WO2021193493A1 - Velocity measurement device and velocity measurement method - Google Patents

Velocity measurement device and velocity measurement method Download PDF

Info

Publication number
WO2021193493A1
WO2021193493A1 PCT/JP2021/011621 JP2021011621W WO2021193493A1 WO 2021193493 A1 WO2021193493 A1 WO 2021193493A1 JP 2021011621 W JP2021011621 W JP 2021011621W WO 2021193493 A1 WO2021193493 A1 WO 2021193493A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
value
measuring device
moving body
processor
Prior art date
Application number
PCT/JP2021/011621
Other languages
French (fr)
Japanese (ja)
Inventor
偉傑 劉
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202180022887.2A priority Critical patent/CN115298567A/en
Publication of WO2021193493A1 publication Critical patent/WO2021193493A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/91Radar or analogous systems specially adapted for specific applications for traffic control
    • G01S13/92Radar or analogous systems specially adapted for specific applications for traffic control for velocity measurement
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/04Detecting movement of traffic to be counted or controlled using optical or ultrasonic detectors

Definitions

  • the present disclosure relates to a speed measuring device and a speed measuring method for measuring the speed of a moving body moving on a road using a radar.
  • radar devices that detect moving objects (vehicles, people, animals, etc.) on the road are expected to be used as so-called infrastructure radars in automatic vehicle driving systems in the future.
  • the radar device is installed on a support of a signal lamp installed at an intersection, a support of a street light installed on the road side of a road, or the like. Therefore, the installation height of the radar device becomes high.
  • the Doppler speed is acquired as it is as the speed of the moving body, and when the radar device is installed in a high place, the error with respect to the actual speed becomes large.
  • the influence of the radar installation height is small, but when trying to meet the demand for miniaturization of the device, The influence of the installation height of the radar becomes large.
  • the main object of the present disclosure is to provide a speed measuring device and a speed measuring method capable of accurately measuring the speed of a moving body while suppressing the influence of the installation height.
  • the speed measuring device of the present disclosure is a speed measuring device installed around a road and measuring the speed of a moving body moving along the road, and detects a moving body on the road to detect a distance.
  • the radar unit that outputs the detected value of the azimuth and the detected value of the speed which is the Doppler speed, and represents the relationship between the characteristic quantity given by the product of the distance and the speed at a predetermined speed and the azimuth.
  • the storage unit that stores the characteristic information, the measured value of the characteristic quantity obtained by multiplying the detected value of the distance and the detected value of the speed, the characteristic information, and the detected value of the azimuth angle.
  • the configuration includes a processor that estimates the speed of the moving body.
  • the speed measuring method of the present disclosure is a speed measuring method in which an information processing apparatus is made to perform a process of measuring the speed of a moving body moving along a road, and a processor of the information processing apparatus moves on the road.
  • the distance detection value, the azimuth angle detection value, and the speed detection value which is the Doppler speed, are acquired from the radar unit that detects the body, and the characteristic quantity is multiplied by the distance detection value and the speed detection value.
  • the estimated value of the speed is calculated, and the speed is estimated based on the characteristic information indicating the relationship between the azimuth angle and the characteristic quantity at a predetermined speed, the measured value of the characteristic quantity, and the detected value of the azimuth angle. Is configured to be acquired.
  • the characteristic quantity given by the product of the distance and the velocity does not depend on the vertical positional relationship between the radar and the moving body. Therefore, the velocity of the moving body is estimated based on the characteristic quantity. Therefore, it is possible to estimate the speed independent of the height of the moving body. As a result, the speed of the moving body can be measured accurately while suppressing the influence of the installation height.
  • a side view showing a state of speed measurement by the speed measuring device 1 according to the first embodiment A side view showing a state of speed measurement by the speed measuring device 1 according to the first embodiment.
  • Explanatory drawing which shows the outline of the process performed by the speed measuring apparatus 1 which concerns on 1st Embodiment
  • Explanatory drawing which shows the outline of the process performed by the speed measuring apparatus 1 which concerns on 1st Embodiment Explanatory drawing which shows the outline of the process performed by the speed measuring apparatus 1 which concerns on 1st Embodiment
  • a flow chart showing a procedure of processing performed by the speed measuring device 1 according to the first embodiment Explanatory drawing which shows the outline of the process performed by the speed measuring apparatus 1 which concerns on 2nd Embodiment
  • a block diagram showing a schematic configuration of the speed measuring device 1 according to the second embodiment A flow chart showing a procedure of processing performed by the speed measuring device 1 according to the second embodiment.
  • Explanatory drawing which shows characteristic information which concerns on 3rd Embodiment A block diagram showing a schematic configuration of the speed measuring device 1 according to the third embodiment.
  • the first invention made to solve the above problems is a speed measuring device installed around a road and measuring the speed of a moving body moving along the road, and detects the moving body on the road. Then, the radar unit that outputs the detected value of the distance and the azimuth, and the detected value of the speed that is the Doppler speed, the characteristic quantity given by the product of the distance and the speed at a predetermined speed, and the above.
  • a storage unit that stores characteristic information indicating the relationship with the azimuth, a measured value of a characteristic amount obtained by multiplying the detected value of the distance and the detected value of the speed, the characteristic information, and the azimuth.
  • the configuration includes a processor that estimates the speed of the moving body based on the detected value.
  • the characteristic quantity given by the product of the distance and the velocity does not depend on the vertical positional relationship between the radar and the moving body, so by estimating the velocity of the moving body based on the characteristic quantity, Velocity estimation that does not depend on the height of the moving object can be performed. As a result, the speed of the moving body can be measured accurately while suppressing the influence of the installation height.
  • a change exceeding the permissible limit appears in the height angle when the moving object is viewed from the radar unit according to the expected variation in the height of the moving object. It shall be configured to be installed at a height.
  • the processor is configured to acquire an estimated speed as a result of estimating the speed based on the characteristic information for each of a plurality of speeds.
  • the processor is on a plane having the azimuth angle and the characteristic quantity as coordinate axes based on the detection value of the distance, the detection value of the azimuth angle, and the detection value of the speed.
  • the position of the measurement point is acquired, and among the plurality of characteristic curves corresponding to the characteristic information, the two characteristic curves closest to the measurement point are specified, and the positional relationship between the characteristic curve and the measurement point is specified.
  • the estimated value of the speed is acquired by the interpolation method based on.
  • the processor statistically processes a plurality of the speed estimates acquired by executing the detection process of the radar unit a plurality of times, and obtains the final speed estimate.
  • the configuration is to be used.
  • the statistical processing is, for example, processing such as averaging.
  • the sixth invention is configured such that the processor acquires a speed determination result regarding whether or not the speed limit is exceeded as an estimation result of the speed based on the characteristic information at the speed limit.
  • the seventh invention is a configuration in which the processor integrates a plurality of speed determination results acquired by executing the detection process of the radar unit a plurality of times to acquire the final speed determination result. And.
  • the processor determines the type of the moving body detected by the radar unit, and acquires the speed estimation result based on the characteristic information corresponding to the type of the moving body. And.
  • the velocities of various moving objects can be estimated with high accuracy.
  • the ninth invention is a speed measuring method in which an information processing apparatus is made to perform a process of measuring the speed of a moving body moving along a road, and a processor of the information processing device controls a moving body on the road.
  • the distance detection value, the azimuth detection value, and the speed detection value, which is the Doppler speed, are acquired from the detection radar unit, and the characteristic quantity is measured by multiplying the distance detection value and the speed detection value.
  • the value is calculated, and the estimation result of the speed is acquired based on the characteristic information showing the relationship between the azimuth angle and the characteristic quantity at a predetermined speed, the measured value of the characteristic quantity, and the detected value of the azimuth angle.
  • the configuration is to be used.
  • FIG. 1 is a side view showing a state of speed measurement by the speed measuring device 1 according to the first embodiment.
  • FIG. 2 is a side view showing a state of speed measurement by the speed measuring device 1 when the moving body is different.
  • the speed measuring device 1 detects a moving body moving on the road by a radar and measures the speed of the moving body.
  • the speed measuring device 1 is installed at a high place above the road, for example, at a height of 5 to 6 m from the ground.
  • the speed measuring device 1 is attached to a support of a signal light device installed at an intersection, a support of a street light installed on the road side of a road, a support of a vehicle detector installed on the road side of a road, or the like. ..
  • the speed detection value V m (Doppler velocity) is output.
  • the detected value V m of this speed is a speed based on the radar of the speed measuring device 1, and is different from the actual speed V of the moving body moving on the road, and there is an error.
  • the error of the speed detection value V m becomes large.
  • the error of the speed detection value V m depends on the height H of the moving body. For example, as shown in FIGS. 2A and 2B, even when a small two-wheeled vehicle and a large four-wheeled vehicle travel at the same speed V, the height H of the moving body is different. As a result, the high and low angles ⁇ when the moving body is viewed from the radar of the speed measuring device 1 are different, so that the speed detection value V m is also different.
  • the actual speed V of the moving body can be estimated from the speed detection value V m (Doppler speed).
  • the height angle and the ground position depend on the height H of the moving body, the height angle and the ground position cannot be estimated without knowing the height H of the moving body.
  • the speed is estimated independently of the height of the moving body, and the speed V of the moving body can be estimated accurately even when the speed measuring device 1 is installed at a high position.
  • the height of the moving body is estimated by estimating the speed of the moving body based on a variable that does not depend on the vertical positional relationship between the radar and the moving body based only on the detection result of the two-dimensional radar. It shall be possible to perform speed estimation that does not depend on the radar.
  • the speed measuring device 1 when the speed measuring device 1 is installed at a height such that a change exceeding the permissible limit according to the required measurement accuracy appears at a high and low angle according to the expected variation in the height of the moving body.
  • the high / low angle ⁇ is a margin angle ⁇ (depression angle) in the vertical direction in the direction in which the moving object is viewed from the radar of the speed measuring device 1 with reference to the horizontal direction.
  • FIG. 3 is a bird's-eye view showing an outline of the processing performed by the speed measuring device 1.
  • FIG. 4 is a plan view showing an outline of the processing performed by the speed measuring device 1.
  • V m V g ⁇ sin ( ⁇ ) (Equation 2)
  • rV value (r g ⁇ V g r m ⁇ V m) ( characteristic amount), the detection value V of the detection value r m and the speed of the distance is the detection result of the radar It is obtained from m (Doppler speed). Further, the rV value does not depend on the high / low angle ⁇ . That is, the rV value does not depend on the height H of the moving body, and is the same value for both a small two-wheeled vehicle and a large four-wheeled vehicle. Therefore, if the speed of the moving body is estimated based on the rV value, the speed estimation that does not depend on the height H of the moving body can be performed.
  • the detected value ⁇ m of the azimuth angle changes according to the change in the position of the moving body.
  • the radar of the speed measuring device 1 since the radar of the speed measuring device 1 is fixed, the positional relationship between the radar and the road does not change. Therefore, when a moving body moving on the road is detected by the radar, the position of the moving body can be specified based on the detection value ⁇ m of the azimuth angle as the detection result. Further, the horizontal distance r g from the radar to the moving body varies in accordance with the detected value theta m azimuth. Therefore, the rV value is a variable that depends on the detected value ⁇ m of the azimuth angle.
  • 5 and 6 are explanatory views showing an outline of the processing performed by the speed measuring device 1.
  • the horizontal axis (first axis) and the azimuth angle theta, the vertical axis (the second axis) to rV value (r g ⁇ V g r m ⁇ V m) and the theta-rV plane
  • a ⁇ rV curve (characteristic curve) representing the relationship between the azimuth angle ⁇ and the rV value is set.
