WO2021193457A1 - Method for producing 1,3-butadiene and device for producing 1,3-butadiene - Google Patents

Method for producing 1,3-butadiene and device for producing 1,3-butadiene Download PDF

Info

Publication number
WO2021193457A1
WO2021193457A1 PCT/JP2021/011461 JP2021011461W WO2021193457A1 WO 2021193457 A1 WO2021193457 A1 WO 2021193457A1 JP 2021011461 W JP2021011461 W JP 2021011461W WO 2021193457 A1 WO2021193457 A1 WO 2021193457A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
ethanol
butadiene
acetaldehyde
exhaust gas
Prior art date
Application number
PCT/JP2021/011461
Other languages
French (fr)
Japanese (ja)
Inventor
宣利 柳橋
悠 西山
昴嗣 滝沢
友樹 中間
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2022510441A priority Critical patent/JPWO2021193457A1/ja
Publication of WO2021193457A1 publication Critical patent/WO2021193457A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/12Alkadienes
    • C07C11/16Alkadienes with four carbon atoms
    • C07C11/1671, 3-Butadiene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production

Definitions

  • the present invention relates to a method for producing 1,3-butadiene and an apparatus for producing 1,3-butadiene.
  • the present application claims priority under Japanese Patent Application No. 2020-051408 filed in Japan on March 23, 2020 and Japanese Patent Application No. 2020-051406 filed in Japan on March 23, 2020. The contents are used here.
  • Butadiene such as 1,3-butadiene is used as a raw material for styrene-butadiene rubber (SBR) and the like.
  • SBR styrene-butadiene rubber
  • a method for producing 1,3-butadiene for example, a method of converting ethanol to acetaldehyde and further converting ethanol and acetaldehyde to 1,3-butadiene in the presence of a catalyst is known (Patent Document 1).
  • An object of the present invention is to provide a method for producing 1,3-butadiene that can continuously produce 1,3-butadiene with a high yield.
  • a method for continuously producing 1,3-butadiene from an ethanol feedstock containing ethanol which comprises a gas preparation step of preparing an ethanol-containing gas from the ethanol feedstock and the ethanol-containing gas in the presence of a catalyst.
  • a conversion step of converting ethanol in the gas to 1,3-butadiene a purification step of purifying the crude gas containing 1,3-butadiene obtained in the conversion step to obtain purified 1,3-butadiene, and recycling.
  • the recycling step includes one or more steps of a step, a trapping step, and a recycling control step, and the recycling step is exhaust gas discharged in the purification step, and is used with one or both of ethanol and acetaldehyde.
  • At least a part of the vaporized gas obtained by heating at least a part of the exhaust gas containing a high boiling point component having a boiling point higher than that of ethanol and acetaldehyde is transferred to either or both of the gas preparation step and the conversion step.
  • the trapping step is a step of returning, and the trap step is a discharge gas discharged in the purification step, which contains one or both of ethanol and acetaldehyde and a high boiling point component having a boiling point higher than that of ethanol and acetaldehyde.
  • the step is the exhaust gas discharged from either one or both of the conversion step and the purification step, and at least a part of the exhaust gas containing either one or both of ethanol and acetaldehyde is used in the gas preparation step and the gas preparation step. It is a step of returning to the step X selected from the conversion step and controlling the molar ratio (ethanol / acetaldehyde) in the gas of the step to 1 to 100, in which a part of the exhaust gas is separated and the rest is the step.
  • a method for producing 1,3-butadiene which comprises a step D3 in which an exhaust gas and a second exhaust gas containing acetaldehyde as a main component are separated and returned to the step X, and at least one selected from the group consisting of the step D3.
  • a method for continuously producing 1,3-butadiene from an ethanol feedstock containing ethanol which comprises a gas preparation step of preparing an ethanol-containing gas from the ethanol feedstock and the presence of a catalyst.
  • At least a part of the high boiling point component removing gas obtained by removing at least a part of the high boiling point component from the exhaust gas containing the high boiling point component can be obtained from either one of the gas preparation step and the conversion step or the conversion step.
  • a method for producing 1,3-butadiene which comprises a trapping step of returning to both.
  • a method for continuously producing 1,3-butadiene from an ethanol feedstock containing ethanol which comprises a gas preparation step of preparing an ethanol-containing gas from the ethanol feedstock and the presence of a catalyst.
  • At least a part of the exhaust gas containing either one or both of ethanol and acetaldehyde discharged from either one or both of the conversion step and the purification step is returned to at least the gas preparation step or the conversion step.
  • the recycling control step includes a recycling control step of controlling the molar ratio (ethanol / acetaldehyde) in the gas to be subjected to the conversion reaction to 1,3-butadiene from 1 to 100, and the recycling control step separates a part of the exhaust gas.
  • step D1 of returning the balance step D2 of returning at least a part of the exhaust gas and separating a part of acetaldehyde from the gas of the step of returning the exhaust gas, and ethanol as the main component of the exhaust gas.
  • a method for producing 1,3-butadiene which comprises a step D3 of separately returning the first exhaust gas and the second exhaust gas containing acetaldehyde as a main component, and at least one selected from the group consisting of.
  • step D1 When the molar ratio (ethanol / acetaldehyde) becomes 0.8 or less in the monitoring by the analyzer, one or more of the step D1, the step D2, and the step D3 is started.
  • step D2 The method for producing 1,3-butadiene according to.
  • step D2 the gas in the step of returning the exhaust gas is introduced into the separation device, and a part of acetaldehyde is separated in the separation device under a pressure of 1.0 to 5.0 MPa. 1], the method for producing 1,3-butadiene according to any one of [2-1] to [2-3].
  • step D3 any one of [1], [2-1] to [2-4], which adjusts the flow rate for returning the first exhaust gas and the flow rate for returning the second exhaust gas, respectively.
  • the method for producing 1,3-butadiene according to. [7] The gas preparation step includes step A1 of vaporizing the ethanol supply raw material into the ethanol-containing gas under the conditions of a pressure of ⁇ 1.0 to 3.0 MPaG and a temperature of ⁇ 100 to 400 ° C. [7] 1], the method for producing 1,3-butadiene according to any one of [1-1] to [1-6], [2-1] to [2-5].
  • the conversion step includes at least step B1 of converting ethanol in the ethanol-containing gas to 1,3-butadiene in the presence of a catalyst under the conditions of a pressure of 0 to 1.0 MPaG and a temperature of 50 to 500 ° C.
  • At least one selected from the group consisting of step B4 for separating the gas containing acetaldehyde from the ethanol-containing gas supplied to the step B1 by distillation may be combined with the step B1 [1], [7].
  • the purification step includes a step C1 in which butene in the crude gas is dehydrogenated and converted to 1,3-butadiene, and a step C1 in which the hydrogen gas is separated from the crude gas by gas-liquid separation 1 , 3-butadiene-containing liquid is obtained in step C2, and the liquefaction of the crude gas or the 1,3-butadiene-containing liquid is distilled to separate the ethylene-containing gas, the 1,3-butadiene-containing effluent and the acetaldehyde-containing liquid. [1], [7].
  • a production apparatus for continuously producing 1,3-butadiene from an ethanol supply raw material containing ethanol which is a gas preparation means, a conversion means, a purification means, a recycling means, a trapping means, and a recycling control means.
  • the gas preparing means comprises a vaporizer that vaporizes the ethanol supply raw material into an ethanol-containing gas
  • the conversion means comprises ethanol in the ethanol-containing gas.
  • the purification means includes a reactor for converting to 1,3-butadiene, and the purification means is a means for purifying the crude gas containing 1,3-butadiene obtained by the conversion means, and the recycling means is from the purification means.
  • a vaporizer that heats at least a part of the discharged gas containing either one or both of ethanol and acetaldehyde to generate a vaporized gas, and the vaporized gas at least the gas preparing means or the gas preparation means or the above.
  • the trap means includes at least a pipe for returning to the conversion means, and the trap means includes a high boiling point component removing device for removing at least a part of a high boiling point component having a boiling point higher than that of ethanol and acetaldehyde in the exhaust gas discharged from the purification means.
  • the recycling control means is provided with at least a pipe for returning the exhaust gas from which the high boiling point component has been removed to the gas preparation means or the conversion means, and the recycling control means discharges the exhaust gas discharged from either or both of the conversion means and the purification means.
  • a second recycling control device that returns at least a part of the gas to the means X and separates a part of acetaldehyde from the gas of the means X, and a first that returns the first exhaust gas containing ethanol as a main component to the means X.
  • a 1,3-butadiene production device including a third recycling control device including a pipe and a second pipe for returning a second exhaust gas containing acetaldehyde as a main component to the means X, and at least one selected from the group consisting of the pipe and the second pipe. .. [1-10]
  • a production apparatus for continuously producing 1,3-butadiene from an ethanol supply raw material containing ethanol which is either a gas preparation means, a conversion means, a purification means, a recycling means, or a trapping means.
  • the gas preparing means includes one or both, and the gas preparing means includes a vaporizer that vaporizes the ethanol supply raw material into an ethanol-containing gas, and the converting means converts ethanol in the ethanol-containing gas into 1,3-butadiene.
  • the purification means is a means for purifying the crude gas containing 1,3-butadiene obtained by the conversion means, and the recycling means is the ethanol discharged from the purification means. And at least a vaporizer that heats at least a part of the exhaust gas containing one or both of acetaldehyde to generate a vaporized gas, and a pipe that returns the vaporized gas to at least the gas preparing means or the converting means.
  • the trap means includes a high-boiling component removing device that removes at least a part of a high-boiling component having a boiling point higher than that of ethanol and acetaldehyde in the exhaust gas discharged from the purification means, and an exhaust gas from which the high-boiling component has been removed.
  • a 1,3-butadiene production apparatus comprising at least a gas preparing means or a pipe for returning to the conversion means. [1-11] The 1,3-described in [10] or [1-10], wherein in the recycling means, a gas-liquid separator is installed in the middle of a pipe for returning the vaporized gas to the gas preparing means. Butadiene production equipment.
  • a production apparatus for continuously producing 1,3-butadiene from an ethanol supply raw material containing ethanol which comprises gas preparation means, conversion means, purification means, and recycling control means.
  • the gas preparation means includes a vaporizer that vaporizes the ethanol supply raw material into an ethanol-containing gas
  • the conversion means includes a reactor that converts ethanol in the ethanol-containing gas to 1,3-butadiene.
  • the purification means is a means for purifying a crude gas containing 1,3-butadiene obtained by the conversion means, and the recycling control means is discharged from either or both of the conversion means and the purification means.
  • the molar ratio (ethanol / It is equipped with at least an analyzer that analyzes (acetaldehyde), a first recycling control device that separates a part of the exhaust gas and returns the rest, and returns at least a part of the exhaust gas to release the exhaust gas.
  • a second recycling control device that separates a part of acetaldehyde from the gas in the returned process, a first pipe that returns the first exhaust gas containing ethanol as the main component, and a second exhaust gas that returns the second exhaust gas containing acetaldehyde as the main component.
  • a 1,3-butadiene production device comprising a third recycling control device including piping and at least one selected from the group consisting of.
  • the numerical range represented by “-” represents the numerical range including the numerical values before and after “-” as the lower limit value and the upper limit value.
  • the yield of 1,3-butadiene can be improved by recovering and recycling unreacted raw materials (ethanol) and intermediate products (acetaldehyde) in the exhaust gas discharged in the production process of 1,3-butadiene. ..
  • unreacted raw materials (ethanol) and intermediate products (acetaldehyde) in the exhaust gas discharged in the production process of 1,3-butadiene high boiling points having a higher boiling point than by-products (ethanol and acetaldehyde).
  • the yield of 1,3-butadiene can be further improved. Further, when the content of the high boiling point component in the exhaust gas is high, clogging of the piping or the pump can be prevented by removing the high boiling point component.
  • the method for producing 1,3-butadiene of the present embodiment is a method for continuously producing 1,3-butadiene from an ethanol supply raw material containing ethanol.
  • the method for producing 1,3-butadiene of the present embodiment includes the following steps A to D.
  • Step A A gas preparation step of preparing an ethanol-containing gas from an ethanol supply raw material.
  • Step B A conversion step of converting ethanol in an ethanol-containing gas to 1,3-butadiene in the presence of a catalyst.
  • Step C A purification step of purifying the crude gas containing 1,3-butadiene obtained in step B to obtain purified 1,3-butadiene.
  • Process D Any one or more of a recycling process, a trap process, and a recycling control process.
  • the recycling step heats at least a part of the exhaust gas discharged from step C, which contains one or both of ethanol and acetaldehyde and a high boiling point component having a boiling point higher than that of ethanol and acetaldehyde. This is a step of returning at least a part of the vaporized gas thus obtained to one or both of the steps A and B.
  • the high boiling point component is discharged from the exhaust gas containing one or both of ethanol and acetaldehyde and a high boiling point component having a boiling point higher than that of ethanol and acetaldehyde.
  • This is a step of returning at least a part of the high boiling point component removing gas obtained by removing at least a part of the above step A and step B to one or both of the steps A and B.
  • the recycling control step is an exhaust gas discharged from either one or both of step B and step C, and is an exhaust gas containing either one or both of ethanol and acetaldehyde (hereinafter, "exhaust gas (E / A)). At least a part of (also referred to as) is returned to step A or step B, and the molar ratio (ethanol / acetaldehyde) in the gas to be subjected to the conversion reaction to 1,3-butadiene (hereinafter, “molar ratio (E / A)”. ) Is also described.) Is a step of controlling from 1 to 100.
  • Step A includes step A1 in which the ethanol supply raw material is vaporized into an ethanol-containing gas under the conditions of a pressure of ⁇ 1.0 to 3.0 MPaG and a temperature of ⁇ 100 to 400 ° C.
  • the ethanol supply raw material contains ethanol as an essential component, and may contain other components such as water as long as the effects of the present invention are not impaired.
  • the ratio of ethanol in the ethanol supply raw material is preferably 80% by mass or more, more preferably 90% by mass or more, still more preferably 93% by mass or more, based on the total mass of the ethanol supply raw material.
  • the upper limit of the proportion of ethanol is theoretically 100% by mass.
  • the ratio of ethanol in the ethanol supply raw material is preferably 80 to 100% by mass, more preferably 90 to 100% by mass, still more preferably 93 to 100% by mass, based on the total mass of the ethanol supply raw material.
  • the ethanol supply raw material is not particularly limited, and may be, for example, ethanol derived from fossils such as shale gas and petroleum, and bioethanol derived from biomass such as plants, animals and garbage. Of these, bioethanol is preferable because it contains few impurities such as nitrogen compounds, sulfur compounds, and phosphorus compounds, and the catalyst does not easily deteriorate.
  • the total content of the nitrogen compound, the sulfur compound, and the phosphorus compound with respect to the total mass of the bioethanol is preferably 0 to 0.1% by mass, more preferably 0 to 0.01% by mass.
  • the pressure at the time of vaporization of the ethanol supply raw material in step A1 may be set in the range of -1.0 to 3.0 MPaG, preferably -0.5 to 2.0 MPaG, and more preferably -0.3 to 1.0 MPaG. preferable.
  • the pressure at the time of vaporization is equal to or higher than the lower limit of the above range, the volume at the time of vaporization does not become excessive and the size of the mechanical equipment can be suppressed. If the pressure at the time of vaporization is equal to or less than the upper limit of the above range, it is efficiently vaporized.
  • the temperature at the time of vaporization of the ethanol supply raw material in step A1 may be set in the range of -100 to 400 ° C, preferably 0 to 200 ° C, and more preferably 25 to 100 ° C. If the temperature at the time of vaporization is equal to or higher than the lower limit of the above range, it is efficiently vaporized. If the temperature at the time of vaporization is not more than the upper limit of the above range, excessive heating becomes unnecessary.
  • step A if necessary, one or more kinds of gases are mixed with the ethanol-containing gas obtained in step A1 to adjust the concentration of ethanol in the ethanol-containing gas within the range of 0.1 to 100% by volume.
  • A2 may be further included.
  • the ethanol concentration of the ethanol-containing gas may be adjusted in the range of 0.1 to 100% by volume, preferably 10 to 100% by volume, and more preferably 20 to 100% by volume. When the ethanol concentration is equal to or higher than the lower limit of the above range, the yield of 1,3-butadiene is improved.
  • the gas to be mixed with the ethanol-containing gas a gas that does not adversely affect the conversion reaction from ethanol to 1,3-butadiene can be used, and examples thereof include rare gases such as nitrogen gas and argon gas. .. Of these, nitrogen gas and argon gas are preferable from the viewpoint of price and availability.
  • nitrogen gas and argon gas are preferable from the viewpoint of price and availability.
  • the gas to be mixed with the ethanol-containing gas only one type may be used alone, or two or more types may be used in combination.
  • step B as the conversion reaction from ethanol to 1,3-butadiene, a one-step reaction represented by the following formula (1) may be adopted, and is represented by the following formulas (2) and (3).
  • a two-stage reaction may be adopted. This embodiment is particularly effective when a two-step reaction is adopted in step B.
  • two or more parallel reactors may be used for at least a part of the conversion reaction of converting ethanol in the ethanol-containing gas to 1,3-butadiene in the presence of a catalyst.
  • ethanol may be converted to 1,3-butadiene in two or more parallel reactors.
  • two or more parallel reactors may be used for either or both of the first-stage conversion reaction and the second-stage conversion reaction.
  • the number of reactors installed in parallel in step B can be appropriately set, and can be, for example, 2 to 5.
  • Step B preferably includes at least the following step B1.
  • step B1 Ethanol in the ethanol-containing gas is converted to 1,3-butadiene in the presence of a catalyst under the conditions of a pressure of 0 to 1.0 MPaG and a temperature of 50 to 500 ° C.
  • Step B1 of the two-step reaction includes, for example, the following steps B11 and B12.
  • Step B11 A part of ethanol in the ethanol-containing gas obtained in Step A is converted to acetaldehyde in the presence of the first catalyst under the conditions of a pressure of 0 to 1.0 MPaG and a temperature of 50 to 500 ° C.
  • Step B12 The intermediate gas containing unreacted ethanol and acetaldehyde obtained in Step B11 is mixed with ethanol and acetaldehyde in the presence of a second catalyst under the conditions of a pressure of 0 to 1.0 MPaG and a temperature of 50 to 500 ° C. Convert to 3-butadiene.
  • step B11 in the presence of the first catalyst, a part of ethanol in the ethanol-containing gas supplied from step A is converted to acetaldehyde. This produces an intermediate gas containing ethanol and acetaldehyde.
  • the first catalyst may be any catalyst that promotes the conversion reaction from ethanol to acetaldehyde, and examples thereof include a mixture of chromium oxide and copper oxide, zinc oxide, and a mixture of copper oxide and silicon oxide. Of these, a mixture of copper oxide and silicon oxide is preferable from the viewpoint of conversion rate to acetaldehyde.
  • the first catalyst one type may be used alone, or two or more types may be used in combination.
  • the pressure during the conversion reaction in step B11 may be set in the range of 0 to 1.0 MPaG, preferably 0 to 0.5 MPaG, and more preferably 0 to 0.3 MPaG.
  • the pressure in step B11 is equal to or higher than the lower limit of the above range, the conversion rate to acetaldehyde is improved.
  • the pressure in step B11 is equal to or less than the upper limit of the above range, liquefaction during the reaction can be suppressed.
  • the temperature at the time of the conversion reaction in step B11 may be set in the range of 50 to 500 ° C, preferably 200 to 500 ° C, and more preferably 250 to 350 ° C.
  • the temperature in step B11 is equal to or higher than the lower limit of the above range, the conversion rate to acetaldehyde is improved.
  • the temperature in step B11 is equal to or less than the upper limit of the above range, excessive energy consumption can be suppressed.
  • the conversion rate from ethanol to acetaldehyde in step B11 is preferably 30 to 70%.
  • the "conversion rate to aldehyde" in step B11 is the number of moles of ethanol consumed in the reactor per unit time with respect to the number of moles of ethanol in the ethanol-containing gas supplied to the reactor in step B11 per unit time. It means the ratio of the number of moles (percentage).
  • the number of moles of ethanol consumed in the reactor of step B11 per unit time is determined from the number of moles of ethanol in the ethanol-containing gas supplied to the reactor of step B11 per unit time from the reactor of step B11. It is calculated by subtracting the number of moles of ethanol in the discharged intermediate gas per unit time.
  • the selectivity of acetaldehyde in the conversion reaction of step B11 is preferably 85% or more, more preferably 90% or more.
  • the upper limit of the selectivity of acetaldehyde is not particularly limited, but is preferably 100% or less, for example. When it is less than 100%, if the by-product is diethyl ether or ethylene, it can be separated and converted to ethanol, which is preferable.
  • the "acetaldehyde selectivity" in step B11 is the ratio (percentage) of the number of moles of ethanol converted to acetaldehyde per unit time to the number of moles of ethanol consumed in the reactor of step B11 per unit time. Means.
  • crotonaldehyde CHCHO
  • butyraldehyde CH 3 CH 2 CH 2 CHO
  • ethyl acetate CH 3 COOCH 2 CH 3
  • acetic acid CH 3 COOH
  • one or both of a compound having 6 carbon atoms (C6 component) and a compound having 8 carbon atoms (C8 component) may be produced.
  • step B12 ethanol and acetaldehyde in the intermediate gas supplied from step B11 are converted to 1,3-butadiene in the presence of the second catalyst. As a result, a crude gas containing 1,3-butadiene is generated.
  • the second catalyst may be any catalyst that promotes the conversion reaction of ethanol and acetaldehyde to 1,3-butadiene, and examples thereof include tantalum, zirconium, niobium, hafnium, magnesium, zinc, silicon, and cerium. Of these, hafnium is preferable from the viewpoint of the yield of 1,3-butadiene.
  • the second catalyst one type may be used alone, or two or more types may be used in combination. Examples of the mode in which the second catalyst is used include, for example, metals, oxides, and chlorides, and examples thereof include a mode in which the second catalyst is supported on a carrier and used, and a mode in which the second catalyst is used as a mixture of two or more kinds.
  • the pressure during the conversion reaction in step B12 may be set in the range of 0 to 1.0 MPaG, preferably 0 to 0.5 MPaG, and more preferably 0 to 0.3 MPaG.
  • the pressure in step B12 is equal to or higher than the lower limit of the above range, the yield of 1,3-butadiene is improved.
  • the pressure in step B12 is not more than the upper limit of the above range, the decrease in yield of 1,3-butadiene due to the excessive reaction can be suppressed.
  • the temperature at the time of the conversion reaction in step B12 may be set in the range of 50 to 500 ° C., preferably 300 to 400 ° C., more preferably 320 to 370 ° C.
  • the temperature in step B12 is equal to or higher than the lower limit of the above range, the yield of 1,3-butadiene is improved.
  • the temperature in step B12 is not more than the upper limit of the above range, the decrease in yield of 1,3-butadiene due to the excessive reaction can be suppressed.
  • the conversion rate of ethanol and acetaldehyde to 1,3-butadiene in step B12 is preferably more than 30%, more preferably more than 40%, still more preferably more than 50%.
  • the upper limit of the conversion rate to 1,3-butadiene is not particularly limited, but may be, for example, 100% or less, 95% or less, or 90% or less. When the conversion rate is less than 100%, unreacted ethanol and acetaldehyde may be separated and recovered and reused.
  • the conversion rate to 1,3-butadiene is preferably more than 30% and 100% or less, more preferably more than 40% and 100% or less, and further preferably more than 50% and 100% or less.
  • the “conversion rate to 1,3-butadiene” in step B12 is consumed in the reactor with respect to the number of moles of ethanol and acetaldehyde in the intermediate gas supplied to the reactor in step B12 per unit time. It means the molar ratio of the number of moles of ethanol and acetaldehyde per unit time.
  • the number of moles of ethanol and acetaldehyde consumed in the reactor of step B12 per unit time is determined from the number of moles of ethanol and acetaldehyde in the intermediate gas supplied to the reactor of step B12 per unit time. It is calculated by subtracting the number of moles of ethanol and acetaldehyde in the crude gas discharged from the reactor per unit time.
  • the selectivity of 1,3-butadiene in the conversion reaction of step B12 is preferably more than 60%, more preferably more than 70%, still more preferably more than 80%.
  • the upper limit of the selectivity of 1,3-butadiene is not particularly limited, but may be 100% or less, for example. If it is less than 100%, diethyl ether and ethylene as by-products can be converted to ethanol, and crotyl alcohol and crotonaldehyde can be converted to 1,3-butadiene, which is preferable.
  • the selectivity of 1,3-butadiene is preferably more than 60% and 100% or less, more preferably more than 70% and 100% or less, and further preferably more than 80% and 100% or less.
  • the “1,3-butadiene selectivity” of step B12 is the ethanol and acetaldehyde converted to 1,3-butadiene with respect to the number of moles of ethanol and acetaldehyde consumed in the reactor of step B12 per unit time. Means the ratio (percentage) of the number of moles per unit time of.
  • step B12 it is preferable that 65 to 80 mol% is converted to 1,3-butadiene with respect to the number of moles of acetaldehyde in the intermediate gas supplied from step B11 per unit time.
  • step B12 in addition to ethanol in the intermediate gas supplied from step B11, it is preferable that 65 to 80 mol% is converted to 1,3-butadiene with respect to the number of moles per hour.
  • Step B of the one-step reaction includes, for example, the following step B13.
  • Step B13 The ethanol-containing gas obtained in Step A is converted to 1,3-butadiene in the presence of a third catalyst under the conditions of a pressure of 0 to 1.0 MPaG and a temperature of 50 to 500 ° C.
  • step B13 in the presence of the third catalyst, ethanol in the ethanol-containing gas supplied from step A is converted to 1,3-butadiene. As a result, a crude gas containing 1,3-butadiene is generated.
  • the third catalyst may be any one that promotes the conversion reaction from ethanol to 1,3-butadiene, for example, copper oxide, zinc oxide, magnesium oxide, germanium oxide, tantalum oxide, zirconium oxide, hafnium oxide, and oxidation. Examples thereof include niobium, lanthanum oxide, cerium oxide, aluminum oxide, and silicon oxide. Of these, hafnium oxide is preferable from the viewpoint of the yield of 1,3-butadiene.
  • one type may be used alone, or two or more types may be used in combination.
  • the pressure during the conversion reaction in step B13 may be set in the range of 0 to 1.0 MPaG, preferably 0 to 0.5 MPaG, and more preferably 0 to 0.3 MPaG.
  • the pressure in step B13 is equal to or higher than the lower limit of the above range, the yield of 1,3-butadiene is improved.
  • the pressure in step B13 is not more than the upper limit of the above range, the decrease in yield of 1,3-butadiene due to the excessive reaction can be suppressed.
  • the temperature at the time of the conversion reaction in step B13 may be set in the range of 50 to 500 ° C, preferably 250 to 450 ° C, and more preferably 300 to 400 ° C.
  • the temperature in step B13 is equal to or higher than the lower limit of the above range, the yield of 1,3-butadiene is improved.
  • the temperature in step B13 is not more than the upper limit of the above range, the decrease in yield of 1,3-butadiene due to the excessive reaction can be suppressed.
  • the conversion rate from ethanol to 1,3-butadiene in step B13 is preferably more than 30%, more preferably more than 40%, still more preferably more than 50%.
  • the upper limit of the conversion rate to 1,3-butadiene is not particularly limited, but may be, for example, 100% or less, 95% or less, or 90% or less.
  • the conversion rate to 1,3-butadiene is preferably more than 30% and 100% or less, more preferably more than 40% and 100% or less, and further preferably more than 50% and 100% or less.
  • the “conversion rate to 1,3-butadiene” in step B13 is the ethanol consumed in the reactor with respect to the number of moles of ethanol in the ethanol-containing gas supplied to the reactor in step B13 per unit time.
  • the number of moles of ethanol consumed in the reactor of step B13 per unit time is determined from the number of moles of ethanol in the ethanol-containing gas supplied to the reactor of step B13 per unit time from the reactor of step B13. It is calculated by subtracting the number of moles of ethanol in the discharged crude gas per unit time.
  • the selectivity of 1,3-butadiene in the conversion reaction of step B13 is preferably more than 50%, more preferably more than 60%, and even more preferably more than 70%.
  • the upper limit of the selectivity of 1,3-butadiene is not particularly limited, but may be 100% or less, for example. If it is less than 100%, diethyl ether and ethylene as by-products can be separated and converted to ethanol, and crotyl alcohol and crotonaldehyde can be converted to butadiene, which is preferable.
  • the selectivity of 1,3-butadiene is preferably more than 50% and 100% or less, more preferably more than 60% and 100% or less, and further preferably more than 70% and 100% or less.
  • the “1,3-butadiene selectivity” of step B13 is the number of moles of ethanol consumed in the reactor of step B13 per unit time of ethanol converted to 1,3-butadiene. Means the ratio (percentage) of the number of moles of.
  • Step B at least one selected from the group consisting of the following steps B2 to B4 may be combined with the step B1.
  • Step B2 The hydrogen-containing gas is separated from the ethanol-containing gas supplied to step B1 by gas-liquid separation.
  • Step B3 The gas containing nitrogen is separated from the gas after step B1 by gas-liquid separation.
  • Step B4 The gas containing acetaldehyde is separated from the ethanol-containing gas supplied to step B1 by distillation.
  • step B2 gas-liquid separation is performed on the ethanol-containing gas supplied to step B1 obtained in step A, and the gas containing hydrogen is separated. As a result, side reactions due to reduction are suppressed and the yield of 1,3-butadiene is improved.
  • the conditions for gas-liquid separation in step B2 are preferably a pressure of 0 to 5 MPaG and a temperature of ⁇ 150 to 100 ° C.
  • step B3 gas-liquid separation is performed on the gas after step B1 to separate the gas containing nitrogen.
  • the conditions for gas-liquid separation in step B3 are preferably a pressure of 0 to 5 MPaG and a temperature of ⁇ 150 to 100 ° C.
  • step B4 the ethanol-containing gas supplied to step B1 obtained in step A is supplied to the distillation column for distillation, and the gas containing acetaldehyde is separated. More specifically, for example, a shelf-type distillation column or a filling distillation column is used to extract a gas containing acetaldehyde from the top of the column and an ethanol-containing gas from the intermediate portion.
  • Step C includes at least one selected from the group consisting of the following steps C1 to C4. By combining these steps with step D described later, the unreacted product is recycled, the raw material utilization rate is increased, and the yield of 1,3-butadiene is improved.
  • Step C1 Butene (1-butene, 2-butene, isobutene) in the crude gas is dehydrogenated and converted to 1,3-butadiene.
  • Step C2 Hydrogen gas is separated from the crude gas by gas-liquid separation to obtain a 1,3-butadiene-containing liquid.
  • Step C3 The liquefied crude gas or the 1,3-butadiene-containing liquid is distilled to separate it into an ethylene-containing gas, a 1,3-butadiene-containing effluent and an acetaldehyde-containing liquid.
  • Step C4 The acetaldehyde-containing liquid is distilled and separated into an acetaldehyde-containing gas and a residual liquid containing water.
  • step C1 the ratio of 1,3-butadiene is increased by dehydrogenating 1-butene, 2-butene, and isobutene to convert them to 1,3-butadiene.
  • step C1 may be performed before the step C3, or the step C1 may be performed after the step C3.
  • step C1 for example, the crude gas obtained in step B or the 1,3-butadiene-containing effluent obtained in step C3 is supplied to the third reactor, and the pressure is -1 in the presence of the fourth catalyst. Under the conditions of 0 to 1.0 MPaG and a temperature of 200 to 550 ° C., 1-butene, 2-butene and isobutene are dehydrogenated to be converted to 1,3-butadiene.
  • the mode of the third reactor in the step C1 the same mode as that illustrated in the first reactor described later can be exemplified.
  • the fourth catalyst may be any catalyst that promotes the dehydrogenation reaction of 1-butene, 2-butene, and isobutene, and examples thereof include molybdenum, tungsten, bismuth, tin, iron, and nickel. Of these, molybdenum is preferable from the viewpoint of the yield of 1,3-butadiene.
  • Examples of the mode in which the fourth catalyst is used include metals, oxides, and chlorides, in which the fourth catalyst is supported on a carrier and used, and in which the elements exemplified on the carrier are supported and used.
  • a composite oxide containing the exemplified elements is used as a mixture of two or more kinds can be exemplified.
  • the fourth catalyst one type may be used alone, or two or more types may be used in combination.
  • the pressure during the dehydrogenation reaction in step C1 may be set in the range of -1.0 to 1.0 MPaG, preferably -0.5 to 0.5 MPaG, and more preferably -0.3 to 0.3 MPaG. ..
  • the pressure in step C1 is equal to or higher than the lower limit of the above range, the yield of 1,3-butadiene is improved.
  • the pressure in step C1 is not more than the upper limit of the above range, the decrease in yield of 1,3-butadiene due to the excessive reaction can be suppressed.
  • the temperature at the time of the dehydrogenation reaction in step C1 may be set in the range of 200 to 550 ° C, preferably 300 to 500 ° C, and more preferably 300 to 450 ° C.
  • the temperature in step C1 is equal to or higher than the lower limit of the above range, the yield of 1,3-butadiene is improved.
  • the temperature in step C1 is not more than the upper limit of the above range, the decrease in yield of 1,3-butadiene due to the excessive reaction can be suppressed.
  • step C2 gas-liquid separation is performed on the crude gas obtained in step B or the crude gas obtained after performing step C1, and hydrogen gas is separated to obtain a 1,3-butadiene-containing liquid.
  • the ethanol-containing gas is diluted with a dilution gas such as nitrogen gas in step A2, the dilution gas is separated together with the hydrogen gas in step C2.
  • the conditions for gas-liquid separation of the crude gas are preferably a pressure of 0 to 1.0 MPaG and a temperature of 0 to 100 ° C.
  • step C3 the liquefied crude gas obtained in step B, the liquefied crude gas after step C1, or the 1,3-butadiene-containing liquid after step C2 is supplied to the distillation column for distillation.
  • the ethylene-containing gas, the 1,3-butadiene-containing effluent, and the acetaldehyde-containing liquid are separated. More specifically, for example, using a shelf-type distillation column or a filling distillation column, ethylene-containing gas is extracted from the top of the column, acetaldehyde-containing liquid is extracted from the bottom of the column, and 1,3-butadiene-containing effluent is extracted from the intermediate portion. Extract.
  • step C3 two distillation columns are used, the ethylene-containing gas is separated in the first distillation column, and the 1,3-butadiene-containing effluent and the acetaldehyde-containing liquid are separated in the second distillation column. May be good.
  • the ethylene-containing gas contains compounds having 2 to 3 carbon atoms (C2 component, C3 component) such as propylene, methane, and ethane.
  • C2 component, C3 component compounds having 2 to 3 carbon atoms
  • the diluting gas such as hydrogen gas and nitrogen gas is separated together with the ethylene-containing gas in step C3.
  • the acetaldehyde-containing liquid includes ethanol, water and the like in addition to acetaldehyde.
  • the aldehyde-containing liquid may further contain a compound having 6 carbon atoms (C6 component) and a compound having 8 carbon atoms (C8 component).
  • step C3 When step C3 is performed without performing step C2, hydrogen gas is separated together with ethylene-containing gas in step C3.
  • a dilution gas such as nitrogen gas in step A2, the dilution gas is separated together with the ethylene-containing gas in step C3.
  • step C4 the acetaldehyde-containing liquid obtained in step C3 is supplied to the distillation column and separated into an acetaldehyde-containing gas and a residual liquid containing water.
  • the mode is not limited to the mode in which the step C3 and the step C4 are performed separately, and the step C3 and the step C4 may be performed at the same time in one distillation column.
  • the content of acetaldehyde with respect to the total volume of the acetaldehyde-containing gas obtained in step C4 is preferably 10% by volume or more, more preferably 20% by volume or more, still more preferably 40% by volume or more.
  • the upper limit of the acetaldehyde content with respect to the total volume of the acetaldehyde-containing gas is not particularly limited, but may be, for example, 100% by volume or less, 90% by volume or less, or 80% by volume or less.
  • the content of acetaldehyde with respect to the total volume of the acetaldehyde-containing gas is preferably 10 to 100% by volume, more preferably 20 to 100% by volume, still more preferably 40 to 100% by volume.
  • the purity of the purified 1,3-butadiene obtained in step C is preferably 95.0% by mass or more, preferably 99.0% by mass, based on the total mass of the 1,3-butadiene-containing liquid or the 1,3-butadiene-containing effluent. More preferably, it is 99.5% by mass or more, and further preferably 99.5% by mass or more.
  • the upper limit of the purity of the purified 1,3-butadiene is not particularly limited, but may be, for example, 100% by mass or less.
  • the purity of the purified 1,3-butadiene is preferably 95.0 to 100% by mass, more preferably 99.0 to 100% by mass, still more preferably 99.5 to 100% by mass.
