WO2016163357A1 - Illumination device - Google Patents

Illumination device Download PDF

Info

Publication number
WO2016163357A1
WO2016163357A1 PCT/JP2016/061115 JP2016061115W WO2016163357A1 WO 2016163357 A1 WO2016163357 A1 WO 2016163357A1 JP 2016061115 W JP2016061115 W JP 2016061115W WO 2016163357 A1 WO2016163357 A1 WO 2016163357A1
Authority
WO
WIPO (PCT)
Prior art keywords
central axis
light source
optical element
light
degrees
Prior art date
Application number
PCT/JP2016/061115
Other languages
French (fr)
Japanese (ja)
Inventor
智仁 桑垣内
Original Assignee
ナルックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナルックス株式会社 filed Critical ナルックス株式会社
Priority to JP2017510988A priority Critical patent/JPWO2016163357A1/en
Publication of WO2016163357A1 publication Critical patent/WO2016163357A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements

Definitions

  • the present invention relates to an illumination device including a light source and an optical element that diffuses light from the light source.
  • the illumination for backlight used for a liquid crystal display has a lighting device that combines a light source such as a light emitting diode (LED) and an optical element that controls light distribution at a predetermined pitch.
  • the optical element includes a concave incident surface and an output surface whose curvature changes from a concave shape to a convex shape toward the end portion from the central axis so as to distribute light over a wide range (for example, Patent Document 1).
  • flip chip type LEDs have attracted attention as light sources.
  • the flip chip type LED has higher light emission efficiency than the conventional LED, and the number of LEDs required per display can be reduced.
  • the pitch between LEDs has increased, and optical elements that distribute light over a wider range have become necessary.
  • the phosphor is not surrounded by a package and has a light emitting surface on the side as well as the top surface.
  • a part of the light emitted from the side surface of the light source passes through the bottom surface of the optical element and is scattered by the substrate. There is a problem that there are many rays that cannot be done.
  • Patent Document 2 an illuminating device (for example, Patent Document 2) provided with a regular reflection region on a substrate and an illuminating device (for example, an optical device having a bottom surface inclined with respect to the substrate surface) Patent document 3) has been developed.
  • an illuminating device for example, Patent Document 2
  • an illuminating device for example, an optical device having a bottom surface inclined with respect to the substrate surface
  • an illuminating device that appropriately controls the light emitted from the side surface of the light source, suppresses the increase in illuminance near the light source, and makes the illuminance of the irradiated surface as uniform as possible has not been developed. .
  • Patent Document 4 An optical element having a shape similar to that of the optical element of the present invention is known (for example, Patent Document 4).
  • this optical element is not used with a light source that also has a light emitting surface on its side surface, and the shape of this optical element does not control the light emitted from the side surface of the light source.
  • an illumination device that appropriately controls the light emitted from the side surface of the light source, suppresses the increase in illuminance near the light source, and makes the illuminance of the irradiated surface as uniform as possible.
  • the illumination device includes a light source disposed on a substrate, and an optical element that covers the light source and includes an incident surface and an output surface.
  • the incident surface is a surface of a recess opened at the bottom surface of the optical element, the exit surface is provided on the opposite side of the bottom surface, and the light source is configured to emit light from the top surface and the side surface.
  • the central position in the central axis direction of the light emitting portion on the side surface of the light source is P0
  • the counterclockwise angle that the light emitted from P0 is perpendicular to the central axis is ⁇ 1.
  • the counterclockwise angle is ⁇ 2, and ⁇ 1 is 15 degrees, ⁇ 2 ⁇ 1 is positive, and ⁇ 1 is ⁇ 2- ⁇ 1 is negative at 30 degrees, and the incident surface is configured such that ⁇ 2- ⁇ 1 decreases substantially monotonically as ⁇ 1 increases from 15 degrees to 30 degrees.
  • the illumination device of the present aspect in a wide range of ⁇ 1 of at least 15 degrees, the light beam emitted from P0 passes through the incident surface and is further away from the bottom surface than before reaching the incident surface. move on. Therefore, among the light rays radiated from the side surface of the light source, the light rays that reach the emission surface increase and the light rays that reach the bottom surface decrease. As a result, an increase in illuminance near the light source can be suppressed, and the illuminance on the irradiated surface can be made more uniform.
  • An illumination device includes a light source disposed on a substrate, and an optical element that covers the light source and includes an incident surface and an output surface.
  • the incident surface is a surface of a recess opened at the bottom surface of the optical element, the exit surface is provided on the opposite side of the bottom surface, and the light source is configured to emit light from the top surface and the side surface.
  • the central position in the central axis direction of the light emitting portion on the side surface of the light source is P0
  • the counterclockwise angle that the light emitted from P0 is perpendicular to the central axis is ⁇ 1.
  • P1 is a point where the light beam reaches the incident surface
  • the distance is Rt
  • the minimum distance between P0 and the incident surface is Rm.
  • the angle (acute angle) between the tangent of the incident surface at the point on the incident surface and the direction perpendicular to the central axis, that is, the direction of the substrate is It gets smaller as it gets closer to the part.
  • the illumination device of this aspect compared with the illumination device of the prior art, in a wider range of ⁇ 1, the light emitted from P0 passes through the incident surface and then reaches the incident surface, Proceed further away from the bottom. Therefore, among the light rays radiated from the side surface of the light source, the light rays that reach the emission surface increase and the light rays that reach the bottom surface decrease. As a result, an increase in illuminance near the light source can be suppressed, and the illuminance on the irradiated surface can be made more uniform.
  • An illumination device includes a light source disposed on a substrate, and an optical element that covers the light source and includes an incident surface and an output surface.
  • the incident surface is a surface of a recess opened at the bottom surface of the optical element, the exit surface is provided on the opposite side of the bottom surface, and the light source is configured to emit light from the top surface and the side surface.
  • the central position in the central axis direction of the light emitting portion on the side surface of the light source is P0
  • the counterclockwise angle that the light emitted from P0 is perpendicular to the central axis is ⁇ 1.
  • P1 is a point where the light beam reaches the incident surface
  • r2 is a distance in a direction perpendicular to the central axis from the central axis to the end of the output surface
  • r2 is a distance from the substrate to the end of the output surface.
  • the distance in the central axis direction is h2
  • the distance in the direction perpendicular to the central axis from the central axis to P1 is r1
  • the distance in the central axis direction from the substrate to P1 is h1
  • ⁇ 1 is 0 or less.
  • the incident surface is configured such that P1 that satisfies the above condition exists.
  • the light beam emitted from the point P0 and reaching the point P1 on the incident surface reaches the exit surface.
  • the light emitted from P0 reaches the exit surface after passing through the entrance surface in a wider range of ⁇ 1 as compared with the prior art illumination device. Therefore, among the light rays radiated from the side surface of the light source, the light rays that reach the emission surface increase and the light rays that reach the bottom surface decrease. As a result, an increase in illuminance near the light source can be suppressed, and the illuminance on the irradiated surface can be made more uniform.
  • an edge portion is further provided between the bottom surface and the emission surface, and the bottom surface and the edge portion are diffusion surfaces.
  • an angle formed by a straight line indicating the bottom surface of the optical element and the central axis is smaller than 90 degrees.
  • the shape of the optical element is determined.
  • the height of the foot portion is shortened even if an error occurs with respect to the design value of the gap amount between the bottom surface near the end of the incident surface and the substrate due to the shrinkage of the resin in the injection molding process.
  • the amount of the gap between the peripheral portion of the incident surface and the substrate can be adjusted to the design value.
  • the shapes of the entrance surface and the exit surface are configured to be symmetric with respect to the central axis.
  • FIG.2 (b) shows the illumination unit for backlight containing an illuminating device provided with a light source and an optical element. It is a figure for demonstrating two types of light sources. It is a figure which shows distribution of the luminous intensity by said two types of light sources. It is a figure explaining an illuminating device provided with the light source of the type shown in FIG.2 (b), and the optical element of a prior art. It is a figure which shows the structure of the illuminating device of one Embodiment of this invention provided with the light source and new optical element of the type shown in FIG.2 (b). It is a figure which shows an example of a structure of a light source.
  • FIG. 1 is a diagram showing a backlight illumination unit including an illumination device 100 including a light source 150 and an optical element 110.
  • the light sources 150 are arranged on the substrate 200 at a predetermined pitch, and the optical elements 110 are installed so as to cover the respective light sources 150.
  • the illumination unit further includes a diffusion plate 300. The light beam emitted by the light source 150 is distributed over a wide range by the optical element 110 and irradiates the diffusion plate 300.
  • FIG. 2 is a diagram for explaining two types of light sources.
  • FIG. 2A shows a light source 150X having a light emitting surface only on the upper surface.
  • the light emitting chip 151 covered with the phosphor 153 is housed in a package 155. Since the side surface of the phosphor 153 is covered with the package 155, no light is emitted from the side surface of the light source 150X.
  • FIG.2 (b) is a figure which shows the light source 150 used for the illuminating device of this invention.
  • a light emitting chip 151 covered with a phosphor 153 is provided on the table 157. Since the phosphor 153 is not covered with the package, light is also emitted from the side surface of the light source 150.
  • FIG. 3 is a diagram showing the luminous intensity distribution by the above two types of light sources.
  • the horizontal axis in FIG. 3 represents an angle ⁇ between the direction perpendicular to the upper surface of the light source and the traveling direction of the emitted light, and the vertical axis in FIG. 3 represents the normalized luminous intensity.
  • the solid line in FIG. 3 represents the luminous intensity of the light source of the type shown in FIG. 2B, where light is emitted from the top and side surfaces, and the dashed line in FIG.
  • the angle ⁇ is in the range of ⁇ 90 degrees to 90 degrees, and the luminous intensity is proportional to the cosine of the angle ⁇ according to Lambert's cosine law. In other ranges, no light beam is generated and the luminous intensity is zero.
  • a luminous flux is generated in the range of -180 degrees to -90 degrees and 90 degrees to 180 degrees, and the luminous intensity is also in accordance with Lambert's cosine law in the above range. Proportional to cosine of angle ⁇ .
  • FIG. 4 is a diagram for explaining an illumination device 100X including the light source 150 of the type shown in FIG. 2B and a conventional optical element 110X.
  • Fig.4 (a) is a figure which shows the structure of the illuminating device 100X.
  • FIG. 4B is a diagram illustrating a path of light rays emitted from a point on a side surface of the light source 150 (a point P0 described later).
  • the incident surface 111X of the optical element 110X is the surface of a recess that opens to the bottom surface 117X of the optical element 110X.
  • the emission surface 113X is provided on the opposite side of the bottom.
  • An edge portion 115X is provided between the emission surface 113X and the bottom surface 117X.
  • the entrance surface 111X and the exit surface 113X of the optical element 110X are symmetric with respect to the central axis OP.
  • the light source 150 and the optical element 110X are arranged so that the axis OP passes through the center of the light source 150.
  • the central axis OP is the optical axis.
  • FIGS. 4A and 4B are cross-sectional views including the optical axis OP and one side surface of the light source 150.
  • the edge portion 115X and the bottom surface 117X have a diffusion structure such as a texture. The reason why the edge portion 115X and the bottom surface 117X are provided with a diffusing structure is to reduce unevenness in illuminance that occurs near the optical element due to Fresnel reflected light from the exit surface.
