WO2021193486A1 - Lighting device - Google Patents

Lighting device Download PDF

Info

Publication number
WO2021193486A1
WO2021193486A1 PCT/JP2021/011577 JP2021011577W WO2021193486A1 WO 2021193486 A1 WO2021193486 A1 WO 2021193486A1 JP 2021011577 W JP2021011577 W JP 2021011577W WO 2021193486 A1 WO2021193486 A1 WO 2021193486A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
led module
white
blue
guide plate
Prior art date
Application number
PCT/JP2021/011577
Other languages
French (fr)
Japanese (ja)
Inventor
▲琢▼充 小松
Original Assignee
三菱電機株式会社
三菱電機照明株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社, 三菱電機照明株式会社 filed Critical 三菱電機株式会社
Priority to JP2022510458A priority Critical patent/JP7346716B2/en
Publication of WO2021193486A1 publication Critical patent/WO2021193486A1/en
Priority to JP2023144089A priority patent/JP2023158096A/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation
    • F21S8/02Lighting devices intended for fixed installation of recess-mounted type, e.g. downlighters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/12Combinations of only three kinds of elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/16Controlling the light source by timing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2113/00Combination of light sources
    • F21Y2113/10Combination of light sources of different colours
    • F21Y2113/13Combination of light sources of different colours comprising an assembly of point-like light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Definitions