  • ⁇ Process D> ⁇ Recycling process In the recycling process, at least one of the exhaust gases emitted from step C4 on the production line, which contains either or both of ethanol and acetaldehyde and a high boiling point component having a boiling point higher than that of ethanol and acetaldehyde. At least a part of the vaporized gas obtained by heating the portion is returned to one or both of step A and step B.
  • the number of carbon atoms is 6 which is a component having a boiling point higher than these.
  • Compound (C6 component) and a compound having 8 carbon atoms (C8 component) are included. If the total content of high boiling point components such as C6 component and C8 component in the exhaust gas is 0.5% by mass or more of the total mass of the organic compounds in the exhaust gas, it will be liquefied due to the decrease in temperature, and the pipes and pipes will be liquefied. It tends to cause the pump to block. Therefore, the content of the high boiling point component in the exhaust gas is monitored on the pipe exiting from the C4 step, and based on the analysis result, it is determined whether to flow the exhaust gas to the recycling step or the trapping step.
  • the exhaust gas is sent to the recycling step, and if it is 5% by mass or more, the exhaust gas is sent to the trap step.
  • the temperature is raised to a temperature at which the C6 component and the C8 component are sufficiently vaporized by heating the exhaust gas. It is warmed to vaporize gas, and the vaporized gas is returned to either or both of step A and step B while preventing the precipitation of C6 component and C8 component.
  • the yield of 1,3-butadiene is improved. Further, by recycling the C6 component and the C8 component as raw materials for producing 1,3-butadiene, the yield of 1,3-butadiene is further improved.
  • step D after vaporizing the high boiling point component in the exhaust gas discharged from the step C4, it may be returned to the step A or the step B.
  • step D it is preferable to return the exhaust gas discharged from step C4 to step B, more preferably to step B1, and step B11 because the effect of improving the yield of 1,3-butadiene is high. It is more preferable to return between the step B12 and the step B12.
  • unreacted ethanol or the like is provided by providing a pipe connecting the exhaust gas discharging part in the process C4 on the production line and the part for returning the exhaust gas in the process A or B on the production line. It can be returned to the production line.
  • the high boiling point components in the exhaust gas from process C4 are vaporized.
  • the heat source of the vaporizer for example, the thermal energy of the crude gas produced in step B may be used.
  • step D when the vaporized gas is returned to step A, the high boiling point component in the vaporized gas may be removed by gas-liquid separation and then returned to step A.
  • step C on the production line which contains one or both of ethanol and acetaldehyde and a high boiling point component having a boiling point higher than that of ethanol and acetaldehyde, is described as described above. At least a part of the high boiling point component removing gas obtained by removing at least a part of the high boiling point component is returned to one or both of the gas preparation step and the conversion step.
  • the number of carbon atoms is 6 which is a component having a boiling point higher than these.
  • Compound (C6 component) and a compound having 8 carbon atoms (C8 component) are included.
  • these high boiling point components in the exhaust gas is as high as 0.5% by mass or more of the total mass of the organic compounds in the exhaust gas, they are liquefied due to pressure loss or temperature drop, and are used in piping and pipes. It tends to accumulate in the pump and block it, or increase the operating cost of the equipment. Therefore, by returning at least a part of the high boiling point component removing gas obtained by removing at least a part of the high boiling point component from the exhaust gas to either one or both of step A and step B, the piping or The yield of 1,3-butadiene can be improved while preventing pump blockage or increased equipment operating costs.
  • the C6 component and C8 component are separated into gas and liquid by heating the exhaust gas to sufficiently vaporize the C6 component and C8 component and then cooling the gas. Then, it is preferable to remove the C6 component and the C8 component which have become liquid components, and return the high boiling point component removing gas to either one or both of the steps A and B.
  • At least a part of the high boiling point component may be removed and then supplied to the vaporizer.
  • Means for removing at least a part of the high boiling point component include a filter, a gas-liquid separator, and the like.
  • Recycling control process the exhaust gas (E / A) discharged from at least one of step B and step C on the production line is returned to at least one of step A and step B on the production line, and 1,3-butadiene.
  • the molar ratio (E / A) in the gas to be subjected to the conversion reaction to is controlled to 1 to 100. This improves the yield of 1,3-butadiene.
  • the range of the molar ratio (E / A) controlled by the recycling control step is preferably 1 to 50, more preferably 1 to 20, further preferably 1 to 10, 1 to 5, and most preferably 1.1 to 3.
  • the molar ratio (E / A) is within the above range, the yield of 1,3-butadiene is improved.
  • the exhaust gas (E / A) discharged from the step C may be returned to the step A, or the exhaust gas (E / A) discharged from the step C may be returned to the step B.
  • the exhaust gas (E / A) discharged from B may be returned to step A
  • the exhaust gas (E / A) discharged from step B may be returned to step B, or these may be combined. ..
  • step D it is preferable to return the exhaust gas (E / A) discharged from step C to step B, and more preferably to step B1 because the effect of improving the yield of 1,3-butadiene is high. It is more preferable to return between the step B11 and the step B12.
  • the configuration in which the exhaust gas (E / A) discharged from the process C is returned to the process A or the process B may be combined with the configuration in which the exhaust gas (E / A) discharged from the process B is returned to the process C. ..
  • the exhaust gas (E / A) may be returned to the step B11 or the exhaust gas (E / A) may be returned to the step B12. It is often preferable to return the exhaust gas (E / A) to step B12.
  • an emission part of the exhaust gas (E / A) in the process B or C on the production line and a part for returning the exhaust gas (E / A) of the process A or B on the production line By providing a pipe connecting the two, the exhaust gas (E / A) can be returned to the production line.
  • the molar ratio (E / A) in the gas to be subjected to the conversion reaction to 1,3-butadiene can be analyzed by installing an analyzer such as a process mass spectrometer, for example.
  • step D1 in order to control the molar ratio (E / A) in the gas to be subjected to the conversion reaction to 1,3-butadiene from 1 to 100, at least selected from the group consisting of the following steps D1 to D3. Do one. In addition, one or more of step D1, step D2, and step D3 shall be carried out based on the result of monitoring the molar ratio (E / A) of either one or both of step A and step B with an analyzer. Is preferable.
  • process A or process B are collectively referred to as process X.
  • Step D1 A part of the exhaust gas (E / A) is separated, and the rest is returned to the step X.
  • Step D2 At least a part of the exhaust gas (E / A) is returned to the step X, and a part of acetaldehyde is separated from the gas of the step in which the exhaust gas (E / A) is returned.
  • Step D3 As the exhaust gas (E / A), the first exhaust gas containing ethanol as a main component and the second exhaust gas containing acetaldehyde as a main component are separated and returned to step X.
  • step D1 for example, a branch pipe that branches from the pipe that returns the exhaust gas (E / A) to step X is provided, and a flow rate indicator controller is provided in the branch pipe. Then, based on the analysis result of the molar ratio (E / A) by the analyzer, a part of the exhaust gas (E / A) is separated, and the flow rate for returning the exhaust gas (E / A) to the step X is adjusted.
  • the molar ratio (E / A) is controlled by. For example, if the analyzer shows a decrease in the molar ratio (E / A), it is considered that the ratio of acetaldehyde in the exhaust gas (E / A) is high. Therefore, in this case, the amount of the exhaust gas (E / A) separated into the branch pipe by the flow rate indicator controller is increased, and the flow rate of the exhaust gas (E / A) returned to the step X is decreased.
  • step D2 for example, a separation device is provided in the step of returning the exhaust gas (E / A) to the step X, and the molar ratio (E / A) by the analyzer is returned while returning at least a part of the exhaust gas (E / A) through the pipe. Based on the analysis result of A), a part of acetaldehyde is separated from the gas of the step. More specifically, when a decrease in the molar ratio (E / A) is observed in the process of returning the exhaust gas (E / A), acetaldehyde in the gas is separated by a separator to separate the molar ratio (E / A). / A) is increased.
  • the separation device used in step D2 may be any device capable of separating acetaldehyde, and examples thereof include a gas-liquid separator, a distillation column, and a scrubber. As the separation device in step D2, one type may be used alone, or two or more types may be combined.
  • step D2 it is preferable to introduce the gas of the step in which the exhaust gas (E / A) has been returned into the separation device and separate a part of acetaldehyde under a pressure of 1.0 to 5.0 MPa in the separation device.
  • the pressure for separating acetaldehyde with the separation device in step D2 is preferably 1.0 to 3.0 MPa, more preferably 1.0 to 2.0 MPa.
  • step D3 for example, a first pipe for returning the first exhaust gas containing ethanol as a main component to step X and a second pipe for returning the second exhaust gas containing acetaldehyde as a main component to step X are separately provided.
  • the first exhaust gas and the second exhaust gas are returned to the step X, respectively.
  • the first exhaust gas contains ethanol as a main component means that the ratio of ethanol in the first exhaust gas is higher than the ratio of acetaldehyde.
  • the second exhaust gas contains acetaldehyde as a main component means that the ratio of acetaldehyde in the first exhaust gas is higher than the ratio of ethanol.
  • step D3 it is preferable that the flow rate for returning the first exhaust gas to step X and the flow rate for returning the second exhaust gas to step X can be adjusted by a flow rate indicator or the like.
  • the first exhaust gas and the second exhaust gas may be returned to the same step or may be returned to different steps.
  • steps D1 to D3 it is preferable to start one or more of steps D1 to D3 when the molar ratio (ethanol / acetaldehyde) becomes 0.8 or less in the monitoring by the analyzer.
  • steps D1 to D3 only one of steps D1 to D3 may be carried out, or two or more of steps D1 to D3 may be carried out in combination. Of these, a combination of steps D1 and D2 or a combination of steps D2 and D3 is preferable.
  • the 1,3-butadiene production apparatus of the present embodiment is a production apparatus for continuously producing 1,3-butadiene from an ethanol supply raw material containing ethanol.
  • the 1,3-butadiene production apparatus of the present embodiment includes gas preparation means, conversion means, purification means, and one or both of recycling means and recycling control means.
  • the gas preparation means is a means for step A, and is equipped with a vaporizer that vaporizes the ethanol supply raw material into an ethanol-containing gas.
  • a vaporizer any known vaporizer can be used as long as it can vaporize the ethanol supply raw material.
  • the conversion means is a means for step B, and includes a reactor that converts ethanol in the ethanol-containing gas to 1,3-butadiene.
  • the reactor may be in any form as long as it can bring the gas into contact with the catalyst at a predetermined pressure and temperature.
  • a catalyst is filled in a reaction tube in which a heat medium is circulated in a side wall portion to form a reaction bed, and the supplied gas is brought into contact with the catalyst of the reaction bed can be exemplified.
  • the reaction bed is not particularly limited, and examples thereof include a fixed bed, a moving bed, and a fluidized bed.
  • the conversion means may include two or more parallel reactors.
  • two or more parallel reactors for step B11 and two or more parallel reactors for step B12 may be provided.
  • two or more parallel reactors for step B13 may be provided.
  • the purification means is a means for step C, and includes, for example, a gas-liquid separator, a distillation column, a reactor, and other devices capable of purifying a crude gas containing 1,3-butadiene.
  • Step C1 can be carried out when the purification means includes a reactor.
  • Step C2 can be carried out by providing the purification means with a gas-liquid separator.
  • Step C3 and step C4 can be carried out when the purification means includes a distillation column.
  • the purification means may be provided alone with one of the above-mentioned devices, or may be a combination of two or more devices.
  • the recycling means returns the vaporizer for vaporizing the C6 component and the C8 component in the exhaust gas discharged from the refining means and the exhaust gas after vaporizing the C6 component and the C8 component to at least the gas preparing means or the conversion means. It has at least piping.
  • the exhaust gas after vaporizing the C6 component and the C8 component is gas-liquid separated to form the gas components ethanol and acetaldehyde and the liquid components C6 component and C8 component.
  • a gas-liquid separator may be provided to separate the gas and liquid.
  • the gas-liquid separator is provided in the middle of the pipe for returning the exhaust gas from the vaporizer to the gas preparation means.
  • FIG. 1 is a schematic schematic diagram of the 1,3-butadiene manufacturing apparatus 100 of the first embodiment (hereinafter, also simply referred to as “manufacturing apparatus 100”). It should be noted that the dimensions and the like of the figures illustrated in the following description are examples, and the present invention is not necessarily limited thereto, and the present invention can be appropriately modified without changing the gist thereof. ..
  • the manufacturing apparatus 100 includes a gas preparing means 1, a converting means 2, a refining means 3, and a recycling means 5.
  • the gas preparing means 1 includes a raw material accommodating unit 102, a vaporizer 104, and a diluting gas accommodating unit 106.
  • the conversion means 2 includes a first reactor 108 and a second reactor 110.
  • the purification means 3 includes a gas-liquid separator 112, a first distillation column 114, a third reactor 116, a second distillation column 118, and a recovery unit 120.
  • the recycling means 5 includes a vaporizer 61, a vaporization control device 69, a recycling control device 122, and a gas-liquid separator 124.
  • the raw material storage unit 102 and the vaporizer 104 are connected by a pipe 10.
  • the pipe 10 is provided with a flow rate indicator controller 11.
  • the vaporizer 104 and the first reactor 108 are connected by a pipe 12.
  • the pipe 12 is provided with a pressure indicator controller 14, a mixer 16, a heat exchanger 18, a temperature indicator controller 20, and a valve 22 for adjusting the flow rate based on the pressure in the vaporizer 104 in this order from the vaporizer 104 side. ing.
  • the dilution gas accommodating portion 106 is connected by a pipe 24 between the pressure indicator controller 14 and the mixer 16 in the pipe 12.
  • the pipe 24 is provided with a flow rate indicator 26.
  • the first reactor 108 and the gas-liquid separator 124 are connected by a pipe 28. Further, the gas-liquid separator 124 and the second reactor 110 are connected by a pipe 30. As described above, in the manufacturing apparatus 100, the gas-liquid separator 124 is provided between the first reactor 108 and the second reactor 110 in the conversion means 2.
  • a valve 32 is provided at a position near the first reactor 108 of the pipe 28, and an analyzer 34 is provided on the downstream side of the valve 32.
  • a pump 36 and a level indicator controller 38 that adjusts the flow rate based on the liquid level in the gas-liquid separator 124 are provided in this order.
  • a valve 40 is provided at a position of the pipe 30 near the second reactor 110.
  • the second reactor 110 and the gas-liquid separator 112 are connected by a pipe 42.
  • a valve 44 is provided at a position near the second reactor 110 of the pipe 42, and heat exchangers 46 and 47 are provided at a position near the gas-liquid separator 112.
  • the gas-liquid separator 112 and the first distillation column 114 are connected by a pipe 48.
  • the pipe 48 is provided with a pump 50 and a level indicator controller 52 for adjusting the flow rate based on the liquid level in the gas-liquid separator 112 in this order from the gas-liquid separator 112 side.
  • a pipe 54 is connected to the top of the first distillation column 114. Further, a pipe 56 that is connected to the gas phase portion of the gas-liquid separator 112 and joins the pipe 54 is provided. The intermediate portion of the first distillation column 114 and the third reactor 116 are connected by a pipe 58. The third reactor 116 and the recovery unit 120 are connected by a pipe 60. The bottom of the first distillation column 114 and the second distillation column 118 are connected by a pipe 62. The top of the second distillation column 118 and the valve 32 in the pipe 28 and the analyzer 34 are connected by a pipe 64. A pipe 66 is connected to the bottom of the second distillation column 118. Further, a pipe 72 that is connected to the gas phase portion of the gas-liquid separator 124 and joins the pipe 54 is provided.
  • the recycling control device 122 includes a flow rate indicator 70 installed on the pipe 67 and the pipe 68.
  • the recycling control device 122 can adjust the flow rates of the pipes 67 and 68 by the flow rate indicator controller 70 based on the analysis result of the analyzer 34.
  • the ethanol supply raw material is sent from the raw material storage unit 102 to the vaporizer 104 through the pipe 10, and the ethanol supply raw material is vaporized under the conditions of a pressure of ⁇ 1.0 to 3.0 MPaG and a temperature of -100 to 400 ° C. to contain ethanol.
  • Use gas step A1 described above.
  • Ethanol-containing gas is sent from the vaporizer 104 to the pipe 12, nitrogen gas (dilution gas) is merged from the dilution gas accommodating portion 106 through the pipe 24, and mixed by the mixer 16. Then, the ethanol concentration of the ethanol-containing gas is adjusted within the range of 0.1 to 100% by volume (step A2 described above).
  • the ethanol-containing gas whose ethanol concentration has been adjusted is heated by the heat exchanger 18 and supplied to two or more parallel first reactors 108.
  • first reactors 108 ethanol is converted to acetaldehyde in the presence of the first catalyst under the conditions of a pressure of 0 to 1.0 MPaG and a temperature of 50 to 500 ° C. (step B11 described above).
  • An intermediate gas containing ethanol and acetaldehyde generated in each first reactor 108 is sent to the pipe 28.
  • Step B12 described above.
  • the crude gas containing 1,3-butadiene is sent from the second reactor 110 to the pipe 42, cooled by the heat exchanger 46, and supplied to the gas-liquid separator 112.
  • the crude gas is separated into a hydrogen gas, a nitrogen gas (dilution gas) and a 1,3-butadiene-containing liquid (step C2 described above).
  • the pump 50 is driven, and the 1,3-butadiene-containing liquid is supplied from the gas-liquid separator 112 to the first distillation column 114 through the pipe 48 for distillation.
  • Ethylene-containing gas is extracted from the top of the first distillation column 114 into the pipe 54, acetaldehyde-containing liquid is extracted from the bottom of the column into the pipe 62, and 1,3-butadiene-containing effluent is extracted from the intermediate portion into the pipe 58 (the above-described step). C3).
  • the ethylene-containing gas extracted to the pipe 54 is combined with the hydrogen gas and the nitrogen gas (dilution gas) extracted from the gas phase portion of the gas-liquid separator 112 to the pipe 56 and treated as waste gas.
  • the 1,3-butadiene-containing effluent extracted from the pipe 58 is supplied to the third reactor 116, and 1-butene, 2-butene, and isobutene in the 1,3-butadiene-containing effluent are separated in the presence of the fourth catalyst. It is dehydrogenated and converted to 1,3-butadiene (step C1 described above). Purified 1,3-butadiene is sent from the third reactor 116 to the recovery unit 120 by the pipe 60 for recovery.
  • the acetaldehyde-containing liquid extracted from the bottom of the first distillation column 114 to the pipe 62 is supplied to the second distillation column 118 for distillation.
  • the residual liquid containing water is extracted from the bottom of the second distillation column 118 into the pipe 66, and the acetaldehyde-containing gas is extracted from the top of the column 64 into the pipe 64 (step C4 described above).
  • the residual liquid containing water extracted from the pipe 66 is treated as a waste liquid.
  • the acetaldehyde-containing gas (exhaust gas) extracted from the top of the second distillation column 118 is sent to the vaporizer 61 through the pipe 63, and the C6 component and C8 component in the exhaust gas are sufficiently heated. Vaporize to.
  • the temperature of the gas emitted from the vaporizer 61 is monitored by the vaporization control device 69, and the heating temperature in the vaporizer 61 is adjusted.
  • the vaporized gas from the vaporizer 61 is returned to the pipe 28 through the pipe 68 and the pipe 64 and mixed with the intermediate gas. Further, the analyzer 34 analyzes the ethanol and acetaldehyde contents in the intermediate gas flowing through the pipe 28.
  • the flow rate of the vaporized gas separated into the pipe 67 is adjusted by the flow rate indicator regulator 70.
  • the flow rate of the vaporized gas returned to the pipe 28 is adjusted, and when the ethanol content is high, more vaporized gas is sent to the gas preparing means 1, and when the acetaldehyde content is high, more vaporized gas is sent to the converting means 2. It can be controlled to send gas.
  • FIG. 2 is a schematic schematic view of the 1,3-butadiene manufacturing apparatus 100A (hereinafter, also referred to as “manufacturing apparatus 100A”) of the second embodiment.
  • the same parts as those in FIG. 1 in FIG. 2 are designated by the same reference numerals, and the description thereof will be omitted.
  • the manufacturing apparatus 100A is provided with the recycling means 5A corresponding to the recycling means 5 of the first embodiment and the pipe 67A instead of the pipe 67, and the recycling means 5B having the gas-liquid separator 113 on the pipe 67A.
  • the configuration is the same as that of the manufacturing apparatus 100 except that the manufacturing apparatus 100 is provided with.
  • the gas-liquid separator 113 liquefies the C6 component and the C8 component in the vaporized gas emitted from the vaporizer 61 and removes them from the vaporized gas.
  • the gas component containing ethanol and acetaldehyde separated by the gas-liquid separator 113 is returned to the gas preparation means 1.
  • the liquid component containing the C6 component and the C8 component separated by the gas-liquid separator 113 is sent to the pipe 54 through the pipe 49, the pump 51, and the pipe 55.
  • the vaporized gas returned to the gas preparation means may contain C6 component and C8 component.
  • the C6 component and the C8 component are removed from the vaporized gas and ethanol and acetaldehyde are returned to the gas preparation means.
  • the production method of the second embodiment is used. preferable.
  • the total content of C6 component and C8 component in the exhaust gas is 0.5% by mass or more of the total mass of the organic compounds in the exhaust gas, it is liquefied due to pressure loss and accumulated in the piping or pump and blocked. It tends to cause the equipment to increase or increase the operating cost of the equipment.
  • the piping or The yield of 1,3-butadiene can be improved while preventing pump blockage or increased equipment operating costs.
  • Means for removing at least a part of the high boiling point component include a filter, a gas-liquid separator, and the like.
  • the 1,3-butadiene production apparatus (not shown) of the third embodiment includes a trap means instead of the recycling means 5 of the first embodiment.
  • the 1,3-butadiene production apparatus of the third embodiment includes gas preparation means, conversion means, purification means, and trap means.
  • the gas preparation means, the conversion means, and the purification means are the same as those of the 1,3-butadiene production apparatus 100 of the first embodiment described above.
  • the trap means includes a high boiling point component removing device for removing a high boiling point component in the exhaust gas from the refining means, and a pipe for returning the exhaust gas from which the high boiling point component has been removed to the gas preparing means or the converting means.
  • the high boiling point component removing device is not particularly limited as long as it can remove at least a part of the high boiling point component in the exhaust gas, and examples thereof include a gas-liquid separator and a filter.
  • the trap means preferably includes an analyzer for measuring the content of high boiling point components in the exhaust gas.
  • the content of the high boiling point component in the exhaust gas is, for example, a high content of 0.5 to 1% by mass of the total mass of the organic compounds in the exhaust gas, clogging of pipes, pumps, etc. is likely to occur. , 1,3-butadiene production efficiency may decrease.
  • the vaporized gas returned to the gas preparing means and / or the converting means may contain C6 component and C8 component.
  • the manufacturing apparatus 100 is used except that ethanol and acetaldehyde are returned to the gas preparing means and / or the converting means after the C6 component and the C8 component in the exhaust gas are removed. It can be done in the same manner as in the embodiment.
  • FIG. 3 is a schematic schematic diagram of the 1,3-butadiene manufacturing apparatus 100B (hereinafter, also referred to as “manufacturing apparatus 100B”) according to the fourth A embodiment.
  • FIG. 5 is a schematic schematic diagram of the 1,3-butadiene manufacturing apparatus 100C (hereinafter, also referred to as “manufacturing apparatus 100B”) according to the fourth B embodiment.
  • the 1,3-butadiene production apparatus of the fourth embodiment includes gas preparation means, conversion means, purification means, and recycling control means.
  • the recycling control means is a pipe that returns at least a part of the exhaust gas (E / A) discharged from either one or both of the conversion means and the purification means to the gas preparation means or the conversion means, and downstream of the returned portion. It is equipped with at least an analyzer that analyzes the molar ratio (E / A) in the gas on the side.
  • the analyzer may be any as long as it can analyze the molar ratio (E / A), and for example, a process mass spectrometer or the like can be exemplified.
  • the recycling control means includes at least one selected from the group consisting of the first recycling control device, the second recycling control device and the third recycling control device, which will be described later.
  • the gas preparing means or the converting means are collectively referred to as means X.
  • the first recycling control device is for separating a part of the exhaust gas and returning the rest to the means X (step D1).
  • the first recycling control device includes, for example, a pipe connecting an exhaust gas (E / A) discharge part in a conversion means or a purification means and a part for returning an exhaust gas (E / A) of a gas preparation means or a conversion means, and discharge. It is provided with a branch pipe branched from a pipe for returning gas (E / A) and a flow rate indicator controller provided in the branch pipe.
  • the second recycling control device returns at least a part of the exhaust gas (E / A) to the means X, and separates a part of acetaldehyde from the gas in the step of returning the exhaust gas (E / A) to the means X (step). It is for D2).
  • the second recycling control device includes, for example, a pipe for returning the exhaust gas (E / A) to the means X, and a gas-liquid separator provided on the downstream side of the portion where the exhaust gas (E / A) is returned to the means X. It is equipped with a separation device such as a distillation column and a scrubber.
  • the third recycling control device is for separating the first exhaust gas containing ethanol as a main component and the second exhaust gas containing acetaldehyde as a main component and returning them to means X (process D3).
  • the third recycling control device includes a first pipe for returning the first exhaust gas containing ethanol as a main component to the means X, and a second pipe for returning the second exhaust gas containing acetaldehyde as a main component to the means X. It is preferable that each of the first pipe and the second pipe is provided with a flow rate indicator so that the flow rate of the first exhaust gas and the flow rate of the second exhaust gas can be adjusted separately.
  • FIG. 3 is a schematic schematic diagram of the 1,3-butadiene manufacturing apparatus 100B (hereinafter, also referred to as “manufacturing apparatus 100B”) according to the fourth A embodiment.
  • the manufacturing apparatus 100B includes a gas preparing means 1, a converting means 2, a refining means 3, and a recycling control means 4.
  • the gas preparing means 1 includes a raw material accommodating unit 102, a vaporizer 104, and a diluting gas accommodating unit 106.
  • the conversion means 2 includes a first reactor 108 and a second reactor 110.
  • the purification means 3 includes a gas-liquid separator 112, a first distillation column 114, a third reactor 116, a second distillation column 118, and a recovery unit 120.
  • the recycling control means 4 includes a first recycling control device 122 and a gas-liquid separator (second recycling control device) 124.
  • the raw material storage unit 102 and the vaporizer 104 are connected by a pipe 10.
  • the pipe 10 is provided with a flow rate indicator controller 11.
  • the vaporizer 104 and the first reactor 108 are connected by a pipe 12.
  • the pipe 12 is provided with a pressure indicator controller 14, a mixer 16, a heat exchanger 18, a temperature indicator controller 20, and a valve 22 for adjusting the flow rate based on the pressure in the vaporizer 104 in this order from the vaporizer 104 side. ing.
  • the dilution gas accommodating portion 106 is connected by a pipe 24 between the pressure indicator controller 14 and the mixer 16 in the pipe 12.
  • the pipe 24 is provided with a flow rate indicator 26.
  • the first reactor 108 and the gas-liquid separator 124 are connected by a pipe 28. Further, the gas-liquid separator 124 and the second reactor 110 are connected by a pipe 30. As described above, in the manufacturing apparatus 100B, the second recycling control device (gas-liquid separator 124) is provided between the first reactor 108 and the second reactor 110 in the conversion means 2.
  • a valve 32 is provided at a position near the first reactor 108 of the pipe 28, and an analyzer 34 is provided on the downstream side of the valve 32.
  • a pump 36 and a level indicator controller 38 that adjusts the flow rate based on the liquid level in the gas-liquid separator 124 are provided in this order.
  • a valve 40 is provided at a position of the pipe 30 near the second reactor 110.
  • the second reactor 110 and the gas-liquid separator 112 are connected by a pipe 42.
  • a valve 44 is provided at a position near the second reactor 110 of the pipe 42, and a heat exchanger 46 is provided at a position near the gas-liquid separator 112.
  • the gas-liquid separator 112 and the first distillation column 114 are connected by a pipe 48.
  • the pipe 48 is provided with a pump 50 and a level indicator controller 52 for adjusting the flow rate based on the liquid level in the gas-liquid separator 112 in this order from the gas-liquid separator 112 side.
  • a pipe 54 is connected to the top of the first distillation column 114. Further, a pipe 56 that is connected to the gas phase portion of the gas-liquid separator 112 and joins the pipe 54 is provided. The intermediate portion of the first distillation column 114 and the third reactor 116 are connected by a pipe 58. The third reactor 116 and the recovery unit 120 are connected by a pipe 60. The bottom of the first distillation column 114 and the second distillation column 118 are connected by a pipe 62. The top of the second distillation column 118 and the valve 32 in the pipe 28 and the analyzer 34 are connected by a pipe 64. A pipe 66 is connected to the bottom of the second distillation column 118. Further, a pipe 72 that is connected to the gas phase portion of the gas-liquid separator 124 and joins the pipe 54 is provided.
  • the first recycling control device 122 includes a pipe 68 that branches from the pipe 64 and joins the pipe 54, and a flow rate indicator adjuster 70 provided in the pipe 68.
  • the first recycling control device 122 can adjust the flow rate of the pipe 68 by the flow rate indicator controller 70 based on the analysis result of the analyzer 34.
  • the ethanol supply raw material is sent from the raw material storage unit 102 to the vaporizer 104 through the pipe 10, and the ethanol supply raw material is vaporized under the conditions of a pressure of ⁇ 1.0 to 3.0 MPaG and a temperature of -100 to 400 ° C. to contain ethanol.
  • Use gas step A1. Ethanol-containing gas is sent from the vaporizer 104 to the pipe 12, nitrogen gas (dilution gas) is merged from the dilution gas accommodating portion 106 through the pipe 24, and mixed by the mixer 16. Then, the ethanol concentration of the ethanol-containing gas is adjusted within the range of 0.1 to 100% by volume (step A2).
  • the ethanol-containing gas whose ethanol concentration has been adjusted is heated by the heat exchanger 18 and supplied to two or more parallel first reactors 108.
  • first reactors 108 ethanol is converted to acetaldehyde in the presence of the first catalyst under the conditions of a pressure of 0 to 1.0 MPaG and a temperature of 50 to 500 ° C. (step B11).
  • An intermediate gas containing ethanol and acetaldehyde generated in each first reactor 108 is sent to the pipe 28.
  • Step B12 ethanol and acetaldehyde are converted to 1,3-butadiene in the presence of the second catalyst under the conditions of a pressure of 0 to 1.0 MPaG and a temperature of 50 to 500 ° C.
  • the crude gas containing 1,3-butadiene is sent from the second reactor 110 to the pipe 42, cooled by the heat exchanger 46, and supplied to the gas-liquid separator 112.
  • the crude gas is separated into a hydrogen gas, a nitrogen gas (dilution gas) and a 1,3-butadiene-containing liquid (step C2).
  • the pump 50 is driven, and the 1,3-butadiene-containing liquid is supplied from the gas-liquid separator 112 to the first distillation column 114 through the pipe 48 for distillation.
  • Ethylene-containing gas is extracted from the top of the first distillation column 114 into the pipe 54, acetaldehyde-containing liquid is extracted from the bottom of the column into the pipe 62, and 1,3-butadiene-containing effluent is extracted from the intermediate portion into the pipe 58 (step C3). ..
  • the ethylene-containing gas extracted to the pipe 54 is combined with the hydrogen gas and the nitrogen gas (dilution gas) extracted from the gas phase portion of the gas-liquid separator 112 to the pipe 56 and treated as waste gas.
  • the 1,3-butadiene-containing effluent extracted from the pipe 58 is supplied to the third reactor 116, and 1-butene, 2-butene, and isobutene in the 1,3-butadiene-containing effluent are separated in the presence of the fourth catalyst. It is dehydrogenated and converted to 1,3-butadiene (step C1). Purified 1,3-butadiene is sent from the third reactor 116 to the recovery unit 120 by the pipe 60 for recovery.
  • the acetaldehyde-containing liquid extracted from the bottom of the first distillation column 114 to the pipe 62 is supplied to the second distillation column 118 for distillation.
  • the residual liquid containing water is extracted from the bottom of the second distillation column 118 into the pipe 66, and the acetaldehyde-containing gas is extracted from the top of the column 64 into the pipe 64 (step C4).
  • the residual liquid containing water extracted from the pipe 66 is treated as a waste liquid.
  • the acetaldehyde-containing gas (exhaust gas (E / A)) extracted from the top of the second distillation column 118 (step C4) is returned to the pipe 28 through the pipe 64 and mixed with the intermediate gas. Further, the molar ratio (E / A) in the intermediate gas flowing through the pipe 28 is analyzed by the analyzer 34. Based on the analysis result, the flow rate of the acetaldehyde-containing gas (exhaust gas (E / A)) separated into the pipe 68 is adjusted by the flow rate indicator regulator 70.
  • the flow rate of the acetaldehyde-containing gas (exhaust gas (E / A)) returned to the pipe 28 is adjusted, and the molar ratio (E / A) of the intermediate gas supplied to the second reactor 110 is adjusted to the range of 1 to 100.
  • the molar ratio (E / A) of the intermediate gas supplied to the second reactor 110 can also be obtained by separating a part of acetaldehyde from the intermediate gas in the gas-liquid separator 124. Is adjusted to the range of 1 to 100 (step D2). In the first embodiment, only one of the steps D1 and D2 may be performed, or both may be performed in combination.
  • FIG. 5 is a schematic schematic view of the 1,3-butadiene manufacturing apparatus 100C (hereinafter, also referred to as “manufacturing apparatus 100C”) according to the fourth B embodiment.
  • the same parts as those in FIG. 3 in FIG. 5 are designated by the same reference numerals, and the description thereof will be omitted.
  • the manufacturing apparatus 100C has the same embodiment as the manufacturing apparatus 100B except that the recycling control means 4A is provided instead of the recycling control means 4.
  • the recycling control means 4A has the same embodiment as the recycling control means 4 except that the third recycling control device 126 is provided instead of the first recycling control device 122.
  • the third recycling control device 126 includes the first pipe 74 connecting the middle portion of the second distillation column 118 near the top of the column and the valve 32 in the pipe 28 and the analyzer 34, and the second distillation column 118.
  • a second pipe 78 that connects the top of the column and the valve 32 in the pipe 28 and the analyzer 34 is provided.
  • the first pipe 74 is provided with a flow rate indicator adjuster 76
  • the second pipe 78 is provided with a flow rate indicator adjuster 80.
  • the third recycling control device 126 can adjust the flow rates of the first pipe 74 and the second pipe 78 by the flow rate indicator controller 76 and the flow rate indicator controller 80 based on the analysis result of the analyzer 34.
  • step D3 the first exhaust gas containing ethanol as a main component extracted from the middle part of the second distillation column 118 (process C4) near the top of the column is returned to the pipe 28 through the first pipe 74. Mix with intermediate gas. Further, the acetaldehyde-containing gas (second exhaust gas) extracted from the top of the second distillation column 118 (process C4) is returned to the pipe 28 through the second pipe 78 and mixed with the intermediate gas. Further, based on the analysis result of the molar ratio (E / A) in the intermediate gas flowing through the pipe 28 by the analyzer 34, the flow rate of the first exhaust gas returned to the pipe 28 by the flow rate indicator controller 76 and the flow rate indicator controller 80. And the flow rate of the second exhaust gas are adjusted respectively. As a result, the molar ratio (E / A) of the intermediate gas supplied to the second reactor 110 is adjusted to the range of 1 to 100. In the second embodiment, only one of the steps D2 and D3 may be performed, or both may be performed in combination.
  • the molar ratio of the gas to be subjected to the conversion reaction to 1,3-butadiene while performing steps A to D and recycling at least a part of the exhaust gas that has been conventionally discarded (by controlling the E / A) to a specific range, 1,3-butadiene can be continuously produced in a high yield.
  • the method for producing 1,3-butadiene of the present embodiment is not limited to the above-described embodiment, and the configurations described in each step can be appropriately combined. It is possible to replace the components in the above embodiment with well-known components as appropriate without departing from the spirit of the present invention.
  • STM storage unit 104 ... Vaporizer, 106 ... Gas storage for dilution Part, 108 ... 1st reactor, 110 ... 2nd reactor, 112 ... gas-liquid separator, 113 ... gas-liquid separator, 114 ... first distillation column, 116 ... third reactor, 118 ... second distillation column , 120 ... Recovery unit, 122 ... Recycling control device, 123 ... First recycling control device, 124 ... Gas-liquid separator (second recycling control device), 126 ... Third recycling control device

