JPH0948744A - Purification of acetic acid - Google Patents

Purification of acetic acid

Info

Publication number
JPH0948744A
JPH0948744A JP20006495A JP20006495A JPH0948744A JP H0948744 A JPH0948744 A JP H0948744A JP 20006495 A JP20006495 A JP 20006495A JP 20006495 A JP20006495 A JP 20006495A JP H0948744 A JPH0948744 A JP H0948744A
Authority
JP
Japan
Prior art keywords
water
acetic acid
liquid
azeotropic
distillation column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20006495A
Other languages
Japanese (ja)
Other versions
JP3202150B2 (en
Inventor
Takaharu Sasaki
高治 佐々木
Masayuki Fujimoto
正幸 藤本
Takashige Miyanari
高重 宮成
Hiroshi Nishino
宏 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP20006495A priority Critical patent/JP3202150B2/en
Publication of JPH0948744A publication Critical patent/JPH0948744A/en
Application granted granted Critical
Publication of JP3202150B2 publication Critical patent/JP3202150B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To collect purified acetic acid from the mixture of acetic acid and water in high efficiency. SOLUTION: After azeotropic distillation of the mixture 1 of acetic acid and water in the presence of the 1st azeotropic agent using the 1st distillation tower 2, the concentrated water containing acetic acid is extracted from the bottom of the tower as first tower bottom liquid 14. The 1st tower bottom liquid 14 is purified by azeotropic distillation in second distillation tower 15 in the presence of the 2nd azeotropic agent which has a lowest azeotropic temperature with water lower than that of the 1st azeotropic agent and the dehydrated pure acetic acid 27 is collected from the tower bottom.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、酢酸と水との混合
物から低エネルギーで効率よく精製酢酸を回収する酢酸
の精製方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for purifying acetic acid which efficiently recovers purified acetic acid from a mixture of acetic acid and water with low energy.

【0002】[0002]

【従来の技術】酢酸の工業的製法としては従来から、発
酵法、ロジウムおよびヨウ素を触媒とした液相均一系反
応によるメタノールのカルボニル化法、ナフテン酸マン
ガン、ナフテン酸コバルトまたはナフテン酸ニッケルな
どの油溶性塩触媒を用いた固気相不均一系反応によるブ
タン、ナフサなど炭化水素の酸化法、およびエチレンを
酸化して一旦アセトアルデヒドを生成し、次いでこのア
セトアルデヒドを酢酸マンガン、または酢酸銅と酢酸コ
バルトとの混合物を触媒とした液相均一系で酸化して酢
酸とするエチレン2段酸化法、また金属パラジウムとヘ
テロポリ酸とを主触媒としてエチレンと酸素とを気相で
反応させ酢酸を合成する方法(特願平6−65161
号)などが知られている。
2. Description of the Related Art Conventionally, as an industrial production method of acetic acid, a fermentation method, a carbonylation method of methanol by a liquid phase homogeneous reaction using rhodium and iodine as catalysts, manganese naphthenate, cobalt naphthenate, nickel naphthenate, etc. Oxidation of hydrocarbons such as butane and naphtha by solid-gas heterogeneous reaction using oil-soluble salt catalyst, and oxidization of ethylene to form acetaldehyde, and then acetaldehyde is converted to manganese acetate or copper acetate and cobalt acetate. A two-stage ethylene oxidation method in which acetic acid is obtained by oxidizing in a liquid phase homogeneous system using a mixture of a catalyst and ethylene, and a method in which acetic acid is synthesized by reacting ethylene and oxygen in the gas phase with metallic palladium and heteropolyacid as a main catalyst. (Japanese Patent Application No. 6-65161
No.) are known.

【0003】これらのいずれの方法によるにせよ、反応
生成物には酢酸のほかに水が含まれている。工業的に酢
酸と水との混合物から精製酢酸を得るには一般に蒸留法
が採用される。しかし通常の蒸留法によって酢酸から水
を分離しようとすると、水と酢酸の沸点が接近している
ため、70段以上の高い段数の蒸留塔が必要になるばか
りでなく、このような蒸留塔を用いたとしても、酢酸に
対する水の比揮発度が小さいため、塔頂における還流比
を十分に大きくとる必要があり、きわめて効率が悪いも
のとなる。しかも蒸発潜熱が大きい水を塔頂から溜出さ
せることになるので蒸留塔の運転に多大のエネルギーを
消費することになる。特に原料混合物中の水の濃度が高
い場合には、装置の容積効率が低下して精製酢酸の生産
能力が著しく低下することになる。
By any of these methods, the reaction product contains water in addition to acetic acid. Distillation is generally used to industrially obtain purified acetic acid from a mixture of acetic acid and water. However, when water is separated from acetic acid by a conventional distillation method, the boiling points of water and acetic acid are close to each other, so that not only is a distillation column with a high number of stages of 70 or more required, but also such a distillation column is required. Even if it is used, since the relative volatility of water with respect to acetic acid is small, it is necessary to make the reflux ratio at the top of the column sufficiently large, resulting in extremely poor efficiency. Moreover, since water having a large latent heat of vaporization is distilled from the top of the column, a large amount of energy is consumed for operating the distillation column. In particular, when the concentration of water in the raw material mixture is high, the volumetric efficiency of the apparatus is reduced and the production capacity of purified acetic acid is significantly reduced.

【0004】この問題を解決するために、酢酸と水との
混合物(以下、「原料液」と記す)を蒸留するに際し
て、水と最低共沸混合物を形成する適当な共沸剤の存在
下に共沸蒸留を行い、塔頂から水と共沸剤との最低共沸
混合物を溜出させ、塔底から濃縮された酢酸を得る方法
が提案されている(例えば特公昭43−16965号公
報、特公昭61−31091号公報など)。共沸剤を用
いて共沸蒸留により水を分離するこれらの方法は、塔頂
における還流比を下げて蒸留に要するエネルギーを節減
できるばかりでなく、塔底からの精製酢酸の回収率を向
上させる利点がある。
In order to solve this problem, when distilling a mixture of acetic acid and water (hereinafter referred to as "raw material liquid"), in the presence of a suitable azeotropic agent which forms a minimum azeotropic mixture with water. A method has been proposed in which azeotropic distillation is performed, a minimum azeotropic mixture of water and an azeotropic agent is distilled from the top of the column, and concentrated acetic acid is obtained from the bottom of the column (for example, Japanese Patent Publication No. 43-16965). Japanese Patent Publication No. 61-31091, etc.). These methods of separating water by azeotropic distillation using an azeotropic agent not only reduce the reflux ratio at the top of the column to save energy required for distillation, but also improve the recovery rate of purified acetic acid from the bottom of the column. There are advantages.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記の従来か
ら知られた共沸蒸留法によってもなお、高度に精製され
た酢酸を得ようとすれば還流比を大きくとらざるを得
ず、そのため多大な熱量を要することになり、また共沸
剤が塔底の酢酸に混入するのを避けようとすれば回収率
を下げざるを得ないことになる。従って本発明の目的
は、原料液(酢酸と水との混合物)から、低エネルギー
で効率よく精製酢酸を得る酢酸の精製方法を提供するこ
とにある。
However, even if the above-mentioned conventionally known azeotropic distillation method is used to obtain highly purified acetic acid, the reflux ratio is inevitably large, and therefore, a large amount is required. It requires a large amount of heat, and if it is attempted to prevent the azeotropic agent from mixing with the acetic acid at the bottom of the column, the recovery rate must be reduced. Therefore, an object of the present invention is to provide a method for purifying acetic acid from a raw material liquid (mixture of acetic acid and water) to obtain purified acetic acid efficiently with low energy.