  • the rV value changes according to the actual speed of the moving body, but assuming a state in which the moving body is moving at a constant speed, a ⁇ -rV curve (characteristic curve) is set for each predetermined speed. Will be done.
  • the fast ⁇ -rV curve is located above the ⁇ -rV plane.
  • the example shown in FIG. 5 is a case where the actual speeds of the moving body are 40 km / h, 50 km / h, and 60 km / h, and the ⁇ -rV curve for each speed is drawn on the ⁇ -rV plane.
  • the example shown in FIG. 5 is a case where the measurement point P m overlaps with any of the ⁇ rV curves for each velocity.
  • the velocity of the ⁇ rV curve on which the measurement points P m overlap is acquired as an estimated velocity value.
  • the example shown in FIG. 6A is a case where the measurement point P m is between the ⁇ -rV curve of the velocity V 1 and the ⁇ -rV curve of the velocity V 2 .
  • the estimated value of the velocity is obtained by the interpolation method (interpolation method).
  • the estimated value of the velocity is acquired by the following equation based on the velocities V 1 and V 2 and the interpolation coefficient a.
  • V a ⁇ V 1 + (1-a) ⁇ V 2 (Equation 5)
  • the interpolation method may be performed by specifying the two rV curves immediately above and below the measurement point P m. ..
  • the example shown in FIG. 6B is a case where the radar detection process is performed a plurality of times on the same moving body.
  • the estimated value of the final speed is calculated. This makes it possible to improve the accuracy of the speed estimate.
  • the measurement point P mi of each time corresponds to the measurement timing. Obtained in a lined up state at intervals.
  • a speed measurement section is set, and a moving body is detected within the speed measurement section to measure the speed. This velocity measurement section is in the range of the azimuth angle ⁇ on the ⁇ rV plane.
  • FIGS. 3 and 4 assume a straight and horizontal road, the road is not limited to a straight line and is not limited to a horizontal road. Even if the road is curved or sloped, the speed can be estimated by the same procedure if the characteristic information suitable for the site is generated.
  • FIG. 7 is a block diagram showing a schematic configuration of the speed measuring device 1.
  • the speed measuring device 1 includes a radar unit 11, a storage unit 12, and a processor 13.
  • the radar unit 11 includes an antenna 21 and a signal processing unit 22.
  • the antenna 21 radiates high-frequency radio waves and captures the reflected waves.
  • the signal processing unit 22 signals the reflected wave captured by the antenna 21, and includes devices such as an ADC (Analog to Digital Converter) and a DSP (Digital Signal Processor).
  • the signal processing unit 22, the detection result as a detection value r m of the distance, and outputs the detected value of the azimuth angle theta m, and the speed detection value V m (Doppler velocity).
  • the storage unit 12 stores a program or the like executed by the processor 13.
  • the storage unit 12 includes a device such as a memory.
  • the processor 13 performs various processes related to speed measurement by executing the program stored in the storage unit 12. In the present embodiment, the processor 13 performs detection result acquisition processing, measurement point position acquisition processing, speed estimation processing, and the like.
  • the processor 13 includes a device such as a CPU.
  • processor 13 as a detection result from the radar unit 11, the detection value r m of the distance, acquires the detection value of the azimuth angle theta m, and the speed detection value V m (Doppler velocity).
  • processor 13 the detection value r m of the distance, the detection value theta m azimuth, and based on the detected values V m of the velocity of the measurement point P m on the theta-rV plane coordinates acquires ( ⁇ m, r m ⁇ V m).
  • processor 13 the coordinates of the measurement point P m ( ⁇ m, r m ⁇ V m), based on the positional relationship between the theta-rV curve for each speed, the upper and lower in the immediate vicinity of the measuring point Identify the ⁇ -rV curve. Then, the processor 13 calculates the estimated value of the speed as the estimation result of the speed by the interpolation method (interpolation method) based on the speed of the upper and lower ⁇ -rV curves.
  • interpolation method interpolation method
  • the speed measuring device 1 may have a configuration in which the radar unit 11, the storage unit 12, the processor 13 and the like are housed in one housing, but the controller and the radar unit including the storage unit 12 and the processor 13 and the like are included.
  • the configuration may be such that 11 is a separate body.
  • the speed measuring device 1 is connected to a server (information processing device) (not shown) via a communication path such as a network
  • a process related to speed measurement executed by the processor 13 specifically, a process related to speed measurement.
  • Detection result acquisition processing, measurement point position acquisition processing, speed estimation processing, and the like may be performed on the server.
  • the function of the speed measuring device 1 may be mounted on the roadside machine.
  • the characteristic information generation device 2 is composed of a PC (information processing device).
  • the characteristic information differs depending on the installation environment of the speed measuring device 1. Therefore, characteristic information is generated for each speed measuring device 1. That is, the characteristic information generation device 2 installs the local road condition and the speed measuring device 1 by using the learning information collected by actually moving the moving body on the local road on which the speed measuring device 1 is installed. Generate characteristic information suitable for the state.
  • FIG. 8 is a flow chart showing a procedure of processing performed by the speed measuring device 1. Note that FIG. 8 is an example in which the detection process of the radar unit 11 is performed a plurality of times on the same moving body as shown in FIG. 6 (B).
  • the processor 13 repeats the measurement process a predetermined number of times (n times) (ST101 to ST106).
  • the processor 13 as a detection result from the radar unit 11, the detection value r m of the distance, acquires the detection value of the azimuth angle theta m, and the speed detection value V m (Doppler velocity) (Detection Result acquisition process) (ST102).
  • the processor 13 the distance detection value r m, based on the detected value theta m, and the speed detection value V m of the azimuth angle, theta-rV measurement point P m on the plane coordinates (theta m, r m ⁇ V m) to get (measurement point position acquisition processing) (ST 103).
  • the processor 13 calculates the estimated value of the speed by the interpolation method (interpolation method) based on the speed of the upper and lower ⁇ -rV curves (speed estimation process) (ST105).
  • FIG. 9 is an explanatory diagram showing an outline of the process performed by the speed measuring device 1 according to the second embodiment.
  • FIG. 10 is a block diagram showing a schematic configuration of the speed measuring device 1 according to the second embodiment.
  • the moving speed of the moving body is acquired, but in the present embodiment, the speed is exceeded (speed violation), that is, whether or not the speed of the moving body exceeds the speed limit (threshold value). Is determined. Specifically, it is determined whether the measurement point P m is located above or below the ⁇ rV curve corresponding to the speed limit. That is, when the measurement point P m is located on the upper side of the ⁇ rV curve corresponding to the speed limit, it is determined that the speed is exceeded. On the other hand, when the measurement point P m is located below or directly above the ⁇ rV curve corresponding to the speed limit, it is determined that the speed is not exceeded.
  • speed violation that is, whether or not the speed of the moving body exceeds the speed limit (threshold value).
  • the detection process of the moving object and the overspeed determination process by the radar may be performed a plurality of times.
  • the determination results of a plurality of times are integrated to obtain the final determination result of overspeed.
  • the determination result may be determined by a majority vote. That is, the number of judgment results that the speed is excessive is compared with the number of judgment results that the speed is not excessive, and the judgment result having a large number of times is determined as the final judgment result.
  • the configuration of the speed measuring device 1 is the same as that of the first embodiment (see FIG. 7). Further, the storage unit 12 stores characteristic information corresponding to the speed limit created in advance.
  • the processor 13 performs the detection result acquisition process and the measurement point position acquisition process as in the first embodiment, but performs the speed excess determination process instead of the speed estimation process.
  • processor 13 As a result of estimation of speed, whether the overspeed, specifically, the measuring point P m is located above or below the theta-rV curve corresponding to the speed limit Is determined.
  • FIG. 11 is a flow chart showing a procedure of processing performed by the speed measuring device 1.
  • the processor 13 repeats the measurement process a predetermined number of times (n times) (ST101 to ST111).
  • This measurement process first, the processor 13, as a detection result from the radar unit 11, the detection value r m of the distance, acquires the detection value of the azimuth angle theta m, and the speed detection value V m (Doppler velocity) (ST 102 ).
  • the processor 13 the distance detection value r m, based on the detected value theta m, and the speed detection value V m of the azimuth angle, theta-rV measurement point P m on the plane coordinates (theta m, r m ⁇ V m) to get (measurement point position acquisition processing) (ST 103).
  • the processor 13 determines whether the measurement point P m is located above or below the ⁇ rV curve corresponding to the speed limit (ST111).
  • the processor 13 When the above determination process is repeated a predetermined number of determinations (n times) and the determination result of the overspeed of each time is acquired, the processor 13 then integrates the determination result of the overspeed of each time and finally. (ST113). Then, the processor 13 outputs the determination result of overspeed (ST114).
  • the vehicle number is obtained by reading the license plate, and the vehicle on the road is photographed with a camera in order to obtain the driver's face image.
  • a vehicle on the road is constantly photographed by a camera, the photographed image is temporarily accumulated for a predetermined time, and when the speed measuring device 1 detects a vehicle that exceeds the speed, the vehicle is photographed.
  • the captured image of the period is extracted, stored in an appropriate storage device, and sent to the monitoring center.
  • FIG. 12 is an explanatory diagram showing characteristic information according to the third embodiment.
  • FIG. 13 is a block diagram showing a schematic configuration of the speed measuring device 1 according to the third embodiment.
  • the moving speed of the moving body varies greatly depending on the type of moving body.
  • the moving speed differs greatly between a vehicle and a person. Therefore, in the present embodiment, characteristic information (table or mathematical formula corresponding to the ⁇ rV curve) is created in advance for each type of moving body. Then, at the time of speed measurement, the type of the moving body to be measured is determined, and the speed is estimated using the characteristic information according to the type of the moving body.
  • the type A of the moving body (relatively slow moving body, for example, a person, a bicycle, etc.) and the type B of the moving body (a relatively high-speed moving body, for example, four). (Wheel wheel, motorcycle, etc.) is discriminated, and characteristic information ( ⁇ -rV curve) relating to type A and type B is created in advance.
  • the configuration of the speed measuring device 1 is the same as that of the first embodiment (see FIG. 7). Further, the storage unit 12 stores the characteristic information for each type of the moving body created in advance.
  • the processor 13 performs the detection result acquisition process, the measurement point position acquisition process, and the speed estimation process as in the first embodiment, but also performs the mobile body type determination process and the characteristic information selection process. ..
  • the processor 13 discriminates the type of the mobile body to be measured (for example, a four-wheeled vehicle, a motorcycle, a person, a bicycle, etc.) based on the detection result of the radar unit 11.
  • a moving body on the road may be photographed with a camera, and the type of the moving body may be determined based on the photographed image.
  • the processor 13 selects characteristic information ( ⁇ -rV curve) according to the type of the moving body.
  • FIG. 14 is a flow chart showing a procedure of processing performed by the speed measuring device 1.
  • the processor 13 determines the type of the moving body to be measured based on the detection result of the radar unit 11 (moving body type discrimination processing) (ST121). Then, the processor 13 selects the characteristic information ( ⁇ -rV curve) according to the type of the moving body (characteristic information selection process) (ST122). Subsequent steps (ST101 to ST108) are the same as those in the first embodiment.
  • the speed measuring device and the speed measuring method according to the present disclosure have the effect of suppressing the influence of the installation height and accurately measuring the speed of the moving body, and the speed of the moving body moving on the road is radared. It is useful as a speed measuring device and a speed measuring method for measuring by using.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Traffic Control Systems (AREA)

Abstract

To enable accurate measurement of the velocity of a moving body by reducing the impact of installation height, this velocity measurement device comprises: a radar unit that detects a moving body moving along a road and that outputs a detected distance value rm, a detected azimuth value θm, and a detected velocity value Vm which is the Doppler velocity; a storage unit that stores a θ-rV curve (characteristic curve) representing the relationship, at a predetermined velocity, between an rV value (characteristic quantity), which is given by the product of the distance and the velocity, and the azimuth θ; and a processor that estimates the velocity of the moving body on the basis of the detected distance value rm, the detected azimuth value θm, and the detected velocity value Vm. The processor calculates the measured value (rm×Vm) of the rV value by multiplying the detected distance value rm by the detected velocity value Vm, and obtains an estimated velocity result on the basis of the θ-rV curve, the measured value of the rV value, and the detected azimuth value θm.