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A method for continuously producing 1,3-butadiene from an ethanol supply source including ethanol, the method comprising a gas regulation step, a conversion step, a purification step, and one or more steps selected from among a recycling step, a trapping step, and a recycle control step.

Description

1,3-ブタジエンの製造方法及び1,3-ブタジエンの製造装置1,3-Butadiene production method and 1,3-butadiene production equipment
 本発明は、1,3-ブタジエンの製造方法及び1,3-ブタジエンの製造装置に関する。
 本願は、2020年3月23日に、日本に出願された特願2020-051408号及び2020年3月23日に、日本に出願された特願2020-051406号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a method for producing 1,3-butadiene and an apparatus for producing 1,3-butadiene.
The present application claims priority under Japanese Patent Application No. 2020-051408 filed in Japan on March 23, 2020 and Japanese Patent Application No. 2020-051406 filed in Japan on March 23, 2020. The contents are used here.
 1,3-ブタジエン等のブタジエンは、スチレン-ブタジエンゴム(SBR)等の原料として用いられている。1,3-ブタジエンの製造方法としては、例えば、触媒の存在下、エタノールをアセトアルデヒドに転化し、さらにエタノール及びアセトアルデヒドを1,3-ブタジエンに転化する方法が知られている(特許文献1)。 Butadiene such as 1,3-butadiene is used as a raw material for styrene-butadiene rubber (SBR) and the like. As a method for producing 1,3-butadiene, for example, a method of converting ethanol to acetaldehyde and further converting ethanol and acetaldehyde to 1,3-butadiene in the presence of a catalyst is known (Patent Document 1).
特表2017-532318号公報Special Table 2017-532318
 しかし、従来の製造方法では、1,3-ブタジエンの収率について改善の余地がある。 However, with the conventional production method, there is room for improvement in the yield of 1,3-butadiene.
 本発明は、高い収率で1,3-ブタジエンを連続的に製造できる1,3-ブタジエンの製造方法を提供することを課題とする。 An object of the present invention is to provide a method for producing 1,3-butadiene that can continuously produce 1,3-butadiene with a high yield.
 前記課題は、以下の手段によって解決される。
[1]エタノールを含むエタノール供給原料から1,3-ブタジエンを連続的に製造する方法であって、前記エタノール供給原料からエタノール含有ガスを調製するガス調製工程と、触媒の存在下、前記エタノール含有ガス中のエタノールを1,3-ブタジエンまで転化させる転化工程と、前記転化工程で得た1,3-ブタジエンを含む粗生成ガスを精製して精製1,3-ブタジエンを得る精製工程と、リサイクル工程、トラップ工程、及びリサイクル制御工程のいずれか1種以上の工程と、を含み、前記リサイクル工程は、前記精製工程において排出される排出ガスであって、エタノール及びアセトアルデヒドのいずれか一方若しくは両方と、エタノール及びアセトアルデヒドよりも沸点が高い高沸点成分とを含む排出ガスの少なくとも一部を加熱して得られる気化ガスの少なくとも一部を、前記ガス調製工程及び前記転化工程のいずれか一方若しくは両方に戻す工程であり、前記トラップ工程は、前記精製工程において排出される排出ガスであって、エタノール及びアセトアルデヒドのいずれか一方若しくは両方と、エタノール及びアセトアルデヒドよりも沸点が高い高沸点成分とを含む排出ガスから、前記高沸点成分の少なくとも一部を除去して得られる高沸点成分除去ガスの少なくとも一部を、前記ガス調製工程及び前記転化工程のいずれか一方又は両方に戻す工程であり、前記リサイクル制御工程は、前記転化工程及び前記精製工程のいずれか一方又は両方から排出される排出ガスであって、エタノール及びアセトアルデヒドのいずれか一方又は両方を含む排出ガスの少なくとも一部を、前記ガス調製工程及び前記転化工程から選ばれる工程Xに戻し、当該工程のガス中のモル比(エタノール/アセトアルデヒド)を1~100に制御する工程であって、前記排出ガスの一部を分離し、残部を前記工程Xに戻す工程D1と、前記排出ガスの少なくとも一部を前記工程Xに戻し、前記工程Xのガスからアセトアルデヒドの一部を分離する工程D2と、前記排出ガスとして、エタノールを主成分とする第1排出ガスとアセトアルデヒドを主成分とする第2排出ガスとをそれぞれ分けて前記工程Xに戻す工程D3と、からなる群から選ばれる少なくとも1つを含む、1,3-ブタジエンの製造方法。
[1-1]エタノールを含むエタノール供給原料から1,3-ブタジエンを連続的に製造する方法であって、前記エタノール供給原料からエタノール含有ガスを調製するガス調製工程と、触媒の存在下、前記エタノール含有ガス中のエタノールを1,3-ブタジエンまで転化させる転化工程と、前記転化工程で得た1,3-ブタジエンを含む粗生成ガスを精製して精製1,3-ブタジエンを得る精製工程と、前記精製工程において排出される、エタノール及びアセトアルデヒドのいずれか一方若しくは両方と、エタノール及びアセトアルデヒドよりも沸点が高い高沸点成分とを含む排出ガスの少なくとも一部を加熱して得られる気化ガスの少なくとも一部を、前記ガス調製工程及び前記転化工程のいずれか一方若しくは両方に戻すリサイクル工程、又は、前記精製工程において排出される、エタノール及びアセトアルデヒドのいずれか一方若しくは両方と、エタノール及びアセトアルデヒドよりも沸点が高い高沸点成分とを含む排出ガスから、前記高沸点成分の少なくとも一部を除去して得られる高沸点成分除去ガスの少なくとも一部を、前記ガス調製工程及び前記転化工程のいずれか一方又は両方に戻すトラップ工程とを含む、1,3-ブタジエンの製造方法。
[2-1]エタノールを含むエタノール供給原料から1,3-ブタジエンを連続的に製造する方法であって、前記エタノール供給原料からエタノール含有ガスを調製するガス調製工程と、触媒の存在下、前記エタノール含有ガス中のエタノールを1,3-ブタジエンまで転化させる転化工程と、前記転化工程で得た1,3-ブタジエンを含む粗生成ガスを精製して精製1,3-ブタジエンを得る精製工程と、前記転化工程及び前記精製工程のいずれか一方又は両方から排出される、エタノール及びアセトアルデヒドのいずれか一方又は両方を含む排出ガスの少なくとも一部を、少なくとも前記ガス調製工程又は前記転化工程に戻し、1,3-ブタジエンへの転化反応に供するガス中のモル比(エタノール/アセトアルデヒド)を1~100に制御するリサイクル制御工程と、を含み、前記リサイクル制御工程は、前記排出ガスの一部を分離し、残部を戻す工程D1と、前記排出ガスの少なくとも一部を戻し、前記排出ガスを戻した工程のガスからアセトアルデヒドの一部を分離する工程D2と、前記排出ガスとして、エタノールを主成分とする第1排出ガスとアセトアルデヒドを主成分とする第2排出ガスとをそれぞれ分けて戻す工程D3と、からなる群から選ばれる少なくとも1つを含む、1,3-ブタジエンの製造方法。
[1-2]前記高沸点成分は、炭素数6の化合物及び炭素数8の化合物のいずれか一方又は両方を含む、[1]又は[1-1]に記載の1,3-ブタジエンの製造方法。
[1-3]前記リサイクル工程において、前記気化ガスの少なくとも一部を前記ガス調製工程に戻す際に、前記気化ガス中の、前記高沸点成分の少なくとも一部を除去してから前記ガス調製工程に戻す、[1]、[1-1]又は[1-2]に記載の1,3-ブタジエンの製造方法。
[1-4]前記排出ガス中の前記高沸点成分の合計含有量が、前記排出ガス中の有機化合物の総質量の0.5~1質量%である、[1-3]に記載の1,3-ブタジエンの製造方法。
[1-5]前記トラップ工程において、前記高沸点成分の少なくとも一部を気液分離して除去する、[1]、[1-1]又は[1-2]に記載の1,3-ブタジエンの製造方法。
[1-6]前記排出ガス中の前記高沸点成分の合計含有量が、前記排出ガス中の有機化合物の総質量の0.5~1質量%である、[1-5]に記載の1,3-ブタジエンの製造方法。
[2-2]前記ガス調製工程及び前記転化工程のいずれか一方又は両方のモル比(エタノール/アセトアルデヒド)を分析計によって監視した結果に基づいて、前記工程D1、前記工程D2及び前記工程D3のうちの1つ以上を実施する、[1]又は[2-1]に記載の1,3-ブタジエンの製造方法。
[2-3]前記分析計による監視においてモル比(エタノール/アセトアルデヒド)が0.8以下となったときに前記工程D1、前記工程D2及び前記工程D3のうちの1つ以上を開始する、[2-2]に記載の1,3-ブタジエンの製造方法。
[2-4]前記工程D2において、前記排出ガスを戻した工程のガスを分離装置に導入し、前記分離装置において1.0~5.0MPaの加圧下でアセトアルデヒドの一部を分離する、[1]、[2-1]~[2-3]のいずれかに記載の1,3-ブタジエンの製造方法。
[2-5]前記工程D3において、前記第1排出ガスを戻す流量と前記第2排出ガスを戻す流量をそれぞれ調節する、[1]、[2-1]~[2-4]のいずれかに記載の1,3-ブタジエンの製造方法。[7]前記ガス調製工程は、圧力が-1.0~3.0MPaG、温度が-100~400℃の条件で前記エタノール供給原料を気化して前記エタノール含有ガスとする工程A1を含む、[1]、[1-1]~[1-6]、[2-1]~[2-5]のいずれかに記載の1,3-ブタジエンの製造方法。
[8]前記転化工程は、圧力が0~1.0MPaG、温度が50~500℃の条件で触媒の存在下に前記エタノール含有ガス中のエタノールを1,3-ブタジエンまで転化する工程B1を少なくとも含み、気液分離によって前記工程B1に供給される前記エタノール含有ガスから水素を含むガスを分離する工程B2と、気液分離によって前記工程B1後のガスから窒素を含むガスを分離する工程B3と、蒸留によって前記工程B1に供給される前記エタノール含有ガスからアセトアルデヒドを含むガスを分離する工程B4とからなる群から選ばれる少なくとも1つを前記工程B1と組み合わせてもよい、[1]、[7]、[1-1]~[1-6]、[2-1]~[2-5]のいずれかに記載の1,3-ブタジエンの製造方法。
[9]前記精製工程は、前記粗生成ガス中のブテンを脱水素化反応させて1,3-ブタジエンに転化する工程C1と、気液分離によって前記粗生成ガスから水素ガスを分離して1,3-ブタジエン含有液を得る工程C2と、前記粗生成ガスの液化物又は前記1,3-ブタジエン含有液を蒸留してエチレン含有ガスと1,3-ブタジエン含有流出物とアセトアルデヒド含有液に分離する工程C3と、前記アセトアルデヒド含有液を蒸留してアセトアルデヒド含有ガスと、水を含む残液とに分離する工程C4とからなる群から選ばれる少なくとも1つを含む、[1]、[7]、[8]、[1-1]~[1-6]、[2-1]~[2-5]のいずれかに記載の1,3-ブタジエンの製造方法。
[10]エタノールを含むエタノール供給原料から1,3-ブタジエンを連続的に製造する製造装置であって、ガス調製手段と、転化手段と、精製手段と、リサイクル手段、トラップ手段、及びリサイクル制御手段のいずれか1種以上の手段と、を備え、前記ガス調製手段は、前記エタノール供給原料を気化してエタノール含有ガスとする気化器を備え、前記転化手段は、前記エタノール含有ガス中のエタノールを1,3-ブタジエンまで転化させる反応器を備え、前記精製手段は、前記転化手段で得られる1,3-ブタジエンを含む粗生成ガスを精製する手段であり、前記リサイクル手段は、前記精製手段から排出される排出ガスであって、エタノール及びアセトアルデヒドのいずれか一方又は両方を含む排出ガスの少なくとも一部を加熱して気化ガスを生成する気化器と、前記気化ガスを少なくとも前記ガス調製手段又は前記転化手段に戻す配管とを少なくとも備え、前記トラップ手段は、前記精製手段から排出される排出ガス中のエタノール及びアセトアルデヒドよりも沸点が高い高沸点成分の少なくとも一部を除去する高沸点成分除去装置と、高沸点成分を除去した排出ガスを前記ガス調製手段又は前記転化手段に戻す配管とを少なくとも備え、前記リサイクル制御手段は、前記転化手段及び前記精製手段のいずれか一方又は両方から排出される排出ガスであって、エタノール及びアセトアルデヒドのいずれか一方又は両方を含む排出ガスの少なくとも一部を、少なくとも前記ガス調製手段及び前記転化手段から選ばれる手段Xに戻す配管と、戻した箇所の下流側のガス中のモル比(エタノール/アセトアルデヒド)を分析する分析計とを少なくとも備えており、さらに、前記排出ガスの一部を分離し、残部を前記手段Xに戻す第1リサイクル制御装置と、前記排出ガスの少なくとも一部を前記手段Xに戻し、前記手段Xのガスからアセトアルデヒドの一部を分離する第2リサイクル制御装置と、エタノールを主成分とする第1排出ガスを前記手段Xに戻す第1配管及びアセトアルデヒドを主成分とする第2排出ガスを前記手段Xに戻す第2配管を備える第3リサイクル制御装置と、からなる群から選ばれる少なくとも1つを備える、1,3-ブタジエンの製造装置。
[1-10]エタノールを含むエタノール供給原料から1,3-ブタジエンを連続的に製造する製造装置であって、ガス調製手段と、転化手段と、精製手段と、リサイクル手段又はトラップ手段のいずれか一方又は両方と、を備え、前記ガス調製手段は、前記エタノール供給原料を気化してエタノール含有ガスとする気化器を備え、前記転化手段は、前記エタノール含有ガス中のエタノールを1,3-ブタジエンまで転化させる反応器を備え、前記精製手段は、前記転化手段で得られる1,3-ブタジエンを含む粗生成ガスを精製する手段であり、前記リサイクル手段は、前記精製手段から排出される、エタノール及びアセトアルデヒドのいずれか一方又は両方を含む排出ガスの少なくとも一部を加熱して気化ガスを生成する気化器と、前記気化ガスを少なくとも前記ガス調製手段又は前記転化手段に戻す配管とを少なくとも備え、前記トラップ手段は、前記精製手段から排出される排出ガス中のエタノール及びアセトアルデヒドよりも沸点が高い高沸点成分の少なくとも一部を除去する高沸点成分除去装置と、高沸点成分を除去した排出ガスを前記ガス調製手段又は前記転化手段に戻す配管とを少なくとも備える、1,3-ブタジエンの製造装置。
[1-11]前記リサイクル手段において、前記気化ガスを前記ガス調製手段に戻す配管の途中に気液分離器が設置されている、[10]又は[1-10]に記載の1,3-ブタジエンの製造装置。
[2-10]エタノールを含むエタノール供給原料から1,3-ブタジエンを連続的に製造する製造装置であって、ガス調製手段と、転化手段と、精製手段と、リサイクル制御手段と、を備え、前記ガス調製手段は、前記エタノール供給原料を気化してエタノール含有ガスとする気化器を備え、前記転化手段は、前記エタノール含有ガス中のエタノールを1,3-ブタジエンまで転化させる反応器を備え、前記精製手段は、前記転化手段で得られる1,3-ブタジエンを含む粗生成ガスを精製する手段であり、前記リサイクル制御手段は、前記転化手段及び前記精製手段のいずれか一方又は両方から排出される、エタノール及びアセトアルデヒドのいずれか一方又は両方を含む排出ガスの少なくとも一部を、少なくとも前記ガス調製手段又は前記転化手段に戻す配管と、戻した箇所の下流側のガス中のモル比(エタノール/アセトアルデヒド)を分析する分析計とを少なくとも備えており、さらに、前記排出ガスの一部を分離し、残部を戻す第1リサイクル制御装置と、前記排出ガスの少なくとも一部を戻し、前記排出ガスを戻した工程のガスからアセトアルデヒドの一部を分離する第2リサイクル制御装置と、エタノールを主成分とする第1排出ガスを戻す第1配管及びアセトアルデヒドを主成分とする第2排出ガスを戻す第2配管を備える第3リサイクル制御装置と、からなる群から選ばれる少なくとも1つを備える、1,3-ブタジエンの製造装置。
The problem is solved by the following means.
[1] A method for continuously producing 1,3-butadiene from an ethanol feedstock containing ethanol, which comprises a gas preparation step of preparing an ethanol-containing gas from the ethanol feedstock and the ethanol-containing gas in the presence of a catalyst. A conversion step of converting ethanol in the gas to 1,3-butadiene, a purification step of purifying the crude gas containing 1,3-butadiene obtained in the conversion step to obtain purified 1,3-butadiene, and recycling. The recycling step includes one or more steps of a step, a trapping step, and a recycling control step, and the recycling step is exhaust gas discharged in the purification step, and is used with one or both of ethanol and acetaldehyde. , At least a part of the vaporized gas obtained by heating at least a part of the exhaust gas containing a high boiling point component having a boiling point higher than that of ethanol and acetaldehyde is transferred to either or both of the gas preparation step and the conversion step. The trapping step is a step of returning, and the trap step is a discharge gas discharged in the purification step, which contains one or both of ethanol and acetaldehyde and a high boiling point component having a boiling point higher than that of ethanol and acetaldehyde. A step of returning at least a part of the high boiling point component removing gas obtained by removing at least a part of the high boiling point component to one or both of the gas preparation step and the conversion step, and the recycling control. The step is the exhaust gas discharged from either one or both of the conversion step and the purification step, and at least a part of the exhaust gas containing either one or both of ethanol and acetaldehyde is used in the gas preparation step and the gas preparation step. It is a step of returning to the step X selected from the conversion step and controlling the molar ratio (ethanol / acetaldehyde) in the gas of the step to 1 to 100, in which a part of the exhaust gas is separated and the rest is the step. A step D1 of returning to X, a step D2 of returning at least a part of the exhaust gas to the step X and separating a part of acetaldehyde from the gas of the step X, and a first step in which ethanol is the main component of the exhaust gas. (1) A method for producing 1,3-butadiene, which comprises a step D3 in which an exhaust gas and a second exhaust gas containing acetaldehyde as a main component are separated and returned to the step X, and at least one selected from the group consisting of the step D3.
[1-1] A method for continuously producing 1,3-butadiene from an ethanol feedstock containing ethanol, which comprises a gas preparation step of preparing an ethanol-containing gas from the ethanol feedstock and the presence of a catalyst. A conversion step of converting ethanol in an ethanol-containing gas to 1,3-butadiene, and a purification step of purifying the crude gas containing 1,3-butadiene obtained in the conversion step to obtain purified 1,3-butadiene. , At least of the vaporized gas obtained by heating at least a part of the exhaust gas containing either or both of ethanol and acetaldehyde and a high boiling point component having a boiling point higher than that of ethanol and acetaldehyde, which is discharged in the purification step. A recycling step in which a part of the gas is returned to one or both of the gas preparation step and the conversion step, or one or both of ethanol and acetaldehyde discharged in the purification step, and a boiling point higher than that of ethanol and acetaldehyde. At least a part of the high boiling point component removing gas obtained by removing at least a part of the high boiling point component from the exhaust gas containing the high boiling point component can be obtained from either one of the gas preparation step and the conversion step or the conversion step. A method for producing 1,3-butadiene, which comprises a trapping step of returning to both.
[2-1] A method for continuously producing 1,3-butadiene from an ethanol feedstock containing ethanol, which comprises a gas preparation step of preparing an ethanol-containing gas from the ethanol feedstock and the presence of a catalyst. A conversion step of converting ethanol in an ethanol-containing gas to 1,3-butadiene, and a purification step of purifying the crude gas containing 1,3-butadiene obtained in the conversion step to obtain purified 1,3-butadiene. At least a part of the exhaust gas containing either one or both of ethanol and acetaldehyde discharged from either one or both of the conversion step and the purification step is returned to at least the gas preparation step or the conversion step. The recycling control step includes a recycling control step of controlling the molar ratio (ethanol / acetaldehyde) in the gas to be subjected to the conversion reaction to 1,3-butadiene from 1 to 100, and the recycling control step separates a part of the exhaust gas. Then, step D1 of returning the balance, step D2 of returning at least a part of the exhaust gas and separating a part of acetaldehyde from the gas of the step of returning the exhaust gas, and ethanol as the main component of the exhaust gas. A method for producing 1,3-butadiene, which comprises a step D3 of separately returning the first exhaust gas and the second exhaust gas containing acetaldehyde as a main component, and at least one selected from the group consisting of.
[1-2] Production of 1,3-butadiene according to [1] or [1-1], wherein the high boiling point component contains either or both of a compound having 6 carbon atoms and a compound having 8 carbon atoms. Method.
[1-3] In the recycling step, when returning at least a part of the vaporized gas to the gas preparation step, at least a part of the high boiling point component in the vaporized gas is removed, and then the gas preparation step. The method for producing 1,3-butadiene according to [1], [1-1] or [1-2].
[1-4] 1 according to [1-3], wherein the total content of the high boiling point component in the exhaust gas is 0.5 to 1% by mass of the total mass of the organic compound in the exhaust gas. , 3-butadiene production method.
[1-5] The 1,3-butadiene according to [1], [1-1] or [1-2], wherein at least a part of the high boiling point component is removed by gas-liquid separation in the trap step. Manufacturing method.
[1-6] The 1 according to [1-5], wherein the total content of the high boiling point component in the exhaust gas is 0.5 to 1% by mass of the total mass of the organic compound in the exhaust gas. , 3-butadiene production method.
[2-2] The step D1, the step D2, and the step D3 based on the result of monitoring the molar ratio (ethanol / acetaldehyde) of either one or both of the gas preparation step and the conversion step with an analyzer. The method for producing 1,3-butadiene according to [1] or [2-1], wherein one or more of them are carried out.
[2-3] When the molar ratio (ethanol / acetaldehyde) becomes 0.8 or less in the monitoring by the analyzer, one or more of the step D1, the step D2, and the step D3 is started. 2-2] The method for producing 1,3-butadiene according to.
[2-4] In the step D2, the gas in the step of returning the exhaust gas is introduced into the separation device, and a part of acetaldehyde is separated in the separation device under a pressure of 1.0 to 5.0 MPa. 1], the method for producing 1,3-butadiene according to any one of [2-1] to [2-3].
[2-5] In the step D3, any one of [1], [2-1] to [2-4], which adjusts the flow rate for returning the first exhaust gas and the flow rate for returning the second exhaust gas, respectively. The method for producing 1,3-butadiene according to. [7] The gas preparation step includes step A1 of vaporizing the ethanol supply raw material into the ethanol-containing gas under the conditions of a pressure of −1.0 to 3.0 MPaG and a temperature of −100 to 400 ° C. [7] 1], the method for producing 1,3-butadiene according to any one of [1-1] to [1-6], [2-1] to [2-5].
[8] The conversion step includes at least step B1 of converting ethanol in the ethanol-containing gas to 1,3-butadiene in the presence of a catalyst under the conditions of a pressure of 0 to 1.0 MPaG and a temperature of 50 to 500 ° C. A step B2 for separating a hydrogen-containing gas from the ethanol-containing gas supplied to the step B1 by gas-liquid separation, and a step B3 for separating a nitrogen-containing gas from the gas after the step B1 by gas-liquid separation. At least one selected from the group consisting of step B4 for separating the gas containing acetaldehyde from the ethanol-containing gas supplied to the step B1 by distillation may be combined with the step B1 [1], [7]. ], [1-1] to [1-6], [2-1] to [2-5]. The method for producing 1,3-butadiene.
[9] The purification step includes a step C1 in which butene in the crude gas is dehydrogenated and converted to 1,3-butadiene, and a step C1 in which the hydrogen gas is separated from the crude gas by gas-liquid separation 1 , 3-butadiene-containing liquid is obtained in step C2, and the liquefaction of the crude gas or the 1,3-butadiene-containing liquid is distilled to separate the ethylene-containing gas, the 1,3-butadiene-containing effluent and the acetaldehyde-containing liquid. [1], [7]. The method for producing 1,3-butadiene according to any one of [8], [1-1] to [1-6], and [2-1] to [2-5].
[10] A production apparatus for continuously producing 1,3-butadiene from an ethanol supply raw material containing ethanol, which is a gas preparation means, a conversion means, a purification means, a recycling means, a trapping means, and a recycling control means. The gas preparing means comprises a vaporizer that vaporizes the ethanol supply raw material into an ethanol-containing gas, and the conversion means comprises ethanol in the ethanol-containing gas. The purification means includes a reactor for converting to 1,3-butadiene, and the purification means is a means for purifying the crude gas containing 1,3-butadiene obtained by the conversion means, and the recycling means is from the purification means. A vaporizer that heats at least a part of the discharged gas containing either one or both of ethanol and acetaldehyde to generate a vaporized gas, and the vaporized gas at least the gas preparing means or the gas preparation means or the above. The trap means includes at least a pipe for returning to the conversion means, and the trap means includes a high boiling point component removing device for removing at least a part of a high boiling point component having a boiling point higher than that of ethanol and acetaldehyde in the exhaust gas discharged from the purification means. The recycling control means is provided with at least a pipe for returning the exhaust gas from which the high boiling point component has been removed to the gas preparation means or the conversion means, and the recycling control means discharges the exhaust gas discharged from either or both of the conversion means and the purification means. A pipe for returning at least a part of the exhaust gas containing one or both of ethanol and acetaldehyde to the means X selected from the gas preparation means and the conversion means, and a pipe downstream of the returned portion. It is equipped with at least an analyzer that analyzes the molar ratio (ethanol / acetaldehyde) in the gas, and further, a first recycling control device that separates a part of the exhaust gas and returns the rest to the means X, and the discharge. A second recycling control device that returns at least a part of the gas to the means X and separates a part of acetaldehyde from the gas of the means X, and a first that returns the first exhaust gas containing ethanol as a main component to the means X. A 1,3-butadiene production device including a third recycling control device including a pipe and a second pipe for returning a second exhaust gas containing acetaldehyde as a main component to the means X, and at least one selected from the group consisting of the pipe and the second pipe. ..
[1-10] A production apparatus for continuously producing 1,3-butadiene from an ethanol supply raw material containing ethanol, which is either a gas preparation means, a conversion means, a purification means, a recycling means, or a trapping means. The gas preparing means includes one or both, and the gas preparing means includes a vaporizer that vaporizes the ethanol supply raw material into an ethanol-containing gas, and the converting means converts ethanol in the ethanol-containing gas into 1,3-butadiene. The purification means is a means for purifying the crude gas containing 1,3-butadiene obtained by the conversion means, and the recycling means is the ethanol discharged from the purification means. And at least a vaporizer that heats at least a part of the exhaust gas containing one or both of acetaldehyde to generate a vaporized gas, and a pipe that returns the vaporized gas to at least the gas preparing means or the converting means. The trap means includes a high-boiling component removing device that removes at least a part of a high-boiling component having a boiling point higher than that of ethanol and acetaldehyde in the exhaust gas discharged from the purification means, and an exhaust gas from which the high-boiling component has been removed. A 1,3-butadiene production apparatus comprising at least a gas preparing means or a pipe for returning to the conversion means.
[1-11] The 1,3-described in [10] or [1-10], wherein in the recycling means, a gas-liquid separator is installed in the middle of a pipe for returning the vaporized gas to the gas preparing means. Butadiene production equipment.
[2-10] A production apparatus for continuously producing 1,3-butadiene from an ethanol supply raw material containing ethanol, which comprises gas preparation means, conversion means, purification means, and recycling control means. The gas preparation means includes a vaporizer that vaporizes the ethanol supply raw material into an ethanol-containing gas, and the conversion means includes a reactor that converts ethanol in the ethanol-containing gas to 1,3-butadiene. The purification means is a means for purifying a crude gas containing 1,3-butadiene obtained by the conversion means, and the recycling control means is discharged from either or both of the conversion means and the purification means. The molar ratio (ethanol / It is equipped with at least an analyzer that analyzes (acetaldehyde), a first recycling control device that separates a part of the exhaust gas and returns the rest, and returns at least a part of the exhaust gas to release the exhaust gas. A second recycling control device that separates a part of acetaldehyde from the gas in the returned process, a first pipe that returns the first exhaust gas containing ethanol as the main component, and a second exhaust gas that returns the second exhaust gas containing acetaldehyde as the main component. A 1,3-butadiene production device comprising a third recycling control device including piping and at least one selected from the group consisting of.
 本発明によれば、高い収率で1,3-ブタジエンを連続的に製造できる1,3-ブタジエンの製造方法を提供できる。 According to the present invention, it is possible to provide a method for producing 1,3-butadiene that can continuously produce 1,3-butadiene with a high yield.
第1実施形態の1,3-ブタジエンの製造方法に用いる製造装置を示した概略模式図である。It is the schematic schematic diagram which showed the manufacturing apparatus used in the manufacturing method of 1,3-butadiene of 1st Embodiment. 第2実施形態の1,3-ブタジエンの製造方法に用いる製造装置を示した概略模式図である。It is the schematic schematic diagram which showed the manufacturing apparatus used in the manufacturing method of 1,3-butadiene of 2nd Embodiment. 第4A実施形態の1,3-ブタジエンの製造方法に用いる製造装置を示した概略模式図である。It is the schematic schematic diagram which showed the manufacturing apparatus used in the manufacturing method of 1,3-butadiene of 4A Embodiment. 図3の製造装置を用いた1,3-ブタジエンの製造のフローチャートである。It is a flowchart of production of 1,3-butadiene using the production apparatus of FIG. 第4B実施形態の1,3-ブタジエンの製造方法に用いる製造装置を示した概略模式図である。It is the schematic schematic diagram which showed the manufacturing apparatus used in the manufacturing method of 1,3-butadiene of 4B Embodiment. 図5の製造装置を用いた1,3-ブタジエンの製造のフローチャートである。It is a flowchart of production of 1,3-butadiene using the production apparatus of FIG.
 「~」で表される数値範囲は、「~」の前後の数値を下限値及び上限値として含む数値範囲を表す。 The numerical range represented by "-" represents the numerical range including the numerical values before and after "-" as the lower limit value and the upper limit value.
 1,3-ブタジエンの製造工程において排出される排出ガス中の未反応の原料(エタノール)及び中間生成物(アセトアルデヒド)を回収してリサイクルすることで、1,3-ブタジエンの収率を改善できる。
 また、1,3-ブタジエンの製造工程において排出される排出ガス中の、未反応の原料(エタノール)及び中間生成物(アセトアルデヒド)に加えて、副生物(エタノール及びアセトアルデヒドよりも沸点が高い高沸点成分)も回収してリサイクルすることで、1,3-ブタジエンの収率をより改善できる。
 さらに、前記排出ガス中の前記高沸点成分の含有量が多い場合には、前記高沸点成分を除去することにより、配管やポンプの閉塞を防止できる。
The yield of 1,3-butadiene can be improved by recovering and recycling unreacted raw materials (ethanol) and intermediate products (acetaldehyde) in the exhaust gas discharged in the production process of 1,3-butadiene. ..
In addition to unreacted raw materials (ethanol) and intermediate products (acetaldehyde) in the exhaust gas discharged in the production process of 1,3-butadiene, high boiling points having a higher boiling point than by-products (ethanol and acetaldehyde). By recovering and recycling the component), the yield of 1,3-butadiene can be further improved.
Further, when the content of the high boiling point component in the exhaust gas is high, clogging of the piping or the pump can be prevented by removing the high boiling point component.
[1,3-ブタジエンの製造方法]
 本実施形態の1,3-ブタジエンの製造方法は、エタノールを含むエタノール供給原料から1,3-ブタジエンを連続的に製造する方法である。本実施形態の1,3-ブタジエンの製造方法は、下記の工程A~工程Dを含む。
 工程A:エタノール供給原料からエタノール含有ガスを調製するガス調製工程。
 工程B:触媒の存在下、エタノール含有ガス中のエタノールを1,3-ブタジエンまで転化させる転化工程。
 工程C:工程Bで得た1,3-ブタジエンを含む粗生成ガスを精製して精製1,3-ブタジエンを得る精製工程。
 工程D:リサイクル工程、トラップ工程、及びリサイクル制御工程のいずれか一種以上の工程。
[Method for producing 1,3-butadiene]
The method for producing 1,3-butadiene of the present embodiment is a method for continuously producing 1,3-butadiene from an ethanol supply raw material containing ethanol. The method for producing 1,3-butadiene of the present embodiment includes the following steps A to D.
Step A: A gas preparation step of preparing an ethanol-containing gas from an ethanol supply raw material.
Step B: A conversion step of converting ethanol in an ethanol-containing gas to 1,3-butadiene in the presence of a catalyst.
Step C: A purification step of purifying the crude gas containing 1,3-butadiene obtained in step B to obtain purified 1,3-butadiene.
Process D: Any one or more of a recycling process, a trap process, and a recycling control process.
 リサイクル工程は、工程Cから排出される排出ガスであって、エタノール及びアセトアルデヒドのいずれか一方若しくは両方と、前記エタノール及びアセトアルデヒドよりも沸点が高い高沸点成分とを含む排出ガスの少なくとも一部を加熱して得られる気化ガスの少なくとも一部を、工程A及び工程Bのいずれか一方若しくは両方に戻す工程である。 The recycling step heats at least a part of the exhaust gas discharged from step C, which contains one or both of ethanol and acetaldehyde and a high boiling point component having a boiling point higher than that of ethanol and acetaldehyde. This is a step of returning at least a part of the vaporized gas thus obtained to one or both of the steps A and B.
 トラップ工程は、工程Cから排出される排出ガスであって、エタノール及びアセトアルデヒドのいずれか一方若しくは両方と、前記エタノール及びアセトアルデヒドよりも沸点が高い高沸点成分とを含む排出ガスから、前記高沸点成分の少なくとも一部を除去して得られる高沸点成分除去ガスの少なくとも一部を、前記工程A及び工程Bのいずれか一方又は両方に戻す工程である。 In the trap step, the high boiling point component is discharged from the exhaust gas containing one or both of ethanol and acetaldehyde and a high boiling point component having a boiling point higher than that of ethanol and acetaldehyde. This is a step of returning at least a part of the high boiling point component removing gas obtained by removing at least a part of the above step A and step B to one or both of the steps A and B.
 リサイクル制御工程は、工程B及び工程Cのいずれか一方又は両方から排出される排出ガスであって、エタノール及びアセトアルデヒドのいずれか一方又は両方を含む排出ガス(以下、「排出ガス(E/A)とも記す。)の少なくとも一部を、少なくとも工程A又は工程Bに戻し、1,3-ブタジエンへの転化反応に供するガス中のモル比(エタノール/アセトアルデヒド)(以下、「モル比(E/A)とも記す。)を1~100に制御する工程である。 The recycling control step is an exhaust gas discharged from either one or both of step B and step C, and is an exhaust gas containing either one or both of ethanol and acetaldehyde (hereinafter, "exhaust gas (E / A)). At least a part of (also referred to as) is returned to step A or step B, and the molar ratio (ethanol / acetaldehyde) in the gas to be subjected to the conversion reaction to 1,3-butadiene (hereinafter, “molar ratio (E / A)”. ) Is also described.) Is a step of controlling from 1 to 100.
〈工程A〉
 工程Aは、圧力が-1.0~3.0MPaG、温度が-100~400℃の条件でエタノール供給原料を気化してエタノール含有ガスとする工程A1を含む。工程A1を後述の工程Dと組み合わせることで、熱利用効率が高まり気化に要するエネルギーを抑制することができる。
<Step A>
Step A includes step A1 in which the ethanol supply raw material is vaporized into an ethanol-containing gas under the conditions of a pressure of −1.0 to 3.0 MPaG and a temperature of −100 to 400 ° C. By combining step A1 with step D described later, heat utilization efficiency can be improved and energy required for vaporization can be suppressed.
 エタノール供給原料は、エタノールを必須として含み、本発明の効果を損なわない範囲で、水等の他の成分を含んでもよい。エタノール供給原料中のエタノールの割合は、エタノール供給原料の総質量に対して、80質量%以上が好ましく、90質量%以上がより好ましく、93質量%以上がさらに好ましい。エタノールの割合の上限は、理論的には100質量%である。
 エタノール供給原料中のエタノールの割合は、エタノール供給原料の総質量に対して、80~100質量%が好ましく、90~100質量%がより好ましく、93~100質量%がさらに好ましい。
The ethanol supply raw material contains ethanol as an essential component, and may contain other components such as water as long as the effects of the present invention are not impaired. The ratio of ethanol in the ethanol supply raw material is preferably 80% by mass or more, more preferably 90% by mass or more, still more preferably 93% by mass or more, based on the total mass of the ethanol supply raw material. The upper limit of the proportion of ethanol is theoretically 100% by mass.
The ratio of ethanol in the ethanol supply raw material is preferably 80 to 100% by mass, more preferably 90 to 100% by mass, still more preferably 93 to 100% by mass, based on the total mass of the ethanol supply raw material.
 エタノール供給原料としては、特に限定されず、例えば、シェールガス、石油等の化石由来のエタノールであってもよく、植物、動物、ゴミ等のバイオマス由来のバイオエタノールであってもよい。なかでも、窒素化合物、硫黄化合物、リン化合物等の不純物が少なく、触媒が劣化しにくい点から、バイオエタノールが好ましい。
 バイオエタノールの総質量に対する窒素化合物、硫黄化合物、及びリン化合物の合計含有量は、0~0.1質量%であることが好ましく、0~0.01質量%であることがより好ましい。
The ethanol supply raw material is not particularly limited, and may be, for example, ethanol derived from fossils such as shale gas and petroleum, and bioethanol derived from biomass such as plants, animals and garbage. Of these, bioethanol is preferable because it contains few impurities such as nitrogen compounds, sulfur compounds, and phosphorus compounds, and the catalyst does not easily deteriorate.
The total content of the nitrogen compound, the sulfur compound, and the phosphorus compound with respect to the total mass of the bioethanol is preferably 0 to 0.1% by mass, more preferably 0 to 0.01% by mass.
 工程A1のエタノール供給原料の気化時の圧力は、-1.0~3.0MPaGの範囲で設定すればよく、-0.5~2.0MPaGが好ましく、-0.3~1.0MPaGがより好ましい。気化時の圧力が前記範囲の下限値以上であれば、気化した際の体積が過剰にならず機械設備の大きさを抑制できる。気化時の圧力が前記範囲の上限値以下であれば、効率的に気化する。 The pressure at the time of vaporization of the ethanol supply raw material in step A1 may be set in the range of -1.0 to 3.0 MPaG, preferably -0.5 to 2.0 MPaG, and more preferably -0.3 to 1.0 MPaG. preferable. When the pressure at the time of vaporization is equal to or higher than the lower limit of the above range, the volume at the time of vaporization does not become excessive and the size of the mechanical equipment can be suppressed. If the pressure at the time of vaporization is equal to or less than the upper limit of the above range, it is efficiently vaporized.
 工程A1のエタノール供給原料の気化時の温度は、-100~400℃の範囲で設定すればよく、0~200℃が好ましく、25~100℃がより好ましい。気化時の温度が前記範囲の下限値以上であれば、効率的に気化する。気化時の温度が前記範囲の上限値以下であれば、過剰な加熱が不要となる。 The temperature at the time of vaporization of the ethanol supply raw material in step A1 may be set in the range of -100 to 400 ° C, preferably 0 to 200 ° C, and more preferably 25 to 100 ° C. If the temperature at the time of vaporization is equal to or higher than the lower limit of the above range, it is efficiently vaporized. If the temperature at the time of vaporization is not more than the upper limit of the above range, excessive heating becomes unnecessary.
 工程Aは、必要に応じて、工程A1で得たエタノール含有ガスに1種以上のガスを混合し、エタノール含有ガス中のエタノールの濃度を0.1~100体積%の範囲内で調整する工程A2をさらに含んでもよい。 In step A, if necessary, one or more kinds of gases are mixed with the ethanol-containing gas obtained in step A1 to adjust the concentration of ethanol in the ethanol-containing gas within the range of 0.1 to 100% by volume. A2 may be further included.
 エタノール含有ガスのエタノール濃度は、0.1~100体積%の範囲で調整すればよく、10~100体積%が好ましく、20~100体積%がより好ましい。エタノール濃度が前記範囲の下限値以上であれば、1,3-ブタジエンの収率が向上する。 The ethanol concentration of the ethanol-containing gas may be adjusted in the range of 0.1 to 100% by volume, preferably 10 to 100% by volume, and more preferably 20 to 100% by volume. When the ethanol concentration is equal to or higher than the lower limit of the above range, the yield of 1,3-butadiene is improved.
 エタノール含有ガスに混合するガス(希釈用ガス)としては、エタノールから1,3-ブタジエンまでの転化反応に悪影響を及ぼさないガスを使用でき、例えば、窒素ガス、アルゴンガス等の希ガスを例示できる。なかでも、価格及び入手しやすさの点から、窒素ガス、アルゴンガスが好ましい。エタノール含有ガスに混合するガスは、1種のみを単独で使用してもよく、2種以上を併用してもよい。 As the gas to be mixed with the ethanol-containing gas (diluting gas), a gas that does not adversely affect the conversion reaction from ethanol to 1,3-butadiene can be used, and examples thereof include rare gases such as nitrogen gas and argon gas. .. Of these, nitrogen gas and argon gas are preferable from the viewpoint of price and availability. As the gas to be mixed with the ethanol-containing gas, only one type may be used alone, or two or more types may be used in combination.
〈工程B〉
 工程Bでは、エタノールから1,3-ブタジエンまでの転化反応として、下記式(1)で表される1段反応を採用してもよく、下記式(2)及び下記式(3)で表される2段反応を採用してもよい。本実施形態は、工程Bで2段反応を採用する場合に特に有効である。
 2CHCHOH→CH=CH-CH=CH+2HO+H ・・・(1)
 CHCHOH→CHCHO+H ・・・(2)
 CHCHOH+CHCHO→CH=CH-CH=CH+2HO ・・・(3)
<Process B>
In step B, as the conversion reaction from ethanol to 1,3-butadiene, a one-step reaction represented by the following formula (1) may be adopted, and is represented by the following formulas (2) and (3). A two-stage reaction may be adopted. This embodiment is particularly effective when a two-step reaction is adopted in step B.