  • the light emitted from the point on the side surface of the light source 150 reaches the bottom surface 117X and is diffused. A part of the diffused light reaches the edge 115X and is further diffused. Since the exit surface designed to refract the direct light far away cannot refract the scattered light far away, the illuminance in the vicinity of the central axis on the irradiated surface becomes high. As a result, the illuminance immediately above the optical element 110X increases, and the illuminance uniformity on the irradiated surface decreases.
  • FIG. 5 is a diagram showing a configuration of the illumination device 100 according to one embodiment of the present invention including the light source 150 of the type shown in FIG. 2B and a new optical element 110.
  • the incident surface 111 of the optical element 110 is the surface of a recess that opens to the bottom surface 117 of the optical element 110.
  • the emission surface 113 is provided on the opposite side of the bottom.
  • An edge portion 115 is provided between the emission surface 113 and the bottom surface 117.
  • the entrance surface 111 and the exit surface 113 of the optical element 110 are symmetric with respect to the axis OP.
  • the light source 150 and the optical element 110 are arranged so that the axis OP passes through the center of the light source 150.
  • the axis OP is the optical axis.
  • the edge portion 115 and the bottom surface 117 have a diffusion structure such as a texture.
  • the reason why the edge portion 115X and the bottom surface 117X are provided with a diffusing structure is to reduce unevenness in illuminance that occurs near the optical element due to Fresnel reflected light from the exit surface.
  • FIG. 6 is a diagram illustrating an example of the configuration of the light source 150.
  • the light source 150 includes a base 157 and a rectangular parallelepiped phosphor 153 disposed thereon.
  • the upper surface US and the side surface SS of the phosphor 153 are light emitting surfaces.
  • the center of the side is defined as point P0.
  • the phosphor may have any shape.
  • a point P0 is determined at the center position of the light emitting surface on the side surface of the light source 150 in the height direction.
  • the direction of the substrate surface 200 and the bottom surface 117 of the optical element 110 is the horizontal direction, and the direction of the optical axis OP is the vertical direction.
  • An angle (acute angle) between the light beam emitted from the point P0 and the horizontal direction is defined as ⁇ 1.
  • the angle ⁇ 1 is measured counterclockwise.
  • P1 be the point where the light beam emitted from the point P0 reaches the incident surface.
  • An angle (acute angle) formed by the light beam entering the optical element 110 at the point P1 with the horizontal direction is ⁇ 2.
  • the angle ⁇ 2 is measured counterclockwise.
  • an angle (acute angle) formed by a straight line connecting the point P1 and a point indicating the boundary between the emission surface 113 and the edge portion 115 with the horizontal direction is defined as ⁇ n.
  • the angle ⁇ n is measured counterclockwise.
  • the horizontal distance from the optical axis OP to the point P1 is r1
  • the horizontal distance from the optical axis OP to the point indicating the boundary between the exit surface 113 and the edge portion 115 is r2
  • the angle ⁇ n can be expressed by the following equation. Therefore, the condition that the light beam emitted from the point P0 and reaching the point P1 on the incident surface 111 does not reach the edge portion 115 but reaches the output surface 113 is as follows.
  • optical elements of Examples and Comparative Examples are made of acrylic, and the refractive index with respect to d-line is 1.49.
  • Table 1 is a table
  • the intersection of the incident surface, the exit surface, and the optical axis is the origin of the coordinates of each surface.
  • the optical axis is defined as the z axis, and the x axis perpendicular to the optical axis is determined.
  • the direction from the entrance surface to the exit surface is the positive direction
  • the direction away from the optical axis is the positive direction.
  • the main parameters of the optical elements of the examples are as follows. Distance from substrate to incident surface apex: 3.57 [mm] Distance from substrate to emission surface apex: 4.59 [mm] Incident surface diameter: 3.76 [mm] Output surface diameter: 15.7 [mm] Distance between bottom surface and substrate: 0.08 [mm]
  • the main parameters of the optical element of the comparative example are as follows. Distance from substrate to incident surface apex: 3.57 [mm] Distance from substrate to emission surface apex: 4.59 [mm] Incident surface diameter: 2.944 [mm] Output surface diameter: 15.7 [mm] Distance between bottom surface and substrate: 0.08 [mm]
  • the incident surface diameter is the diameter of the opening of the incident surface on the bottom surface.
  • the incident surface diameter of the example is larger than the incident surface diameter of the comparative example.
  • the light sources of the examples and comparative examples are those shown in FIG.
  • the upper light emitting surface US is a square having a side of 1.2 mm.
  • the height of the light source including the stage is 0.6 mm and is disposed on the substrate.
  • the light emitting surface SS on the side is 1.2 mm in the X direction and 0.3 mm in the z direction, and is disposed perpendicular to the substrate.
  • the center point P0 of the light emitting surface SS is 0.45 mm higher than the substrate.
  • the total luminous flux emitted from the light emitting surface is 100 lumens.
  • FIG. 7 is a diagram showing the relationship between ⁇ 1 and ⁇ 2- ⁇ 1 for the illumination devices of the example and the comparative example.
  • the horizontal axis in FIG. 7 represents ⁇ 1, and the vertical axis in FIG. 7 represents ⁇ 2- ⁇ 1.
  • the continuous line of FIG. 7 represents an Example, and the broken line of FIG. 7 represents a comparative example.
  • ⁇ 2 ⁇ 1 decreases as ⁇ 1 increases.
  • ⁇ 2- ⁇ 1 is positive in the region where ⁇ 1 is smaller than 21 degrees, but ⁇ 2- ⁇ 1 is negative in the region where ⁇ 1 is larger than 21 degrees.
  • ⁇ 2- ⁇ 1 is positive in the region where ⁇ 1 is smaller than 9.5 degrees, but ⁇ 2- ⁇ 1 is negative in the region where ⁇ 1 is larger than 9.5 degrees.
  • the light beam radiated from the point P0 travels further away from the bottom surface after passing through the incident surface and before reaching the incident surface. Therefore, in the embodiment, as compared with the comparative example, more light rays emitted from the point P0 pass through the incident surface and are further away from the bottom surface than before reaching the incident surface. Proceed to For this reason, the light rays reaching the exit surface 113 increase, and the light rays reaching the bottom surface 117 decrease.
  • ⁇ 2 ⁇ 1 decreases almost monotonously as ⁇ 1 increases.
  • the shape of the incident surface is preferably configured so that ⁇ 2 ⁇ 1 is positive in a region where ⁇ 1 is up to 15 degrees.
  • FIG. 8 is a diagram showing the relationship between the angle ⁇ 1 and the distance R from the point P0 along the light beam in the direction of the angle ⁇ 1 to the incident surface for the illumination devices of the example and the comparative example.
  • the horizontal axis of FIG. 8 represents ⁇ 1, and the vertical axis of FIG. Moreover, a continuous line shows an Example and a dotted line shows a comparative example.
  • FIG. 9 is a diagram for explaining three types of distances Rm, Rs, and Rt between the point P0 and the incident surface for the illumination devices of the example and the comparative example.
  • P1 be the point where the light beam radiated from the point P0 reaches the incident surface.
  • the distance between P0 and P1 when P1 is located at the end of the incident surface is Rt
  • the minimum distance between P0 and the incident surface is Rm.
  • Rm, Rs, and Rt of an Example are as follows.
  • Rm 0.860 [mm]
  • ⁇ 1 -16.08 [degree]
  • Rm, Rs, and Rt of the comparative example are as follows.
  • Rm 0.800 [mm]
  • Rt 0.947 [mm]
  • the above two inequalities are not satisfied as follows.
  • the angle (acute angle) formed by the tangent at the point on the incident surface and the direction perpendicular to the central axis increases toward the end.
  • the angle (acute angle) formed by the tangent at the point on the incident surface and the direction perpendicular to the central axis increases toward the end.
  • FIG. 10 is a diagram showing the relationship between ⁇ 1, ⁇ 2, and ⁇ n for the illumination devices of the example and the comparative example.
  • the horizontal axis of FIG. 10 represents ⁇ 1, and the vertical axis of FIG. 10 represents ⁇ 2 and ⁇ n.
  • the solid line represents ⁇ 2 of the example, and the broken line represents ⁇ 2 of the comparative example.
  • a one-dot chain line represents ⁇ n of the example, and a two-dot chain line represents ⁇ n of the comparative example.
  • ⁇ 2 ⁇ ⁇ n in the region where ⁇ 1 is ⁇ 8 degrees or more there is no region where ⁇ 2 ⁇ ⁇ n in the region where ⁇ 1 is 0 or less. Only in the region where ⁇ 1 is 5 degrees or more, ⁇ 2 ⁇ ⁇ n.
  • more light rays reach the exit surface as compared with the comparative example so that the scattered light generated at the bottom surface and the edge portion is reduced as compared with the comparative example.
  • FIG. 11 is a diagram illustrating the illuminance of the irradiated surface by the illumination devices of the example and the comparative example.
  • the irradiated surface is arranged in parallel with the substrate at a position of 30 mm from the substrate.
  • the horizontal axis in FIG. 11 represents the distance from the optical axis, and the vertical axis in FIG. 11 represents the illuminance.
  • the unit of illuminance is lumens per square meter (lm / m 2 ). According to FIG. 11, the peak of illuminance by the illumination device of the example is lower than the peak of illuminance by the illumination device of the comparative example.
  • the ratio of the light beam reaching the diffusion structure of the bottom surface and the edge portion of the side light emission light beam is low, the generation of scattered light is suppressed, and the illuminance peak Has fallen. Therefore, according to the illuminating device of an Example, compared with the illuminating device of a comparative example, a more uniform illumination distribution is obtained.
  • the shape of the incident surface of the optical element is based on the point P0 of the center position in the height direction of the light emitting surface of the side surface of the light source in the cross section including the central axis of the optical element. It is defined as. Defining the shape of the incident surface of the optical element with reference to the point P0 of the center position in the height direction of the light emitting surface on the side surface of the light source increases the number of rays that pass through the emitting surface among the light rays emitted from the light emitting surface of the side surface. This is based on the new knowledge of the inventor that the uniformity of illuminance on the irradiated surface is improved by reducing the light rays reaching the bottom surface, which is a technical idea not found in the prior art.
  • FIG. 12 is a diagram showing an optical element of the illumination device according to the embodiment of the present invention.
  • Fig.12 (a) is a perspective view of the optical element of the illuminating device of one Embodiment of this invention.
  • FIG. 12B is a cross-sectional view including the central axis of the optical element of the illumination device according to the embodiment of the present invention.
  • the optical element includes an entrance surface 111, an exit surface 113, a bottom surface 117, an edge portion 115, a foot portion 1151, and a gate portion 1153.
  • the incident surface 111 is a concave surface having an opening in the bottom surface 117.
  • the edge portion 115 connects the peripheral portion of the emission surface 113 and the peripheral portion of the bottom surface 117.
  • the edge portion 115 is provided with a foot portion 1151 for fixing the optical element to the substrate.
  • the edge portion 115 is further provided with a gate portion 1153 which is a resin inlet when the optical element is manufactured by injection molding.
  • the bottom surface 117 and the edge portion 115 are formed so as to have a diffusing function such as applying a texture.
  • FIG. 13 is a diagram for explaining an error of the shape of the optical element manufactured by injection molding with respect to the designed shape.
  • the bottom surface indicated by the solid line indicates the bottom surface of the designed optical element
  • the bottom surface indicated by the dotted line indicates the bottom surface of the optical element manufactured by injection molding.
  • the gap amount between the peripheral portion of the incident surface 111A and the substrate 200 cannot be adjusted to the design value only by changing the height L.
  • the gap amount is adjusted to the design value, the mold block corresponding to the bottom surface of the optical element is corrected, which requires cost and time.
  • FIG. 14 is a diagram showing the shape of the optical element of the illumination device according to the embodiment of the present invention.
  • FIG. 14 is a view showing a cross section including the central axis of the optical element.
  • the shape of the optical element is determined so that the angle formed by the straight line indicating the bottom surface of the optical element and the central axis is smaller than 90 degrees. That is, when the optical element is arranged on the substrate 200, the distance d2 between the bottom surface 117B and the substrate 200 at the position where the distance from the central axis is rb, which is in the vicinity of the edge portion 115B of the bottom surface 117B, is equal to that of the bottom surface 117B.
  • the shape of the optical element is determined so that the distance from the central axis in the vicinity of the incident surface 111B is larger than the distance d1 between the bottom surface 117B and the substrate 200 at the position of ra.
  • the shapes of the entrance surface and the exit surface are objects with respect to the central axis of the optical element.
  • a plurality of sections may be provided around the central axis, and the shapes of the entrance surface and the exit surface in the plurality of sections may be different.