Description

速度測定装置及び速度測定方法Speed measuring device and speed measuring method
 本開示は、道路上を移動する移動体の速度をレーダを用いて測定する速度測定装置及び速度測定方法に関するものである。 The present disclosure relates to a speed measuring device and a speed measuring method for measuring the speed of a moving body moving on a road using a radar.
 速度違反の取り締まりのため、道路上を走行する車両の速度を測定する技術が普及している。このような道路上の車両を対象にした速度測定の技術として、従来、レーダにより、道路上の移動体に対して電波を照射してその反射波を捕捉して、反射波に含まれる信号(ドップラ信号)を処理することで、移動体の速度を測定する技術が知られている(特許文献1参照)。 Technology for measuring the speed of vehicles traveling on the road has become widespread in order to crack down on speed violations. As a speed measurement technique for such vehicles on the road, conventionally, a radar irradiates a moving body on the road with radio waves to capture the reflected wave, and a signal included in the reflected wave ( A technique for measuring the speed of a moving body by processing a Doppler signal) is known (see Patent Document 1).
特許第6309328号公報Japanese Patent No. 6309328
 さて、道路上の移動体(車両、人物、動物など)を検知するレーダ装置は、いわゆるインフラレーダとして、今後、車両の自動運転システムなどにおいて活用されることが期待されている。この場合、レーダ装置は、交差点に設置された信号灯器の支柱や、道路の路側に設置された街灯の支柱などに設置される。このため、レーダ装置の設置高さが高くなる。 By the way, radar devices that detect moving objects (vehicles, people, animals, etc.) on the road are expected to be used as so-called infrastructure radars in automatic vehicle driving systems in the future. In this case, the radar device is installed on a support of a signal lamp installed at an intersection, a support of a street light installed on the road side of a road, or the like. Therefore, the installation height of the radar device becomes high.
 しかしながら、前記従来の技術では、ドップラ速度をそのまま移動体の速度として取得しており、このドップラ速度は、レーダ装置が高所に設置されている場合には、実際の速度に対する誤差が大きくなる。特に、電波の周波数が低い大型の装置で、遠方にある移動体を検出する場合には、レーダの設置高さの影響が小さいが、装置の小型化を図るなどの要望に応えようとすると、レーダの設置高さの影響が大きくなる。 However, in the above-mentioned conventional technique, the Doppler speed is acquired as it is as the speed of the moving body, and when the radar device is installed in a high place, the error with respect to the actual speed becomes large. In particular, when detecting a moving object in a distant place with a large device with a low radio wave frequency, the influence of the radar installation height is small, but when trying to meet the demand for miniaturization of the device, The influence of the installation height of the radar becomes large.
 そこで、本開示は、設置高さの影響を抑えて移動体の速度を精度よく測定することができる速度測定装置及び速度測定方法を提供することを主な目的とする。 Therefore, the main object of the present disclosure is to provide a speed measuring device and a speed measuring method capable of accurately measuring the speed of a moving body while suppressing the influence of the installation height.
 本開示の速度測定装置は、道路の周辺に設置されて、道路に沿って移動する移動体の速度を測定する速度測定装置であって、道路上の移動体を検出して、距離の検出値および方位角の検出値と、ドップラ速度である速度の検出値とを出力するレーダ部と、所定の速度において前記距離と前記速度との積で与えられる特性量と前記方位角との関係を表す特性情報を記憶する記憶部と、前記距離の検出値と前記速度の検出値とを乗算して得られる特性量の測定値と、前記特性情報と、前記方位角の検出値とに基づいて、前記移動体の速度を推定するプロセッサと、を備える構成とする。 The speed measuring device of the present disclosure is a speed measuring device installed around a road and measuring the speed of a moving body moving along the road, and detects a moving body on the road to detect a distance. And the radar unit that outputs the detected value of the azimuth and the detected value of the speed which is the Doppler speed, and represents the relationship between the characteristic quantity given by the product of the distance and the speed at a predetermined speed and the azimuth. Based on the storage unit that stores the characteristic information, the measured value of the characteristic quantity obtained by multiplying the detected value of the distance and the detected value of the speed, the characteristic information, and the detected value of the azimuth angle. The configuration includes a processor that estimates the speed of the moving body.
 また、本開示の速度測定方法は、道路に沿って移動する移動体の速度を測定する処理を情報処理装置に行わせる速度測定方法であって、前記情報処理装置のプロセッサが、道路上の移動体を検出するレーダ部から、距離の検出値および方位角の検出値とドップラ速度である速度の検出値とを取得し、前記距離の検出値と前記速度の検出値とを乗算して特性量の測定値を算出し、所定の速度における前記方位角と前記特性量との関係を表す特性情報と、前記特性量の測定値と、前記方位角の検出値とに基づいて、速度の推定結果を取得する構成とする。 Further, the speed measuring method of the present disclosure is a speed measuring method in which an information processing apparatus is made to perform a process of measuring the speed of a moving body moving along a road, and a processor of the information processing apparatus moves on the road. The distance detection value, the azimuth angle detection value, and the speed detection value, which is the Doppler speed, are acquired from the radar unit that detects the body, and the characteristic quantity is multiplied by the distance detection value and the speed detection value. The estimated value of the speed is calculated, and the speed is estimated based on the characteristic information indicating the relationship between the azimuth angle and the characteristic quantity at a predetermined speed, the measured value of the characteristic quantity, and the detected value of the azimuth angle. Is configured to be acquired.
 本開示によれば、距離と速度との積で与えられる特性量は、レーダと移動体との間の上下方向の位置関係に依存しないため、特性量に基づいて移動体の速度を推定することで、移動体の高さに依存しない速度推定を行うことができる。これにより、設置高さの影響を抑えて移動体の速度を精度よく測定することができる。 According to the present disclosure, the characteristic quantity given by the product of the distance and the velocity does not depend on the vertical positional relationship between the radar and the moving body. Therefore, the velocity of the moving body is estimated based on the characteristic quantity. Therefore, it is possible to estimate the speed independent of the height of the moving body. As a result, the speed of the moving body can be measured accurately while suppressing the influence of the installation height.
第1実施形態に係る速度測定装置1による速度測定の状況を示す側面図A side view showing a state of speed measurement by the speed measuring device 1 according to the first embodiment. 第1実施形態に係る速度測定装置1による速度測定の状況を示す側面図A side view showing a state of speed measurement by the speed measuring device 1 according to the first embodiment. 第1実施形態に係る速度測定装置1で行われる処理の概要を示す俯瞰図A bird's-eye view showing an outline of the processing performed by the speed measuring device 1 according to the first embodiment. 第1実施形態に係る速度測定装置1で行われる処理の概要を示す平面図Top view showing the outline of the process performed by the speed measuring apparatus 1 which concerns on 1st Embodiment. 第1実施形態に係る速度測定装置1で行われる処理の概要を示す説明図Explanatory drawing which shows the outline of the process performed by the speed measuring apparatus 1 which concerns on 1st Embodiment 第1実施形態に係る速度測定装置1で行われる処理の概要を示す説明図Explanatory drawing which shows the outline of the process performed by the speed measuring apparatus 1 which concerns on 1st Embodiment 第1実施形態に係る速度測定装置1の概略構成を示すブロック図A block diagram showing a schematic configuration of the speed measuring device 1 according to the first embodiment. 第1実施形態に係る速度測定装置1で行われる処理の手順を示すフロー図A flow chart showing a procedure of processing performed by the speed measuring device 1 according to the first embodiment. 第2実施形態に係る速度測定装置1で行われる処理の概要を示す説明図Explanatory drawing which shows the outline of the process performed by the speed measuring apparatus 1 which concerns on 2nd Embodiment 第2実施形態に係る速度測定装置1の概略構成を示すブロック図A block diagram showing a schematic configuration of the speed measuring device 1 according to the second embodiment. 第2実施形態に係る速度測定装置1で行われる処理の手順を示すフロー図A flow chart showing a procedure of processing performed by the speed measuring device 1 according to the second embodiment. 第3実施形態に係る特性情報を示す説明図Explanatory drawing which shows characteristic information which concerns on 3rd Embodiment 第3実施形態に係る速度測定装置1の概略構成を示すブロック図A block diagram showing a schematic configuration of the speed measuring device 1 according to the third embodiment. 第3実施形態に係る速度測定装置1で行われる処理の手順を示すフロー図A flow chart showing a procedure of processing performed by the speed measuring device 1 according to the third embodiment.
 前記課題を解決するためになされた第1の発明は、道路の周辺に設置されて、道路に沿って移動する移動体の速度を測定する速度測定装置であって、道路上の移動体を検出して、距離の検出値および方位角の検出値と、ドップラ速度である速度の検出値とを出力するレーダ部と、所定の速度において前記距離と前記速度との積で与えられる特性量と前記方位角との関係を表す特性情報を記憶する記憶部と、前記距離の検出値と前記速度の検出値とを乗算して得られる特性量の測定値と、前記特性情報と、前記方位角の検出値とに基づいて、前記移動体の速度を推定するプロセッサと、を備える構成とする。 The first invention made to solve the above problems is a speed measuring device installed around a road and measuring the speed of a moving body moving along the road, and detects the moving body on the road. Then, the radar unit that outputs the detected value of the distance and the azimuth, and the detected value of the speed that is the Doppler speed, the characteristic quantity given by the product of the distance and the speed at a predetermined speed, and the above. A storage unit that stores characteristic information indicating the relationship with the azimuth, a measured value of a characteristic amount obtained by multiplying the detected value of the distance and the detected value of the speed, the characteristic information, and the azimuth. The configuration includes a processor that estimates the speed of the moving body based on the detected value.
 これによると、距離と速度との積で与えられる特性量は、レーダと移動体との間の上下方向の位置関係に依存しないため、特性量に基づいて移動体の速度を推定することで、移動体の高さに依存しない速度推定を行うことができる。これにより、設置高さの影響を抑えて移動体の速度を精度よく測定することができる。 According to this, the characteristic quantity given by the product of the distance and the velocity does not depend on the vertical positional relationship between the radar and the moving body, so by estimating the velocity of the moving body based on the characteristic quantity, Velocity estimation that does not depend on the height of the moving object can be performed. As a result, the speed of the moving body can be measured accurately while suppressing the influence of the installation height.
 また、第2の発明は、前記レーダ部は、想定される移動体の高さのばらつきに応じて、前記レーダ部から移動体を見たときの高低角に許容限度を超える変化が現れるような高さに設置されている構成とする。 Further, in the second invention, in the radar unit, a change exceeding the permissible limit appears in the height angle when the moving object is viewed from the radar unit according to the expected variation in the height of the moving object. It shall be configured to be installed at a height.
 これによると、レーダ部の位置が高いためにドップラ速度の誤差が顕著になる場合に、速度の測定精度を確保することができる。 According to this, when the error of the Doppler speed becomes remarkable due to the high position of the radar unit, the speed measurement accuracy can be ensured.
 また、第3の発明は、前記プロセッサは、複数の速度ごとの前記特性情報に基づいて、前記速度の推定結果として、速度の推定値を取得する構成とする。 Further, in the third invention, the processor is configured to acquire an estimated speed as a result of estimating the speed based on the characteristic information for each of a plurality of speeds.
 これによると、精度の高い速度の推定値を取得することができる。 According to this, it is possible to obtain a highly accurate estimated value of speed.
 また、第4の発明は、前記プロセッサは、前記距離の検出値および前記方位角の検出値と前記速度の検出値とに基づいて、前記方位角と前記特性量とを座標軸とした平面上における測定点の位置を取得し、前記特性情報に対応する複数の特性曲線のうち、前記測定点の直近にある2本の前記特性曲線を特定して、前記特性曲線と前記測定点との位置関係に基づく補間法により、前記速度の推定値を取得する構成とする。 Further, in the fourth invention, the processor is on a plane having the azimuth angle and the characteristic quantity as coordinate axes based on the detection value of the distance, the detection value of the azimuth angle, and the detection value of the speed. The position of the measurement point is acquired, and among the plurality of characteristic curves corresponding to the characteristic information, the two characteristic curves closest to the measurement point are specified, and the positional relationship between the characteristic curve and the measurement point is specified. The estimated value of the speed is acquired by the interpolation method based on.
 これによると、速度ごとの特性情報(特性曲線)を細かい間隔で多数設定しなくても、精度の高い速度の推定値を取得することができる。 According to this, it is possible to obtain a highly accurate estimated value of speed without setting a large number of characteristic information (characteristic curve) for each speed at fine intervals.
 また、第5の発明は、前記プロセッサは、前記レーダ部の検出処理を複数回実行することで取得した複数の前記速度の推定値を統計処理して、最終的な前記速度の推定値を取得する構成とする。 Further, in the fifth invention, the processor statistically processes a plurality of the speed estimates acquired by executing the detection process of the radar unit a plurality of times, and obtains the final speed estimate. The configuration is to be used.
 これによると、最終的な速度の推定値の精度をより一層高めることができる。なお、統計処理とは、例えば平均化などの処理である。 According to this, the accuracy of the final speed estimate can be further improved. The statistical processing is, for example, processing such as averaging.
 また、第6の発明は、前記プロセッサは、制限速度における前記特性情報に基づいて、前記速度の推定結果として、前記制限速度を超過するか否かに関する速度の判定結果を取得する構成とする。 Further, the sixth invention is configured such that the processor acquires a speed determination result regarding whether or not the speed limit is exceeded as an estimation result of the speed based on the characteristic information at the speed limit.
 これによると、精度の高い速度の判定結果を取得することができる。 According to this, it is possible to obtain a highly accurate speed judgment result.
 また、第7の発明は、前記プロセッサは、前記レーダ部の検出処理を複数回実行することで取得した複数回の速度の判定結果を統合して、最終的な速度の判定結果を取得する構成とする。 Further, the seventh invention is a configuration in which the processor integrates a plurality of speed determination results acquired by executing the detection process of the radar unit a plurality of times to acquire the final speed determination result. And.