2CH 3 CH 2 OH → CH 2 = CH-CH = CH 2 + 2H 2 O + H 2 ... (1)
CH 3 CH 2 OH → CH 3 CHO + H 2 ... (2)
CH 3 CH 2 OH + CH 3 CHO → CH 2 = CH-CH = CH 2 + 2H 2 O ... (3)
 工程Bでは、触媒の存在下にエタノール含有ガス中のエタノールを1,3-ブタジエンまで転化する転化反応の少なくとも一部に、2つ以上の並列の反応器を用いてもよい。例えば、1段反応の場合、2つ以上の並列の反応器でエタノールを1,3-ブタジエンに転化してもよい。2段反応の場合、1段目の転化反応と2段目の転化反応のいずれか一方又は両方で、2つ以上の並列の反応器を用いてもよい。1,3-ブタジエンの収率が向上する点では、1段目の転化反応と2段目の転化反応の両方で2つ以上の並列の反応器を用いることが好ましい。
 工程Bにおいて並列して設置する反応器の数は、適宜設定でき、例えば、2~5個とすることができる。
In step B, two or more parallel reactors may be used for at least a part of the conversion reaction of converting ethanol in the ethanol-containing gas to 1,3-butadiene in the presence of a catalyst. For example, in the case of a one-stage reaction, ethanol may be converted to 1,3-butadiene in two or more parallel reactors. In the case of a two-stage reaction, two or more parallel reactors may be used for either or both of the first-stage conversion reaction and the second-stage conversion reaction. In terms of improving the yield of 1,3-butadiene, it is preferable to use two or more parallel reactors for both the first-stage conversion reaction and the second-stage conversion reaction.
The number of reactors installed in parallel in step B can be appropriately set, and can be, for example, 2 to 5.
 工程Bは、下記工程B1を少なくとも含むことが好ましい。工程B1を後述の工程Dと組み合わせることで、原料利用率が高まり1,3-ブタジエンの収率が向上する。
 工程B1:圧力が0~1.0MPaG、温度が50~500℃の条件で触媒の存在下にエタノール含有ガス中のエタノールを1,3-ブタジエンまで転化する。
Step B preferably includes at least the following step B1. By combining step B1 with step D described later, the raw material utilization rate is increased and the yield of 1,3-butadiene is improved.
Step B1: Ethanol in the ethanol-containing gas is converted to 1,3-butadiene in the presence of a catalyst under the conditions of a pressure of 0 to 1.0 MPaG and a temperature of 50 to 500 ° C.
 2段反応の工程B1は、例えば、下記の工程B11及び工程B12を含む。
 工程B11:工程Aで得たエタノール含有ガス中のエタノールの一部を、第1触媒の存在下、圧力が0~1.0MPaG、温度が50~500℃の条件でアセトアルデヒドに転化する。
 工程B12:工程B11で得た未反応のエタノール及びアセトアルデヒドを含む中間ガスを、第2触媒の存在下、圧力が0~1.0MPaG、温度が50~500℃の条件でエタノール及びアセトアルデヒドを1,3-ブタジエンに転化する。
Step B1 of the two-step reaction includes, for example, the following steps B11 and B12.
Step B11: A part of ethanol in the ethanol-containing gas obtained in Step A is converted to acetaldehyde in the presence of the first catalyst under the conditions of a pressure of 0 to 1.0 MPaG and a temperature of 50 to 500 ° C.
Step B12: The intermediate gas containing unreacted ethanol and acetaldehyde obtained in Step B11 is mixed with ethanol and acetaldehyde in the presence of a second catalyst under the conditions of a pressure of 0 to 1.0 MPaG and a temperature of 50 to 500 ° C. Convert to 3-butadiene.
 工程B11では、第1触媒の存在下、工程Aから供給されるエタノール含有ガス中のエタノールの一部がアセトアルデヒドに転化する。これにより、エタノール及びアセトアルデヒドを含む中間ガスが生成する。 In step B11, in the presence of the first catalyst, a part of ethanol in the ethanol-containing gas supplied from step A is converted to acetaldehyde. This produces an intermediate gas containing ethanol and acetaldehyde.
 第1触媒としては、エタノールからアセトアルデヒドへの転化反応を促進するものであればよく、例えば、酸化クロムと酸化銅の混合物、酸化亜鉛、酸化銅と酸化ケイ素の混合物を例示できる。なかでも、アセトアルデヒドへの転化率の点から、酸化銅と酸化ケイ素の混合物が好ましい。第1触媒としては、1種を単独で使用してもよく、2種以上を併用してもよい。 The first catalyst may be any catalyst that promotes the conversion reaction from ethanol to acetaldehyde, and examples thereof include a mixture of chromium oxide and copper oxide, zinc oxide, and a mixture of copper oxide and silicon oxide. Of these, a mixture of copper oxide and silicon oxide is preferable from the viewpoint of conversion rate to acetaldehyde. As the first catalyst, one type may be used alone, or two or more types may be used in combination.
 工程B11の転化反応時の圧力は、0~1.0MPaGの範囲で設定すればよく、0~0.5MPaGが好ましく、0~0.3MPaGがより好ましい。工程B11の圧力が前記範囲の下限値以上であれば、アセトアルデヒドへの転化率が向上する。工程B11の圧力が前記範囲の上限値以下であれば、反応中の液化を抑制できる。 The pressure during the conversion reaction in step B11 may be set in the range of 0 to 1.0 MPaG, preferably 0 to 0.5 MPaG, and more preferably 0 to 0.3 MPaG. When the pressure in step B11 is equal to or higher than the lower limit of the above range, the conversion rate to acetaldehyde is improved. When the pressure in step B11 is equal to or less than the upper limit of the above range, liquefaction during the reaction can be suppressed.
 工程B11の転化反応時の温度は、50~500℃の範囲で設定すればよく、200~500℃が好ましく、250~350℃がより好ましい。工程B11の温度が前記範囲の下限値以上であれば、アセトアルデヒドへの転化率が向上する。工程B11の温度が前記範囲の上限値以下であれば、過剰なエネルギーの消費を抑制できる。 The temperature at the time of the conversion reaction in step B11 may be set in the range of 50 to 500 ° C, preferably 200 to 500 ° C, and more preferably 250 to 350 ° C. When the temperature in step B11 is equal to or higher than the lower limit of the above range, the conversion rate to acetaldehyde is improved. When the temperature in step B11 is equal to or less than the upper limit of the above range, excessive energy consumption can be suppressed.
 工程B11でのエタノールからアセトアルデヒドへの転化率は、30~70%が好ましい。
 工程B11の「アルデヒドへの転化率」とは、工程B11の反応器に供給されるエタノール含有ガス中のエタノールの単位時間当たりのモル数に対する、前記反応器で消費されたエタノールの単位時間当たりのモル数の比率(百分率)を意味する。工程B11の反応器中で消費されたエタノールの単位時間当たりのモル数は、工程B11の反応器に供給されるエタノール含有ガス中のエタノールの単位時間当たりのモル数から、工程B11の反応器から排出される中間ガス中のエタノールの単位時間当たりのモル数を差し引くことで算出される。
The conversion rate from ethanol to acetaldehyde in step B11 is preferably 30 to 70%.
The "conversion rate to aldehyde" in step B11 is the number of moles of ethanol consumed in the reactor per unit time with respect to the number of moles of ethanol in the ethanol-containing gas supplied to the reactor in step B11 per unit time. It means the ratio of the number of moles (percentage). The number of moles of ethanol consumed in the reactor of step B11 per unit time is determined from the number of moles of ethanol in the ethanol-containing gas supplied to the reactor of step B11 per unit time from the reactor of step B11. It is calculated by subtracting the number of moles of ethanol in the discharged intermediate gas per unit time.
 工程B11の転化反応のアセトアルデヒドの選択率は、85%以上が好ましく、90%以上がより好ましい。アセトアルデヒドの選択率の上限は、特に限定されないが、例えば100%以下であることが好ましい。100%未満の場合は、副生成物がジエチルエーテルやエチレンであれば分離しエタノールに変換できるため好ましい。工程B11の「アセトアルデヒドの選択率」とは、工程B11の反応器中で消費されたエタノールの単位時間当たりのモル数に対する、アセトアルデヒドに変換されたエタノールの単位時間当たりのモル数の比率(百分率)を意味する。
 工程B11で得られる中間ガスに含まれ得る副生物としては、クロトンアルデヒド(CHCH=CHCHO)、ブチルアルデヒド(CHCHCHCHO)、酢酸エチル(CHCOOCHCH)、酢酸(CHCOOH)等が挙げられる。さらに、これらの副生物以外にも、炭素数6の化合物(C6成分)及び炭素数8の化合物(C8成分)の一方又は両方が生成する場合がある。
The selectivity of acetaldehyde in the conversion reaction of step B11 is preferably 85% or more, more preferably 90% or more. The upper limit of the selectivity of acetaldehyde is not particularly limited, but is preferably 100% or less, for example. When it is less than 100%, if the by-product is diethyl ether or ethylene, it can be separated and converted to ethanol, which is preferable. The "acetaldehyde selectivity" in step B11 is the ratio (percentage) of the number of moles of ethanol converted to acetaldehyde per unit time to the number of moles of ethanol consumed in the reactor of step B11 per unit time. Means.
As by-products that can be contained in the intermediate gas obtained in step B11, crotonaldehyde (CH 3 CH = CHCHO), butyraldehyde (CH 3 CH 2 CH 2 CHO), ethyl acetate (CH 3 COOCH 2 CH 3 ), acetic acid (CH 3 COOH) and the like. Further, in addition to these by-products, one or both of a compound having 6 carbon atoms (C6 component) and a compound having 8 carbon atoms (C8 component) may be produced.
 工程B12では、第2触媒の存在下、工程B11から供給される中間ガス中のエタノール及びアセトアルデヒドが1,3-ブタジエンに転化する。これにより、1,3-ブタジエンを含む粗生成ガスが生成する。 In step B12, ethanol and acetaldehyde in the intermediate gas supplied from step B11 are converted to 1,3-butadiene in the presence of the second catalyst. As a result, a crude gas containing 1,3-butadiene is generated.
 第2触媒としては、エタノール及びアセトアルデヒドから1,3-ブタジエンへの転化反応を促進するものであればよく、例えば、タンタル、ジルコニウム、ニオブ、ハフニウム、マグネシウム、亜鉛、ケイ素、セリウムを例示できる。なかでも、1,3-ブタジエンの収率の点から、ハフニウムが好ましい。第2触媒としては、1種を単独で使用してもよく、2種以上を併用してもよい。
 第2触媒を使用する態様としては、例えば金属、酸化物、塩化物を例示でき、担体上に第2触媒を担持させて使用する態様や、2種以上の混合物として使用する態様を例示できる。
The second catalyst may be any catalyst that promotes the conversion reaction of ethanol and acetaldehyde to 1,3-butadiene, and examples thereof include tantalum, zirconium, niobium, hafnium, magnesium, zinc, silicon, and cerium. Of these, hafnium is preferable from the viewpoint of the yield of 1,3-butadiene. As the second catalyst, one type may be used alone, or two or more types may be used in combination.
Examples of the mode in which the second catalyst is used include, for example, metals, oxides, and chlorides, and examples thereof include a mode in which the second catalyst is supported on a carrier and used, and a mode in which the second catalyst is used as a mixture of two or more kinds.
 工程B12の転化反応時の圧力は、0~1.0MPaGの範囲で設定すればよく、0~0.5MPaGが好ましく、0~0.3MPaGがより好ましい。工程B12の圧力が前記範囲の下限値以上であれば、1,3-ブタジエンの収率が向上する。工程B12の圧力が前記範囲の上限値以下であれば、過剰反応による1,3-ブタジエンの収率低下を抑制できる。 The pressure during the conversion reaction in step B12 may be set in the range of 0 to 1.0 MPaG, preferably 0 to 0.5 MPaG, and more preferably 0 to 0.3 MPaG. When the pressure in step B12 is equal to or higher than the lower limit of the above range, the yield of 1,3-butadiene is improved. When the pressure in step B12 is not more than the upper limit of the above range, the decrease in yield of 1,3-butadiene due to the excessive reaction can be suppressed.
 工程B12の転化反応時の温度は、50~500℃の範囲で設定すればよく、300~400℃が好ましく、320~370℃がより好ましい。工程B12の温度が前記範囲の下限値以上であれば、1,3-ブタジエンの収率が向上する。工程B12の温度が前記範囲の上限値以下であれば、過剰反応による1,3-ブタジエンの収率低下を抑制できる。 The temperature at the time of the conversion reaction in step B12 may be set in the range of 50 to 500 ° C., preferably 300 to 400 ° C., more preferably 320 to 370 ° C. When the temperature in step B12 is equal to or higher than the lower limit of the above range, the yield of 1,3-butadiene is improved. When the temperature in step B12 is not more than the upper limit of the above range, the decrease in yield of 1,3-butadiene due to the excessive reaction can be suppressed.
 工程B12でのエタノール及びアセトアルデヒドから1,3-ブタジエンへの転化率は、30%超が好ましく、40%超がより好ましく、50%超がさらに好ましい。1,3-ブタジエンへの転化率の上限は、特に限定されないが、例えば100%以下でもよく、95%以下でもよく、90%以下でもよい。転化率が100%未満の場合は、未反応のエタノール及びアセトアルデヒドを分離回収して再利用しても良い。1,3-ブタジエンへの転化率は、30%超100%以下が好ましく、40%超100%以下がより好ましく、50%超100%以下がさらに好ましい。
 工程B12の「1,3-ブタジエンへの転化率」とは、工程B12の反応器に供給される中間ガス中のエタノール及びアセトアルデヒドの単位時間当たりのモル数に対する、前記反応器中で消費されたエタノール及びアセトアルデヒドの単位時間当たりのモル数のモル比率を意味する。工程B12の反応器中で消費されたエタノール及びアセトアルデヒドの単位時間当たりのモル数は、工程B12の反応器に供給される中間ガス中のエタノール及びアセトアルデヒドの単位時間当たりのモル数から、工程B12の反応器から排出される粗生成ガス中のエタノール及びアセトアルデヒドの単位時間当たりのモル数を差し引くことで算出される。
The conversion rate of ethanol and acetaldehyde to 1,3-butadiene in step B12 is preferably more than 30%, more preferably more than 40%, still more preferably more than 50%. The upper limit of the conversion rate to 1,3-butadiene is not particularly limited, but may be, for example, 100% or less, 95% or less, or 90% or less. When the conversion rate is less than 100%, unreacted ethanol and acetaldehyde may be separated and recovered and reused. The conversion rate to 1,3-butadiene is preferably more than 30% and 100% or less, more preferably more than 40% and 100% or less, and further preferably more than 50% and 100% or less.
The “conversion rate to 1,3-butadiene” in step B12 is consumed in the reactor with respect to the number of moles of ethanol and acetaldehyde in the intermediate gas supplied to the reactor in step B12 per unit time. It means the molar ratio of the number of moles of ethanol and acetaldehyde per unit time. The number of moles of ethanol and acetaldehyde consumed in the reactor of step B12 per unit time is determined from the number of moles of ethanol and acetaldehyde in the intermediate gas supplied to the reactor of step B12 per unit time. It is calculated by subtracting the number of moles of ethanol and acetaldehyde in the crude gas discharged from the reactor per unit time.
 工程B12の転化反応の1,3-ブタジエンの選択率は、60%超が好ましく、70%超がより好ましく、80%超がさらに好ましい。1,3-ブタジエンの選択率の上限は、特に限定されないが、例えば100%以下でもよい。100%未満の場合は、副生成物としてジエチルエーテル及びエチレンであればエタノールに変換可能であり、クロチルアルコール及びクロトンアルデヒドであれば1,3-ブタジエンに変換可能であるため好ましい。1,3-ブタジエンの選択率は、60%超100%以下が好ましく、70%超100%以下がより好ましく、80%超100%以下がさらに好ましい。工程B12の「1,3-ブタジエンの選択率」とは、工程B12の反応器中で消費されたエタノール及びアセトアルデヒドの単位時間当たりのモル数に対する、1,3-ブタジエンに変換されたエタノール及びアセトアルデヒドの単位時間当たりのモル数の比率(百分率)を意味する。 The selectivity of 1,3-butadiene in the conversion reaction of step B12 is preferably more than 60%, more preferably more than 70%, still more preferably more than 80%. The upper limit of the selectivity of 1,3-butadiene is not particularly limited, but may be 100% or less, for example. If it is less than 100%, diethyl ether and ethylene as by-products can be converted to ethanol, and crotyl alcohol and crotonaldehyde can be converted to 1,3-butadiene, which is preferable. The selectivity of 1,3-butadiene is preferably more than 60% and 100% or less, more preferably more than 70% and 100% or less, and further preferably more than 80% and 100% or less. The “1,3-butadiene selectivity” of step B12 is the ethanol and acetaldehyde converted to 1,3-butadiene with respect to the number of moles of ethanol and acetaldehyde consumed in the reactor of step B12 per unit time. Means the ratio (percentage) of the number of moles per unit time of.
 工程B12においては、工程B11から供給される中間ガス中のアセトアルデヒドの単位時間当たりのモル数に対して、65~80モル%が1,3-ブタジエンに転化されることが好ましい。工程B12においては、工程B11から供給される中間ガス中のエタノールの他に時間当たりのモル数に対して、65~80モル%が1,3-ブタジエンに転化されることが好ましい。
 工程B12で得られる粗生成ガスに含まれ得る副生物としては、エチレン(HC=CH)、プロピレン(HC=CHCH)、ジエチルエーテル(CHCHOCHCH)、酢酸(CHCOOH),酢酸エチル(CHCOOCHCH)、ブタノール(COH)、酪酸(CHCHCHCOOH)、クロトン酸(CHCH=CHCOOH)、ヘキサノール(C13OH)、1-ブテン(HC=CHCHCH)、2-ブテン(CHCH=CHCH)、イソブテン(HC=C(CH)、クロトンアルデヒド、クロチルアルコール、ペンテン、ペンタジエン、ヘキセン、ヘキサジエン、オクテン、オクタジエン、ヘキセン酸、オクテン酸、2,4-ジメチルフラン,2-メチル-2-シクロペンテン-1-オン、2,5-ジエチルフェノール,1,2,3-トリメチルインデン、4-ヒドロキシ-4-メチル-2-ペンタノン、ジエチルアセタール等が挙げられる。さらに、これらの副生物以外にも、炭素数6の化合物(C6成分)及び炭素数8の化合物(C8成分)の一方又は両方が生成する場合がある。
In step B12, it is preferable that 65 to 80 mol% is converted to 1,3-butadiene with respect to the number of moles of acetaldehyde in the intermediate gas supplied from step B11 per unit time. In step B12, in addition to ethanol in the intermediate gas supplied from step B11, it is preferable that 65 to 80 mol% is converted to 1,3-butadiene with respect to the number of moles per hour.
The by-product which may be contained in the crude product gas obtained in step B12, ethylene (H 2 C = CH 2) , propylene (H 2 C = CHCH 3) , diethyl ether (CH 3 CH 2 OCH 2 CH 3), Acetic acid (CH 3 COOH), Ethyl acetate (CH 3 COOCH 2 CH 3 ), Butanol (C 4 H 9 OH), Butylic acid (CH 3 CH 2 CH 2 COOH), Crotonic acid (CH 3 CH = CH COOH), Hexanol (CH 3 CH = CH COOH) C 6 H 13 OH), 1-butene (H 2 C = CH CH 2 CH 3 ), 2-butene (CH 3 CH = CH CH 3 ), isobutene (H 2 C = C (CH 3 ) 2 ), crotonaldehyde, Crotyl alcohol, penten, pentadiene, hexene, hexadiene, octene, octadiene, hexenoic acid, octene acid, 2,4-dimethylfuran, 2-methyl-2-cyclopentene-1-one, 2,5-diethylphenol, 1, Examples thereof include 2,3-trimethylinden, 4-hydroxy-4-methyl-2-pentanone, and diethylacetal. Further, in addition to these by-products, one or both of a compound having 6 carbon atoms (C6 component) and a compound having 8 carbon atoms (C8 component) may be produced.
 1段反応の工程Bは、例えば、下記の工程B13を含む。
 工程B13:工程Aで得たエタノール含有ガスを、第3触媒の存在下、圧力が0~1.0MPaG、温度が50~500℃の条件でエタノールを1,3-ブタジエンに転化する。
Step B of the one-step reaction includes, for example, the following step B13.
Step B13: The ethanol-containing gas obtained in Step A is converted to 1,3-butadiene in the presence of a third catalyst under the conditions of a pressure of 0 to 1.0 MPaG and a temperature of 50 to 500 ° C.
 工程B13では、第3触媒の存在下、工程Aから供給されるエタノール含有ガス中のエタノールが1,3-ブタジエンに転化する。これにより、1,3-ブタジエンを含む粗生成ガスが生成する。 In step B13, in the presence of the third catalyst, ethanol in the ethanol-containing gas supplied from step A is converted to 1,3-butadiene. As a result, a crude gas containing 1,3-butadiene is generated.
 第3触媒としては、エタノールから1,3-ブタジエンへの転化反応を促進するものであればよく、例えば、酸化銅、酸化亜鉛、酸化マグネシウム、酸化ゲルマニウム、酸化タンタル、酸化ジルコニウム、酸化ハフニウム、酸化ニオブ、酸化ランタン、酸化セリウム、酸化アルミニウム、酸化ケイ素を例示できる。なかでも、1,3-ブタジエンの収率の点から、酸化ハフニウムが好ましい。第3触媒としては、1種を単独で使用してもよく、2種以上を併用してもよい。 The third catalyst may be any one that promotes the conversion reaction from ethanol to 1,3-butadiene, for example, copper oxide, zinc oxide, magnesium oxide, germanium oxide, tantalum oxide, zirconium oxide, hafnium oxide, and oxidation. Examples thereof include niobium, lanthanum oxide, cerium oxide, aluminum oxide, and silicon oxide. Of these, hafnium oxide is preferable from the viewpoint of the yield of 1,3-butadiene. As the third catalyst, one type may be used alone, or two or more types may be used in combination.
 工程B13の転化反応時の圧力は、0~1.0MPaGの範囲で設定すればよく、0~0.5MPaGが好ましく、0~0.3MPaGがより好ましい。工程B13の圧力が前記範囲の下限値以上であれば、1,3-ブタジエンの収率が向上する。工程B13の圧力が前記範囲の上限値以下であれば、過剰反応による1,3-ブタジエンの収率低下を抑制できる。 The pressure during the conversion reaction in step B13 may be set in the range of 0 to 1.0 MPaG, preferably 0 to 0.5 MPaG, and more preferably 0 to 0.3 MPaG. When the pressure in step B13 is equal to or higher than the lower limit of the above range, the yield of 1,3-butadiene is improved. When the pressure in step B13 is not more than the upper limit of the above range, the decrease in yield of 1,3-butadiene due to the excessive reaction can be suppressed.
 工程B13の転化反応時の温度は、50~500℃の範囲で設定すればよく、250~450℃が好ましく、300~400℃がより好ましい。工程B13の温度が前記範囲の下限値以上であれば、1,3-ブタジエンの収率が向上する。工程B13の温度が前記範囲の上限値以下であれば、過剰反応による1,3-ブタジエンの収率低下を抑制できる。 The temperature at the time of the conversion reaction in step B13 may be set in the range of 50 to 500 ° C, preferably 250 to 450 ° C, and more preferably 300 to 400 ° C. When the temperature in step B13 is equal to or higher than the lower limit of the above range, the yield of 1,3-butadiene is improved. When the temperature in step B13 is not more than the upper limit of the above range, the decrease in yield of 1,3-butadiene due to the excessive reaction can be suppressed.
 工程B13でのエタノールから1,3-ブタジエンへの転化率は、30%超が好ましく、40%超がより好ましく、50%超がさらに好ましい。1,3-ブタジエンへの転化率の上限は、特に限定されないが、例えば100%以下でもよく、95%以下でもよく、90%以下でもよい。1,3-ブタジエンへの転化率は、30%超100%以下が好ましく、40%超100%以下がより好ましく、50%超100%以下がさらに好ましい。
 工程B13の「1,3-ブタジエンへの転化率」とは、工程B13の反応器に供給されるエタノール含有ガス中のエタノールの単位時間当たりのモル数に対する、前記反応器中で消費されたエタノールの単位時間当たりのモル数の比率(百分率)を意味する。
 工程B13の反応器中で消費されたエタノールの単位時間当たりのモル数は、工程B13の反応器に供給されるエタノール含有ガス中のエタノールの単位時間当たりのモル数から、工程B13の反応器から排出される粗生成ガス中のエタノールの単位時間当たりのモル数を差し引くことで算出される。
The conversion rate from ethanol to 1,3-butadiene in step B13 is preferably more than 30%, more preferably more than 40%, still more preferably more than 50%. The upper limit of the conversion rate to 1,3-butadiene is not particularly limited, but may be, for example, 100% or less, 95% or less, or 90% or less. The conversion rate to 1,3-butadiene is preferably more than 30% and 100% or less, more preferably more than 40% and 100% or less, and further preferably more than 50% and 100% or less.
The “conversion rate to 1,3-butadiene” in step B13 is the ethanol consumed in the reactor with respect to the number of moles of ethanol in the ethanol-containing gas supplied to the reactor in step B13 per unit time. Means the ratio (percentage) of the number of moles per unit time.
The number of moles of ethanol consumed in the reactor of step B13 per unit time is determined from the number of moles of ethanol in the ethanol-containing gas supplied to the reactor of step B13 per unit time from the reactor of step B13. It is calculated by subtracting the number of moles of ethanol in the discharged crude gas per unit time.
 工程B13の転化反応の1,3-ブタジエンの選択率は、50%超が好ましく、60%超がより好ましく、70%超がさらに好ましい。1,3-ブタジエンの選択率の上限は、特に限定されないが、例えば100%以下でもよい。100%未満の場合は、副生成物としてジエチルエーテル、エチレンであれば分離しエタノールへ変換でき、クロチルアルコール、クロトンアルデヒドであればブタジエンに変換できるため好ましい。1,3-ブタジエンの選択率は、50%超100%以下が好ましく、60%超100%以下がより好ましく、70%超100%以下がさらに好ましい。工程B13の「1,3-ブタジエンの選択率」とは、工程B13の反応器中で消費されたエタノールの単位時間当たりのモル数に対する、1,3-ブタジエンに変換されたエタノールの単位時間当たりのモル数の比率(百分率)を意味する。 The selectivity of 1,3-butadiene in the conversion reaction of step B13 is preferably more than 50%, more preferably more than 60%, and even more preferably more than 70%. The upper limit of the selectivity of 1,3-butadiene is not particularly limited, but may be 100% or less, for example. If it is less than 100%, diethyl ether and ethylene as by-products can be separated and converted to ethanol, and crotyl alcohol and crotonaldehyde can be converted to butadiene, which is preferable. The selectivity of 1,3-butadiene is preferably more than 50% and 100% or less, more preferably more than 60% and 100% or less, and further preferably more than 70% and 100% or less. The “1,3-butadiene selectivity” of step B13 is the number of moles of ethanol consumed in the reactor of step B13 per unit time of ethanol converted to 1,3-butadiene. Means the ratio (percentage) of the number of moles of.
 工程B13で得られる粗生成ガスに含まれ得る副生物としては、アセトアルデヒド(CHCHO)、エチレン(HC=CH)、プロピレン(HC=CHCH)、ジエチルエーテル(CHCHOCHCH)、酢酸(CHCOOH),酢酸エチル(CHCOOCHCH)、ブタノール(COH)、酪酸(CHCHCHCOOH)、クロトン酸(CHCH=CHCOOH)、ヘキサノール(C13OH)、1-ブテン(HC=CHCHCH)、2-ブテン(CHCH=CHCH)、イソブテン(HC=C(CH)、クロトンアルデヒド、クロチルアルコール、ペンテン、ペンタジエン、ヘキセン、ヘキサジエン、オクテン、オクタジエン、ヘキセン酸、オクテン酸、2,4-ジメチルフラン,2-メチル-2-シクロペンテン-1-オン、2,5-ジエチルフェノール,1,2,3-トリメチルインデン、4-ヒドロキシ-4-メチル-2-ペンタノン、ジエチルアセタールが挙げられる。さらに、これらの副生物以外にも、炭素数6の化合物(C6成分)及び炭素数8の化合物(C8成分)の一方又は両方が生成する場合がある。 The by-product which may be contained in the crude product gas obtained in step B13, acetaldehyde (CH 3 CHO), ethylene (H 2 C = CH 2) , propylene (H 2 C = CHCH 3) , diethyl ether (CH 3 CH 2 OCH 2 CH 3 ), acetic acid (CH 3 COOH), ethyl acetate (CH 3 COOCH 2 CH 3 ), butanol (C 4 H 9 OH), butylic acid (CH 3 CH 2 CH 2 COOH), crotonic acid (CH 3) CH = CHCOOH), Hexanol (C 6 H 13 OH), 1-Butene (H 2 C = CH CH 2 CH 3 ), 2-Butene (CH 3 CH = CH CH 3 ), Isobutene (H 2 C = C (CH 3)) ) 2 ), Crotonaldehyde, crotyl alcohol, penten, pentadiene, hexene, hexadiene, octene, octadiene, hexenoic acid, octenoic acid, 2,4-dimethylfuran, 2-methyl-2-cyclopentene-1-one, 2, Examples thereof include 5-diethylphenol, 1,2,3-trimethylinden, 4-hydroxy-4-methyl-2-pentanone and diethylacetal. Further, in addition to these by-products, one or both of a compound having 6 carbon atoms (C6 component) and a compound having 8 carbon atoms (C8 component) may be produced.
 工程Bにおいては、下記の工程B2~工程B4からなる群から選ばれる少なくとも1つを工程B1に組み合わせてもよい。これら工程B2~工程B4を後述の工程Dと組み合わせることで、系中のガス量の過剰な増加を抑制でき、運転コストを抑制できる。
 工程B2:気液分離によって工程B1に供給されるエタノール含有ガスから水素を含むガスを分離する。
 工程B3:気液分離によって工程B1後のガスから窒素を含むガスを分離する。
 工程B4:蒸留によって工程B1に供給されるエタノール含有ガスからアセトアルデヒドを含むガスを分離する。
In the step B, at least one selected from the group consisting of the following steps B2 to B4 may be combined with the step B1. By combining these steps B2 to B4 with the step D described later, an excessive increase in the amount of gas in the system can be suppressed, and the operating cost can be suppressed.
Step B2: The hydrogen-containing gas is separated from the ethanol-containing gas supplied to step B1 by gas-liquid separation.
Step B3: The gas containing nitrogen is separated from the gas after step B1 by gas-liquid separation.
Step B4: The gas containing acetaldehyde is separated from the ethanol-containing gas supplied to step B1 by distillation.
 工程B2では、工程Aで得られた工程B1に供給されるエタノール含有ガスに対して気液分離を行い、水素を含むガスを分離する。これにより、還元による副反応が抑制され1,3-ブタジエンの収率が向上する。
 工程B2の気液分離の条件としては、圧力が0~5MPaG、温度が-150~100℃の条件が好ましい。
In step B2, gas-liquid separation is performed on the ethanol-containing gas supplied to step B1 obtained in step A, and the gas containing hydrogen is separated. As a result, side reactions due to reduction are suppressed and the yield of 1,3-butadiene is improved.
The conditions for gas-liquid separation in step B2 are preferably a pressure of 0 to 5 MPaG and a temperature of −150 to 100 ° C.
 工程B3では、工程B1後のガスに対して気液分離を行い、窒素を含むガスを分離する。これにより、系中のガス量の過剰な増加を抑制でき、運転コストを抑制できる。
 工程B3の気液分離の条件としては、圧力が0~5MPaG、温度が-150~100℃の条件が好ましい。
In step B3, gas-liquid separation is performed on the gas after step B1 to separate the gas containing nitrogen. As a result, an excessive increase in the amount of gas in the system can be suppressed, and the operating cost can be suppressed.
The conditions for gas-liquid separation in step B3 are preferably a pressure of 0 to 5 MPaG and a temperature of −150 to 100 ° C.
 工程B4では、工程Aで得られた工程B1に供給されるエタノール含有ガスを蒸留塔に供給して蒸留し、アセトアルデヒドを含むガスを分離する。より具体的には、例えば、棚段式蒸留塔や充填型蒸留塔を用い、塔頂からアセトアルデヒドを含むガスを抜き出し、中間部からエタノール含有ガスを抜き出す。 In step B4, the ethanol-containing gas supplied to step B1 obtained in step A is supplied to the distillation column for distillation, and the gas containing acetaldehyde is separated. More specifically, for example, a shelf-type distillation column or a filling distillation column is used to extract a gas containing acetaldehyde from the top of the column and an ethanol-containing gas from the intermediate portion.
〈工程C〉
 工程Cは、下記の工程C1~工程C4からなる群から選ばれる少なくとも1つを含む。
 これらの工程を後述の工程Dと組み合わせることで、未反応物をリサイクルし原料利用率が高まり1,3-ブタジエンの収率が向上する。
 工程C1:粗生成ガス中のブテン(1-ブテン、2-ブテン、イソブテン)を脱水素化反応させて1,3-ブタジエンに転化する。
 工程C2:気液分離によって粗生成ガスから水素ガスを分離して1,3-ブタジエン含有液を得る。
 工程C3:粗生成ガスの液化物又は1,3-ブタジエン含有液を蒸留してエチレン含有ガスと1,3-ブタジエン含有流出物とアセトアルデヒド含有液に分離する。
 工程C4:アセトアルデヒド含有液を蒸留し、アセトアルデヒド含有ガスと、水を含む残液とに分離する。
<Process C>
Step C includes at least one selected from the group consisting of the following steps C1 to C4.
By combining these steps with step D described later, the unreacted product is recycled, the raw material utilization rate is increased, and the yield of 1,3-butadiene is improved.
Step C1: Butene (1-butene, 2-butene, isobutene) in the crude gas is dehydrogenated and converted to 1,3-butadiene.
Step C2: Hydrogen gas is separated from the crude gas by gas-liquid separation to obtain a 1,3-butadiene-containing liquid.
Step C3: The liquefied crude gas or the 1,3-butadiene-containing liquid is distilled to separate it into an ethylene-containing gas, a 1,3-butadiene-containing effluent and an acetaldehyde-containing liquid.
Step C4: The acetaldehyde-containing liquid is distilled and separated into an acetaldehyde-containing gas and a residual liquid containing water.
 1-ブテン、2-ブテン、イソブテンは蒸留等によって1,3-ブタジエンと分離することが困難である。工程C1において、1-ブテン、2-ブテン、イソブテンを脱水素化反応させて1,3-ブタジエンに転化することで、1,3-ブタジエンの比率が高まる。 It is difficult to separate 1-butene, 2-butene, and isobutene from 1,3-butadiene by distillation or the like. In step C1, the ratio of 1,3-butadiene is increased by dehydrogenating 1-butene, 2-butene, and isobutene to convert them to 1,3-butadiene.
 工程Cにおいて工程C1と工程C3の両方を行う場合、工程C3の前に工程C1を行ってもよく、工程C3の後に工程C1を行ってもよい。
 工程C1では、例えば、工程Bで得た粗生成ガス、又は工程C3で得た1,3-ブタジエン含有流出物を第3反応器に供給し、第4触媒の存在下、圧力が-1.0~1.0MPaG、温度が200~550℃の条件で1-ブテン、2-ブテン、イソブテンを脱水素化反応させて1,3-ブタジエンに転化する。
 工程C1における第3反応器の態様としては、後述の第1反応器で例示した態様と同様の態様を例示できる。
When both the step C1 and the step C3 are performed in the step C, the step C1 may be performed before the step C3, or the step C1 may be performed after the step C3.
In step C1, for example, the crude gas obtained in step B or the 1,3-butadiene-containing effluent obtained in step C3 is supplied to the third reactor, and the pressure is -1 in the presence of the fourth catalyst. Under the conditions of 0 to 1.0 MPaG and a temperature of 200 to 550 ° C., 1-butene, 2-butene and isobutene are dehydrogenated to be converted to 1,3-butadiene.
As the mode of the third reactor in the step C1, the same mode as that illustrated in the first reactor described later can be exemplified.
 第4触媒としては、1-ブテン、2-ブテン、イソブテンの脱水素化反応を促進するものであればよく、例えば、モリブデン、タングステン、ビスマス、スズ、鉄、ニッケルを例示できる。なかでも、1,3-ブタジエンの収率の点から、モリブデンが好ましい。第4触媒を使用する態様としては、例えば金属、酸化物、塩化物を例示でき、担体上に第4触媒を担持させて使用する態様、担体上に例示された元素を担持させて使用する触媒や、例示された元素を含む複合酸化物、2種以上の混合物として使用する態様を例示できる。第4触媒としては、1種を単独で使用してもよく、2種以上を併用してもよい。 The fourth catalyst may be any catalyst that promotes the dehydrogenation reaction of 1-butene, 2-butene, and isobutene, and examples thereof include molybdenum, tungsten, bismuth, tin, iron, and nickel. Of these, molybdenum is preferable from the viewpoint of the yield of 1,3-butadiene. Examples of the mode in which the fourth catalyst is used include metals, oxides, and chlorides, in which the fourth catalyst is supported on a carrier and used, and in which the elements exemplified on the carrier are supported and used. Alternatively, an embodiment in which a composite oxide containing the exemplified elements is used as a mixture of two or more kinds can be exemplified. As the fourth catalyst, one type may be used alone, or two or more types may be used in combination.
 工程C1の脱水素化反応時の圧力は、-1.0~1.0MPaGの範囲で設定すればよく、-0.5~0.5MPaGが好ましく、-0.3~0.3MPaGがより好ましい。
 工程C1の圧力が前記範囲の下限値以上であれば、1,3-ブタジエンの収率が向上する。工程C1の圧力が前記範囲の上限値以下であれば、過剰反応による1,3-ブタジエンの収率低下を抑制できる。
The pressure during the dehydrogenation reaction in step C1 may be set in the range of -1.0 to 1.0 MPaG, preferably -0.5 to 0.5 MPaG, and more preferably -0.3 to 0.3 MPaG. ..
When the pressure in step C1 is equal to or higher than the lower limit of the above range, the yield of 1,3-butadiene is improved. When the pressure in step C1 is not more than the upper limit of the above range, the decrease in yield of 1,3-butadiene due to the excessive reaction can be suppressed.
 工程C1の脱水素化反応時の温度は、200~550℃の範囲で設定すればよく、300~500℃が好ましく、300~450℃がより好ましい。工程C1の温度が前記範囲の下限値以上であれば、1,3-ブタジエンの収率が向上する。工程C1の温度が前記範囲の上限値以下であれば、過剰反応による1,3-ブタジエンの収率低下を抑制できる。 The temperature at the time of the dehydrogenation reaction in step C1 may be set in the range of 200 to 550 ° C, preferably 300 to 500 ° C, and more preferably 300 to 450 ° C. When the temperature in step C1 is equal to or higher than the lower limit of the above range, the yield of 1,3-butadiene is improved. When the temperature in step C1 is not more than the upper limit of the above range, the decrease in yield of 1,3-butadiene due to the excessive reaction can be suppressed.
 工程C2では、工程Bで得た粗生成ガス、又は、工程C1を行った後の粗生成ガスに対して気液分離を行い、水素ガスを分離して1,3-ブタジエン含有液を得る。工程A2で窒素ガス等の希釈用ガスでエタノール含有ガスを希釈している場合、工程C2では水素ガスとともに希釈用ガスも分離される。
 粗生成ガスの気液分離の条件としては、圧力が0~1.0MPaG、温度が0~100℃の条件が好ましい。
In step C2, gas-liquid separation is performed on the crude gas obtained in step B or the crude gas obtained after performing step C1, and hydrogen gas is separated to obtain a 1,3-butadiene-containing liquid. When the ethanol-containing gas is diluted with a dilution gas such as nitrogen gas in step A2, the dilution gas is separated together with the hydrogen gas in step C2.
The conditions for gas-liquid separation of the crude gas are preferably a pressure of 0 to 1.0 MPaG and a temperature of 0 to 100 ° C.
 工程C3では、工程Bで得た粗生成ガスの液化物、工程C1後の粗生成ガスの液化物、又は、工程C2後の1,3-ブタジエン含有液を蒸留塔に供給して蒸留する。これにより、エチレン含有ガスと1,3-ブタジエン含有流出物とアセトアルデヒド含有液に分離する。より具体的には、例えば、棚段式蒸留塔や充填型蒸留塔を用い、塔頂からエチレン含有ガスを抜き出し、塔底からアセトアルデヒド含有液を抜き出し、中間部から1,3-ブタジエン含有流出物を抜き出す。なお、工程C3では、2つの蒸留塔を用い、1つ目の蒸留塔でエチレン含有ガスを分離し、2つ目の蒸留塔で1,3-ブタジエン含有流出物とアセトアルデヒド含有液に分離してもよい。 In step C3, the liquefied crude gas obtained in step B, the liquefied crude gas after step C1, or the 1,3-butadiene-containing liquid after step C2 is supplied to the distillation column for distillation. As a result, the ethylene-containing gas, the 1,3-butadiene-containing effluent, and the acetaldehyde-containing liquid are separated. More specifically, for example, using a shelf-type distillation column or a filling distillation column, ethylene-containing gas is extracted from the top of the column, acetaldehyde-containing liquid is extracted from the bottom of the column, and 1,3-butadiene-containing effluent is extracted from the intermediate portion. Extract. In step C3, two distillation columns are used, the ethylene-containing gas is separated in the first distillation column, and the 1,3-butadiene-containing effluent and the acetaldehyde-containing liquid are separated in the second distillation column. May be good.
 エチレン含有ガスには、エチレンの他、プロピレン、メタン、エタン等の炭素数2~3の化合物(C2成分、C3成分)が含まれる。工程C1を行わずに工程Bで得た粗生成ガスの液化物を蒸留した場合は、水素ガスと窒素ガス等の希釈用ガスは工程C3においてエチレン含有ガスとともに分離される。
 アセトアルデヒド含有液には、アセトアルデヒドの他、エタノール、水等が含まれる。
 前記アルデヒド含有液には、さらに、炭素数6の化合物(C6成分)、炭素数8の化合物(C8成分)が含まれる場合がある。
In addition to ethylene, the ethylene-containing gas contains compounds having 2 to 3 carbon atoms (C2 component, C3 component) such as propylene, methane, and ethane. When the liquefied crude gas obtained in step B is distilled without performing step C1, the diluting gas such as hydrogen gas and nitrogen gas is separated together with the ethylene-containing gas in step C3.
The acetaldehyde-containing liquid includes ethanol, water and the like in addition to acetaldehyde.
The aldehyde-containing liquid may further contain a compound having 6 carbon atoms (C6 component) and a compound having 8 carbon atoms (C8 component).
 工程C2を行わずに工程C3を行う場合、工程C3ではエチレン含有ガスとともに水素ガスも分離される。また、工程A2で窒素ガス等の希釈用ガスでエタノール含有ガスを希釈している場合、工程C3ではエチレン含有ガスとともに希釈用ガスも分離される。 When step C3 is performed without performing step C2, hydrogen gas is separated together with ethylene-containing gas in step C3. When the ethanol-containing gas is diluted with a dilution gas such as nitrogen gas in step A2, the dilution gas is separated together with the ethylene-containing gas in step C3.
 工程C4では、工程C3で得たアセトアルデヒド含有液を蒸留塔に供給し、アセトアルデヒド含有ガスと、水を含む残液とに分離する。
 なお、工程Cで工程C3及び工程C4を行う場合、工程C3と工程C4を別々に行う態様には限定されず、工程C3と工程C4を1つの蒸留塔で一度に行ってもよい。
In step C4, the acetaldehyde-containing liquid obtained in step C3 is supplied to the distillation column and separated into an acetaldehyde-containing gas and a residual liquid containing water.
When the step C3 and the step C4 are performed in the step C, the mode is not limited to the mode in which the step C3 and the step C4 are performed separately, and the step C3 and the step C4 may be performed at the same time in one distillation column.
 工程C4で得られるアセトアルデヒド含有ガスの総体積に対するアセトアルデヒドの含有量は、10体積%以上が好ましく、20体積%以上がより好ましく、40体積%以上がさらに好ましい。アセトアルデヒド含有ガスの総体積に対するアセトアルデヒドの含有量の上限は特に限定されないが、例えば100体積%以下でもよく、90体積%以下でもよく、80体積%以下でもよい。アセトアルデヒド含有ガスの総体積に対するアセトアルデヒドの含有量は、10~100体積%が好ましく、20~100体積%がより好ましく、40~100体積%がさらに好ましい。
 工程Cで得られる精製1,3-ブタジエンの純度は、1,3-ブタジエン含有液又は1,3-ブタジエン含有流出物の総質量に対して、95.0質量%以上が好ましく、99.0質量%以上がより好ましく、99.5質量%以上がさらに好ましい。精製1,3-ブタジエンの純度の上限は特に限定されないが、例えば100質量%以下でもよい。精製1,3-ブタジエンの純度は、95.0~100質量%が好ましく、99.0~100質量%がより好ましく、99.5~100質量%がさらに好ましい。