Abstract

The objective of the present invention is to provide an illumination device whereby a light beam irradiated from the side surface of a light source is controlled suitably so that the illuminance of an illuminated surface is as uniform as possible. This illumination device comprises the light source (150) disposed over a substrate (200), and an optical element (110) covering the light source and having an entrance surface (111) and an exit surface (113). The light source emits light from an upper surface and the side surface. In a cross section containing the central axis of the optical element, the entrance surface is constituted in such a manner that θ2 - θ1 is positive when θ1 is 15 degrees, θ2 - θ1 is negative when θ1 is 30 degrees, and θ2 - θ1 decreases almost monotonously as θ1 increases from 15 degrees to 30 degrees, where: P0 is the central position of the light-emitting portion on the side surface in the central axis direction; θ1 is a counterclockwise angle, relative to an orthogonal direction to the central axis, formed by a light beam emitted from P0; and θ2 is a counterclockwise angle, relative to the orthogonal direction to the central axis, formed by the light beam after passage through the entrance surface.

Description

照明装置Lighting device
 本発明は、光源及び光源からの光を拡散する光学素子を備えた照明装置に関する。 The present invention relates to an illumination device including a light source and an optical element that diffuses light from the light source.
 液晶ディスプレイに使用されるバックライト用照明は、発光ダイオード(LED)などの光源と配光を制御する光学素子とを組み合わせた照明装置が所定のピッチで配置されている。光学素子は、広い範囲に光を分配するように、凹形状の入射面と中心軸上から端部に向かうにしたがって凹から凸形状へと曲率が変化する出射面とを備えている(たとえば、特許文献1)。 The illumination for backlight used for a liquid crystal display has a lighting device that combines a light source such as a light emitting diode (LED) and an optical element that controls light distribution at a predetermined pitch. The optical element includes a concave incident surface and an output surface whose curvature changes from a concave shape to a convex shape toward the end portion from the central axis so as to distribute light over a wide range (for example, Patent Document 1).
 近年、光源としてフリップチップタイプのLEDが注目されている。フリップチップタイプのLEDは、従来型のLEDに比べ発光効率が高く、1ディスプレイ当りに必要なLEDの数を減らすことが可能である。フリップチップタイプのLEDの使用に伴い、LED間のピッチは広くなり、より広い範囲に光を分配する光学素子が必要となってきている。また、フリップチップタイプLEDのなかに、蛍光体がパッケージに囲われておらず、上面のみならず側面にも発光面を有するものがある。このような側面にも発光面を有する光源を使用する照明装置においては、光源の側面から放射された光線の一部が、光学素子の底面を通過し、基板で散乱するため、光学素子で制御することのできない光線が多くなるという問題点がある。そこで、上述の問題点を解決するために、基板に正反射領域を備えた照明装置(たとえば、特許文献2)や基板面に対して傾斜した底面を有する光学素子を備えた照明装置(たとえば、特許文献3)が開発されている。 In recent years, flip chip type LEDs have attracted attention as light sources. The flip chip type LED has higher light emission efficiency than the conventional LED, and the number of LEDs required per display can be reduced. With the use of flip-chip type LEDs, the pitch between LEDs has increased, and optical elements that distribute light over a wider range have become necessary. In some flip chip type LEDs, the phosphor is not surrounded by a package and has a light emitting surface on the side as well as the top surface. In an illuminating device that uses a light source that also has a light-emitting surface, a part of the light emitted from the side surface of the light source passes through the bottom surface of the optical element and is scattered by the substrate. There is a problem that there are many rays that cannot be done. Therefore, in order to solve the above-described problems, an illuminating device (for example, Patent Document 2) provided with a regular reflection region on a substrate and an illuminating device (for example, an optical device having a bottom surface inclined with respect to the substrate surface) Patent document 3) has been developed.
 しかし、従来の照明装置においては、光源の側面から放射された光線のうち多くの光線が光源の底面及びコバ部に到達し、散乱光を生じ、この散乱光によって光源の直上付近の照度が増加し被照射面において照度むらが発生することが避けられなかった。 However, in the conventional illumination device, many of the light rays emitted from the side surface of the light source reach the bottom surface and the edge of the light source to generate scattered light, and this scattered light increases the illuminance immediately above the light source. However, it was inevitable that uneven illuminance occurred on the irradiated surface.
 このように従来、光源の側面から放射された光線を適切に制御し、光源の直上付近の照度の増加を抑え、被照射面の照度をできるだけ均一にするような照明装置は開発されていなかった。 Thus, conventionally, an illuminating device that appropriately controls the light emitted from the side surface of the light source, suppresses the increase in illuminance near the light source, and makes the illuminance of the irradiated surface as uniform as possible has not been developed. .
 なお、本発明の光学素子と類似の形状を有する光学素子が知られている(たとえば、特許文献4)。しかし、この光学素子は、側面にも発光面を有する光源とともに使用されるものではなく、この光学素子の形状は、光源の側面から放射された光線を制御するものではない。 An optical element having a shape similar to that of the optical element of the present invention is known (for example, Patent Document 4). However, this optical element is not used with a light source that also has a light emitting surface on its side surface, and the shape of this optical element does not control the light emitted from the side surface of the light source.
特開2009-044016号公報JP 2009-044016 A 特開2015-215984号公報JP2015-215984A 特開2015-043427号公報Japanese Patent Laying-Open No. 2015-043427 特開2012-064654号公報JP 2012-064654 A
 したがって、光源の側面から放射された光線を適切に制御し、光源の直上付近の照度の増加を抑え、被照射面の照度をできるだけ均一にするような照明装置に対するニーズがある。 Therefore, there is a need for an illumination device that appropriately controls the light emitted from the side surface of the light source, suppresses the increase in illuminance near the light source, and makes the illuminance of the irradiated surface as uniform as possible.
 本発明の第1の態様による照明装置は、基板に配置された光源と、該光源を覆い、入射面と出射面とを備えた光学素子と、を備える。該入射面は、該光学素子の底面に開口した凹部の表面であり、該出射面は、該底面の反対側に備わり、該光源は、上面及び側面から光を発するように構成され、該光学素子の中心軸を含む断面において、該光源の側面の発光部分の中心軸方向の中心位置をP0とし、P0から発した光線が該中心軸と垂直な方向となす、反時計回りの角度をθ1とし、該光線が、該入射面を通過した後、該中心軸と垂直な方向となす、反時計回りの角度をθ2として、θ1が15度のときにθ2-θ1は正であり、θ1が30度のときにθ2-θ1は負であり、θ1が15度から30度に増加するにしたがって、θ2-θ1がほぼ単調に減少するように該入射面が構成されている。 The illumination device according to the first aspect of the present invention includes a light source disposed on a substrate, and an optical element that covers the light source and includes an incident surface and an output surface. The incident surface is a surface of a recess opened at the bottom surface of the optical element, the exit surface is provided on the opposite side of the bottom surface, and the light source is configured to emit light from the top surface and the side surface. In the cross section including the central axis of the element, the central position in the central axis direction of the light emitting portion on the side surface of the light source is P0, and the counterclockwise angle that the light emitted from P0 is perpendicular to the central axis is θ1. When the light beam passes through the incident surface and is in the direction perpendicular to the central axis, the counterclockwise angle is θ2, and θ1 is 15 degrees, θ2−θ1 is positive, and θ1 is Θ2-θ1 is negative at 30 degrees, and the incident surface is configured such that θ2-θ1 decreases substantially monotonically as θ1 increases from 15 degrees to 30 degrees.
 θ2-θ1が正の場合に、点P0から放射された光線は、入射面を通過後、入射面に到達前と比較して、底面からより遠ざかる方向に進む。したがって、本態様の照明装置によれば、θ1がすくなくとも15度までの広い範囲で、P0から発した光線が入射面を通過後、入射面に到達前と比較して、底面からより遠ざかる方向に進む。したがって、光源の側面から放射された光線のうち、出射面に到達する光線が増加し、底面に到達する光線は減少する。この結果、光源の直上付近の照度の増加を抑え、被照射面の照度をより均一にすることができる。 When θ2−θ1 is positive, the light beam radiated from the point P0 travels further away from the bottom surface after passing through the incident surface and before reaching the incident surface. Therefore, according to the illumination device of the present aspect, in a wide range of θ1 of at least 15 degrees, the light beam emitted from P0 passes through the incident surface and is further away from the bottom surface than before reaching the incident surface. move on. Therefore, among the light rays radiated from the side surface of the light source, the light rays that reach the emission surface increase and the light rays that reach the bottom surface decrease. As a result, an increase in illuminance near the light source can be suppressed, and the illuminance on the irradiated surface can be made more uniform.
 本発明の第2の態様による照明装置は、基板に配置された光源と、該光源を覆い、入射面と出射面とを備えた光学素子と、を備える。該入射面は、該光学素子の底面に開口した凹部の表面であり、該出射面は、該底面の反対側に備わり、該光源は、上面及び側面から光を発するように構成され、該光学素子の中心軸を含む断面において、該光源の側面の発光部分の中心軸方向の中心位置をP0とし、P0から発した光線が該中心軸と垂直な方向となす、反時計回りの角度をθ1とし、該光線が、該入射面に到達する点をP1とし、θ1=0の場合のP0とP1との距離をRs、P1が該入射面の端部に位置する場合のP0とP1との距離をRt、P0と該入射面との最小距離をRmとして、
   0.8 < Rm/Rs < 0.9
   1.2 < Rt/Rs < 1.4
を満たすように該入射面が構成されている。
An illumination device according to a second aspect of the present invention includes a light source disposed on a substrate, and an optical element that covers the light source and includes an incident surface and an output surface. The incident surface is a surface of a recess opened at the bottom surface of the optical element, the exit surface is provided on the opposite side of the bottom surface, and the light source is configured to emit light from the top surface and the side surface. In the cross section including the central axis of the element, the central position in the central axis direction of the light emitting portion on the side surface of the light source is P0, and the counterclockwise angle that the light emitted from P0 is perpendicular to the central axis is θ1. P1 is a point where the light beam reaches the incident surface, Rs is a distance between P0 and P1 when θ1 = 0, and P0 and P1 when P1 is located at the end of the incident surface. The distance is Rt, and the minimum distance between P0 and the incident surface is Rm.
0.8 <Rm / Rs <0.9
1.2 <Rt / Rs <1.4
The incident surface is configured to satisfy the above.
 上記の条件を満たす場合に、光学素子の中心軸を含む断面において、入射面上の点における入射面の接線と中心軸に垂直な方向、すなわち基板の方向とのなす角度(鋭角)は、端部に近づくほど小さくなる。このため、本態様の照明装置においては、従来技術の照明装置と比較して、θ1のより広い範囲で、P0から発した光線が入射面を通過後、入射面に到達前と比較して、底面からより遠ざかる方向に進む。したがって、光源の側面から放射された光線のうち、出射面に到達する光線が増加し、底面に到達する光線は減少する。この結果、光源の直上付近の照度の増加を抑え、被照射面の照度をより均一にすることができる。 When the above condition is satisfied, in the cross section including the central axis of the optical element, the angle (acute angle) between the tangent of the incident surface at the point on the incident surface and the direction perpendicular to the central axis, that is, the direction of the substrate is It gets smaller as it gets closer to the part. For this reason, in the illumination device of this aspect, compared with the illumination device of the prior art, in a wider range of θ1, the light emitted from P0 passes through the incident surface and then reaches the incident surface, Proceed further away from the bottom. Therefore, among the light rays radiated from the side surface of the light source, the light rays that reach the emission surface increase and the light rays that reach the bottom surface decrease. As a result, an increase in illuminance near the light source can be suppressed, and the illuminance on the irradiated surface can be made more uniform.
 本発明の第3の態様による照明装置は、基板に配置された光源と、該光源を覆い、入射面と出射面とを備えた光学素子と、を備える。該入射面は、該光学素子の底面に開口した凹部の表面であり、該出射面は、該底面の反対側に備わり、該光源は、上面及び側面から光を発するように構成され、該光学素子の中心軸を含む断面において、該光源の側面の発光部分の中心軸方向の中心位置をP0とし、P0から発した光線が該中心軸と垂直な方向となす、反時計回りの角度をθ1とし、該光線が、該入射面に到達する点をP1とし、該中心軸から該出射面端部までの該中心軸と垂直な方向の距離をr2、該基板から該出射面端部までの該中心軸方向の距離をh2とし、該中心軸からP1までの該中心軸と垂直な方向の距離をr1、該基板からP1までの該中心軸方向の距離をh1として、θ1が0以下の領域において
Figure JPOXMLDOC01-appb-M000002
を満たすP1が存在するように該入射面が構成されている。