 これによると、最終的な速度の判定結果の精度をより一層高めることができる。 According to this, the accuracy of the final speed judgment result can be further improved.
 また、第8の発明は、前記プロセッサは、前記レーダ部により検出された移動体の種類を判別し、移動体の種類に対応する前記特性情報に基づいて、前記速度の推定結果を取得する構成とする。 Further, according to the eighth aspect of the present invention, the processor determines the type of the moving body detected by the radar unit, and acquires the speed estimation result based on the characteristic information corresponding to the type of the moving body. And.
 これによると、種々の移動体の速度を高い精度で推定することができる。 According to this, the velocities of various moving objects can be estimated with high accuracy.
 また、第9の発明は、道路に沿って移動する移動体の速度を測定する処理を情報処理装置に行わせる速度測定方法であって、前記情報処理装置のプロセッサが、道路上の移動体を検出するレーダ部から、距離の検出値および方位角の検出値とドップラ速度である速度の検出値とを取得し、前記距離の検出値と前記速度の検出値とを乗算して特性量の測定値を算出し、所定の速度における前記方位角と前記特性量との関係を表す特性情報と、前記特性量の測定値と、前記方位角の検出値とに基づいて、速度の推定結果を取得する構成とする。 Further, the ninth invention is a speed measuring method in which an information processing apparatus is made to perform a process of measuring the speed of a moving body moving along a road, and a processor of the information processing device controls a moving body on the road. The distance detection value, the azimuth detection value, and the speed detection value, which is the Doppler speed, are acquired from the detection radar unit, and the characteristic quantity is measured by multiplying the distance detection value and the speed detection value. The value is calculated, and the estimation result of the speed is acquired based on the characteristic information showing the relationship between the azimuth angle and the characteristic quantity at a predetermined speed, the measured value of the characteristic quantity, and the detected value of the azimuth angle. The configuration is to be used.
 これによると、第1の発明と同様に、設置高さの影響を抑えて移動体の速度を精度よく測定することができる。 According to this, as in the first invention, it is possible to accurately measure the speed of the moving body while suppressing the influence of the installation height.
 以下、本開示の実施の形態を、図面を参照しながら説明する。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings.
(第1実施形態)
 図1は、第1実施形態に係る速度測定装置1による速度測定の状況を示す側面図である。図2は、移動体が異なる場合の速度測定装置1による速度測定の状況を示す側面図である。
(First Embodiment)
FIG. 1 is a side view showing a state of speed measurement by the speed measuring device 1 according to the first embodiment. FIG. 2 is a side view showing a state of speed measurement by the speed measuring device 1 when the moving body is different.
 図1に示すように、速度測定装置1は、道路上を移動する移動体をレーダにより検知して、その移動体の速度を測定するものである。この速度測定装置1は、道路の上方の高所、例えば地面から5~6mの高さに設置される。具体的には、交差点に設置された信号灯器の支柱や、道路の路側に設置された街灯の支柱や、道路の路側に設置された車両感知器の支柱などに、速度測定装置1が取り付けられる。 As shown in FIG. 1, the speed measuring device 1 detects a moving body moving on the road by a radar and measures the speed of the moving body. The speed measuring device 1 is installed at a high place above the road, for example, at a height of 5 to 6 m from the ground. Specifically, the speed measuring device 1 is attached to a support of a signal light device installed at an intersection, a support of a street light installed on the road side of a road, a support of a vehicle detector installed on the road side of a road, or the like. ..
 本実施形態では、速度測定装置1のレーダの検出結果として、速度の検出値V(ドップラ速度)が出力される。この速度の検出値Vは、速度測定装置1のレーダを基準にした速度であり、道路上を移動する移動体の実際の速度Vとは異なり、誤差がある。特に、レーダが高い位置に設置されている場合、すなわち、レーダが路面から大きく離れている場合には、速度の検出値Vの誤差が大きくなる。 In the present embodiment, as the detection result of the radar speed measuring device 1, the speed detection value V m (Doppler velocity) is output. The detected value V m of this speed is a speed based on the radar of the speed measuring device 1, and is different from the actual speed V of the moving body moving on the road, and there is an error. In particular, when the radar is installed at a high position, that is, when the radar is far away from the road surface, the error of the speed detection value V m becomes large.
 また、速度の検出値V(ドップラ速度)の誤差は、移動体の高さHに依存する。例えば、図2(A),(B)に示すように、小型の二輪車と大型の四輪車とが同じ速度Vで走行する場合でも、移動体の高さHはそれぞれ異なる。これにより、速度測定装置1のレーダから移動体を見たときの高低角αがそれぞれ異なるため、速度の検出値Vも異なる。 Further, the error of the speed detection value V m (Doppler speed) depends on the height H of the moving body. For example, as shown in FIGS. 2A and 2B, even when a small two-wheeled vehicle and a large four-wheeled vehicle travel at the same speed V, the height H of the moving body is different. As a result, the high and low angles α when the moving body is viewed from the radar of the speed measuring device 1 are different, so that the speed detection value V m is also different.
 一方、この高低角αや、移動体の地面位置を取得できれば、速度の検出値V(ドップラ速度)から、移動体の実際の速度Vを推定することができる。ただし、高低角や地面位置は、移動体の高さHに依存することから、移動体の高さHが分からなければ、高低角や地面位置を推定することもできない。 On the other hand, if the high / low angle α and the ground position of the moving body can be acquired, the actual speed V of the moving body can be estimated from the speed detection value V m (Doppler speed). However, since the height angle and the ground position depend on the height H of the moving body, the height angle and the ground position cannot be estimated without knowing the height H of the moving body.
 しかしながら、通常の二次元レーダでは、検出結果として、レーダを基準にした距離および方位角を取得できるものの、高低角αや移動体の高さHに関する情報を取得できない。このため、移動体の正確な速度を推定することができない。 However, with a normal two-dimensional radar, although the distance and azimuth based on the radar can be acquired as the detection result, it is not possible to acquire information on the high / low angle α and the height H of the moving body. Therefore, it is not possible to estimate the accurate velocity of the moving body.
 そこで、本実施形態では、移動体の高さに依存しない速度推定を行い、速度測定装置1が高い位置に設置されている場合でも、移動体の速度Vを精度よく推定できるものとする。特に、本実施形態では、二次元レーダの検出結果のみでも、レーダと移動体との間の上下方向の位置関係に依存しない変数に基づいて移動体の速度を推定することで、移動体の高さに依存しない速度推定を行うことができるものとする。 Therefore, in the present embodiment, the speed is estimated independently of the height of the moving body, and the speed V of the moving body can be estimated accurately even when the speed measuring device 1 is installed at a high position. In particular, in the present embodiment, the height of the moving body is estimated by estimating the speed of the moving body based on a variable that does not depend on the vertical positional relationship between the radar and the moving body based only on the detection result of the two-dimensional radar. It shall be possible to perform speed estimation that does not depend on the radar.
 また、速度測定装置1が、想定される移動体の高さのばらつきに応じて、要求される測定精度に応じた許容限度を超える変化が高低角に現れるような高さに設置されている場合に、本実施形態による速度測定方法を採用するとよい。すなわち、速度測定装置1の位置が低い場合には、移動体の高さのばらつきが高低角にあまり影響を与えないが、速度測定装置1の位置が高くなると、移動体の高さのばらつきに応じて高低角に大きな変化が現れるようになり、ドップラ速度の誤差が顕著になる。このため、速度測定装置1の位置が高い場合に、本実施形態の速度測定方法を採用することで、速度の測定精度を確保することができる。 Further, when the speed measuring device 1 is installed at a height such that a change exceeding the permissible limit according to the required measurement accuracy appears at a high and low angle according to the expected variation in the height of the moving body. In addition, it is preferable to adopt the speed measurement method according to the present embodiment. That is, when the position of the speed measuring device 1 is low, the variation in the height of the moving body does not affect the height angle so much, but when the position of the speed measuring device 1 is high, the variation in the height of the moving body is caused. Correspondingly, a large change appears in the high and low angles, and the error of the Doppler speed becomes remarkable. Therefore, when the position of the speed measuring device 1 is high, the speed measuring accuracy can be ensured by adopting the speed measuring method of the present embodiment.
 なお、図1に示したように、高低角αは、水平方向を基準にして、速度測定装置1のレーダから移動体を見た方向の上下方向の角度β(俯角)の余角である。 As shown in FIG. 1, the high / low angle α is a margin angle β (depression angle) in the vertical direction in the direction in which the moving object is viewed from the radar of the speed measuring device 1 with reference to the horizontal direction.
 次に、第1実施形態に係る速度測定装置1で行われる処理の概要について説明する。図3は、速度測定装置1で行われる処理の概要を示す俯瞰図である。図4は、速度測定装置1で行われる処理の概要を示す平面図である。 Next, an outline of the processing performed by the speed measuring device 1 according to the first embodiment will be described. FIG. 3 is a bird's-eye view showing an outline of the processing performed by the speed measuring device 1. FIG. 4 is a plan view showing an outline of the processing performed by the speed measuring device 1.
 図3に示すように、本実施形態では、速度測定装置1のレーダの検出結果として、レーダを基準にした距離の検出値rおよび方位角の検出値θと、速度の検出値V(ドップラ速度)とを取得する。 As shown in FIG. 3, in this embodiment, as the detection result of the radar speed measuring device 1, a detection value theta m of the detected value r m and azimuth of the distance relative to the radar, the speed of the detection value V m (Doppler speed) and get.
 ここで、レーダを基準にした距離の検出値rと、レーダから移動体までの水平方向の距離rと、高低角αとは、次式のような関係になる。
=r/sin(α)   (式1)
Here, the detected value r m of distance relative to the radar, the horizontal distance r g from the radar to the moving body, the elevation angle alpha, a relation like the following equation.
r m = r g / sin ( α) ( Equation 1)
 また、レーダを基準にした速度の検出値V(ドップラ速度)と、レーダを基準にした水平方向の移動体の速度Vと、高低角αとは、次式のような関係になる。
=V×sin(α)   (式2)
Further, the detected value V m (Doppler speed) of the velocity based on the radar, the velocity V g of the moving object in the horizontal direction based on the radar, and the high / low angle α have the following relationship.
V m = V g × sin (α) (Equation 2)
 式1および式2により、r×Vは次式のようになる。
×V=r/sin(α)×V×sin(α)   (式3)
×V=r×V   (式4)
By Equation 1 and Equation 2, r m × V m is given by the following equation.
r m × V m = r g / sin (α) × V g × sin (α) ( Equation 3)
r m × V m = r g × V g ( Equation 4)
 ここで、式4に示されるように、rV値(r×V=r×V)(特性量)は、レーダの検出結果である距離の検出値rと速度の検出値V(ドップラ速度)とから求められる。また、rV値は、高低角αに依存しない。すなわち、rV値は、移動体の高さHに依存せず、小型の二輪車でも大型の四輪車でも同じ値となる。したがって、rV値に基づいて移動体の速度を推定するようにすれば、移動体の高さHに依存しない速度推定を行うことができる。 Here, as shown in equation 4, rV value (r g × V g = r m × V m) ( characteristic amount), the detection value V of the detection value r m and the speed of the distance is the detection result of the radar It is obtained from m (Doppler speed). Further, the rV value does not depend on the high / low angle α. That is, the rV value does not depend on the height H of the moving body, and is the same value for both a small two-wheeled vehicle and a large four-wheeled vehicle. Therefore, if the speed of the moving body is estimated based on the rV value, the speed estimation that does not depend on the height H of the moving body can be performed.
 一方、図4に示すように、移動体が道路上を移動すると、移動体の位置が変化するのに応じて方位角の検出値θが変化する。また、速度測定装置1のレーダは固定されているため、レーダと道路との位置関係は変化しない。したがって、道路上を移動する移動体をレーダにより検出した場合、検出結果としての方位角の検出値θに基づいて移動体の位置を特定することができる。また、レーダから移動体までの水平方向の距離rは方位角の検出値θに応じて変化する。したがって、rV値は、方位角の検出値θに依存する変数となる。 On the other hand, as shown in FIG. 4, when the moving body moves on the road, the detected value θ m of the azimuth angle changes according to the change in the position of the moving body. Further, since the radar of the speed measuring device 1 is fixed, the positional relationship between the radar and the road does not change. Therefore, when a moving body moving on the road is detected by the radar, the position of the moving body can be specified based on the detection value θ m of the azimuth angle as the detection result. Further, the horizontal distance r g from the radar to the moving body varies in accordance with the detected value theta m azimuth. Therefore, the rV value is a variable that depends on the detected value θ m of the azimuth angle.
 次に、第1実施形態に係る速度測定装置1で行われる処理の概要について説明する。図5、図6は、速度測定装置1で行われる処理の概要を示す説明図である。 Next, an outline of the processing performed by the speed measuring device 1 according to the first embodiment will be described. 5 and 6 are explanatory views showing an outline of the processing performed by the speed measuring device 1.
 本実施形態では、横軸(第1の座標軸)を方位角θとし、縦軸(第2の座標軸)をrV値(r×V=r×V)としたθ-rV平面上において、方位角θとrV値との関係を表すθ-rV曲線(特性曲線)が設定される。ここで、rV値は、移動体の実際の速度に応じて変化するが、移動体が一定速度で移動している状態を想定すると、所定の速度ごとにθ-rV曲線(特性曲線)が設定される。 In the present embodiment, the horizontal axis (first axis) and the azimuth angle theta, the vertical axis (the second axis) to rV value (r g × V g = r m × V m) and the theta-rV plane In, a θ−rV curve (characteristic curve) representing the relationship between the azimuth angle θ and the rV value is set. Here, the rV value changes according to the actual speed of the moving body, but assuming a state in which the moving body is moving at a constant speed, a θ-rV curve (characteristic curve) is set for each predetermined speed. Will be done.
 また、方位角θが同一である場合、移動体の実際の速度が速くなるのに応じてrV値は大きくなる。したがって、速度が速いθ-rV曲線がθ-rV平面の上側に位置する。
図5に示す例は、移動体の実際の速度を40km/h、50km/h、60km/hとした場合であり、速度ごとのθ-rV曲線がθ-rV平面上に描かれる。
Further, when the azimuth angles θ are the same, the rV value increases as the actual speed of the moving body increases. Therefore, the fast θ-rV curve is located above the θ-rV plane.