The content of acetaldehyde with respect to the total volume of the acetaldehyde-containing gas obtained in step C4 is preferably 10% by volume or more, more preferably 20% by volume or more, still more preferably 40% by volume or more. The upper limit of the acetaldehyde content with respect to the total volume of the acetaldehyde-containing gas is not particularly limited, but may be, for example, 100% by volume or less, 90% by volume or less, or 80% by volume or less. The content of acetaldehyde with respect to the total volume of the acetaldehyde-containing gas is preferably 10 to 100% by volume, more preferably 20 to 100% by volume, still more preferably 40 to 100% by volume.
The purity of the purified 1,3-butadiene obtained in step C is preferably 95.0% by mass or more, preferably 99.0% by mass, based on the total mass of the 1,3-butadiene-containing liquid or the 1,3-butadiene-containing effluent. More preferably, it is 99.5% by mass or more, and further preferably 99.5% by mass or more. The upper limit of the purity of the purified 1,3-butadiene is not particularly limited, but may be, for example, 100% by mass or less. The purity of the purified 1,3-butadiene is preferably 95.0 to 100% by mass, more preferably 99.0 to 100% by mass, still more preferably 99.5 to 100% by mass.
〈工程D〉
《リサイクル工程》
 リサイクル工程では、製造ライン上の工程C4から排出される排出ガスであって、エタノール及びアセトアルデヒドのいずれか一方又は両方と、エタノール及びアセトアルデヒドよりも沸点が高い高沸点成分とを含む排出ガスの少なくとも一部を加熱して得られる気化ガスの少なくとも一部を、工程A及び工程Bのいずれか一方又は両方に戻す。
 製造ライン上の工程Cから排出される排出ガス中には、未反応の原料(エタノール)、中間生成物(アセトアルデヒド)に加えて、副生物として、これらよりも高沸点の成分である炭素数6の化合物(C6成分)及び炭素数8の化合物(C8成分)が含まれている。排出ガス中のC6成分及びC8成分などの高沸点成分の合計含有量が前記排出ガス中の有機化合物の総質量の0.5質量%以上であると、温度の低下により液化して、配管やポンプを閉塞させる原因となりやすい。
 従って、排出ガス中の高沸点成分の含有量をC4工程から出る配管上でモニターし、その分析結果に基づいて当該排出ガスをリサイクル工程又はトラップ工程へ流すかを判断する。即ち、高沸点成分が排出ガス中の有機化合物の総質量の0.5質量%未満であった場合はリサイクル工程へ、5質量%以上であった場合はトラップ工程へ排出ガスを流す。
 排出ガス中の有機化合物の総質量中の高沸点成分をモニターして0.5質量%未満であった場合、前記排出ガスを加熱することによりC6成分及びC8成分が充分に気化する温度まで昇温して気化ガスとし、C6成分及びC8成分の析出を防止しながら、工程A及び工程Bのいずれか一方又は両方に気化ガスを戻す。
 未反応の原料(エタノール)及び中間生成物(アセトアルデヒド)を1,3-ブタジエンを製造するための原料としてリサイクルすることにより、1,3-ブタジエンの収率が向上する。さらに、C6成分及びC8成分も1,3-ブタジエンを製造するための原料としてリサイクルすることにより、1,3-ブタジエンの収率がより向上する。
<Process D>
<< Recycling process >>
In the recycling process, at least one of the exhaust gases emitted from step C4 on the production line, which contains either or both of ethanol and acetaldehyde and a high boiling point component having a boiling point higher than that of ethanol and acetaldehyde. At least a part of the vaporized gas obtained by heating the portion is returned to one or both of step A and step B.
In the exhaust gas discharged from step C on the production line, in addition to the unreacted raw material (ethanol) and intermediate product (acetaldehyde), as a by-product, the number of carbon atoms is 6 which is a component having a boiling point higher than these. Compound (C6 component) and a compound having 8 carbon atoms (C8 component) are included. If the total content of high boiling point components such as C6 component and C8 component in the exhaust gas is 0.5% by mass or more of the total mass of the organic compounds in the exhaust gas, it will be liquefied due to the decrease in temperature, and the pipes and pipes will be liquefied. It tends to cause the pump to block.
Therefore, the content of the high boiling point component in the exhaust gas is monitored on the pipe exiting from the C4 step, and based on the analysis result, it is determined whether to flow the exhaust gas to the recycling step or the trapping step. That is, if the high boiling point component is less than 0.5% by mass of the total mass of the organic compounds in the exhaust gas, the exhaust gas is sent to the recycling step, and if it is 5% by mass or more, the exhaust gas is sent to the trap step.
When the high boiling point component in the total mass of the organic compound in the exhaust gas is monitored and it is less than 0.5% by mass, the temperature is raised to a temperature at which the C6 component and the C8 component are sufficiently vaporized by heating the exhaust gas. It is warmed to vaporize gas, and the vaporized gas is returned to either or both of step A and step B while preventing the precipitation of C6 component and C8 component.
By recycling the unreacted raw material (ethanol) and the intermediate product (acetaldehyde) as raw materials for producing 1,3-butadiene, the yield of 1,3-butadiene is improved. Further, by recycling the C6 component and the C8 component as raw materials for producing 1,3-butadiene, the yield of 1,3-butadiene is further improved.
 リサイクル工程では、工程C4から排出される排出ガス中の高沸点成分を気化した後、工程Aに戻してもよく、工程Bに戻してもよい。工程Dのリサイクル工程では、1,3-ブタジエンの収率向上効果が高い点から、工程C4から排出される排出ガスを工程Bに戻すことが好ましく、工程B1に戻すことがより好ましく、工程B11と工程B12との間に戻すことがさらに好ましい。 In the recycling step, after vaporizing the high boiling point component in the exhaust gas discharged from the step C4, it may be returned to the step A or the step B. In the recycling step of step D, it is preferable to return the exhaust gas discharged from step C4 to step B, more preferably to step B1, and step B11 because the effect of improving the yield of 1,3-butadiene is high. It is more preferable to return between the step B12 and the step B12.
 リサイクル工程では、例えば、製造ライン上の工程C4における排出ガスの排出部と、製造ライン上の工程Aや工程Bの排出ガスを戻す部分とを繋ぐ配管を設けることで、未反応のエタノール等を製造ライン上に戻すことができる。 In the recycling process, for example, unreacted ethanol or the like is provided by providing a pipe connecting the exhaust gas discharging part in the process C4 on the production line and the part for returning the exhaust gas in the process A or B on the production line. It can be returned to the production line.
 リサイクル工程では、工程C4からの排出ガス中の高沸点成分を気化させる。気化器の熱源としては、例えば、工程Bで生成される粗生成ガスの熱エネルギーを用いてもよい。 In the recycling process, the high boiling point components in the exhaust gas from process C4 are vaporized. As the heat source of the vaporizer, for example, the thermal energy of the crude gas produced in step B may be used.
 工程Dでは、前記気化ガスを工程Aに戻す場合、気化ガス中の高沸点成分を気液分離により除去してから、工程Aに戻してもよい。 In step D, when the vaporized gas is returned to step A, the high boiling point component in the vaporized gas may be removed by gas-liquid separation and then returned to step A.
《トラップ工程》
 トラップ工程では、製造ライン上の工程Cから排出される排出ガスであって、エタノール及びアセトアルデヒドのいずれか一方又は両方と、エタノール及びアセトアルデヒドよりも沸点が高い高沸点成分とを含む排出ガスから、前記高沸点成分の少なくとも一部を除去して得られる高沸点成分除去ガスの少なくとも一部を、前記ガス調製工程及び前記転化工程のいずれか一方又は両方に戻す。
 製造ライン上の工程Cから排出される排出ガス中には、未反応の原料(エタノール)、中間生成物(アセトアルデヒド)に加えて、副生物として、これらよりも高沸点の成分である炭素数6の化合物(C6成分)及び炭素数8の化合物(C8成分)が含まれている。
 これらの高沸点成分は、排出ガス中の含有量が排出ガス中の有機化合物の総質量の0.5質量%以上の高濃度となった場合、圧力損失や温度低下により液化して、配管やポンプに蓄積し閉塞させる又は機器の運転コストを増加させる原因となりやすい。そのため、前記排出ガスから、前記高沸点成分の少なくとも一部を除去して得られる高沸点成分除去ガスの少なくとも一部を、工程A及び工程Bのいずれか一方又は両方に戻すことで、配管やポンプの閉塞又は機器の運転コストの増加を防止しながら、1,3-ブタジエンの収率を改善できる。
 具体的には、排出ガス中の高沸点成分をモニターした結果、排出ガス中の高沸点成分の合計含有量が前記排出ガス中の有機化合物の総質量の0.5%以上となった場合、排出ガス中でC6成分及びC8成分の一部が凝縮するため、排出ガスを加熱してC6成分及びC8成分を充分に気化した後にガスを冷却することで、C6成分およびC8成分を気液分離して、液体成分になったC6成分及びC8成分を除去し、高沸点成分除去ガスを工程A及び工程Bのいずれか一方又は両方に戻すことが好ましい。
 また、排出ガス中の高沸点成分の含有量が多くなった場合に、前記高沸点成分の少なくとも一部を除去した後に、気化器に供給するように構成してもよい。前記高沸点成分の少なくとも一部を除去する手段としては、フィルター、気液分離器等が挙げられる。
<< Trap process >>
In the trap step, the exhaust gas discharged from step C on the production line, which contains one or both of ethanol and acetaldehyde and a high boiling point component having a boiling point higher than that of ethanol and acetaldehyde, is described as described above. At least a part of the high boiling point component removing gas obtained by removing at least a part of the high boiling point component is returned to one or both of the gas preparation step and the conversion step.
In the exhaust gas discharged from step C on the production line, in addition to the unreacted raw material (ethanol) and intermediate product (acetaldehyde), as a by-product, the number of carbon atoms is 6 which is a component having a boiling point higher than these. Compound (C6 component) and a compound having 8 carbon atoms (C8 component) are included.
When the content of these high boiling point components in the exhaust gas is as high as 0.5% by mass or more of the total mass of the organic compounds in the exhaust gas, they are liquefied due to pressure loss or temperature drop, and are used in piping and pipes. It tends to accumulate in the pump and block it, or increase the operating cost of the equipment. Therefore, by returning at least a part of the high boiling point component removing gas obtained by removing at least a part of the high boiling point component from the exhaust gas to either one or both of step A and step B, the piping or The yield of 1,3-butadiene can be improved while preventing pump blockage or increased equipment operating costs.
Specifically, as a result of monitoring the high boiling point components in the exhaust gas, when the total content of the high boiling point components in the exhaust gas is 0.5% or more of the total mass of the organic compounds in the exhaust gas, Since a part of C6 component and C8 component is condensed in the exhaust gas, the C6 component and C8 component are separated into gas and liquid by heating the exhaust gas to sufficiently vaporize the C6 component and C8 component and then cooling the gas. Then, it is preferable to remove the C6 component and the C8 component which have become liquid components, and return the high boiling point component removing gas to either one or both of the steps A and B.
Further, when the content of the high boiling point component in the exhaust gas becomes high, at least a part of the high boiling point component may be removed and then supplied to the vaporizer. Means for removing at least a part of the high boiling point component include a filter, a gas-liquid separator, and the like.
 《リサイクル制御工程》
 リサイクル制御工程では、製造ライン上の工程B及び工程Cの少なくとも一方から排出される排出ガス(E/A)を製造ライン上の工程A及び工程Bの少なくとも一方に戻して、1,3-ブタジエンへの転化反応に供するガス中のモル比(E/A)を1~100に制御する。これにより、1,3-ブタジエンの収率が向上する。
<< Recycling control process >>
In the recycling control step, the exhaust gas (E / A) discharged from at least one of step B and step C on the production line is returned to at least one of step A and step B on the production line, and 1,3-butadiene. The molar ratio (E / A) in the gas to be subjected to the conversion reaction to is controlled to 1 to 100. This improves the yield of 1,3-butadiene.
 リサイクル制御工程によって制御するモル比(E/A)の範囲は、1~50が好ましく、1~20がより好ましく、1~10、1~5がさらに好ましく、1.1~3が最も好ましい。モル比(E/A)が前記範囲内であれば、1,3-ブタジエンの収率が向上する。 The range of the molar ratio (E / A) controlled by the recycling control step is preferably 1 to 50, more preferably 1 to 20, further preferably 1 to 10, 1 to 5, and most preferably 1.1 to 3. When the molar ratio (E / A) is within the above range, the yield of 1,3-butadiene is improved.
 リサイクル制御工程では、工程Cから排出される排出ガス(E/A)を工程Aに戻してもよく、工程Cから排出される排出ガス(E/A)を工程Bに戻してもよく、工程Bから排出される排出ガス(E/A)を工程Aに戻してもよく、工程Bから排出される排出ガス(E/A)を工程Bに戻してもよく、またこれらを組み合わせてもよい。工程Dでは、1,3-ブタジエンの収率向上効果が高い点から、工程Cから排出される排出ガス(E/A)を工程Bに戻すことが好ましく、工程B1に戻すことがより好ましく、工程B11と工程B12との間に戻すことがさらに好ましい。なお、工程Cから排出される排出ガス(E/A)を工程A又は工程Bに戻す構成に、工程Bから排出される排出ガス(E/A)を工程Cに戻す構成を組み合わせてもよい。 In the recycling control step, the exhaust gas (E / A) discharged from the step C may be returned to the step A, or the exhaust gas (E / A) discharged from the step C may be returned to the step B. The exhaust gas (E / A) discharged from B may be returned to step A, the exhaust gas (E / A) discharged from step B may be returned to step B, or these may be combined. .. In step D, it is preferable to return the exhaust gas (E / A) discharged from step C to step B, and more preferably to step B1 because the effect of improving the yield of 1,3-butadiene is high. It is more preferable to return between the step B11 and the step B12. The configuration in which the exhaust gas (E / A) discharged from the process C is returned to the process A or the process B may be combined with the configuration in which the exhaust gas (E / A) discharged from the process B is returned to the process C. ..
 2段反応を採用した工程B1に排出ガス(E/A)を戻す場合、工程B11に排出ガス(E/A)を戻してもよく、工程B12に排出ガス(E/A)を戻してもよく、工程B12に排出ガス(E/A)を戻すことが好ましい。 When returning the exhaust gas (E / A) to the step B1 that employs the two-stage reaction, the exhaust gas (E / A) may be returned to the step B11 or the exhaust gas (E / A) may be returned to the step B12. It is often preferable to return the exhaust gas (E / A) to step B12.
 リサイクル制御工程では、例えば、製造ライン上の工程Bや工程Cにおける排出ガス(E/A)の排出部と、製造ライン上の工程Aや工程Bの排出ガス(E/A)を戻す部分とを繋ぐ配管を設けることで、排出ガス(E/A)を戻す製造ライン上に戻すことができる。
 1,3-ブタジエンへの転化反応に供するガス中のモル比(E/A)は、例えば、プロセス質量分析計等の分析計を設置することによって分析できる。
In the recycling control process, for example, an emission part of the exhaust gas (E / A) in the process B or C on the production line and a part for returning the exhaust gas (E / A) of the process A or B on the production line. By providing a pipe connecting the two, the exhaust gas (E / A) can be returned to the production line.
The molar ratio (E / A) in the gas to be subjected to the conversion reaction to 1,3-butadiene can be analyzed by installing an analyzer such as a process mass spectrometer, for example.
 リサイクル制御工程では、1,3-ブタジエンへの転化反応に供するガス中のモル比(E/A)を1~100に制御するために、下記の工程D1~工程D3からなる群から選ばれる少なくとも1つを実施する。また、工程A及び工程Bのいずれか一方又は両方のモル比(E/A)を分析計によって監視した結果に基づいて、工程D1、工程D2及び工程D3のうちの1つ以上を実施することが好ましい。
 以下、工程A又は工程Bを総称して工程Xともいう。
 工程D1:排出ガス(E/A)の一部を分離し、残部を工程Xに戻す。
 工程D2:排出ガス(E/A)の少なくとも一部を工程Xに戻し、排出ガス(E/A)を戻した工程のガスからアセトアルデヒドの一部を分離する。
 工程D3:排出ガス(E/A)として、エタノールを主成分とする第1排出ガスとアセトアルデヒドを主成分とする第2排出ガスとをそれぞれ分けて工程Xに戻す。
In the recycling control step, in order to control the molar ratio (E / A) in the gas to be subjected to the conversion reaction to 1,3-butadiene from 1 to 100, at least selected from the group consisting of the following steps D1 to D3. Do one. In addition, one or more of step D1, step D2, and step D3 shall be carried out based on the result of monitoring the molar ratio (E / A) of either one or both of step A and step B with an analyzer. Is preferable.
Hereinafter, process A or process B are collectively referred to as process X.
Step D1: A part of the exhaust gas (E / A) is separated, and the rest is returned to the step X.
Step D2: At least a part of the exhaust gas (E / A) is returned to the step X, and a part of acetaldehyde is separated from the gas of the step in which the exhaust gas (E / A) is returned.
Step D3: As the exhaust gas (E / A), the first exhaust gas containing ethanol as a main component and the second exhaust gas containing acetaldehyde as a main component are separated and returned to step X.
 工程D1では、例えば、排出ガス(E/A)を工程Xに戻す配管から分岐する分岐配管を設け、その分岐配管に流量指示調節計を設ける。そして、分析計によるモル比(E/A)の分析結果に基づいて、排出ガス(E/A)の一部を分離し、排出ガス(E/A)を工程Xに戻す流量を調節することによってモル比(E/A)を制御する。例えば、分析計でモル比(E/A)の低下が認められる場合、排出ガス(E/A)中のアセトアルデヒドの比率が高いと考えられる。そのため、この場合には、流量指示調節計によって分岐配管へと分離する排出ガス(E/A)の量を増やし、工程Xに戻す排出ガス(E/A)の流量を低下させる。 In step D1, for example, a branch pipe that branches from the pipe that returns the exhaust gas (E / A) to step X is provided, and a flow rate indicator controller is provided in the branch pipe. Then, based on the analysis result of the molar ratio (E / A) by the analyzer, a part of the exhaust gas (E / A) is separated, and the flow rate for returning the exhaust gas (E / A) to the step X is adjusted. The molar ratio (E / A) is controlled by. For example, if the analyzer shows a decrease in the molar ratio (E / A), it is considered that the ratio of acetaldehyde in the exhaust gas (E / A) is high. Therefore, in this case, the amount of the exhaust gas (E / A) separated into the branch pipe by the flow rate indicator controller is increased, and the flow rate of the exhaust gas (E / A) returned to the step X is decreased.
 工程D2では、例えば、排出ガス(E/A)を工程Xに戻す工程に分離装置を設け、配管を通じて排出ガス(E/A)の少なくとも一部を戻しながら、分析計によるモル比(E/A)の分析結果に基づいて、当該工程のガスからアセトアルデヒドの一部を分離する。より具体的には、排出ガス(E/A)を戻している工程でモル比(E/A)の低下が認められた場合に、分離装置によってガス中のアセトアルデヒドを分離してモル比(E/A)を高める。 In step D2, for example, a separation device is provided in the step of returning the exhaust gas (E / A) to the step X, and the molar ratio (E / A) by the analyzer is returned while returning at least a part of the exhaust gas (E / A) through the pipe. Based on the analysis result of A), a part of acetaldehyde is separated from the gas of the step. More specifically, when a decrease in the molar ratio (E / A) is observed in the process of returning the exhaust gas (E / A), acetaldehyde in the gas is separated by a separator to separate the molar ratio (E / A). / A) is increased.
 工程D2に用いる分離装置としては、アセトアルデヒドを分離できる装置であればよく、例えば、気液分離器、蒸留塔、スクラバーを例示できる。工程D2の分離装置としては、1種を単独で使用してもよく、2種以上を組み合わせてもよい。 The separation device used in step D2 may be any device capable of separating acetaldehyde, and examples thereof include a gas-liquid separator, a distillation column, and a scrubber. As the separation device in step D2, one type may be used alone, or two or more types may be combined.
 工程D2では、排出ガス(E/A)を戻した工程のガスを分離装置に導入し、分離装置において1.0~5.0MPaの加圧下でアセトアルデヒドの一部を分離することが好ましい。これにより、アセトアルデヒドの分離効率が高くなる。
 工程D2において分離装置でアセトアルデヒドを分離する際の圧力は、1.0~3.0MPaが好ましく、1.0~2.0MPaがより好ましい。
In step D2, it is preferable to introduce the gas of the step in which the exhaust gas (E / A) has been returned into the separation device and separate a part of acetaldehyde under a pressure of 1.0 to 5.0 MPa in the separation device. This increases the separation efficiency of acetaldehyde.
The pressure for separating acetaldehyde with the separation device in step D2 is preferably 1.0 to 3.0 MPa, more preferably 1.0 to 2.0 MPa.
 工程D3では、例えば、エタノールを主成分とする第1排出ガスを工程Xに戻す第1配管と、アセトアルデヒドを主成分とする第2排出ガスを工程Xに戻す第2配管とを別々に設け、分析計によるモル比(E/A)の分析結果に基づいて、第1排出ガスと第2排出ガスをそれぞれ工程Xに戻す。本発明において、「第1排出ガスがエタノールを主成分とする」とは、第1排出ガス中のエタノールの割合がアセトアルデヒドの割合よりも高いことを意味する。また、「第2排出ガスがアセトアルデヒドを主成分とする」とは、第1排出ガス中のアセトアルデヒドの割合がエタノールの割合よりも高いことを意味する。 In step D3, for example, a first pipe for returning the first exhaust gas containing ethanol as a main component to step X and a second pipe for returning the second exhaust gas containing acetaldehyde as a main component to step X are separately provided. Based on the analysis result of the molar ratio (E / A) by the analyzer, the first exhaust gas and the second exhaust gas are returned to the step X, respectively. In the present invention, "the first exhaust gas contains ethanol as a main component" means that the ratio of ethanol in the first exhaust gas is higher than the ratio of acetaldehyde. Further, "the second exhaust gas contains acetaldehyde as a main component" means that the ratio of acetaldehyde in the first exhaust gas is higher than the ratio of ethanol.
 工程D3では、流量指示調節計等によって、第1排出ガスを工程Xに戻す流量と第2排出ガスを工程Xに戻す流量をそれぞれ調節できるようになっていることが好ましい。なお、工程D3では、第1排出ガスと第2排出ガスを同じ工程に戻してもよく、異なる工程に戻してもよい。 In step D3, it is preferable that the flow rate for returning the first exhaust gas to step X and the flow rate for returning the second exhaust gas to step X can be adjusted by a flow rate indicator or the like. In step D3, the first exhaust gas and the second exhaust gas may be returned to the same step or may be returned to different steps.
 リサイクル制御工程では、分析計による監視においてモル比(エタノール/アセトアルデヒド)が0.8以下となったときに、工程D1~工程D3のうちの1つ以上を開始することが好ましい。
 リサイクル制御工程では、工程D1~工程D3のいずれか1つのみを実施してもよく、工程D1~工程D3の2つ以上を組み合わせて実施してもよい。なかでも、工程D1と工程D2の組み合わせ、又は、工程D2と工程D3の組み合わせが好ましい。
In the recycling control step, it is preferable to start one or more of steps D1 to D3 when the molar ratio (ethanol / acetaldehyde) becomes 0.8 or less in the monitoring by the analyzer.
In the recycling control step, only one of steps D1 to D3 may be carried out, or two or more of steps D1 to D3 may be carried out in combination. Of these, a combination of steps D1 and D2 or a combination of steps D2 and D3 is preferable.
[1,3-ブタジエンの製造装置]
 本実施形態の1,3-ブタジエンの製造装置は、エタノールを含むエタノール供給原料から1,3-ブタジエンを連続的に製造する製造装置である。本実施形態の1,3-ブタジエンの製造装置を用いることで、前述の本実施形態の1,3-ブタジエンの製造方法を実施できる。
 本実施形態の1,3-ブタジエンの製造装置は、ガス調製手段と、転化手段と、精製手段と、リサイクル手段及びリサイクル制御手段の一方又は両方と、を備えている。
[1,3-Butadiene production equipment]
The 1,3-butadiene production apparatus of the present embodiment is a production apparatus for continuously producing 1,3-butadiene from an ethanol supply raw material containing ethanol. By using the 1,3-butadiene production apparatus of the present embodiment, the above-mentioned 1,3-butadiene production method of the present embodiment can be carried out.
The 1,3-butadiene production apparatus of the present embodiment includes gas preparation means, conversion means, purification means, and one or both of recycling means and recycling control means.
 ガス調製手段は、工程Aのための手段であり、エタノール供給原料を気化してエタノール含有ガスとする気化器を備えている。気化器は、エタノール供給原料を気化できるものであればよく、公知の気化器を採用できる。 The gas preparation means is a means for step A, and is equipped with a vaporizer that vaporizes the ethanol supply raw material into an ethanol-containing gas. As the vaporizer, any known vaporizer can be used as long as it can vaporize the ethanol supply raw material.
 転化手段は、工程Bのための手段であり、エタノール含有ガス中のエタノールを1,3-ブタジエンまで転化させる反応器を備えている。
 反応器の態様としては、所定の圧力及び温度でガスを触媒に接触させることができるものであればよい。例えば、側壁部に熱媒が循環される反応管内に触媒を充填して反応床を形成し、供給されたガスを反応床の触媒に接触させる態様を例示できる。反応床としては、特に限定されず、例えば、固定床、移動床、流動床を例示できる。
The conversion means is a means for step B, and includes a reactor that converts ethanol in the ethanol-containing gas to 1,3-butadiene.
The reactor may be in any form as long as it can bring the gas into contact with the catalyst at a predetermined pressure and temperature. For example, an embodiment in which a catalyst is filled in a reaction tube in which a heat medium is circulated in a side wall portion to form a reaction bed, and the supplied gas is brought into contact with the catalyst of the reaction bed can be exemplified. The reaction bed is not particularly limited, and examples thereof include a fixed bed, a moving bed, and a fluidized bed.
 転化手段は、2つ以上の並列の反応器を備えていてもよい。例えば、2段反応の場合、工程B11のための2つ以上の並列の反応器と、工程B12のための2つ以上の並列の反応器を備えていてもよい。1段反応の場合、工程B13のための2つ以上の並列の反応器を備えていてもよい。 The conversion means may include two or more parallel reactors. For example, in the case of a two-stage reaction, two or more parallel reactors for step B11 and two or more parallel reactors for step B12 may be provided. In the case of a one-stage reaction, two or more parallel reactors for step B13 may be provided.
 精製手段は、工程Cのための手段であり、例えば、気液分離器、蒸留塔、反応器等の1,3-ブタジエンを含む粗生成ガスを精製可能な機器を備える。
 精製手段が反応器を備えることで工程C1を実施できる。精製手段が気液分離器を備えることで工程C2を実施できる。精製手段が蒸留塔を備えることで工程C3、工程C4を実施できる。精製手段は、前記した機器の1つを単独で備えるものであってもよく、2つ以上の機器を組み合わせたものであってもよい。
The purification means is a means for step C, and includes, for example, a gas-liquid separator, a distillation column, a reactor, and other devices capable of purifying a crude gas containing 1,3-butadiene.
Step C1 can be carried out when the purification means includes a reactor. Step C2 can be carried out by providing the purification means with a gas-liquid separator. Step C3 and step C4 can be carried out when the purification means includes a distillation column. The purification means may be provided alone with one of the above-mentioned devices, or may be a combination of two or more devices.
 リサイクル手段は、精製手段から排出される排出ガス中のC6成分及びC8成分を気化するための気化器と、C6成分及びC8成分を気化した後の排出ガスを少なくともガス調製手段又は転化手段に戻す配管とを少なくとも備えている。
 リサイクル手段は、気化器に加えて、さらに、C6成分及びC8成分を気化した後の排出ガスを気液分離して、気体成分であるエタノール及びアセトアルデヒドと、液体成分であるC6成分及びC8成分とを分離する気液分離器を備えていてもよい。気液分離器は、気化器からガス調製手段に排出ガスを戻す配管の途中に設けられる。
The recycling means returns the vaporizer for vaporizing the C6 component and the C8 component in the exhaust gas discharged from the refining means and the exhaust gas after vaporizing the C6 component and the C8 component to at least the gas preparing means or the conversion means. It has at least piping.
In the recycling means, in addition to the vaporizer, the exhaust gas after vaporizing the C6 component and the C8 component is gas-liquid separated to form the gas components ethanol and acetaldehyde and the liquid components C6 component and C8 component. A gas-liquid separator may be provided to separate the gas and liquid. The gas-liquid separator is provided in the middle of the pipe for returning the exhaust gas from the vaporizer to the gas preparation means.
〈第1実施形態〉
 以下、本実施形態の1,3-ブタジエンの製造方法及び製造装置の実施形態例を示して具体的に説明する。図1は、第1実施形態の1,3-ブタジエンの製造装置100(以下、単に「製造装置100」とも記す。)の概略模式図である。なお、以下の説明において例示される図の寸法等は一例であって、本発明はそれらに必ずしも限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。
<First Embodiment>
Hereinafter, a method for producing 1,3-butadiene of the present embodiment and an example of an embodiment of the production apparatus will be specifically described. FIG. 1 is a schematic schematic diagram of the 1,3-butadiene manufacturing apparatus 100 of the first embodiment (hereinafter, also simply referred to as “manufacturing apparatus 100”). It should be noted that the dimensions and the like of the figures illustrated in the following description are examples, and the present invention is not necessarily limited thereto, and the present invention can be appropriately modified without changing the gist thereof. ..
《製造装置》
 製造装置100は、ガス調製手段1と、転化手段2と、精製手段3と、リサイクル手段5と、を備えている。
 ガス調製手段1は、原料収容部102と、気化器104と、希釈用ガス収容部106と、を備えている。
 転化手段2は、第1反応器108と、第2反応器110と、を備えている。
 精製手段3は、気液分離器112と、第1蒸留塔114と、第3反応器116と、第2蒸留塔118と、回収部120と、を備えている。
 リサイクル手段5は、気化器61と、気化制御装置69と、リサイクル制御装置122と、気液分離器124と、を備えている。
"manufacturing device"
The manufacturing apparatus 100 includes a gas preparing means 1, a converting means 2, a refining means 3, and a recycling means 5.
The gas preparing means 1 includes a raw material accommodating unit 102, a vaporizer 104, and a diluting gas accommodating unit 106.
The conversion means 2 includes a first reactor 108 and a second reactor 110.
The purification means 3 includes a gas-liquid separator 112, a first distillation column 114, a third reactor 116, a second distillation column 118, and a recovery unit 120.
The recycling means 5 includes a vaporizer 61, a vaporization control device 69, a recycling control device 122, and a gas-liquid separator 124.
 原料収容部102と気化器104とは配管10で接続されている。配管10には流量指示調節計11が設けられている。気化器104と第1反応器108とは配管12によって接続されている。配管12には、気化器104内の圧力に基づいて流量を調整する圧力指示調節計14、ミキサー16、熱交換器18、温度指示調節計20、弁22が気化器104側からこの順に設けられている。希釈用ガス収容部106は、配管24によって、配管12における圧力指示調節計14とミキサー16の間と接続されている。配管24には流量指示調節計26が設けられている。 The raw material storage unit 102 and the vaporizer 104 are connected by a pipe 10. The pipe 10 is provided with a flow rate indicator controller 11. The vaporizer 104 and the first reactor 108 are connected by a pipe 12. The pipe 12 is provided with a pressure indicator controller 14, a mixer 16, a heat exchanger 18, a temperature indicator controller 20, and a valve 22 for adjusting the flow rate based on the pressure in the vaporizer 104 in this order from the vaporizer 104 side. ing. The dilution gas accommodating portion 106 is connected by a pipe 24 between the pressure indicator controller 14 and the mixer 16 in the pipe 12. The pipe 24 is provided with a flow rate indicator 26.
 第1反応器108と気液分離器124とは配管28によって接続されている。また、気液分離器124と第2反応器110とは配管30によって接続されている。このように、製造装置100では、転化手段2における第1反応器108と第2反応器110の間に気液分離器124が設けられている。 The first reactor 108 and the gas-liquid separator 124 are connected by a pipe 28. Further, the gas-liquid separator 124 and the second reactor 110 are connected by a pipe 30. As described above, in the manufacturing apparatus 100, the gas-liquid separator 124 is provided between the first reactor 108 and the second reactor 110 in the conversion means 2.
 配管28の第1反応器108寄りの位置には弁32が設けられ、それよりも下流側に分析計34が設けられている。配管30の気液分離器124寄りの位置には、ポンプ36と、気液分離器124内の液面レベルに基づいて流量を調整するレベル指示調節計38とがこの順に設けられている。配管30の第2反応器110寄りの位置には弁40が設けられている。 A valve 32 is provided at a position near the first reactor 108 of the pipe 28, and an analyzer 34 is provided on the downstream side of the valve 32. At a position near the gas-liquid separator 124 of the pipe 30, a pump 36 and a level indicator controller 38 that adjusts the flow rate based on the liquid level in the gas-liquid separator 124 are provided in this order. A valve 40 is provided at a position of the pipe 30 near the second reactor 110.
 第2反応器110と気液分離器112とは配管42で接続されている。配管42の第2反応器110寄りの位置には弁44が設けられ、気液分離器112寄りの位置には熱交換器46、47が設けられている。気液分離器112と第1蒸留塔114とは配管48によって接続されている。配管48には、ポンプ50と、気液分離器112内の液面レベルに基づいて流量を調整するレベル指示調節計52とが、気液分離器112側からこの順に設けられている。 The second reactor 110 and the gas-liquid separator 112 are connected by a pipe 42. A valve 44 is provided at a position near the second reactor 110 of the pipe 42, and heat exchangers 46 and 47 are provided at a position near the gas-liquid separator 112. The gas-liquid separator 112 and the first distillation column 114 are connected by a pipe 48. The pipe 48 is provided with a pump 50 and a level indicator controller 52 for adjusting the flow rate based on the liquid level in the gas-liquid separator 112 in this order from the gas-liquid separator 112 side.
 第1蒸留塔114の塔頂には配管54が接続されている。また、気液分離器112の気相部と接続され、配管54に合流する配管56が設けられている。第1蒸留塔114の中間部と第3反応器116とは配管58によって接続されている。第3反応器116と回収部120とは配管60によって接続されている。第1蒸留塔114の塔底と第2蒸留塔118とは配管62によって接続されている。第2蒸留塔118の塔頂と、配管28における弁32と分析計34との間とは配管64によって接続されている。第2蒸留塔118の塔底には配管66が接続されている。また、気液分離器124の気相部と接続され、配管54に合流する配管72が設けられている。 A pipe 54 is connected to the top of the first distillation column 114. Further, a pipe 56 that is connected to the gas phase portion of the gas-liquid separator 112 and joins the pipe 54 is provided. The intermediate portion of the first distillation column 114 and the third reactor 116 are connected by a pipe 58. The third reactor 116 and the recovery unit 120 are connected by a pipe 60. The bottom of the first distillation column 114 and the second distillation column 118 are connected by a pipe 62. The top of the second distillation column 118 and the valve 32 in the pipe 28 and the analyzer 34 are connected by a pipe 64. A pipe 66 is connected to the bottom of the second distillation column 118. Further, a pipe 72 that is connected to the gas phase portion of the gas-liquid separator 124 and joins the pipe 54 is provided.
 リサイクル制御装置122は、配管67、配管68上に設置された流量指示調節計70を備えている。リサイクル制御装置122は、分析計34の分析結果に基づき、流量指示調節計70によって配管67、配管68の流量を調整できるようになっている。 The recycling control device 122 includes a flow rate indicator 70 installed on the pipe 67 and the pipe 68. The recycling control device 122 can adjust the flow rates of the pipes 67 and 68 by the flow rate indicator controller 70 based on the analysis result of the analyzer 34.
《製造方法》
 以下、製造装置100を用いる第1実施形態の1,3-ブタジエンの製造方法について、図1に基づいて説明する。
 原料収容部102から配管10を通じて気化器104にエタノール供給原料を送液し、圧力が-1.0~3.0MPaG、温度が-100~400℃の条件でエタノール供給原料を気化してエタノール含有ガスとする(上述した工程A1)。気化器104から配管12にエタノール含有ガスを送り出し、希釈用ガス収容部106から配管24を通じて窒素ガス(希釈用ガス)を合流させ、ミキサー16で混合する。そして、エタノール含有ガスのエタノール濃度を0.1~100体積%の範囲内で調整する(上述した工程A2)。
"Production method"
Hereinafter, the method for producing 1,3-butadiene of the first embodiment using the production apparatus 100 will be described with reference to FIG.
The ethanol supply raw material is sent from the raw material storage unit 102 to the vaporizer 104 through the pipe 10, and the ethanol supply raw material is vaporized under the conditions of a pressure of −1.0 to 3.0 MPaG and a temperature of -100 to 400 ° C. to contain ethanol. Use gas (step A1 described above). Ethanol-containing gas is sent from the vaporizer 104 to the pipe 12, nitrogen gas (dilution gas) is merged from the dilution gas accommodating portion 106 through the pipe 24, and mixed by the mixer 16. Then, the ethanol concentration of the ethanol-containing gas is adjusted within the range of 0.1 to 100% by volume (step A2 described above).
 エタノール濃度を調整したエタノール含有ガスを熱交換器18で加熱し、2つ以上の並列の第1反応器108に供給する。各々の第1反応器108において、第1触媒の存在下、圧力が0~1.0MPaG、温度が50~500℃の条件でエタノールをアセトアルデヒドに転化する(上述した工程B11)。各々の第1反応器108内で生じるエタノール及びアセトアルデヒドを含む中間ガスを配管28へと送り出す。また、中間ガスを第2反応器110に供給し、第2触媒の存在下、圧力が0~1.0MPaG、温度が50~500℃の条件でエタノール及びアセトアルデヒドを1,3-ブタジエンに転化する(上述した工程B12)。 The ethanol-containing gas whose ethanol concentration has been adjusted is heated by the heat exchanger 18 and supplied to two or more parallel first reactors 108. In each of the first reactors 108, ethanol is converted to acetaldehyde in the presence of the first catalyst under the conditions of a pressure of 0 to 1.0 MPaG and a temperature of 50 to 500 ° C. (step B11 described above). An intermediate gas containing ethanol and acetaldehyde generated in each first reactor 108 is sent to the pipe 28. Further, an intermediate gas is supplied to the second reactor 110, and ethanol and acetaldehyde are converted to 1,3-butadiene in the presence of the second catalyst under the conditions of a pressure of 0 to 1.0 MPaG and a temperature of 50 to 500 ° C. (Step B12 described above).
 1,3-ブタジエンを含む粗生成ガスを第2反応器110から配管42に送り出し、熱交換器46によって冷却して気液分離器112に供給する。気液分離器112において、粗生成ガスを水素ガス及び窒素ガス(希釈用ガス)と1,3-ブタジエン含有液に気液分離する(上述した工程C2)。ポンプ50を駆動させ、1,3-ブタジエン含有液を気液分離器112から配管48を通じて第1蒸留塔114に供給して蒸留する。第1蒸留塔114の塔頂から配管54にエチレン含有ガスを抜き出し、塔底から配管62にアセトアルデヒド含有液を抜き出し、中間部から配管58に1,3-ブタジエン含有流出物を抜き出す(上述した工程C3)。配管54に抜き出したエチレン含有ガスは、気液分離器112の気相部から配管56に抜き出した水素ガス及び窒素ガス(希釈用ガス)と合流させて廃ガスとして処理する。 The crude gas containing 1,3-butadiene is sent from the second reactor 110 to the pipe 42, cooled by the heat exchanger 46, and supplied to the gas-liquid separator 112. In the gas-liquid separator 112, the crude gas is separated into a hydrogen gas, a nitrogen gas (dilution gas) and a 1,3-butadiene-containing liquid (step C2 described above). The pump 50 is driven, and the 1,3-butadiene-containing liquid is supplied from the gas-liquid separator 112 to the first distillation column 114 through the pipe 48 for distillation. Ethylene-containing gas is extracted from the top of the first distillation column 114 into the pipe 54, acetaldehyde-containing liquid is extracted from the bottom of the column into the pipe 62, and 1,3-butadiene-containing effluent is extracted from the intermediate portion into the pipe 58 (the above-described step). C3). The ethylene-containing gas extracted to the pipe 54 is combined with the hydrogen gas and the nitrogen gas (dilution gas) extracted from the gas phase portion of the gas-liquid separator 112 to the pipe 56 and treated as waste gas.
 配管58に抜き出した1,3-ブタジエン含有流出物を第3反応器116に供給し、第4触媒の存在下、1,3-ブタジエン含有流出物中の1-ブテン、2-ブテン、イソブテンを脱水素化反応させて1,3-ブタジエンに転化する(上述した工程C1)。配管60によって第3反応器116から回収部120に精製1,3-ブタジエンを送って回収する。 The 1,3-butadiene-containing effluent extracted from the pipe 58 is supplied to the third reactor 116, and 1-butene, 2-butene, and isobutene in the 1,3-butadiene-containing effluent are separated in the presence of the fourth catalyst. It is dehydrogenated and converted to 1,3-butadiene (step C1 described above). Purified 1,3-butadiene is sent from the third reactor 116 to the recovery unit 120 by the pipe 60 for recovery.
