the one-sided irradiation angle range Δ illum = about ± 11 degrees when mounted as 91e, the bilateral spread width of the irradiation angle is expected to be about 22 degrees.
 図2を用いて、第1実施形態に係るバルク型レンズ1eにおいて、面状発光素子91eの中心発光点から距離dだけずれた位置を発光点とする場合の光路を検討する。第1実施形態に係るバルク型レンズ1eにおいて、中心発光点から距離d=-0.8mmだけずれた左側端部の位置の発光点から放出された光は、上記の実施例で採用した、天井部42eの直径=6mm、側壁の高さ=3mm、発光面から天井部42eまでの距離=3mmの境界条件においては、面状発光素子91eの左側端部から発光角θrad=-35~+50度で放出された光は、図2に示すように、天井部42eからバルク型レンズ1eに入射する。 With reference to FIG. 2, in the bulk lens 1e according to the first embodiment, an optical path in the case where a position deviated from the central light emitting point of the planar light emitting element 91e by a distance d is used as the light emitting point will be examined. In the bulk lens 1e according to the first embodiment, the light emitted from the light emitting point at the position of the left end portion deviated from the central light emitting point by a distance d = −0.8 mm is the ceiling adopted in the above embodiment. Under the boundary conditions of the diameter of the portion 42e = 6 mm, the height of the side wall = 3 mm, and the distance from the light emitting surface to the ceiling portion 42e = 3 mm, the emission angle θ rad = −35 to +50 from the left end of the planar light emitting element 91e. As shown in FIG. 2, the light emitted in degrees is incident on the bulk lens 1e from the ceiling portion 42e.
 一方、面状発光素子91eの左側端部の発光点から発光角θrad=+50以上の大きな発光角θradで放出された光は、図2に示すように、右側の側壁43eからバルク型レンズ1eに入射する。面状発光素子91eの左側端部の発光点から発光角θrad=-35以上の大きな発光角θradで放出された光は、左側の側壁43eからバルク型レンズ1eに入射する。左側端部の発光点から発光角θrad=-80度、-70度、-60度、-50度、-40度、-30度、-20度、-10度、0度、+10度、+20度、+30度、+40度、+50度、+60度、+70度、+80度で放出された光の照射角θillum=約-12.5度、-12度、-12度、-8.5度、-4度、-2度、-0.5度、1度、3度、5度、7度、9度、10.5度、12度、-1度、+0.5度、+3.5度となる。 Meanwhile, light emitted by the light emitting angle θ rad = + 50 or more large light emitting angle theta rad from the light emitting point of the left end portion of the planar light-emitting element 91e, as shown in FIG. 2, the bulk lens from the right side wall 43e It is incident on 1e. The light emitted from the light emitting point at the left end of the planar light emitting element 91e at a large light emitting angle θ rad having a light emitting angle θ rad = −35 or more is incident on the bulk lens 1e from the left side wall 43e. From the emission point at the left end, the emission angle θ rad = -80 degrees, -70 degrees, -60 degrees, -50 degrees, -40 degrees, -30 degrees, -20 degrees, -10 degrees, 0 degrees, +10 degrees, Irradiation angles of light emitted at +20 degrees, +30 degrees, +40 degrees, +50 degrees, +60 degrees, +70 degrees, +80 degrees θ illum = about -12.5 degrees, -12 degrees, -12 degrees, -8.5 Degrees, -4 degrees, -2 degrees, -0.5 degrees, 1 degree, 3 degrees, 5 degrees, 7 degrees, 9 degrees, 10.5 degrees, 12 degrees, -1 degree, +0.5 degrees, +3. It will be 5 degrees.
 図2に示すように、中心発光点から距離dだけずれた位置を発光点とする光は、ずれd=±0.8mmの影響で照射角θillumが両側にそれぞれ約±4度広がる。よって、第1実施形態に係るバルク型レンズ1eにおいて、中心発光点から距離dだけずれた位置を発光点とする光は、片側照射角範囲Δθillum=約±12度となり、全体として、照射角の両側拡がり幅は約24度となる。中心発光点から距離dだけずれた位置を発光点とする光による照射角範囲Δθillumは、面状発光素子91eからの発光角θradの大きな光では大きくなっている。しかしながら、第1実施形態に係るバルク型レンズ1eによれば、後方外壁面44d、中央領域36Cc及び周辺領域36Coの曲率の最適化設計により、中心発光点から距離dだけずれた位置を発光点とする光による照射光は、片側照射角範囲Δθillum=±3度程度まで近づけられると推定できる。 As shown in FIG. 2, in the light whose emission point is a position deviated by a distance d from the central emission point, the irradiation angle θ illum spreads by about ± 4 degrees on both sides due to the influence of the deviation d = ± 0.8 mm. Therefore, in the bulk lens 1e according to the first embodiment, the light whose emission point is a position deviated by a distance d from the central emission point has a one-sided irradiation angle range Δθ illum = about ± 12 degrees, and the irradiation angle as a whole. The width of the spread on both sides is about 24 degrees. The irradiation angle range Δθ illum by light whose emission point is a position deviated by a distance d from the central emission point is large for light having a large emission angle θ rad from the planar light emitting element 91e. However, according to the bulk type lens 1e according to the first embodiment, the position deviated by the distance d from the central light emitting point is emitted by the optimized design of the curvatures of the rear outer wall surface 44d, the central region 36C c and the peripheral region 36C o. It can be estimated that the irradiation light from the light as a point can be brought close to the one-sided irradiation angle range Δθ illum = ± 3 degrees.
(第2実施形態)
 本発明の第2実施形態に係るバルク型レンズ1fは、図3に示すように、LED等の面状発光素子91fの主発光部を収納するバルク型レンズ1fである。第2実施形態に係るバルク型レンズ1fは、 第1実施形態に係るバルク型レンズ1eと同様に、曲率が連続して変化する湾曲面からなる出射面36fと、この出射面36fに接する光学媒体からなるバルク状の光伝送部39fと、この光伝送部39fに接する後方外壁面44fと、光伝送部39fの内部に設けられた天井部42f及びこの天井部42fに接続する側壁43fで構成され、主発光部を収納する凹部(42f,43f)を備える。出射面36fの形状は面状発光素子91fの光軸上の発光点から出射する光を、すべて照射角θillum=0度、即ち、すべての光を光軸方向に集光するように設計されている。第2実施形態に係るバルク型レンズ1fに用いる光学媒体としては、第1形態に係るバルク型レンズ1eで説明したような、光学用アクリル樹脂、ポリカーボネート、ガラス等の種々の透明材料が使用可能である。
(Second Embodiment)
As shown in FIG. 3, the bulk type lens 1f according to the second embodiment of the present invention is a bulk type lens 1f that houses a main light emitting portion of a planar light emitting element 91f such as an LED. Similar to the bulk lens 1e according to the first embodiment, the bulk lens 1f according to the second embodiment has an exit surface 36f formed of a curved surface whose curvature continuously changes and an optical medium in contact with the exit surface 36f. It is composed of a bulk-shaped optical transmission unit 39f, a rear outer wall surface 44f in contact with the optical transmission unit 39f, a ceiling portion 42f provided inside the optical transmission unit 39f, and a side wall 43f connected to the ceiling portion 42f. , It is provided with recesses (42f, 43f) for accommodating the main light emitting portion. The shape of the exit surface 36f is designed so that all the light emitted from the light emitting point on the optical axis of the planar light emitting element 91f is focused at an irradiation angle θ illum = 0 degrees, that is, all the light is focused in the optical axis direction. ing. As the optical medium used for the bulk lens 1f according to the second embodiment, various transparent materials such as an optical acrylic resin, polycarbonate, and glass as described for the bulk lens 1e according to the first embodiment can be used. be.
 図3に示すように、面状発光素子91fは素子実装基板92fの上に搭載され、素子実装基板92fはプリント基板93fの上に搭載され、プリント基板93fは金属板94fの上に搭載されている。第2実施形態に係るバルク型レンズ1fは、左側に突出し、バルク型レンズ1fの光伝送部39fと一体化している第1固定用足場95fと、右側に突出し、バルク型レンズ1fの光伝送部39fと一体化している第2固定用足場96fを有している。第1固定用足場95fには第1貫通孔97fが開孔され、第2固定用足場96fには第2貫通孔98fが開孔されている。第1貫通孔97f及び第1貫通孔97fに固定具を貫通させることにより、バルク型レンズ1fはプリント基板93fを介して金属板94fに固定される。 As shown in FIG. 3, the planar light emitting element 91f is mounted on the element mounting substrate 92f, the element mounting substrate 92f is mounted on the printed circuit board 93f, and the printed circuit board 93f is mounted on the metal plate 94f. There is. The bulk lens 1f according to the second embodiment has a first fixing scaffold 95f protruding to the left and integrated with an optical transmission unit 39f of the bulk lens 1f, and an optical transmission unit of the bulk lens 1f protruding to the right. It has a second fixing scaffold 96f integrated with 39f. A first through hole 97f is opened in the first fixing scaffold 95f, and a second through hole 98f is opened in the second fixing scaffold 96f. By passing the fixture through the first through hole 97f and the first through hole 97f, the bulk lens 1f is fixed to the metal plate 94f via the printed circuit board 93f.
 なお、第2実施形態に係るバルク型レンズ1fにおいても、面状発光素子91fの発光面の中心を通る発光面の法線方向を、第2実施形態に係るバルク型レンズ1fの「光軸」と定義している。例えば、バルク型レンズ1fの凹部(42f,43f)の天井部42fは直径6mmで平面、側壁43fは高さ3mmで、光軸方向に直線状の母線の方向を揃えた柱面等の構造が採用可能である。面状発光素子91fの発光面から天井部42fまでの距離は、例えば3mmとして、第1実施形態に係るバルク型レンズ1eと同様な寸法が採用可能である。 Also in the bulk lens 1f according to the second embodiment, the normal direction of the light emitting surface passing through the center of the light emitting surface of the planar light emitting element 91f is defined as the “optical axis” of the bulk lens 1f according to the second embodiment. Is defined as. For example, the ceiling portion 42f of the recesses (42f, 43f) of the bulk lens 1f has a diameter of 6 mm and is flat, and the side wall 43f has a height of 3 mm. It can be adopted. The distance from the light emitting surface of the planar light emitting element 91f to the ceiling portion 42f is, for example, 3 mm, and the same dimensions as those of the bulk type lens 1e according to the first embodiment can be adopted.
 面状発光素子91fの発光面の中心に定義される中心発光点からの発光角θrad=約±45度以内の光は、天井部42fからバルク型レンズ1fの光伝送部39fに入射し、出射面36fの中央領域から出射する。一方、発光角θrad=約±45度以上の光は、側壁43fから光伝送部39fに入射して、後方外壁面44fで反射し、出射面36fの周辺領域から出射する。なお、第2実施形態に係るバルク型レンズ1fの説明において、便宜上後方外壁面44fは全反射条件で設計できる場合について説明するが、全反射条件に限定されるものではない。面状発光素子91fの発光面の光の放出特性や光伝送部39fの外形などの条件により全反射条件にならない場合は、後方外壁面44fに反射率の高い金属膜等の鏡面反射処理を行った構造でも構わない。図3では、中心発光点からの発光角θrad=約0度で放出された光が、光路68-1を経由して、出射面36fから照射角θillum=0度で出射する様子を示している。  Light with an emission angle θ rad = about ± 45 degrees or less from the central emission point defined at the center of the emission surface of the planar light emitting element 91f is incident from the ceiling portion 42f to the optical transmission portion 39f of the bulk lens 1f. It emits light from the central region of the exit surface 36f. On the other hand, light having an emission angle of θ rad = about ± 45 degrees or more is incident on the optical transmission unit 39f from the side wall 43f, reflected by the rear outer wall surface 44f, and emitted from the peripheral region of the exit surface 36f. In the description of the bulk lens 1f according to the second embodiment, the case where the rear outer wall surface 44f can be designed under the total reflection condition will be described for convenience, but the present invention is not limited to the total reflection condition. If the total reflection conditions are not met due to conditions such as the light emission characteristics of the light emitting surface of the planar light emitting element 91f and the outer shape of the optical transmission unit 39f, a specular reflection treatment such as a metal film having high reflectance is performed on the rear outer wall surface 44f. The structure may be used. FIG. 3 shows how the light emitted from the central emission point at an emission angle θ rad = about 0 degrees is emitted from the emission surface 36f via the optical path 68-1 at an irradiation angle θ illum = 0 degrees. ing.