  • This disclosure relates to a lighting fixture equipped with an LED (Light Emitting Diode).
  • the state of the sky is controlled by controlling the emission of blue light, yellow light, orange light, red light, and white light by using a light emitting module having LEDs of a plurality of colors. It is configured to be reproduced.
  • the light from the sky illuminates the window frame around the window when it is inserted into the building through the window. Therefore, in reality, not only the blue light of the sky can be seen through the window, but also the sunlight of the sun illuminated by the light from the sky can be seen around the window. However, in the lighting fixture described in Patent Document 1, only the appearance of the sky seen through the window can be reproduced by the flat plate-shaped light emitting module and the light diffusing plate.
  • the present disclosure is to solve the above-mentioned problems, and an object of the present disclosure is to provide a lighting fixture capable of improving the reproducibility of light from the sky.
  • the lighting fixtures of the present disclosure include a blue LED module that emits light containing a blue light component, a light guide plate that diffuses the light of the blue LED module to emit surface light, a white LED module that emits white light, and a light guide plate.
  • the diffuser plate that diffuses the white light of the white LED module and the blue LED module are dimmed to reproduce the sky color, and the white LED module is dimmed to produce the sunlight.
  • the dimming unit is white so that the ratio of the brightness of the light emitted from the light guide plate to the brightness of the light emitted from the diffuser plate is 1: 5.8 to 1:13. Dimming the LED module for light or the LED module for blue.
  • light from the sky is obtained by dimming the blue LED module that reproduces the color of the sky and the white LED module that reproduces the sunlight light so as to have the above-mentioned brightness ratio. It is possible to improve the reproducibility of.
  • FIG. It is a perspective view which shows the appearance of the lighting fixture which concerns on Embodiment 1.
  • FIG. It is an exploded perspective view which shows the structure of the luminaire which concerns on Embodiment 1.
  • FIG. It is an exploded perspective view which shows the structure of the light source unit of the luminaire which concerns on Embodiment 1.
  • FIG. It is an exploded perspective view which shows the structure of the light source unit of the luminaire which concerns on Embodiment 1.
  • FIG. It is sectional drawing which shows the structure of the lighting fixture which concerns on Embodiment 1.
  • FIG. It is a figure which shows the schematic structure of the blue LED module which concerns on Embodiment 1.
  • FIG. It is a control block diagram of the lighting fixture which concerns on Embodiment 1.
  • FIG. 10 It is a graph which shows the light amount of the blue LED module which concerns on Embodiment 1.
  • FIG. It is a graph explaining the dimming control of the blue LED module which concerns on Embodiment 1.
  • FIG. It is a table which shows the experimental result which confirmed the optimum value of the luminance ratio and the color temperature of the sky simulation part and the ambient light emitting part. It is a table which shows the experimental result which confirmed the preference of the color temperature of the ambient light emitting part in a plurality of prototypes, and the naturalness of both the sky simulation part and the ambient light emitting part combined. It is a table which shows the optimum chromaticity range of the ambient light emitting part based on the experimental result of FIG. 10 and FIG.
  • the luminaire of the present disclosure is not limited to the following embodiments, and can be variously modified.
  • the luminaire of the present disclosure includes all combinations of configurations that can be combined among the configurations shown in the following embodiments.
  • those having the same reference numerals are the same or equivalent thereof, which are common in the entire text of the specification.
  • the vertical direction from the floor surface to the ceiling is referred to as "upward direction", and the ceiling side is referred to as "upper side”.
  • the vertical direction from the ceiling to the floor surface is referred to as "downward”
  • the floor surface side is referred to as "lower side”.
  • the relative dimensional relationship or shape of each component may differ from the actual one.
  • FIG. 1 is a perspective view showing the appearance of the lighting fixture 1 according to the first embodiment.
  • the lighting fixture 1 is a ceiling-embedded lighting fixture, and includes a fixture main body 50 embedded in the ceiling and a light source unit 10 attached to the fixture main body 50.
  • the light source unit 10 includes a diffuser plate 13 that emits white light and a light guide plate 17 that emits blue light.
  • the lighting fixture 1 can provide lighting having a deep visual effect as if looking at the sky through a window frame by using blue light from the light guide plate 17 and white light from the diffuser plate 13.
  • FIG. 2 is an exploded perspective view showing the configuration of the lighting fixture 1 according to the first embodiment.
  • the luminaire 1 is embedded and installed in an embedded hole H provided in the ceiling C.
  • the fixture body 50 of the lighting fixture 1 is formed in a rectangular box shape and has an opening on the lower side.
  • the instrument body 50 has a main surface 51 and four side surfaces 52. Each of the side surfaces 52 is provided so as to extend vertically downward from each of the four sides of the main surface 51.
  • the V spring mounting bracket 53 is attached to the inner surface of the two opposite side surfaces 52.
  • the V-spring mounting bracket 53 hooks and holds the V-spring 12 provided on the light source unit 10, which will be described later.
  • bolt holes 51-1 are provided at the four corners of the main surface 51.
  • a hanging bolt B is hung from the embedded hole H of the ceiling C. The instrument body 50 is fixed to the ceiling C by inserting the hanging bolt B into the bolt hole 51-1 and then tightening the hanging bolt B with the nut 61.
  • the main surface 51 is provided with an electric wire hole 51-2 and a terminal block 54.
  • the terminal block 54 has a power supply terminal block and a signal line terminal block. In FIG. 2, the power supply terminal block and the signal line terminal block are not shown.
  • An electric wire and a signal line are drawn out from the electric wire hole 51-2.
  • the electric wire drawn from the electric wire hole 51-2 is electrically connected to the power terminal block of the terminal block 54.
  • the signal line drawn from the electric wire hole 51-2 is electrically connected to the signal line terminal block of the terminal block 54.
  • the light source unit 10 is arranged inside the opening of the fixture body 50.
  • the light source unit 10 includes an upper cover 27, a flange portion 11, a V spring 12, a diffusion plate 13, and a light guide plate 17.
  • the upper cover 27 is formed on a quadrangular pyramid with an open lower end.
  • Each of the four side surfaces of the upper cover 27 is formed in a trapezoidal shape, and the length of the upper side is shorter than the length of the lower side.
  • the flange portion 11 is formed in a rectangular frame shape in a plan view. As shown in FIG. 2, the flange portion 11 is arranged so as to project from the lower end of the upper cover 27 toward the outside in the horizontal direction.
  • the V spring 12 is a wire spring formed by bending a metal wire rod into a V shape, and is attached to the upper surface of the flange portion 11.
  • a total of four V-springs 12 are provided according to the positions of the V-spring mounting brackets 53 of the instrument main body 50.
  • the V spring 12 engages with the V spring mounting bracket 53, the light source unit 10 is suspended and held by the fixture body 50.
  • the flange portion 11 covers the edge of the embedded hole H. Therefore, when the lighting fixture 1 is attached to the embedded hole H of the ceiling C, the embedded hole H cannot be seen by the user.
  • FIG. 3 and 4 are exploded perspective views showing the configuration of the light source unit 10 of the lighting fixture 1 according to the first embodiment.
  • the light source unit 10 includes the components shown in FIG. 3 and the components shown in FIG. FIG. 3 shows the components provided in the lower portion of the light source unit 10, and FIG. 4 shows the components provided in the upper portion of the light source unit 10.
  • the light source unit 10 includes a flange portion 11, a V spring 12, a packing 21, a diffusion plate 13, a packing 22, a white LED module 14, and a module holding portion 15.
  • the flange portion 11 is formed in a rectangular frame shape.
  • the flange portion 11 is made of, for example, metal.
  • a total of four V-springs 12 are provided on the upper surface of the flange portion 11.
  • the module holding portion 15 is formed in a rectangular frame shape in a plan view.
  • the module holding portion 15 is configured by combining four members.
  • Each of the four members has an L-shaped cross section, as shown in FIG. 5, which will be described later.
  • a mounting flange 15-1 is provided at the lower end of each of the four members of the module holding portion 15.
  • the mounting flange 15-1 is attached to the flange portion 11 with screws.
  • the white LED module 14 has three substrates 140 and two types of white LEDs 141 and 142 having different color temperatures provided inside each of the three substrates 140.
  • the three substrates 140 of the white LED module 14 are arranged in a U shape in a plan view so as to form three sides of a rectangle.
  • the angle formed by the adjacent substrates 140 is 90 °.
  • the white LED module 14 emits white light from three directions forming a U shape.
  • the white LED 141 is, for example, a daytime LED having a color temperature of 4000 to 5000 (K)
  • the white LED 142 is, for example, a light bulb color LED having a color temperature of 2600 to 3000 (K).
  • the white LED module 14 can emit white light having various color temperatures and various amounts of light by changing the dimming rate of the white LEDs 141 and 142. Further, the white LED 141 and the white LED 142 may be dimmed according to the time of day. For example, the white LED 141 and the white LED 142 are dimmed so that the amount of light is 100% in the daytime, the amount of light is 50% at dawn and evening, and the amount of light is 20% at night.
  • the white LED 141 and the white LED 142 are dimmed so as to have a neutral white color temperature of 4500K in the daytime, a light bulb color having a color temperature of 3000 to 3500K in the evening, and a color temperature of 4000 to 3800K at night. ..
  • a light emitting element or a light emitting device other than the LED may be used as the light source of the white LED module 14.
  • the white LED module 14 may include only one type of white LED, or may include three or more types of white LEDs.
  • the white LED module 14 is arranged inside the module holding portion 15 and is held by the module holding portion 15.
  • the packing 22 is formed in a rectangular narrow frame shape in a plan view.
  • the packing 22 is arranged between the upper end surface of the diffusion plate 13 and the lower surface which is the exit surface of the light guide plate 17 shown in FIG.
  • the packing 22 shields the light emitted from the blue LED module 18, which will be described later, from entering the upper end surface of the diffuser plate 13 from the emission surface of the light guide plate 17. Further, the packing 22 shields the white light emitted from the white LED module 14 from entering the exit surface of the light guide plate 17 from the upper end surface of the diffuser plate 13. Further, the packing 22 also functions as a cushioning material when the lighting fixture 1 is shaken by an earthquake or the like.
  • the diffusion plate 13 is made of, for example, white resin, and is formed in a rectangular frame shape in a plan view.
  • the diffuser plate 13 has a quadrangular pyramid shape with the upper and lower sides open. That is, each of the four side surfaces of the diffuser plate 13 is inclined at a preset angle with respect to the vertical direction.
  • Each of the four side surfaces of the diffuser plate 13 is composed of a trapezoidal plate, and the length of the upper side is shorter than the length of the lower side. Further, since each of the four side surfaces of the diffusion plate 13 is inclined, the position of the upper side is arranged so as to be inside the position of the lower side in a plan view. As a result, the internal space of the diffuser plate 13 is tapered downward.
  • the diffusion plate 13 may be formed by combining four trapezoidal plates, or may be integrally formed.
  • the diffuser plate 13 Of the four side surfaces of the diffuser plate 13, three surfaces are light emitting surfaces 13-1 and the other one surface is a non-light emitting surface 13-2.
  • the three light emitting surfaces 13-1 are arranged in a U shape.
  • the inner surface facing the internal space of the diffuser plate 13 is referred to as a front surface
  • the outer surface is referred to as a back surface.
  • the diffuser plate 13 is arranged inside the white LED module 14. That is, the white LED module 14 is arranged on the back side of each of the light emitting surfaces 13-1 of the diffuser plate 13.
  • the white light emitted from the white LED module 14 enters from the back surface of the light emitting surface 13-1 of the diffuser plate 13, passes through the light emitting surface 13-1, and is emitted from the front surface of the light emitting surface 13-1. Since each of the light emitting surfaces 13-1 is inclined, the white light emitted from the front surfaces of the three light emitting surfaces 13-1 irradiates diagonally downward.
  • a light-shielding sheet (not shown) is attached to the back surface of the non-light emitting surface 13-2 of the diffusion plate 13 so that light does not leak from the non-light emitting surface 13-2.
  • the diffuser plate 13 has a configuration in which three light emitting surfaces 13-1 and one non-light emitting surface 13-2 that does not emit light are combined. As a result, the light emitted from the diffuser plate 13 becomes light from three directions, giving a sense of depth as if the light from the outside is shining through the window frame in the sun illuminated by sunlight or the window frame in the shade. It is possible to produce a certain visual effect.
  • the diffusion plate 13 is placed on the flange portion 11 via the packing 21.
  • the packing 21 is formed in a rectangular narrow frame shape in a plan view.
  • the packing 21 prevents the flange portion 11 or the diffusion plate 13 from directly colliding with each other when the flange portion 11 or the diffusion plate 13 vibrates. Further, due to the elasticity of the packing 21, the force applied from the flange portion 11 to the diffusion plate 13 is relaxed, and damage to the diffusion plate 13 can be suppressed. Further, by providing the packing 21 between the flange portion 11 and the diffusion plate 13, the impression as a window frame can be given. In particular, when the packing 21 has a white color tone, the impression as a window frame can be strengthened.
  • the packing 21 also functions as a light-shielding portion for preventing white light from leaking from the gap between the diffusion plate 13 and the flange portion 11.
  • the light source unit 10 is further fixed to the lower guide plate 16, the light guide plate 17, the blue LED module 18, the upper guide plate 19, the insulating portion 23, and the module holding portion 24.
  • a member 25, a light guide plate cover 26, and an upper cover 27 are provided.
  • the light source unit 10 further includes a power supply device 31 arranged on the upper surface of the upper cover 27 and a dimming unit 32.
  • the lower guide plate 16 is placed on the module holding portion 15 shown in FIG.
  • the lower guide plate 16 is composed of two rod-shaped members, and is arranged below the light guide plate 17 along an end extending in the longitudinal direction of the light guide plate 17.
  • Protrusions 16-3 are provided at both ends of the two rod-shaped members constituting the lower guide plate 16.
  • the protrusions 16-3 extend vertically upward.
  • the protrusions 16-3 come into contact with the end face 17-2 extending in the lateral direction of the light guide plate 17 to restrict the movement of the light guide plate 17 in the longitudinal direction.
  • the upper guide plate 19 is placed on the light guide plate 17.
  • the upper guide plate 19 is composed of two rod-shaped members and is arranged along an end portion extending in the longitudinal direction of the light guide plate 17.
  • the light guide plate 17 is formed in a rectangular plate shape in a plan view.
  • the light guide plate 17 diffuses the light emitted from the blue LED module 18 and emits blue light from the lower surface, which is the exit surface.
  • the light guide plate 17 is made of an acrylic resin and contains, for example, silica as a scatterer which is a particle that scatters light.
  • the end portion of the light guide plate 17 in the longitudinal direction is sandwiched between the lower guide plate 16 and the upper guide plate 19 from the vertical direction.
  • the upper surface of the light guide plate 17 is smooth because it is totally reflected.
  • the upper surface of the light guide plate 17 is preferably mirror-finished. If the upper surface of the light guide plate 17 is scratched during the assembly work of the lighting fixture 1, total reflection is less likely to occur at the scratched portion. Therefore, a part of the lower surface corresponding to the scratched portion on the upper surface appears to shine whitish. Therefore, in order to prevent the upper surface of the light guide plate 17 from being scratched, the upper surface of the light guide plate 17 may be covered with a reflective sheet (not shown).
  • the blue LED module 18 is arranged so as to be parallel to the end face 17-1 extending in the longitudinal direction of the light guide plate 17.
  • the blue LED module 18 includes two substrates 180 and a plurality of LEDs arranged on the substrate 180, respectively.
  • a plurality of through holes 18-1 are provided in the upper part of the substrate 180. The configuration and dimming control of the blue LED module 18 will be described in detail later.
  • the blue LED module 18 is attached to the module holding portion 24 by the fixing member 25.
  • a cylindrical protrusion 25-1 is provided on the surface of the fixing member 25 on the blue LED module 18 side.
  • the protrusions 25-1 are inserted into through holes 18-1 of the substrate 180 of the blue LED module 18.
  • the fixing member 25 is screwed to the module holding portion 24 in a state where the protruding portion 25-1 is inserted into the through hole 18-1.
  • the module holding portion 24 is formed of a sheet metal having an L-shaped cross section.
  • the module holding unit 24 not only holds the substrate 180 of the blue LED module 18, but also functions as a heat sink that releases heat from the blue LED module 18 to the outside.
  • the module holding portion 24 is attached to the upper surface of the module holding portion 15 shown in FIG. Further, the blue LED module 18 is attached to the module holding portion 24 via the insulating portion 23. If the substrate 180 of the blue LED module 18 is not a double-sided substrate, the insulating portion 23 may be omitted.
  • the light guide plate cover 26 is placed on the upper guide plate 19.
  • the light guide plate cover 26 covers the light guide plate 17 from above and protects the light guide plate 17.
  • the upper cover 27 covers the components of the light source unit 10 shown in FIGS. 3 and 4 and protects the components.
  • the power supply device 31 and the dimming unit 32 are mounted on the upper surface of the upper cover 27.
  • the power supply device 31 supplies electric power to the blue LED module 18 and the white LED module 14.
  • the dimming unit 32 dims each LED included in the blue LED module 18 and the white LED module 14.
  • the dimming unit 32 of the present embodiment dims the blue LED module 18 to reproduce the color of the sky, and dims the white LED module 14 to reproduce the sunlight.
  • the power supply device 31 and the dimming unit 32 are electrically connected by wiring such as a crossover wiring. Further, the power supply device 31 and the dimming unit 32 are electrically connected to the power supply terminal block and the signal terminal block of the terminal block 54 of the instrument body 50 in a state where the light source unit 10 is attached to the instrument body 50.
  • FIG. 5 is a schematic cross-sectional view showing the configuration of the lighting fixture 1 according to the first embodiment.
  • FIG. 5 schematically shows a cross section of the luminaire 1 cut in a plane parallel to one side surface in the lateral direction in the central portion in the longitudinal direction.
  • the light source unit 10 is arranged in the opening at the lower end of the instrument body 50.