An illumination device according to a third aspect of the present invention includes a light source disposed on a substrate, and an optical element that covers the light source and includes an incident surface and an output surface. The incident surface is a surface of a recess opened at the bottom surface of the optical element, the exit surface is provided on the opposite side of the bottom surface, and the light source is configured to emit light from the top surface and the side surface. In the cross section including the central axis of the element, the central position in the central axis direction of the light emitting portion on the side surface of the light source is P0, and the counterclockwise angle that the light emitted from P0 is perpendicular to the central axis is θ1. P1 is a point where the light beam reaches the incident surface, r2 is a distance in a direction perpendicular to the central axis from the central axis to the end of the output surface, and r2 is a distance from the substrate to the end of the output surface. The distance in the central axis direction is h2, the distance in the direction perpendicular to the central axis from the central axis to P1 is r1, the distance in the central axis direction from the substrate to P1 is h1, and θ1 is 0 or less. In the area
Figure JPOXMLDOC01-appb-M000002
The incident surface is configured such that P1 that satisfies the above condition exists.
 上記の条件を満たす場合に、点P0から放射され、入射面上の点P1に到達した光線が、出射面に到達する。本態様の照明装置においては、従来技術の照明装置と比較して、θ1のより広い範囲で、P0から発した光線が入射面を通過後出射面に到達する。したがって、光源の側面から放射された光線のうち、出射面に到達する光線が増加し、底面に到達する光線は減少する。この結果、光源の直上付近の照度の増加を抑え、被照射面の照度をより均一にすることができる。 When the above condition is satisfied, the light beam emitted from the point P0 and reaching the point P1 on the incident surface reaches the exit surface. In the illumination device of this aspect, the light emitted from P0 reaches the exit surface after passing through the entrance surface in a wider range of θ1 as compared with the prior art illumination device. Therefore, among the light rays radiated from the side surface of the light source, the light rays that reach the emission surface increase and the light rays that reach the bottom surface decrease. As a result, an increase in illuminance near the light source can be suppressed, and the illuminance on the irradiated surface can be made more uniform.
 本発明の第1の実施形態の照明装置においては、該底面と該出射面との間にコバ部をさらに備え、該底面と該コバ部とは拡散面である。 In the illumination device according to the first embodiment of the present invention, an edge portion is further provided between the bottom surface and the emission surface, and the bottom surface and the edge portion are diffusion surfaces.
 本発明の第2の実施形態の照明装置においては、該光学素子の該中心軸を含む断面において、該光学素子の底面を示す直線が該中心軸となす角度が、90度より小さくなるように該光学素子の形状が定められている。 In the illumination device according to the second embodiment of the present invention, in a cross section including the central axis of the optical element, an angle formed by a straight line indicating the bottom surface of the optical element and the central axis is smaller than 90 degrees. The shape of the optical element is determined.
 本実施形態によれば、射出成形プロセスの樹脂の収縮のために、入射面の端部近傍の底面と基板との隙間量の設計値に対する誤差が生じても、足部の高さを短くすることによって入射面の周縁部と基板との隙間量を設計値に調整することができる。 According to the present embodiment, the height of the foot portion is shortened even if an error occurs with respect to the design value of the gap amount between the bottom surface near the end of the incident surface and the substrate due to the shrinkage of the resin in the injection molding process. As a result, the amount of the gap between the peripheral portion of the incident surface and the substrate can be adjusted to the design value.
 本発明の第3の実施形態の照明装置においては、該入射面及び該出射面の形状が、該中心軸に関して対称であるように構成されている。 In the illumination device according to the third embodiment of the present invention, the shapes of the entrance surface and the exit surface are configured to be symmetric with respect to the central axis.
光源及び光学素子を備える照明装置を含むバックライト用照明ユニットを示す図である。It is a figure which shows the illumination unit for backlight containing an illuminating device provided with a light source and an optical element. 二種類のタイプの光源を説明するための図である。It is a figure for demonstrating two types of light sources. 上記の二種類のタイプの光源による光度の分布を示す図である。It is a figure which shows distribution of the luminous intensity by said two types of light sources. 図2(b)に示すタイプの光源と従来技術の光学素子とを備える照明装置を説明する図である。It is a figure explaining an illuminating device provided with the light source of the type shown in FIG.2 (b), and the optical element of a prior art. 図2(b)に示すタイプの光源と新たな光学素子とを備えた本発明の一つの実施形態の照明装置の構成を示す図である。It is a figure which shows the structure of the illuminating device of one Embodiment of this invention provided with the light source and new optical element of the type shown in FIG.2 (b). 光源の構成の一例を示す図である。It is a figure which shows an example of a structure of a light source. 実施例及び比較例の照明装置について、θ1とθ2-θ1との関係を示す図である。It is a figure which shows the relationship between (theta) 1 and (theta) 2- (theta) 1 about the illuminating device of an Example and a comparative example. 実施例及び比較例の照明装置について、θ1とθ1の方向の光線に沿った点P0から入射面までの距離Rとの関係を示す図である。It is a figure which shows the relationship with the distance R from the point P0 along the light ray of the direction of (theta) 1 and (theta) 1 to the entrance plane about the illuminating device of an Example and a comparative example. 実施例及び比較例の照明装置について、点P0と入射面との間の三種類の距離Rm、Rs及びRtsを説明するための図である。It is a figure for demonstrating three types of distance Rm, Rs, and Rts between the point P0 and an entrance plane about the illuminating device of an Example and a comparative example. 実施例及び比較例の照明装置について、θ1とθ2及びθnとの関係を示す図である。It is a figure which shows the relationship between (theta) 1 and (theta) 2 and (theta) n about the illuminating device of an Example and a comparative example. 実施例及び比較例の照明装置による被照射面の照度を示す図である。It is a figure which shows the illumination intensity of the to-be-irradiated surface by the illuminating device of an Example and a comparative example. 本発明の一実施形態の照明装置の光学素子を示す図である。It is a figure which shows the optical element of the illuminating device of one Embodiment of this invention. 射出成形によって製造された光学素子の形状の、設計された形状に対する誤差を説明するための図である。It is a figure for demonstrating the error with respect to the design shape of the shape of the optical element manufactured by injection molding. 本発明の一実施形態の照明装置の光学素子の形状を示す図である。It is a figure which shows the shape of the optical element of the illuminating device of one Embodiment of this invention.
 図1は、光源150及び光学素子110を備える照明装置100を含むバックライト用照明ユニットを示す図である。基板200上に光源150が所定のピッチで配置され、それぞれの光源150を覆うように光学素子110が設置される。照明ユニットは、さらに拡散板300を備える。光源150によって放射された光線は、光学素子110によって広い範囲に分配され拡散板300を照射する。 FIG. 1 is a diagram showing a backlight illumination unit including an illumination device 100 including a light source 150 and an optical element 110. The light sources 150 are arranged on the substrate 200 at a predetermined pitch, and the optical elements 110 are installed so as to cover the respective light sources 150. The illumination unit further includes a diffusion plate 300. The light beam emitted by the light source 150 is distributed over a wide range by the optical element 110 and irradiates the diffusion plate 300.
 図2は、二種類のタイプの光源を説明するための図である。図2(a)は、上面のみに発光面が備わる光源150Xを示す図である。蛍光体153に覆われた発光チップ151は、パッケージ155に収められている。蛍光体153の側面は、パッケージ155に覆われているので、光源150Xの側面から光が放射されることはない。図2(b)は、本発明の照明装置に使用される光源150を示す図である。台157の上に、蛍光体153に覆われた発光チップ151が備わる。蛍光体153はパッケージに覆われていないので、光源150の側面からも光が放射される。図2(a)及び図2(b)において、実線の矢印は上面から放射される光線を示し、点線の矢印は側面から放射される光線を示す。できるだけ少ない数の光源によって照明ユニットを実現するには、上面及び側面から光が放射される、図2(b)に示すタイプの光源が好ましい。 FIG. 2 is a diagram for explaining two types of light sources. FIG. 2A shows a light source 150X having a light emitting surface only on the upper surface. The light emitting chip 151 covered with the phosphor 153 is housed in a package 155. Since the side surface of the phosphor 153 is covered with the package 155, no light is emitted from the side surface of the light source 150X. FIG.2 (b) is a figure which shows the light source 150 used for the illuminating device of this invention. A light emitting chip 151 covered with a phosphor 153 is provided on the table 157. Since the phosphor 153 is not covered with the package, light is also emitted from the side surface of the light source 150. In FIG. 2A and FIG. 2B, solid arrows indicate light rays emitted from the top surface, and dotted arrows indicate light rays emitted from the side surface. In order to realize an illumination unit with as few light sources as possible, a light source of the type shown in FIG. 2B, in which light is emitted from the top and side surfaces, is preferred.
 図3は、上記の二種類のタイプの光源による光度の分布を示す図である。図3の横軸は、光源の上面に垂直な方向と放射された光の進行方向とのなす角度θを表し、図3の縦軸は、規格化された光度を表す。図3の実線は、上面及び側面から光が放射される、図2(b)に示すタイプの光源の光度を表し、図3の破線は、上面のみ光が放射される、図2(a)に示すタイプの光源の光度を表す。図2(a)に示すタイプの光源において、角度θが-90度から90度の範囲で、光度は、ランバートの余弦則にしたがって、角度θの余弦に比例する。それ以外の範囲で光束は生じることはなく光度は0である。図2(b)に示すタイプの光源において、-180度から-90度及び90度から180度の範囲においても、光束が生じ、上記の範囲においても、光度は、ランバートの余弦則にしたがって、角度θの余弦に比例する。 FIG. 3 is a diagram showing the luminous intensity distribution by the above two types of light sources. The horizontal axis in FIG. 3 represents an angle θ between the direction perpendicular to the upper surface of the light source and the traveling direction of the emitted light, and the vertical axis in FIG. 3 represents the normalized luminous intensity. The solid line in FIG. 3 represents the luminous intensity of the light source of the type shown in FIG. 2B, where light is emitted from the top and side surfaces, and the dashed line in FIG. The luminous intensity of the type of light source shown in FIG. In the light source of the type shown in FIG. 2A, the angle θ is in the range of −90 degrees to 90 degrees, and the luminous intensity is proportional to the cosine of the angle θ according to Lambert's cosine law. In other ranges, no light beam is generated and the luminous intensity is zero. In the light source of the type shown in FIG. 2 (b), a luminous flux is generated in the range of -180 degrees to -90 degrees and 90 degrees to 180 degrees, and the luminous intensity is also in accordance with Lambert's cosine law in the above range. Proportional to cosine of angle θ.
 図4は、図2(b)に示すタイプの光源150と従来技術の光学素子110Xとを備える照明装置100Xを説明する図である。図4(a)は、照明装置100Xの構成を示す図である。図4(b)は、光源150の側面上の点(後で説明する点P0)から放射された光線の経路を示す図である。光学素子110Xの入射面111Xは、光学素子110Xの底面117Xに開口した凹部の表面である。出射面113Xは、底部の反対側に備わる。出射面113Xと底面117Xとの間にはコバ部115Xが備わる。光学素子110Xの入射面111X及び出射面113Xは中心軸OPに関して対称である。光源150及び光学素子110Xは、軸OPが光源150の中心を通るように配置される。中心軸OPを光軸とする。図4(a)及び図4(b)は、光軸OP及び光源150の一つの側面を含む断面図である。コバ部115X及び底面117Xは、シボなどの拡散構造を備えている。コバ部115X及び底面117Xが拡散構造を備えているのは、出射面からのフレネル反射光によって光学素子直上近傍に発生する照度ムラを低減するためである。 FIG. 4 is a diagram for explaining an illumination device 100X including the light source 150 of the type shown in FIG. 2B and a conventional optical element 110X. Fig.4 (a) is a figure which shows the structure of the illuminating device 100X. FIG. 4B is a diagram illustrating a path of light rays emitted from a point on a side surface of the light source 150 (a point P0 described later). The incident surface 111X of the optical element 110X is the surface of a recess that opens to the bottom surface 117X of the optical element 110X. The emission surface 113X is provided on the opposite side of the bottom. An edge portion 115X is provided between the emission surface 113X and the bottom surface 117X. The entrance surface 111X and the exit surface 113X of the optical element 110X are symmetric with respect to the central axis OP. The light source 150 and the optical element 110X are arranged so that the axis OP passes through the center of the light source 150. The central axis OP is the optical axis. FIGS. 4A and 4B are cross-sectional views including the optical axis OP and one side surface of the light source 150. The edge portion 115X and the bottom surface 117X have a diffusion structure such as a texture. The reason why the edge portion 115X and the bottom surface 117X are provided with a diffusing structure is to reduce unevenness in illuminance that occurs near the optical element due to Fresnel reflected light from the exit surface.
