WO2021193485A1 - Vehicular cooling device - Google Patents

Vehicular cooling device Download PDF

Info

Publication number
WO2021193485A1
WO2021193485A1 PCT/JP2021/011570 JP2021011570W WO2021193485A1 WO 2021193485 A1 WO2021193485 A1 WO 2021193485A1 JP 2021011570 W JP2021011570 W JP 2021011570W WO 2021193485 A1 WO2021193485 A1 WO 2021193485A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
radiator
temperature
cooling water
heating
Prior art date
Application number
PCT/JP2021/011570
Other languages
French (fr)
Japanese (ja)
Inventor
惇史 勢〆
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Publication of WO2021193485A1 publication Critical patent/WO2021193485A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus

Definitions

  • the present disclosure relates to a vehicle cooling device, and more particularly to a vehicle cooling device in which the cooling circuit has a radiator through which cooling water for cooling the engine passes.
  • the temperature of the radiator may be the temperature according to the outside air temperature.
  • the radiator rapidly rises from the outside air temperature to the temperature of the cooling water. Such a rapid temperature rise of the radiator causes cold strain in the radiator.
  • Patent Document 1 heats the cooling medium flowing from the radiator to the heater core, and when the engine is started, the heated cooling water flows to the cooled radiator as described above. .. Therefore, cold strain was generated in the radiator.
  • An object of the present disclosure is to provide a vehicle cooling device that suppresses thermal strain generated in a radiator.
  • the vehicle cooling device of one aspect of the present disclosure that achieves the above object is a cooling circuit in which cooling water for cooling the engine circulates, and includes a cooling circuit having a radiator for cooling the cooling water passing through the inside.
  • the control device includes a heating device configured to heat the radiator and a control device configured to control the heating device, in which the cooling water passes through the inside of the radiator.
  • the heating device is configured to control the heating of the radiator so that the temperature of the radiator approaches the temperature of the cooling water.
  • the temperature difference between the radiator and the cooling water can be reduced by heating the radiator with a heating device before the cooling water passes through the inside of the radiator. As a result, it is possible to suppress the thermal strain generated in the radiator due to the temperature difference.
  • FIG. 1 is a configuration diagram illustrating an embodiment of a vehicle cooling device.
  • FIG. 2 is a perspective view illustrating the radiator and the heating device of FIG.
  • FIG. 3 is a flow chart illustrating a control method for the vehicle cooling device according to the embodiment.
  • the X direction is the direction in which the cooling air passing through the radiator 20 flows in the front-rear direction of the vehicle
  • the Y direction is the width direction of the vehicle
  • the Z direction is the vertical direction.
  • the white arrow indicates the flow of the cooling air
  • the filled arrow indicates the flow of the cooling water W.
  • the vehicle cooling device 10 of the embodiment is a device that cools the engine 1, and the cooling water W passes through the cooler 2 of the engine 1 and exchanges heat with the equipment to be cooled. , Cooling the equipment to be cooled.
  • the cooler 2 include a water jacket, an intercooler, and a cooler for recirculation exhaust.
  • the vehicle cooling device 10 includes a cooling circuit 11 in which the cooling water W circulates.
  • the cooling circuit 11 includes a cooling path 14 in which a water pump 12, a cooler 2, a thermostat 13, and a radiator 20 are interposed, and a detour circuit 15 that bypasses the cooling path 14.
  • the cooling water W circulates in the order of the water pump 12, the cooler 2, the thermostat 13, the cooling passage 14 in which the radiator 20 is interposed, the detour 15 bypassing the cooling passage 14, and the water pump 12. It is configured to do.
  • the vehicle cooling device 10 includes a cooling fan 16.
  • the water pump 12 is a mechanical type, and the rotational power from the crankshaft 3 of the engine 1 is transmitted via a power transmission mechanism 4 such as an endless belt or a gear mechanism, and is driven by the rotational power.
  • the rotation speed of the water pump 12 depends on the rotation speed of the engine 1, but the rotation speed may be adjusted by controlling the power transmission mechanism 4. Further, the water pump 12 may be composed of an electric water pump driven by rotational power from an electric motor.
  • the thermostat 13 is arranged at the branch point of the cooling passage 14 and the detour 15 after passing through the cooler 2.
  • the thermostat 13 has a lifter (not shown) that expands and contracts by a thermal expander having a property of expanding as the temperature of the cooling water W rises and contracting as the temperature of the cooling water W decreases.
  • the lifter expands and contracts according to the temperature to adjust the flow rate of the cooling water W flowing through the cooling passage 14 and the detour.
  • the thermostat 13 is configured so that the cooling water W flows only through the cooling passage 14 in the fully open state and the cooling water W flows only through the detour 15 in the fully closed state.
  • the thermostat 13 may be composed of an electric thermostat that forcibly expands and contracts the lift by electric heating.
  • the cooling circuit 11 is an outlet control type in which the thermostat 13 is arranged in the flow path after passing through the cooler 2 and before passing through the cooling path 14 and the detour 15 in which the radiator 20 is interposed.
  • the outlet control type cooling circuit 11 can improve the air bleeding property and suppress the occurrence of cavitation, which is advantageous for improving the durability, and is particularly suitable for a large vehicle such as a truck.
  • the cooling circuit 11 may be an inlet control type in which the thermostat 13 is arranged in the flow path after passing through the radiator 20 and before passing through the cooler 2 instead of the outlet control type.
  • the inlet control type cooling circuit is more advantageous than the outlet control type cooling circuit 11 in terms of temperature adjustment of the cooling water W.
  • the radiator 20 is arranged on the front side (left side in FIG. 1) of the vehicle on which the engine 1 is mounted, and the cooling fan 16 is arranged on the rear side of the radiator 20.
  • the radiator 20 is a heat exchanger that cools the cooling water W passing through the inside by using the vehicle speed air and the cooling air by the subsequent cooling fan 16.
  • the radiator 20 has an inlet tank 21, an outlet tank 22, and a heat exchange core 23.
  • the radiator 20 of the present embodiment is a downflow type radiator in which the inlet tank 21 and the outlet tank 22 are arranged vertically in the Z direction, and the cooling water W flows through the heat exchange core 23 from the upper side to the lower side in the Z direction.
  • the radiator 20 may be a cross-flow type radiator in which the inlet tank 21 and the outlet tank 22 are arranged on the left and right in the Y direction, and the cooling water W flows through the heat exchange core 23 in the Y direction.
  • the cooling passage 14 is a flow path in which a radiator 20 is provided at an intermediate position thereof and the cooling water W is cooled by the radiator 20.
  • the detour circuit 15 is a flow path in which the cooling water W is not cooled by the radiator 20 by bypassing the cooling path 14.
  • the cooling fan 16 is a mechanical type, and the rotational power from the crankshaft 3 of the engine 1 is transmitted via the fan clutch 17, and is driven by the rotational power.
  • the temperature zone in which the cooling fan 16 is driven by the fan clutch 17 is adjusted. For example, when the engine 1 is warmed up, the fan clutch 17 stops driving the cooling fan 16.
  • the rotation speed of the cooling fan 16 depends on the rotation speed of the engine 1, but the rotation speed may be adjusted by controlling the fan clutch 17.
  • the vehicle cooling device 10 of the present embodiment includes a heating device 30, a temperature acquisition device 31, and a control device 32.
  • the control device 32 controls the radiator 20 to be heated by the heating device 30 so that the temperature Tr of the radiator 20 approaches the temperature Tw of the cooling water W before the cooling water W passes through the inside of the radiator 20. Further, the vehicle cooling device 10 controls its heating before the cooling water W passes through the radiator 20.
  • the heating device 30 is a device that directly heats the heat exchange core 23 of the radiator 20, and is composed of a heating wire 33.
  • the heating device 30 is connected to the battery 6 via a switch.
  • the rotational power from the crankshaft 3 of the engine 1 is transmitted to the battery 6 via a power transmission mechanism 7 such as an endless belt or a gear mechanism, and the battery 6 is charged by a generator 8 driven by the rotational power.
  • the heat exchange core 23 of the radiator 20 is composed of a plurality of communication pipes 24 and cooling fins 25.
  • Each of the plurality of communication pipes 24 is a pipe in which one end communicates with the inlet tank 21 and the other end communicates with the outlet tank 22, and the cooling water W passes through the inside thereof.
  • Examples of the communication pipe 24 are tubes made of aluminum or an aluminum alloy and having a thin pipe thickness.
  • the plurality of communication pipes 24 need only be arranged in at least the Y direction, and in the present embodiment, the plurality of communication pipes 24 are arranged in the X direction and the Y direction.
  • the left and right ends of the heat exchange core 23 in the Y direction are composed of a frame and brackets.
  • the cooling fins 25 are arranged between the communication pipes 24.
  • Examples of the cooling fins 25 include corrugated fins having a zigzag shape so as to be in contact with both adjacent communication pipes 24 and plate fins through which all of the plurality of communication pipes 24 penetrate.