【0006】[0006]

【課題を解決するための手段】上記の課題は、原料液を
第一の蒸留塔に導入し、水と最低共沸混合物を形成し得
る第一の共沸剤の存在下に共沸蒸留し、塔頂から溜出す
る塔頂ガスを冷却して凝縮させ、得られた塔頂凝縮液を
水に富む豊水相と共沸剤に富む貧水相とに液液分離し、
この豊水相の少なくとも一部を系外に排出し、貧水相の
少なくとも一部を第一蒸留塔に還流し、第一蒸留塔の塔
底から濃縮された含水酢酸を第一塔底液として抜き出
し、次いでこの第一塔底液を第二の蒸留塔に導入し、水
と最低共沸混合物を形成し得てその共沸混合物が前記の
第一共沸剤と水との最低共沸混合物より低い最低共沸温
度を有する第二の共沸剤の存在下に共沸蒸留し、塔頂か
ら溜出する塔頂ガスを冷却して凝縮させ、得られた塔頂
凝縮液を水に富む豊水相と共沸剤に富む貧水相とに液液
分離し、この豊水相の少なくとも一部を系外に排出し、
貧水相の少なくとも一部を第二蒸留塔に還流し、第二蒸
留塔の塔底から脱水された精製酢酸を得る酢酸の精製方
法を提供することによって解決できる。上記において、
第一塔底液の水濃度は、1重量%〜15重量%の範囲内
となるまで濃縮することが好ましい。
[Means for Solving the Problems] The above-mentioned problems are solved by introducing a raw material liquid into a first distillation column and performing azeotropic distillation in the presence of a first azeotropic agent capable of forming a minimum azeotropic mixture with water. , The overhead gas distilled from the top of the tower is cooled and condensed, and the obtained overhead condensed liquid is liquid-liquid separated into a water-rich rich water phase and an azeotropic agent-rich poor water phase,
At least a part of this rich water phase is discharged out of the system, at least a part of the poor water phase is refluxed to the first distillation column, and the hydrous acetic acid concentrated from the bottom of the first distillation column is used as the first bottom liquid. The first bottom liquid can be introduced into a second distillation column to form a minimum azeotrope with water, and the azeotrope is the minimum azeotrope of the first azeotropic agent and water. Azeotropically distilling in the presence of a second azeotrope having a lower minimum azeotrope temperature, cooling the overhead gas leaving the overhead to condense, the resulting overhead condensate being rich in water Liquid-liquid separation into a rich water phase and a poor water phase rich in azeotropic agent, and discharging at least part of this rich water phase out of the system,
The problem can be solved by providing a method for purifying acetic acid, in which at least a part of the poor water phase is refluxed to the second distillation column to obtain dehydrated purified acetic acid from the bottom of the second distillation column. In the above,
The water concentration of the first tower bottom liquid is preferably concentrated to be in the range of 1% by weight to 15% by weight.

【0007】前記の第一共沸剤は、水と液液分離し得て
沸点が100℃以上であるアルキルエステル類、ケトン
類、アルコール類、芳香族炭化水素類、エーテル類およ
び多価アルコール誘導体からなる群から選ばれた1種以
上であることが好ましい。また第二共沸剤は、水と液液
分離し得て沸点が100℃未満であるアルキルエステル
類、ケトン類、アルコール類、芳香族炭化水素類、脂環
族炭化水素類およびエーテル類からなる群から選ばれた
1種以上であることが好ましい。
The above-mentioned first azeotropic agent is an alkyl ester, a ketone, an alcohol, an aromatic hydrocarbon, an ether and a polyhydric alcohol derivative having a boiling point of 100 ° C. or higher which can be separated from water by liquid-liquid separation. It is preferably at least one selected from the group consisting of The second azeotropic agent is composed of alkyl esters, ketones, alcohols, aromatic hydrocarbons, alicyclic hydrocarbons and ethers which can be liquid-liquid separated from water and have a boiling point of less than 100 ° C. It is preferably one or more selected from the group.

【0008】[0008]

【発明の実施の形態】以下、本発明の一実施形態につい
て、図面を参照して詳しく説明する。図1は本発明の一
実施形態を示す工程図である。この工程の装置は概略、
第一蒸留塔2と第二蒸留塔15とからなる。第一蒸留塔
2には塔頂部に冷却器6およびデカンタ7が、また塔底
部にリボイラ13が付設されている。第二蒸留塔15に
も同様に、塔頂部に冷却器19およびデカンタ20が、
また塔底部にリボイラ26が付設されている。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a process chart showing an embodiment of the present invention. The equipment of this process is
It comprises a first distillation column 2 and a second distillation column 15. The first distillation column 2 is provided with a cooler 6 and a decanter 7 at the top of the column and a reboiler 13 at the bottom of the column. Similarly, in the second distillation column 15, a condenser 19 and a decanter 20 are provided at the top of the column.
A reboiler 26 is attached to the bottom of the tower.

【0009】図1において、まず酢酸と水との混合物で
ある原料液1が、第一蒸留塔2に導入され、リボイラ1
3によって蒸留温度に加熱される。この第一蒸留塔2に
はさらに、第一共沸剤(この実施形態では酢酸ブチル、
沸点126.2℃)が液体としてライン3から塔頂近傍
に供給される。この第一共沸剤は第一蒸留塔2内で水と
共沸し、塔頂から溜出した塔頂ガス5は冷却器6によっ
て冷却されて凝縮し、塔頂凝縮液としてデカンタ7に導
入される。
In FIG. 1, first, a raw material liquid 1 which is a mixture of acetic acid and water is introduced into a first distillation column 2 and a reboiler 1
It is heated by 3 to the distillation temperature. The first distillation column 2 is further provided with a first azeotropic agent (butyl acetate in this embodiment,
(Boiling point 126.2 ° C.) is supplied as a liquid from line 3 to the vicinity of the top of the column. This first azeotropic agent azeotropes with water in the first distillation tower 2, and the overhead gas 5 distilled from the overhead is cooled by a cooler 6 and condensed, and introduced into a decanter 7 as an overhead condensate. To be done.