 中心発光点から、45度より小さいが45度に比較的近い発光角θradで天井部42fから入射した光は、バルク型レンズ1fからの照射角θillum=約0度となるように出射面36fの形状が設計されている。面状発光素子91fの発光面から45度よりも大きいが、発光角θrad=約45度となる光は、側壁43fから入射し、後方外壁面44fで反射した光が、出射面36fから照射角θillum=約0度で出射するように、出射面36fの形状が設計されている。発光面から90度よりも小さいが、90度に比較的近い大きな発光角θradで、側壁43fから入射して後方外壁面44fで反射した光りが、出射面36fから照射角θillum=約0度で出射するように、出射面36fの形状が設計されている。 Light incident from the ceiling 42f at an emission angle θ rad that is smaller than 45 degrees but relatively close to 45 degrees from the central emission point is emitted from the emission surface so that the irradiation angle θ illum from the bulk lens 1f is about 0 degrees. The shape of 36f is designed. Light that is larger than 45 degrees from the light emitting surface of the planar light emitting element 91f but has a light emitting angle θ rad = about 45 degrees is incident from the side wall 43f, and the light reflected by the rear outer wall surface 44f is emitted from the emitting surface 36f. The shape of the exit surface 36f is designed so that the light is emitted at an angle θ illum = about 0 degrees. At a large emission angle θ rad, which is smaller than 90 degrees from the light emitting surface but relatively close to 90 degrees, the light incident from the side wall 43f and reflected by the rear outer wall surface 44f is emitted from the emission surface 36f at an irradiation angle θ illum = about 0. The shape of the exit surface 36f is designed so that it emits in degrees.
 第2実施形態に係るバルク型レンズ1fでは、側壁43fの近くの天井部42fから入射した光が出射面36fの中央領域から出射する照射角θillumと、天井部42fから離れた位置の側壁43fから入射した光が、後方外壁面44fで反射して出射面36fの周辺領域から出射する照射角θillumが同じ角度である。このため、第2実施形態に係るバルク型レンズ1fによれば、天井部42fから入射した光の通る出射面36fの中央領域と、側壁43fから入射した光の通る出射面36fの周辺領域が、滑らかに繋がった形状にすることが出来る。 In the bulk type lens 1f according to the second embodiment, the irradiation angle θ illum at which the light incident from the ceiling portion 42f near the side wall 43f is emitted from the central region of the exit surface 36f and the side wall 43f at a position away from the ceiling portion 42f. The irradiation angle θ illum that the light incident from is reflected by the rear outer wall surface 44f and emitted from the peripheral region of the exit surface 36f is the same angle. Therefore, according to the bulk type lens 1f according to the second embodiment, the central region of the exit surface 36f through which the light incident from the ceiling portion 42f passes and the peripheral region of the exit surface 36f through which the light incident from the side wall 43f pass are formed. The shape can be smoothly connected.
 第2実施形態に係るバルク型レンズ1fで面状発光素子91fの中心発光点から距離dだけずれた端部の位置を発光点(以下において「端部発光点」という。)とする場合の光路の軌跡を、図4に示す。一般的な3Wクラスの照明用面状LEDの等価的な発光面の直径=約1.6mmである。この3Wクラスの照明用面状LEDの中心発光点から距離d=-0.8mmだけシフトした端部発光点から放出された光は、光路69-1で示したように、照射角θillum=約+3.5度で、出射面36fの中央領域から出射する。即ち、端部発光点から放出される光は、ずれd=±0.8mmを有することにより、照射角θillum=約±3.5度広がることになる。 An optical path in the case where the position of the end portion of the bulk lens 1f according to the second embodiment deviated by a distance d from the central light emitting point of the planar light emitting element 91f is used as the light emitting point (hereinafter referred to as “end light emitting point”). The locus of is shown in FIG. The diameter of the equivalent light emitting surface of a general 3W class planar LED for illumination = about 1.6 mm. The light emitted from the end light emitting point shifted by a distance d = -0.8 mm from the central light emitting point of this 3W class illumination planar LED has an irradiation angle θ illum = as shown in the optical path 69-1. The light is emitted from the central region of the exit surface 36f at about +3.5 degrees. That is, the light emitted from the end light emitting point has a deviation d = ± 0.8 mm, so that the irradiation angle θ illum = about ± 3.5 degrees spreads.
 第2実施形態に係るバルク型レンズ1fにおいて、光軸上に発光点がある場は、照射角θillum=0度に設計できる。しかし、光軸上以外に位置する発光点からの放射が寄与する3Wクラス面状LEDを実装した場合の照射角θillum=約±3.5度、出射光の幅は=約7度と予想される。第2実施形態に係るバルク型レンズ1fにおいて、d=0.8mmの端部発光点から放出された光の場合、発光角θrad=-35~+50度以内で放出される光は天井部42fからバルク型レンズ1fに入射する。発光角θrad=-35~+50度以上の大きな発光角θrad=-35~+50度の光は、側壁43fからバルク型レンズ1fに入射する。 In the bulk lens 1f according to the second embodiment, a field having a light emitting point on the optical axis can be designed with an irradiation angle θ illum = 0 degrees. However, it is expected that the irradiation angle θ illum = about ± 3.5 degrees and the width of the emitted light = about 7 degrees when a 3W class planar LED that is contributed by radiation from a light emitting point located outside the optical axis is mounted. Will be done. In the bulk type lens 1f according to the second embodiment, in the case of the light emitted from the end emission point of d = 0.8 mm, the light emitted within the emission angle θ rad = −35 to +50 degrees is the ceiling portion 42f. Is incident on the bulk lens 1f. Light of large emission angle θ rad = -35 ~ + 50 ° emission angle θ rad = -35 ~ + 50 ° or more is incident from the side wall 43f to the bulk lens 1f.
 発光角θrad=-80度、-70度、-60度、-50度、-40度、-30度、-20度、-10度、0度、+10度、+20度、+30度、+40度、+50度、+60度、+70度、+80度で放出された光は、それぞれ照射角θillum=約-5.5度、-8度、-8度、-6度、-4.5度、5度、4.5度、3.5度、3.5度、3.5度、3.5度、4度、5度、5.5度、-6度、-8度、-13度となる。距離dだけずれた端部発光点から放出される光は、ずれd=±0.8mmの影響で発光角θradが小さい光で=約±5度、発光角θradが大きい光では、最大約±8度程度、照射角θillumが広くなった。距離dだけずれた端部発光点から放出される光による照射角θillumの広がりは面状発光素子91fからの発光角θradの大きな光で大きくなる。しかし、後方外壁面44dと出射面36fの形状の最適化設計により、距離dだけずれた端部発光点から放出される光による照射角θillumの広がりを、±3.5度に近づけることが可能である。 Emission angle θ rad = -80 degrees, -70 degrees, -60 degrees, -50 degrees, -40 degrees, -30 degrees, -20 degrees, -10 degrees, 0 degrees, +10 degrees, +20 degrees, +30 degrees, +40 The light emitted at +50 degrees, +60 degrees, +70 degrees, and +80 degrees has an irradiation angle of θ illum = about -5.5 degrees, -8 degrees, -8 degrees, -6 degrees, and -4.5 degrees, respectively. 5, 4.5 degrees, 3.5 degrees, 3.5 degrees, 3.5 degrees, 3.5 degrees, 4 degrees, 5 degrees, 5.5 degrees, -6 degrees, -8 degrees, -13 It becomes a degree. The light emitted from the end emission point deviated by the distance d is about ± 5 degrees for light with a small emission angle θ rad due to the effect of deviation d = ± 0.8 mm, and is maximum for light with a large emission angle θ rad. The irradiation angle θ illum became wider by about ± 8 degrees. The spread of the irradiation angle θ illum due to the light emitted from the end emission point deviated by the distance d becomes large with the light having the emission angle θ rad from the planar light emitting element 91f. However, due to the optimized design of the shapes of the rear outer wall surface 44d and the exit surface 36f, the spread of the irradiation angle θ illum due to the light emitted from the end emission point deviated by the distance d can be brought close to ± 3.5 degrees. It is possible.
 重複する説明を省略するが、第2実施形態に係るバルク型レンズは、図1Eに示したフローチャートと同様な手順で設計できる。第2実施形態に係るバルク型レンズ、発光体及びバルク型レンズの設計方法によれば、発光面の面積の大きい面状発光素子の発光面の大きさを効率良く使うことが可能であり、コンパクトな構造により中心発光点から離れた端部発光点等の位置から発光する光の影響を少なくし、狭い照射角で集光効率を高くし、且つ広い照射面積を均一性が優れた光強度分布で効率良く照明できる。 Although a duplicate description will be omitted, the bulk lens according to the second embodiment can be designed by the same procedure as the flowchart shown in FIG. 1E. According to the method for designing the bulk lens, the light emitter, and the bulk lens according to the second embodiment, it is possible to efficiently use the size of the light emitting surface of the planar light emitting element having a large light emitting surface area, and it is compact. Light intensity distribution with excellent uniformity over a wide irradiation area, reducing the influence of light emitted from positions such as the end light emitting point away from the central light emitting point, and increasing the light collection efficiency at a narrow irradiation angle. Can be illuminated efficiently.
(第3実施形態)
 本発明の第3実施形態に係るバルク型レンズ1gは、図5及び図6に示すように、LFD等の面状発光素子91gの主発光部を収納するバルク型レンズ1gである。第3実施形態に係るバルク型レンズ1gは、 第1及び第2実施形態に係るバルク型レンズ1fと同様に、曲率が連続して変化する湾曲面からなる出射面36gと、この出射面36gに接する光学媒体からなる非対称バルク状の光伝送部39gと、この光伝送部39gに接する後方外壁面44gと、光伝送部39gの内部に設けられた天井部42g及びこの天井部42gに接続する側壁43gで構成され、主発光部を収納する凹部(42g,43g)を備える。「非対称バルク状」とは図5と図6の比較から分かるように、光軸に関して非対称のトポロジを有している。ここで、「光軸」とは、第1及び第2実施形態に係るバルク型レンズ1fの定義と同様に、凹部(42g,43g)の内部に収納される面状発光素子91gの発光面の中心を通り、且つ発光面の法線方向となる光伝送部39gの中心線である。第3実施形態に係るバルク型レンズ1gに用いる光学媒体としては、第1形態に係るバルク型レンズ1eで説明したような、光学用アクリル樹脂等を代表とする種々の透明材料が使用可能である。
(Third Embodiment)