The example shown in FIG. 5 is a case where the actual speeds of the moving body are 40 km / h, 50 km / h, and 60 km / h, and the θ-rV curve for each speed is drawn on the θ-rV plane.
 一方、速度測定装置1では、レーダの検出結果として、距離の検出値r、方位角の検出値θ、および速度の検出値V(ドップラ速度)を取得する。したがって、距離の検出値rおよび速度の検出値V(ドップラ速度)に基づいて、式4からrV値の測定値(r×V=r×V)を求めることで、rV値の測定値と、方位角の検出値θとをそれぞれ横軸および縦軸の座標値とした測定点Pをθ-rV平面上に設定することができる。 On the other hand, in the speed measuring apparatus 1, as a detection result of the radar detection value r m of the distance, acquires the detection value theta m of the azimuth angle and the speed detection value V m (the Doppler velocity). Therefore, based on the distance detection value r m and the speed detection value V m (Doppler velocity), by obtaining measured values of rV values from equation 4 (r g × V g = r m × V m), rV A measurement point P m in which the measured value of the value and the detected value θ m of the azimuth angle are the coordinate values of the horizontal axis and the vertical axis, respectively, can be set on the θ−rV plane.
 図5に示す例は、速度ごとのθ-rV曲線のいずれかに測定点Pが重なり合う場合である。この場合、測定点Pが重なり合うθ-rV曲線の速度を、速度の推定値として取得する。 The example shown in FIG. 5 is a case where the measurement point P m overlaps with any of the θ−rV curves for each velocity. In this case, the velocity of the θ−rV curve on which the measurement points P m overlap is acquired as an estimated velocity value.
 図6(A)に示す例は、測定点Pが、速度Vのθ-rV曲線と速度Vのθ-rV曲線との間にある場合である。この場合、補間法(内挿法)により、速度の推定値を取得する。このとき、速度V,Vと補間係数aとに基づいて、次式により速度の推定値を取得する。
V=a・V+(1-a)・V   (式5)
ここで、補間係数aは、測定点Pと、方位角θが検出値θであるときの速度Vのθ-rV曲線上の点Pと、方位角θが検出値θであるときの速度Vのθ-rV曲線上の点Pとの位置関係に基づいて設定すればよい。
The example shown in FIG. 6A is a case where the measurement point P m is between the θ-rV curve of the velocity V 1 and the θ-rV curve of the velocity V 2 . In this case, the estimated value of the velocity is obtained by the interpolation method (interpolation method). At this time, the estimated value of the velocity is acquired by the following equation based on the velocities V 1 and V 2 and the interpolation coefficient a.
V = a · V 1 + (1-a) · V 2 (Equation 5)
Here, the interpolation coefficient a, and the measurement point P m, the point P 1 on the theta-rV curve of the velocity V 1 of the time azimuth angle theta is detectable value theta m, azimuth angle theta is the detection value theta m It may be set based on the positional relationship of the velocity V 2 at a certain time with the point P 2 on the θ−rV curve.
 また、速度ごとのθ-rV曲線が3本以上ある場合には、測定点Pの直近の上下にある2本のrV曲線を特定して、補間法(内挿法)を実施すればよい。 When there are three or more θ-rV curves for each velocity, the interpolation method (interpolation method) may be performed by specifying the two rV curves immediately above and below the measurement point P m. ..
 図6(B)に示す例は、同一の移動体に対してレーダの検出処理を複数回実施する場合である。この場合、複数回の検出処理により複数の測定点Pmi(i=1,...,n)が得られ、各回の測定点Pmiの位置(座標)から、各回の速度の推定値V(i=1,...,n)が得られる。そして、各回の速度の推定値Vを平均して、最終的な速度の推定値が算出される。これにより、速度の推定値の精度を向上させることができる。 The example shown in FIG. 6B is a case where the radar detection process is performed a plurality of times on the same moving body. In this case, a plurality of measurement points P mi (i = 1, ..., n) are obtained by a plurality of detection processes, and the estimated value V of the velocity of each time is obtained from the position (coordinates) of each measurement point P mi. i (i = 1, ..., n) is obtained. Then, by averaging the estimated value V i of each round of speed, the estimated value of the final speed is calculated. This makes it possible to improve the accuracy of the speed estimate.
 なお、移動体が移動するのに応じて方位角θが変化することから、同一の移動体に対して複数回の検出処理が行われると、各回の測定点Pmiが、測定タイミングに対応する間隔をおいて並んだ状態で得られる。 Since the azimuth angle θ changes according to the movement of the moving body, when the same moving body is subjected to the detection process a plurality of times, the measurement point P mi of each time corresponds to the measurement timing. Obtained in a lined up state at intervals.
 また、本実施形態では、各回の測定処理で取得した速度の推定値Vに対する統計処理として、平均値を算出するようにしたが、最大値(異常値を除く)を取得するようにしてもよい。また、本実施形態では、速度測定区間が設定され、その速度測定区間内で移動体を検出してその速度を測定する。この速度測定区間は、θ-rV平面では方位角θの範囲となる。 Further, in the present embodiment, as the statistical processing for the estimated value V i of the velocity acquired at each time of the measurement process, but to calculate the average value, be acquired maximum value (excluding outliers) good. Further, in the present embodiment, a speed measurement section is set, and a moving body is detected within the speed measurement section to measure the speed. This velocity measurement section is in the range of the azimuth angle θ on the θ−rV plane.
 また、図3、図4は、真直で水平な道路を前提としたものであるが、道路は直線に限定されず、また、水平に限定されない。道路がカーブしている場合や、道路が傾斜している場合でも、現場に適合した特性情報を生成すれば、同様の手順で、速度を推定することができる。 Although FIGS. 3 and 4 assume a straight and horizontal road, the road is not limited to a straight line and is not limited to a horizontal road. Even if the road is curved or sloped, the speed can be estimated by the same procedure if the characteristic information suitable for the site is generated.
 次に、第1実施形態に係る速度測定装置1の概略構成について説明する。図7は、速度測定装置1の概略構成を示すブロック図である。 Next, the schematic configuration of the speed measuring device 1 according to the first embodiment will be described. FIG. 7 is a block diagram showing a schematic configuration of the speed measuring device 1.
 速度測定装置1は、レーダ部11と、記憶部12と、プロセッサ13と、を備えている。 The speed measuring device 1 includes a radar unit 11, a storage unit 12, and a processor 13.
 レーダ部11は、アンテナ21と、信号処理部22と、を備えている。アンテナ21は、高周波の電波を放射して、その反射波を捕捉する。信号処理部22は、アンテナ21で捕捉した反射波を信号処理するものであり、ADC(Analog to Digital Converter)やDSP(Digital Signal Processor)などのデバイスを含む。この信号処理部22は、検出結果として、距離の検出値r、方位角の検出値θ、および速度の検出値V(ドップラ速度)を出力する。 The radar unit 11 includes an antenna 21 and a signal processing unit 22. The antenna 21 radiates high-frequency radio waves and captures the reflected waves. The signal processing unit 22 signals the reflected wave captured by the antenna 21, and includes devices such as an ADC (Analog to Digital Converter) and a DSP (Digital Signal Processor). The signal processing unit 22, the detection result as a detection value r m of the distance, and outputs the detected value of the azimuth angle theta m, and the speed detection value V m (Doppler velocity).
 記憶部12は、プロセッサ13で実行されるプログラムなどを記憶する。また、記憶部12は、特性情報生成装置2により予め生成された特性情報、具体的には、方位角θとrV値(r×V=r×V)との関係を表すθ-rV曲線に対応するテーブルまたは数式に関する情報を記憶する。なお、記憶部12は、メモリなどのデバイスを含む。 The storage unit 12 stores a program or the like executed by the processor 13. The storage unit 12 in advance generated characteristic information by the characteristic information generating apparatus 2, specifically, showing the relationship between the azimuth angle theta and rV value (r g × V g = r m × V m) θ -Store information about the table or formula corresponding to the rV curve. The storage unit 12 includes a device such as a memory.
 プロセッサ13は、記憶部12に記憶されたプログラムを実行することで速度測定に係る各種の処理を行う。本実施形態では、プロセッサ13が、検出結果取得処理、測定点位置取得処理、および速度推定処理などを行う。なお、プロセッサ13はCPUなどのデバイスを含む。 The processor 13 performs various processes related to speed measurement by executing the program stored in the storage unit 12. In the present embodiment, the processor 13 performs detection result acquisition processing, measurement point position acquisition processing, speed estimation processing, and the like. The processor 13 includes a device such as a CPU.
 検出結果取得処理では、プロセッサ13が、レーダ部11から検出結果として、距離の検出値r、方位角の検出値θ、および速度の検出値V(ドップラ速度)を取得する。 In the detection result acquisition process, processor 13, as a detection result from the radar unit 11, the detection value r m of the distance, acquires the detection value of the azimuth angle theta m, and the speed detection value V m (Doppler velocity).
 測定点位置取得処理では、プロセッサ13が、距離の検出値r、方位角の検出値θ、および速度の検出値Vに基づいて、θ-rV平面上での測定点Pの座標(θ,r×V)を取得する。 At the measurement point position acquisition process, processor 13, the detection value r m of the distance, the detection value theta m azimuth, and based on the detected values V m of the velocity of the measurement point P m on the theta-rV plane coordinates acquires (θ m, r m × V m).
 速度推定処理では、プロセッサ13が、測定点Pの座標(θ,r×V)と、速度ごとのθ-rV曲線との位置関係に基づいて、測定点の直近にある上下のθ-rV曲線を特定する。そして、プロセッサ13が、上下のθ-rV曲線の速度に基づいて、補間法(内挿法)により、速度の推定結果として、速度の推定値を算出する。 At a rate estimation process, processor 13, the coordinates of the measurement point P m (θ m, r m × V m), based on the positional relationship between the theta-rV curve for each speed, the upper and lower in the immediate vicinity of the measuring point Identify the θ-rV curve. Then, the processor 13 calculates the estimated value of the speed as the estimation result of the speed by the interpolation method (interpolation method) based on the speed of the upper and lower θ-rV curves.
 なお、速度測定装置1は、レーダ部11、記憶部12、およびプロセッサ13などが1つの筐体に収容された構成とすればよいが、記憶部12およびプロセッサ13などが含まれるコントローラとレーダ部11とが別体となる構成としてもよい。 The speed measuring device 1 may have a configuration in which the radar unit 11, the storage unit 12, the processor 13 and the like are housed in one housing, but the controller and the radar unit including the storage unit 12 and the processor 13 and the like are included. The configuration may be such that 11 is a separate body.
 また、速度測定装置1が、ネットワークなどの通信路を介してサーバ(情報処理装置)(図示せず)と接続される構成として、プロセッサ13で実行される速度測定に係る処理、具体的には、検出結果取得処理、測定点位置取得処理、および速度推定処理などが、サーバで行われるようにしてもよい。 Further, as a configuration in which the speed measuring device 1 is connected to a server (information processing device) (not shown) via a communication path such as a network, a process related to speed measurement executed by the processor 13, specifically, a process related to speed measurement. , Detection result acquisition processing, measurement point position acquisition processing, speed estimation processing, and the like may be performed on the server.
 また、車両走行情報や交通情報などを車載端末との間で交換する路側機(図示せず)の1つの機能として、速度測定装置1の機能が路側機に搭載される構成としてもよい。 Further, as one function of the roadside machine (not shown) for exchanging vehicle traveling information, traffic information, etc. with the in-vehicle terminal, the function of the speed measuring device 1 may be mounted on the roadside machine.
 ところで、特性情報生成装置2は、PC(情報処理装置)で構成される。この特性情報生成装置2は、特性情報、具体的には、方位角θとrV値(r×V=r×V)との関係を表すθ-rV曲線に対応するテーブルまたは数式に関する情報を生成する。 By the way, the characteristic information generation device 2 is composed of a PC (information processing device). The characteristic information generating apparatus 2, the characteristic information, specifically, a table or a formula corresponding to theta-rV curve representing the relationship between the azimuth angle theta and rV value (r g × V g = r m × V m) Generate information about.
 また、速度測定装置1の設置環境に応じて特性情報は異なる。このため、速度測定装置1ごとに特性情報を生成する。すなわち、特性情報生成装置2は、速度測定装置1が設置された現地の道路上で移動体を実際に移動させて収集した学習情報を用いて、現地の道路の状態および速度測定装置1の設置状態に適した特性情報を生成する。 In addition, the characteristic information differs depending on the installation environment of the speed measuring device 1. Therefore, characteristic information is generated for each speed measuring device 1. That is, the characteristic information generation device 2 installs the local road condition and the speed measuring device 1 by using the learning information collected by actually moving the moving body on the local road on which the speed measuring device 1 is installed. Generate characteristic information suitable for the state.
 ここで、学習情報は、方位角θとrV値(r×V=r×V)との組み合わせである。また、想定される範囲内で移動体の速度を変えて学習情報を収集することで、複数の速度ごとの特性情報を生成することができる。また、道路工事が行われて道路の状態が変化すると、学習情報を再度収集して、特性情報を作成し直す。 Here, the learning information is a combination of the azimuth angle θ and rV value (r g × V g = r m × V m). In addition, by collecting learning information by changing the speed of the moving body within the expected range, it is possible to generate characteristic information for each of a plurality of speeds. In addition, when road construction is carried out and the condition of the road changes, learning information is collected again and characteristic information is recreated.
 次に、第1実施形態に係る速度測定装置1で行われる処理の手順について説明する。図8は、速度測定装置1で行われる処理の手順を示すフロー図である。なお、図8は、図6(B)に示したように、レーダ部11の検出処理を同一の移動体に対して複数回実施する場合の例である。 Next, the procedure of the processing performed by the speed measuring device 1 according to the first embodiment will be described. FIG. 8 is a flow chart showing a procedure of processing performed by the speed measuring device 1. Note that FIG. 8 is an example in which the detection process of the radar unit 11 is performed a plurality of times on the same moving body as shown in FIG. 6 (B).
 まず、プロセッサ13が、所定の測定回数(n回)だけ、測定処理を繰り返す(ST101~ST106)。 First, the processor 13 repeats the measurement process a predetermined number of times (n times) (ST101 to ST106).
 この測定処理では、まず、プロセッサ13が、レーダ部11から検出結果として、距離の検出値r、方位角の検出値θ、および速度の検出値V(ドップラ速度)を取得する(検出結果取得処理)(ST102)。 In this measurement process, first, the processor 13, as a detection result from the radar unit 11, the detection value r m of the distance, acquires the detection value of the azimuth angle theta m, and the speed detection value V m (Doppler velocity) (Detection Result acquisition process) (ST102).