【0010】このデカンタ7は、槽内下部を分室9と分
室10とに2分割する堰8を有している。デカンタ7に
導入された塔頂凝縮液は、一方の分室10に導入され、
ここで水を主成分とし第一共沸剤(酢酸ブチル)の一部
を含む比重の大きい豊水相と、第一共沸剤を主成分とし
水の一部を含む比重の小さい貧水相とに比重差によって
液液分離される。分室10の底部からライン11を経由
して豊水相の少なくとも一部を連続的に系外に抜き出し
て豊水相と貧水相との界面の高さを調節すると、貧水相
のみが堰8を越えて他方の分室9に流入するようにな
る。分室9に流入した第一共沸剤に富む貧水相は、少な
くともその一部がライン3を経由して第一蒸留塔2に還
流される。場合によっては豊水相の一部もライン4から
第一蒸留塔の塔頂近傍に供給段を選択して還流される。
The decanter 7 has a weir 8 which divides the lower part of the tank into a compartment 9 and a compartment 10. The overhead condensate introduced into the decanter 7 is introduced into one of the compartments 10,
Here, a heavy water phase having a large specific gravity containing water as a main component and a part of the first azeotropic agent (butyl acetate), and a poor water phase having a small specific gravity containing a first azeotropic agent as a main component and a part of water The liquid and liquid are separated by the difference in specific gravity. When at least a part of the rich water phase is continuously extracted from the bottom of the compartment 10 via the line 11 and the height of the interface between the rich water phase and the poor water phase is adjusted, only the poor water phase causes the weir 8 to flow. It goes over and flows into the other compartment 9. At least a part of the poor water phase rich in the first azeotropic agent flowing into the compartment 9 is refluxed to the first distillation column 2 via the line 3. In some cases, part of the rich water phase is also refluxed from the line 4 near the top of the first distillation column by selecting a supply stage.

【0011】この際、ライン11から系外に排出される
豊水相には第一共沸剤の一部が溶存しているので、第一
蒸留塔2に還流される第一共沸剤の量が次第に不足する
ことになる。そこで、追加の第一共沸剤がライン12を
経由してデカンタ7に導入され、その不足分が補充され
る。
At this time, since a part of the first azeotropic agent is dissolved in the enriched water phase discharged from the line 11 to the outside of the system, the amount of the first azeotropic agent refluxed to the first distillation column 2 is increased. Will gradually run out. Then, the additional first azeotropic agent is introduced into the decanter 7 via the line 12 to replenish the shortage.

【0012】この第一蒸留塔2における共沸蒸留(以
下、「第一蒸留」と記す)によって、原料液1中に含ま
れていた水の大量部がライン11から排出され、この第
一蒸留塔2の塔底からは、濃縮された含水酢酸が第一塔
底液14として抜き出される。この第一蒸留によって、
第一塔底液14の水濃度が1重量%〜15重量%の範囲
内となるまで濃縮される。
By azeotropic distillation in the first distillation column 2 (hereinafter referred to as "first distillation"), a large amount of water contained in the raw material liquid 1 is discharged from the line 11, and the first distillation is performed. From the bottom of the tower 2, concentrated hydrous acetic acid is withdrawn as the first bottom liquid 14. By this first distillation,
The first bottom liquid 14 is concentrated until the water concentration falls within the range of 1% by weight to 15% by weight.

【0013】次に、第一塔底液14は、更に濃縮して精
製酢酸を回収するために、第二蒸留塔15に導入され
る。第二蒸留塔15に導入された第一塔底液14はリボ
イラ26によって蒸留温度に加熱される。更にこの第二
蒸留塔2には、第二共沸剤(この実施形態では酢酸イソ
プロピル、沸点88.6℃)が、液体としてライン16
から塔頂近傍に供給される。
Next, the first bottom liquid 14 is introduced into the second distillation column 15 in order to further concentrate and recover purified acetic acid. The first bottom liquid 14 introduced into the second distillation column 15 is heated to the distillation temperature by the reboiler 26. Further, in the second distillation column 2, a second azeotropic agent (isopropyl acetate in this embodiment, boiling point 88.6 ° C.) is used as a liquid in a line 16
Is supplied from near the top of the tower.

【0014】この第二共沸剤(酢酸イソプロピル)は、
水と最低共沸混合物を形成し得て、しかもその共沸混合
物は、前記の第一共沸剤(酢酸ブチル)と水との最低共
沸混合物より低い最低共沸温度を有している。すなわち
標準圧力下における第一共沸剤(酢酸ブチル)と水との
最低共沸温度が90.2℃であるのに対して、第二共沸
剤(酢酸イソプロピル)のそれは76.6℃である。
The second azeotropic agent (isopropyl acetate) is
A minimum azeotrope can be formed with water, and the azeotrope has a lower minimum azeotrope temperature than the lowest azeotrope of the first azeotropic agent (butyl acetate) and water. That is, the minimum azeotropic temperature of the first azeotropic agent (butyl acetate) and water under standard pressure is 90.2 ° C, while that of the second azeotropic agent (isopropyl acetate) is 76.6 ° C. is there.

【0015】第二共沸剤は第二蒸留塔15内で水と共沸
し、塔頂から溜出した塔頂ガス18は冷却器19によっ
て冷却されて凝縮し、塔頂凝縮液としてデカンタ20に
導入される。このデカンタ20は、デカンタ7と同様に
槽内下部を分室22と分室23とに2分割する堰21を
有している。
The second azeotropic agent azeotropes with water in the second distillation column 15, and the overhead gas 18 distilled from the overhead is cooled by the cooler 19 and condensed, and the decanter 20 as the overhead condensate is obtained. Will be introduced to. Like the decanter 7, the decanter 20 has a weir 21 that divides the lower part of the tank into a compartment 22 and a compartment 23.