As shown in FIGS. 5 and 6, the bulk lens 1g according to the third embodiment of the present invention is a bulk lens 1g that houses the main light emitting portion of 91 g of a planar light emitting element such as an LFD. Similar to the bulk lens 1f according to the first and second embodiments, the bulk lens 1g according to the third embodiment has an exit surface 36g formed of a curved surface whose curvature continuously changes and the exit surface 36g. An asymmetric bulk optical transmission unit 39g made of an optical medium in contact, a rear outer wall surface 44g in contact with the optical transmission unit 39g, a ceiling portion 42g provided inside the optical transmission unit 39g, and a side wall connected to the ceiling portion 42g. It is composed of 43 g and has recesses (42 g, 43 g) for accommodating the main light emitting portion. The "asymmetric bulk shape" has an asymmetric topology with respect to the optical axis, as can be seen from the comparison between FIGS. 5 and 6. Here, the "optical axis" refers to the light emitting surface of the planar light emitting element 91 g housed inside the recesses (42 g, 43 g), as in the definition of the bulk lens 1f according to the first and second embodiments. This is the center line of the optical transmission unit 39g that passes through the center and is in the normal direction of the light emitting surface. As the optical medium used for the bulk lens 1g according to the third embodiment, various transparent materials typified by an optical acrylic resin or the like as described in the bulk lens 1e according to the first embodiment can be used. ..
 上記のように定義した光軸をZ軸とし、Z軸に直交するX軸及びY軸からなるX-Y-Z座標系で第3実施形態に係るバルク型レンズ1gの光学的な構造を説明する。即ち、Y=0のX軸方向のバルク型レンズ1g断面における光路の軌跡が図5、X=0のY軸方向のバルク型レンズ1g断面における光路の軌跡が図6に示される。第3実施形態に係るバルク型レンズ1gは、例えば、光軸上の長さ15mmとすると、以下のような寸法が例示できる。ただし、天井部42gは平面とし、図5及び図6の断面図上では、天井部42gに直交する直線状の母線の方向を有する側壁は円柱面とする。このような仮定の下で、天井部42gは直径6mm、側壁43gの高さは3mm等の寸法で、バルク型レンズ1gを設計できる。 The optical structure of the bulk lens 1g according to the third embodiment will be described in the XYZ coordinate system including the X-axis and the Y-axis orthogonal to the Z-axis, where the optical axis defined as described above is the Z-axis. do. That is, the locus of the optical path in the 1g cross section of the bulk lens in the X-axis direction of Y = 0 is shown in FIG. 5, and the locus of the optical path in the cross section of the bulk lens 1g in the Y-axis direction of X = 0 is shown in FIG. Assuming that the bulk lens 1g according to the third embodiment has a length of 15 mm on the optical axis, the following dimensions can be exemplified. However, the ceiling portion 42g is a flat surface, and in the cross-sectional views of FIGS. 5 and 6, the side wall having the direction of the linear generatrix orthogonal to the ceiling portion 42g is a cylindrical surface. Under such an assumption, a bulk type lens 1 g can be designed with dimensions such as a ceiling portion 42 g having a diameter of 6 mm and a side wall 43 g having a height of 3 mm.
 図5に示すように、面状発光素子91gは素子実装基板92gの上に搭載され、素子実装基板92gはプリント基板93gの上に搭載されている。プリント基板93gは金属板94gの上に搭載されている。第3実施形態に係るバルク型レンズ1gは、図7に示すように、左側に突出し、バルク型レンズ1gの光伝送部39gと一体化している第1固定用足場95gと、右側に突出し、バルク型レンズ1gの光伝送部39gと一体化している第2固定用足場96gを有している。第1固定用足場95gには第1貫通孔97gが開孔され、第2固定用足場96gには第2貫通孔98gが開孔されている。第1貫通孔97g及び第1貫通孔97gに固定具を貫通させることにより、バルク型レンズ1gはプリント基板93gを介して金属板94gに固定される。 As shown in FIG. 5, the planar light emitting element 91g is mounted on the element mounting substrate 92g, and the element mounting substrate 92g is mounted on the printed circuit board 93g. The printed circuit board 93 g is mounted on the metal plate 94 g. As shown in FIG. 7, the bulk type lens 1g according to the third embodiment has a first fixing scaffold 95g protruding to the left side and integrated with an optical transmission unit 39g of the bulk type lens 1g, and protruding to the right side and bulk. It has 96 g of a second fixing scaffold integrated with 39 g of an optical transmission unit of 1 g of a type lens. A first through hole 97 g is opened in the first fixing scaffold 95 g, and a second through hole 98 g is opened in the second fixing scaffold 96 g. By passing the fixture through the first through hole 97 g and the first through hole 97 g, the bulk lens 1 g is fixed to the metal plate 94 g via the printed circuit board 93 g.
 第3実施形態に係るバルク型レンズ1gからの光を長方形の形状に照射する場合は、長方形の形状に均一な照度分布を要求されることが多い。例えば、上記の光軸上の長さ=15mm、天井部42gの直径=6mm、側壁43gの高さ=3mmとすると、中心発光点から出た光のX軸方向の照射角θillum=±8度、中心発光点から出た光のY軸方向の照射角θillum=0度に設計できる。発光面が、直径1.8mmの円形(円盤形)の面状発光素子91gでは、第3実施形態に係るバルク型レンズ1gによれば、X方向の照射光拡がり幅=22度、Y方向の照射光拡がり幅=7度となる。なお、発光面の形状は円形に限定される必要はない。ただしピタゴラスの定理から矩形の場合は、対角線長が円の直径に相当する。よって、直径1.8mmの円形の凹部(42g,43g)には、一辺が1.8/1.4=1.3mmの矩形の面状発光素子91gが収納されることになる。1.3mm×1.3mmの矩形の面状発光素子91gの場合は、凹部(42g,43g)の容積効率が悪い他に、光学的特性の均一性の面でも不利になる。X-Y平面上のX軸とY軸の中間方向では、X軸に近づくにつれてY方向の照射角θillumが大きくなる。したがって、長方形の形状に均一な照度分布を実現するためには、X軸に近づくにつれてY方向の出射面36gの曲率が小さくなるように補正する必要がある。 When irradiating the rectangular shape with the light from the bulk lens 1g according to the third embodiment, a uniform illuminance distribution is often required for the rectangular shape. For example, assuming that the length on the optical axis is 15 mm, the diameter of the ceiling portion 42 g is 6 mm, and the height of the side wall 43 g is 3 mm, the irradiation angle θ illum of the light emitted from the central emission point in the X-axis direction is ± 8. It can be designed so that the irradiation angle of the light emitted from the central emission point in the Y-axis direction is θ illum = 0 degrees. In the case of 91 g of a circular (disk-shaped) planar light emitting element having a light emitting surface of 1.8 mm in diameter, according to the bulk type lens 1 g according to the third embodiment, the irradiation light spread width in the X direction = 22 degrees, in the Y direction. Irradiation light spread width = 7 degrees. The shape of the light emitting surface does not have to be limited to a circular shape. However, from the Pythagorean theorem, in the case of a rectangle, the diagonal length corresponds to the diameter of the circle. Therefore, 91 g of a rectangular planar light emitting element having a side of 1.8 / 1.4 = 1.3 mm is housed in the circular recesses (42 g, 43 g) having a diameter of 1.8 mm. In the case of a rectangular planar light emitting element of 1.3 mm × 1.3 mm, the volumetric efficiency of the recesses (42 g, 43 g) is poor, and the uniformity of optical characteristics is also disadvantageous. In the intermediate direction between the X-axis and the Y-axis on the XY plane, the irradiation angle θ illum in the Y-direction increases as the X-axis approaches. Therefore, in order to realize a uniform illuminance distribution in a rectangular shape, it is necessary to correct so that the curvature of the exit surface 36g in the Y direction becomes smaller as it approaches the X axis.
 図11及び図12に例示したような従来の従来のバルク型レンズでは、面状LED91dからの発光角の小さい光は、天井部42dから入射しての第1出射面33から出射し、発光角の大きい光は天井部42gから入射して後方外壁面44dで反射させてから第2出射面34から出射する。このような、従来のバルク型レンズでは、照射角及び照射光の強度分布の設計が難しい。これに対し、第3実施形態に係るバルク型レンズ1gにおいては、面状発光素子91gの発光中心点から発光する光に対して、天井部42gの中央の入射点を通って出射面36gの中央領域の第1出射点から出射する光の照射角θillumと、側壁43gに近い天井部42gの入射点を通って中央領域の第2出射点から出射する光の照射角θillumの差を10度以内の第1照射角範囲となるように、第1及び第2出射点における湾曲面に対する接平面の角度を設定されている。 In the conventional bulk type lens as illustrated in FIGS. 11 and 12, the light having a small emission angle from the planar LED 91d is incident from the ceiling portion 42d and emitted from the first emission surface 33, and the emission angle is emitted. The large light is incident from the ceiling portion 42g, reflected by the rear outer wall surface 44d, and then emitted from the second exit surface 34. With such a conventional bulk lens, it is difficult to design the irradiation angle and the intensity distribution of the irradiation light. On the other hand, in the bulk type lens 1g according to the third embodiment, with respect to the light emitted from the light emitting center point of the planar light emitting element 91g, the light is passed through the central incident point of the ceiling portion 42g and the center of the emitting surface 36g. an irradiation angle theta illum of the light emitted from the first emitting point area, the difference in illumination angle theta illum of the light emitted from the second emitting point of the central region through the incident point of the ceiling portion 42g closer to the side wall 43 g 10 The angle of the tangent plane with respect to the curved surface at the first and second exit points is set so as to be within the first irradiation angle range within degrees.
 更に、第3実施形態に係るバルク型レンズ1gにおいては、発光中心点から発光する光に対して、側壁43gの最上部側の入射点から入射し後方外壁面44gで反射して出射面36gの周辺領域の第3出射点から出射する光の照射角θillumと、側壁43gの天井部42gから離れた位置の入射点から入射した光が後方外壁面44gで反射して周辺領域の第4出射点から出射する照射角θillumの差が10度以内の第2照射角範囲となるように、第3及び第4出射点における湾曲面に対する接平面の角度と、第1及び第2反射点における後方外壁面44gの接平面の角度が設定されている。 Further, in the bulk type lens 1g according to the third embodiment, the light emitted from the emission center point is incident from the incident point on the uppermost side of the side wall 43g, reflected by the rear outer wall surface 44g, and the emission surface 36g. The irradiation angle θ illum of the light emitted from the third exit point of the peripheral region and the light incident from the incident point at a position away from the ceiling portion 42 g of the side wall 43 g are reflected by the rear outer wall surface 44 g and the fourth emission of the peripheral region. The angle of the tangent plane with respect to the curved surface at the third and fourth exit points and the first and second reflection points so that the difference between the irradiation angles θ illum emitted from the points is within the second irradiation angle range of 10 degrees or less. The angle of the tangent plane of the rear outer wall surface 44 g is set.