  • a V spring 12 is provided on the upper surface of the flange portion 11 of the light source unit 10.
  • the V-spring 12 is held in a state of being hooked on the V-spring mounting bracket 53 provided on the instrument main body 50.
  • the white LED module 14 is held by the module holding portion 15 and is arranged on the back surface of the diffuser plate 13. Further, the blue LED module 18 is held by the module holding portion 24 fixed to the upper surface of the module holding portion 15, and is arranged so as to face the end surface of the light guide plate 17 via the gap 33.
  • the diffusion plate 13 and the light guide plate 17 are arranged so as to intersect each other. Specifically, the light guide plate 17 is arranged parallel to the ceiling C, and the diffusion plate 13 is arranged so as to extend diagonally downward from the light guide plate 17.
  • the light emitted from the blue LED module 18 is incident on the end surface 17-1 of the light guide plate 17 and travels in the light guide plate 17 while being totally reflected by the upper surface and the lower surface of the light guide plate 17. A part of the light traveling in the light guide plate 17 hits the scattering body in the light guide plate 17 and is diffused, and surface-emitted from the lower surface of the light guide plate 17.
  • the light guide plate 17 and the blue LED module 18 constitute an sky simulation unit that reproduces the color of the sky seen through a window. Further, the white light emitted from the white LED module 14 is incident on the back surface of the diffuser plate 13 and emitted from the front surface of the light emitting surface 13-1 of the diffuser plate 13.
  • the diffuser plate 13 and the white LED module 14 constitute an ambient light emitting unit that reproduces the sunlight that is inserted around the window.
  • FIG. 6 is a diagram showing a schematic configuration of the blue LED module 18 according to the first embodiment.
  • FIG. 6 shows a schematic configuration of one substrate 180 in the blue LED module 18, but the configuration of the other substrate 180 is the same as that of FIG.
  • a plurality of white LEDs 181 and blue LEDs 182 and green LEDs 183 are arranged on the substrate 180 of the blue LED module 18.
  • two white LEDs 181 and two blue LEDs 182 and one green LED 183 are arranged as one set, and a plurality of sets are arranged in a row.
  • the number and arrangement of the white LEDs 181 and the blue LEDs 182 and the green LEDs 183 arranged on the substrate 180 of the blue LED module 18 are not limited to the example of FIG.
  • the white LED 181 and the blue LED 182 and the green LED 183 may be arranged in the lower region of the substrate 180.
  • the light guide plate 17 and the diffuser plate 13 can be arranged close to each other, and the blue light from the light guide plate 17 and the white light from the diffuser plate 13 can be emitted in close proximity to each other.
  • the white LED 181 and the blue LED 182 and the green LED 183 may be arranged so as to be displaced in the vertical direction.
  • the arrangement of the white LED181, the blue LED182, and the green LED183 may be appropriately determined in consideration of the color variation and the design of the substrate. However, in order to reproduce the color of the sky, it is desirable that the ratio of the numbers of the white LEDs 181 and the blue LEDs 182 and the green LEDs 183 to the total number of LEDs in the blue LED module 18 is 2: 2: 1.
  • a plurality of through holes 18-1 are provided on the upper part of the substrate 180 of the blue LED module 18.
  • the through hole 18-1 (not shown) provided in the central portion of the substrate 180 is circular, and the other through holes 18-1 are elliptical extending in the longitudinal direction.
  • the substrate 180 of the blue LED module 18 is thermally expanded and contracted by the heat generated from the white LED 181 and the blue LED 182, and the green LED 183. Therefore, when the blue LED module 18 is fixed to the module holding portion 24, the substrate 180 of the blue LED module 18 may be warped or distorted due to thermal expansion and contraction.
  • the substrate 180 is provided with an elliptical through hole 18-1, and the protrusion 25-1 of the fixing member 25 can be inserted into the through hole 18-1 with play.
  • the protrusion 25-1 can move in the elliptical through hole 18-1 in the longitudinal direction, and the substrate 180 can be moved. Warpage or distortion can be suppressed.
  • the white LED 181 is, for example, an LED having a color temperature of 5000 (K) and a forward voltage of 6 V.
  • the blue LED 182 is an LED having a dominant wavelength of 470 nm or less and a forward voltage of 3 V.
  • the green LED 183 is, for example, an LED having a dominant wavelength of 510 to 570 nm and a forward voltage of 3 V.
  • the white LED 181 has a higher forward voltage than the blue LED 182 and the green LED 183, and emits light brighter than the blue LED 182 and the green LED 183 when the same current flows. That is, the output balance of each LED in the blue LED module 18 is white LED181> blue LED182> green LED183.
  • the blue LED module 18 of the present embodiment controls the light emission of the white LED181, the blue LED182, and the green LED183 to reproduce the color of the sky, particularly the color of the blue sky.
  • the color rendering property can be improved as compared with the case of using the three colors of red, blue, and green.
  • FIG. 7 is a control block diagram of the lighting fixture 1 according to the first embodiment.
  • the power supply device 31 includes a first power supply device 31a, a second power supply device 31b, and a second power supply device 31a for passing a current through the white LED 181 of the blue LED module 18, the blue LED 182, and the green LED 183, respectively.
  • a power supply device 31c is provided. By providing a power supply device for each LED individually, it is possible to control the emission color of the blue LED module 18 in two dimensions, so that various blue skies can be reproduced.
  • the power supply device 31 further includes a fourth power supply device 31d and a fifth power supply device 31e for passing a current through the white LED 141 and the white LED 142 of the white LED module 14, respectively.
  • the dimming unit 32 has a first control circuit 32a that transmits a first dimming signal to the first power supply device 31a and a second power supply device 31b, and a second dimming signal that transmits a second dimming signal to the third power supply device 31c.
  • the two control circuits 32b and the like are provided. That is, the first control circuit 32a controls the light emission of the white LED 181 and the blue LED 182 of the blue LED module 18, and the second control circuit 32b controls the light emission of the green LED 183 of the blue LED module 18.
  • the dimming unit 32 further includes a third control circuit 32c that transmits a third dimming signal to the fourth power supply device 31d and a fourth control circuit 32d that transmits a fourth dimming signal to the fifth power supply device 31e. And. That is, the third control circuit 32c controls the light emission of the white LED 141 of the white LED module 14, and the fourth control circuit 32d controls the light emission of the white LED 142 of the white LED module 14.
  • the first to fourth control circuits 32a to 32d have, for example, timers (not shown) and control the first to fifth power supply devices 31a to 32e according to the time.
  • the first to fourth control circuits 32a to 32d are composed of hardware such as a dedicated single circuit or composite circuit, a microcomputer or processor that executes a program stored in a memory, or a combination thereof.
  • the first control circuit 32a performs the same control on both the white LED 181 and the blue LED 182 of the blue LED module 18.
  • lighting control can be simplified and the number of control circuits can be reduced as compared with the case where a control circuit is provided for each LED.
  • the number of control circuits can be four, which facilitates the development of the lighting fixture 1.
  • the first to fifth dimming signals are, for example, PWM (Pulse Width Modulation) signals, and the amount of light is changed according to the duty ratio of the PWM signals.
  • the power supply device 31 performs dimming control between the blue LED module 18 and the white LED module 14 by changing the current flowing through each LED based on the PWM signal.
  • FIG. 8 is a graph showing the amount of light of the blue LED module 18 according to the first embodiment.
  • the horizontal axis of FIG. 8 indicates the time, and the vertical axis indicates the amount of light of the blue LED module 18.
  • the amount of light is changed according to the time, similarly to the white LED module 14. Specifically, as shown in FIG. 8, the amount of light in the daytime (for example, from 8:00 to 16:00) is 100%, and the amount of light in the dawn (for example, from 6:00 to 8:00) and in the evening (for example, from 16:00 to 18:00) is 50. %, And the amount of light at night (for example, from 18:00 to 6:00) is 20%.
  • the amount of light at each time may be changed according to the season. For example, when the season is summer, the daytime time when the amount of light of the blue LED module 18 is 100% may be longer than in the case of winter. Further, not only the amount of light of the blue LED module 18 but also the chromaticity may be changed according to the season.
  • FIG. 9 is a graph illustrating dimming control of the blue LED module 18 according to the first embodiment.
  • the horizontal axis of FIG. 9 indicates the time, and the vertical axis indicates the duty ratio of the dimming signal.
  • the solid line in FIG. 9 shows the first dimming signal output from the first control circuit 32a, and the broken line shows the second dimming signal output from the second control circuit 32b.
  • the first control circuit 32a and the second control circuit 32b set the duty ratio of the first dimming signal and the second dimming signal in the daytime to 1.
  • the first control circuit 32a reduces the duty ratio of the first dimming signal to 0.2 at a preset first reduction rate. Further, the second control circuit 32b reduces the duty ratio of the second dimming signal to 0.2 at a second reduction rate larger than the first reduction rate. As a result, the amount of light of the green LED 183 is first reduced to 20%, and then the white LED 181 and the blue LED 182 are reduced to 20%.
  • the first control circuit 32a increases the duty ratio of the first dimming signal to 1 at a preset first increase rate.
  • the second control circuit 32b increases the duty ratio of the second dimming signal to be larger than the first increase rate after a predetermined time has elapsed (for example, 6 o'clock) after the first control circuit 32a increases the duty ratio. Increase to 1 at the second rate of increase.
  • the amount of light of the green LED 183 first decreases in the evening, and then the white LED 181 and the blue LED 182 decrease, so that the light from the light guide plate 17 becomes purplish deep blue like natural light. Can be changed to.
  • the sky simulation is performed so that not only the sky light reproduced by the sky simulation unit but also the entire light including the sunlight reproduced by the ambient light emitting unit reproduces the actual natural light.
  • the part and the ambient light emitting part are dimmed.
  • FIG. 10 is a table showing the experimental results for confirming the optimum values of the brightness ratio and the chromaticity between the sky simulation unit and the ambient light emitting unit.
  • the brightness ratio shown in FIG. 10 is the ratio of the brightness of the ambient light emitting portion to the brightness of the sky simulated part, and is a value obtained by dividing the brightness of the light emitted from the diffuser plate 13 by the brightness of the light emitted from the light guide plate 17. Further, in FIG. 10, the chromaticity of the sky simulation unit and the ambient light emitting unit is shown by the xy coordinate system (x, y) of the CIE chromaticity diagram. "OK”, “ ⁇ ” or “NG” in "favorability” and “evaluation” shown in FIG. 10 is judged by whether or not it looks like an actual sky.
  • the light emitted from the sky simulation unit loses to the ambient light emitting unit, so that the light from the ambient light emitting unit looks like illumination.
  • the color temperature of the ambient light emitting portion becomes low, the ambient light emitting portion does not look like illumination, but when the color temperature of the ambient light emitting portion becomes too low, the impression of evening is obtained. “ ⁇ ” indicates a result that is an acceptable value but cannot be said to be OK.
  • the brightness ratio between the sky simulated part and the ambient light emitting part that is, the brightness of the light emitted from the light guide plate 17: the brightness of the light emitted from the diffuser plate 13 is preferably 1: 5.8 to 1: 7. , 1: 7 was found to be the optimum value.
  • the optimum chromaticity of light emitted from the diffuser plate 13 is (0.338, 0.345) to (0.363, 0.355) in the xy coordinate system (x, y) of the CIE chromaticity diagram. It turned out that there was.
  • FIG. 11 is a table showing the experimental results confirming the preference of the color temperature of the ambient light emitting part in a plurality of prototypes and the naturalness of both the sky simulation part and the ambient light emitting part combined.
  • the brightness ratios are the same, but due to the difference in the absolute values of the brightness of the sky simulated part and the ambient light emitting part, both the sky simulated part and the ambient light emitting part are both. It was found that the overall naturalness including the above was different. That is, it was found that the luminance ratio and the chromaticity had a range of optimum values.
  • FIG. 12 is a table showing the optimum chromaticity range of the ambient light emitting portion based on the experimental results of FIGS. 10 and 11.
  • the optimum chromaticity range of light emission from the ambient light emitting portion, that is, the diffuser plate 13 is (0.3376, 0.3616) in the xy coordinate system (x, y) of the CIE chromaticity diagram. , (0.3366, 0.3369), (0.3630, 0.3550), (0.3660, 0.3820).
  • FIG. 13 is a chromaticity diagram based on the experimental results of FIGS. 10 and 11.
  • the dotted line shown in FIG. 13 is a blackbody locus, and the broken line is CIE daylight.
  • FIG. 13 shows a color temperature range of 4000K, 4500K, 5000K, 5700K, and 6500K defined by ANSI (American National Standards Institute).
  • the ambient light emitting portion in the case of the brightness ratios of 1: 4, 1: 5, 1: 5.8, 1: 6.2, 1: 6.5, 1: 7 in the experimental result of FIG.
  • the chromaticity of the above and the chromaticity of the ambient light emitting portion of the prototypes 101, 102, 103, 104 in the experimental result of FIG. 11 are shown.
  • the range shown by the thick line in FIG. 13 is the range including the chromaticity of the ambient light emitting portion judged to be “OK” or “ ⁇ ” in the experimental results of FIGS. 10 and 11.
  • This range includes the chromaticity when the luminance ratio is 1: 5.8 to 1: 7 and the chromaticity of the prototypes 101, 103, and 104.
  • This range is the chromaticity coordinates (0.3376, 0.3616), (0.3366, 0.3369), (0.3630, 0.3550), (0.3660,) of the ambient light emitting portion shown in FIG. It is a range surrounded by a square connecting the four points of 0.3820), and is a recommended color temperature range of the ambient light emitting part.
  • FIGS. 14, 15 and 16 are tables showing actual measurement results of chromaticity and brightness of the sky and the sun.
  • FIG. 14 shows the measurement result of the sky of Ofuna, Kamakura City, Kanagawa Prefecture on April 3, 2019, and
  • FIG. 15 shows the measurement result of the sky of Ofuna, Kamakura City, Kanagawa Prefecture on April 15, 2019.
  • Fig. 16 is the measurement result of the sky of Ofuna, Kamakura City, Kanagawa Prefecture on April 16, 2019. The weather will be fine in both cases.
  • the "time" shown in FIGS. 14 to 16 is the measurement start time, and there is a variation of about 15 minutes from the actually measured time.
  • the measurement field of view is 0.1 °.
  • the measured values shown as “north”, “east”, “south”, and “west” are measured values at an angle of about 20 deg with respect to the horizontal plane.
  • the measured values indicated as “heaven (north)”, “heaven (east)”, and “heaven (west)” are measured values at an angle of about 70 deg from the horizontal plane.
  • “Hyuga” was measured by shining natural light on white copy paper.
  • FIG. 17 is a table showing the brightness ratio between the actual sky and the sun in the daytime.
  • FIG. 17 shows the maximum value, the average value, and the minimum value of the brightness ratio (brightness of the sun / brightness of the sky) between 10:00 and 14:00, which is generally assumed to be daytime, which is shown in a thick frame in FIGS. 14 and 15. including.
  • the brightness ratios of 1: 5.8 to 1: 7 derived from the experimental results shown in FIG. 10 are equivalent to the actual brightness ratios of the sky and the sun shown in FIG.
  • the actual brightness ratio between the sky and the sun in the daytime is 12.964 at the maximum. Therefore, the ratio of the brightness of the light emitted from the light guide plate 17 to the brightness of the light emitted from the diffuser plate 13 may be 1: 5.8 to 1:13.
  • the dimming unit 32 of the present embodiment is white so that the ratio of the brightness of the light emitted from the light guide plate 17 to the brightness of the light emitted from the diffuser plate 13 is 1: 5.8 to 1:13.
  • LED module 14 and / or blue LED module 18 are dimmed.
  • the dimming unit 32 is a white LED module 14 or a white LED module 14 so that the ratio of the brightness of the light emitted from the light guide plate 17 to the brightness of the light emitted from the diffuser plate 13 is 1: 5.8 to 1: 7. Dimming the blue LED module 18 or both.
  • the chromaticity of the light emitted from the diffuser plate 13 is (0.3376, 0.3616), (0.3366,0) in the xy coordinate system (x, y) of the CIE chromaticity diagram.
  • the white LED module 14 is dimmed so that it exists within the range surrounded by the square connecting the four points (0.3369), (0.3630, 0.3550), and (0.3660, 0.3820).
  • the lighting fixture 1 of the present embodiment emits blue light from the light guide plate 17 by the blue LED module 18 and white light from the diffuser plate 13 by the white LED module 14 through the window. You can reproduce the appearance of the sky you can see and the sunlight around the window. Further, by setting the brightness ratio between the brightness of the light emitted from the light guide plate 17 and the brightness of the light emitted from the diffuser plate 13 and the chromaticity of the light emitted from the diffuser plate 13 as described above, from the sky in the lighting fixture 1. The reproducibility of the light can be improved.
  • the lighting fixture 1 may be installed on the wall in the room.
  • the white LED module 14 is made L-shaped in a plan view.
  • two adjacent surfaces are designated as light emitting surfaces 13-1, and the other two surfaces are designated as non-light emitting surfaces 13-2.
  • Other configurations are the same as those in the first embodiment.
  • the shape of the luminaire 1 is not limited to a rectangle, and may be a square box shape.
  • the first to fifth power supply devices 31a to 31e are provided for each LED, but the present invention is not limited to this.
  • the power supply device for the white LED 181 and the blue LED 182 of the blue LED module 18 may be shared. As a result, the number of parts can be further reduced, the cost can be reduced, and the luminaire 1 can be downsized.
  • control circuits of the white LED 181 and the blue LED 182 are shared, and the same dimming signal is used for dimming, but the present invention is not limited to this.
  • the white LED 181 and the blue LED 182 may each have a separate control circuit and are controlled by a separate dimming signal.
  • the control is not limited to this.
  • it may be a two-step control in which the amount of light of the white LED 181 and the blue LED 182 is reduced and then the amount of light of the green LED 183 is reduced.
  • the control of the white LED 181 and the blue LED 182 and the green LED 183 is not limited to those described above, and the x value and / or y value in the CIE chromaticity coordinates are used depending on the desired sky color. May be changed to the minus side or the plus side.
  • the blue LED module 18 has a configuration including a plurality of white LEDs 181 and a blue LED 182 and a green LED 183, but if it emits light containing a blue light component, this is used. It is not limited to.
  • the blue LED module 18 may have a configuration having any of the following LEDs (1) to (7).
  • Light blue LED and amber LED Light blue LED and amber LED.
  • Light blue LED and amber LED Light blue LED and amber LED.
  • White LED (8000-7000K) and amber LED Light blue LED and amber LED.
  • Light blue LED and amber LED (6) Light blue LED only. (7) White LED (8000-7000K) only.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