  • the heating device 30 of the present embodiment directly heats the heat exchange core 23 of the radiator 20, and it is more desirable that the heating device 30 directly heats a plurality of communication pipes 24 constituting the heat exchange core 23.
  • the heating wire 33 is arranged so as to be in direct contact with the outer surface of the communication pipe 24, and the heating device 30 directly heats the communication pipe 24.
  • the heating wire 33 may be directly in contact with the outer surface of the communication pipe 24, and may be arranged on either the X-direction front surface or the back surface of the communication pipe 24 or one of the Y-direction side surfaces. Further, the heating wire 33 may be arranged inside the communication pipe 24 so as to be in direct contact with the inner surface of the communication pipe 24.
  • the heating wire 33 of the present embodiment is arranged in a communication pipe 24 that is deformed so as to bend outward in the Y direction due to thermal strain. Specifically, the heating wire 33 is arranged in the communication pipe 24 arranged at both ends 23a in the Y direction of the heat exchange core 23.
  • the Y direction of the heat exchange core 23 is orthogonal to both the Z direction, which is the direction in which the cooling water W passing through the heat exchange core 23 flows, and the X direction, which is the direction in which the air passing through the heat exchange core 23 flows. It is the direction to do.
  • the Y-direction both end portions 23a of the heat exchange core 23 are portions excluding the central portion of the heat exchange core 23, and a predetermined number (for example, 3 to 7) from both ends in the Y direction toward the central portion. It is a part including the communication pipe 24 of the above.
  • the heating temperature of the heating device 30 is set to a temperature at which deposits adhering to the surface of the heat exchange core 23 do not burn, for example, a temperature of less than 200 ° C. Further, by setting the heating temperature of the heating device 30 to a temperature higher than the maximum temperature reached by the cooling water W, it is advantageous to quickly raise the temperature of the radiator 20.
  • the temperature acquisition device 31 is a device that acquires the temperature Tw of the cooling water W, and is arranged in the flow path between the cooler 2 and the thermostat 13.
  • the control device 32 is a device that controls the drive of the heating device 30, and is electrically connected to a switch that controls the drive of the heating device 30, a temperature acquisition device 31, and an ignition switch 9.
  • the control device 32 is hardware composed of a central processing unit (CPU) that performs various information processing, an internal storage device that can read and write programs and information processing results used for performing various information processing, and various interfaces. be.
  • CPU central processing unit
  • the set temperature Ta is set in the internal storage device in advance. Further, the control device 32 has a functional element for determining the drive of the heating device 30.
  • the functional elements are stored in the internal storage device as a program, and are executed by the central processing unit in a timely manner. In addition to the program, the functional element may be composed of a programmable controller (PLC) or an electric circuit that functions independently.
  • PLC programmable controller
  • the set temperature Ta is a value obtained in advance by an experiment, a test, or a simulation.
  • the set temperature Ta is set so that it can be determined when the cooling water W starts to flow from the thermostat 13 through the cooling passage 14, and more specifically, it can be determined when the thermostat 13 starts to open from the fully closed state. Set.
  • the control method of the vehicle cooling device 10 will be described as a function of the control device 32. This control method is performed at the time of cold start of the engine 1. In the present disclosure, it is assumed that the heat exchange core 23 of the radiator 20 is started from a state equal to the outside air temperature or a temperature lower than the outside air temperature at the time of cold start.
  • This control method is a method in which the temperature of the radiator 20 is raised by the heating device 30 before the cooling water W passes through the heat exchange core 23 of the radiator 20 to bring the temperature of the radiator 20 closer to the temperature Tw of the cooling water W.
  • This control method is started when the engine 1 is started by the ignition switch 9.
  • the control device 32 drives the heating device 30 to control the radiator 20 to be heated (S110).
  • the control device 32 acquires the temperature Tw of the cooling water W via the temperature acquisition device 31 (S120).
  • the control device 32 determines whether or not the acquired temperature Tw is equal to or higher than the set temperature Ta (S130).
  • the thermostat 13 is in a fully closed state, and the cooling water W does not flow through the cooling passage 14 but flows only through the detour circuit 15.
  • the thermostat 13 starts to open from the fully closed state, and a part of the cooling water W flows through the detour 15. The rest flows through the cooling passage 14.
  • the control device 32 keeps driving the heating device 30 and continues heating the radiator 20.
  • the control device 32 stops driving the heating device 30, and this control method ends.
  • the vehicle cooling device 10 of the present disclosure drives the heating device 30 before the cooling water W passes through the inside of the radiator 20 at the time of cold start of the engine 1 to heat the radiator 20 and raise the temperature. Therefore, according to the vehicle cooling device 10 of the present disclosure, even if the thermostat 13 is opened by heating the radiator 20 by the heating device 30 and the cooling water W actually starts to pass through the inside of the radiator 20, the radiator 20 and its own. The temperature difference from the cooling water W can be reduced. As a result, it is possible to suppress the thermal strain generated in the radiator 20 due to the temperature difference.
  • the control of heating the radiator 20 by the heating device 30 of the vehicle cooling device 10 is not limited to the cold start of the engine 1 by the ignition switch 9.
  • the heating control of the present disclosure may be performed from the state in which the cooling water W has not passed through the inside of the radiator 20 to before the cooling water W has passed.
  • the heating control should be performed when the temperature Tw of the cooling water W is lower than the set temperature Ta, and stopped when the temperature Tw is equal to or higher than the set temperature Ta. Therefore, instead of starting the engine 1 by the ignition switch 9, the above control method is started so that the accessory power supply can be energized by the ignition switch 9, and the temperature Tw acquired by the temperature acquisition device 31 sets the set temperature Ta. It may be when it is judged that it falls below.
  • the heating control may be performed when there is a temperature difference between the radiator 20 and the cooling water W.
  • a sensor that directly acquires the temperature of the radiator 20 may be added to start the above control method when the temperature of the radiator 20 is lower than the temperature Tw of the cooling water W.
  • the heating control may be performed, for example, when the heat exchange core 23 of the radiator 20 becomes a temperature equal to or lower than the outside air temperature during coasting in a state where the operation of the engine 1 is stopped. .. In that case, the control device 32 may determine whether or not to control the heating based on the traveling time of the coasting running in the state where the operation of the engine 1 is stopped.
  • the heating control may determine whether or not the start of the engine 1 by the ignition switch 9 is a cold start. For example, when the outside air temperature is lower than a predetermined temperature by using a sensor that acquires the outside air temperature, the case where the engine 1 is started by the ignition switch 9 may be determined as a cold start.
  • the heating control is stopped when the temperature Tw of the cooling water W becomes equal to or higher than the set temperature Ta, that is, when the cooling water W passes through the radiator 20. As a result, it is possible to avoid a situation in which the cooling performance of the cooling water W by the radiator 20 is deteriorated by heating by the heating device 30.
  • the heating control is such that when the temperature of the heat exchange core 23 of the radiator 20 reaches the temperature Tw of the cooling water W, the temperature of the heat exchange core 23 is maintained without being raised to a higher temperature. Is preferable.
  • the vehicle cooling device 10 of the present embodiment is arranged in a communication pipe 24 arranged at both ends 23a in the Y direction of the heat exchange core 23, which is a communication pipe 24 in which the heating wire 33 of the heating device 30 is deformed by cold heat strain. ..
  • a communication pipe 24 in which the heating wire 33 of the heating device 30 is deformed by cold heat strain.
  • the heating wire 33 of the heating device 30 is not limited to the configuration in which it is arranged only in the communication pipes 24 arranged at both ends 23a in the Y direction of the heat exchange core 23.
  • the heating wire 33 may be arranged in each of all the communication pipes 24 constituting the heat exchange core 23.
  • the heating wires 33 are arranged in all the communication pipes 24, the power consumption during heating increases. Therefore, it is desirable that the heating wire 33 is arranged in some communication pipes 24 including at least the communication pipes 24 arranged at both ends 23a in the Y direction of the heat exchange core 23.
  • the vehicle cooling device of the present disclosure is useful in that it can suppress the thermal strain generated in the radiator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