 そして、第1照射角範囲と第2照射角範囲が同一にされている。即ち、第3実施形態に係るバルク型レンズ1gにおいては、凹部(42g,43g)の天井部42gを平面にし、側壁43gを天井部42gに垂直な直線状の母線からなる2次曲面にし、天井部42gから入射する光とバルク型レンズ1gの側壁43gから入射した光が出射する際の、照射角θillumがほぼ同じになるように設計されている。したがって、第3実施形態に係るバルク型レンズ1gによれば、距離dだけずれた端部発光点から放出される光の光を含めて光強度設計が容易となり、照明範囲の照度均一性を高くできる。なお、第3実施形態に係るバルク型レンズ1gの説明において、便宜上後方外壁面44gは全反射条件で設計できる場合について説明するが、全反射条件に限定されるものではない。面状発光素子91gの発光面の光の放出特性や光伝送部39gの外形などの条件により全反射条件にならない場合は、後方外壁面44gに反射率の高い金属膜等の鏡面反射処理を行った構造でも構わない。 The first irradiation angle range and the second irradiation angle range are the same. That is, in the bulk type lens 1g according to the third embodiment, the ceiling portion 42g of the recess (42g, 43g) is made flat, and the side wall 43g is made into a quadric surface composed of a linear bus perpendicular to the ceiling portion 42g. It is designed so that the irradiation angle θ illum is substantially the same when the light incident from the portion 42 g and the light incident from the side wall 43 g of the bulk lens 1 g are emitted. Therefore, according to the bulk type lens 1g according to the third embodiment, it is easy to design the light intensity including the light emitted from the end emission point deviated by the distance d, and the illuminance uniformity of the illumination range is high. can. In the description of the bulk type lens 1g according to the third embodiment, a case where the rear outer wall surface 44g can be designed under the total reflection condition will be described for convenience, but the present invention is not limited to the total reflection condition. If the total reflection conditions are not met due to conditions such as the light emission characteristics of the light emitting surface of the planar light emitting element 91 g and the outer shape of the optical transmission unit 39 g, mirror reflection treatment such as a metal film having high reflectance is performed on the rear outer wall surface 44 g. The structure may be used.
 第3実施形態に係るバルク型レンズは、図1Eに示したフローチャートと同様な手順で設計できる。第3実施形態に係るバルク型レンズ、発光体及びバルク型レンズの設計方法によれば、発光面の面積の大きい面状発光素子の発光面の大きさを効率良く使うことが可能であり、コンパクトな構造により中心発光点から離れた端部発光点等の位置から発光する光の影響を少なくし、狭い照射角で集光効率を高くし、且つ広い照射面積を均一性が優れた光強度分布で効率良く照明できる。 The bulk lens according to the third embodiment can be designed by the same procedure as the flowchart shown in FIG. 1E. According to the method for designing the bulk lens, the light emitter, and the bulk lens according to the third embodiment, it is possible to efficiently use the size of the light emitting surface of the planar light emitting element having a large light emitting surface area, and it is compact. Light intensity distribution with excellent uniformity over a wide irradiation area, reducing the influence of light emitted from positions such as the end light emitting point away from the central light emitting point, and increasing the light collection efficiency at a narrow irradiation angle. Can be illuminated efficiently.
(第4実施形態)
 本発明の第4実施形態に係るバルク型レンズ1hでは、道路を路肩から照明する場合に好適なレンズについて説明する。第4実施形態に係るバルク型レンズ1hは、図8及び図9に示すように、LFD等の面状発光素子91hの主発光部を収納するバルク型レンズ1hである。第4実施形態に係るバルク型レンズ1hは、 第1及び第2実施形態に係るバルク型レンズ1fと同様に、曲率が連続して変化する湾曲面からなる出射面36hと、この出射面36hに接する光学媒体からなる非対称バルク状の光伝送部39hと、この光伝送部39hに接する後方外壁面44hと、光伝送部39hの内部に設けられた天井部42h及びこの天井部42hに接続する側壁43hで構成され、主発光部を収納する凹部(42h,43h)を備える。第4実施形態に係るバルク型レンズ1hの光学媒体には、第1形態に係るバルク型レンズ1eで説明したような種々の透明材料が使用可能である。
(Fourth Embodiment)
In the bulk type lens 1h according to the fourth embodiment of the present invention, a lens suitable for illuminating a road from a road shoulder will be described. As shown in FIGS. 8 and 9, the bulk lens 1h according to the fourth embodiment is a bulk lens 1h that houses a main light emitting portion of a planar light emitting element 91h such as an LFD. Similar to the bulk lens 1f according to the first and second embodiments, the bulk lens 1h according to the fourth embodiment has an exit surface 36h formed of a curved surface whose curvature continuously changes and the exit surface 36h. An asymmetric bulk optical transmission unit 39h made of contacting optical media, a rear outer wall surface 44h in contact with the optical transmission unit 39h, a ceiling portion 42h provided inside the optical transmission unit 39h, and a side wall connected to the ceiling portion 42h. It is composed of 43h and includes recesses (42h, 43h) for accommodating the main light emitting portion. As the optical medium of the bulk lens 1h according to the fourth embodiment, various transparent materials as described in the bulk lens 1e according to the first embodiment can be used.
 第4実施形態に係るバルク型レンズ1gにおいては、面状発光素子91hの発光中心点から発光する光に対して、天井部42hの中央の入射点を通って出射面36hの中央領域の第1出射点から出射する光の照射角θillumと、側壁43hに近い天井部42hの入射点を通って中央領域の第2出射点から出射する光の照射角θillumの差を10度以内の第1照射角範囲となるように、第1及び第2出射点における湾曲面に対する接平面の角度を設定されている。更に、面状発光素子91hの発光中心点から発光する光に対して、側壁43hの最上部側の入射点から入射し後方外壁面44hで反射して出射面36hの周辺領域の第3出射点から出射する光の照射角θillumと、側壁43hの天井部42hから離れた位置の入射点から入射した光が後方外壁面44hで反射して周辺領域の第4出射点から出射する照射角θillumの差が10度以内の第2照射角範囲となるように、第3及び第4出射点における湾曲面に対する接平面の角度と、第1及び第2反射点における後方外壁面44hの接平面の角度が設定されている。そして、第1照射角範囲と第2照射角範囲が同一にされている。 In the bulk type lens 1g according to the fourth embodiment, the light emitted from the light emitting center point of the planar light emitting element 91h passes through the central incident point of the ceiling portion 42h and is the first in the central region of the exit surface 36h. an irradiation angle theta illum of the light emitted from the emitting point, the differences in illumination angle theta illum of the light emitted through the incident point of the ceiling portion 42h close to the side wall 43h of the second emitting point of the central region within 10 degrees The angle of the tangent plane with respect to the curved surface at the first and second exit points is set so as to be within one irradiation angle range. Further, with respect to the light emitted from the light emitting center point of the planar light emitting element 91h, the light is incident from the incident point on the uppermost side of the side wall 43h and reflected by the rear outer wall surface 44h to be reflected by the third exit point in the peripheral region of the light emitting surface 36h. The irradiation angle θ illum of the light emitted from the side wall 43h and the irradiation angle θ illum emitted from the fourth emission point of the peripheral region are reflected by the rear outer wall surface 44h and the light incident from the incident point at a position away from the ceiling portion 42h of the side wall 43h. The angle of the tangent plane with respect to the curved surface at the third and fourth exit points and the tangent plane of the rear outer wall surface 44h at the first and second reflection points so that the difference in illum is within the second irradiation angle range of 10 degrees or less. The angle of is set. The first irradiation angle range and the second irradiation angle range are the same.
 図8に示すように、面状発光素子91hは素子実装基板92hの上に搭載され、素子実装基板92hはプリント基板93hの上に搭載されている。プリント基板93hは金属板94hの上に搭載されている。図10に示すように、第4実施形態に係るバルク型レンズ1hは、図10に示すように、左側に突出し、バルク型レンズ1hの光伝送部39hと一体化している第1固定用足場95hと、右側に突出し、バルク型レンズ1hの光伝送部39hと一体化している第2固定用足場96hを有している。第1固定用足場95hには第1貫通孔97hが開孔され、第2固定用足場96hには第2貫通孔98hが開孔されている。第1貫通孔97h及び第1貫通孔97hに固定具を貫通させることにより、バルク型レンズ1hはプリント基板93hを介して金属板94hに固定される。 As shown in FIG. 8, the planar light emitting element 91h is mounted on the element mounting substrate 92h, and the element mounting substrate 92h is mounted on the printed circuit board 93h. The printed circuit board 93h is mounted on the metal plate 94h. As shown in FIG. 10, the bulk type lens 1h according to the fourth embodiment projects to the left side and is integrated with the optical transmission unit 39h of the bulk type lens 1h as shown in FIG. 10 for the first fixing scaffold 95h. It has a second fixing scaffold 96h that protrudes to the right and is integrated with the optical transmission unit 39h of the bulk lens 1h. A first through hole 97h is opened in the first fixing scaffold 95h, and a second through hole 98h is opened in the second fixing scaffold 96h. By passing the fixture through the first through hole 97h and the first through hole 97h, the bulk lens 1h is fixed to the metal plate 94h via the printed circuit board 93h.
 以下に説明するとおり、第4実施形態に係るバルク型レンズ1hの特性を生かすためには、面状発光素子91hに対して光伝送部39hの位置を正確に設置する必要がある。第4実施形態に係るバルク型レンズ1hの光伝送部39hの形状は固定が難しいため、後方外壁面44d(反射面)と出射面36hとの間で、ねじ止め用の第1貫通孔97h及び第2貫通孔98hのある第1固定用足場95h及び第2固定用足場96hの一対を、光伝送部39hに接続した構造となっている。 As described below, in order to make the best use of the characteristics of the bulk lens 1h according to the fourth embodiment, it is necessary to accurately install the position of the optical transmission unit 39h with respect to the planar light emitting element 91h. Since it is difficult to fix the shape of the optical transmission portion 39h of the bulk type lens 1h according to the fourth embodiment, the first through hole 97h for screwing and the first through hole 97h for screwing between the rear outer wall surface 44d (reflection surface) and the exit surface 36h. The structure is such that a pair of the first fixing scaffold 95h and the second fixing scaffold 96h having the second through hole 98h are connected to the optical transmission unit 39h.
 路面照度は、照明器具からの距離の2乗に逆比例し、照明光と路面との角度の正弦関数に比例する。例えば、対向する往路と復路の間に中央分離帯(道路の中央部)がある道路を考える。この道路の路肩から歩道幅1.5m離れた位置に車道(往路)があり、中央分離帯若しくは道路中央線を経て対向する側に車道(復路)があるとの前提で、その車道(往路)の幅=3.5mとする。この場合、路肩から中央分離帯若しくは道路中央線まで1.5+3.5=5mになる。高さ1.1mの照明器具を路肩に設置し、この路肩の照明器具で、中央分離帯若しくは道路中央線までの車道(往路)の路面を照明する場合について説明する。 The road surface illuminance is inversely proportional to the square of the distance from the luminaire, and is proportional to the sinusoidal function of the angle between the illuminating light and the road surface. For example, consider a road having a median strip (the central part of the road) between the oncoming outbound route and the inbound route. Assuming that there is a roadway (outward route) 1.5 m away from the shoulder of this road and there is a roadway (return route) on the opposite side via the median strip or the center line of the road, that roadway (outward route) Width = 3.5m. In this case, 1.5 + 3.5 = 5 m from the shoulder to the median strip or the center line of the road. A case where a lighting fixture having a height of 1.1 m is installed on the shoulder of the road and the lighting fixture on the shoulder of the road is used to illuminate the road surface of the roadway (outward route) to the median strip or the center line of the road will be described.
 照明器具の道路幅方向の照射光拡がり幅=約24度とし、照明器具の中心(光軸)が、中央分離帯若しくは道路中央線に向かって照明しているとする。この条件では、路肩から1.5m、2m、2.5m、3m、3.5m、4m、4.5m、5mの位置に向かう方向に対する照射角θillumと、その相対光強度は、表1に示すような関係になるので、照射角θillumと照射光の強度分布の設計が難しい。
Figure JPOXMLDOC01-appb-T000002
 