【0016】デカンタ20に導入された塔頂凝縮液は、
一方の分室23に導入され、ここで水を主成分とし第二
共沸剤(酢酸イソプロピル)の一部を含む比重の大きい
豊水相と、第二共沸剤を主成分とし水の一部を含む比重
の小さい貧水相とに比重差によって液液分離される。分
室23の底部からライン24を経由して豊水相の少なく
とも一部を連続的に系外に抜き出して豊水相と貧水相と
の界面の高さを調節すると、貧水相のみが堰21を越え
て他方の分室22に流入するようになる。分室22に流
入した第二共沸剤に富む貧水相は、少なくともその一部
がライン16を経由して第二蒸留塔15に還流される。
場合によっては豊水相の一部もライン17から第二蒸留
塔15の塔頂近傍に供給段を選択して還流される。
The overhead condensate introduced into the decanter 20 is
It is introduced into one of the compartments 23, where a water-rich main component having a large specific gravity and containing a part of the second azeotropic agent (isopropyl acetate) and a second azeotropic agent as a main component and a part of water. Liquid-liquid separation is carried out due to the difference in specific gravity between the poor water phase containing a small specific gravity. If at least a part of the rich water phase is continuously extracted from the bottom of the compartment 23 via the line 24 to adjust the height of the interface between the rich water phase and the poor water phase, only the poor water phase will cause the weir 21 to flow. It goes over and flows into the other compartment 22. At least a part of the poor aqueous phase rich in the second azeotropic agent flowing into the compartment 22 is refluxed to the second distillation column 15 via the line 16.
In some cases, part of the rich water phase is also refluxed from the line 17 to the vicinity of the top of the second distillation column 15 by selecting a supply stage.

【0017】この際、ライン24から系外に排出される
豊水相に第二共沸剤の一部が溶存している場合には、第
二蒸留塔15に還流される第二共沸剤の量が次第に不足
することになる。この場合は、追加の第二共沸剤がライ
ン25を経由してデカンタ20に導入され、不足分が補
充される。
At this time, when a part of the second azeotropic agent is dissolved in the enriched water phase discharged from the line 24 to the outside of the system, the second azeotropic agent refluxed to the second distillation column 15 The quantity will gradually become insufficient. In this case, the additional second azeotropic agent is introduced into the decanter 20 via the line 25 to replenish the deficiency.

【0018】この第二蒸留塔2における共沸蒸留(以
下、「第二蒸留」と記す)によって、第一塔底液14
(含水酢酸)中に残存していた水は、ライン24から排
出され、この第二蒸留塔15の塔底からは、水を含まな
い精製酢酸が第二塔底液27として抜き出される。
By azeotropic distillation in the second distillation column 2 (hereinafter referred to as "second distillation"), the first bottom liquid 14
The water remaining in the (hydrous acetic acid) is discharged from the line 24, and purified acetic acid containing no water is withdrawn as a second bottom liquid 27 from the bottom of the second distillation column 15.

【0019】上記の実施形態においては、第一共沸剤と
して酢酸ブチルを用いたが、本発明に用いられる第一共
沸剤は、水とともに最低共沸混合物を形成しかつ水と液
液分離し得るものであればいかなるものであってもよ
い。好ましくは、第一共沸剤は沸点が100℃以上のも
のである。その例としては、例えば酢酸プロピル、酢酸
イソブチル、酢酸ブチル、酪酸エチルなどを含むアルキ
ルエステル類、メチルプロピルケトン、メチルブチルケ
トン、メチルイソブチルケトンなどを含むケトン類、ブ
チルアルコール、イソアミルアルコールなどを含むアル
コール類、トルエン、m−キシレン、p−キシレン、エ
チルベンゼンなどを含む芳香族炭化水素類、ブチルエー
テル、イソアミルエーテルなどを含むエーテル類、エチ
レングリコールジメチルエーテルなどを含む多価アルコ
ール誘導体、またはこれらのいずれか2種以上の混合物
を挙げることができる。
In the above embodiment, butyl acetate was used as the first azeotropic agent, but the first azeotropic agent used in the present invention forms a minimum azeotrope with water and separates liquid and liquid from water. Any material may be used as long as it can. Preferably, the first azeotropic agent has a boiling point of 100 ° C. or higher. Examples thereof include alkyl esters such as propyl acetate, isobutyl acetate, butyl acetate and ethyl butyrate, ketones such as methyl propyl ketone, methyl butyl ketone and methyl isobutyl ketone, alcohols such as butyl alcohol and isoamyl alcohol. , Toluene, m-xylene, p-xylene, aromatic hydrocarbons including ethylbenzene, butyl ether, ethers including isoamyl ether, polyhydric alcohol derivatives including ethylene glycol dimethyl ether, or any two of these The above mixture can be mentioned.

【0020】また上記の実施形態において、第二共沸剤
25としては酢酸イソプロピルを用いたが、本発明に用
いられる第二共沸剤は、水とともに最低共沸混合物を形
成し得て、その共沸混合物が前記の第一共沸剤と水との
最低共沸混合物より低い最低共沸温度を有し、かつ水と
液液分離し得るものであればいかなるものであってもよ
い。好ましくは、第二共沸剤は、沸点が100℃未満の
ものである。その例としては、例えば酢酸エチル、酢酸
イソプロピルなどを含むアルキルエステル類、メチルエ
チルケトンなどを含むケトン類、sec−ブタノールな
どのアルコール類、ベンゼンなどを含む芳香族炭化水素
類、シクロヘキサンなどを含む脂環族炭化水素類、エチ
ルエーテル、イソプロピルエーテルなどを含むエーテル
類、またはこれらのいずれか2種以上の混合物を挙げる
ことができる。
In the above embodiment, isopropyl acetate was used as the second azeotropic agent 25. However, the second azeotropic agent used in the present invention can form a minimum azeotropic mixture with water, Any azeotropic mixture may be used as long as it has a minimum azeotropic temperature lower than the minimum azeotropic mixture of the first azeotropic agent and water and can be liquid-liquid separated from water. Preferably, the second azeotropic agent has a boiling point of less than 100 ° C. Examples thereof include, for example, alkyl esters including ethyl acetate and isopropyl acetate, ketones including methyl ethyl ketone, alcohols such as sec-butanol, aromatic hydrocarbons including benzene, and alicyclic compounds including cyclohexane. Examples thereof include hydrocarbons, ethers including ethyl ether, isopropyl ether, and the like, or a mixture of any two or more thereof.