Provided is a vehicular cooling device 10 comprising: a cooling circuit 11 in which cooling water W that cools an engine 1 circulates and which has a radiator 20 that cools the cooling water W passing through the interior thereof; a heating device 30 which is configured so as to heat the radiator 20; and a control device 32 which is configured so as to control the heating device 30, wherein the control device 32 is configured so as to perform control to heat the radiator 20 by means of the heating device 30 such that temperature Tw of the radiator 20 approaches the temperature of the cooling water W before the cooling water W passes through the interior of the radiator 20.

Description

車両用冷却装置Vehicle cooling system
 本開示は車両用冷却装置に関し、より詳細には、冷却回路が、エンジンを冷却する冷却水が内部を通過するラジエータを有する車両用冷却装置に関する。 The present disclosure relates to a vehicle cooling device, and more particularly to a vehicle cooling device in which the cooling circuit has a radiator through which cooling water for cooling the engine passes.
 冷却媒体の一部をヒータコアに循環させる装置において、ラジエータの入口側タンクを第一室と第二室とに区画し、第二室の内部に冷却媒体を加熱する加熱手段を備えた装置が提案されている(例えば、特許文献1参照)。 In a device that circulates a part of the cooling medium to the heater core, a device that divides the inlet side tank of the radiator into the first chamber and the second chamber and has a heating means for heating the cooling medium inside the second chamber is proposed. (See, for example, Patent Document 1).
日本国特開2001-260639号公報Japanese Patent Application Laid-Open No. 2001-26063639
 ところで、エンジンの始動時においてラジエータの温度は外気温度に応じた温度になっている場合がある。エンジンが始動して80度程度に昇温した冷却水がそのラジエータの内部を流れると、ラジエータが外気温度からその冷却水の温度まで急激に昇温することになる。このようなラジエータの急激な昇温はラジエータに冷熱ひずみが生じる原因となっている。 By the way, when the engine is started, the temperature of the radiator may be the temperature according to the outside air temperature. When the engine is started and the cooling water whose temperature has risen to about 80 degrees flows inside the radiator, the radiator rapidly rises from the outside air temperature to the temperature of the cooling water. Such a rapid temperature rise of the radiator causes cold strain in the radiator.
 上記の特許文献1に記載の装置は、ラジエータからヒータコアに流れる冷却媒体を加熱するものであり、エンジンの始動時においては前述したように冷えたラジエータに昇温された冷却水が流れることになる。それ故、ラジエータに冷熱ひずみが発生していた。 The device described in Patent Document 1 heats the cooling medium flowing from the radiator to the heater core, and when the engine is started, the heated cooling water flows to the cooled radiator as described above. .. Therefore, cold strain was generated in the radiator.
 本開示の目的は、ラジエータに生じる冷熱ひずみを抑制する車両用冷却装置を提供することである。 An object of the present disclosure is to provide a vehicle cooling device that suppresses thermal strain generated in a radiator.
 上記の目的を達成する本開示の一態様の車両用冷却装置は、エンジンを冷却する冷却水が循環する冷却回路であって、内部を通過する前記冷却水を冷却するラジエータを有する冷却回路と、前記ラジエータを加熱するように構成されている加熱装置と、前記加熱装置を制御するように構成されている制御装置と、を備え、前記制御装置は、前記冷却水が前記ラジエータの内部を通過する前に前記ラジエータの温度を前記冷却水の温度に近づけるように、前記加熱装置により前記ラジエータを加熱する制御を行うように構成されている。 The vehicle cooling device of one aspect of the present disclosure that achieves the above object is a cooling circuit in which cooling water for cooling the engine circulates, and includes a cooling circuit having a radiator for cooling the cooling water passing through the inside. The control device includes a heating device configured to heat the radiator and a control device configured to control the heating device, in which the cooling water passes through the inside of the radiator. Previously, the heating device is configured to control the heating of the radiator so that the temperature of the radiator approaches the temperature of the cooling water.
 本開示の一態様によれば、冷却水がラジエータの内部を通過する前に加熱装置によるラジエータの加熱によりラジエータと冷却水との温度差を小さくすることができる。これにより、温度差に起因してラジエータに生じる冷熱ひずみを抑制することができる。 According to one aspect of the present disclosure, the temperature difference between the radiator and the cooling water can be reduced by heating the radiator with a heating device before the cooling water passes through the inside of the radiator. As a result, it is possible to suppress the thermal strain generated in the radiator due to the temperature difference.
図1は、実施形態の車両用冷却装置を例示する構成図である。FIG. 1 is a configuration diagram illustrating an embodiment of a vehicle cooling device. 図2は、図1のラジエータと加熱装置とを例示する斜視図である。FIG. 2 is a perspective view illustrating the radiator and the heating device of FIG. 図3は、実施形態の車両用冷却装置の制御方法を例示するフロー図である。FIG. 3 is a flow chart illustrating a control method for the vehicle cooling device according to the embodiment.
 以下に、本開示における車両用冷却装置の実施形態について説明する。図中において、X方向を車両の前後方向でラジエータ20を通過する冷却風の流れる方向とし、Y方向を車両の幅方向とし、Z方向を鉛直方向とする。なお、白抜き矢印は冷却風の流れを示し、塗り潰し矢印は冷却水Wの流れを示すものとする。 Hereinafter, embodiments of the vehicle cooling device in the present disclosure will be described. In the figure, the X direction is the direction in which the cooling air passing through the radiator 20 flows in the front-rear direction of the vehicle, the Y direction is the width direction of the vehicle, and the Z direction is the vertical direction. The white arrow indicates the flow of the cooling air, and the filled arrow indicates the flow of the cooling water W.
 図1に例示するように、実施形態の車両用冷却装置10はエンジン1を冷却する装置であり、冷却水Wがエンジン1の冷却器2を通過して冷却対象機器と熱交換を行うことで、冷却対象機器を冷却している。本開示において、冷却器2としては、ウォータジャケット、インタークーラ、再循環排気用のクーラが例示される。 As illustrated in FIG. 1, the vehicle cooling device 10 of the embodiment is a device that cools the engine 1, and the cooling water W passes through the cooler 2 of the engine 1 and exchanges heat with the equipment to be cooled. , Cooling the equipment to be cooled. In the present disclosure, examples of the cooler 2 include a water jacket, an intercooler, and a cooler for recirculation exhaust.
 車両用冷却装置10は、冷却水Wが循環する冷却回路11を備える。冷却回路11は、ウォータポンプ12、冷却器2、サーモスタット13、ラジエータ20が介設された冷却路14、およびその冷却路14を迂回する迂回路15を有する。冷却回路11において、冷却水Wは、ウォータポンプ12、冷却器2、サーモスタット13、ラジエータ20が介設された冷却路14およびその冷却路14を迂回する迂回路15、並びにウォータポンプ12の順に循環するように構成される。また、車両用冷却装置10は、冷却ファン16を備える。 The vehicle cooling device 10 includes a cooling circuit 11 in which the cooling water W circulates. The cooling circuit 11 includes a cooling path 14 in which a water pump 12, a cooler 2, a thermostat 13, and a radiator 20 are interposed, and a detour circuit 15 that bypasses the cooling path 14. In the cooling circuit 11, the cooling water W circulates in the order of the water pump 12, the cooler 2, the thermostat 13, the cooling passage 14 in which the radiator 20 is interposed, the detour 15 bypassing the cooling passage 14, and the water pump 12. It is configured to do. Further, the vehicle cooling device 10 includes a cooling fan 16.
 ウォータポンプ12は機械式であって、エンジン1のクランクシャフト3からの回転動力が無端状のベルトやギア機構などの動力伝達機構4を介して伝達され、その回転動力により駆動される。ウォータポンプ12の回転速度はエンジン1の回転速度に依存するが、動力伝達機構4を制御することでその回転速度を調節することが可能な構成にしてもよい。また、ウォータポンプ12は電動モータからの回転動力により駆動される電動式のウォータポンプで構成してもよい。 The water pump 12 is a mechanical type, and the rotational power from the crankshaft 3 of the engine 1 is transmitted via a power transmission mechanism 4 such as an endless belt or a gear mechanism, and is driven by the rotational power. The rotation speed of the water pump 12 depends on the rotation speed of the engine 1, but the rotation speed may be adjusted by controlling the power transmission mechanism 4. Further, the water pump 12 may be composed of an electric water pump driven by rotational power from an electric motor.