 表1において、「相対光強度」とは、路肩から5mの位置にある中央分離帯若しくは道路中央線の位置に向かった方向の光強度を1とし、この1を基準としたときの比率で表した相対的な光強度である。
It is assumed that the irradiation light spread width in the road width direction of the luminaire is about 24 degrees, and the center (optical axis) of the luminaire illuminates toward the median strip or the road center line. Under this condition, the irradiation angle θ illum with respect to the direction toward the positions of 1.5 m, 2 m, 2.5 m, 3 m, 3.5 m, 4 m, 4.5 m, and 5 m from the road shoulder and their relative light intensities are shown in Table 1. Since the relationship is as shown, it is difficult to design the irradiation angle θ illum and the intensity distribution of the irradiation light.
Figure JPOXMLDOC01-appb-T000002

In Table 1, the "relative light intensity" is the light intensity in the direction toward the position of the median strip or the road center line located 5 m from the shoulder of the road, and is a ratio based on this 1. Relative light intensity.
 第3実施形態に係るバルク型レンズ1gと同様に、第4実施形態に係るバルク型レンズ1hの「光軸」を、凹部(42h,43h)の内部に収納される面状発光素子91hの発光面の中心を通り、且つ発光面の法線方向となる光伝送部39hの中心線と定義する。そして、この光軸をZ軸とし、Z軸に直交するX軸及びY軸からなるX-Y-Z座標系で第4実施形態に係るバルク型レンズ1hの光学的な構造を説明する。即ち、Y=0のX軸方向のバルク型レンズ1h断面における光路の軌跡が図8、X=0のY軸方向のバルク型レンズ1h断面における光路の軌跡が図9に示される。第4実施形態に係るバルク型レンズ1hは、例えば、光軸上の長さ15mmとすると、以下のような寸法が例示できる。ただし、天井部42hは平面とし、図8及び図9の断面図上では、天井部42hに直交する直線状の母線の方向を有する側壁は円柱面とする。このような仮定の下で、天井部42hは直径6mm、側壁43hの高さは3mm等の寸法で、バルク型レンズ1hを設計できる。 Similar to the bulk lens 1g according to the third embodiment, the "optical axis" of the bulk lens 1h according to the fourth embodiment emits light from the planar light emitting element 91h housed inside the recesses (42h, 43h). It is defined as the center line of the optical transmission unit 39h that passes through the center of the surface and is in the normal direction of the light emitting surface. Then, the optical structure of the bulk lens 1h according to the fourth embodiment will be described in the XYZ coordinate system including the X-axis and the Y-axis orthogonal to the Z-axis with this optical axis as the Z-axis. That is, the locus of the optical path in the cross section of the bulk lens 1h in the X-axis direction of Y = 0 is shown in FIG. 8, and the locus of the optical path in the cross section of the bulk lens 1h in the Y-axis direction of X = 0 is shown in FIG. Assuming that the bulk lens 1h according to the fourth embodiment has a length of 15 mm on the optical axis, the following dimensions can be exemplified. However, the ceiling portion 42h is a flat surface, and in the cross-sectional views of FIGS. 8 and 9, the side wall having the direction of the linear generatrix orthogonal to the ceiling portion 42h is a cylindrical surface. Under such an assumption, the bulk type lens 1h can be designed with the ceiling portion 42h having a diameter of 6 mm and the side wall 43h having a height of 3 mm or the like.
 まず、光軸上に位置する面状発光素子91hの中央発光点から放出される光のX軸方向の照射光拡がり幅=±20度に設計する。そして、Y軸方向は、+Y方向の照射角θillum=0度、-Y方向の設計照射角θillum=0から-20度まで表1に示したような記光強度分布となるように照射角θillumを設計すると仮定する。+Y方向で照射角θillum=0度に設計できる出射面36hでは、X-Y平面上のX軸方向に近づくほどY軸方向の照射角θillumが広がる。このため、第4実施形態に係るバルク型レンズ1hでは、Y軸方向の出射面36hの曲率が小さくなるように非対称な形状に補正している。 First, the irradiation light spread width in the X-axis direction of the light emitted from the central light emitting point of the planar light emitting element 91h located on the optical axis is designed to be ± 20 degrees. Then, in the Y-axis direction, the irradiation angle θ illum in the + Y direction is 0 degrees, and the design irradiation angle in the −Y direction is θ illum = 0 to -20 degrees so that the light intensity distribution is as shown in Table 1. Suppose you design an angle θ illum. + At exit surface 36h can be designed to irradiation angle theta illum = 0 ° in the Y direction, the irradiation angle theta illum enough Y-axis direction closer to the X-axis direction on the X-Y plane spread. Therefore, in the bulk type lens 1h according to the fourth embodiment, the shape is corrected to be asymmetric so that the curvature of the exit surface 36h in the Y-axis direction becomes small.
 発光面が、直径1.8mmの円形(円盤形)の面状発光素子91hの場合では、X軸方向の照射光拡がり幅は、距離dだけずれた端部発光点から放出される光の影響を含めると=約45度になる。Y軸方向の照射光拡がり幅は、発光面が、直径1.8mmの円形の面状発光素子91hにおいて、距離dだけずれた端部発光点から放出される光に起因する光軸付近の照射光拡がり幅=約±3.5度の高輝度領域が存在する他に、Y軸方向に-22.5度まで徐々に光強度が小さくなる光強度漸減領域の加わった光強度分布となる。なお、面状発光素子91hの発光面の形状は、円形に限定される必要はない。ただし、例えば矩形の面状発光素子91hとする場合は、ピタゴラスの定理から、凹部(42h,43h)に隙間が発生し、容積効率が悪くなる他に、光学的特性の均一性の面でも不利になる。 When the light emitting surface is a circular (disk-shaped) planar light emitting element 91h having a diameter of 1.8 mm, the spread width of the irradiation light in the X-axis direction is affected by the light emitted from the end light emitting point deviated by a distance d. Including is = about 45 degrees. The irradiation light spread width in the Y-axis direction is the irradiation near the optical axis caused by the light emitted from the end emission point whose light emitting surface is a circular planar light emitting element 91h having a diameter of 1.8 mm and deviated by a distance d. In addition to the existence of a high-luminance region with a light spread width of about ± 3.5 degrees, the light intensity distribution has a light intensity gradual decrease region in which the light intensity gradually decreases to -22.5 degrees in the Y-axis direction. The shape of the light emitting surface of the planar light emitting element 91h does not have to be limited to a circular shape. However, in the case of a rectangular planar light emitting element 91h, for example, according to the Pythagorean theorem, gaps are generated in the recesses (42h, 43h), resulting in poor volumetric efficiency and disadvantage in terms of uniformity of optical characteristics. become.
 第4実施形態に係るバルク型レンズ1hによれば、路肩の高さ1.1mの位置にバルク型レンズ1hを配置し、照射角拡がり幅=7度で照射された高輝度領域が、3.5m車線の遠方となる中央分離帯若しくは道路中央線側に生成されるように光軸を合わせると、かなり均一な路面照度分布が実現できる。更に路面照度分布を均一にするためには、バルク型レンズ1hの高さを高くし、更に直径の大きいバルク型レンズ1hを用いればよい。直径の大きいバルク型レンズ1hを用いることにより、面状発光素子91hの発光面上の距離dだけずれた端部発光点から放出される光による照射角θillumを小さくし、ピーク光強度が更に高くなる設計にすれば良い。 According to the bulk type lens 1h according to the fourth embodiment, the bulk type lens 1h is arranged at a position at a height of 1.1 m on the road shoulder, and the high-luminance region irradiated with the irradiation angle spread width = 7 degrees is 3. A fairly uniform road surface illuminance distribution can be realized by aligning the optical axes so that they are generated on the median strip or the road center line side, which is far from the 5 m lane. Further, in order to make the road surface illuminance distribution uniform, the height of the bulk type lens 1h may be increased, and a bulk type lens 1h having a larger diameter may be used. By using the bulk type lens 1h having a large diameter, the irradiation angle θ illum due to the light emitted from the end light emitting point deviated by the distance d on the light emitting surface of the planar light emitting element 91h is reduced, and the peak light intensity is further increased. The design should be high.
 路面照度分布を指定値に合わせる場合は、天井部42hを平面にし、側壁43hを直線状の母線が平行な2次曲面にすると設計が容易になる。そして、天井部42hから入射する光と、側壁43hから入射する光の照射角θillumがほぼ同じになるように設計すると、距離dだけずれた端部発光点から放出される光を含めて、光強度設計が容易となる。なお、第4周辺実施形態に係るバルク型レンズ1hの説明において、便宜上後方外壁面44hは全反射条件で設計できる場合について説明したが、全反射条件に限定されるものではない。面状発光素子91hの発光面の光の放出特性や光伝送部39hの外形などの条件により全反射条件にならない場合は、後方外壁面44hに反射率の高い金属膜等の鏡面反射処理を行った構造でも構わない。 When adjusting the road surface illuminance distribution to a specified value, designing is facilitated by making the ceiling portion 42h flat and the side wall 43h a quadric surface in which linear bus lines are parallel. Then, if the irradiation angle θ illum of the light incident from the ceiling portion 42h and the light incident from the side wall 43h is designed to be substantially the same, the light emitted from the end emission point deviated by the distance d is included. Light intensity design becomes easy. In the description of the bulk type lens 1h according to the fourth peripheral embodiment, the case where the rear outer wall surface 44h can be designed under the total reflection condition has been described for convenience, but the case is not limited to the total reflection condition. If the total reflection conditions are not met due to conditions such as the light emission characteristics of the light emitting surface of the planar light emitting element 91h and the outer shape of the optical transmission unit 39h, a specular reflection treatment such as a metal film having high reflectance is performed on the rear outer wall surface 44h. The structure may be used.
 第4実施形態に係るバルク型レンズは、図1Eに示したフローチャートと同様な手順で設計できる。第4実施形態に係るバルク型レンズ、発光体及びバルク型レンズの設計方法によれば、発光面の面積の大きい面状発光素子の発光面の大きさを効率良く使うことが可能であり、コンパクトな構造により中心発光点から離れた端部発光点等の位置から発光する光の影響を少なくし、狭い照射角で集光効率を高くし、且つ道路照明等の広い照射面積を均一性が優れた光強度分布で効率良く照明できる。 The bulk lens according to the fourth embodiment can be designed by the same procedure as the flowchart shown in FIG. 1E. According to the method for designing the bulk type lens, the light emitting body, and the bulk type lens according to the fourth embodiment, it is possible to efficiently use the size of the light emitting surface of the planar light emitting element having a large area of the light emitting surface, and it is compact. The structure reduces the influence of light emitted from positions such as the edge emission point away from the central emission point, increases the light collection efficiency at a narrow irradiation angle, and has excellent uniformity over a wide irradiation area such as road lighting. Efficient lighting is possible with the light intensity distribution.
(その他の実施の形態)
 上記のように、本発明は第1~第4実施形態によって記載したが、この開示の一部をなす論述及び図面は本発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。このように、本発明はここでは記載していない様々な実施の形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な請求の範囲に係る発明特定事項によってのみ定められるものである。
(Other embodiments)
As mentioned above, the present invention has been described by the first to fourth embodiments, but the statements and drawings that form part of this disclosure should not be understood as limiting the invention. Various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art from this disclosure. As described above, it goes without saying that the present invention includes various embodiments not described here. Therefore, the technical scope of the present invention is defined only by the matters specifying the invention according to the reasonable claims from the above description.
 本発明は、スポーツの屋外競技場、ドーム型競技場を含む室内照明、街路/道路照明などの特に広い面積の照明を必要とする産業の分野で利用できる。 The present invention can be used in industrial fields that require particularly large area lighting such as outdoor sports stadiums, indoor lighting including dome-shaped stadiums, and street / road lighting.
 1e~1h…バルク型レンズ、36c,36f~36h…出射面、36Cc…中央領域、36Co…周辺領域、42e~42h…天井部、43e~43h…側壁、44e~44h…後方外壁面、95e~95h…第1固定用足場、96e~96h…第2固定用足場、97e~97h…第1貫通孔、98e~98h…第2貫通孔