A lighting device is provided with a blue LED module which emits light including a blue light component, a light guide plate which diffuses and surface-emits light from the blue LED module, a white LED module which emits white light, a diffusion plate which is disposed in an orientation intersecting the light guide plate and diffuses the white light from the white LED module, and a light adjustment unit which replicates the color of the sky by adjusting the blue LED module and replicates sunlight by adjusting the white LED module. The light adjustment unit adjusts the white LED module or the blue LED module such that the ratio of the luminance of light emitted by the light guide plate and the luminance of light emitted from the light diffusion plate is 1:5.8-1:13.

Description

照明器具lighting equipment
 本開示は、LED(Light Emitting Diode)を備える照明器具に関する。 This disclosure relates to a lighting fixture equipped with an LED (Light Emitting Diode).
 従来、空の様子を再現することが可能な照明器具が提案されている。例えば、特許文献1に記載の照明器具では、複数色のLEDを有する発光モジュールを用いて、青色光、黄色光、橙色光、赤色光および白色光の発光を制御することで、空の様子を再現する構成となっている。 Conventionally, lighting fixtures that can reproduce the appearance of the sky have been proposed. For example, in the lighting fixture described in Patent Document 1, the state of the sky is controlled by controlling the emission of blue light, yellow light, orange light, red light, and white light by using a light emitting module having LEDs of a plurality of colors. It is configured to be reproduced.
特開2019-102166号公報Japanese Unexamined Patent Publication No. 2019-102166
 ここで、空からの光は、窓から建物の中に差し込む際に、窓の周囲の窓枠などを照らす。そのため、実際には窓越しに空の青色の光が見えるだけでなく、窓の周囲にも空からの光に照らされた日向の光が見える。しかしながら、特許文献1に記載の照明器具では、平板形状の発光モジュールおよび光拡散板により、窓に見える空の様子しか再現できていなかった。 Here, the light from the sky illuminates the window frame around the window when it is inserted into the building through the window. Therefore, in reality, not only the blue light of the sky can be seen through the window, but also the sunlight of the sun illuminated by the light from the sky can be seen around the window. However, in the lighting fixture described in Patent Document 1, only the appearance of the sky seen through the window can be reproduced by the flat plate-shaped light emitting module and the light diffusing plate.
 本開示は、上述のような課題を解決するものであり、空からの光の再現度を向上させることができる照明器具を提供することを目的とする。 The present disclosure is to solve the above-mentioned problems, and an object of the present disclosure is to provide a lighting fixture capable of improving the reproducibility of light from the sky.
 本開示の照明器具は、青色光成分を含む光を発する青色用LEDモジュールと、青色用LEDモジュールの光を拡散して面発光する導光板と、白色光を発する白色用LEDモジュールと、導光板と交差する向きに配置され、白色用LEDモジュールの白色光を拡散する拡散板と、青色用LEDモジュールを調光して空の色を再現し、白色用LEDモジュールを調光して日向の光を再現する調光ユニットと、を備え、調光ユニットは、導光板からの発光の輝度と、拡散板からの発光の輝度との比が、1:5.8~1:13となるよう白色用LEDモジュールまたは青色用LEDモジュールを調光する。 The lighting fixtures of the present disclosure include a blue LED module that emits light containing a blue light component, a light guide plate that diffuses the light of the blue LED module to emit surface light, a white LED module that emits white light, and a light guide plate. The diffuser plate that diffuses the white light of the white LED module and the blue LED module are dimmed to reproduce the sky color, and the white LED module is dimmed to produce the sunlight. The dimming unit is white so that the ratio of the brightness of the light emitted from the light guide plate to the brightness of the light emitted from the diffuser plate is 1: 5.8 to 1:13. Dimming the LED module for light or the LED module for blue.
 本開示の照明器具によれば、空の色を再現する青色用LEDモジュールと、日向の光を再現する白色用LEDモジュールとが上述の輝度比になるよう調光することで、空からの光の再現度を向上させることができる。 According to the lighting fixtures of the present disclosure, light from the sky is obtained by dimming the blue LED module that reproduces the color of the sky and the white LED module that reproduces the sunlight light so as to have the above-mentioned brightness ratio. It is possible to improve the reproducibility of.
実施の形態1に係る照明器具の外観を示す斜視図である。It is a perspective view which shows the appearance of the lighting fixture which concerns on Embodiment 1. FIG. 実施の形態1に係る照明器具の構成を示す分解斜視図である。It is an exploded perspective view which shows the structure of the luminaire which concerns on Embodiment 1. FIG. 実施の形態1に係る照明器具の光源ユニットの構成を示す分解斜視図である。It is an exploded perspective view which shows the structure of the light source unit of the luminaire which concerns on Embodiment 1. FIG. 実施の形態1に係る照明器具の光源ユニットの構成を示す分解斜視図である。It is an exploded perspective view which shows the structure of the light source unit of the luminaire which concerns on Embodiment 1. FIG. 実施の形態1に係る照明器具の構成を示す断面模式図である。It is sectional drawing which shows the structure of the lighting fixture which concerns on Embodiment 1. FIG. 実施の形態1に係る青色用LEDモジュールの概略構成を示す図である。It is a figure which shows the schematic structure of the blue LED module which concerns on Embodiment 1. FIG. 実施の形態1に係る照明器具の制御ブロック図である。It is a control block diagram of the lighting fixture which concerns on Embodiment 1. FIG. 実施の形態1に係る青色用LEDモジュールの光量を示すグラフである。It is a graph which shows the light amount of the blue LED module which concerns on Embodiment 1. FIG. 実施の形態1に係る青色用LEDモジュールの調光制御を説明するグラフである。It is a graph explaining the dimming control of the blue LED module which concerns on Embodiment 1. FIG. 空模擬部と周囲発光部との輝度比および色温度の最適値を確認した実験結果を示す表である。It is a table which shows the experimental result which confirmed the optimum value of the luminance ratio and the color temperature of the sky simulation part and the ambient light emitting part. 複数の試作品における周囲発光部の色温度の好ましさと、空模擬部と周囲発光部を合わせた両方での自然さを確認した実験結果を示す表である。It is a table which shows the experimental result which confirmed the preference of the color temperature of the ambient light emitting part in a plurality of prototypes, and the naturalness of both the sky simulation part and the ambient light emitting part combined. 図10および図11の実験結果に基づく周囲発光部の最適な色度範囲を示す表である。It is a table which shows the optimum chromaticity range of the ambient light emitting part based on the experimental result of FIG. 10 and FIG. 図10および図11の実験結果に基づく色度図である。It is a chromaticity diagram based on the experimental result of FIG. 10 and FIG. 実際の空と日向の色温度および輝度の測定結果を示す表である。It is a table which shows the measurement result of the actual color temperature and brightness of the sky and the sun. 実際の空と日向の色温度および輝度の測定結果を示す表である。It is a table which shows the measurement result of the actual color temperature and brightness of the sky and the sun. 実際の空と日向の色温度および輝度の測定結果を示す表である。It is a table which shows the measurement result of the actual color temperature and brightness of the sky and the sun. 昼間における実際の空と日向との輝度比を示す表である。It is a table showing the brightness ratio between the actual sky and the sun in the daytime.
 以下、照明器具の実施の形態について図面を参照して説明する。本開示の照明器具は、以下の実施の形態に限定されるものではなく、種々に変形することが可能である。また、本開示の照明器具は、以下の実施の形態に示す構成のうち、組み合わせ可能な構成のあらゆる組み合わせを含むものである。また、各図において、同一の符号を付したものは、同一のまたはこれに相当するものであり、これは明細書の全文において共通している。また、明細書の全文において、床面から天井に向かう垂直な方向を「上方向」と呼び、天井側を「上側」と呼ぶことする。また、同様に、天井から床面に向かう垂直な方向を「下方向」と呼び、床面側を「下側」と呼ぶことする。なお、各図面では、各構成部材の相対的な寸法関係または形状等が実際のものとは異なる場合がある。 Hereinafter, the embodiment of the lighting fixture will be described with reference to the drawings. The luminaire of the present disclosure is not limited to the following embodiments, and can be variously modified. In addition, the luminaire of the present disclosure includes all combinations of configurations that can be combined among the configurations shown in the following embodiments. Further, in each figure, those having the same reference numerals are the same or equivalent thereof, which are common in the entire text of the specification. Further, in the entire text of the specification, the vertical direction from the floor surface to the ceiling is referred to as "upward direction", and the ceiling side is referred to as "upper side". Similarly, the vertical direction from the ceiling to the floor surface is referred to as "downward", and the floor surface side is referred to as "lower side". In each drawing, the relative dimensional relationship or shape of each component may differ from the actual one.
 実施の形態1.
 図1は、実施の形態1に係る照明器具1の外観を示す斜視図である。照明器具1は、天井埋め込み型の照明器具であり、天井に埋め込まれる器具本体50と、器具本体50に取り付けられる光源ユニット10とを備える。光源ユニット10は、白色光を発する拡散板13と、青色光を発する導光板17とを備える。照明器具1は、導光板17からの青色光と、拡散板13からの白色光とにより、窓枠越しに空を見るような奥行き感のある視覚効果を有する照明を提供することができる。
Embodiment 1.
FIG. 1 is a perspective view showing the appearance of the lighting fixture 1 according to the first embodiment. The lighting fixture 1 is a ceiling-embedded lighting fixture, and includes a fixture main body 50 embedded in the ceiling and a light source unit 10 attached to the fixture main body 50. The light source unit 10 includes a diffuser plate 13 that emits white light and a light guide plate 17 that emits blue light. The lighting fixture 1 can provide lighting having a deep visual effect as if looking at the sky through a window frame by using blue light from the light guide plate 17 and white light from the diffuser plate 13.
 図2は、実施の形態1に係る照明器具1の構成を示す分解斜視図である。照明器具1は、天井Cに設けられた埋め込み穴Hに埋め込まれて設置される。図2に示すように、照明器具1の器具本体50は、長方形の箱形に形成され、下側が開口している。器具本体50は、主面51と、4つの側面52とを有している。側面52のそれぞれは、主面51の4辺のそれぞれから下方向に向かって垂直に延びるように設けられている。 FIG. 2 is an exploded perspective view showing the configuration of the lighting fixture 1 according to the first embodiment. The luminaire 1 is embedded and installed in an embedded hole H provided in the ceiling C. As shown in FIG. 2, the fixture body 50 of the lighting fixture 1 is formed in a rectangular box shape and has an opening on the lower side. The instrument body 50 has a main surface 51 and four side surfaces 52. Each of the side surfaces 52 is provided so as to extend vertically downward from each of the four sides of the main surface 51.
 器具本体50の4つの側面52のうち、対向する2つの側面52の内側の面には、Vばね取り付け金具53が取り付けられている。Vばね取り付け金具53は、光源ユニット10に設けられた後述するVばね12を引掛けて保持する。また、主面51の四隅には、ボルト孔51-1が設けられている。また、天井Cの埋め込み穴Hからは、吊り下げボルトBが吊り下げられている。器具本体50は、ボルト孔51-1に吊り下げボルトBを挿入した後、吊り下げボルトBをナット61で締めることで、天井Cに固定される。 Of the four side surfaces 52 of the instrument body 50, the V spring mounting bracket 53 is attached to the inner surface of the two opposite side surfaces 52. The V-spring mounting bracket 53 hooks and holds the V-spring 12 provided on the light source unit 10, which will be described later. Further, bolt holes 51-1 are provided at the four corners of the main surface 51. Further, a hanging bolt B is hung from the embedded hole H of the ceiling C. The instrument body 50 is fixed to the ceiling C by inserting the hanging bolt B into the bolt hole 51-1 and then tightening the hanging bolt B with the nut 61.
 また、主面51には、電線孔51-2が形成されるとともに、端子台54が設けられている。端子台54は、電源端子台と信号線端子台とを有する。図2において、電源端子台および信号線端子台は図示を省略している。電線孔51-2からは、電線および信号線が引き出される。電線孔51-2から引き出された電線は、端子台54の電源端子台に電気的に接続される。また、電線孔51-2から引き出された信号線は、端子台54の信号線端子台に電気的に接続される。 Further, the main surface 51 is provided with an electric wire hole 51-2 and a terminal block 54. The terminal block 54 has a power supply terminal block and a signal line terminal block. In FIG. 2, the power supply terminal block and the signal line terminal block are not shown. An electric wire and a signal line are drawn out from the electric wire hole 51-2. The electric wire drawn from the electric wire hole 51-2 is electrically connected to the power terminal block of the terminal block 54. Further, the signal line drawn from the electric wire hole 51-2 is electrically connected to the signal line terminal block of the terminal block 54.
 光源ユニット10は、器具本体50の開口内部に配置される。光源ユニット10は、上カバー27と、フランジ部11と、Vばね12と、拡散板13と、導光板17と、を備える。上カバー27は、下端が開口した四角錐台に形成される。上カバー27の4つの側面のそれぞれは、台形形状に形成され、上辺の長さが下辺の長さよりも短くなっている。フランジ部11は、平面視で、長方形の枠形に形成されている。フランジ部11は、図2に示すように、上カバー27の下端から水平方向の外側に向かって突出するように配置されている。 The light source unit 10 is arranged inside the opening of the fixture body 50. The light source unit 10 includes an upper cover 27, a flange portion 11, a V spring 12, a diffusion plate 13, and a light guide plate 17. The upper cover 27 is formed on a quadrangular pyramid with an open lower end. Each of the four side surfaces of the upper cover 27 is formed in a trapezoidal shape, and the length of the upper side is shorter than the length of the lower side. The flange portion 11 is formed in a rectangular frame shape in a plan view. As shown in FIG. 2, the flange portion 11 is arranged so as to project from the lower end of the upper cover 27 toward the outside in the horizontal direction.
 Vばね12は、金属製の線材をV字状に曲げて形成された線ばねであり、フランジ部11の上面に取り付けられている。Vばね12は、器具本体50のVばね取り付け金具53の位置に合わせて、合計4個設けられている。Vばね12がVばね取り付け金具53に係合することで、光源ユニット10が器具本体50に吊り下げられて保持される。なお、照明器具1が天井Cの埋め込み穴Hに取り付けられた状態のとき、フランジ部11は埋め込み穴Hの縁を覆う。従って、照明器具1が天井Cの埋め込み穴Hに取り付けられた状態のとき、ユーザからは埋め込み穴Hは見えなくなる。 The V spring 12 is a wire spring formed by bending a metal wire rod into a V shape, and is attached to the upper surface of the flange portion 11. A total of four V-springs 12 are provided according to the positions of the V-spring mounting brackets 53 of the instrument main body 50. When the V spring 12 engages with the V spring mounting bracket 53, the light source unit 10 is suspended and held by the fixture body 50. When the lighting fixture 1 is attached to the embedded hole H in the ceiling C, the flange portion 11 covers the edge of the embedded hole H. Therefore, when the lighting fixture 1 is attached to the embedded hole H of the ceiling C, the embedded hole H cannot be seen by the user.
 図3および図4は、実施の形態1に係る照明器具1の光源ユニット10の構成を示す分解斜視図である。光源ユニット10は、図3に示す構成要素と図4に示す構成要素とからなる。図3は、光源ユニット10の下側部分に設けられた構成要素を示し、図4は、光源ユニット10の上側部分に設けられた構成要素を示している。 3 and 4 are exploded perspective views showing the configuration of the light source unit 10 of the lighting fixture 1 according to the first embodiment. The light source unit 10 includes the components shown in FIG. 3 and the components shown in FIG. FIG. 3 shows the components provided in the lower portion of the light source unit 10, and FIG. 4 shows the components provided in the upper portion of the light source unit 10.
 光源ユニット10の構成要素のうち、まず、図3に示す構成要素について説明する。図3に示すように、光源ユニット10は、フランジ部11と、Vばね12と、パッキン21と、拡散板13と、パッキン22と、白色用LEDモジュール14と、モジュール保持部15とを備える。 Among the components of the light source unit 10, first, the components shown in FIG. 3 will be described. As shown in FIG. 3, the light source unit 10 includes a flange portion 11, a V spring 12, a packing 21, a diffusion plate 13, a packing 22, a white LED module 14, and a module holding portion 15.
 フランジ部11は、上述したように、長方形の枠形に形成されている。フランジ部11は、例えば金属から構成されている。Vばね12は、フランジ部11の上面に、合計4個設けられている。 As described above, the flange portion 11 is formed in a rectangular frame shape. The flange portion 11 is made of, for example, metal. A total of four V-springs 12 are provided on the upper surface of the flange portion 11.
 モジュール保持部15は、平面視で長方形の枠形に形成されている。モジュール保持部15は、4つの部材を組み合わせて構成されている。4つの部材のそれぞれは、後述する図5に示されるように、L字断面を有している。また、図3に示すように、モジュール保持部15の4つの部材のそれぞれの下端には、取付フランジ15-1が設けられている。取付フランジ15-1は、ねじによってフランジ部11に取り付けられる。 The module holding portion 15 is formed in a rectangular frame shape in a plan view. The module holding portion 15 is configured by combining four members. Each of the four members has an L-shaped cross section, as shown in FIG. 5, which will be described later. Further, as shown in FIG. 3, a mounting flange 15-1 is provided at the lower end of each of the four members of the module holding portion 15. The mounting flange 15-1 is attached to the flange portion 11 with screws.
 白色用LEDモジュール14は、3つの基板140と、3つの基板140それぞれの内側に設けられた色温度の異なる2種類の白色LED141および142とを有している。白色用LEDモジュール14の3つの基板140は、長方形の3辺を形成するように、平面視でコの字形に配置される。隣接する基板140同士のなす角度は90°である。白色用LEDモジュール14は、コの字を構成する3方向から白色光を出射する。 The white LED module 14 has three substrates 140 and two types of white LEDs 141 and 142 having different color temperatures provided inside each of the three substrates 140. The three substrates 140 of the white LED module 14 are arranged in a U shape in a plan view so as to form three sides of a rectangle. The angle formed by the adjacent substrates 140 is 90 °. The white LED module 14 emits white light from three directions forming a U shape.