 サーモスタット13は冷却器2を通過後の冷却路14および迂回路15の分岐点に配置される。サーモスタット13は冷却水Wの温度上昇に伴って膨張し、冷却水Wの温度低下に伴って収縮する性質を有する熱膨張体により伸縮動作するリフタ(図示しない)を有して、冷却水Wの温度に応じてそのリフタが伸縮することで、冷却路14および迂回路15に流れる冷却水Wの流量を調節する。サーモスタット13は全開状態で冷却水Wを冷却路14のみに流し、全閉状態で冷却水Wを迂回路15のみに流すように構成される。なお、サーモスタット13は、リフトを電熱により強制的に伸縮動作させる電熱式サーモスタットで構成してもよい。 The thermostat 13 is arranged at the branch point of the cooling passage 14 and the detour 15 after passing through the cooler 2. The thermostat 13 has a lifter (not shown) that expands and contracts by a thermal expander having a property of expanding as the temperature of the cooling water W rises and contracting as the temperature of the cooling water W decreases. The lifter expands and contracts according to the temperature to adjust the flow rate of the cooling water W flowing through the cooling passage 14 and the detour. The thermostat 13 is configured so that the cooling water W flows only through the cooling passage 14 in the fully open state and the cooling water W flows only through the detour 15 in the fully closed state. The thermostat 13 may be composed of an electric thermostat that forcibly expands and contracts the lift by electric heating.
 本実施形態において、冷却回路11は、冷却器2を通過後で、ラジエータ20が介在する冷却路14および迂回路15を通過前の流路にサーモスタット13が配置された出口制御式である。出口制御式の冷却回路11は、エア抜き性を向上でき、かつキャビテーションの発生を抑制できるので耐久性の向上に有利になり、特に、トラックなどの大型車両には好適である。なお、冷却回路11としては、出口制御式に代えて、ラジエータ20を通過後で冷却器2を通過する前の流路にサーモスタット13が配置された入口制御式でもよい。入口制御式の冷却回路は出口制御式の冷却回路11と比較して冷却水Wの温度調整の面で有利になる。 In the present embodiment, the cooling circuit 11 is an outlet control type in which the thermostat 13 is arranged in the flow path after passing through the cooler 2 and before passing through the cooling path 14 and the detour 15 in which the radiator 20 is interposed. The outlet control type cooling circuit 11 can improve the air bleeding property and suppress the occurrence of cavitation, which is advantageous for improving the durability, and is particularly suitable for a large vehicle such as a truck. The cooling circuit 11 may be an inlet control type in which the thermostat 13 is arranged in the flow path after passing through the radiator 20 and before passing through the cooler 2 instead of the outlet control type. The inlet control type cooling circuit is more advantageous than the outlet control type cooling circuit 11 in terms of temperature adjustment of the cooling water W.
 ラジエータ20はエンジン1が搭載された車両の前方側(図1の左側)に配置されて、ラジエータ20の後方側には冷却ファン16が配置される。ラジエータ20は車速風と後続の冷却ファン16による冷却風とを利用して内部を通過する冷却水Wを冷却する熱交換器である。 The radiator 20 is arranged on the front side (left side in FIG. 1) of the vehicle on which the engine 1 is mounted, and the cooling fan 16 is arranged on the rear side of the radiator 20. The radiator 20 is a heat exchanger that cools the cooling water W passing through the inside by using the vehicle speed air and the cooling air by the subsequent cooling fan 16.
 ラジエータ20は入口タンク21と出口タンク22と熱交換コア23とを有する。本実施形態のラジエータ20は、入口タンク21および出口タンク22がZ方向上下に配置されて、冷却水Wが熱交換コア23をZ方向上方から下方に向かって流れるダウンフロー式のラジエータである。ラジエータ20は、入口タンク21および出口タンク22がY方向左右に配置されて、冷却水Wが熱交換コア23をY方向に流れるクロスフロー式のラジエータでもよい。 The radiator 20 has an inlet tank 21, an outlet tank 22, and a heat exchange core 23. The radiator 20 of the present embodiment is a downflow type radiator in which the inlet tank 21 and the outlet tank 22 are arranged vertically in the Z direction, and the cooling water W flows through the heat exchange core 23 from the upper side to the lower side in the Z direction. The radiator 20 may be a cross-flow type radiator in which the inlet tank 21 and the outlet tank 22 are arranged on the left and right in the Y direction, and the cooling water W flows through the heat exchange core 23 in the Y direction.
 冷却路14はその中途位置にラジエータ20が設けられて冷却水Wがラジエータ20により冷却される流路である。迂回路15は冷却路14を迂回して冷却水Wがラジエータ20により冷却されない流路である。 The cooling passage 14 is a flow path in which a radiator 20 is provided at an intermediate position thereof and the cooling water W is cooled by the radiator 20. The detour circuit 15 is a flow path in which the cooling water W is not cooled by the radiator 20 by bypassing the cooling path 14.
 冷却ファン16は機械式であって、エンジン1のクランクシャフト3からの回転動力がファンクラッチ17を介して伝達され、その回転動力により駆動される。冷却ファン16はファンクラッチ17により駆動する温度帯が調節される。例えば、エンジン1の暖機時にファンクラッチ17により冷却ファン16の駆動が停止される。冷却ファン16の回転速度はエンジン1の回転速度に依存するが、ファンクラッチ17を制御することでその回転速度を調節することが可能な構成にしてもよい。 The cooling fan 16 is a mechanical type, and the rotational power from the crankshaft 3 of the engine 1 is transmitted via the fan clutch 17, and is driven by the rotational power. The temperature zone in which the cooling fan 16 is driven by the fan clutch 17 is adjusted. For example, when the engine 1 is warmed up, the fan clutch 17 stops driving the cooling fan 16. The rotation speed of the cooling fan 16 depends on the rotation speed of the engine 1, but the rotation speed may be adjusted by controlling the fan clutch 17.
 本実施形態の車両用冷却装置10は、加熱装置30、温度取得装置31、および、制御装置32を備える。制御装置32は、ラジエータ20の内部を冷却水Wが通過する前にラジエータ20の温度Trを冷却水Wの温度Twに近づけるように、加熱装置30によりラジエータ20を加熱する制御を行う。また、車両用冷却装置10は、その加熱する制御を冷却水Wがラジエータ20を通過する前に行う。 The vehicle cooling device 10 of the present embodiment includes a heating device 30, a temperature acquisition device 31, and a control device 32. The control device 32 controls the radiator 20 to be heated by the heating device 30 so that the temperature Tr of the radiator 20 approaches the temperature Tw of the cooling water W before the cooling water W passes through the inside of the radiator 20. Further, the vehicle cooling device 10 controls its heating before the cooling water W passes through the radiator 20.
 加熱装置30はラジエータ20の熱交換コア23を直に加熱する装置であり、電熱線33で構成される。加熱装置30はバッテリ6にスイッチを介して接続される。このバッテリ6はエンジン1のクランクシャフト3からの回転動力が無端状のベルトやギア機構などの動力伝達機構7を介して伝達され、その回転動力により駆動される発電機8により充電される。 The heating device 30 is a device that directly heats the heat exchange core 23 of the radiator 20, and is composed of a heating wire 33. The heating device 30 is connected to the battery 6 via a switch. The rotational power from the crankshaft 3 of the engine 1 is transmitted to the battery 6 via a power transmission mechanism 7 such as an endless belt or a gear mechanism, and the battery 6 is charged by a generator 8 driven by the rotational power.
 図2に例示するように、ラジエータ20の熱交換コア23は複数の連通管24と冷却フィン25とから構成される。複数の連通管24のそれぞれは一端が入口タンク21に連通し、他端が出口タンク22に連通して、その内部を冷却水Wが通過する管である。連通管24としてはアルミニウムまたはアルミニウム合金からなり、その管厚が薄いチューブが例示される。複数の連通管24は少なくともY方向に配列されていればよく、本実施形態において複数の連通管24はX方向およびY方向に配列される。なお、熱交換コア23のY方向左右端は枠組みやブラケットで構成される。 As illustrated in FIG. 2, the heat exchange core 23 of the radiator 20 is composed of a plurality of communication pipes 24 and cooling fins 25. Each of the plurality of communication pipes 24 is a pipe in which one end communicates with the inlet tank 21 and the other end communicates with the outlet tank 22, and the cooling water W passes through the inside thereof. Examples of the communication pipe 24 are tubes made of aluminum or an aluminum alloy and having a thin pipe thickness. The plurality of communication pipes 24 need only be arranged in at least the Y direction, and in the present embodiment, the plurality of communication pipes 24 are arranged in the X direction and the Y direction. The left and right ends of the heat exchange core 23 in the Y direction are composed of a frame and brackets.
 冷却フィン25は連通管24どうしの間に配置される。冷却フィン25としては隣り合う連通管24の両方に接するようにジグザク状を成すコルゲートフィンや複数の連通管24の全てが貫通するプレートフィンが例示される。 The cooling fins 25 are arranged between the communication pipes 24. Examples of the cooling fins 25 include corrugated fins having a zigzag shape so as to be in contact with both adjacent communication pipes 24 and plate fins through which all of the plurality of communication pipes 24 penetrate.