 次に、プロセッサ13が、距離の検出値r、方位角の検出値θ、および速度の検出値Vに基づいて、θ-rV平面上での測定点Pの座標(θ,r×V)を取得する(測定点位置取得処理)(ST103)。 Next, the processor 13, the distance detection value r m, based on the detected value theta m, and the speed detection value V m of the azimuth angle, theta-rV measurement point P m on the plane coordinates (theta m, r m × V m) to get (measurement point position acquisition processing) (ST 103).
 次に、プロセッサ13が、測定点Pの座標(θ,r×V)と、速度ごとのθ-rV曲線との位置関係に基づいて、測定点の直近にある上下のθ-rV曲線を特定する(ST104)。そして、プロセッサ13が、上下のθ-rV曲線の速度に基づいて、補間法(内挿法)により、速度の推定値を算出する(速度推定処理)(ST105)。 Next, the processor 13, the measurement point P m coordinates (θ m, r m × V m), based on the positional relationship between the theta-rV curve for each speed, the upper and lower in the immediate vicinity of the measuring point θ- The rV curve is specified (ST104). Then, the processor 13 calculates the estimated value of the speed by the interpolation method (interpolation method) based on the speed of the upper and lower θ-rV curves (speed estimation process) (ST105).
 以上の測定処理が所定の測定回数(n回)だけ繰り返されて、各回の速度の推定値V(i=1,...,n)を取得すると、次に、プロセッサ13が、その各回の速度の推定値Vを平均して、速度の推定値を算出する(ST107)。そして、プロセッサ13が、速度の推定値を出力する(ST108)。 Above measurement process is repeated a predetermined number of measurements (n times), the estimated value V i (i = 1, ... , n) of each round of speed when acquiring the, then the processor 13, the each time on average the estimated value V i of the speed to calculate the estimated value of the speed (ST 107). Then, the processor 13 outputs the estimated value of the speed (ST108).
(第2実施形態)
 次に、第2実施形態について説明する。なお、ここで特に言及しない点は前記の実施形態と同様である。図9は、第2実施形態に係る速度測定装置1で行われる処理の概要を示す説明図である。図10は、第2実施形態に係る速度測定装置1の概略構成を示すブロック図である。
(Second Embodiment)
Next, the second embodiment will be described. It should be noted that the points not particularly mentioned here are the same as those in the above-described embodiment. FIG. 9 is an explanatory diagram showing an outline of the process performed by the speed measuring device 1 according to the second embodiment. FIG. 10 is a block diagram showing a schematic configuration of the speed measuring device 1 according to the second embodiment.
 第1実施形態では、移動体の移動速度を取得するようにしたが、本実施形態では、速度超過(速度違反)、すなわち、移動体の速度が制限速度(しきい値)を超えているか否かを判定する。具体的には、測定点Pが、制限速度に対応するθ-rV曲線の上下いずれに位置するかを判定する。すなわち、測定点Pが、制限速度に対応するθ-rV曲線の上側に位置する場合には、速度超過であると判定する。一方、測定点Pが、制限速度に対応するθ-rV曲線の下側または真上に位置する場合には、速度超過でないと判定する。 In the first embodiment, the moving speed of the moving body is acquired, but in the present embodiment, the speed is exceeded (speed violation), that is, whether or not the speed of the moving body exceeds the speed limit (threshold value). Is determined. Specifically, it is determined whether the measurement point P m is located above or below the θ−rV curve corresponding to the speed limit. That is, when the measurement point P m is located on the upper side of the θ−rV curve corresponding to the speed limit, it is determined that the speed is exceeded. On the other hand, when the measurement point P m is located below or directly above the θ−rV curve corresponding to the speed limit, it is determined that the speed is not exceeded.
 また、精度を高めるため、レーダによる移動体の検出処理および速度超過判定処理を複数回実施するようにしてもよい。この場合、複数回の判定結果を統合して、最終的な速度超過の判定結果を取得する。このとき、例えば多数決で判定結果が決定されるようにしてもよい。すなわち、速度超過であるとした判定結果の回数と、速度超過でないとした判定結果の回数とを比較して、回数が多い判定結果が最終的な判定結果に決定される。 Further, in order to improve the accuracy, the detection process of the moving object and the overspeed determination process by the radar may be performed a plurality of times. In this case, the determination results of a plurality of times are integrated to obtain the final determination result of overspeed. At this time, for example, the determination result may be determined by a majority vote. That is, the number of judgment results that the speed is excessive is compared with the number of judgment results that the speed is not excessive, and the judgment result having a large number of times is determined as the final judgment result.
 図10に示すように、速度測定装置1の構成は、第1実施形態(図7参照)と同様である。また、記憶部12には、事前に作成された制限速度に対応する特性情報が格納される。 As shown in FIG. 10, the configuration of the speed measuring device 1 is the same as that of the first embodiment (see FIG. 7). Further, the storage unit 12 stores characteristic information corresponding to the speed limit created in advance.
 また、プロセッサ13は、第1実施形態と同様に、検出結果取得処理、および測定点位置取得処理を行うが、速度推定処理の代わりに、速度超過判定処理を行う。 Further, the processor 13 performs the detection result acquisition process and the measurement point position acquisition process as in the first embodiment, but performs the speed excess determination process instead of the speed estimation process.
 速度超過判定処理では、プロセッサ13が、速度の推定結果として、速度超過であるか否か、具体的には、測定点Pが、制限速度に対応するθ-rV曲線の上下いずれに位置するかを判定する。 In overspeed determination process, processor 13, as a result of estimation of speed, whether the overspeed, specifically, the measuring point P m is located above or below the theta-rV curve corresponding to the speed limit Is determined.
 次に、第2実施形態に係る速度測定装置1で行われる処理の手順について説明する。図11は、速度測定装置1で行われる処理の手順を示すフロー図である。 Next, the procedure of the processing performed by the speed measuring device 1 according to the second embodiment will be described. FIG. 11 is a flow chart showing a procedure of processing performed by the speed measuring device 1.
 まず、プロセッサ13が、所定の測定回数(n回)だけ、測定処理を繰り返す(ST101~ST111)。 First, the processor 13 repeats the measurement process a predetermined number of times (n times) (ST101 to ST111).
 この測定処理では、まず、プロセッサ13が、レーダ部11から検出結果として、距離の検出値r、方位角の検出値θ、および速度の検出値V(ドップラ速度)を取得する(ST102)。 This measurement process, first, the processor 13, as a detection result from the radar unit 11, the detection value r m of the distance, acquires the detection value of the azimuth angle theta m, and the speed detection value V m (Doppler velocity) (ST 102 ).
 次に、プロセッサ13が、距離の検出値r、方位角の検出値θ、および速度の検出値Vに基づいて、θ-rV平面上での測定点Pの座標(θ,r×V)を取得する(測定点位置取得処理)(ST103)。 Next, the processor 13, the distance detection value r m, based on the detected value theta m, and the speed detection value V m of the azimuth angle, theta-rV measurement point P m on the plane coordinates (theta m, r m × V m) to get (measurement point position acquisition processing) (ST 103).
 次に、プロセッサ13が、測定点Pが、制限速度に対応するθ-rV曲線の上下いずれに位置するかを判定する(ST111)。 Next, the processor 13 determines whether the measurement point P m is located above or below the θ−rV curve corresponding to the speed limit (ST111).
 以上の判定処理が所定の判定回数(n回)だけ繰り返されて、各回の速度超過の判定結果を取得すると、次に、プロセッサ13が、その各回の速度超過の判定結果を統合して、最終的な速度超過の判定結果を取得する(ST113)。そして、プロセッサ13が、速度超過の判定結果を出力する(ST114)。 When the above determination process is repeated a predetermined number of determinations (n times) and the determination result of the overspeed of each time is acquired, the processor 13 then integrates the determination result of the overspeed of each time and finally. (ST113). Then, the processor 13 outputs the determination result of overspeed (ST114).
 なお、速度違反取締の場合には、ナンバープレートの読み取りによる車両番号を取得し、また、運転者の顔画像を取得するため、道路上の車両をカメラにより撮影する。この場合、道路上の車両をカメラにより常時撮影して、その撮影画像を所定時間だけ一時的に蓄積し、速度測定装置1により速度超過の車両が検知されると、その車両が撮影されている期間の撮影画像を抽出して、適宜な記憶デバイスに保存し、また、監視センターに送信する。 In the case of speed violation control, the vehicle number is obtained by reading the license plate, and the vehicle on the road is photographed with a camera in order to obtain the driver's face image. In this case, a vehicle on the road is constantly photographed by a camera, the photographed image is temporarily accumulated for a predetermined time, and when the speed measuring device 1 detects a vehicle that exceeds the speed, the vehicle is photographed. The captured image of the period is extracted, stored in an appropriate storage device, and sent to the monitoring center.
(第3実施形態)
 次に、第3実施形態について説明する。なお、ここで特に言及しない点は前記の実施形態と同様である。図12は、第3実施形態に係る特性情報を示す説明図である。図13は、第3実施形態に係る速度測定装置1の概略構成を示すブロック図である。
(Third Embodiment)
Next, the third embodiment will be described. It should be noted that the points not particularly mentioned here are the same as those in the above-described embodiment. FIG. 12 is an explanatory diagram showing characteristic information according to the third embodiment. FIG. 13 is a block diagram showing a schematic configuration of the speed measuring device 1 according to the third embodiment.
 移動体の移動速度は、移動体の種類に応じて大きく異なる。例えば、車両と人物とでは移動速度が大きく異なる。そこで、本実施形態では、予め移動体の種類ごとに特性情報(θ-rV曲線に対応するテーブルまたは数式)が作成される。そして、速度測定時には、測定対象となる移動体の種類が判別されて、その移動体の種類に応じた特性情報を用いた速度推定が行われる。 The moving speed of the moving body varies greatly depending on the type of moving body. For example, the moving speed differs greatly between a vehicle and a person. Therefore, in the present embodiment, characteristic information (table or mathematical formula corresponding to the θ−rV curve) is created in advance for each type of moving body. Then, at the time of speed measurement, the type of the moving body to be measured is determined, and the speed is estimated using the characteristic information according to the type of the moving body.
 図12(A),(B)に示す例では、移動体の種類A(比較的低速な移動体、例えば人物、自転車など)と、移動体の種類B(比較的高速な移動体、例えば四輪車、自動二輪車など)とが判別され、種類Aと種類Bとに関する特性情報(θ-rV曲線)が予め作成される。 In the examples shown in FIGS. 12A and 12B, the type A of the moving body (relatively slow moving body, for example, a person, a bicycle, etc.) and the type B of the moving body (a relatively high-speed moving body, for example, four). (Wheel wheel, motorcycle, etc.) is discriminated, and characteristic information (θ-rV curve) relating to type A and type B is created in advance.
 図13に示すように、速度測定装置1の構成は、第1実施形態(図7参照)と同様である。また、記憶部12には、事前に作成された移動体の種類ごとの特性情報が格納される。 As shown in FIG. 13, the configuration of the speed measuring device 1 is the same as that of the first embodiment (see FIG. 7). Further, the storage unit 12 stores the characteristic information for each type of the moving body created in advance.
 また、プロセッサ13は、第1実施形態と同様に、検出結果取得処理、測定点位置取得処理、および速度推定処理を行うが、この他に、移動体種類判別処理、および特性情報選定処理を行う。 Further, the processor 13 performs the detection result acquisition process, the measurement point position acquisition process, and the speed estimation process as in the first embodiment, but also performs the mobile body type determination process and the characteristic information selection process. ..
 移動体種類判別処理では、プロセッサ13が、レーダ部11の検出結果に基づいて、測定対象となる移動体の種類(例えば四輪車、自動二輪車、人物、自転車など)を判別する。なお、道路上の移動体をカメラで撮影して、その撮影画像に基づいて移動体の種類を判別するようにしてもよい。 In the mobile body type discrimination process, the processor 13 discriminates the type of the mobile body to be measured (for example, a four-wheeled vehicle, a motorcycle, a person, a bicycle, etc.) based on the detection result of the radar unit 11. A moving body on the road may be photographed with a camera, and the type of the moving body may be determined based on the photographed image.
 特性情報選定処理では、プロセッサ13が、移動体の種類に応じた特性情報(θ-rV曲線)を選定する。 In the characteristic information selection process, the processor 13 selects characteristic information (θ-rV curve) according to the type of the moving body.
 次に、第3実施形態に係る速度測定装置1で行われる処理の手順について説明する。図14は、速度測定装置1で行われる処理の手順を示すフロー図である。 Next, the procedure of the processing performed by the speed measuring device 1 according to the third embodiment will be described. FIG. 14 is a flow chart showing a procedure of processing performed by the speed measuring device 1.
 まず、プロセッサ13が、レーダ部11の検出結果に基づいて、測定対象となる移動体の種類を判別する(移動体種類判別処理)(ST121)。そして、プロセッサ13が、その移動体の種類に応じた特性情報(θ-rV曲線)を選定する(特性情報選定処理)(ST122)。以降(ST101~ST108)は、第1実施形態と同様である。 First, the processor 13 determines the type of the moving body to be measured based on the detection result of the radar unit 11 (moving body type discrimination processing) (ST121). Then, the processor 13 selects the characteristic information (θ-rV curve) according to the type of the moving body (characteristic information selection process) (ST122). Subsequent steps (ST101 to ST108) are the same as those in the first embodiment.
 以上のように、本出願において開示する技術の例示として、実施形態を説明した。しかしながら、本開示における技術は、これに限定されず、変更、置き換え、付加、省略などを行った実施形態にも適用できる。また、上記の実施形態で説明した各構成要素を組み合わせて、新たな実施形態とすることも可能である。 As described above, an embodiment has been described as an example of the technology disclosed in this application. However, the technique in the present disclosure is not limited to this, and can be applied to embodiments in which changes, replacements, additions, omissions, etc. have been made. It is also possible to combine the components described in the above embodiments to form a new embodiment.
 本開示に係る速度測定装置及び速度測定方法は、設置高さの影響を抑えて移動体の速度を精度よく測定することができる効果を有し、道路上を移動する移動体の速度をレーダを用いて測定する速度測定装置及び速度測定方法などとして有用である。 The speed measuring device and the speed measuring method according to the present disclosure have the effect of suppressing the influence of the installation height and accurately measuring the speed of the moving body, and the speed of the moving body moving on the road is radared. It is useful as a speed measuring device and a speed measuring method for measuring by using.
1 速度測定装置(情報処理装置)
2 特性情報生成装置
11 レーダ部
12 記憶部
13 プロセッサ
21 アンテナ
22 信号処理部
1 Speed measuring device (information processing device)
2 Characteristic information generator 11 Radar unit 12 Storage unit 13 Processor 21 Antenna 22 Signal processing unit