 白色LED141は、例えば色温度が4000~5000(K)の昼色のLEDであり、白色LED142は例えば色温度が2600~3000(K)の電球色のLEDである。白色用LEDモジュール14は、白色LED141および142の調光率を変化させることにより、様々な色温度および様々な光量の白色光を出射することができる。また、白色LED141と白色LED142は、時刻に応じて調光されてもよい。例えば、白色LED141と白色LED142は、昼間に光量が100%、明け方および夕方に光量が50%、夜に光量が20%となるよう調光される。さらに、白色LED141と白色LED142は、例えば、昼間に色温度が4500Kの昼白色となり、夕方に色温度が3000~3500Kの電球色となり、夜に色温度が4000~3800Kとなるよう調光される。 The white LED 141 is, for example, a daytime LED having a color temperature of 4000 to 5000 (K), and the white LED 142 is, for example, a light bulb color LED having a color temperature of 2600 to 3000 (K). The white LED module 14 can emit white light having various color temperatures and various amounts of light by changing the dimming rate of the white LEDs 141 and 142. Further, the white LED 141 and the white LED 142 may be dimmed according to the time of day. For example, the white LED 141 and the white LED 142 are dimmed so that the amount of light is 100% in the daytime, the amount of light is 50% at dawn and evening, and the amount of light is 20% at night. Further, the white LED 141 and the white LED 142 are dimmed so as to have a neutral white color temperature of 4500K in the daytime, a light bulb color having a color temperature of 3000 to 3500K in the evening, and a color temperature of 4000 to 3800K at night. ..
 なお、白色用LEDモジュール14の光源として、LED以外の発光素子または発光装置を用いてもよい。また、白色用LEDモジュール14は、1種類のみの白色LEDを備えてもよいし、3種類以上の白色LEDを備えてもよい。白色用LEDモジュール14は、モジュール保持部15の内側に配置され、モジュール保持部15によって保持される。 A light emitting element or a light emitting device other than the LED may be used as the light source of the white LED module 14. Further, the white LED module 14 may include only one type of white LED, or may include three or more types of white LEDs. The white LED module 14 is arranged inside the module holding portion 15 and is held by the module holding portion 15.
 パッキン22は、平面視で、長方形の細枠形に形成されている。パッキン22は、拡散板13の上側の端面と、図4に示す導光板17の出射面である下面との間に配置される。パッキン22は、後述する青色用LEDモジュール18から出射された光が導光板17の出射面から拡散板13の上側の端面に入り込まないよう遮光する。また、パッキン22は、白色用LEDモジュール14から出射された白色光が拡散板13の上側の端面から導光板17の出射面に入り込まないよう遮光する。さらに、パッキン22は、照明器具1が地震等により揺れた場合の緩衝材としても機能する。 The packing 22 is formed in a rectangular narrow frame shape in a plan view. The packing 22 is arranged between the upper end surface of the diffusion plate 13 and the lower surface which is the exit surface of the light guide plate 17 shown in FIG. The packing 22 shields the light emitted from the blue LED module 18, which will be described later, from entering the upper end surface of the diffuser plate 13 from the emission surface of the light guide plate 17. Further, the packing 22 shields the white light emitted from the white LED module 14 from entering the exit surface of the light guide plate 17 from the upper end surface of the diffuser plate 13. Further, the packing 22 also functions as a cushioning material when the lighting fixture 1 is shaken by an earthquake or the like.
 拡散板13は、例えば白色の樹脂から構成され、平面視で長方形の枠形に形成されている。拡散板13は、上側と下側が開口した四角錐台形状を有する。すなわち、拡散板13の4つの側面のそれぞれは、垂直方向に対して予め設定された角度で傾斜している。拡散板13の4つの側面のそれぞれは、台形形状の板から構成され、上辺の長さが下辺の長さよりも短くなっている。また、拡散板13の4つの側面のそれぞれが傾斜しているため、平面視で、上辺の位置が下辺の位置よりも内側になるように配置されている。それにより、拡散板13の内部空間は、下方向に向かってテーパ状に大きくなっている。拡散板13は、4枚の台形形状の板を組み合わせて形成されてもよいし、一体成型で形成されてもよい。 The diffusion plate 13 is made of, for example, white resin, and is formed in a rectangular frame shape in a plan view. The diffuser plate 13 has a quadrangular pyramid shape with the upper and lower sides open. That is, each of the four side surfaces of the diffuser plate 13 is inclined at a preset angle with respect to the vertical direction. Each of the four side surfaces of the diffuser plate 13 is composed of a trapezoidal plate, and the length of the upper side is shorter than the length of the lower side. Further, since each of the four side surfaces of the diffusion plate 13 is inclined, the position of the upper side is arranged so as to be inside the position of the lower side in a plan view. As a result, the internal space of the diffuser plate 13 is tapered downward. The diffusion plate 13 may be formed by combining four trapezoidal plates, or may be integrally formed.
 拡散板13の4つの側面のうち、3つの面は発光面13-1であり、他の1つの面は非発光面13-2である。3つの発光面13-1は、コの字形状に配置されている。ここで、拡散板13の4つの側面のそれぞれにおいて、拡散板13の内部空間に面している内側の面を前面と呼び、外側の面を背面と称する。 Of the four side surfaces of the diffuser plate 13, three surfaces are light emitting surfaces 13-1 and the other one surface is a non-light emitting surface 13-2. The three light emitting surfaces 13-1 are arranged in a U shape. Here, on each of the four side surfaces of the diffuser plate 13, the inner surface facing the internal space of the diffuser plate 13 is referred to as a front surface, and the outer surface is referred to as a back surface.
 拡散板13は、白色用LEDモジュール14の内側に配置される。すなわち、拡散板13の発光面13-1のそれぞれの背面側に、白色用LEDモジュール14が配置される。白色用LEDモジュール14から出射された白色光は、拡散板13の発光面13-1の背面から入射し、発光面13-1を透過して、発光面13-1の前面から出射される。発光面13-1のそれぞれが傾斜しているため、3つの発光面13-1の前面から出射される白色光は、斜め下方向を照射する。 The diffuser plate 13 is arranged inside the white LED module 14. That is, the white LED module 14 is arranged on the back side of each of the light emitting surfaces 13-1 of the diffuser plate 13. The white light emitted from the white LED module 14 enters from the back surface of the light emitting surface 13-1 of the diffuser plate 13, passes through the light emitting surface 13-1, and is emitted from the front surface of the light emitting surface 13-1. Since each of the light emitting surfaces 13-1 is inclined, the white light emitted from the front surfaces of the three light emitting surfaces 13-1 irradiates diagonally downward.
 拡散板13の非発光面13-2の背面には、遮光シート(不図示)が貼付され、非発光面13-2から光が漏れないように構成されている。 A light-shielding sheet (not shown) is attached to the back surface of the non-light emitting surface 13-2 of the diffusion plate 13 so that light does not leak from the non-light emitting surface 13-2.
 このように、拡散板13は、3つの発光面13-1と、光を発しない1つの非発光面13-2とを組み合わせた構成を有している。これにより、拡散板13からの発光は、3方向からの光となり、太陽光に照らされた日向の窓枠、または日陰の窓枠越しに、外からの光が差し込んでいるような奥行き感のある視覚効果を演出することができる。 As described above, the diffuser plate 13 has a configuration in which three light emitting surfaces 13-1 and one non-light emitting surface 13-2 that does not emit light are combined. As a result, the light emitted from the diffuser plate 13 becomes light from three directions, giving a sense of depth as if the light from the outside is shining through the window frame in the sun illuminated by sunlight or the window frame in the shade. It is possible to produce a certain visual effect.
 拡散板13はパッキン21を介して、フランジ部11上に載置される。パッキン21は、平面視で、長方形の細枠形に形成されている。パッキン21は、フランジ部11または拡散板13が振動した際に、互いが直接的にぶつかり合うことを防止する。また、パッキン21の弾力性により、フランジ部11から拡散板13に与える力が緩和され、拡散板13の破損を抑制することができる。さらに、フランジ部11と拡散板13との間にパッキン21を設けることで、窓枠としての印象を持たせることができる。特に、パッキン21が白色系の色調の場合に、窓枠としての印象を強めることができる。また、パッキン21は、拡散板13とフランジ部11との隙間から白色光が漏れることを防ぐ遮光部としても機能する。 The diffusion plate 13 is placed on the flange portion 11 via the packing 21. The packing 21 is formed in a rectangular narrow frame shape in a plan view. The packing 21 prevents the flange portion 11 or the diffusion plate 13 from directly colliding with each other when the flange portion 11 or the diffusion plate 13 vibrates. Further, due to the elasticity of the packing 21, the force applied from the flange portion 11 to the diffusion plate 13 is relaxed, and damage to the diffusion plate 13 can be suppressed. Further, by providing the packing 21 between the flange portion 11 and the diffusion plate 13, the impression as a window frame can be given. In particular, when the packing 21 has a white color tone, the impression as a window frame can be strengthened. The packing 21 also functions as a light-shielding portion for preventing white light from leaking from the gap between the diffusion plate 13 and the flange portion 11.
 次に、光源ユニット10の構成要素のうち、図4に示す構成要素について説明する。図4に示すように、光源ユニット10は、さらに、下ガイドプレート16と、導光板17と、青色用LEDモジュール18と、上ガイドプレート19と、絶縁部23と、モジュール保持部24と、固定部材25と、導光板カバー26と、上カバー27とを備える。また、光源ユニット10は、上カバー27の上面に配置される電源装置31と、調光ユニット32とをさらに備える。 Next, among the components of the light source unit 10, the components shown in FIG. 4 will be described. As shown in FIG. 4, the light source unit 10 is further fixed to the lower guide plate 16, the light guide plate 17, the blue LED module 18, the upper guide plate 19, the insulating portion 23, and the module holding portion 24. A member 25, a light guide plate cover 26, and an upper cover 27 are provided. Further, the light source unit 10 further includes a power supply device 31 arranged on the upper surface of the upper cover 27 and a dimming unit 32.
 下ガイドプレート16は、図3に示したモジュール保持部15上に載置される。下ガイドプレート16は、2本の棒状の部材から構成され、導光板17の下方において、導光板17の長手方向に延びる端部に沿って配置される。下ガイドプレート16を構成する2本の棒状の部材の両端には、突起部16-3が設けられている。突起部16-3は、上側に向かって垂直に延びている。突起部16-3は、導光板17の短手方向に延びる端面17-2と接触し、導光板17の長手方向への移動を規制する。 The lower guide plate 16 is placed on the module holding portion 15 shown in FIG. The lower guide plate 16 is composed of two rod-shaped members, and is arranged below the light guide plate 17 along an end extending in the longitudinal direction of the light guide plate 17. Protrusions 16-3 are provided at both ends of the two rod-shaped members constituting the lower guide plate 16. The protrusions 16-3 extend vertically upward. The protrusions 16-3 come into contact with the end face 17-2 extending in the lateral direction of the light guide plate 17 to restrict the movement of the light guide plate 17 in the longitudinal direction.
 上ガイドプレート19は、導光板17上に載置される。上ガイドプレート19は、2本の棒状の部材から構成され、導光板17の長手方向に延びる端部に沿って配置される。 The upper guide plate 19 is placed on the light guide plate 17. The upper guide plate 19 is composed of two rod-shaped members and is arranged along an end portion extending in the longitudinal direction of the light guide plate 17.
 導光板17は、平面視で長方形の板状に形成される。導光板17は、青色用LEDモジュール18から出射された光を拡散させ、出射面である下面から青色光を面発光する。導光板17は、アクリル樹脂で形成され、光を散乱させる粒子である散乱体として、例えばシリカを含む。導光板17の長手方向の端部は、下ガイドプレート16と上ガイドプレート19とで上下方向から挟持される。 The light guide plate 17 is formed in a rectangular plate shape in a plan view. The light guide plate 17 diffuses the light emitted from the blue LED module 18 and emits blue light from the lower surface, which is the exit surface. The light guide plate 17 is made of an acrylic resin and contains, for example, silica as a scatterer which is a particle that scatters light. The end portion of the light guide plate 17 in the longitudinal direction is sandwiched between the lower guide plate 16 and the upper guide plate 19 from the vertical direction.
 導光板17の上面は、全反射するために平滑となっている。導光板17の上面は、鏡面仕上げであることが望ましい。照明器具1の組立て作業中に、導光板17の上面に傷がつくと、傷がついた箇所で全反射が起こりにくくなる。そのため、上面の傷がついた箇所に対応する下面の一部分が白っぽく光って見えてしまう。そのため、導光板17の上面の傷つきを防止するために、導光板17の上面を反射シート(不図示)で覆うようにしてもよい。 The upper surface of the light guide plate 17 is smooth because it is totally reflected. The upper surface of the light guide plate 17 is preferably mirror-finished. If the upper surface of the light guide plate 17 is scratched during the assembly work of the lighting fixture 1, total reflection is less likely to occur at the scratched portion. Therefore, a part of the lower surface corresponding to the scratched portion on the upper surface appears to shine whitish. Therefore, in order to prevent the upper surface of the light guide plate 17 from being scratched, the upper surface of the light guide plate 17 may be covered with a reflective sheet (not shown).
 青色用LEDモジュール18は、導光板17の長手方向に延びる端面17-1に平行になるように配置される。青色用LEDモジュール18は、2つの基板180と、基板180にそれぞれ配置された複数のLEDとを備える。基板180の上部には、複数の貫通穴18-1が設けられている。青色用LEDモジュール18の構成および調光制御については、後ほど詳述する。 The blue LED module 18 is arranged so as to be parallel to the end face 17-1 extending in the longitudinal direction of the light guide plate 17. The blue LED module 18 includes two substrates 180 and a plurality of LEDs arranged on the substrate 180, respectively. A plurality of through holes 18-1 are provided in the upper part of the substrate 180. The configuration and dimming control of the blue LED module 18 will be described in detail later.
 青色用LEDモジュール18は、固定部材25によりモジュール保持部24に取り付けられる。固定部材25の青色用LEDモジュール18側の面には、円柱型の突起部25-1が設けられている。突起部25-1は、青色用LEDモジュール18の基板180の貫通穴18-1にそれぞれ挿入される。突起部25-1が貫通穴18-1に挿入された状態で、固定部材25がモジュール保持部24にねじ止めされる。 The blue LED module 18 is attached to the module holding portion 24 by the fixing member 25. A cylindrical protrusion 25-1 is provided on the surface of the fixing member 25 on the blue LED module 18 side. The protrusions 25-1 are inserted into through holes 18-1 of the substrate 180 of the blue LED module 18. The fixing member 25 is screwed to the module holding portion 24 in a state where the protruding portion 25-1 is inserted into the through hole 18-1.
 モジュール保持部24は、断面がL字状の板金で形成されている。モジュール保持部24は、青色用LEDモジュール18の基板180を保持するだけでなく、青色用LEDモジュール18からの熱を外部に放出する放熱板としても機能する。モジュール保持部24は、図3に示したモジュール保持部15の上面に取り付けられる。また、青色用LEDモジュール18は、絶縁部23を介して、モジュール保持部24に取り付けられる。なお、青色用LEDモジュール18の基板180が両面基板でない場合には、絶縁部23は省略してもよい。 The module holding portion 24 is formed of a sheet metal having an L-shaped cross section. The module holding unit 24 not only holds the substrate 180 of the blue LED module 18, but also functions as a heat sink that releases heat from the blue LED module 18 to the outside. The module holding portion 24 is attached to the upper surface of the module holding portion 15 shown in FIG. Further, the blue LED module 18 is attached to the module holding portion 24 via the insulating portion 23. If the substrate 180 of the blue LED module 18 is not a double-sided substrate, the insulating portion 23 may be omitted.
 導光板カバー26は、上ガイドプレート19上に載置される。導光板カバー26は、導光板17を上から覆い、導光板17を保護する。上カバー27は、図3および図4に示す光源ユニット10の構成要素を覆い、当該構成要素を保護する。上カバー27の上面には、電源装置31および調光ユニット32が載置される。 The light guide plate cover 26 is placed on the upper guide plate 19. The light guide plate cover 26 covers the light guide plate 17 from above and protects the light guide plate 17. The upper cover 27 covers the components of the light source unit 10 shown in FIGS. 3 and 4 and protects the components. The power supply device 31 and the dimming unit 32 are mounted on the upper surface of the upper cover 27.
 電源装置31は、青色用LEDモジュール18および白色用LEDモジュール14に電力を供給する。調光ユニット32は、青色用LEDモジュール18および白色用LEDモジュール14が備える各LEDを調光する。本実施の形態の調光ユニット32は、青色用LEDモジュール18を調光して空の色を再現し、白色用LEDモジュール14を調光して日向の光を再現する。電源装置31と調光ユニット32とは、例えば渡り配線などの配線で、電気的に接続される。また、電源装置31および調光ユニット32は、光源ユニット10が器具本体50に取り付けられた状態において、器具本体50の端子台54の電源端子台および信号端子台と電気的に接続される。 The power supply device 31 supplies electric power to the blue LED module 18 and the white LED module 14. The dimming unit 32 dims each LED included in the blue LED module 18 and the white LED module 14. The dimming unit 32 of the present embodiment dims the blue LED module 18 to reproduce the color of the sky, and dims the white LED module 14 to reproduce the sunlight. The power supply device 31 and the dimming unit 32 are electrically connected by wiring such as a crossover wiring. Further, the power supply device 31 and the dimming unit 32 are electrically connected to the power supply terminal block and the signal terminal block of the terminal block 54 of the instrument body 50 in a state where the light source unit 10 is attached to the instrument body 50.
 図5は、実施の形態1に係る照明器具1の構成を示す断面模式図である。図5は、照明器具1を、長手方向の中央部分において、短手方向の1つの側面に平行な平面で切断した断面を模式的に示している。 FIG. 5 is a schematic cross-sectional view showing the configuration of the lighting fixture 1 according to the first embodiment. FIG. 5 schematically shows a cross section of the luminaire 1 cut in a plane parallel to one side surface in the lateral direction in the central portion in the longitudinal direction.
 図5に示すように、器具本体50の下端の開口内に光源ユニット10が配置される。光源ユニット10のフランジ部11の上面には、Vばね12が設けられている。Vばね12は、器具本体50に設けられたVばね取り付け金具53に引き掛けられた状態で保持されている。これにより、光源ユニット10と器具本体50とが係合され、光源ユニット10が器具本体50に保持される。 As shown in FIG. 5, the light source unit 10 is arranged in the opening at the lower end of the instrument body 50. A V spring 12 is provided on the upper surface of the flange portion 11 of the light source unit 10. The V-spring 12 is held in a state of being hooked on the V-spring mounting bracket 53 provided on the instrument main body 50. As a result, the light source unit 10 and the instrument body 50 are engaged with each other, and the light source unit 10 is held by the instrument body 50.
 白色用LEDモジュール14は、モジュール保持部15に保持され、拡散板13の背面に配置される。また、青色用LEDモジュール18は、モジュール保持部15の上面に固定されたモジュール保持部24に保持され、空隙33を介して導光板17の端面に対向するように配置される。拡散板13と導光板17とは互いに交差する向きに配置されている。具体的には、導光板17は天井Cと平行に配置され、拡散板13は導光板17から斜め下方向に延びるよう配置される。 The white LED module 14 is held by the module holding portion 15 and is arranged on the back surface of the diffuser plate 13. Further, the blue LED module 18 is held by the module holding portion 24 fixed to the upper surface of the module holding portion 15, and is arranged so as to face the end surface of the light guide plate 17 via the gap 33. The diffusion plate 13 and the light guide plate 17 are arranged so as to intersect each other. Specifically, the light guide plate 17 is arranged parallel to the ceiling C, and the diffusion plate 13 is arranged so as to extend diagonally downward from the light guide plate 17.