 本実施形態の加熱装置30はラジエータ20の熱交換コア23を直に加熱することが望ましく、加熱装置30は熱交換コア23を構成する複数の連通管24を直に加熱することがより望ましい。 It is desirable that the heating device 30 of the present embodiment directly heats the heat exchange core 23 of the radiator 20, and it is more desirable that the heating device 30 directly heats a plurality of communication pipes 24 constituting the heat exchange core 23.
 電熱線33は連通管24の外面に直に接するように配置され、加熱装置30は連通管24を直に加熱する。電熱線33は連通管24の外面に直に接すればよく、連通管24のX方向表面または裏面、Y方向両側面のうちの一方の側面のいずれに配置してもよい。また、電熱線33は連通管24の内面に直に接するように、連通管24の内部に配置してもよい。 The heating wire 33 is arranged so as to be in direct contact with the outer surface of the communication pipe 24, and the heating device 30 directly heats the communication pipe 24. The heating wire 33 may be directly in contact with the outer surface of the communication pipe 24, and may be arranged on either the X-direction front surface or the back surface of the communication pipe 24 or one of the Y-direction side surfaces. Further, the heating wire 33 may be arranged inside the communication pipe 24 so as to be in direct contact with the inner surface of the communication pipe 24.
 本実施形態の電熱線33は冷熱ひずみによりY方向外側にたわむように変形する連通管24に配置される。具体的に、電熱線33は熱交換コア23のY方向両端部23aに配置された連通管24に配置される。本開示において熱交換コア23のY方向は熱交換コア23を通過する冷却水Wの流れる方向であるZ方向と、熱交換コア23を通過する空気の流れる方向であるX方向との両方に直交する方向である。また、本開示において熱交換コア23のY方向両端部23aとは熱交換コア23の中央部を除く部位であり、Y方向両端から中央部に向かって所定の本数(例えば、3~7本)の連通管24を含む部位である。 The heating wire 33 of the present embodiment is arranged in a communication pipe 24 that is deformed so as to bend outward in the Y direction due to thermal strain. Specifically, the heating wire 33 is arranged in the communication pipe 24 arranged at both ends 23a in the Y direction of the heat exchange core 23. In the present disclosure, the Y direction of the heat exchange core 23 is orthogonal to both the Z direction, which is the direction in which the cooling water W passing through the heat exchange core 23 flows, and the X direction, which is the direction in which the air passing through the heat exchange core 23 flows. It is the direction to do. Further, in the present disclosure, the Y-direction both end portions 23a of the heat exchange core 23 are portions excluding the central portion of the heat exchange core 23, and a predetermined number (for example, 3 to 7) from both ends in the Y direction toward the central portion. It is a part including the communication pipe 24 of the above.
 加熱装置30の加熱時の温度は熱交換コア23の表面に付着した付着物が燃焼しない温度に設定されることが望ましく、例えば、200℃未満の温度に設定される。また、加熱装置30の加熱時の温度は冷却水Wが到達する最高温度よりも高い温度に設定することで、ラジエータ20を迅速に昇温するには有利になる。 It is desirable that the heating temperature of the heating device 30 is set to a temperature at which deposits adhering to the surface of the heat exchange core 23 do not burn, for example, a temperature of less than 200 ° C. Further, by setting the heating temperature of the heating device 30 to a temperature higher than the maximum temperature reached by the cooling water W, it is advantageous to quickly raise the temperature of the radiator 20.
 図1に例示するように、温度取得装置31は冷却水Wの温度Twを取得する装置であり、冷却器2およびサーモスタット13の間の流路に配置される。 As illustrated in FIG. 1, the temperature acquisition device 31 is a device that acquires the temperature Tw of the cooling water W, and is arranged in the flow path between the cooler 2 and the thermostat 13.
 制御装置32は加熱装置30の駆動の制御を行う装置であり、加熱装置30の駆動を制御するスイッチ、温度取得装置31、イグニッションスイッチ9に電気的に接続される。 The control device 32 is a device that controls the drive of the heating device 30, and is electrically connected to a switch that controls the drive of the heating device 30, a temperature acquisition device 31, and an ignition switch 9.
 制御装置32は各種情報処理を行う中央演算装置(CPU)、その各種情報処理を行うために用いられるプログラムや情報処理結果を読み書き可能な内部記憶装置、及び各種インターフェースなどから構成されるハードウェアである。 The control device 32 is hardware composed of a central processing unit (CPU) that performs various information processing, an internal storage device that can read and write programs and information processing results used for performing various information processing, and various interfaces. be.
 制御装置32は、設定温度Taが予め内部記憶装置に設定される。また、制御装置32は、加熱装置30の駆動を判定する機能要素を有する。機能要素は、プログラムとして内部記憶装置に記憶されていて、適時、中央演算装置により実行されている。なお、機能要素としては、プログラムの他に独立して機能するプログラマブルコントローラ(PLC)や電気回路で構成されてもよい。 In the control device 32, the set temperature Ta is set in the internal storage device in advance. Further, the control device 32 has a functional element for determining the drive of the heating device 30. The functional elements are stored in the internal storage device as a program, and are executed by the central processing unit in a timely manner. In addition to the program, the functional element may be composed of a programmable controller (PLC) or an electric circuit that functions independently.
 設定温度Taは予め実験、試験、あるいはシミュレーションにより求められた値である。設定温度Taはサーモスタット13から冷却水Wが冷却路14を流れ始めるときを判定可能に設定され、より具体的にサーモスタット13が全閉の状態から開き始めた状態になるときを判定可能な値に設定される。 The set temperature Ta is a value obtained in advance by an experiment, a test, or a simulation. The set temperature Ta is set so that it can be determined when the cooling water W starts to flow from the thermostat 13 through the cooling passage 14, and more specifically, it can be determined when the thermostat 13 starts to open from the fully closed state. Set.
 図3に例示するように、車両用冷却装置10の制御方法について制御装置32の機能として説明する。この制御方法はエンジン1の冷間始動時に行われるものである。本開示において、冷間始動時はラジエータ20の熱交換コア23が外気温度と同等の状態、あるいは、その外気温度よりも低い温度になっている状態からの始動を示すものとする。 As illustrated in FIG. 3, the control method of the vehicle cooling device 10 will be described as a function of the control device 32. This control method is performed at the time of cold start of the engine 1. In the present disclosure, it is assumed that the heat exchange core 23 of the radiator 20 is started from a state equal to the outside air temperature or a temperature lower than the outside air temperature at the time of cold start.
 この制御方法は、冷却水Wがラジエータ20の熱交換コア23を通過する前に加熱装置30によりラジエータ20を昇温して、ラジエータ20の温度を冷却水Wの温度Twに近づける方法である。 This control method is a method in which the temperature of the radiator 20 is raised by the heating device 30 before the cooling water W passes through the heat exchange core 23 of the radiator 20 to bring the temperature of the radiator 20 closer to the temperature Tw of the cooling water W.
 この制御方法は、イグニッションスイッチ9によりエンジン1が始動すると開始される。制御方法が開始すると、制御装置32は加熱装置30を駆動して、ラジエータ20を加熱する制御を行う(S110)。ついで、制御装置32は温度取得装置31を介して冷却水Wの温度Twを取得する(S120)。ついで、制御装置32は取得した温度Twが設定温度Ta以上か否かを判定する(S130)。温度Twが設定温度Taを下回る場合にサーモスタット13は全閉の状態であり、冷却水Wは冷却路14を流れずに迂回路15のみを流れる。一方で、温度Twが設定温度Ta以上(温度Twが設定温度Taに等しい場合も含む)の場合にサーモスタット13は全閉の状態から開き始め、冷却水Wの一部は迂回路15を流れ、残りは冷却路14を流れる。 This control method is started when the engine 1 is started by the ignition switch 9. When the control method starts, the control device 32 drives the heating device 30 to control the radiator 20 to be heated (S110). Then, the control device 32 acquires the temperature Tw of the cooling water W via the temperature acquisition device 31 (S120). Then, the control device 32 determines whether or not the acquired temperature Tw is equal to or higher than the set temperature Ta (S130). When the temperature Tw is lower than the set temperature Ta, the thermostat 13 is in a fully closed state, and the cooling water W does not flow through the cooling passage 14 but flows only through the detour circuit 15. On the other hand, when the temperature Tw is equal to or higher than the set temperature Ta (including the case where the temperature Tw is equal to the set temperature Ta), the thermostat 13 starts to open from the fully closed state, and a part of the cooling water W flows through the detour 15. The rest flows through the cooling passage 14.