 図4(b)に示すように、光源150の側面上の点から放射された光は、底面117Xに到達し、拡散される。また、拡散された光の一部は、コバ部115Xに到達しさらに拡散される。直接光を遠くへ屈折させるよう設計された出射面は、散乱光を遠くへ屈折させることができないので、被照射面における中心軸近傍の照度が高くなる。この結果、光学素子110Xの直上の照度が上昇し、被照射面における照度の均一性が低下する。 As shown in FIG. 4B, the light emitted from the point on the side surface of the light source 150 reaches the bottom surface 117X and is diffused. A part of the diffused light reaches the edge 115X and is further diffused. Since the exit surface designed to refract the direct light far away cannot refract the scattered light far away, the illuminance in the vicinity of the central axis on the irradiated surface becomes high. As a result, the illuminance immediately above the optical element 110X increases, and the illuminance uniformity on the irradiated surface decreases.
 図5は、図2(b)に示すタイプの光源150と新たな光学素子110とを備えた本発明の一つの実施形態の照明装置100の構成を示す図である。光学素子110の入射面111は、光学素子110の底面117に開口した凹部の表面である。出射面113は、底部の反対側に備わる。出射面113と底面117との間にはコバ部115が備わる。光学素子110の入射面111及び出射面113は軸OPに関して対称である。光源150及び光学素子110は、軸OPが光源150の中心を通るように配置される。軸OPを光軸とする。図5は、光軸OP及び光源150の一つの側面を含む断面図である。コバ部115及び底面117は、シボなどの拡散構造を備えている。コバ部115X及び底面117Xが拡散構造を備えているのは、出射面からのフレネル反射光によって光学素子直上近傍に発生する照度ムラを低減するためである。 FIG. 5 is a diagram showing a configuration of the illumination device 100 according to one embodiment of the present invention including the light source 150 of the type shown in FIG. 2B and a new optical element 110. The incident surface 111 of the optical element 110 is the surface of a recess that opens to the bottom surface 117 of the optical element 110. The emission surface 113 is provided on the opposite side of the bottom. An edge portion 115 is provided between the emission surface 113 and the bottom surface 117. The entrance surface 111 and the exit surface 113 of the optical element 110 are symmetric with respect to the axis OP. The light source 150 and the optical element 110 are arranged so that the axis OP passes through the center of the light source 150. The axis OP is the optical axis. FIG. 5 is a cross-sectional view including the optical axis OP and one side surface of the light source 150. The edge portion 115 and the bottom surface 117 have a diffusion structure such as a texture. The reason why the edge portion 115X and the bottom surface 117X are provided with a diffusing structure is to reduce unevenness in illuminance that occurs near the optical element due to Fresnel reflected light from the exit surface.
 図6は、光源150の構成の一例を示す図である。光源150は、台157とその上に配置された直方体の蛍光体153を備える。蛍光体153の上面US及び側面SSは発光面である。側面の中心を点P0とする。一般的に、蛍光体はどのような形状であってもよい。光源150の側面の発光面の高さ方向の中心位置に点P0を定める。 FIG. 6 is a diagram illustrating an example of the configuration of the light source 150. The light source 150 includes a base 157 and a rectangular parallelepiped phosphor 153 disposed thereon. The upper surface US and the side surface SS of the phosphor 153 are light emitting surfaces. The center of the side is defined as point P0. In general, the phosphor may have any shape. A point P0 is determined at the center position of the light emitting surface on the side surface of the light source 150 in the height direction.
 図5において、基板の面200及び光学素子110の底面117の方向を水平方向とし、光軸OPの方向を鉛直方向とする。点P0から放射された光線が、水平方向となす角度(鋭角)をθ1とする。角度θ1は、反時計回りに測定する。点P0から放射された光線が、入射面に到達した点をP1とする。点P1において光学素子110に入った光線が、水平方向となす角度(鋭角)をθ2とする。角度θ2は、反時計回りに測定する。また、点P1と出射面113とコバ部115との境界を示す点とを結ぶ直線が、水平方向となす角度(鋭角)をθnとする。角度θnは、反時計回りに測定する。光軸OPから点P1までの水平方向の距離をr1、光軸OPから出射面113とコバ部115との境界を示す点までの水平方向の距離をr2、基板200から点P1までの鉛直方向の距離をh1、基板200から出射面113とコバ部115との境界を示す点までの鉛直方向の距離をh2とすると、角度θnは以下の式で表せる。
Figure JPOXMLDOC01-appb-M000003
したがって、点P0から放射され、入射面111上の点P1に到達した光線が、コバ部115に到達せず、出射面113に到達する条件は、以下のとおりである。
Figure JPOXMLDOC01-appb-M000004
In FIG. 5, the direction of the substrate surface 200 and the bottom surface 117 of the optical element 110 is the horizontal direction, and the direction of the optical axis OP is the vertical direction. An angle (acute angle) between the light beam emitted from the point P0 and the horizontal direction is defined as θ1. The angle θ1 is measured counterclockwise. Let P1 be the point where the light beam emitted from the point P0 reaches the incident surface. An angle (acute angle) formed by the light beam entering the optical element 110 at the point P1 with the horizontal direction is θ2. The angle θ2 is measured counterclockwise. In addition, an angle (acute angle) formed by a straight line connecting the point P1 and a point indicating the boundary between the emission surface 113 and the edge portion 115 with the horizontal direction is defined as θn. The angle θn is measured counterclockwise. The horizontal distance from the optical axis OP to the point P1 is r1, the horizontal distance from the optical axis OP to the point indicating the boundary between the exit surface 113 and the edge portion 115 is r2, and the vertical direction from the substrate 200 to the point P1. Is the distance h1 and the distance in the vertical direction from the substrate 200 to the point indicating the boundary between the emission surface 113 and the edge portion 115 is h2, the angle θn can be expressed by the following equation.
Figure JPOXMLDOC01-appb-M000003
Therefore, the condition that the light beam emitted from the point P0 and reaching the point P1 on the incident surface 111 does not reach the edge portion 115 but reaches the output surface 113 is as follows.
Figure JPOXMLDOC01-appb-M000004
 以下に、本発明の実施例及び比較例(従来例)について説明する。実施例及び比較例の光学素子は、アクリル製であり、d線に対する屈折率は1.49である。 Hereinafter, examples of the present invention and comparative examples (conventional examples) will be described. The optical elements of Examples and Comparative Examples are made of acrylic, and the refractive index with respect to d-line is 1.49.
 表1は、実施例及び比較例(従来例)の光学素子の入射面及び出射面の形状を示す表である。入射面及び出射面と光軸との交点をそれぞれの面の座標の原点とする。光軸をz軸とし、光軸と垂直なx軸を定める。z軸は、入射面から出射面への方向を正の方向とし、x軸は光軸から遠ざかる方向を正の方向とする。
Figure JPOXMLDOC01-appb-T000005
Table 1 is a table | surface which shows the shape of the entrance plane and output surface of the optical element of an Example and a comparative example (conventional example). The intersection of the incident surface, the exit surface, and the optical axis is the origin of the coordinates of each surface. The optical axis is defined as the z axis, and the x axis perpendicular to the optical axis is determined. For the z-axis, the direction from the entrance surface to the exit surface is the positive direction, and for the x-axis, the direction away from the optical axis is the positive direction.
Figure JPOXMLDOC01-appb-T000005
 実施例の光学素子の主なパラメータは以下のとおりである。
基板から入射面頂点までの距離:3.57 [mm]
基板から出射面頂点までの距離:4.59 [mm]
入射面径:3.76[mm]
出射面径:15.7[mm]
底面と基板の距離:0.08 [mm]
The main parameters of the optical elements of the examples are as follows.
Distance from substrate to incident surface apex: 3.57 [mm]
Distance from substrate to emission surface apex: 4.59 [mm]
Incident surface diameter: 3.76 [mm]
Output surface diameter: 15.7 [mm]
Distance between bottom surface and substrate: 0.08 [mm]
 比較例の光学素子の主なパラメータは以下のとおりである。
基板から入射面頂点までの距離:3.57 [mm]
基板から出射面頂点までの距離:4.59 [mm]
入射面径:2.944[mm]
出射面径:15.7[mm]
底面と基板の距離:0.08 [mm]
ここで、入射面径とは、底面における入射面の開口部の径である。実施例の入射面径は、比較例の入射面径よりも大きい。
The main parameters of the optical element of the comparative example are as follows.
Distance from substrate to incident surface apex: 3.57 [mm]
Distance from substrate to emission surface apex: 4.59 [mm]
Incident surface diameter: 2.944 [mm]
Output surface diameter: 15.7 [mm]
Distance between bottom surface and substrate: 0.08 [mm]
Here, the incident surface diameter is the diameter of the opening of the incident surface on the bottom surface. The incident surface diameter of the example is larger than the incident surface diameter of the comparative example.
 実施例及び比較例の光源は、図6に示したものである。上面の発光面USは、一辺1.2mmの正方形である。台を含む光源の高さは0.6mmであり、基板上に配置される。また側面の発光面SSは、X方向1.2mm、z方向に0.3mmで、基板に垂直に配置される。発光面SSの中心点P0は、基板より0.45mmの高さである。発光面から放出される全光束は100ルーメンである。 The light sources of the examples and comparative examples are those shown in FIG. The upper light emitting surface US is a square having a side of 1.2 mm. The height of the light source including the stage is 0.6 mm and is disposed on the substrate. The light emitting surface SS on the side is 1.2 mm in the X direction and 0.3 mm in the z direction, and is disposed perpendicular to the substrate. The center point P0 of the light emitting surface SS is 0.45 mm higher than the substrate. The total luminous flux emitted from the light emitting surface is 100 lumens.
 図7は、実施例及び比較例の照明装置について、θ1とθ2-θ1との関係を示す図である。図7の横軸はθ1を表し、図7の縦軸はθ2-θ1を表す。また、図7の実線は実施例を表し、図7の破線は比較例を表す。図7によれば、θ1が増加するにしたがってθ2-θ1は減少する。実施例においては、θ1が21度より小さい領域ではθ2-θ1は正であるが、θ1が21度より大きい領域ではθ2-θ1は負である。比較例においては、θ1が9.5度より小さい領域ではθ2-θ1は正であるが、θ1が9.5度より大きい領域ではθ2-θ1は負である。 FIG. 7 is a diagram showing the relationship between θ1 and θ2-θ1 for the illumination devices of the example and the comparative example. The horizontal axis in FIG. 7 represents θ1, and the vertical axis in FIG. 7 represents θ2-θ1. Moreover, the continuous line of FIG. 7 represents an Example, and the broken line of FIG. 7 represents a comparative example. According to FIG. 7, θ2−θ1 decreases as θ1 increases. In the embodiment, θ2-θ1 is positive in the region where θ1 is smaller than 21 degrees, but θ2-θ1 is negative in the region where θ1 is larger than 21 degrees. In the comparative example, θ2-θ1 is positive in the region where θ1 is smaller than 9.5 degrees, but θ2-θ1 is negative in the region where θ1 is larger than 9.5 degrees.
 θ2-θ1が正の場合に、点P0から放射された光線は、入射面を通過後、入射面に到達前と比較して、底面からより遠ざかる方向に進む。したがって、実施例においては、比較例と比較して、点P0から放射された光線のうちより多くの光線が、入射面を通過後、入射面に到達前と比較して、底面からより遠ざかる方向に進む。このため、出射面113に到達する光線が増加し、底面117に到達する光線は減少する。 When θ2−θ1 is positive, the light beam radiated from the point P0 travels further away from the bottom surface after passing through the incident surface and before reaching the incident surface. Therefore, in the embodiment, as compared with the comparative example, more light rays emitted from the point P0 pass through the incident surface and are further away from the bottom surface than before reaching the incident surface. Proceed to For this reason, the light rays reaching the exit surface 113 increase, and the light rays reaching the bottom surface 117 decrease.
 一般的に、θ1が-10度以上の領域で、θ1が増加するにしたがってθ2-θ1はほぼ単調に減少する。入射面の形状は、θ1が15度までの領域でθ2-θ1が正であるように構成されるのが好ましい。 Generally, in the region where θ1 is −10 degrees or more, θ2−θ1 decreases almost monotonously as θ1 increases. The shape of the incident surface is preferably configured so that θ2−θ1 is positive in a region where θ1 is up to 15 degrees.
 図8は、実施例及び比較例の照明装置について、角度θ1と角度θ1の方向の光線に沿った点P0から入射面までの距離Rとの関係を示す図である。図8の横軸はθ1を表し、図8の縦軸は距離Rを表す。また、実線は実施例を示し、点線は比較例を示す。 FIG. 8 is a diagram showing the relationship between the angle θ1 and the distance R from the point P0 along the light beam in the direction of the angle θ1 to the incident surface for the illumination devices of the example and the comparative example. The horizontal axis of FIG. 8 represents θ1, and the vertical axis of FIG. Moreover, a continuous line shows an Example and a dotted line shows a comparative example.
 図9は、実施例及び比較例の照明装置について、点P0と入射面との間の三種類の距離Rm、Rs及びRtを説明するための図である。点P0から放射された光線が入射面に到達する点をP1とする。θ1=0の場合のP0とP1との距離をRs、P1が該入射面の端部に位置する場合のP0とP1との距離をRt、P0と該入射面との最小距離をRmとする。 FIG. 9 is a diagram for explaining three types of distances Rm, Rs, and Rt between the point P0 and the incident surface for the illumination devices of the example and the comparative example. Let P1 be the point where the light beam radiated from the point P0 reaches the incident surface. The distance between P0 and P1 when θ1 = 0 is Rs, the distance between P0 and P1 when P1 is located at the end of the incident surface is Rt, and the minimum distance between P0 and the incident surface is Rm. .
 図8において、実施例のRm、Rs及びRtに対応する点を丸印で示し、比較例のRm、Rs及びRtに対応する点を四角印で示す。 8, points corresponding to Rm, Rs, and Rt of the example are indicated by circles, and points corresponding to Rm, Rs, and Rt of the comparative example are indicated by square marks.
 実施例のRm、Rs及びRtは以下のとおりである。
Rm= 0.860[mm]、その時のθ1=21.36[度]
Rs= 0.967[mm]、その時のθ1=0[度]
Rt = 1.3[mm]、 その時のθ1=-16.08[度]
Rm, Rs, and Rt of an Example are as follows.