 第1蒸留塔114の塔底から配管62に抜き出したアセトアルデヒド含有液は第2蒸留塔118に供給して蒸留する。第2蒸留塔118の塔底から配管66に水を含む残液を抜き出し、塔頂から配管64にアセトアルデヒド含有ガスを抜き出す(上述した工程C4)。配管66に抜き出した水を含む残液は廃液として処理する。 The acetaldehyde-containing liquid extracted from the bottom of the first distillation column 114 to the pipe 62 is supplied to the second distillation column 118 for distillation. The residual liquid containing water is extracted from the bottom of the second distillation column 118 into the pipe 66, and the acetaldehyde-containing gas is extracted from the top of the column 64 into the pipe 64 (step C4 described above). The residual liquid containing water extracted from the pipe 66 is treated as a waste liquid.
 第2蒸留塔118(上述した工程C4)の塔頂から抜き出したアセトアルデヒド含有ガス(排出ガス)を、配管63を通じて気化器61に送り、前記排出ガス中のC6成分及びC8成分を加熱して充分に気化させる。気化器61から出たガスの温度を気化制御装置69で監視して、気化器61での加熱温度を調節する。
 気化器61からの気化ガスを、配管68、配管64を通じて配管28に戻して中間ガスに混合する。また、分析計34によって配管28を流れる中間ガス中のエタノール及びアセトアルデヒド含有量を分析する。その分析結果に基づいて、流量指示調節計70によって配管67へと分離する気化ガスの流量を調節する。これにより、配管28に戻す気化ガスの流量を調節し、エタノール含有量が多い場合は、ガス調製手段1により多くの気化ガスを送り、アセトアルデヒド含有量が多い場合は、転化手段2により多くの気化ガスを送るように制御できる。
The acetaldehyde-containing gas (exhaust gas) extracted from the top of the second distillation column 118 (step C4 described above) is sent to the vaporizer 61 through the pipe 63, and the C6 component and C8 component in the exhaust gas are sufficiently heated. Vaporize to. The temperature of the gas emitted from the vaporizer 61 is monitored by the vaporization control device 69, and the heating temperature in the vaporizer 61 is adjusted.
The vaporized gas from the vaporizer 61 is returned to the pipe 28 through the pipe 68 and the pipe 64 and mixed with the intermediate gas. Further, the analyzer 34 analyzes the ethanol and acetaldehyde contents in the intermediate gas flowing through the pipe 28. Based on the analysis result, the flow rate of the vaporized gas separated into the pipe 67 is adjusted by the flow rate indicator regulator 70. As a result, the flow rate of the vaporized gas returned to the pipe 28 is adjusted, and when the ethanol content is high, more vaporized gas is sent to the gas preparing means 1, and when the acetaldehyde content is high, more vaporized gas is sent to the converting means 2. It can be controlled to send gas.
〈第2実施形態〉
 図2は、第2実施形態の1,3-ブタジエンの製造装置100A(以下、「製造装置100A」とも記す。)の概略模式図である。図2における図1と同じ部分には同符号を付して説明を省略する。
<Second Embodiment>
FIG. 2 is a schematic schematic view of the 1,3-butadiene manufacturing apparatus 100A (hereinafter, also referred to as “manufacturing apparatus 100A”) of the second embodiment. The same parts as those in FIG. 1 in FIG. 2 are designated by the same reference numerals, and the description thereof will be omitted.
《製造装置》
 製造装置100Aは、リサイクル手段として、第1実施形態のリサイクル手段5に相当するリサイクル手段5Aと、配管67の代わりに配管67Aを設け、配管67A上に、気液分離器113を有するリサイクル手段5Bとを備える以外は、製造装置100と同様の構成である。
"manufacturing device"
As the recycling means, the manufacturing apparatus 100A is provided with the recycling means 5A corresponding to the recycling means 5 of the first embodiment and the pipe 67A instead of the pipe 67, and the recycling means 5B having the gas-liquid separator 113 on the pipe 67A. The configuration is the same as that of the manufacturing apparatus 100 except that the manufacturing apparatus 100 is provided with.
 気液分離器113は、気化器61から出た気化ガス中のC6成分及びC8成分を液化して、気化ガスから除去する。気液分離器113で分離された、エタノール及びアセトアルデヒドを含む気体成分は、ガス調製手段1に戻される。気液分離器113で分離された、C6成分及びC8成分を含む液体成分は、配管49、ポンプ51、配管55を通じて、配管54に送られる。 The gas-liquid separator 113 liquefies the C6 component and the C8 component in the vaporized gas emitted from the vaporizer 61 and removes them from the vaporized gas. The gas component containing ethanol and acetaldehyde separated by the gas-liquid separator 113 is returned to the gas preparation means 1. The liquid component containing the C6 component and the C8 component separated by the gas-liquid separator 113 is sent to the pipe 54 through the pipe 49, the pump 51, and the pipe 55.
《製造方法》
 以下、製造装置100Aを用いる第2実施形態の1,3-ブタジエンの製造方法について、図2に基づいて説明する。
 製造装置100Aを用いる第2実施形態の1,3-ブタジエンの製造方法は、上述した第1実施形態では、ガス調製手段に戻される気化ガス中にC6成分及びC8成分が含まれる場合があったが、この第2実施形態では、気化ガス中からC6成分及びC8成分が除去され、エタノール及びアセトアルデヒドがガス調製手段に戻される以外は、製造装置100を用いる第1実施形態と同様に行える。
"Production method"
Hereinafter, a method for producing 1,3-butadiene according to the second embodiment using the production apparatus 100A will be described with reference to FIG.
In the method for producing 1,3-butadiene of the second embodiment using the production apparatus 100A, in the above-mentioned first embodiment, the vaporized gas returned to the gas preparation means may contain C6 component and C8 component. However, in this second embodiment, it can be carried out in the same manner as in the first embodiment using the manufacturing apparatus 100, except that the C6 component and the C8 component are removed from the vaporized gas and ethanol and acetaldehyde are returned to the gas preparation means.
 第2蒸留塔118からの排出ガス中のC6成分及びC8成分の合計含有量が前記排出ガス中の有機化合物の総質量の0.5質量%以上である場合、第2実施形態の製造方法が好ましい。排出ガス中のC6成分及びC8成分の合計含有量が前記排出ガス中の有機化合物の総質量の0.5質量%以上となった場合、圧力損失により液化して、配管やポンプに蓄積し閉塞させる又は機器の運転コストを増加させる原因となりやすい。そのため、前記排出ガスから、前記高沸点成分の少なくとも一部を除去して得られる高沸点成分除去ガスの少なくとも一部を、工程A及び工程Bのいずれか一方又は両方に戻すことで、配管やポンプの閉塞又は機器の運転コストの増加を防止しながら、1,3-ブタジエンの収率を改善できる。
 また、図示しないが、排出ガス中の高沸点成分の含有量が多くなった場合に、前記高沸点成分の少なくとも一部を除去した後に、気化器に供給するように構成してもよい。前記高沸点成分の少なくとも一部を除去する手段としては、フィルター、気液分離器等が挙げられる。
When the total content of the C6 component and the C8 component in the exhaust gas from the second distillation column 118 is 0.5% by mass or more of the total mass of the organic compounds in the exhaust gas, the production method of the second embodiment is used. preferable. When the total content of C6 component and C8 component in the exhaust gas is 0.5% by mass or more of the total mass of the organic compounds in the exhaust gas, it is liquefied due to pressure loss and accumulated in the piping or pump and blocked. It tends to cause the equipment to increase or increase the operating cost of the equipment. Therefore, by returning at least a part of the high boiling point component removing gas obtained by removing at least a part of the high boiling point component from the exhaust gas to either one or both of step A and step B, the piping or The yield of 1,3-butadiene can be improved while preventing pump blockage or increased equipment operating costs.
Further, although not shown, when the content of the high boiling point component in the exhaust gas becomes large, at least a part of the high boiling point component may be removed and then supplied to the vaporizer. Means for removing at least a part of the high boiling point component include a filter, a gas-liquid separator, and the like.
〈第3実施形態〉
 第3実施形態の1,3-ブタジエンの製造装置(図示せず)は、第1実施形態のリサイクル手段5に代えて、トラップ手段を備える。
<Third Embodiment>
The 1,3-butadiene production apparatus (not shown) of the third embodiment includes a trap means instead of the recycling means 5 of the first embodiment.
《製造装置》
 第3実施形態の1,3-ブタジエンの製造装置は、ガス調製手段と、転化手段と、精製手段と、トラップ手段と、を備えている。
 前記ガス調製手段、前記転化手段、及び前記精製手段は、上述した第1実施形態の1,3-ブタジエンの製造装置100と同様である。
"manufacturing device"
The 1,3-butadiene production apparatus of the third embodiment includes gas preparation means, conversion means, purification means, and trap means.
The gas preparation means, the conversion means, and the purification means are the same as those of the 1,3-butadiene production apparatus 100 of the first embodiment described above.
 前記トラップ手段は、精製手段からの排出ガス中の高沸点成分を除去するための高沸点成分除去装置と、高沸点成分を除去した排出ガスを前記ガス調製手段又は前記転化手段に戻す配管とを少なくとも備えている。
 前記高沸点成分除去装置としては、排出ガス中の高沸点成分の少なくとも一部を除去できるものであれば特に限定されず、例えば、気液分離器、フィルター等が挙げられる。
 前記トラップ手段は、前記排出ガス中の高沸点成分の含有量を測定する分析装置を含むことが好ましい。前記排出ガス中の高沸点成分の含有量が、例えば、前記排出ガス中の有機化合物の総質量の0.5~1質量%の高含有量となると、配管やポンプ等の閉塞が起こりやすくなり、1,3-ブタジエンの生産効率が低下するおそれがある。
The trap means includes a high boiling point component removing device for removing a high boiling point component in the exhaust gas from the refining means, and a pipe for returning the exhaust gas from which the high boiling point component has been removed to the gas preparing means or the converting means. At least I have.
The high boiling point component removing device is not particularly limited as long as it can remove at least a part of the high boiling point component in the exhaust gas, and examples thereof include a gas-liquid separator and a filter.
The trap means preferably includes an analyzer for measuring the content of high boiling point components in the exhaust gas. When the content of the high boiling point component in the exhaust gas is, for example, a high content of 0.5 to 1% by mass of the total mass of the organic compounds in the exhaust gas, clogging of pipes, pumps, etc. is likely to occur. , 1,3-butadiene production efficiency may decrease.
《製造方法》
 本発明の第3実施形態の1,3-ブタジエンの製造方法について、説明する。
 第3実施形態の1,3-ブタジエンの製造方法は、上述した第1実施形態では、ガス調製手段及び/又は転化手段に戻される気化ガス中にC6成分及びC8成分が含まれる場合があったが、この第3実施形態では、排出ガス中のC6成分及びC8成分が除去された後の、エタノール及びアセトアルデヒドがガス調製手段及び/又は転化手段に戻される以外は、製造装置100を用いる第1実施形態と同様に行える。
"Production method"
The method for producing 1,3-butadiene according to the third embodiment of the present invention will be described.
In the method for producing 1,3-butadiene of the third embodiment, in the above-mentioned first embodiment, the vaporized gas returned to the gas preparing means and / or the converting means may contain C6 component and C8 component. However, in this third embodiment, the manufacturing apparatus 100 is used except that ethanol and acetaldehyde are returned to the gas preparing means and / or the converting means after the C6 component and the C8 component in the exhaust gas are removed. It can be done in the same manner as in the embodiment.
〈第4実施形態〉
 図3は、第4A実施形態の1,3-ブタジエンの製造装置100B(以下、「製造装置100B」とも記す。)の概略模式図である。図5は、第4B実施形態の1,3-ブタジエンの製造装置100C(以下、「製造装置100B」とも記す。)の概略模式図である。
<Fourth Embodiment>
FIG. 3 is a schematic schematic diagram of the 1,3-butadiene manufacturing apparatus 100B (hereinafter, also referred to as “manufacturing apparatus 100B”) according to the fourth A embodiment. FIG. 5 is a schematic schematic diagram of the 1,3-butadiene manufacturing apparatus 100C (hereinafter, also referred to as “manufacturing apparatus 100B”) according to the fourth B embodiment.
《製造装置》
 第4実施形態の1,3-ブタジエンの製造装置は、ガス調製手段と、転化手段と、精製手段と、リサイクル制御手段と、を備えている。
"manufacturing device"
The 1,3-butadiene production apparatus of the fourth embodiment includes gas preparation means, conversion means, purification means, and recycling control means.
 リサイクル制御手段は、転化手段及び精製手段のいずれか一方又は両方から排出される排出ガス(E/A)の少なくとも一部を、少なくともガス調製手段又は転化手段に戻す配管と、戻した箇所の下流側のガス中のモル比(E/A)を分析する分析計とを少なくとも備えている。分析計は、モル比(E/A)を分析できるものであればよく、例えば、プロセス質量分析計等を例示できる。 The recycling control means is a pipe that returns at least a part of the exhaust gas (E / A) discharged from either one or both of the conversion means and the purification means to the gas preparation means or the conversion means, and downstream of the returned portion. It is equipped with at least an analyzer that analyzes the molar ratio (E / A) in the gas on the side. The analyzer may be any as long as it can analyze the molar ratio (E / A), and for example, a process mass spectrometer or the like can be exemplified.
 また、リサイクル制御手段は、後述の第1リサイクル制御装置、第2リサイクル制御装置及び第3リサイクル制御装置からなる群から選ばれる少なくとも1つを備えている。
 以下、ガス調製手段又は転化手段を総称して、手段Xともいう。
 第1リサイクル制御装置は、排出ガスの一部を分離し、残部を手段Xに戻す(工程D1)ためのものである。第1リサイクル制御装置は、例えば、転化手段や精製手段における排出ガス(E/A)の排出部とガス調製手段や転化手段の排出ガス(E/A)を戻す部分とを繋ぐ配管と、排出ガス(E/A)を戻す配管から分岐した分岐配管と、その分岐配管に設けられた流量指示調節計とを備える。
Further, the recycling control means includes at least one selected from the group consisting of the first recycling control device, the second recycling control device and the third recycling control device, which will be described later.
Hereinafter, the gas preparing means or the converting means are collectively referred to as means X.
The first recycling control device is for separating a part of the exhaust gas and returning the rest to the means X (step D1). The first recycling control device includes, for example, a pipe connecting an exhaust gas (E / A) discharge part in a conversion means or a purification means and a part for returning an exhaust gas (E / A) of a gas preparation means or a conversion means, and discharge. It is provided with a branch pipe branched from a pipe for returning gas (E / A) and a flow rate indicator controller provided in the branch pipe.
 第2リサイクル制御装置は、排出ガス(E/A)の少なくとも一部を手段Xに戻し、排出ガス(E/A)を手段Xに戻した工程のガスからアセトアルデヒドの一部を分離する(工程D2)ためのものである。第2リサイクル制御装置は、例えば、排出ガス(E/A)を手段Xに戻す配管と、排出ガス(E/A)を手段Xに戻した箇所の下流側に設けられた気液分離器、蒸留塔、スクラバー等の分離装置と、を備える。 The second recycling control device returns at least a part of the exhaust gas (E / A) to the means X, and separates a part of acetaldehyde from the gas in the step of returning the exhaust gas (E / A) to the means X (step). It is for D2). The second recycling control device includes, for example, a pipe for returning the exhaust gas (E / A) to the means X, and a gas-liquid separator provided on the downstream side of the portion where the exhaust gas (E / A) is returned to the means X. It is equipped with a separation device such as a distillation column and a scrubber.
 第3リサイクル制御装置は、エタノールを主成分とする第1排出ガスとアセトアルデヒドを主成分とする第2排出ガスとをそれぞれ分けて手段Xに戻す(工程D3)のためのものである。例えば、第3リサイクル制御装置は、エタノールを主成分とする第1排出ガスを手段Xに戻す第1配管と、アセトアルデヒドを主成分とする第2排出ガスを手段Xに戻す第2配管を備える。第1配管と第2配管には、それぞれ流量指示調節計を設け、第1排出ガスの流量と第2排出ガスの流量を別々に調節できるようにすることが好ましい。 The third recycling control device is for separating the first exhaust gas containing ethanol as a main component and the second exhaust gas containing acetaldehyde as a main component and returning them to means X (process D3). For example, the third recycling control device includes a first pipe for returning the first exhaust gas containing ethanol as a main component to the means X, and a second pipe for returning the second exhaust gas containing acetaldehyde as a main component to the means X. It is preferable that each of the first pipe and the second pipe is provided with a flow rate indicator so that the flow rate of the first exhaust gas and the flow rate of the second exhaust gas can be adjusted separately.
[第4A実施形態]
 以下、本実施形態の1,3-ブタジエンの製造方法及び製造装置の実施形態例を示して具体的に説明する。図3は、第4A実施形態の1,3-ブタジエンの製造装置100B(以下、「製造装置100B」とも記す。)の概略模式図である。
[Fourth A Embodiment]
Hereinafter, a method for producing 1,3-butadiene of the present embodiment and an example of an embodiment of the production apparatus will be specifically described. FIG. 3 is a schematic schematic diagram of the 1,3-butadiene manufacturing apparatus 100B (hereinafter, also referred to as “manufacturing apparatus 100B”) according to the fourth A embodiment.
 (製造装置)
 製造装置100Bは、ガス調製手段1と、転化手段2と、精製手段3と、リサイクル制御手段4と、を備えている。
 ガス調製手段1は、原料収容部102と、気化器104と、希釈用ガス収容部106と、を備えている。転化手段2は、第1反応器108と、第2反応器110と、を備えている。精製手段3は、気液分離器112と、第1蒸留塔114と、第3反応器116と、第2蒸留塔118と、回収部120と、を備えている。リサイクル制御手段4は、第1リサイクル制御装置122と、気液分離器(第2リサイクル制御装置)124と、を備えている。
(manufacturing device)
The manufacturing apparatus 100B includes a gas preparing means 1, a converting means 2, a refining means 3, and a recycling control means 4.
The gas preparing means 1 includes a raw material accommodating unit 102, a vaporizer 104, and a diluting gas accommodating unit 106. The conversion means 2 includes a first reactor 108 and a second reactor 110. The purification means 3 includes a gas-liquid separator 112, a first distillation column 114, a third reactor 116, a second distillation column 118, and a recovery unit 120. The recycling control means 4 includes a first recycling control device 122 and a gas-liquid separator (second recycling control device) 124.
 原料収容部102と気化器104とは配管10で接続されている。配管10には流量指示調節計11が設けられている。気化器104と第1反応器108とは配管12によって接続されている。配管12には、気化器104内の圧力に基づいて流量を調整する圧力指示調節計14、ミキサー16、熱交換器18、温度指示調節計20、弁22が気化器104側からこの順に設けられている。希釈用ガス収容部106は、配管24によって、配管12における圧力指示調節計14とミキサー16の間と接続されている。配管24には流量指示調節計26が設けられている。 The raw material storage unit 102 and the vaporizer 104 are connected by a pipe 10. The pipe 10 is provided with a flow rate indicator controller 11. The vaporizer 104 and the first reactor 108 are connected by a pipe 12. The pipe 12 is provided with a pressure indicator controller 14, a mixer 16, a heat exchanger 18, a temperature indicator controller 20, and a valve 22 for adjusting the flow rate based on the pressure in the vaporizer 104 in this order from the vaporizer 104 side. ing. The dilution gas accommodating portion 106 is connected by a pipe 24 between the pressure indicator controller 14 and the mixer 16 in the pipe 12. The pipe 24 is provided with a flow rate indicator 26.
 第1反応器108と気液分離器124とは配管28によって接続されている。また、気液分離器124と第2反応器110とは配管30によって接続されている。このように、製造装置100Bでは、転化手段2における第1反応器108と第2反応器110の間に第2リサイクル制御装置(気液分離器124)が設けられている。 The first reactor 108 and the gas-liquid separator 124 are connected by a pipe 28. Further, the gas-liquid separator 124 and the second reactor 110 are connected by a pipe 30. As described above, in the manufacturing apparatus 100B, the second recycling control device (gas-liquid separator 124) is provided between the first reactor 108 and the second reactor 110 in the conversion means 2.
 配管28の第1反応器108寄りの位置には弁32が設けられ、それよりも下流側に分析計34が設けられている。配管30の気液分離器124寄りの位置には、ポンプ36と、気液分離器124内の液面レベルに基づいて流量を調整するレベル指示調節計38とがこの順に設けられている。配管30の第2反応器110寄りの位置には弁40が設けられている。 A valve 32 is provided at a position near the first reactor 108 of the pipe 28, and an analyzer 34 is provided on the downstream side of the valve 32. At a position near the gas-liquid separator 124 of the pipe 30, a pump 36 and a level indicator controller 38 that adjusts the flow rate based on the liquid level in the gas-liquid separator 124 are provided in this order. A valve 40 is provided at a position of the pipe 30 near the second reactor 110.
 第2反応器110と気液分離器112とは配管42で接続されている。配管42の第2反応器110寄りの位置には弁44が設けられ、気液分離器112寄りの位置には熱交換器46が設けられている。気液分離器112と第1蒸留塔114とは配管48によって接続されている。配管48には、ポンプ50と、気液分離器112内の液面レベルに基づいて流量を調整するレベル指示調節計52とが、気液分離器112側からこの順に設けられている。 The second reactor 110 and the gas-liquid separator 112 are connected by a pipe 42. A valve 44 is provided at a position near the second reactor 110 of the pipe 42, and a heat exchanger 46 is provided at a position near the gas-liquid separator 112. The gas-liquid separator 112 and the first distillation column 114 are connected by a pipe 48. The pipe 48 is provided with a pump 50 and a level indicator controller 52 for adjusting the flow rate based on the liquid level in the gas-liquid separator 112 in this order from the gas-liquid separator 112 side.
 第1蒸留塔114の塔頂には配管54が接続されている。また、気液分離器112の気相部と接続され、配管54に合流する配管56が設けられている。第1蒸留塔114の中間部と第3反応器116とは配管58によって接続されている。第3反応器116と回収部120とは配管60によって接続されている。第1蒸留塔114の塔底と第2蒸留塔118とは配管62によって接続されている。第2蒸留塔118の塔頂と、配管28における弁32と分析計34との間とは配管64によって接続されている。第2蒸留塔118の塔底には配管66が接続されている。また、気液分離器124の気相部と接続され、配管54に合流する配管72が設けられている。 A pipe 54 is connected to the top of the first distillation column 114. Further, a pipe 56 that is connected to the gas phase portion of the gas-liquid separator 112 and joins the pipe 54 is provided. The intermediate portion of the first distillation column 114 and the third reactor 116 are connected by a pipe 58. The third reactor 116 and the recovery unit 120 are connected by a pipe 60. The bottom of the first distillation column 114 and the second distillation column 118 are connected by a pipe 62. The top of the second distillation column 118 and the valve 32 in the pipe 28 and the analyzer 34 are connected by a pipe 64. A pipe 66 is connected to the bottom of the second distillation column 118. Further, a pipe 72 that is connected to the gas phase portion of the gas-liquid separator 124 and joins the pipe 54 is provided.
 第1リサイクル制御装置122は、配管64から分岐し、配管54に合流する配管68と、配管68に設けられた流量指示調節計70とを備えている。第1リサイクル制御装置122は、分析計34の分析結果に基づき、流量指示調節計70によって配管68の流量を調整できるようになっている。 The first recycling control device 122 includes a pipe 68 that branches from the pipe 64 and joins the pipe 54, and a flow rate indicator adjuster 70 provided in the pipe 68. The first recycling control device 122 can adjust the flow rate of the pipe 68 by the flow rate indicator controller 70 based on the analysis result of the analyzer 34.
 (製造方法)
 以下、製造装置100Bを用いる第1実施形態の1,3-ブタジエンの製造方法について、図3及び図4に基づいて説明する。
 原料収容部102から配管10を通じて気化器104にエタノール供給原料を送液し、圧力が-1.0~3.0MPaG、温度が-100~400℃の条件でエタノール供給原料を気化してエタノール含有ガスとする(工程A1)。気化器104から配管12にエタノール含有ガスを送り出し、希釈用ガス収容部106から配管24を通じて窒素ガス(希釈用ガス)を合流させ、ミキサー16で混合する。そして、エタノール含有ガスのエタノール濃度を0.1~100体積%の範囲内で調整する(工程A2)。
(Production method)
Hereinafter, the method for producing 1,3-butadiene of the first embodiment using the production apparatus 100B will be described with reference to FIGS. 3 and 4.
The ethanol supply raw material is sent from the raw material storage unit 102 to the vaporizer 104 through the pipe 10, and the ethanol supply raw material is vaporized under the conditions of a pressure of −1.0 to 3.0 MPaG and a temperature of -100 to 400 ° C. to contain ethanol. Use gas (step A1). Ethanol-containing gas is sent from the vaporizer 104 to the pipe 12, nitrogen gas (dilution gas) is merged from the dilution gas accommodating portion 106 through the pipe 24, and mixed by the mixer 16. Then, the ethanol concentration of the ethanol-containing gas is adjusted within the range of 0.1 to 100% by volume (step A2).
 エタノール濃度を調整したエタノール含有ガスを熱交換器18で加熱し、2つ以上の並列の第1反応器108に供給する。各々の第1反応器108において、第1触媒の存在下、圧力が0~1.0MPaG、温度が50~500℃の条件でエタノールをアセトアルデヒドに転化する(工程B11)。各々の第1反応器108内で生じるエタノール及びアセトアルデヒドを含む中間ガスを配管28へと送り出す。また、中間ガスを第2反応器110に供給し、第2触媒の存在下、圧力が0~1.0MPaG、温度が50~500℃の条件でエタノール及びアセトアルデヒドを1,3-ブタジエンに転化する(工程B12)。 The ethanol-containing gas whose ethanol concentration has been adjusted is heated by the heat exchanger 18 and supplied to two or more parallel first reactors 108. In each of the first reactors 108, ethanol is converted to acetaldehyde in the presence of the first catalyst under the conditions of a pressure of 0 to 1.0 MPaG and a temperature of 50 to 500 ° C. (step B11). An intermediate gas containing ethanol and acetaldehyde generated in each first reactor 108 is sent to the pipe 28. Further, an intermediate gas is supplied to the second reactor 110, and ethanol and acetaldehyde are converted to 1,3-butadiene in the presence of the second catalyst under the conditions of a pressure of 0 to 1.0 MPaG and a temperature of 50 to 500 ° C. (Step B12).
 1,3-ブタジエンを含む粗生成ガスを第2反応器110から配管42に送り出し、熱交換器46によって冷却して気液分離器112に供給する。気液分離器112において、粗生成ガスを水素ガス及び窒素ガス(希釈用ガス)と1,3-ブタジエン含有液に気液分離する(工程C2)。ポンプ50を駆動させ、1,3-ブタジエン含有液を気液分離器112から配管48を通じて第1蒸留塔114に供給して蒸留する。第1蒸留塔114の塔頂から配管54にエチレン含有ガスを抜き出し、塔底から配管62にアセトアルデヒド含有液を抜き出し、中間部から配管58に1,3-ブタジエン含有流出物を抜き出す(工程C3)。配管54に抜き出したエチレン含有ガスは、気液分離器112の気相部から配管56に抜き出した水素ガス及び窒素ガス(希釈用ガス)と合流させて廃ガスとして処理する。 The crude gas containing 1,3-butadiene is sent from the second reactor 110 to the pipe 42, cooled by the heat exchanger 46, and supplied to the gas-liquid separator 112. In the gas-liquid separator 112, the crude gas is separated into a hydrogen gas, a nitrogen gas (dilution gas) and a 1,3-butadiene-containing liquid (step C2). The pump 50 is driven, and the 1,3-butadiene-containing liquid is supplied from the gas-liquid separator 112 to the first distillation column 114 through the pipe 48 for distillation. Ethylene-containing gas is extracted from the top of the first distillation column 114 into the pipe 54, acetaldehyde-containing liquid is extracted from the bottom of the column into the pipe 62, and 1,3-butadiene-containing effluent is extracted from the intermediate portion into the pipe 58 (step C3). .. The ethylene-containing gas extracted to the pipe 54 is combined with the hydrogen gas and the nitrogen gas (dilution gas) extracted from the gas phase portion of the gas-liquid separator 112 to the pipe 56 and treated as waste gas.
 配管58に抜き出した1,3-ブタジエン含有流出物を第3反応器116に供給し、第4触媒の存在下、1,3-ブタジエン含有流出物中の1-ブテン、2-ブテン、イソブテンを脱水素化反応させて1,3-ブタジエンに転化する(工程C1)。配管60によって第3反応器116から回収部120に精製1,3-ブタジエンを送って回収する。 The 1,3-butadiene-containing effluent extracted from the pipe 58 is supplied to the third reactor 116, and 1-butene, 2-butene, and isobutene in the 1,3-butadiene-containing effluent are separated in the presence of the fourth catalyst. It is dehydrogenated and converted to 1,3-butadiene (step C1). Purified 1,3-butadiene is sent from the third reactor 116 to the recovery unit 120 by the pipe 60 for recovery.
 第1蒸留塔114の塔底から配管62に抜き出したアセトアルデヒド含有液は第2蒸留塔118に供給して蒸留する。第2蒸留塔118の塔底から配管66に水を含む残液を抜き出し、塔頂から配管64にアセトアルデヒド含有ガスを抜き出す(工程C4)。配管66に抜き出した水を含む残液は廃液として処理する。 The acetaldehyde-containing liquid extracted from the bottom of the first distillation column 114 to the pipe 62 is supplied to the second distillation column 118 for distillation. The residual liquid containing water is extracted from the bottom of the second distillation column 118 into the pipe 66, and the acetaldehyde-containing gas is extracted from the top of the column 64 into the pipe 64 (step C4). The residual liquid containing water extracted from the pipe 66 is treated as a waste liquid.
 第2蒸留塔118(工程C4)の塔頂から抜き出したアセトアルデヒド含有ガス(排ガス(E/A))を、配管64を通じて、配管28に戻して中間ガスに混合する。また、分析計34によって配管28を流れる中間ガス中のモル比(E/A)を分析する。その分析結果に基づいて、流量指示調節計70によって配管68へと分離するアセトアルデヒド含有ガス(排ガス(E/A))の流量を調節する。これにより、配管28に戻すアセトアルデヒド含有ガス(排ガス(E/A))の流量を調節し、第2反応器110に供給する中間ガスのモル比(E/A)を1~100の範囲に調整する(工程D1)。また、分析計34の分析結果に基づいて、気液分離器124において、中間ガスからアセトアルデヒドの一部を分離することでも、第2反応器110に供給する中間ガスのモル比(E/A)を1~100の範囲に調整する(工程D2)。
 第1実施形態においては、工程D1及び工程D2のうち、いずれか1つのみを行ってもよく、両方を組み合わせて行ってもよい。
The acetaldehyde-containing gas (exhaust gas (E / A)) extracted from the top of the second distillation column 118 (step C4) is returned to the pipe 28 through the pipe 64 and mixed with the intermediate gas. Further, the molar ratio (E / A) in the intermediate gas flowing through the pipe 28 is analyzed by the analyzer 34. Based on the analysis result, the flow rate of the acetaldehyde-containing gas (exhaust gas (E / A)) separated into the pipe 68 is adjusted by the flow rate indicator regulator 70. As a result, the flow rate of the acetaldehyde-containing gas (exhaust gas (E / A)) returned to the pipe 28 is adjusted, and the molar ratio (E / A) of the intermediate gas supplied to the second reactor 110 is adjusted to the range of 1 to 100. (Step D1). Further, based on the analysis result of the analyzer 34, the molar ratio (E / A) of the intermediate gas supplied to the second reactor 110 can also be obtained by separating a part of acetaldehyde from the intermediate gas in the gas-liquid separator 124. Is adjusted to the range of 1 to 100 (step D2).
In the first embodiment, only one of the steps D1 and D2 may be performed, or both may be performed in combination.
[第4B実施形態]
 図5は、第4B実施形態の1,3-ブタジエンの製造装置100C(以下、「製造装置100C」とも記す。)の概略模式図である。図5における図3と同じ部分には同符号を付して説明を省略する。
[Fourth B Embodiment]
FIG. 5 is a schematic schematic view of the 1,3-butadiene manufacturing apparatus 100C (hereinafter, also referred to as “manufacturing apparatus 100C”) according to the fourth B embodiment. The same parts as those in FIG. 3 in FIG. 5 are designated by the same reference numerals, and the description thereof will be omitted.
 (製造装置)
 製造装置100Cは、リサイクル制御手段4の代わりにリサイクル制御手段4Aを備えている以外は、製造装置100Bと同様の態様である。リサイクル制御手段4Aは、第1リサイクル制御装置122の代わりに第3リサイクル制御装置126を備える以外はリサイクル制御手段4と同様の態様である。
(manufacturing device)
The manufacturing apparatus 100C has the same embodiment as the manufacturing apparatus 100B except that the recycling control means 4A is provided instead of the recycling control means 4. The recycling control means 4A has the same embodiment as the recycling control means 4 except that the third recycling control device 126 is provided instead of the first recycling control device 122.
 第3リサイクル制御装置126は、第2蒸留塔118の中間部の塔頂寄りと、配管28における弁32と分析計34との間とを接続する第1配管74と、第2蒸留塔118の塔頂と、配管28における弁32と分析計34との間とを接続する第2配管78と、を備えている。 The third recycling control device 126 includes the first pipe 74 connecting the middle portion of the second distillation column 118 near the top of the column and the valve 32 in the pipe 28 and the analyzer 34, and the second distillation column 118. A second pipe 78 that connects the top of the column and the valve 32 in the pipe 28 and the analyzer 34 is provided.
 第1配管74には流量指示調節計76が設けられ、第2配管78には流量指示調節計80が設けられている。第3リサイクル制御装置126は、分析計34の分析結果に基づき、流量指示調節計76と流量指示調節計80によって第1配管74と第2配管78の流量を調整できるようになっている。 The first pipe 74 is provided with a flow rate indicator adjuster 76, and the second pipe 78 is provided with a flow rate indicator adjuster 80. The third recycling control device 126 can adjust the flow rates of the first pipe 74 and the second pipe 78 by the flow rate indicator controller 76 and the flow rate indicator controller 80 based on the analysis result of the analyzer 34.
 (製造方法)
 以下、製造装置100Cを用いる第4B実施形態の1,3-ブタジエンの製造方法について、図5及び図6に基づいて説明する。
 製造装置100Cを用いる第4B実施形態の1,3-ブタジエンの製造方法は、工程D1の代わりに工程D3を行う以外は、製造装置100Bを用いる第4A実施形態と同様に行える。
(Production method)
Hereinafter, a method for producing 1,3-butadiene according to the fourth B embodiment using the production apparatus 100C will be described with reference to FIGS. 5 and 6.
The method for producing 1,3-butadiene in the fourth B embodiment using the manufacturing apparatus 100C can be performed in the same manner as in the fourth A embodiment using the manufacturing apparatus 100B, except that the step D3 is performed instead of the step D1.
 具体的には、工程D3において、第2蒸留塔118(工程C4)の中間部の塔頂寄りから抜き出したエタノールを主成分とする第1排出ガスを、第1配管74を通じて配管28に戻して中間ガスに混合する。また、第2蒸留塔118(工程C4)の塔頂から抜き出したアセトアルデヒド含有ガス(第2排ガス)を、第2配管78を通じて配管28に戻して中間ガスに混合する。さらに、分析計34による配管28を流れる中間ガス中のモル比(E/A)の分析結果に基づき、流量指示調節計76及び流量指示調節計80によって、配管28に戻す第1排出ガスの流量と第2排出ガスの流量をそれぞれ調節する。それにより、第2反応器110に供給する中間ガスのモル比(E/A)を1~100の範囲に調整する。
 第2実施形態においては、工程D2及び工程D3のうち、いずれか1つのみを行ってもよく、両方を組み合わせて行ってもよい。
Specifically, in step D3, the first exhaust gas containing ethanol as a main component extracted from the middle part of the second distillation column 118 (process C4) near the top of the column is returned to the pipe 28 through the first pipe 74. Mix with intermediate gas. Further, the acetaldehyde-containing gas (second exhaust gas) extracted from the top of the second distillation column 118 (process C4) is returned to the pipe 28 through the second pipe 78 and mixed with the intermediate gas. Further, based on the analysis result of the molar ratio (E / A) in the intermediate gas flowing through the pipe 28 by the analyzer 34, the flow rate of the first exhaust gas returned to the pipe 28 by the flow rate indicator controller 76 and the flow rate indicator controller 80. And the flow rate of the second exhaust gas are adjusted respectively. As a result, the molar ratio (E / A) of the intermediate gas supplied to the second reactor 110 is adjusted to the range of 1 to 100.
In the second embodiment, only one of the steps D2 and D3 may be performed, or both may be performed in combination.
 以上説明したように、本発明は、工程A~工程Dを行い、従来廃棄していた排出ガスの少なくとも一部をリサイクルしつつ、1,3-ブタジエンへの転化反応に供するガスのモル比(E/A)を特定の範囲に制御することで、高い収率で1,3-ブタジエンを連続的に製造できる。 As described above, in the present invention, the molar ratio of the gas to be subjected to the conversion reaction to 1,3-butadiene while performing steps A to D and recycling at least a part of the exhaust gas that has been conventionally discarded ( By controlling the E / A) to a specific range, 1,3-butadiene can be continuously produced in a high yield.
 なお、本実施形態の1,3-ブタジエンの製造方法は、前記した実施態様には限定されず、各工程で説明した構成を適宜組み合わせることができる。本発明の趣旨に逸脱しない範囲で、前記実施形態における構成要素を周知の構成要素に置き換えることは適宜可能である。 The method for producing 1,3-butadiene of the present embodiment is not limited to the above-described embodiment, and the configurations described in each step can be appropriately combined. It is possible to replace the components in the above embodiment with well-known components as appropriate without departing from the spirit of the present invention.
1…ガス調製手段、2…転化手段、3…精製手段、4…リサイクル制御手段、5,5A,5B…リサイクル手段、10…配管、11…流量指示調節計、12…配管、14…圧力指示調節計、16…ミキサー、18…熱交換器、20…温度指示調節計、21…気化器、22…弁、24…配管、26…流量指示調節計、28…配管、30…配管、32…弁、34…分析計、36…ポンプ、38…レベル指示調節計、40…弁、42…配管、44…弁、45…熱交換器、46…熱交換器、47…熱交換器、48…配管、49…配管、50…ポンプ、51…ポンプ、52…レベル指示調節計、53…レベル指示調節計、54…配管、55…配管、56…配管、58…配管、60…配管、61…気化器、62…配管、63…配管、64…配管、66…配管、68…配管、69…気化制御装置、70…流量指示調節計、72…配管、74…第1配管、76…流量指示調節計、78…第2配管、80…流量指示調節計、100,100A,100B,100C…製造装置、102…原料収容部、103…STM収容部、104…気化器、106…希釈用ガス収容部、108…第1反応器、110…第2反応器、112…気液分離器、113…気液分離器、114…第1蒸留塔、116…第3反応器、118…第2蒸留塔、120…回収部、122…リサイクル制御装置、123…第1リサイクル制御装置、124…気液分離器(第2リサイクル制御装置)、126…第3リサイクル制御装置 1 ... Gas preparation means, 2 ... Conversion means, 3 ... Purification means, 4 ... Recycling control means, 5, 5A, 5B ... Recycling means, 10 ... Piping, 11 ... Flow indicator, 12 ... Piping, 14 ... Pressure indication Controller, 16 ... Mixer, 18 ... Heat exchanger, 20 ... Temperature indicator, 21 ... Vapor, 22 ... Valve, 24 ... Piping, 26 ... Flow indicator, 28 ... Piping, 30 ... Piping, 32 ... Valve, 34 ... Analyzer, 36 ... Pump, 38 ... Level indicator, 40 ... Valve, 42 ... Piping, 44 ... Valve, 45 ... Heat exchanger, 46 ... Heat exchanger, 47 ... Heat exchanger, 48 ... Piping, 49 ... Piping, 50 ... Pump, 51 ... Pump, 52 ... Level indicator, 53 ... Level indicator, 54 ... Piping, 55 ... Piping, 56 ... Piping, 58 ... Piping, 60 ... Piping, 61 ... Vaporizer, 62 ... Piping, 63 ... Piping, 64 ... Piping, 66 ... Piping, 68 ... Piping, 69 ... Vaporization control device, 70 ... Flow indicator controller, 72 ... Piping, 74 ... First piping, 76 ... Flow indicator Controller, 78 ... 2nd pipe, 80 ... Flow indicator, 100, 100A, 100B, 100C ... Manufacturing equipment, 102 ... Raw material storage unit, 103 ... STM storage unit, 104 ... Vaporizer, 106 ... Gas storage for dilution Part, 108 ... 1st reactor, 110 ... 2nd reactor, 112 ... gas-liquid separator, 113 ... gas-liquid separator, 114 ... first distillation column, 116 ... third reactor, 118 ... second distillation column , 120 ... Recovery unit, 122 ... Recycling control device, 123 ... First recycling control device, 124 ... Gas-liquid separator (second recycling control device), 126 ... Third recycling control device