 温度Twが設定温度Taを下回ると判定すると(S130:NO)、制御装置32は加熱装置30の駆動を維持して、ラジエータ20の加熱を継続する。一方、温度Twが設定温度Ta以上と判定すると(S130:YES)、制御装置32は加熱装置30の駆動を停止して、この制御方法は終了する。 When it is determined that the temperature Tw is lower than the set temperature Ta (S130: NO), the control device 32 keeps driving the heating device 30 and continues heating the radiator 20. On the other hand, when it is determined that the temperature Tw is equal to or higher than the set temperature Ta (S130: YES), the control device 32 stops driving the heating device 30, and this control method ends.
 本開示の車両用冷却装置10は、エンジン1の冷間始動時にラジエータ20の内部を冷却水Wが通過する前に加熱装置30を駆動してラジエータ20を加熱して昇温する。それ故、本開示の車両用冷却装置10によれば、加熱装置30によるラジエータ20の加熱により、サーモスタット13が開いて実際にラジエータ20の内部を冷却水Wが通過し始めても、ラジエータ20とその冷却水Wとの温度差を小さくすることができる。これにより、温度差に起因してラジエータ20に生じる冷熱ひずみを抑制することができる。 The vehicle cooling device 10 of the present disclosure drives the heating device 30 before the cooling water W passes through the inside of the radiator 20 at the time of cold start of the engine 1 to heat the radiator 20 and raise the temperature. Therefore, according to the vehicle cooling device 10 of the present disclosure, even if the thermostat 13 is opened by heating the radiator 20 by the heating device 30 and the cooling water W actually starts to pass through the inside of the radiator 20, the radiator 20 and its own. The temperature difference from the cooling water W can be reduced. As a result, it is possible to suppress the thermal strain generated in the radiator 20 due to the temperature difference.
 車両用冷却装置10の加熱装置30によりラジエータ20を加熱する制御は、イグニッションスイッチ9によるエンジン1の冷間始動時に限定されるものではない。本開示の加熱する制御はラジエータ20の内部を冷却水Wが通過していない状態から冷却水Wが通過する前に行えばよい。 The control of heating the radiator 20 by the heating device 30 of the vehicle cooling device 10 is not limited to the cold start of the engine 1 by the ignition switch 9. The heating control of the present disclosure may be performed from the state in which the cooling water W has not passed through the inside of the radiator 20 to before the cooling water W has passed.
 具体的に、加熱する制御は冷却水Wの温度Twが設定温度Taを下回る場合に行い、その温度Twが設定温度Ta以上となる場合に停止するとよい。そこで、上記の制御方法の開始を、イグニッションスイッチ9によるエンジン1の始動に代えて、イグニッションスイッチ9によりアクセサリ電源が通電可能な状態になり、温度取得装置31が取得した温度Twが設定温度Taを下回ると判定したときにしてもよい。 Specifically, the heating control should be performed when the temperature Tw of the cooling water W is lower than the set temperature Ta, and stopped when the temperature Tw is equal to or higher than the set temperature Ta. Therefore, instead of starting the engine 1 by the ignition switch 9, the above control method is started so that the accessory power supply can be energized by the ignition switch 9, and the temperature Tw acquired by the temperature acquisition device 31 sets the set temperature Ta. It may be when it is judged that it falls below.
 また、加熱する制御は、ラジエータ20と冷却水Wとの温度差が生じている場合に行うようにしてもよい。例えば、ラジエータ20の温度を直に取得するセンサを追加して、ラジエータ20の温度が冷却水Wの温度Twよりも低い場合に、上記の制御方法を開始するようにしてもよい。 Further, the heating control may be performed when there is a temperature difference between the radiator 20 and the cooling water W. For example, a sensor that directly acquires the temperature of the radiator 20 may be added to start the above control method when the temperature of the radiator 20 is lower than the temperature Tw of the cooling water W.
 また、加熱する制御は、例えば、エンジン1の運転を停止した状態の惰性走行時にラジエータ20の熱交換コア23が外気温度と同等あるいはその外気温度よりも低い温度になった場合に行ってもよい。その場合に、制御装置32はエンジン1の運転を停止した状態の惰性走行の走行時間に基づいて加熱する制御を行うか否かを判定してもよい。 Further, the heating control may be performed, for example, when the heat exchange core 23 of the radiator 20 becomes a temperature equal to or lower than the outside air temperature during coasting in a state where the operation of the engine 1 is stopped. .. In that case, the control device 32 may determine whether or not to control the heating based on the traveling time of the coasting running in the state where the operation of the engine 1 is stopped.
 また、加熱する制御は、イグニッションスイッチ9によるエンジン1の始動が冷間始動か否かを判定してもよい。例えば、外気温度を取得するセンサを用いて、外気温度が所定の温度よりも低い場合に、イグニッションスイッチ9によるエンジン1を始動する場合を冷間始動と判定してもよい。 Further, the heating control may determine whether or not the start of the engine 1 by the ignition switch 9 is a cold start. For example, when the outside air temperature is lower than a predetermined temperature by using a sensor that acquires the outside air temperature, the case where the engine 1 is started by the ignition switch 9 may be determined as a cold start.
 加熱する制御は、冷却水Wの温度Twが設定温度Ta以上となった場合、つまり、冷却水Wがラジエータ20を通過する場合に停止する。これにより、ラジエータ20による冷却水Wの冷却性能が加熱装置30による加熱により低下する事態を回避することができる。 The heating control is stopped when the temperature Tw of the cooling water W becomes equal to or higher than the set temperature Ta, that is, when the cooling water W passes through the radiator 20. As a result, it is possible to avoid a situation in which the cooling performance of the cooling water W by the radiator 20 is deteriorated by heating by the heating device 30.
 なお、加熱する制御は、ラジエータ20の熱交換コア23の温度が冷却水Wの温度Twになった場合に、熱交換コア23の温度をそれ以上の温度に昇温させずに、維持するようにすることが好ましい。 The heating control is such that when the temperature of the heat exchange core 23 of the radiator 20 reaches the temperature Tw of the cooling water W, the temperature of the heat exchange core 23 is maintained without being raised to a higher temperature. Is preferable.
 本実施形態の車両用冷却装置10は、加熱装置30の電熱線33が冷熱ひずみにより変形する連通管24である熱交換コア23のY方向両端部23aに配置された連通管24に配置される。これにより、熱交換コア23のY方向両端部23aに配置された連通管24が冷熱ひずみによりY方向外側に向かってたわむことを防止することができる。 The vehicle cooling device 10 of the present embodiment is arranged in a communication pipe 24 arranged at both ends 23a in the Y direction of the heat exchange core 23, which is a communication pipe 24 in which the heating wire 33 of the heating device 30 is deformed by cold heat strain. .. As a result, it is possible to prevent the communication pipes 24 arranged at both ends 23a of the heat exchange core 23 in the Y direction from bending outward in the Y direction due to cold heat strain.
 加熱装置30の電熱線33は、熱交換コア23のY方向両端部23aに配置された連通管24のみに配置される構成に限定されない。例えば、電熱線33は熱交換コア23を構成する全ての連通管24のそれぞれに配置されてもよい。電熱線33が全ての連通管24に配置されることで、熱交換コア23の全体を迅速に加熱するには有利になる。一方で、電熱線33を全ての連通管24に配置すると、加熱時の消費電力が多くなる。そこで、電熱線33は熱交換コア23のY方向両端部23aに配置された連通管24を少なくとも含む幾つかの連通管24に配置されることが望ましい。 The heating wire 33 of the heating device 30 is not limited to the configuration in which it is arranged only in the communication pipes 24 arranged at both ends 23a in the Y direction of the heat exchange core 23. For example, the heating wire 33 may be arranged in each of all the communication pipes 24 constituting the heat exchange core 23. By arranging the heating wires 33 in all the communication pipes 24, it is advantageous to quickly heat the entire heat exchange core 23. On the other hand, if the heating wires 33 are arranged in all the communication pipes 24, the power consumption during heating increases. Therefore, it is desirable that the heating wire 33 is arranged in some communication pipes 24 including at least the communication pipes 24 arranged at both ends 23a in the Y direction of the heat exchange core 23.
 本出願は、2020年3月26日付で出願された日本国特許出願(特願2020-055836)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application filed on March 26, 2020 (Japanese Patent Application No. 2020-055836), the contents of which are incorporated herein by reference.
 本開示の車両用冷却装置は、ラジエータに生じる冷熱ひずみを抑制することができる、という点において有用である。 The vehicle cooling device of the present disclosure is useful in that it can suppress the thermal strain generated in the radiator.
1 エンジン
10 車両用冷却装置
11 冷却回路
20 ラジエータ
30 加熱装置
31 温度取得装置
32 制御装置
1 Engine 10 Vehicle cooling device 11 Cooling circuit 20 Radiator 30 Heating device 31 Temperature acquisition device 32 Control device