 青色用LEDモジュール18から出射した光は、導光板17の端面17-1に入射され、導光板17の上面と下面とで全反射しながら導光板17内を進む。導光板17内を進む光の一部は、導光板17内の散乱体に当たって拡散され、導光板17の下面から面発光される。導光板17および青色用LEDモジュール18により、窓越しに見える空の色を再現する空模擬部が構成される。また、白色用LEDモジュール14から出射された白色光は、拡散板13の背面から入射され、拡散板13の発光面13-1の前面から出射される。発光面13-1は傾斜しているため、発光面13-1の前面から出射される白色光は、斜め下方向を照らす。拡散板13と白色用LEDモジュール14により、窓の周囲に差し込む日向の光を再現する周囲発光部が構成される。 The light emitted from the blue LED module 18 is incident on the end surface 17-1 of the light guide plate 17 and travels in the light guide plate 17 while being totally reflected by the upper surface and the lower surface of the light guide plate 17. A part of the light traveling in the light guide plate 17 hits the scattering body in the light guide plate 17 and is diffused, and surface-emitted from the lower surface of the light guide plate 17. The light guide plate 17 and the blue LED module 18 constitute an sky simulation unit that reproduces the color of the sky seen through a window. Further, the white light emitted from the white LED module 14 is incident on the back surface of the diffuser plate 13 and emitted from the front surface of the light emitting surface 13-1 of the diffuser plate 13. Since the light emitting surface 13-1 is inclined, the white light emitted from the front surface of the light emitting surface 13-1 illuminates diagonally downward. The diffuser plate 13 and the white LED module 14 constitute an ambient light emitting unit that reproduces the sunlight that is inserted around the window.
 次に、本実施の形態における青色用LEDモジュール18の構成および調光制御について説明する。図6は、実施の形態1に係る青色用LEDモジュール18の概略構成を示す図である。図6では、青色用LEDモジュール18における1つの基板180の概略構成を示しているが、もう1つの基板180の構成も図6と同様である。図6に示すように、青色用LEDモジュール18の基板180には、複数の白色LED181と、青色LED182と、緑色LED183とが配置される。詳しくは、基板180には、2個の白色LED181と、2個の青色LED182と、1個の緑色LED183とを一組として、複数の組が一列に配置される。 Next, the configuration and dimming control of the blue LED module 18 in the present embodiment will be described. FIG. 6 is a diagram showing a schematic configuration of the blue LED module 18 according to the first embodiment. FIG. 6 shows a schematic configuration of one substrate 180 in the blue LED module 18, but the configuration of the other substrate 180 is the same as that of FIG. As shown in FIG. 6, a plurality of white LEDs 181 and blue LEDs 182 and green LEDs 183 are arranged on the substrate 180 of the blue LED module 18. Specifically, on the substrate 180, two white LEDs 181 and two blue LEDs 182 and one green LED 183 are arranged as one set, and a plurality of sets are arranged in a row.
 なお、青色用LEDモジュール18の基板180に配置される白色LED181、青色LED182、および緑色LED183の数および配置は、図6の例に限定されるものではない。例えば、白色LED181と、青色LED182と、緑色LED183とを、基板180の下側の領域に配置してもよい。この場合、導光板17と拡散板13とを近づけて配置することができ、導光板17からの青色光と拡散板13からの白色光とを近接させて出射することができる。また、白色LED181と、青色LED182と、緑色LED183との上下方向の位置をずらして配置するなどしてもよい。また、白色LED181、青色LED182、および緑色LED183の並びは、色のばらつきおよび基板の設計を考慮し、適宜決定すればよい。ただし、空の色を再現するためには、青色用LEDモジュール18におけるLEDの総数に対する白色LED181、青色LED182、および緑色LED183の数の比は、2:2:1とすることが望ましい。 The number and arrangement of the white LEDs 181 and the blue LEDs 182 and the green LEDs 183 arranged on the substrate 180 of the blue LED module 18 are not limited to the example of FIG. For example, the white LED 181 and the blue LED 182 and the green LED 183 may be arranged in the lower region of the substrate 180. In this case, the light guide plate 17 and the diffuser plate 13 can be arranged close to each other, and the blue light from the light guide plate 17 and the white light from the diffuser plate 13 can be emitted in close proximity to each other. Further, the white LED 181 and the blue LED 182 and the green LED 183 may be arranged so as to be displaced in the vertical direction. Further, the arrangement of the white LED181, the blue LED182, and the green LED183 may be appropriately determined in consideration of the color variation and the design of the substrate. However, in order to reproduce the color of the sky, it is desirable that the ratio of the numbers of the white LEDs 181 and the blue LEDs 182 and the green LEDs 183 to the total number of LEDs in the blue LED module 18 is 2: 2: 1.
 青色用LEDモジュール18の基板180の上部には、複数の貫通穴18-1が設けられている。基板180の中央部分に設けられた貫通穴18-1(不図示)は円形であり、それ以外の貫通穴18-1は長手方向に延びた楕円形である。青色用LEDモジュール18の基板180は、白色LED181、青色LED182、および緑色LED183から発せられる熱によって熱膨張および熱収縮する。そのため、青色用LEDモジュール18をモジュール保持部24に固定させると、青色用LEDモジュール18の基板180に熱膨張および熱収縮による反りまたはゆがみが生じるおそれがある。 A plurality of through holes 18-1 are provided on the upper part of the substrate 180 of the blue LED module 18. The through hole 18-1 (not shown) provided in the central portion of the substrate 180 is circular, and the other through holes 18-1 are elliptical extending in the longitudinal direction. The substrate 180 of the blue LED module 18 is thermally expanded and contracted by the heat generated from the white LED 181 and the blue LED 182, and the green LED 183. Therefore, when the blue LED module 18 is fixed to the module holding portion 24, the substrate 180 of the blue LED module 18 may be warped or distorted due to thermal expansion and contraction.
 そこで、本実施の形態では、基板180に楕円形の貫通穴18-1を設け、固定部材25の突起部25-1を貫通穴18-1に遊びを持って挿入できる構成となっている。これにより、青色用LEDモジュール18の基板180が熱膨張および熱収縮した場合にも、突起部25-1が楕円形の貫通穴18-1内を長手方向に移動することができ、基板180の反りまたはゆがみを抑制することができる。 Therefore, in the present embodiment, the substrate 180 is provided with an elliptical through hole 18-1, and the protrusion 25-1 of the fixing member 25 can be inserted into the through hole 18-1 with play. As a result, even when the substrate 180 of the blue LED module 18 is thermally expanded and contracted, the protrusion 25-1 can move in the elliptical through hole 18-1 in the longitudinal direction, and the substrate 180 can be moved. Warpage or distortion can be suppressed.
 白色LED181は、例えば色温度が5000(K)であり、順電圧が6VのLEDである。青色LED182は、ドミナント波長が470nm以下であり、順電圧が3VのLEDである。緑色LED183は、例えばドミナント波長が510~570nmであり、順電圧が3VのLEDである。白色LED181は、青色LED182および緑色LED183よりも順電圧が高く、同じ電流が流れた場合に、青色LED182および緑色LED183よりも明るく発光する。すなわち、青色用LEDモジュール18における、各LEDの出力バランスは、白色LED181>青色LED182>緑色LED183となる。 The white LED 181 is, for example, an LED having a color temperature of 5000 (K) and a forward voltage of 6 V. The blue LED 182 is an LED having a dominant wavelength of 470 nm or less and a forward voltage of 3 V. The green LED 183 is, for example, an LED having a dominant wavelength of 510 to 570 nm and a forward voltage of 3 V. The white LED 181 has a higher forward voltage than the blue LED 182 and the green LED 183, and emits light brighter than the blue LED 182 and the green LED 183 when the same current flows. That is, the output balance of each LED in the blue LED module 18 is white LED181> blue LED182> green LED183.
 本実施の形態の青色用LEDモジュール18は、白色LED181、青色LED182、および緑色LED183の発光を制御して、空の色、特に青空の色を再現する。このように、白、青、緑の3色を用いることで、赤、青、緑の3色を用いる場合に比べて、演色性を向上させることができる。 The blue LED module 18 of the present embodiment controls the light emission of the white LED181, the blue LED182, and the green LED183 to reproduce the color of the sky, particularly the color of the blue sky. As described above, by using the three colors of white, blue, and green, the color rendering property can be improved as compared with the case of using the three colors of red, blue, and green.
 図7は、実施の形態1に係る照明器具1の制御ブロック図である。図7に示すように、電源装置31は、青色用LEDモジュール18の白色LED181と、青色LED182と、緑色LED183とに、それぞれ電流を流す第1電源装置31aと、第2電源装置31bと、第3電源装置31cと、を備える。LED毎に個別に電源装置を備えることで、青色用LEDモジュール18の発光色に対して二次元の制御ができるため、様々な青空を再現することができる。電源装置31は、さらに、白色用LEDモジュール14の白色LED141と、白色LED142と、にそれぞれ電流を流す第4電源装置31dと、第5電源装置31eと、を備える。 FIG. 7 is a control block diagram of the lighting fixture 1 according to the first embodiment. As shown in FIG. 7, the power supply device 31 includes a first power supply device 31a, a second power supply device 31b, and a second power supply device 31a for passing a current through the white LED 181 of the blue LED module 18, the blue LED 182, and the green LED 183, respectively. A power supply device 31c is provided. By providing a power supply device for each LED individually, it is possible to control the emission color of the blue LED module 18 in two dimensions, so that various blue skies can be reproduced. The power supply device 31 further includes a fourth power supply device 31d and a fifth power supply device 31e for passing a current through the white LED 141 and the white LED 142 of the white LED module 14, respectively.
 また、調光ユニット32は、第1電源装置31aおよび第2電源装置31bに第1調光信号を送信する第1制御回路32aと、第3電源装置31cに第2調光信号を送信する第2制御回路32bと、を備える。すなわち、第1制御回路32aは、青色用LEDモジュール18の白色LED181および青色LED182の発光を制御し、第2制御回路32bは、青色用LEDモジュール18の緑色LED183の発光を制御するものである。 Further, the dimming unit 32 has a first control circuit 32a that transmits a first dimming signal to the first power supply device 31a and a second power supply device 31b, and a second dimming signal that transmits a second dimming signal to the third power supply device 31c. The two control circuits 32b and the like are provided. That is, the first control circuit 32a controls the light emission of the white LED 181 and the blue LED 182 of the blue LED module 18, and the second control circuit 32b controls the light emission of the green LED 183 of the blue LED module 18.
 また、調光ユニット32は、さらに、第4電源装置31dに第3調光信号を送信する第3制御回路32cと、第5電源装置31eに第4調光信号を送信する第4制御回路32dと、を備える。すなわち、第3制御回路32cは、白色用LEDモジュール14の白色LED141の発光を制御するものであり、第4制御回路32dは、白色用LEDモジュール14の白色LED142の発光を制御するものである。第1~第4制御回路32a~32dは、例えばタイマー(不図示)を有し、時刻に応じて第1~第5電源装置31a~32eを制御する。第1~第4制御回路32a~32dは、専用の単一回路または複合回路などのハードウェア、メモリに格納されるプログラムを実行するマイクロコンピュータまたはプロセッサ、もしくはこれらの組み合わせで構成される。 Further, the dimming unit 32 further includes a third control circuit 32c that transmits a third dimming signal to the fourth power supply device 31d and a fourth control circuit 32d that transmits a fourth dimming signal to the fifth power supply device 31e. And. That is, the third control circuit 32c controls the light emission of the white LED 141 of the white LED module 14, and the fourth control circuit 32d controls the light emission of the white LED 142 of the white LED module 14. The first to fourth control circuits 32a to 32d have, for example, timers (not shown) and control the first to fifth power supply devices 31a to 32e according to the time. The first to fourth control circuits 32a to 32d are composed of hardware such as a dedicated single circuit or composite circuit, a microcomputer or processor that executes a program stored in a memory, or a combination thereof.
 上述のように、本実施の形態では、第1制御回路32aによって、青色用LEDモジュール18の白色LED181と青色LED182との両方に対し、同じ制御を行う。これにより、LED毎に制御回路を設ける場合に比べて、照明制御を簡易化できるとともに、制御回路の数を削減させることができる。本実施の形態の場合は、制御回路の数を4つとすることができ、照明器具1の開発が容易になる。 As described above, in the present embodiment, the first control circuit 32a performs the same control on both the white LED 181 and the blue LED 182 of the blue LED module 18. As a result, lighting control can be simplified and the number of control circuits can be reduced as compared with the case where a control circuit is provided for each LED. In the case of this embodiment, the number of control circuits can be four, which facilitates the development of the lighting fixture 1.
 第1~第5調光信号は、例えばPWM(Pulse Width Modulation)信号であり、PWM信号のデューティ比に応じて光量が変更される。電源装置31は、PWM信号に基づいて、各LEDに流れる電流を変えることで青色用LEDモジュール18と白色用LEDモジュール14との調光制御を行う。 The first to fifth dimming signals are, for example, PWM (Pulse Width Modulation) signals, and the amount of light is changed according to the duty ratio of the PWM signals. The power supply device 31 performs dimming control between the blue LED module 18 and the white LED module 14 by changing the current flowing through each LED based on the PWM signal.
 図8は、実施の形態1に係る青色用LEDモジュール18の光量を示すグラフである。図8の横軸は時刻を示し、縦軸は青色用LEDモジュール18の光量を示す。本実施の形態の青色用LEDモジュール18は、白色用LEDモジュール14と同様に、時刻に応じて光量が変更される。詳しくは、図8に示すように、昼間(例えば8時から16時)の光量は100%とされ、明け方(例えば6時から8時)および夕方(例えば16時から18時)の光量は50%とされ、夜(例えば18時から6時)の光量は20%とされる。なお、図8に示す時刻は、単なる一例であって、図8の例に限定されず、適宜設定してよい。また、季節に応じて各時刻の光量を変更してもよい。例えば、季節が夏の場合は、冬の場合に比べて、青色用LEDモジュール18の光量を100%とする昼間の時間を長くしてもよい。また、季節に応じて、青色用LEDモジュール18の光量だけでなく色度を変更してもよい。 FIG. 8 is a graph showing the amount of light of the blue LED module 18 according to the first embodiment. The horizontal axis of FIG. 8 indicates the time, and the vertical axis indicates the amount of light of the blue LED module 18. In the blue LED module 18 of the present embodiment, the amount of light is changed according to the time, similarly to the white LED module 14. Specifically, as shown in FIG. 8, the amount of light in the daytime (for example, from 8:00 to 16:00) is 100%, and the amount of light in the dawn (for example, from 6:00 to 8:00) and in the evening (for example, from 16:00 to 18:00) is 50. %, And the amount of light at night (for example, from 18:00 to 6:00) is 20%. The time shown in FIG. 8 is merely an example, and is not limited to the example shown in FIG. 8, and may be set as appropriate. Further, the amount of light at each time may be changed according to the season. For example, when the season is summer, the daytime time when the amount of light of the blue LED module 18 is 100% may be longer than in the case of winter. Further, not only the amount of light of the blue LED module 18 but also the chromaticity may be changed according to the season.
 図9は、実施の形態1に係る青色用LEDモジュール18の調光制御を説明するグラフである。図9の横軸は時刻を示し、縦軸は調光信号のデューティ比を示す。また、図9の実線は第1制御回路32aから出力される第1調光信号を示し、破線は第2制御回路32bから出力される第2調光信号を示す。図9に示すように、第1制御回路32aおよび第2制御回路32bは、昼間の第1調光信号および第2調光信号のデューティ比を1とする。 FIG. 9 is a graph illustrating dimming control of the blue LED module 18 according to the first embodiment. The horizontal axis of FIG. 9 indicates the time, and the vertical axis indicates the duty ratio of the dimming signal. The solid line in FIG. 9 shows the first dimming signal output from the first control circuit 32a, and the broken line shows the second dimming signal output from the second control circuit 32b. As shown in FIG. 9, the first control circuit 32a and the second control circuit 32b set the duty ratio of the first dimming signal and the second dimming signal in the daytime to 1.
 そして、夕方(例えば16時)になると、第1制御回路32aは、第1調光信号のデューティ比を予め設定された第1減少率で0.2まで減少させる。また、第2制御回路32bは、第2調光信号のデューティ比を第1減少率よりも大きい第2減少率で0.2まで減少させる。これにより、まず緑色LED183の光量が20%まで低下し、その後、白色LED181と青色LED182が20%まで低下する。 Then, in the evening (for example, 16:00), the first control circuit 32a reduces the duty ratio of the first dimming signal to 0.2 at a preset first reduction rate. Further, the second control circuit 32b reduces the duty ratio of the second dimming signal to 0.2 at a second reduction rate larger than the first reduction rate. As a result, the amount of light of the green LED 183 is first reduced to 20%, and then the white LED 181 and the blue LED 182 are reduced to 20%.
 また、明け方になると、夕方と逆の制御が行われる。具体的には、まず、第1制御回路32aは、第1調光信号のデューティ比を予め設定された第1増加率で1まで増加させる。第2制御回路32bは、第1制御回路32aがデューティ比を増加させてから所定の時間が経過した後(例えば6時)に、第2調光信号のデューティ比を第1増加率よりも大きい第2増加率で1まで増加させる。 Also, at dawn, the opposite control is performed in the evening. Specifically, first, the first control circuit 32a increases the duty ratio of the first dimming signal to 1 at a preset first increase rate. The second control circuit 32b increases the duty ratio of the second dimming signal to be larger than the first increase rate after a predetermined time has elapsed (for example, 6 o'clock) after the first control circuit 32a increases the duty ratio. Increase to 1 at the second rate of increase.
 このような制御を行うことにより、夕方になるとまず緑色LED183の光量が低下し、その後白色LED181と青色LED182が低下することで、導光板17からの光を自然光と同じように紫がかった深い青色へと変化させることができる。 By performing such control, the amount of light of the green LED 183 first decreases in the evening, and then the white LED 181 and the blue LED 182 decrease, so that the light from the light guide plate 17 becomes purplish deep blue like natural light. Can be changed to.
 また、本実施の形態では、空模擬部により再現される空の光だけでなく、周囲発光部により再現される日向の光を含めた全体の光が、実際の自然光を再現するよう、空模擬部および周囲発光部が調光される。図10は、空模擬部と周囲発光部との輝度比および色度の最適値を確認した実験結果を示す表である。 Further, in the present embodiment, the sky simulation is performed so that not only the sky light reproduced by the sky simulation unit but also the entire light including the sunlight reproduced by the ambient light emitting unit reproduces the actual natural light. The part and the ambient light emitting part are dimmed. FIG. 10 is a table showing the experimental results for confirming the optimum values of the brightness ratio and the chromaticity between the sky simulation unit and the ambient light emitting unit.