Claims (15)

  1.  エタノールを含むエタノール供給原料から1,3-ブタジエンを連続的に製造する方法であって、
     前記エタノール供給原料からエタノール含有ガスを調製するガス調製工程と、
     触媒の存在下、前記エタノール含有ガス中のエタノールを1,3-ブタジエンまで転化させる転化工程と、
     前記転化工程で得た1,3-ブタジエンを含む粗生成ガスを精製して精製1,3-ブタジエンを得る精製工程と、
     リサイクル工程、トラップ工程、及びリサイクル制御工程のいずれか1種以上の工程と、を含み、
     前記リサイクル工程は、前記精製工程において排出される排出ガスであって、エタノール及びアセトアルデヒドのいずれか一方若しくは両方と、エタノール及びアセトアルデヒドよりも沸点が高い高沸点成分とを含む排出ガスの少なくとも一部を加熱して得られる気化ガスの少なくとも一部を、前記ガス調製工程及び前記転化工程のいずれか一方若しくは両方に戻す工程であり、
     前記トラップ工程は、前記精製工程において排出される排出ガスであって、エタノール及びアセトアルデヒドのいずれか一方若しくは両方と、エタノール及びアセトアルデヒドよりも沸点が高い高沸点成分とを含む排出ガスから、前記高沸点成分の少なくとも一部を除去して得られる高沸点成分除去ガスの少なくとも一部を、前記ガス調製工程及び前記転化工程のいずれか一方又は両方に戻す工程であり、
     前記リサイクル制御工程は、前記転化工程及び前記精製工程のいずれか一方又は両方から排出される排出ガスであって、エタノール及びアセトアルデヒドのいずれか一方又は両方を含む排出ガスの少なくとも一部を、前記ガス調製工程及び前記転化工程から選ばれる工程Xに戻し、当該工程のガス中のモル比(エタノール/アセトアルデヒド)を1~100に制御する工程であって、
     前記排出ガスの一部を分離し、残部を前記工程Xに戻す工程D1と、前記排出ガスの少なくとも一部を前記工程Xに戻し、前記工程Xのガスからアセトアルデヒドの一部を分離する工程D2と、前記排出ガスとして、エタノールを主成分とする第1排出ガスとアセトアルデヒドを主成分とする第2排出ガスとをそれぞれ分けて前記工程Xに戻す工程D3と、からなる群から選ばれる少なくとも1つを含む、1,3-ブタジエンの製造方法。
    A method for continuously producing 1,3-butadiene from an ethanol feedstock containing ethanol.
    A gas preparation step for preparing an ethanol-containing gas from the ethanol supply raw material, and
    A conversion step of converting ethanol in the ethanol-containing gas to 1,3-butadiene in the presence of a catalyst, and
    A purification step of purifying the crude gas containing 1,3-butadiene obtained in the conversion step to obtain purified 1,3-butadiene, and a purification step.
    Including one or more of a recycling process, a trapping process, and a recycling control process.
    The recycling step is the exhaust gas discharged in the purification step, and at least a part of the exhaust gas containing one or both of ethanol and acetaldehyde and a high boiling point component having a boiling point higher than that of ethanol and acetaldehyde. It is a step of returning at least a part of the vaporized gas obtained by heating to one or both of the gas preparation step and the conversion step.
    The trap step is a high boiling point from the exhaust gas discharged in the purification step, which contains one or both of ethanol and acetaldehyde and a high boiling point component having a boiling point higher than that of ethanol and acetaldehyde. This is a step of returning at least a part of the high boiling point component removing gas obtained by removing at least a part of the components to one or both of the gas preparation step and the conversion step.
    The recycling control step is an exhaust gas discharged from either one or both of the conversion step and the purification step, and at least a part of the exhaust gas containing either one or both of ethanol and acetaldehyde is used as the gas. It is a step of returning to the step X selected from the preparation step and the conversion step and controlling the molar ratio (ethanol / acetaldehyde) in the gas of the step to 1 to 100.
    Step D1 in which a part of the exhaust gas is separated and the balance is returned to the step X, and step D2 in which at least a part of the exhaust gas is returned to the step X and a part of acetaldehyde is separated from the gas in the step X. At least one selected from the group consisting of the first exhaust gas containing ethanol as the main component and the second exhaust gas containing acetaldehyde as the main component and returning to the step X as the exhaust gas. A method for producing 1,3-butadiene, including one.
  2.  前記高沸点成分は、炭素数6の化合物及び炭素数8の化合物のいずれか一方又は両方を含む、請求項1に記載の1,3-ブタジエンの製造方法。 The method for producing 1,3-butadiene according to claim 1, wherein the high boiling point component contains either one or both of a compound having 6 carbon atoms and a compound having 8 carbon atoms.
  3.  前記リサイクル工程において、前記気化ガスの少なくとも一部を前記ガス調製工程に戻す際に、前記気化ガス中の、前記高沸点成分の少なくとも一部を除去してから前記ガス調製工程に戻す、請求項1又は2に記載の1,3-ブタジエンの製造方法。 The claim that when at least a part of the vaporized gas is returned to the gas preparation step in the recycling step, at least a part of the high boiling point component in the vaporized gas is removed and then returned to the gas preparation step. The method for producing 1,3-butadiene according to 1 or 2.
  4.  前記排出ガス中の前記高沸点成分の合計含有量が、前記排出ガス中の有機化合物の総質量の0.5~1質量%である、請求項3に記載の1,3-ブタジエンの製造方法。 The method for producing 1,3-butadiene according to claim 3, wherein the total content of the high boiling point component in the exhaust gas is 0.5 to 1% by mass of the total mass of the organic compound in the exhaust gas. ..
  5.  前記トラップ工程において、前記高沸点成分の少なくとも一部を気液分離して除去する、請求項1又は2に記載の1,3-ブタジエンの製造方法。 The method for producing 1,3-butadiene according to claim 1 or 2, wherein at least a part of the high boiling point component is gas-liquid separated and removed in the trap step.
  6.  前記排出ガス中の前記高沸点成分の合計含有量が、前記排出ガス中の有機化合物の総質量の0.5~1質量%である、請求項5に記載の1,3-ブタジエンの製造方法。 The method for producing 1,3-butadiene according to claim 5, wherein the total content of the high boiling point component in the exhaust gas is 0.5 to 1% by mass of the total mass of the organic compound in the exhaust gas. ..
  7.  前記工程Xにおけるモル比(エタノール/アセトアルデヒド)を分析計によって監視した結果に基づいて、前記工程D1、前記工程D2及び前記工程D3のうちの1つ以上を実施する、請求項1に記載の1,3-ブタジエンの製造方法。 1. The one according to claim 1, wherein one or more of the step D1, the step D2, and the step D3 is carried out based on the result of monitoring the molar ratio (ethanol / acetaldehyde) in the step X with an analyzer. , 3-butadiene production method.
  8.  前記分析計による監視においてモル比(エタノール/アセトアルデヒド)が0.8以下となったときに前記工程D1、前記工程D2及び前記工程D3のうちの1つ以上を開始する、請求項7に記載の1,3-ブタジエンの製造方法。 The seventh aspect of claim 7, wherein one or more of the step D1, the step D2, and the step D3 is started when the molar ratio (ethanol / acetaldehyde) becomes 0.8 or less in the monitoring by the analyzer. Method for producing 1,3-butadiene.
  9.  前記工程D2において、前記工程Xのガスを分離装置に導入し、前記分離装置において1.0~5.0MPaの加圧下でアセトアルデヒドの一部を分離する、請求項1~8のいずれか一項に記載の1,3-ブタジエンの製造方法。 Any one of claims 1 to 8, wherein in the step D2, the gas of the step X is introduced into the separation device, and a part of acetaldehyde is separated in the separation device under a pressure of 1.0 to 5.0 MPa. The method for producing 1,3-butadiene according to.
  10.  前記工程D3において、前記第1排出ガスを戻す流量と前記第2排出ガスを戻す流量をそれぞれ調節する、請求項1~9のいずれか一項に記載の1,3-ブタジエンの製造方法。 The method for producing 1,3-butadiene according to any one of claims 1 to 9, wherein in the step D3, the flow rate for returning the first exhaust gas and the flow rate for returning the second exhaust gas are adjusted, respectively.
  11.  前記ガス調製工程は、圧力が-1.0~3.0MPaG、温度が-100~400℃の条件で前記エタノール供給原料を気化して前記エタノール含有ガスとする工程A1を含む、請求項1~10のいずれか一項に記載の1,3-ブタジエンの製造方法。 The gas preparation step includes the step A1 of vaporizing the ethanol supply raw material into the ethanol-containing gas under the conditions of a pressure of −1.0 to 3.0 MPaG and a temperature of −100 to 400 ° C. 10. The method for producing 1,3-butadiene according to any one of 10.
  12.  前記転化工程は、圧力が0~1.0MPaG、温度が50~500℃の条件で触媒の存在下に前記エタノール含有ガス中のエタノールを1,3-ブタジエンまで転化する工程B1を少なくとも含み、気液分離によって前記工程B1に供給される前記エタノール含有ガスから水素を含むガスを分離する工程B2と、気液分離によって前記工程B1後のガスから窒素を含むガスを分離する工程B3と、蒸留によって前記工程B1に供給される前記エタノール含有ガスからアセトアルデヒドを含むガスを分離する工程B4とからなる群から選ばれる少なくとも1つを前記工程B1と組み合わせてもよい、請求項1~11のいずれか一項に記載の1,3-ブタジエンの製造方法。 The conversion step comprises at least step B1 of converting ethanol in the ethanol-containing gas to 1,3-butadiene in the presence of a catalyst under conditions of a pressure of 0 to 1.0 MPaG and a temperature of 50 to 500 ° C. A step B2 for separating a gas containing hydrogen from the ethanol-containing gas supplied to the step B1 by liquid separation, a step B3 for separating a gas containing nitrogen from the gas after the step B1 by gas-liquid separation, and a distillation. Any one of claims 1 to 11, wherein at least one selected from the group consisting of the step B4 for separating the gas containing acetaldehyde from the ethanol-containing gas supplied to the step B1 may be combined with the step B1. The method for producing 1,3-butadiene according to the section.
  13.  前記精製工程は、前記粗生成ガス中のブテンを脱水素化反応させて1,3-ブタジエンに転化する工程C1と、気液分離によって前記粗生成ガスから水素ガスを分離して1,3-ブタジエン含有液を得る工程C2と、前記粗生成ガスの液化物又は前記1,3-ブタジエン含有液を蒸留してエチレン含有ガスと1,3-ブタジエン含有流出物とアセトアルデヒド含有液に分離する工程C3と、前記アセトアルデヒド含有液を蒸留してアセトアルデヒド含有ガスと、水を含む残液とに分離する工程C4とからなる群から選ばれる少なくとも1つを含む、請求項1~12のいずれか一項に記載の1,3-ブタジエンの製造方法。 The purification step includes step C1 in which butene in the crude gas is dehydrogenated and converted to 1,3-butadiene, and 1,3-, which separates hydrogen gas from the crude gas by gas-liquid separation. Step C2 to obtain a butadiene-containing liquid, and step C3 to distill the liquefied crude gas or the 1,3-butadiene-containing liquid into an ethylene-containing gas, a 1,3-butadiene-containing effluent, and an acetaldehyde-containing liquid. To any one of claims 1 to 12, which comprises at least one selected from the group consisting of the step C4 of distilling the acetaldehyde-containing liquid and separating the acetaldehyde-containing gas into a residual liquid containing water. The method for producing 1,3-butadiene according to the above method.
  14.  エタノールを含むエタノール供給原料から1,3-ブタジエンを連続的に製造する製造装置であって、
     ガス調製手段と、転化手段と、精製手段と、リサイクル手段、トラップ手段、及びリサイクル制御手段のいずれか1種以上の手段と、を備え、
     前記ガス調製手段は、前記エタノール供給原料を気化してエタノール含有ガスとする気化器を備え、
     前記転化手段は、前記エタノール含有ガス中のエタノールを1,3-ブタジエンまで転化させる反応器を備え、
     前記精製手段は、前記転化手段で得られる1,3-ブタジエンを含む粗生成ガスを精製する手段であり、
     前記リサイクル手段は、前記精製手段から排出される排出ガスであって、エタノール及びアセトアルデヒドのいずれか一方又は両方を含む排出ガスの少なくとも一部を加熱して気化ガスを生成する気化器と、前記気化ガスを少なくとも前記ガス調製手段又は前記転化手段に戻す配管とを少なくとも備え、
     前記トラップ手段は、前記精製手段から排出される排出ガス中のエタノール及びアセトアルデヒドよりも沸点が高い高沸点成分の少なくとも一部を除去する高沸点成分除去装置と、高沸点成分を除去した排出ガスを前記ガス調製手段又は前記転化手段に戻す配管とを少なくとも備え、
     前記リサイクル制御手段は、前記転化手段及び前記精製手段のいずれか一方又は両方から排出される排出ガスであって、エタノール及びアセトアルデヒドのいずれか一方又は両方を含む排出ガスの少なくとも一部を、少なくとも前記ガス調製手段及び前記転化手段から選ばれる手段Xに戻す配管と、戻した箇所の下流側のガス中のモル比(エタノール/アセトアルデヒド)を分析する分析計とを少なくとも備えており、さらに、前記排出ガスの一部を分離し、残部を前記手段Xに戻す第1リサイクル制御装置と、前記排出ガスの少なくとも一部を前記手段Xに戻し、前記手段Xのガスからアセトアルデヒドの一部を分離する第2リサイクル制御装置と、エタノールを主成分とする第1排出ガスを前記手段Xに戻す第1配管及びアセトアルデヒドを主成分とする第2排出ガスを前記手段Xに戻す第2配管を備える第3リサイクル制御装置と、からなる群から選ばれる少なくとも1つを備える、1,3-ブタジエンの製造装置。
    A manufacturing device that continuously produces 1,3-butadiene from an ethanol supply raw material containing ethanol.
    It comprises gas preparation means, conversion means, purification means, and one or more means of recycling means, trap means, and recycling control means.
    The gas preparing means includes a vaporizer that vaporizes the ethanol supply raw material into an ethanol-containing gas.
    The conversion means includes a reactor that converts ethanol in the ethanol-containing gas to 1,3-butadiene.
    The purification means is a means for purifying the crude gas containing 1,3-butadiene obtained by the conversion means.
    The recycling means is an exhaust gas discharged from the purification means, and is a vaporizer that heats at least a part of the exhaust gas containing either one or both of ethanol and acetaldehyde to generate a vaporized gas, and the vaporization means. At least provided with at least a pipe for returning the gas to the gas preparing means or the converting means.
    The trap means includes a high boiling point component removing device that removes at least a part of a high boiling point component having a boiling point higher than that of ethanol and acetaldehyde in the exhaust gas discharged from the purification means, and an exhaust gas from which the high boiling point component has been removed. At least provided with the gas preparation means or the piping for returning to the conversion means,
    The recycling control means is exhaust gas discharged from either one or both of the conversion means and the purification means, and at least a part of the exhaust gas containing either one or both of ethanol and acetaldehyde, at least the above-mentioned. It is equipped with at least a pipe for returning to the means X selected from the gas preparing means and the conversion means, and an analyzer for analyzing the molar ratio (ethanol / acetaldehyde) in the gas on the downstream side of the returned portion, and further, the exhaust gas. A first recycling control device that separates a part of the gas and returns the rest to the means X, and a first that returns at least a part of the exhaust gas to the means X and separates a part of acetaldehyde from the gas of the means X. 2 A third recycling including a recycling control device, a first pipe for returning the first exhaust gas containing ethanol as a main component to the means X, and a second pipe for returning the second exhaust gas containing acetaldehyde as a main component to the means X. A 1,3-butadiene production device comprising a control device and at least one selected from the group consisting of.
  15.  前記リサイクル手段において、前記気化ガスを前記ガス調製手段に戻す配管の途中に気液分離器が設置されている、請求項14に記載の1,3-ブタジエンの製造装置。 The 1,3-butadiene manufacturing apparatus according to claim 14, wherein in the recycling means, a gas-liquid separator is installed in the middle of a pipe for returning the vaporized gas to the gas preparing means.
PCT/JP2021/011461 2020-03-23 2021-03-19 Method for producing 1,3-butadiene and device for producing 1,3-butadiene WO2021193457A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022510441A JPWO2021193457A1 (en) 2020-03-23 2021-03-19