Claims (6)

  1.  エンジンを冷却する冷却水が循環する冷却回路であって、内部を通過する前記冷却水を冷却するラジエータを有する冷却回路と、
     前記ラジエータを加熱するように構成されている加熱装置と、
     前記加熱装置を制御するように構成されている制御装置と、を備え、
     前記制御装置は、前記冷却水が前記ラジエータの内部を通過する前に前記ラジエータの温度を前記冷却水の温度に近づけるように、前記加熱装置により前記ラジエータを加熱する制御を行うように構成されている車両用冷却装置。
    A cooling circuit in which cooling water for cooling the engine circulates, and a cooling circuit having a radiator for cooling the cooling water passing through the inside.
    A heating device configured to heat the radiator,
    A control device configured to control the heating device, and
    The control device is configured to control the radiator to be heated by the heating device so that the temperature of the radiator approaches the temperature of the cooling water before the cooling water passes through the inside of the radiator. Vehicle cooling system.
  2.  前記ラジエータは入口タンクと出口タンクと熱交換コアとを有しており、
     前記加熱装置は、前記熱交換コアを直に加熱するように構成されている請求項1に記載の車両用冷却装置。
    The radiator has an inlet tank, an outlet tank, and a heat exchange core.
    The vehicle cooling device according to claim 1, wherein the heating device is configured to directly heat the heat exchange core.
  3.  前記熱交換コアは、一端が前記入口タンクに連通して他端が前記出口タンクに連通する複数の連通管と、前記複数の連通管の間に配置された冷却フィンとを有し、
     前記加熱装置は、前記複数の連通管のうちの少なくとも前記熱交換コアの前記冷却水が流れる方向と前記熱交換コアを通過する空気の流れる方向との両方に直行する方向の両端部に配置された連通管を直に加熱するように構成されている請求項2に記載の車両用冷却装置。
    The heat exchange core has a plurality of communication pipes having one end communicating with the inlet tank and the other end communicating with the outlet tank, and cooling fins arranged between the plurality of communication pipes.
    The heating device is arranged at both ends of the plurality of communication pipes in a direction orthogonal to at least a direction in which the cooling water of the heat exchange core flows and a direction in which air passing through the heat exchange core flows. The vehicle cooling device according to claim 2, which is configured to directly heat the communication pipe.
  4.  前記制御装置はイグニッションスイッチに接続されており、前記イグニッションスイッチにより前記エンジンが冷間始動する場合に前記加熱する制御を行うように構成されている請求項1~3のいずれか1項に記載の車両用冷却装置。 The control device according to any one of claims 1 to 3, wherein the control device is connected to an ignition switch and is configured to control heating when the engine is cold-started by the ignition switch. Vehicle cooling system.
  5.  前記冷却回路は、前記ラジエータが介在する冷却路と、この冷却路を迂回する迂回路と、前記冷却路と前記迂回路の分岐点または前記冷却路と前記迂回路の合流点のいずれかに配置されたサーモスタットとを有し、
     前記冷却回路には、前記冷却水の温度を取得する温度取得装置が配置されており、
     前記制御装置は、前記温度取得装置が取得した前記冷却水の温度が、前記サーモスタットにより前記冷却水が前記冷却路を流れることを判定可能に設定された設定温度以上の場合に、前記加熱する制御を停止するように構成されている請求項1~4のいずれか1項に記載の車両用冷却装置。
    The cooling circuit is arranged at either a cooling path in which the radiator is interposed, a detour that bypasses the cooling path, a branch point between the cooling path and the detour, or a confluence of the cooling path and the detour. With a thermostat that has been
    A temperature acquisition device for acquiring the temperature of the cooling water is arranged in the cooling circuit.
    The control device controls the heating when the temperature of the cooling water acquired by the temperature acquisition device is equal to or higher than a set temperature set by the thermostat so that the cooling water can be determined to flow through the cooling path. The vehicle cooling device according to any one of claims 1 to 4, which is configured to stop the vehicle.
  6.  前記制御装置は、前記温度取得装置が取得した前記冷却水の温度が前記設定温度未満の場合に、前記加熱する制御を行うように構成されている請求項5に記載の車両用冷却装置。 The vehicle cooling device according to claim 5, wherein the control device is configured to control heating when the temperature of the cooling water acquired by the temperature acquisition device is lower than the set temperature.
PCT/JP2021/011570 2020-03-26 2021-03-22 Vehicular cooling device WO2021193485A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020055836A JP2021154822A (en) 2020-03-26 2020-03-26 Vehicle cooling device
JP2020-055836 2020-03-26