【0021】次に、酢酸と水との混合物である原料液を
脱水濃縮するに際して、好ましくは沸点が100℃以上
の第一共沸剤と、好ましくは沸点が100℃未満であっ
て第一共沸剤と水との最低共沸混合物より低い最低共沸
温度を有する第二共沸剤とを用いる本発明の精製方法の
作用効果について説明する。いま、水と最低共沸混合物
を形成し得る共沸剤の例について、種族別にその共沸剤
の沸点(℃)と、最低共沸混合物中の水の濃度(重量
%)とを参照すると下記の表1〜表4の通りである。
Next, when dehydrating and concentrating the raw material liquid which is a mixture of acetic acid and water, the first azeotropic agent preferably has a boiling point of 100 ° C. or higher, and preferably the first azeotropic agent having a boiling point of less than 100 ° C. The action and effect of the purification method of the present invention using the second azeotropic agent having the lowest azeotropic temperature lower than the lowest azeotropic mixture of the boiling agent and water will be described. Now, regarding examples of azeotropic agents capable of forming a minimum azeotropic mixture with water, referring to the boiling point (° C.) of the azeotropic agent and the concentration (% by weight) of water in the minimum azeotropic mixture by race, Tables 1 to 4 below.

【0022】[0022]

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 [Table 3]

【表4】 [Table 4]

【0023】上記の各表から、一般に共沸剤の沸点が上
昇するに従って共沸混合物中の水の濃度が高くなる傾向
があることがわかる。そこで、酢酸と水との混合物から
水を除去するに際しては、混合物中の水の濃度が比較的
高い領域においては、水濃度が比較的高い共沸混合物を
形成し得る、すなわち沸点の高い共沸剤を選択すること
が蒸留効率の点で有利である。
From the above tables, it can be seen that generally the concentration of water in the azeotrope tends to increase as the boiling point of the azeotropic agent increases. Therefore, when water is removed from a mixture of acetic acid and water, an azeotropic mixture having a relatively high water concentration can be formed in a region where the water concentration in the mixture is relatively high, that is, an azeotrope having a high boiling point. The selection of the agent is advantageous in terms of distillation efficiency.

【0024】一方、蒸留塔の塔底において水分含量が1
重量%〜15重量%の範囲内となるまで酢酸が濃縮され
てくると、水の沸点である100℃またはそれ以上の沸
点を有する共沸剤を用いることは、酢酸と水との分離以
上に、沸点が118.2℃である酢酸と共沸剤との分離
を困難にする。実際に、この条件で濃縮精製酢酸を得よ
うとして、蒸留塔の段数を増し、また還流比を大きくと
ったとしても、塔頂溜出物中に酢酸が混入し、また塔底
の酢酸中に共沸剤が混入することを実質的に阻止できな
くなる。
On the other hand, the water content at the bottom of the distillation column is 1
When the acetic acid is concentrated to the range of 15% by weight to 15% by weight, using an azeotropic agent having a boiling point of 100 ° C. or higher which is the boiling point of water is more than separation of acetic acid and water. , Which makes it difficult to separate the acetic acid having a boiling point of 118.2 ° C. from the azeotropic agent. Actually, even if the number of distillation columns is increased and the reflux ratio is increased in order to obtain concentrated purified acetic acid under these conditions, acetic acid is mixed in the overhead distillate and the acetic acid at the bottom is The inclusion of the azeotropic agent cannot be substantially prevented.

【0025】そこで本発明の酢酸の精製方法において
は、酢酸濃度が比較的低い原料液1を濃縮する第一蒸留
塔2では、できるだけ効率的に大量部の水を除去するた
めに、最低共沸温度が比較的高い、好ましくは沸点が1
00℃以上の第一共沸剤を用いて、第一塔底液14の水
分含量が1重量%〜15重量%の範囲内となるまで共沸
蒸留を行う。
Therefore, in the method for purifying acetic acid of the present invention, in the first distillation column 2 for concentrating the raw material liquid 1 having a relatively low acetic acid concentration, in order to remove a large amount of water as efficiently as possible, the minimum azeotropic distillation Relatively high temperature, preferably boiling point 1
Using the first azeotropic agent having a temperature of 00 ° C. or higher, azeotropic distillation is performed until the water content of the first bottom liquid 14 is in the range of 1% by weight to 15% by weight.

【0026】次に、この第一塔底液14を第二蒸留塔1
5に移して、酢酸との沸点差を拡大し塔底からの精製酢
酸の回収率を高めるように、最低共沸温度が比較的低
い、好ましくは沸点が100℃未満である第二共沸剤を
用いて共沸蒸留を行う。これによって上記の蒸留効率と
精製度という相反する要求を両立させ、高い回収率で精
製酢酸を得ることができるようになる。このとき、第一
塔底液14の水分濃度が15重量%を越えると、第二蒸
留の効率が低下し、また水分濃度が1重量%未満となる
まで第一蒸留で濃縮すると、第一蒸留の効率が低下する
ので好ましくない。第一塔底液14の水分濃度が1重量
%〜15重量%の範囲内となるように第一蒸留の条件を
調節することによって、蒸留効率と精製度とが両立し、
より高い効率で精製酢酸を得ることができる。
Next, the first bottom liquid 14 is added to the second distillation column 1
5, a second azeotropic agent having a relatively low minimum azeotropic temperature, preferably having a boiling point of less than 100 ° C., in order to widen the boiling point difference with acetic acid and increase the recovery rate of purified acetic acid from the bottom of the column. Is used for azeotropic distillation. This makes it possible to satisfy the contradictory requirements of the distillation efficiency and the degree of purification, and to obtain purified acetic acid with a high recovery rate. At this time, if the water concentration of the first bottom liquid 14 exceeds 15% by weight, the efficiency of the second distillation decreases, and if the first distillation is concentrated until the water concentration becomes less than 1% by weight, the first distillation This is not preferable because the efficiency of is reduced. By adjusting the conditions of the first distillation so that the water concentration of the first bottom liquid 14 is within the range of 1% by weight to 15% by weight, the distillation efficiency and the degree of purification are compatible with each other.
Purified acetic acid can be obtained with higher efficiency.

【0027】第一共沸剤と第二共沸剤とはいずれも、そ
れぞれの蒸留塔の塔頂部において水に富む豊水相と共沸
剤に富む貧水相とに比重差によって液液分離されるもの
であるから、この液液分離が可能なものでなければなら
ないことはいうまでもないが、この液液分離を効率よく
行うためには、水との分配率が十分に小さく、また水と
の比重差が十分に大きいことが好ましい。更に、分配率
は温度に依存するものであるから、第一デカンタおよび
第二デカンタにおける液温は−20℃ないし70℃の範
囲内に維持されることが好ましい。
Both the first azeotropic agent and the second azeotropic agent are liquid-liquid separated at the top of the respective distillation columns due to the difference in specific gravity between the rich water phase rich in water and the poor aqueous phase rich in azeotropic agent. It goes without saying that this liquid-liquid separation must be possible, but in order to perform this liquid-liquid separation efficiently, the distribution ratio with water is sufficiently small and It is preferable that the difference in specific gravity between and is sufficiently large. Further, since the distribution rate depends on the temperature, it is preferable that the liquid temperature in the first decanter and the second decanter is maintained within the range of -20 ° C to 70 ° C.