Claims (9)

  1.  道路の周辺に設置されて、道路に沿って移動する移動体の速度を測定する速度測定装置であって、
     道路上の移動体を検出して、距離の検出値および方位角の検出値と、ドップラ速度である速度の検出値とを出力するレーダ部と、
     所定の速度において前記距離と前記速度との積で与えられる特性量と前記方位角との関係を表す特性情報を記憶する記憶部と、
     前記距離の検出値と前記速度の検出値とを乗算して得られる特性量の測定値と、前記特性情報と、前記方位角の検出値とに基づいて、前記移動体の速度を推定するプロセッサと、
    を備えることを特徴とする速度測定装置。
    A speed measuring device installed around a road that measures the speed of a moving object moving along the road.
    A radar unit that detects moving objects on the road and outputs the distance detection value and azimuth detection value, and the speed detection value that is the Doppler speed.
    A storage unit that stores characteristic information representing the relationship between the characteristic quantity given by the product of the distance and the speed at a predetermined speed and the azimuth.
    A processor that estimates the speed of the moving object based on the measured value of the characteristic quantity obtained by multiplying the detected value of the distance and the detected value of the speed, the characteristic information, and the detected value of the azimuth angle. When,
    A speed measuring device comprising.
  2.  前記レーダ部は、
     想定される移動体の高さのばらつきに応じて、前記レーダ部から移動体を見たときの高低角に許容限度を超える変化が現れるような高さに設置されていることを特徴とする請求項1に記載の速度測定装置。
    The radar unit
    The claim is characterized in that it is installed at a height at which a change exceeding the permissible limit appears in the height angle when the moving body is viewed from the radar unit according to the expected variation in the height of the moving body. Item 1. The speed measuring device according to item 1.
  3.  前記プロセッサは、
     複数の速度ごとの前記特性情報に基づいて、前記速度の推定結果として、速度の推定値を取得することを特徴とする請求項1に記載の速度測定装置。
    The processor
    The speed measuring device according to claim 1, wherein an estimated value of the speed is acquired as a result of estimating the speed based on the characteristic information for each of a plurality of speeds.
  4.  前記プロセッサは、
     前記距離の検出値および前記方位角の検出値と前記速度の検出値とに基づいて、前記方位角と前記特性量とを座標軸とした平面上における測定点の位置を取得し、
     前記特性情報に対応する複数の特性曲線のうち、前記測定点の直近にある2本の前記特性曲線を特定して、
     前記特性曲線と前記測定点との位置関係に基づく補間法により、前記速度の推定値を取得することを特徴とする請求項3に記載の速度測定装置。
    The processor
    Based on the detected value of the distance, the detected value of the azimuth, and the detected value of the speed, the position of the measurement point on the plane with the azimuth and the characteristic quantity as the coordinate axes is acquired.
    Of the plurality of characteristic curves corresponding to the characteristic information, the two characteristic curves closest to the measurement point are specified.
    The speed measuring device according to claim 3, wherein an estimated value of the speed is acquired by an interpolation method based on the positional relationship between the characteristic curve and the measurement point.
  5.  前記プロセッサは、
     前記レーダ部の検出処理を複数回実行することで取得した複数の前記速度の推定値を統計処理して、最終的な前記速度の推定値を取得することを特徴とする請求項3に記載の速度測定装置。
    The processor
    The third aspect of claim 3, wherein a plurality of estimated values of the speed acquired by executing the detection process of the radar unit a plurality of times are statistically processed to obtain a final estimated value of the speed. Speed measuring device.
  6.  前記プロセッサは、
     制限速度における前記特性情報に基づいて、前記速度の推定結果として、前記制限速度を超過するか否かに関する速度の判定結果を取得することを特徴とする請求項1に記載の速度測定装置。
    The processor
    The speed measuring device according to claim 1, wherein the speed determination result regarding whether or not the speed limit is exceeded is acquired as the speed estimation result based on the characteristic information at the speed limit.
  7.  前記プロセッサは、
     前記レーダ部の検出処理を複数回実行することで取得した複数回の速度の判定結果を統合して、最終的な速度の判定結果を取得することを特徴とする請求項6に記載の速度測定装置。
    The processor
    The speed measurement according to claim 6, wherein the speed determination results obtained by executing the detection process of the radar unit a plurality of times are integrated to obtain the final speed determination result. Device.
  8.  前記プロセッサは、
     前記レーダ部により検出された移動体の種類を判別し、
     移動体の種類に対応する前記特性情報に基づいて、前記速度の推定結果を取得することを特徴とする請求項1に記載の速度測定装置。
    The processor
    The type of moving object detected by the radar unit is determined, and
    The speed measuring device according to claim 1, wherein the speed estimation result is acquired based on the characteristic information corresponding to the type of the moving body.
  9.  道路に沿って移動する移動体の速度を測定する処理を情報処理装置に行わせる速度測定方法であって、
     前記情報処理装置のプロセッサが、
     道路上の移動体を検出するレーダ部から、距離の検出値および方位角の検出値とドップラ速度である速度の検出値とを取得し、
     前記距離の検出値と前記速度の検出値とを乗算して特性量の測定値を算出し、
     所定の速度における前記方位角と前記特性量との関係を表す特性情報と、前記特性量の測定値と、前記方位角の検出値とに基づいて、速度の推定結果を取得することを特徴とする速度測定方法。
    It is a speed measurement method that causes an information processing device to perform a process of measuring the speed of a moving object moving along a road.
    The processor of the information processing device
    From the radar unit that detects moving objects on the road, the distance detection value, the azimuth detection value, and the speed detection value, which is the Doppler speed, are acquired.
    The measured value of the characteristic quantity is calculated by multiplying the detected value of the distance and the detected value of the speed.
    It is characterized in that the speed estimation result is acquired based on the characteristic information showing the relationship between the azimuth angle and the characteristic quantity at a predetermined speed, the measured value of the characteristic quantity, and the detected value of the azimuth angle. Speed measurement method.
PCT/JP2021/011621 2020-03-25 2021-03-22 Velocity measurement device and velocity measurement method WO2021193493A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180022887.2A CN115298567A (en) 2020-03-25 2021-03-22 Speed measuring device and speed measuring method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-054860 2020-03-25
JP2020054860A JP2021156637A (en) 2020-03-25 2020-03-25 Speed measurement device and speed measurement method