Publications (1)

Publication Number Publication Date
WO2021193485A1 true WO2021193485A1 (en) 2021-09-30

Family

ID=77891852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/011570 WO2021193485A1 (en) 2020-03-26 2021-03-22 Vehicular cooling device

Country Status (2)

Country Link
JP (1) JP2021154822A (en)
WO (1) WO2021193485A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57185611U (en) * 1981-05-22 1982-11-25
JP2000257425A (en) * 1999-03-10 2000-09-19 Nissan Diesel Motor Co Ltd Engine cooling system of cab-over-type vehicle
JP2007326432A (en) * 2006-06-07 2007-12-20 Denso Corp Engine cooling system for hybrid automobile
JP2017078346A (en) * 2015-10-20 2017-04-27 いすゞ自動車株式会社 diesel engine
JP2017106367A (en) * 2015-12-09 2017-06-15 株式会社デンソー Cooling system for vehicle
JP2018114802A (en) * 2017-01-17 2018-07-26 いすゞ自動車株式会社 Airflow control device and air guide
JP2019081501A (en) * 2017-10-31 2019-05-30 ダイハツ工業株式会社 Vehicle heat exchange system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57185611U (en) * 1981-05-22 1982-11-25
JP2000257425A (en) * 1999-03-10 2000-09-19 Nissan Diesel Motor Co Ltd Engine cooling system of cab-over-type vehicle
JP2007326432A (en) * 2006-06-07 2007-12-20 Denso Corp Engine cooling system for hybrid automobile
JP2017078346A (en) * 2015-10-20 2017-04-27 いすゞ自動車株式会社 diesel engine
JP2017106367A (en) * 2015-12-09 2017-06-15 株式会社デンソー Cooling system for vehicle
JP2018114802A (en) * 2017-01-17 2018-07-26 いすゞ自動車株式会社 Airflow control device and air guide
JP2019081501A (en) * 2017-10-31 2019-05-30 ダイハツ工業株式会社 Vehicle heat exchange system

Also Published As

Publication number Publication date
JP2021154822A (en) 2021-10-07

Similar Documents

Publication Publication Date Title
CN110094254A (en) Engine-cooling system and method
US20120143437A1 (en) Method for controlling exhaust gas heat recovery systems in vehicles
US20120102952A1 (en) Method for controlling exhaust gas heat recovery systems in vehicles
JP6096492B2 (en) Engine cooling system
JP7048437B2 (en) Vehicle heat management system
JP2004150277A (en) Ventilator for heat exchanger for vehicle, and control method thereof
JP4924083B2 (en) Exhaust heat recovery device for internal combustion engine
CN108019270A (en) System and method for fast engine cooling agent warming-up
JP4923832B2 (en) Vehicle cooling system
JP2004360509A (en) Cooling system for internal combustion engine
JP4193309B2 (en) Cooling device for internal combustion engine
KR20080028174A (en) Heating device for vehicles
RU2633109C1 (en) Device for liquid cooling of electric vehicle components
JP3572901B2 (en) Hybrid vehicle cooling system
WO2021193485A1 (en) Vehicular cooling device
WO2021193487A1 (en) Vehicular cooling device
JP2017025887A (en) Electronic control device
JP3767028B2 (en) Cooling system for internal combustion engine for vehicle
JP6447721B2 (en) Vehicle air conditioning system
JP2002340284A (en) Oil temperature control device
JP2002227648A (en) Engine cooling device
JP2013060854A (en) Engine cooling device
JP2010169010A (en) Cooling device for internal combustion engine
JP4994546B2 (en) Cooling device for liquid-cooled internal combustion engine
CN111434904A (en) Heat storage and radiation device for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21776241

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21776241

Country of ref document: EP

Kind code of ref document: A1