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020051406 2020-03-23
JP2020-051406 2020-03-23
JP2020-051408 2020-03-23
JP2020051408 2020-03-23

Publications (1)

Publication Number Publication Date
WO2021193457A1 true WO2021193457A1 (en) 2021-09-30

Family

ID=77892574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/011461 WO2021193457A1 (en) 2020-03-23 2021-03-19 Method for producing 1,3-butadiene and device for producing 1,3-butadiene

Country Status (2)

Country Link
JP (1) JPWO2021193457A1 (en)
WO (1) WO2021193457A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016023141A (en) * 2014-07-16 2016-02-08 株式会社ブリヂストン Method for producing butadiene
WO2016111203A1 (en) * 2015-01-05 2016-07-14 日揮株式会社 Method for producing 1,3-butadiene
US9776933B2 (en) * 2013-11-29 2017-10-03 IFP Energies Nouvelles Process for producing 1,3-butadiene from a feedstock comprising ethanol

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9776933B2 (en) * 2013-11-29 2017-10-03 IFP Energies Nouvelles Process for producing 1,3-butadiene from a feedstock comprising ethanol
JP2016023141A (en) * 2014-07-16 2016-02-08 株式会社ブリヂストン Method for producing butadiene
WO2016111203A1 (en) * 2015-01-05 2016-07-14 日揮株式会社 Method for producing 1,3-butadiene

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHYLESH SANKARANARAYANAPILLAI, GOKHALE AMIT A., SCOWN CORINNE D., KIM DAEYOUP, HO CHRISTOPHER R., BELL ALEXIS T.: "From Sugars to Wheels: The Conversion of Ethanol to 1,3‐Butadiene over Metal‐Promoted Magnesia‐Silicate Catalysts", CHEMSUSCHEM, WILEY-VCH, DE, vol. 9, no. 12, 22 June 2016 (2016-06-22), DE , pages 1462 - 1472, XP055861154, ISSN: 1864-5631, DOI: 10.1002/cssc.201600195 *

Also Published As

Publication number Publication date
JPWO2021193457A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
TWI547477B (en) Process for producing acetic acid
JP6291420B2 (en) Method for producing acetic acid
US20170291859A1 (en) Method for the production of butadiene and hydrogen from ethanol in two low-water and low-energy-consumption reaction steps
JP5994726B2 (en) Method for producing conjugated diene
WO2016194850A1 (en) Process for producing acetic acid
JPH0948744A (en) Purification of acetic acid
JP6956277B2 (en) Method for producing 1,3-butadiene
WO2014148323A1 (en) 1,3-butadiene production method
JP4016650B2 (en) Method for producing (meth) acrylic acid
WO2021193457A1 (en) Method for producing 1,3-butadiene and device for producing 1,3-butadiene
CN103193581A (en) Device and method for coproduction of 1,3-butadiene and ethyl tert butyl ether from methanol to olefin (DMTO) byproduct coal-based mixing C4
CN1318375C (en) Process for producing (meth)acrylic acid compound
EP0601929B1 (en) A process for the preparation of isopropyl acetate
JP2006522120A (en) Selective hydrogenation of acetylenes and dienes in hydrocarbon streams.
US11401221B2 (en) Method for producing a stream of propylene and associated facility
JP6944065B2 (en) Method for producing 1,3-butadiene
JP2021107448A (en) Manufacturing method of 1,3-butadiene
CN109641815A (en) It is integrated with the method by ethyl alcohol production butadiene of extractive distillation
JP2022105874A (en) Production method of 1,3-butadiene
EP3395787B1 (en) Method and apparatus for energy-saving simultaneous production of styrene and alpha-methylstyrene
JP2019151604A (en) Manufacturing method of 1,3-butadiene
CN216472988U (en) High-purity MTBE preparation system capable of efficiently removing isobutene
WO2021059834A1 (en) Method for producing 1,3-butadiene
WO2021172239A1 (en) Method for producing 1,3-butadiene
TW201509517A (en) Heat management process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21774113

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022510441

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21774113

Country of ref document: EP

Kind code of ref document: A1