Rm = 0.860 [mm], θ1 = 21.36 [degrees] at that time
Rs = 0.967 [mm], θ1 = 0 [degree] at that time
Rt = 1.3 [mm], then θ1 = -16.08 [degree]
 比較例のRm、Rs及びRtは以下のとおりである。
Rm = 0.800[mm]、その時のθ1=9.52[度]
Rs= 0.812[mm]、その時のθ1=0[度]
Rt = 0.947[mm]、その時のθ1=-22.96[度]
したがって、実施例について以下の条件が満たされる。
   0.8 < (Rm/Rs)=0.889< 0.9
   1.2 < (Rt/Rs)=1.345< 1.4
他方、比較例については、以下のように、上記の2個の不等式は満たされない。
   (Rm/Rs)=0.987
   (Rt/Rs)=1.167
Rm, Rs, and Rt of the comparative example are as follows.
Rm = 0.800 [mm], θ1 = 9.52 [degree] at that time
Rs = 0.812 [mm], θ1 = 0 [degree] at that time
Rt = 0.947 [mm], at that time θ1 = −22.96 [degrees]
Therefore, the following conditions are satisfied for the example.
0.8 <(Rm / Rs) = 0.889 <0.9
1.2 <(Rt / Rs) = 1.345 <1.4
On the other hand, for the comparative example, the above two inequalities are not satisfied as follows.
(Rm / Rs) = 0.987
(Rt / Rs) = 1.167
 上記の2個の不等式を満たす場合に、光学素子の中心軸を含む断面において、入射面上の点における接線と中心軸に垂直な方向とのなす角度(鋭角)は、端部に近づくほど大きくなる。このため、実施例の照明装置においては、従来技術の照明装置と比較して、θ1のより広い範囲で、P0から発した光線が入射面を通過後、入射面に到達前と比較して、底面からより遠ざかる方向に進む。したがって、光源の側面から放射された光線のうち、出射面に到達する光線が増加し、底面に到達する光線は減少する。この結果、光源の直上付近の照度の増加を抑え、被照射面の照度をより均一にすることができる。 In the case where the above two inequalities are satisfied, in the cross section including the central axis of the optical element, the angle (acute angle) formed by the tangent at the point on the incident surface and the direction perpendicular to the central axis increases toward the end. Become. Therefore, in the illuminating device of the embodiment, compared with the illuminating device of the prior art, in a wider range of θ1, after the light beam emitted from P0 passes through the incident surface, compared with before reaching the incident surface, Proceed further away from the bottom. Therefore, among the light rays radiated from the side surface of the light source, the light rays that reach the emission surface increase and the light rays that reach the bottom surface decrease. As a result, an increase in illuminance near the light source can be suppressed, and the illuminance on the irradiated surface can be made more uniform.
 図10は、実施例及び比較例の照明装置について、θ1とθ2及びθnとの関係を示す図である。図10の横軸はθ1を表し、図10の縦軸はθ2及びθnを表す。図10において、実線は実施例のθ2を表し、破線は比較例のθ2を表す。一点鎖線は実施例のθnを表し、二点鎖線は比較例のθnを表す。図10によれば、実施例においては、θ1が0以下の領域において、θ2≧θnとなる領域が存在する。具体的に、θ1が-8度以上の領域において、θ2≧θnである。それに対し、比較例においては、θ1が0以下の領域において、θ2≧θnとなる領域は存在しない。θ1が5度以上の領域においてのみ、θ2≧θnである。このように実施例においては、比較例と比較してより多くの光線は出射面に到達するので、比較例と比較して底面およびコバ部で発生する散乱光が低減される。 FIG. 10 is a diagram showing the relationship between θ1, θ2, and θn for the illumination devices of the example and the comparative example. The horizontal axis of FIG. 10 represents θ1, and the vertical axis of FIG. 10 represents θ2 and θn. In FIG. 10, the solid line represents θ2 of the example, and the broken line represents θ2 of the comparative example. A one-dot chain line represents θn of the example, and a two-dot chain line represents θn of the comparative example. According to FIG. 10, in the embodiment, there is a region where θ2 ≧ θn in a region where θ1 is 0 or less. Specifically, θ2 ≧ θn in the region where θ1 is −8 degrees or more. On the other hand, in the comparative example, there is no region where θ2 ≧ θn in the region where θ1 is 0 or less. Only in the region where θ1 is 5 degrees or more, θ2 ≧ θn. As described above, in the embodiment, more light rays reach the exit surface as compared with the comparative example, so that the scattered light generated at the bottom surface and the edge portion is reduced as compared with the comparative example.
 図11は、実施例及び比較例の照明装置による被照射面の照度を示す図である。被照射面は、基板から30ミリメータの位置に基板と平行に配置される。図11の横軸は光軸からの距離を表し、図11の縦軸は照度を表す。照度の単位は、ルーメン毎平方メートル(lm/m)である。図11によれば、実施例の照明装置による照度のピークは、比較例の照明装置による照度のピークと比較して低い。実施例の照明装置においては、比較例の照明装置と比較して、側面発光光束のうち底面およびコバ部の拡散構造に到達する光束の割合が低く、散乱光の発生が抑えられ、照度のピークが低下している。したがって、実施例の照明装置によれば、比較例の照明装置と比較して、より均一な照度分布が得られる。 FIG. 11 is a diagram illustrating the illuminance of the irradiated surface by the illumination devices of the example and the comparative example. The irradiated surface is arranged in parallel with the substrate at a position of 30 mm from the substrate. The horizontal axis in FIG. 11 represents the distance from the optical axis, and the vertical axis in FIG. 11 represents the illuminance. The unit of illuminance is lumens per square meter (lm / m 2 ). According to FIG. 11, the peak of illuminance by the illumination device of the example is lower than the peak of illuminance by the illumination device of the comparative example. In the illumination device of the example, compared with the illumination device of the comparative example, the ratio of the light beam reaching the diffusion structure of the bottom surface and the edge portion of the side light emission light beam is low, the generation of scattered light is suppressed, and the illuminance peak Has fallen. Therefore, according to the illuminating device of an Example, compared with the illuminating device of a comparative example, a more uniform illumination distribution is obtained.
 上述のように、本発明の照明装置においては、光学素子の入射面の形状は、光学素子の中心軸を含む断面において、光源の側面の発光面の高さ方向の中心位置の点P0を基準として定められている。光源の側面の発光面の高さ方向の中心位置の点P0を基準として光学素子の入射面の形状を定めることは、側面の発光面から放出された光線のうち出射面を通過する光線を増加させ、底面に到達する光線を減少させることにより、被照射面の照度の均一性が向上するという発明者の新たな知見に基づいており、従来技術には見られない技術的思想である。 As described above, in the illumination device of the present invention, the shape of the incident surface of the optical element is based on the point P0 of the center position in the height direction of the light emitting surface of the side surface of the light source in the cross section including the central axis of the optical element. It is defined as. Defining the shape of the incident surface of the optical element with reference to the point P0 of the center position in the height direction of the light emitting surface on the side surface of the light source increases the number of rays that pass through the emitting surface among the light rays emitted from the light emitting surface of the side surface. This is based on the new knowledge of the inventor that the uniformity of illuminance on the irradiated surface is improved by reducing the light rays reaching the bottom surface, which is a technical idea not found in the prior art.
 図12は、本発明の一実施形態の照明装置の光学素子を示す図である。図12(a)は、本発明の一実施形態の照明装置の光学素子の透視図である。図12(b)は、本発明の一実施形態の照明装置の光学素子の中心軸を含む断面図である。光学素子は、入射面111、出射面113、底面117、コバ部115、足部1151、ゲート部1153から構成される。入射面111は、底面117に開口を有する凹部の面である。コバ部115は、出射面113の周縁部と底面117の周縁部とを接続する。コバ部115には、光学素子を基板に固定するための足部1151が備わる。コバ部115には、光学素子の射出成形による製造の際の樹脂の流入口であるゲート部1153がさらに備わる。底面117及びコバ部115は、シボ加工を施すなど拡散機能を備えるように形成される。 FIG. 12 is a diagram showing an optical element of the illumination device according to the embodiment of the present invention. Fig.12 (a) is a perspective view of the optical element of the illuminating device of one Embodiment of this invention. FIG. 12B is a cross-sectional view including the central axis of the optical element of the illumination device according to the embodiment of the present invention. The optical element includes an entrance surface 111, an exit surface 113, a bottom surface 117, an edge portion 115, a foot portion 1151, and a gate portion 1153. The incident surface 111 is a concave surface having an opening in the bottom surface 117. The edge portion 115 connects the peripheral portion of the emission surface 113 and the peripheral portion of the bottom surface 117. The edge portion 115 is provided with a foot portion 1151 for fixing the optical element to the substrate. The edge portion 115 is further provided with a gate portion 1153 which is a resin inlet when the optical element is manufactured by injection molding. The bottom surface 117 and the edge portion 115 are formed so as to have a diffusing function such as applying a texture.
 図13は、射出成形によって製造された光学素子の形状の、設計された形状に対する誤差を説明するための図である。実線で示された底面は、設計された光学素子の底面を示し、点線で示された底面は、射出成形によって製造された光学素子の底面を示す。射出成形プロセスの樹脂の収縮の際に、図13に示すような誤差Δzが生じる場合がある。このような場合に、入射面111Aの周縁部の形状が変化し、光源150の側面から放射された光束のうち、底面117A及びコバ部115Aに到達する光束が増加してしまう。これを防止するため、足部1151Aの高さLを短くする対策が考えられる。しかし、誤差Δzが足部1151Aの高さLよりも大きな場合、高さLの変更だけでは入射面111Aの周縁部と基板200との隙間量を設計値に調整することができない。その結果、隙間量を設計値に調整しようとすると、光学素子の底面に対応する金型のキャビブロックを補正することになり、コストや時間がかかる。 FIG. 13 is a diagram for explaining an error of the shape of the optical element manufactured by injection molding with respect to the designed shape. The bottom surface indicated by the solid line indicates the bottom surface of the designed optical element, and the bottom surface indicated by the dotted line indicates the bottom surface of the optical element manufactured by injection molding. When the resin shrinks in the injection molding process, an error Δz as shown in FIG. 13 may occur. In such a case, the shape of the peripheral portion of the incident surface 111A changes, and among the light beams emitted from the side surface of the light source 150, the light beam reaching the bottom surface 117A and the edge portion 115A increases. In order to prevent this, a measure for shortening the height L of the foot 1151A can be considered. However, when the error Δz is larger than the height L of the foot portion 1151A, the gap amount between the peripheral portion of the incident surface 111A and the substrate 200 cannot be adjusted to the design value only by changing the height L. As a result, when the gap amount is adjusted to the design value, the mold block corresponding to the bottom surface of the optical element is corrected, which requires cost and time.
 図14は、本発明の一実施形態の照明装置の光学素子の形状を示す図である。図14は、光学素子の中心軸を含む断面を示す図である。光学素子の中心軸を含む断面において、光学素子の底面を示す直線が中心軸となす角度は、90度より小さくなるように光学素子の形状が定められている。すなわち、光学素子を基板200に配置した場合に、底面117Bのコバ部115Bの近傍である、中心軸からの距離がrbの位置における底面117Bと基板200との間の距離d2は、底面117Bの入射面111Bの近傍である、中心軸からの距離がraの位置における底面117Bと基板200との間の距離d1よりも大きくなるように光学素子の形状が定められている。光学素子の形状を図14に示すように定めることにより、射出成形プロセスの樹脂の収縮のために、入射面の端部近傍の底面と基板との隙間量の設計値に対する誤差Δzが生じても、足部1151Bの高さを短くすることによって入射面111Bの周縁部と基板との隙間量を設計値に調整することができる。 FIG. 14 is a diagram showing the shape of the optical element of the illumination device according to the embodiment of the present invention. FIG. 14 is a view showing a cross section including the central axis of the optical element. In the cross section including the central axis of the optical element, the shape of the optical element is determined so that the angle formed by the straight line indicating the bottom surface of the optical element and the central axis is smaller than 90 degrees. That is, when the optical element is arranged on the substrate 200, the distance d2 between the bottom surface 117B and the substrate 200 at the position where the distance from the central axis is rb, which is in the vicinity of the edge portion 115B of the bottom surface 117B, is equal to that of the bottom surface 117B. The shape of the optical element is determined so that the distance from the central axis in the vicinity of the incident surface 111B is larger than the distance d1 between the bottom surface 117B and the substrate 200 at the position of ra. By determining the shape of the optical element as shown in FIG. 14, even if an error Δz with respect to the design value of the gap between the bottom surface near the end of the incident surface and the substrate occurs due to resin shrinkage in the injection molding process. By shortening the height of the foot portion 1151B, the gap amount between the peripheral portion of the incident surface 111B and the substrate can be adjusted to the design value.
 上述の説明において、入射面及び出射面の形状は、光学素子の中心軸に関して対象であるとした。他の実施形態において、中心軸の周りに複数の区間を設け、が複数の区間における入射面及び出射面の形状が異なるように構成してもよい。 In the above description, it is assumed that the shapes of the entrance surface and the exit surface are objects with respect to the central axis of the optical element. In another embodiment, a plurality of sections may be provided around the central axis, and the shapes of the entrance surface and the exit surface in the plurality of sections may be different.