【0028】上記の観点から、本発明の酢酸の精製方法
に用いる第一共沸剤および第二共沸剤として好適な共沸
剤の例について、その標準圧力下における水との最低共
沸温度(℃)、最低共沸混合物中の水の濃度(重量
%)、および30℃における水と共沸剤(A)との相互
溶解度とを、それぞれ表5および表6に示す。
From the above viewpoints, regarding the examples of the azeotropic agent suitable as the first azeotropic agent and the second azeotropic agent used in the method for purifying acetic acid of the present invention, the minimum azeotropic temperature with water under the standard pressure is shown. (° C.), the concentration of water (% by weight) in the lowest azeotropic mixture, and the mutual solubility of water and the azeotropic agent (A) at 30 ° C. are shown in Table 5 and Table 6, respectively.

【0029】[0029]

【表5】 [Table 5]

【表6】 [Table 6]

【0030】実際に使用する共沸剤は、水との最低共沸
温度、液液分離温度における水との分配率、水との比重
差のほか、揮発性、入手の容易さなどを考慮して選択さ
れる。これらの中で、第一共沸剤としては酢酸ブチルが
特に好ましい。酢酸ブチルは共沸混合物中の水の割合が
比較的大きいので、少ない還流量で比較的大量の水を塔
頂から溜出させることができ、また分配率が比較的小さ
いので、豊水相と貧水相との分離がよい。
The azeotropic agent to be actually used takes into consideration the minimum azeotropic temperature with water, the distribution ratio with water at the liquid-liquid separation temperature, the specific gravity difference with water, volatility, and availability. Selected. Of these, butyl acetate is particularly preferable as the first azeotropic agent. Since butyl acetate has a relatively large proportion of water in the azeotrope, it can distill a relatively large amount of water with a small amount of reflux from the top of the tower, and has a relatively small distribution rate. Good separation from aqueous phase.

【0031】また、第二共沸剤としては酢酸イソプロピ
ルが特に好ましい。酢酸イソプロピルは、沸点が100
℃未満の共沸剤の中では共沸混合物中の水の割合が比較
的大きいので、少ない還流量で比較的大量の水を塔頂か
ら溜出させることができ、しかも分配率も比較的小さい
ので、豊水相と貧水相との分離がよい。更に、共沸剤自
体の沸点が酢酸のそれに比して十分に低いので、第二蒸
留塔における精製酢酸の回収率が向上する。
Further, isopropyl acetate is particularly preferable as the second azeotropic agent. Isopropyl acetate has a boiling point of 100.
Since the proportion of water in the azeotropic mixture is relatively large in the azeotropic agent below ℃, a relatively large amount of water can be distilled from the top of the tower with a small amount of reflux, and the distribution rate is also relatively small. Therefore, the separation of the rich water phase and the poor water phase is good. Furthermore, since the boiling point of the azeotropic agent itself is sufficiently lower than that of acetic acid, the recovery rate of purified acetic acid in the second distillation column is improved.

【0032】本発明の酢酸の精製方法に用いる装置の形
式は特に限定されるものではない。例えば第一蒸留塔お
よび第二蒸留塔は、棚段式、充填式など従来から用いら
れているいずれの形式でもよい。これらに付帯する冷却
器やデカンタなども、特に上記の実施形態において示し
た形式に限定されるものではなく、また、これらが蒸留
塔本体と一体に形成されていても、あるいは別体として
形成されていてもいずれでもよい。
The type of apparatus used in the method for purifying acetic acid of the present invention is not particularly limited. For example, the first distillation column and the second distillation column may be of any type conventionally used such as a tray type and a packed type. The cooler, decanter, and the like incidental to these are not particularly limited to the types shown in the above-described embodiment, and they may be formed integrally with the distillation column body or formed separately. It may be either.

【0033】[0033]

【実施例】次に、上記の実施形態による実施例を示す。
以下の実施例において、「重量部」はすべて、原料液を
100重量部としたときの値である。 (実施例1)この実施例は、図1に示した装置を用い
て、酢酸と水との混合物である原料液1を精製し、精製
酢酸27を得るものである。この原料液1の組成は、酢
酸(15.6重量%)、水(84.4重量%)であっ
た。第一共沸剤としては酢酸ブチル、第二共沸剤として
は酢酸イソプロピルを用いた。
EXAMPLES Next, examples according to the above-described embodiment will be shown.
In the following examples, all "parts by weight" are values when the raw material liquid is 100 parts by weight. (Example 1) In this example, using the apparatus shown in FIG. 1, the raw material liquid 1 which is a mixture of acetic acid and water is purified to obtain purified acetic acid 27. The composition of this raw material liquid 1 was acetic acid (15.6% by weight) and water (84.4% by weight). Butyl acetate was used as the first azeotropic agent, and isopropyl acetate was used as the second azeotropic agent.

【0034】上記の原料液1(100重量部)を第一蒸
留塔2に導入した。第一蒸留塔2としては、濃縮部30
段、回収部30段からなるガラス製オルダーショウ型蒸
留器を用い、原料液1を温度90℃で導入した。この第
一蒸留塔2の塔頂近傍より、酢酸ブチル(98.6重量
%)と水(1.4重量%)とからなる貧水相3(31
5.0重量部)を供給して蒸留を行った。
The above raw material liquid 1 (100 parts by weight) was introduced into the first distillation column 2. As the first distillation column 2, the concentration section 30
Raw material liquid 1 was introduced at a temperature of 90 ° C. using a glass-made Oldershaw-type distiller composed of 30 stages and a collecting section. From the vicinity of the top of the first distillation column 2, a poor water phase 3 (31) composed of butyl acetate (98.6% by weight) and water (1.4% by weight) was used.
5.0 parts by weight) was supplied for distillation.

【0035】塔頂ガス5は冷却器6で20℃に冷却し、
第一デカンタ7で、貧水相3(315.0重量部)と豊
水相(122.5重量部)とに液液分離した。この貧水
相3は前記のように第一蒸留塔2に還流し、また豊水相
の一部(38.0重量部)もライン4を経由して第一蒸
留塔2の塔頂近傍の、貧水相3とは異なる段に還流し
た。豊水相の残部(84.5重量部)はライン11から
系外に排出した。
The overhead gas 5 is cooled to 20 ° C. by a cooler 6,
The first decanter 7 separated the liquid into a poor water phase 3 (315.0 parts by weight) and a rich water phase (122.5 parts by weight). The poor water phase 3 is refluxed to the first distillation column 2 as described above, and a part (38.0 parts by weight) of the rich water phase is also passed through the line 4 near the top of the first distillation column 2, Reflux to a stage different from the poor aqueous phase 3. The rest of the Hosui phase (84.5 parts by weight) was discharged from the system through line 11.