 図10に示す輝度比は、空模擬部の輝度に対する周囲発光部の輝度の比率であり、拡散板13からの発光の輝度を導光板17からの発光の輝度で除した値である。また、図10では、空模擬部および周囲発光部の色度をCIE色度図のxy座標系(x,y)で示している。図10に示す「好ましさ」および「評価」における「OK」、「△」または「NG」は、実際の空のように見えるか否かで判断される。例えば、周囲発光部の輝度が高くなると、空模擬部の発光が周囲発光部に負けてしまうため、周囲発光部からの光が照明のように見えてしまう。ただし、周囲発光部の色温度が低くなると、周囲発光部が照明のように見えなくなるものの、周囲発光部の色温度が低くなりすぎると、夕方のような印象になってしまう。「△」は、許容値ではあるがOKとは言い難い結果を示す。 The brightness ratio shown in FIG. 10 is the ratio of the brightness of the ambient light emitting portion to the brightness of the sky simulated part, and is a value obtained by dividing the brightness of the light emitted from the diffuser plate 13 by the brightness of the light emitted from the light guide plate 17. Further, in FIG. 10, the chromaticity of the sky simulation unit and the ambient light emitting unit is shown by the xy coordinate system (x, y) of the CIE chromaticity diagram. "OK", "Δ" or "NG" in "favorability" and "evaluation" shown in FIG. 10 is judged by whether or not it looks like an actual sky. For example, when the brightness of the ambient light emitting unit becomes high, the light emitted from the sky simulation unit loses to the ambient light emitting unit, so that the light from the ambient light emitting unit looks like illumination. However, when the color temperature of the ambient light emitting portion becomes low, the ambient light emitting portion does not look like illumination, but when the color temperature of the ambient light emitting portion becomes too low, the impression of evening is obtained. “Δ” indicates a result that is an acceptable value but cannot be said to be OK.
 図10の実験結果からは、空模擬部と周囲発光部の輝度比、すなわち導光板17からの発光の輝度:拡散板13からの発光の輝度は、1:5.8~1:7が好ましく、1:7が最適値であることがわかった。また、拡散板13からの発光の最適な色度は、CIE色度図のxy座標系(x,y)において、(0.338,0.345)~(0.363,0.355)であることがわかった。 From the experimental results of FIG. 10, the brightness ratio between the sky simulated part and the ambient light emitting part, that is, the brightness of the light emitted from the light guide plate 17: the brightness of the light emitted from the diffuser plate 13 is preferably 1: 5.8 to 1: 7. , 1: 7 was found to be the optimum value. The optimum chromaticity of light emitted from the diffuser plate 13 is (0.338, 0.345) to (0.363, 0.355) in the xy coordinate system (x, y) of the CIE chromaticity diagram. It turned out that there was.
 図11は、複数の試作品における周囲発光部の色温度の好ましさと、空模擬部と周囲発光部を合わせた両方での自然さを確認した実験結果を示す表である。図11に示すように、試作103と試作104とを比較すると、輝度比は同等であるが、空模擬部と周囲発光部の輝度の絶対値の相違により、空模擬部と周囲発光部の両方を含めた全体の自然さは相違することがわかった。すなわち、輝度比および色度は、最適値に幅を持つことがわかった。 FIG. 11 is a table showing the experimental results confirming the preference of the color temperature of the ambient light emitting part in a plurality of prototypes and the naturalness of both the sky simulation part and the ambient light emitting part combined. As shown in FIG. 11, when the prototype 103 and the prototype 104 are compared, the brightness ratios are the same, but due to the difference in the absolute values of the brightness of the sky simulated part and the ambient light emitting part, both the sky simulated part and the ambient light emitting part are both. It was found that the overall naturalness including the above was different. That is, it was found that the luminance ratio and the chromaticity had a range of optimum values.
 図12は、図10および図11の実験結果に基づく周囲発光部の最適な色度範囲を示す表である。図12に示すように、周囲発光部、すなわち拡散板13からの発光の最適な色度範囲は、CIE色度図のxy座標系(x,y)において、(0.3376,0.3616)、(0.3366,0.3369)、(0.3630,0.3550)、(0.3660,0.3820)の範囲である。 FIG. 12 is a table showing the optimum chromaticity range of the ambient light emitting portion based on the experimental results of FIGS. 10 and 11. As shown in FIG. 12, the optimum chromaticity range of light emission from the ambient light emitting portion, that is, the diffuser plate 13 is (0.3376, 0.3616) in the xy coordinate system (x, y) of the CIE chromaticity diagram. , (0.3366, 0.3369), (0.3630, 0.3550), (0.3660, 0.3820).
 図13は、図10および図11の実験結果に基づく色度図である。図13に示す点線は、黒体軌跡であり、破線はCIE昼光である。また、図13には、ANSI(米国規格協会)で定める4000K、4500K、5000K、5700K、6500Kの色温度範囲が示される。さらに、図13には、図10の実験結果における輝度比1:4、1:5、1:5.8、1:6.2、1:6.5、1:7の場合の周囲発光部の色度と、図11の実験結果における試作101、102、103、104の周囲発光部の色度とが示される。 FIG. 13 is a chromaticity diagram based on the experimental results of FIGS. 10 and 11. The dotted line shown in FIG. 13 is a blackbody locus, and the broken line is CIE daylight. Further, FIG. 13 shows a color temperature range of 4000K, 4500K, 5000K, 5700K, and 6500K defined by ANSI (American National Standards Institute). Further, in FIG. 13, the ambient light emitting portion in the case of the brightness ratios of 1: 4, 1: 5, 1: 5.8, 1: 6.2, 1: 6.5, 1: 7 in the experimental result of FIG. The chromaticity of the above and the chromaticity of the ambient light emitting portion of the prototypes 101, 102, 103, 104 in the experimental result of FIG. 11 are shown.
 図13において太線で示す範囲は、図10および図11の実験結果において「OK」または「△」と判断された周囲発光部の色度を含む範囲である。この範囲には、輝度比1:5.8~1:7の場合の色度と、試作101、103、104の色度とが含まれる。この範囲が、図12に示す周囲発光部の色度座標(0.3376,0.3616)、(0.3366,0.3369)、(0.3630,0.3550)、(0.3660,0.3820)の4点を結ぶ四角形で囲まれる範囲であり、周囲発光部の推奨色温度範囲である。 The range shown by the thick line in FIG. 13 is the range including the chromaticity of the ambient light emitting portion judged to be “OK” or “Δ” in the experimental results of FIGS. 10 and 11. This range includes the chromaticity when the luminance ratio is 1: 5.8 to 1: 7 and the chromaticity of the prototypes 101, 103, and 104. This range is the chromaticity coordinates (0.3376, 0.3616), (0.3366, 0.3369), (0.3630, 0.3550), (0.3660,) of the ambient light emitting portion shown in FIG. It is a range surrounded by a square connecting the four points of 0.3820), and is a recommended color temperature range of the ambient light emitting part.
 図14、図15および図16は、実際の空と日向の色度および輝度の測定結果を示す表である。詳しくは、図14は、2019年4月3日の神奈川県鎌倉市大船の空の測定結果であり、図15は、2019年4月15日の神奈川県鎌倉市大船の空の測定結果であり、図16は、2019年4月16日の神奈川県鎌倉市大船の空の測定結果である。なお、何れも天気は晴れとする。また、図14~図16に記載される「時刻」は、測定開始時刻であり、実際に測定された時刻とは15分程度のばらつきがある。例えば、「10:55」と記載されている場合は、「10:55~11:10」の間に測定された結果である。また、測定視野は、0.1°である。また、「北」、「東」、「南」、「西」と示された測定値は、水平面に対して20deg程度の角度での測定値である。また、「天空(北)」、「天空(東)」、「天空(西)」と示された測定値は、水平面から70deg程度の角度での測定値である。また、「日向」は白色コピー用紙に自然光を当てて測定したものである。 FIGS. 14, 15 and 16 are tables showing actual measurement results of chromaticity and brightness of the sky and the sun. Specifically, FIG. 14 shows the measurement result of the sky of Ofuna, Kamakura City, Kanagawa Prefecture on April 3, 2019, and FIG. 15 shows the measurement result of the sky of Ofuna, Kamakura City, Kanagawa Prefecture on April 15, 2019. , Fig. 16 is the measurement result of the sky of Ofuna, Kamakura City, Kanagawa Prefecture on April 16, 2019. The weather will be fine in both cases. Further, the "time" shown in FIGS. 14 to 16 is the measurement start time, and there is a variation of about 15 minutes from the actually measured time. For example, when it is described as "10:55", it is the result measured between "10:55 and 11:10". The measurement field of view is 0.1 °. Further, the measured values shown as "north", "east", "south", and "west" are measured values at an angle of about 20 deg with respect to the horizontal plane. Further, the measured values indicated as "heaven (north)", "heaven (east)", and "heaven (west)" are measured values at an angle of about 70 deg from the horizontal plane. In addition, "Hyuga" was measured by shining natural light on white copy paper.
 図17は、昼間における実際の空と日向との輝度比を示す表である。図17は、図14および図15に太枠で示される、一般的に昼間と想定される10時~14時の間の輝度比(日向の輝度/空の輝度)の最大値、平均値および最小値を含む。図10に示す実験結果から導きだした輝度比1:5.8~1:7は、図17に示す実際の空と日向との輝度比と同等であることがわかる。また、図17に示す結果によると、昼間における実際の空と日向との輝度比は、最大で12.964である。そのため、導光板17からの発光の輝度と、拡散板13からの発光の輝度との比は、1:5.8~1:13としてもよい。 FIG. 17 is a table showing the brightness ratio between the actual sky and the sun in the daytime. FIG. 17 shows the maximum value, the average value, and the minimum value of the brightness ratio (brightness of the sun / brightness of the sky) between 10:00 and 14:00, which is generally assumed to be daytime, which is shown in a thick frame in FIGS. 14 and 15. including. It can be seen that the brightness ratios of 1: 5.8 to 1: 7 derived from the experimental results shown in FIG. 10 are equivalent to the actual brightness ratios of the sky and the sun shown in FIG. Further, according to the result shown in FIG. 17, the actual brightness ratio between the sky and the sun in the daytime is 12.964 at the maximum. Therefore, the ratio of the brightness of the light emitted from the light guide plate 17 to the brightness of the light emitted from the diffuser plate 13 may be 1: 5.8 to 1:13.
 以上を踏まえ、本実施の形態の調光ユニット32は、導光板17からの発光の輝度と、拡散板13からの発光の輝度との比が1:5.8~1:13となるよう白色用LEDモジュール14または青色用LEDモジュール18、もしくは両方を調光する。好ましくは、調光ユニット32は、導光板17からの発光の輝度と、拡散板13からの発光の輝度との比が、1:5.8~1:7となるよう白色用LEDモジュール14または青色用LEDモジュール18、もしくは両方を調光する。 Based on the above, the dimming unit 32 of the present embodiment is white so that the ratio of the brightness of the light emitted from the light guide plate 17 to the brightness of the light emitted from the diffuser plate 13 is 1: 5.8 to 1:13. LED module 14 and / or blue LED module 18 are dimmed. Preferably, the dimming unit 32 is a white LED module 14 or a white LED module 14 so that the ratio of the brightness of the light emitted from the light guide plate 17 to the brightness of the light emitted from the diffuser plate 13 is 1: 5.8 to 1: 7. Dimming the blue LED module 18 or both.
 さらに、調光ユニット32は、拡散板13からの発光の色度が、CIE色度図のxy座標系(x,y)において、(0.3376,0.3616)、(0.3366,0.3369)、(0.3630,0.3550)、(0.3660,0.3820)の4点を結ぶ四角形で囲まれる範囲内に存在するよう白色用LEDモジュール14を調光する。 Further, in the dimming unit 32, the chromaticity of the light emitted from the diffuser plate 13 is (0.3376, 0.3616), (0.3366,0) in the xy coordinate system (x, y) of the CIE chromaticity diagram. The white LED module 14 is dimmed so that it exists within the range surrounded by the square connecting the four points (0.3369), (0.3630, 0.3550), and (0.3660, 0.3820).
 以上のように、本実施の形態の照明器具1は、導光板17から青色用LEDモジュール18による青色光と、拡散板13から白色用LEDモジュール14による白色光とを発することで、窓越しに見える空の様子と、窓の周囲の日向の光とを再現できる。また、導光板17からの発光の輝度と拡散板13からの発光の輝度との輝度比、および拡散板13からの発光の色度を上述のように設定することで、照明器具1における空からの光の再現度を向上させることができる。 As described above, the lighting fixture 1 of the present embodiment emits blue light from the light guide plate 17 by the blue LED module 18 and white light from the diffuser plate 13 by the white LED module 14 through the window. You can reproduce the appearance of the sky you can see and the sunlight around the window. Further, by setting the brightness ratio between the brightness of the light emitted from the light guide plate 17 and the brightness of the light emitted from the diffuser plate 13 and the chromaticity of the light emitted from the diffuser plate 13 as described above, from the sky in the lighting fixture 1. The reproducibility of the light can be improved.
 なお、実施の形態1では、照明器具1を天井Cに取り付けることを前提として説明したが、照明器具1は、室内の壁に設置してもよい。但し、その場合には、白色用LEDモジュール14を、平面視でL字型にする。また、これに合わせて、拡散板13についても、4つの側面のうち、隣接する2つの面を発光面13-1とし、他の2面を非発光面13-2とする。他の構成については、実施の形態1と同じにする。これにより、照明器具1を天井Cに取り付けた場合と同様に、照明器具1を室内の壁に設置した場合においても、太陽光に照らされた日向または日陰の窓枠越しに奥行き感のある青空を見るような視覚効果を演出することができる。また、照明器具1の形状は、長方形に限定されるものではなく、正方形の箱型であってもよい。 Although the description has been made on the premise that the lighting fixture 1 is attached to the ceiling C in the first embodiment, the lighting fixture 1 may be installed on the wall in the room. However, in that case, the white LED module 14 is made L-shaped in a plan view. In line with this, with respect to the diffuser plate 13, of the four side surfaces, two adjacent surfaces are designated as light emitting surfaces 13-1, and the other two surfaces are designated as non-light emitting surfaces 13-2. Other configurations are the same as those in the first embodiment. As a result, even when the lighting fixture 1 is installed on the wall in the room as in the case where the lighting fixture 1 is attached to the ceiling C, a blue sky with a sense of depth is seen through the window frame in the sun or shade illuminated by sunlight. It is possible to produce a visual effect like looking at. Further, the shape of the luminaire 1 is not limited to a rectangle, and may be a square box shape.
 また、実施の形態1では、LEDごとに第1~第5電源装置31a~31eを備える構成としたが、これに限定されるものではない。例えば、青色用LEDモジュール18の白色LED181と青色LED182との電源装置を共通化してもよい。これにより、部品点数をさらに削減することができ、コストの削減および照明器具1の小型化を実現することができる。 Further, in the first embodiment, the first to fifth power supply devices 31a to 31e are provided for each LED, but the present invention is not limited to this. For example, the power supply device for the white LED 181 and the blue LED 182 of the blue LED module 18 may be shared. As a result, the number of parts can be further reduced, the cost can be reduced, and the luminaire 1 can be downsized.
 また、実施の形態1では、白色LED181および青色LED182の制御回路を共通とし、同じ調光信号にて調光する構成としたが、これに限定されるものではない。白色LED181および青色LED182が、それぞれ個別の制御回路を備え、個別の調光信号によって制御されてもよい。 Further, in the first embodiment, the control circuits of the white LED 181 and the blue LED 182 are shared, and the same dimming signal is used for dimming, but the present invention is not limited to this. The white LED 181 and the blue LED 182 may each have a separate control circuit and are controlled by a separate dimming signal.
 また、上述の実施の形態では、まず緑色LED183の光量を低下させてから、白色LED181と青色LED182の光量を低下させる2段階の制御を行ったが、これに限定されるものではない。例えば、白色LED181と青色LED182の光量を低下させてから、緑色LED183の光量を低下させる2段階の制御としてもよい。さらに、白色LED181、青色LED182および緑色LED183の制御は、上述したものに限定されるものではなく、目的の空の色に応じて、CIE色度座標におけるx値およびy値の両方または何れか一方をマイナス側またはプラス側に変化させてもよい。 Further, in the above-described embodiment, first, the amount of light of the green LED 183 is reduced, and then the amount of light of the white LED 181 and the blue LED 182 is reduced in two stages, but the control is not limited to this. For example, it may be a two-step control in which the amount of light of the white LED 181 and the blue LED 182 is reduced and then the amount of light of the green LED 183 is reduced. Further, the control of the white LED 181 and the blue LED 182 and the green LED 183 is not limited to those described above, and the x value and / or y value in the CIE chromaticity coordinates are used depending on the desired sky color. May be changed to the minus side or the plus side.
 また、上述の実施の形態では、青色用LEDモジュール18は、複数の白色LED181と、青色LED182と、緑色LED183とを有する構成としたが、青色光成分を含む光を発するものであれば、これに限定されるものではない。例えば、青色用LEDモジュール18は、下記(1)~(7)の何れかのLEDを有する構成としてもよい。
(1)青色LEDと、白色LEDと、緑色LEDと、アンバー色LED。
(2)水色LEDと、緑色LEDと、アンバー色LED。
(3)水色LEDと、緑色LED。
(4)白色LED(8000~7000K)と、アンバー色LED。
(5)水色LEDと、アンバー色LED。
(6)水色LEDのみ。
(7)白色LED(8000~7000K)のみ。
Further, in the above-described embodiment, the blue LED module 18 has a configuration including a plurality of white LEDs 181 and a blue LED 182 and a green LED 183, but if it emits light containing a blue light component, this is used. It is not limited to. For example, the blue LED module 18 may have a configuration having any of the following LEDs (1) to (7).
(1) Blue LED, white LED, green LED, and amber LED.
(2) Light blue LED, green LED, and amber LED.
(3) Light blue LED and green LED.
(4) White LED (8000-7000K) and amber LED.
(5) Light blue LED and amber LED.
(6) Light blue LED only.
(7) White LED (8000-7000K) only.
 1 照明器具、10 光源ユニット、11 フランジ部、13 拡散板、13-1 発光面、13-2 非発光面、14 白色用LEDモジュール、15 モジュール保持部、15-1 取付フランジ、16 下ガイドプレート、16-3 突起部、17 導光板、17-1 端面、17-2 端面、18 青色用LEDモジュール、18-1 貫通穴、19 上ガイドプレート、21 パッキン、22 パッキン、23 絶縁部、24 モジュール保持部、25 固定部材、25-1 突起部、26 導光板カバー、27 上カバー、31 電源装置、31a 第1電源装置、31b 第2電源装置、31c 第3電源装置、31d 第4電源装置、31e 第5電源装置、32 調光ユニット、32a 第1制御回路、32b 第2制御回路、32c 第3制御回路、32d 第4制御回路、33 空隙、50 器具本体、51 主面、51-1 ボルト孔、51-2 電線孔、52 側面、53 取り付け金具、54 端子台、61 ナット、101、102、103、104 試作、140 基板、141、142 白色LED、180 基板、181 白色LED、182 青色LED、183 緑色LED、B 吊り下げボルト、C 天井、H 埋め込み穴。 1 lighting fixture, 10 light source unit, 11 flange, 13 diffuser, 13-1 light emitting surface, 13-2 non-light emitting surface, 14 white LED module, 15 module holding part, 15-1 mounting flange, 16 lower guide plate , 16-3 protrusion, 17 light source plate, 17-1 end face, 17-2 end face, 18 blue LED module, 18-1 through hole, 19 upper guide plate, 21 packing, 22 packing, 23 insulation part, 24 module Holding part, 25 fixing member, 25-1 protrusion, 26 light guide plate cover, 27 top cover, 31 power supply device, 31a first power supply device, 31b second power supply device, 31c third power supply device, 31d fourth power supply device, 31e 5th power supply, 32 dimming unit, 32a 1st control circuit, 32b 2nd control circuit, 32c 3rd control circuit, 32d 4th control circuit, 33 voids, 50 fixture body, 51 main surface, 51-1 volt Hole, 51-2 wire hole, 52 side surface, 53 mounting bracket, 54 terminal block, 61 nut, 101, 102, 103, 104 prototype, 140 board, 141, 142 white LED, 180 board, 181 white LED, 182 blue LED , 183 green LED, B hanging bolt, C ceiling, H embedded hole.