Claims (6)

  1.  基板に配置された光源と、
     該光源を覆い、入射面と出射面とを備えた光学素子と、を備えた照明装置であって、
     該入射面は、該光学素子の底面に開口した凹部の表面であり、該出射面は、該底面の反対側に備わり、
     該光源は、上面及び側面から光を発するように構成され、
     該光学素子の中心軸を含む断面において、該光源の側面の発光部分の中心軸方向の中心位置をP0とし、P0から発した光線が該中心軸と垂直な方向となす、反時計回りの角度をθ1とし、該光線が、該入射面を通過した後、該中心軸と垂直な方向となす、反時計回りの角度をθ2として、θ1が15度のときにθ2-θ1は正であり、θ1が30度のときにθ2-θ1は負であり、θ1が15度から30度に増加するにしたがって、θ2-θ1がほぼ単調に減少するように該入射面が構成された照明装置。
    A light source disposed on the substrate;
    An illumination device that covers the light source and includes an optical element having an entrance surface and an exit surface,
    The incident surface is a surface of a recess opened in the bottom surface of the optical element, and the exit surface is provided on the opposite side of the bottom surface,
    The light source is configured to emit light from an upper surface and a side surface;
    In the cross section including the central axis of the optical element, the central position in the central axis direction of the light emitting portion on the side surface of the light source is P0, and the light emitted from P0 is in the direction perpendicular to the central axis. Is θ1, and the light beam passes through the incident surface and then becomes a direction perpendicular to the central axis. The counterclockwise angle is θ2, and θ2-θ1 is positive when θ1 is 15 degrees. An illuminating device in which the incident surface is configured such that θ2−θ1 is negative when θ1 is 30 degrees and θ2−θ1 decreases substantially monotonously as θ1 increases from 15 degrees to 30 degrees.
  2.  基板に配置された光源と、
     該光源を覆い、入射面と出射面とを備えた光学素子と、を備えた照明装置であって、
     該入射面は、該光学素子の底面に開口した凹部の表面であり、該出射面は、該底面の反対側に備わり、
     該光源は、上面及び側面から光を発するように構成され、
     該光学素子の中心軸を含む断面において、該光源の側面の発光部分の中心軸方向の中心位置をP0とし、P0から発した光線が該中心軸と垂直な方向となす、反時計回りの角度をθ1とし、該光線が、該入射面に到達する点をP1とし、θ1=0の場合のP0とP1との距離をRs、P1が該入射面の端部に位置する場合のP0とP1との距離をRt、P0と該入射面との最小距離をRmとして、
       0.8 < Rm/Rs < 0.9
       1.2 < Rt/Rs < 1.4
    を満たすように該入射面が構成された照明装置。
    A light source disposed on the substrate;
    An illumination device that covers the light source and includes an optical element having an entrance surface and an exit surface,
    The incident surface is a surface of a recess opened in the bottom surface of the optical element, and the exit surface is provided on the opposite side of the bottom surface,
    The light source is configured to emit light from an upper surface and a side surface;
    In the cross section including the central axis of the optical element, the central position in the central axis direction of the light emitting portion on the side surface of the light source is P0, and the light emitted from P0 is in the direction perpendicular to the central axis. Is θ1, and the point where the light ray reaches the incident surface is P1, the distance between P0 and P1 when θ1 = 0 is Rs, and P0 and P1 when P1 is located at the end of the incident surface Rt, and the minimum distance between P0 and the incident surface as Rm,
    0.8 <Rm / Rs <0.9
    1.2 <Rt / Rs <1.4
    An illumination device in which the incident surface is configured to satisfy the above.
  3.  基板に配置された光源と、
     該光源を覆い、入射面と出射面とを備えた光学素子と、を備えた照明装置であって、
     該入射面は、該光学素子の底面に開口した凹部の表面であり、該出射面は、該底面の反対側に備わり、
     該光源は、上面及び側面から光を発するように構成され、
     該光学素子の中心軸を含む断面において、該光源の側面の発光部分の中心軸方向の中心位置をP0とし、P0から発した光線が該中心軸と垂直な方向となす、反時計回りの角度をθ1とし、該光線が、該入射面に到達する点をP1とし、該中心軸から該出射面端部までの該中心軸と垂直な方向の距離をr2、該基板から該出射面端部までの該中心軸方向の距離をh2とし、該中心軸からP1までの該中心軸と垂直な方向の距離をr1、該基板からP1までの該中心軸方向の距離をh1として、θ1が0以下の領域において
    Figure JPOXMLDOC01-appb-M000001
    を満たすP1が存在するように該入射面が構成された照明装置。
    A light source disposed on the substrate;
    An illumination device that covers the light source and includes an optical element having an entrance surface and an exit surface,
    The incident surface is a surface of a recess opened in the bottom surface of the optical element, and the exit surface is provided on the opposite side of the bottom surface,
    The light source is configured to emit light from an upper surface and a side surface;
    In the cross section including the central axis of the optical element, the central position in the central axis direction of the light emitting portion on the side surface of the light source is P0, and the light emitted from P0 is in the direction perpendicular to the central axis. Is a point where the light beam reaches the incident surface, P1, a distance from the central axis to the exit surface end in the direction perpendicular to the central axis is r2, and the exit surface end from the substrate Θ1 is 0, where h2 is the distance in the direction of the central axis up to h1, r1 is the distance in the direction perpendicular to the central axis from the central axis to P1, and h1 is the distance in the direction of the central axis from the substrate to P1. In the following areas
    Figure JPOXMLDOC01-appb-M000001
    The illumination device in which the incident surface is configured such that P1 that satisfies the above condition exists.
  4.  該底面と該出射面との間にコバ部をさらに備え、該底面と該コバ部とは拡散面である請求項1から3のいずれかに記載の照明装置。 The lighting device according to any one of claims 1 to 3, further comprising an edge portion between the bottom surface and the exit surface, wherein the bottom surface and the edge portion are diffusion surfaces.
  5.  該光学素子の該中心軸を含む断面において、該光学素子の底面を示す直線が該中心軸となす角度が、90度より小さくなるように該光学素子の形状が定められている請求項1から4のいずれかに記載の照明装置。 The shape of the optical element is determined so that an angle formed by a straight line indicating the bottom surface of the optical element and the central axis is smaller than 90 degrees in a cross section including the central axis of the optical element. 4. The lighting device according to any one of 4.
  6.  該入射面及び該出射面の形状が、該中心軸に関して対称であるように構成された請求項1から5のいずれかに記載の照明装置。 The illumination device according to any one of claims 1 to 5, wherein the shapes of the entrance surface and the exit surface are symmetric with respect to the central axis.
PCT/JP2016/061115 2015-04-10 2016-04-05 Illumination device WO2016163357A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017510988A JPWO2016163357A1 (en) 2015-04-10 2016-04-05 Lighting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562145722P 2015-04-10 2015-04-10
US62/145,722 2015-04-10