 
1e to 1h ... Bulk type lens, 36c, 36f to 36h ... Exit surface, 36C c ... Central area, 36C o ... Peripheral area, 42e to 42h ... Ceiling, 43e to 43h ... Side wall, 44e to 44h ... Rear outer wall surface, 95e-95h ... 1st fixing scaffold, 96e-96h ... 2nd fixing scaffold, 97e-97h ... 1st through hole, 98e-98h ... 2nd through hole

Claims (9)

  1.  面状発光素子の主発光部を収納するバルク型レンズであって、該バルク型レンズが、
     曲率が連続して変化する湾曲面からなる出射面と、
     該出射面に接する光学媒体からなる光伝送部と、
     該光伝送部に接する後方外壁面と、
     前記光伝送部の内部に設けられた天井部及び該天井部に接続する側壁で構成され、前記主発光部を収納する凹部と、
     を備え、前記面状発光素子の発光面の中心を通る、前記発光面の法線方向を光軸とし、該光軸からの傾斜角を照射角と定義した場合において、前記面状発光素子の発光面の中心から発光する光に対して、
     前記天井部の中央を通って前記出射面の中央領域の第1出射点から出射する光の照射角と、前記側壁に近い前記天井部を通って前記中央領域の第2出射点から出射する光の照射角の差を10度以内の第1照射角範囲となるように、前記第1及び第2出射点おける前記湾曲面に対する接平面の角度を設定し、
     前記側壁の最上部から入射し前記後方外壁面の第1反射点で反射して前記出射面の周辺領域の第3出射点から出射する光の照射角と、前記側壁の前記天井部から離れた位置から入射した光が前記後方外壁面の第2反射点で反射して前記周辺領域の第4出射点から出射する照射角の差が10度以内の第2照射角範囲となるように、前記第3及び第4出射点おける前記湾曲面に対する接平面の角度と、前記第1及び第2反射点における前記後方外壁面の接平面の角度を設定し、
     前記第1照射角範囲と前記第2照射角範囲を同一にしたことを特徴とするバルク型レンズ。
    A bulk type lens that houses the main light emitting part of the planar light emitting element, and the bulk type lens is
    An exit surface consisting of a curved surface whose curvature changes continuously,
    An optical transmission unit made of an optical medium in contact with the exit surface,
    The rear outer wall surface in contact with the optical transmission unit and
    A recess provided inside the optical transmission unit and a side wall connected to the ceiling, and a recess for accommodating the main light emitting unit.
    When the normal direction of the light emitting surface passing through the center of the light emitting surface of the planar light emitting element is defined as the optical axis and the inclination angle from the optical axis is defined as the irradiation angle, the planar light emitting element For the light emitted from the center of the light emitting surface
    The irradiation angle of light emitted from the first exit point in the central region of the exit surface through the center of the ceiling portion and the light emitted from the second exit point in the central region through the ceiling portion near the side wall. The angle of the tangent plane with respect to the curved surface at the first and second exit points is set so that the difference between the irradiation angles is within the first irradiation angle range of 10 degrees or less.
    The irradiation angle of light incident from the uppermost portion of the side wall, reflected by the first reflection point on the rear outer wall surface, and emitted from the third emission point in the peripheral region of the exit surface, and away from the ceiling portion of the side wall. The light incident from the position is reflected by the second reflection point on the rear outer wall surface, and the difference in the irradiation angles emitted from the fourth emission point in the peripheral region is within the second irradiation angle range of 10 degrees or less. The angle of the tangent plane with respect to the curved surface at the third and fourth exit points and the angle of the tangent plane of the rear outer wall surface at the first and second reflection points are set.
    A bulk type lens characterized in that the first irradiation angle range and the second irradiation angle range are the same.
  2.  前記面状発光素子の発光面の中心に位置する発光点から放出される光に関し、すべての前記照射角が0度であることを特徴とする請求項1に記載のバルク型レンズ。 The bulk type lens according to claim 1, wherein all the irradiation angles of the light emitted from the light emitting point located at the center of the light emitting surface of the planar light emitting element are 0 degrees.
  3.  前記光軸の方向をZ軸とし、該Z軸に互いに直交するX軸とY軸からなる座標系において、X軸方向とY軸方向で異なる照射角とし、長方形のた照度分布で照明するように設計されたことを特徴とする請求項1又は2に記載のバルク型レンズ。 In a coordinate system consisting of an X-axis and a Y-axis orthogonal to each other with the Z-axis as the direction of the optical axis, different irradiation angles are set in the X-axis direction and the Y-axis direction, and illumination is performed with a rectangular illuminance distribution. The bulk type lens according to claim 1 or 2, characterized in that it is designed in.
  4.  前記光軸の方向をZ軸とし、該Z軸に互いに直交するX軸とY軸からなる座標系において、前記発光面の中心に位置する発光点から放出される光に対し、
     Y軸の+または-方向の照射角をすべて0度に設計し、
     Y軸の-または+方向の照射光の強度を徐々に小さく設計したことを特徴とする請求項1又は2に記載のバルク型レンズ。
    In a coordinate system consisting of an X-axis and a Y-axis orthogonal to each other with the direction of the optical axis as the Z-axis, light emitted from a light emitting point located at the center of the light-emitting surface is
    Design all irradiation angles in the + or-direction of the Y axis to 0 degrees,
    The bulk type lens according to claim 1 or 2, wherein the intensity of the irradiation light in the-or + direction of the Y-axis is designed to be gradually reduced.
  5.  前記天井部が平面であり、前記側壁が母線を直線とする2次曲面であることを特徴とする請求項1~4のいずれか1項に記載のバルク型レンズ。 The bulk type lens according to any one of claims 1 to 4, wherein the ceiling portion is a flat surface and the side wall portion is a quadric curved surface having a generatrix as a straight line.
  6.  前記光伝送部の両側に、第1及び第2固定用足場が対をなして接続された構造であることを特徴とする請求項1~5のいずれか1項に記載のバルク型レンズ。 The bulk type lens according to any one of claims 1 to 5, wherein the first and second fixing scaffolds are connected in pairs on both sides of the optical transmission unit.
  7.  前記第1固定用足場に第1貫通孔が設けられ、前記第2固定用足場に第2貫通孔が設けられていることを特徴とする請求項6に記載のバルク型レンズ。 The bulk type lens according to claim 6, wherein the first fixing scaffold is provided with a first through hole, and the second fixing scaffold is provided with a second through hole.
  8.  曲率が連続して変化する湾曲面からなる出射面と、
     該出射面に接する光学媒体からなる光伝送部と、
     該光伝送部に接する後方外壁面と、
     前記光伝送部の内部に設けられた天井部及び該天井部に接続する側壁で構成され、前記主発光部を収納する凹部と、
     該凹部に収納されるように、規定の位置関係で固定された面状発光素子と
     を備え、前記面状発光素子の発光面の中心を通る、前記発光面の法線方向を光軸とし、該光軸からの傾斜角を照射角と定義した場合において、前記面状発光素子の発光面の中心から発光する光に対して、
     前記天井部の中央を通って前記出射面の中央領域の第1出射点から出射する光の照射角と、前記側壁に近い前記天井部を通って前記中央領域の第2出射点から出射する光の照射角の差を10度以内の第1照射角範囲となるように、前記第1及び第2出射点おける前記湾曲面に対する接平面の角度を設定し、
     前記側壁の最上部から入射し前記後方外壁面の第1反射点で反射して前記出射面の周辺領域の第3出射点から出射する光の照射角と、前記側壁の前記天井部から離れた位置から入射した光が前記後方外壁面の第2反射点で反射して前記周辺領域の第4出射点から出射する照射角の差が10度以内の第2照射角範囲となるように、前記第3及び第4出射点おける前記湾曲面に対する接平面の角度と、前記第1及び第2反射点における前記後方外壁面の接平面の角度を設定し、
     前記第1照射角範囲と前記第2照射角範囲を同一にしたことを特徴とする発光体。
    An exit surface consisting of a curved surface whose curvature changes continuously,
    An optical transmission unit made of an optical medium in contact with the exit surface,
    The rear outer wall surface in contact with the optical transmission unit and
    A recess provided inside the optical transmission unit and a side wall connected to the ceiling, and a recess for accommodating the main light emitting unit.
    A planar light emitting element fixed in a predetermined positional relationship is provided so as to be housed in the recess, and the optical axis is the normal direction of the light emitting surface passing through the center of the light emitting surface of the planar light emitting element. When the angle of inclination from the optical axis is defined as the irradiation angle, with respect to the light emitted from the center of the light emitting surface of the planar light emitting element.
    The irradiation angle of light emitted from the first exit point in the central region of the exit surface through the center of the ceiling portion and the light emitted from the second exit point in the central region through the ceiling portion near the side wall. The angle of the tangent plane with respect to the curved surface at the first and second exit points is set so that the difference between the irradiation angles is within the first irradiation angle range of 10 degrees or less.
    The irradiation angle of light incident from the uppermost portion of the side wall, reflected by the first reflection point on the rear outer wall surface, and emitted from the third emission point in the peripheral region of the exit surface, and away from the ceiling portion of the side wall. The light incident from the position is reflected by the second reflection point on the rear outer wall surface, and the difference in the irradiation angles emitted from the fourth emission point in the peripheral region is within the second irradiation angle range of 10 degrees or less. The angle of the tangent plane with respect to the curved surface at the third and fourth exit points and the angle of the tangent plane of the rear outer wall surface at the first and second reflection points are set.
    A light emitting body characterized in that the first irradiation angle range and the second irradiation angle range are the same.
  9.  曲率が連続して変化する湾曲面からなる出射面、該出射面に接する光学媒体からなる光伝送部、該光伝送部に接する後方外壁面、前記光伝送部の内部に設けられた天井部及び該天井部に接続する側壁で構成され前記主発光部を収納する凹部を有する初期設計外形線を描くステップと、
     該凹部に収納される面状発光素子の相対位置を決めるステップと、
     前記側壁の最上部から入射した光が前記後方外壁面に到達する第1反射点と、前記側壁の前記天井部から離れた位置から入射した光が前記後方外壁面に到達する第2反射点を決定するステップと、
     前記第1及び第2反射点で反射した光が、前記出射面の周辺領域に到達するように、前記第1及び第2反射点における前記後方外壁面の接平面の角度を設定するステップと、
     前記天井部の中央を通って前記出射面の中央領域の第1出射点から出射する光の照射角と、前記側壁に近い前記天井部を通って前記中央領域の第2出射点から出射する光の照射角の差を10度以内の第1照射角範囲となるように、前記第1及び第2出射点おける前記湾曲面に対する接平面の角度を設定するステップと、
     前記第1反射点で反射して前記出射面の周辺領域の第3出射点から出射する光の照射角と、前記第2反射点で反射して前記周辺領域の第4出射点から出射する照射角の差が10度以内の第2照射角範囲となるように、前記第3及び第4出射点おける前記湾曲面に対する接平面の角度と、前記第1及び第2反射点における前記後方外壁面の接平面の角度を設定するステップと、
     を含むことを特徴とするバルク型レンズの設計方法。