Claims (8)

  1.  青色光成分を含む光を発する青色用LEDモジュールと、
     前記青色用LEDモジュールの前記光を拡散して面発光する導光板と、
     白色光を発する白色用LEDモジュールと、
     前記導光板と交差する向きに配置され、前記白色用LEDモジュールの前記白色光を拡散する拡散板と、
     前記青色用LEDモジュールを調光して空の色を再現し、前記白色用LEDモジュールを調光して日向の光を再現する調光ユニットと、を備え、
     前記調光ユニットは、前記導光板からの発光の輝度と、前記拡散板からの発光の輝度との比が、1:5.8~1:13となるよう前記白色用LEDモジュールまたは前記青色用LEDモジュールを調光する照明器具。
    An LED module for blue that emits light containing a blue light component,
    A light guide plate that diffuses the light of the blue LED module to emit surface light,
    A white LED module that emits white light,
    A diffuser plate that is arranged so as to intersect the light guide plate and diffuses the white light of the white LED module.
    The blue LED module is dimmed to reproduce the color of the sky, and the white LED module is dimmed to reproduce the sunlight.
    The dimming unit is used for the white LED module or the blue LED module so that the ratio of the brightness of the light emitted from the light guide plate to the brightness of the light emitted from the diffuser plate is 1: 5.8 to 1:13. Lighting equipment that dims the LED module.
  2.  前記調光ユニットは、前記導光板からの発光の輝度と、前記拡散板からの発光の輝度との比が、1:5.8~1:7となるよう前記白色用LEDモジュールまたは前記青色用LEDモジュールを調光する請求項1に記載の照明器具。 The dimming unit is used for the white LED module or the blue LED module so that the ratio of the brightness of the light emitted from the light guide plate to the brightness of the light emitted from the diffuser plate is 1: 5.8 to 1: 7. The lighting fixture according to claim 1, wherein the LED module is dimmed.
  3.  前記調光ユニットは、前記拡散板からの発光の色度が、CIE色度図のxy座標系(x,y)において、(0.3376,0.3616)、(0.3366,0.3369)、(0.3630,0.3550)、(0.3660,0.3820)の4点を結ぶ四角形で囲まれる範囲内に存在するよう前記白色用LEDモジュールを調光する請求項1または2に記載の照明器具。 In the dimming unit, the chromaticity of light emitted from the diffuser is (0.3376, 0.3616), (0.3366, 0.3369) in the xy coordinate system (x, y) of the CIE chromaticity diagram. ), (0.3630, 0.3550), (0.3660, 0.3820) The white LED module is dimmed so as to be within the range surrounded by the square connecting the four points. Lighting equipment described in.
  4.  前記白色用LEDモジュールは、色温度の異なる2種類の白色LEDを有する請求項1~3の何れか一項に記載の照明器具。 The lighting fixture according to any one of claims 1 to 3, wherein the white LED module has two types of white LEDs having different color temperatures.
  5.  前記青色用LEDモジュールは、異なる色の光を発する少なくとも2種類のLEDを有する請求項1~4の何れか一項に記載の照明器具。 The lighting fixture according to any one of claims 1 to 4, wherein the blue LED module has at least two types of LEDs that emit light of different colors.
  6.  前記調光ユニットは、時刻に応じて前記青色用LEDモジュールを調光する請求項1~5の何れか一項に記載の照明器具。 The lighting fixture according to any one of claims 1 to 5, wherein the dimming unit dims the blue LED module according to the time.
  7.  前記調光ユニットは、季節に応じて前記青色用LEDモジュールを調光する請求項1~6の何れか一項に記載の照明器具。 The lighting fixture according to any one of claims 1 to 6, wherein the dimming unit dims the blue LED module according to the season.
  8.  前記白色用LEDモジュールは、3方向から白色光を出射するものである請求項1~7の何れか一項に記載の照明器具。 The lighting fixture according to any one of claims 1 to 7, wherein the white LED module emits white light from three directions.
PCT/JP2021/011577 2020-03-26 2021-03-22 Lighting device WO2021193486A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022510458A JP7346716B2 (en) 2020-03-26 2021-03-22 lighting equipment
JP2023144089A JP2023158096A (en) 2020-03-26 2023-09-06 lighting equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-055470 2020-03-26
JP2020055470 2020-03-26

Publications (1)

Publication Number Publication Date
WO2021193486A1 true WO2021193486A1 (en) 2021-09-30

Family

ID=77891861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/011577 WO2021193486A1 (en) 2020-03-26 2021-03-22 Lighting device

Country Status (2)

Country Link
JP (2) JP7346716B2 (en)
WO (1) WO2021193486A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016208683A1 (en) * 2015-06-24 2016-12-29 株式会社 東芝 White light source system
US20180259140A1 (en) * 2017-01-30 2018-09-13 Cree, Inc. Skylight fixture
WO2019220656A1 (en) * 2018-05-18 2019-11-21 三菱電機株式会社 Lighting unit and lighting apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3039336B8 (en) 2013-10-14 2017-06-28 Philips Lighting Holding B.V. Lighting system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016208683A1 (en) * 2015-06-24 2016-12-29 株式会社 東芝 White light source system
US20180259140A1 (en) * 2017-01-30 2018-09-13 Cree, Inc. Skylight fixture
WO2019220656A1 (en) * 2018-05-18 2019-11-21 三菱電機株式会社 Lighting unit and lighting apparatus

Also Published As

Publication number Publication date
JP2023158096A (en) 2023-10-26
JPWO2021193486A1 (en) 2021-09-30
JP7346716B2 (en) 2023-09-19

Similar Documents

Publication Publication Date Title
US11209138B2 (en) Skylight fixture emulating natural exterior light
US10451229B2 (en) Skylight fixture
US10139060B1 (en) LED lighting methods and apparatus
US20130308303A1 (en) Lighting System for an Architectural Ceiling Structure
JP7415061B2 (en) lighting equipment
JP2010129211A (en) Lighting device
EP3749894B1 (en) Skylight fixture
WO2021193486A1 (en) Lighting device
JP6852775B2 (en) lighting equipment
WO2021193612A1 (en) Lighting fixture
JP7284657B2 (en) lighting equipment
JP2013084544A (en) Luminaire, lighting fixture, and lighting control system
JP2021026793A (en) Lighting fixture
JP4208576B2 (en) Method and apparatus for synchronizing lighting effects
JP2022191696A (en) Lighting apparatus
KR101762171B1 (en) LED light source for luminaire
JP2022186034A (en) Lighting fixture
JP6887122B2 (en) Lighting system
JPH06260287A (en) Light color variable type lighting system
JP7503893B2 (en) lighting equipment
US20230408066A1 (en) Lighting fixture with peripheral light emission feature
JP2022010768A (en) Lighting apparatus
CN217082431U (en) Lighting lamp
JP7242465B2 (en) lighting equipment
JP2013069631A (en) Luminaire, lighting fixture, and lighting control system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21774846

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022510458

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21774846

Country of ref document: EP

Kind code of ref document: A1