Publications (1)

Publication Number Publication Date
WO2016163357A1 true WO2016163357A1 (en) 2016-10-13

Family

ID=57072673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061115 WO2016163357A1 (en) 2015-04-10 2016-04-05 Illumination device

Country Status (2)

Country Link
JP (1) JPWO2016163357A1 (en)
WO (1) WO2016163357A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019049871A1 (en) * 2017-09-06 2019-03-14 株式会社エンプラス Light emitting device, surface light source device and display device
RU2747880C1 (en) * 2020-11-30 2021-05-17 Федеральное бюджетное учреждение науки «Центральный научно-исследовательский институт эпидемиологии» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (ФБУН ЦНИИ Эпидемиологии Роспотребнадзора) Method for detecting dna of john cunningham virus (jcpyv) at ultra-low concentrations and specific oligonucleotides for use in method
JP7383465B2 (en) 2019-11-29 2023-11-20 株式会社エンプラス Light flux control member, light emitting device, surface light source device, and display device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014024681A1 (en) * 2012-08-10 2014-02-13 コニカミノルタ株式会社 Optical element for led and led illumination device
JP5555927B2 (en) * 2011-03-25 2014-07-23 ナルックス株式会社 Lighting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5555927B2 (en) * 2011-03-25 2014-07-23 ナルックス株式会社 Lighting device
WO2014024681A1 (en) * 2012-08-10 2014-02-13 コニカミノルタ株式会社 Optical element for led and led illumination device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019049871A1 (en) * 2017-09-06 2019-03-14 株式会社エンプラス Light emitting device, surface light source device and display device
JP2019046751A (en) * 2017-09-06 2019-03-22 株式会社エンプラス Light emitting device, surface light source device and display device
JP7011425B2 (en) 2017-09-06 2022-02-10 株式会社エンプラス Light emitting device, surface light source device and display device
JP7383465B2 (en) 2019-11-29 2023-11-20 株式会社エンプラス Light flux control member, light emitting device, surface light source device, and display device
RU2747880C1 (en) * 2020-11-30 2021-05-17 Федеральное бюджетное учреждение науки «Центральный научно-исследовательский институт эпидемиологии» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (ФБУН ЦНИИ Эпидемиологии Роспотребнадзора) Method for detecting dna of john cunningham virus (jcpyv) at ultra-low concentrations and specific oligonucleotides for use in method

Also Published As

Publication number Publication date
JPWO2016163357A1 (en) 2018-02-08

Similar Documents

Publication Publication Date Title
KR101615799B1 (en) Illumination device
JP5081988B2 (en) Lighting lens, light emitting device, surface light source, and liquid crystal display device
JP6111110B2 (en) Luminous flux control member, light emitting device, surface light source device, and display device
WO2011007733A1 (en) Light emitting device, luminous flux control member, and illuminating device provided with light emitting device
JP5957364B2 (en) Luminous flux control member, light emitting device, surface light source device, and display device
JP5342939B2 (en) Lighting lens, light emitting device, surface light source, and liquid crystal display device
US10078245B2 (en) Light flux controlling member having a recessed incidence surface and annular groove, light-emitting device, surface light source device and display device
US10634296B2 (en) Luminous flux control member, light-emitting device, planar light source device, and display device
JP6383652B2 (en) Light emitting device and light flux controlling member
US20190285245A1 (en) Light bundle control member, light emitting device, and illuminating device
WO2016163357A1 (en) Illumination device
JP2018181726A (en) Luminous flux control member, light emitting device, surface light source device and display device
JP5555927B2 (en) Lighting device
JP2010186142A (en) Lens for illumination, light emitter, surface light source, and liquid crystal display device
TWI621880B (en) Optical device
US10260710B2 (en) Reflective diffusion lens and lighting installation including the reflective diffusion lens
JP5342938B2 (en) Lighting lens, light emitting device, surface light source, and liquid crystal display device
KR102435736B1 (en) Reflective diffusing lens and light emitting module comprising the same
TW201639191A (en) Lighting apparatus and lens structure thereof
JP2018037257A (en) Surface light source device and liquid crystal display device
JP2012145829A (en) Light-emitting device and luminaire
JP2019220266A (en) Surface light source device and display
WO2017038758A1 (en) Luminous flux control member, light-emitting device, planar light source device, and display device
WO2018186413A1 (en) Light guide body and planar light-emitting module
JP2024025239A (en) Optical components and lighting devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16776523

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017510988

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16776523

Country of ref document: EP

Kind code of ref document: A1