【0036】この豊水相の組成は水(97.7重量
%)、酢酸ブチル(2.3重量%)であり、酢酸は含ま
れていなかった。第一蒸留を継続するに必要な酢酸ブチ
ル(1.9重量部)はライン12から補給した。
The composition of this rich water phase was water (97.7% by weight), butyl acetate (2.3% by weight), and no acetic acid was contained. Butyl acetate (1.9 parts by weight) required to continue the first distillation was replenished via line 12.

【0037】上記の第一蒸留によって、ライン11から
水(82.5重量部)が排出されたので、結局、原料液
1中の水(84.4重量部)の約98重量%がこの第一
蒸留によって分離除去されたことになる。第一蒸留塔2
の塔底からは、水濃度10.8重量%の酢酸水溶液から
なる塔底液14(17.5重量部)が得られた。この塔
底液14に共沸剤である酢酸ブチルは含まれていなかっ
た。
Since water (82.5 parts by weight) was discharged from the line 11 by the above-mentioned first distillation, about 98% by weight of the water (84.4 parts by weight) in the raw material liquid 1 was eventually converted to this first portion. It has been separated and removed by one distillation. First distillation column 2
From the bottom of the column, a bottom liquid 14 (17.5 parts by weight) consisting of an acetic acid aqueous solution having a water concentration of 10.8% by weight was obtained. Butyl acetate, which is an azeotropic agent, was not contained in this bottom liquid 14.

【0038】上記の塔底液14を、濃縮部30段、回収
部30段のガラス製オルダーショウ型蒸留器からなる第
二蒸留塔15に供給した。この第二蒸留塔15の塔頂近
傍より、酢酸イソプロピル(98.1重量%)と水
(1.9重量%)とからなる貧水相16(19.8重量
部)を供給して蒸留を行った。
The above-mentioned bottom liquid 14 was supplied to a second distillation column 15 composed of a glass Oldershaw type distillation apparatus having 30 stages of concentration section and 30 stages of recovery section. From the vicinity of the top of the second distillation column 15, a poor water phase 16 (19.8 parts by weight) consisting of isopropyl acetate (98.1% by weight) and water (1.9% by weight) was supplied for distillation. went.

【0039】塔頂ガス18は冷却器19で20℃に冷却
し、第二デカンタ20で、貧水相16(19.8重量
部)と豊水相(1.9重量部)とに液液分離した。この
貧水相16は前記のように第二蒸留塔15に還流し、豊
水相は全量(1.9重量部)をライン24から系外に排
出した。第二蒸留を継続するに必要な酢酸イソプロピル
(0.1重量部)はライン25から補給した。この第二
蒸留によって、第二蒸留塔15の塔底液27として、水
および共沸剤を実質的に含まない精製酢酸(15.6重
量部)が得られた。
The overhead gas 18 is cooled to 20 ° C. by the cooler 19, and the second decanter 20 separates the liquid phase into a poor water phase 16 (19.8 parts by weight) and a rich water phase (1.9 parts by weight). did. The poor water phase 16 was refluxed to the second distillation column 15 as described above, and the whole rich water phase (1.9 parts by weight) was discharged from the system through the line 24. The isopropyl acetate (0.1 parts by weight) required to continue the second distillation was replenished via line 25. By this second distillation, purified acetic acid (15.6 parts by weight) substantially free of water and an azeotropic agent was obtained as the bottom liquid 27 of the second distillation column 15.

【0040】上記の実施例1において、図1に示した各
ラインの組成(重量%)、および原料液1を100重量
部としたときの各ラインの負荷量(重量部)を表7に示
す。
In Example 1 above, Table 7 shows the composition (wt%) of each line shown in FIG. 1 and the load amount (wt part) of each line when the raw material liquid 1 was 100 parts by weight. .

【0041】[0041]

【表7】 [Table 7]

【0042】上記の結果から、実施例1の方法によっ
て、酢酸に対する比揮発度が小さく、しかも蒸発潜熱が
大きい水が原料液1から効率的に分離され、純度の高い
精製酢酸が高い回収率で回収できたことがわかる。
From the above results, according to the method of Example 1, water having a small relative volatility with respect to acetic acid and a large latent heat of vaporization was efficiently separated from the raw material liquid 1, and highly purified purified acetic acid was obtained at a high recovery rate. You can see that it was recovered.

【0043】(実施例2)図1に示す装置を用いて実施
例1と同様の蒸留操作を行い、ただし第一共沸剤として
メチルイソブチルケトンを、また第二共沸剤としてベン
ゼンを用い、かつ原料液1の組成を変えて酢酸の濃縮精
製を行った。この原料液1の組成は、酢酸(70.0重
量%)、水(30.0重量%)であった。
Example 2 The same distillation operation as in Example 1 was carried out using the apparatus shown in FIG. 1, except that methyl isobutyl ketone was used as the first azeotropic agent and benzene was used as the second azeotropic agent. Moreover, the composition of the raw material liquid 1 was changed to concentrate and purify acetic acid. The composition of this raw material liquid 1 was acetic acid (70.0% by weight) and water (30.0% by weight).

【0044】上記の原料液1(100重量部)を第一蒸
留塔2に温度100℃で導入した。この第一蒸留塔2の
塔頂近傍より、メチルイソブチルケトン(98.0重量
%)と水(2.0重量%)とからなる貧水相3(21
0.0重量部)を供給して共沸蒸留を行った。
The above raw material liquid 1 (100 parts by weight) was introduced into the first distillation column 2 at a temperature of 100 ° C. From the vicinity of the top of the first distillation column 2, a poor water phase 3 (21) composed of methyl isobutyl ketone (98.0% by weight) and water (2.0% by weight) was obtained.
(0.0 parts by weight) was supplied to carry out azeotropic distillation.