     
    An exit surface made of a curved surface whose curvature continuously changes, an optical transmission unit made of an optical medium in contact with the emission surface, a rear outer wall surface in contact with the optical transmission unit, a ceiling portion provided inside the optical transmission unit, and a ceiling portion provided inside the optical transmission unit. A step of drawing an initial design outline, which is composed of a side wall connected to the ceiling portion and has a recess for accommodating the main light emitting portion.
    A step of determining the relative position of the planar light emitting element housed in the recess,
    The first reflection point where the light incident from the uppermost portion of the side wall reaches the rear outer wall surface and the second reflection point where the light incident from a position away from the ceiling portion of the side wall reaches the rear outer wall surface. Steps to decide and
    A step of setting the angle of the tangent plane of the rear outer wall surface at the first and second reflection points so that the light reflected at the first and second reflection points reaches the peripheral region of the emission surface.
    The irradiation angle of light emitted from the first exit point in the central region of the exit surface through the center of the ceiling portion and the light emitted from the second exit point in the central region through the ceiling portion near the side wall. The step of setting the angle of the tangent plane with respect to the curved surface at the first and second exit points so that the difference between the irradiation angles is within the first irradiation angle range of 10 degrees or less.
    The irradiation angle of the light reflected at the first reflection point and emitted from the third emission point in the peripheral region of the emission surface, and the irradiation reflected by the second reflection point and emitted from the fourth emission point in the peripheral region. The angle of the tangent plane with respect to the curved surface at the third and fourth exit points and the rear outer wall surface at the first and second reflection points so that the angle difference is within the second irradiation angle range of 10 degrees or less. Steps to set the angle of the tangent plane of
    A method of designing a bulk lens, which comprises.