Publications (1)

Publication Number Publication Date
WO2021193493A1 true WO2021193493A1 (en) 2021-09-30

Family

ID=77892134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/011621 WO2021193493A1 (en) 2020-03-25 2021-03-22 Velocity measurement device and velocity measurement method

Country Status (3)

Country Link
JP (1) JP2021156637A (en)
CN (1) CN115298567A (en)
WO (1) WO2021193493A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120229304A1 (en) * 2011-03-09 2012-09-13 Xerox Corporation Automated vehicle speed measurement and enforcement method and system
US20170059700A1 (en) * 2015-08-28 2017-03-02 Jose J. Doval Error Correction In Low-Cost Off-Axis Doppler Radar Readings
US20190025429A1 (en) * 2017-07-21 2019-01-24 Applied Concepts, Inc. System for determining speed and related mapping information for a speed detector
JP2019027976A (en) * 2017-08-01 2019-02-21 住友電気工業株式会社 Radio wave sensor and estimation method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120229304A1 (en) * 2011-03-09 2012-09-13 Xerox Corporation Automated vehicle speed measurement and enforcement method and system
US20170059700A1 (en) * 2015-08-28 2017-03-02 Jose J. Doval Error Correction In Low-Cost Off-Axis Doppler Radar Readings
US20190025429A1 (en) * 2017-07-21 2019-01-24 Applied Concepts, Inc. System for determining speed and related mapping information for a speed detector
JP2019027976A (en) * 2017-08-01 2019-02-21 住友電気工業株式会社 Radio wave sensor and estimation method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
P OLICE RADAR COSINE EFFECT ERROR, 3 April 2019 (2019-04-03), Retrieved from the Internet <URL:http://well.archive.org/web/20190402182725/https://copradar.com/chapts/chapt2/ch2dl.html> [retrieved on 20210521] *

Also Published As

Publication number Publication date
CN115298567A (en) 2022-11-04
JP2021156637A (en) 2021-10-07

Similar Documents

Publication Publication Date Title
US11113966B2 (en) Vehicular information systems and methods
CN104040369B (en) Method and apparatus for not relying on the tachometric survey of wheel in vehicle
US11315420B2 (en) Moving object and driving support system for moving object
JP4740449B2 (en) Vertical axis deviation detection device for automotive radar
US9296393B2 (en) Apparatus and method for recognizing vehicle
JP5724907B2 (en) Integrated method of satellite information and ship information for integrated ship monitoring
US20080205706A1 (en) Apparatus and method for monitoring a vehicle&#39;s surroundings
WO2012147187A1 (en) Periphery vehicle detection device
EP1909064A1 (en) Object detection device
JP2007255979A (en) Object detection method and object detector
CN109696664B (en) Detection method and detection device for ultrasonic co-channel interference
JP2007257536A (en) Road traffic monitoring device by means of millimeter-wave radar
JP2018100899A (en) Object detection device, object detection program, and recording medium
US11408989B2 (en) Apparatus and method for determining a speed of a vehicle
CN101368824A (en) System and method for measuring slope angle of moving object
WO2020191978A1 (en) Sar imaging method and imaging system thereof
JP5056861B2 (en) Ranging device
CN202243539U (en) Railway boundary detecting device based on laser scanning technology
WO2021193493A1 (en) Velocity measurement device and velocity measurement method
JP4046905B2 (en) Inter-vehicle distance measuring device
US6947841B2 (en) Method for identifying obstacles for a motor vehicle, using at least three distance sensors for identifying the lateral extension of an object
JP3873967B2 (en) Weather determination device and weather determination method
JP2007333616A (en) Radar measurement system
CN112991734B (en) Parking space state detection system of visual parking space
CN110809228B (en) Speed measurement method, device, equipment and computer readable storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21776537

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21776537

Country of ref document: EP

Kind code of ref document: A1