PCT/JP2021/012370 2020-03-24 2021-03-24 Bulk lens, light-emitting body, and method for designing bulk lens WO2021193758A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022510622A JP7267661B2 (en) 2020-03-24 2021-03-24 Bulk type lens, emitter and method for designing bulk type lens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-070640 2020-03-24
JP2020070640 2020-03-24

Publications (1)

Publication Number Publication Date
WO2021193758A1 true WO2021193758A1 (en) 2021-09-30

Family

ID=77890635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012370 WO2021193758A1 (en) 2020-03-24 2021-03-24 Bulk lens, light-emitting body, and method for designing bulk lens

Country Status (2)

Country Link
JP (1) JP7267661B2 (en)
WO (1) WO2021193758A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093622A (en) * 2003-09-16 2005-04-07 Ccs Inc Light irradiation apparatus and optical unit
JP2018037404A (en) * 2016-08-31 2018-03-08 ウ チェ,ジョン Luminaire mounting on support column

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093622A (en) * 2003-09-16 2005-04-07 Ccs Inc Light irradiation apparatus and optical unit
JP2018037404A (en) * 2016-08-31 2018-03-08 ウ チェ,ジョン Luminaire mounting on support column

Also Published As

Publication number Publication date
JPWO2021193758A1 (en) 2021-09-30
JP7267661B2 (en) 2023-05-02

Similar Documents

Publication Publication Date Title
JP5812566B2 (en) Light capture structure for light emitting applications
TWI539211B (en) Light guide plate and backlight module using the same
JP6111110B2 (en) Luminous flux control member, light emitting device, surface light source device, and display device
US7548670B2 (en) Thin and efficient light collimating device
US7118236B2 (en) Light emitting diode lens and backlight apparatus having the same
WO2009144650A1 (en) Illumination device comprising a light guide
US11835741B2 (en) Multi-faceted diffuser providing specific light distributions from a light source
JP2018181726A (en) Luminous flux control member, light emitting device, surface light source device and display device
US11359792B2 (en) Lighting device
JP2017050262A (en) Luminous flux control member, light emitting device, surface light source device and display device
JP5555927B2 (en) Lighting device
CN105674067B (en) Light emitting module and light emitting device
WO2021193758A1 (en) Bulk lens, light-emitting body, and method for designing bulk lens
US20230251405A1 (en) Diffusor and optical system including the same
US8469579B2 (en) Optical plate with micro-structures and backlight module using same
WO2016163357A1 (en) Illumination device
US20240125983A1 (en) Diffuser combining a multi-faceted surface and a lens-covered surface to provide specific light distributions
CN112303594A (en) Optical lens, light-emitting device and display
US20100254159A1 (en) Brightness enhancement film and backlight module
CN112859433A (en) Surface light source device and display device
US8324655B2 (en) Backlight module and light emitting diode module thereof
TWI531843B (en) Light emitting module and backlight module using the same
US8167464B2 (en) Backlight module and light emitting diode thereof
TWI382242B (en) Light-guiding structrure, light guide plate and backlight module having the same
JP2024035654A (en) Light emitting device, surface light source device and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21776980

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022510622

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21776980

Country of ref document: EP

Kind code of ref document: A1