【0045】塔頂ガス5は冷却器6で20℃に冷却し、
第一デカンタ7で、貧水相3(210.0重量部)と豊
水相(63.4重量部)とに液液分離した。この貧水相
3は前記のように第一蒸留塔2に還流し、また豊水相の
一部(34.6重量部)もライン4を経由して第一蒸留
塔2の塔頂近傍の、貧水相3とは異なる段に還流した。
豊水相の残部(28.8重量部)はライン11から系外
に排出した。
The overhead gas 5 is cooled to 20 ° C. by a cooler 6,
Liquid-liquid separation was performed using a first decanter 7 into a poor water phase 3 (210.0 parts by weight) and a rich water phase (63.4 parts by weight). The poor water phase 3 is refluxed to the first distillation column 2 as described above, and a part (34.6 parts by weight) of the rich water phase is also passed through the line 4 near the top of the first distillation column 2. Reflux to a stage different from the poor aqueous phase 3.
The rest of the Hosui phase (28.8 parts by weight) was discharged out of the system through line 11.

【0046】この豊水相の組成は水(98.1重量
%)、メチルイソブチルケトン(1.9重量%)であ
り、酢酸は含まれていなかった。第一蒸留を継続するに
必要なメチルイソブチルケトン(0.5重量部)は、ラ
イン12から補給した。
The composition of this rich water phase was water (98.1% by weight), methyl isobutyl ketone (1.9% by weight), and did not contain acetic acid. The methyl isobutyl ketone (0.5 parts by weight) required to continue the first distillation was replenished via line 12.

【0047】上記の第一蒸留によって、ライン11から
水(28.3重量部)が排出されたので、結局、原料液
1中の水(30.0重量部)の約94重量%がこの第一
蒸留によって分離除去されたことになる。第一蒸留塔2
の塔底からは、水濃度2.4重量%の酢酸水溶液からな
る塔底液14(71.7重量部)が得られた。この第一
塔底液14に共沸剤であるメチルイソブチルケトンは含
まれていなかった。
Since water (28.3 parts by weight) was discharged from the line 11 by the above-mentioned first distillation, about 94% by weight of the water (30.0 parts by weight) in the raw material liquid 1 was eventually converted to this first. It has been separated and removed by one distillation. First distillation column 2
From the column bottom, column bottom liquid 14 (71.7 parts by weight) consisting of an acetic acid aqueous solution having a water concentration of 2.4% by weight was obtained. The first bottom liquid 14 did not contain azeotropic agent methyl isobutyl ketone.

【0048】次に上記の第一塔底液14を第二蒸留塔1
5に供給した。この第二蒸留塔15の塔頂近傍より、ベ
ンゼン(99.9重量%)と水(0.1重量%)とから
なる貧水相16(26.0重量部)を供給して蒸留を行
った。
Next, the above first bottom liquid 14 is added to the second distillation column 1
5. From the vicinity of the top of the second distillation column 15, a poor water phase 16 (26.0 parts by weight) consisting of benzene (99.9% by weight) and water (0.1% by weight) was supplied for distillation. It was

【0049】塔頂ガス18は冷却器19で20℃に冷却
し、第二デカンタ20で、貧水相16(26.0重量
部)と豊水相(2.4重量部)とに液液分離した。この
貧水相16は前記のように第二蒸留塔15に還流し、豊
水相の内0.7重量部はライン17を経由して第二蒸留
塔15に還流し、残部(1.7重量部)はライン24か
ら系外に排出した。第二蒸留の継続中、実質的にベンゼ
ンの補給は不要であった。この第二蒸留によって、第二
蒸留塔15の塔底液27として、水および共沸剤を実質
的に含まない精製酢酸(70.0重量部)が得られた。
The overhead gas 18 is cooled to 20 ° C. by a cooler 19, and a second decanter 20 separates a liquid phase into a poor water phase 16 (26.0 parts by weight) and a rich water phase (2.4 parts by weight). did. The poor water phase 16 is refluxed to the second distillation column 15 as described above, and 0.7 part by weight of the rich water phase is refluxed to the second distillation column 15 via the line 17, and the rest (1.7 parts by weight). Part) was discharged from the system through the line 24. During the second distillation, virtually no benzene make-up was required. By this second distillation, purified acetic acid (70.0 parts by weight) substantially free of water and an azeotropic agent was obtained as the bottom liquid 27 of the second distillation column 15.

【0050】上記の実施例2において、図1に示した各
ラインの組成(重量%)、および原料液1を100重量
部としたときの各ラインの負荷量(重量部)を表8に示
す。
In Example 2 above, Table 8 shows the composition (wt%) of each line shown in FIG. 1 and the load amount (part by weight) of each line when the raw material liquid 1 was 100 parts by weight. .

【0051】[0051]

【表8】 [Table 8]

【0052】上記の結果から、実施例2の方法によって
も、酢酸に対する比揮発度が小さく、しかも蒸発潜熱が
大きい水を、原料液1から効率的に分離し、純度の高い
精製酢酸が高い回収率で回収できたことがわかる。
From the above results, also by the method of Example 2, water having a small relative volatility to acetic acid and a large latent heat of vaporization is efficiently separated from the raw material liquid 1, and highly purified purified acetic acid is highly recovered. It turns out that it was possible to collect at a rate.

【0053】[0053]

【発明の効果】本発明の酢酸の精製方法は、酢酸と水と
の混合物を第一蒸留塔において第一共沸剤の存在下に共
沸蒸留し、塔底から水濃度が好ましくは1重量%〜15
重量%の範囲内となるまで濃縮した含水酢酸を第一塔底
液として抜き出し、これを第二蒸留塔に導入して、第一
共沸剤より低い水との最低共沸温度を有する第二共沸剤
の存在下に共沸蒸留し、塔底から脱水濃縮された精製酢
酸を得るものであるので、酢酸と水との混合物から効率
よく精製酢酸を回収することができる。第一共沸剤の沸
点が100℃以上であり第二共沸剤の沸点が100℃未
満であれば、第一蒸留において大部分の水を低エネルギ
ーで除去することができ、第二蒸留において、簡便な装
置でありながら高い回収率で高度に精製された酢酸を得
ることができる。
In the method for purifying acetic acid of the present invention, the mixture of acetic acid and water is azeotropically distilled in the first distillation column in the presence of the first azeotropic agent, and the water concentration from the column bottom is preferably 1% by weight. % ~ 15
The hydrous acetic acid concentrated to the range of wt% is withdrawn as the first bottom liquid and introduced into the second distillation column to obtain a second azeotropic temperature with water lower than that of the first azeotropic agent. Since azeotropic distillation is performed in the presence of an azeotropic agent to obtain purified acetic acid dehydrated and concentrated from the bottom of the column, purified acetic acid can be efficiently recovered from a mixture of acetic acid and water. If the boiling point of the first azeotropic agent is 100 ° C. or higher and the boiling point of the second azeotropic agent is less than 100 ° C., most of the water can be removed with low energy in the first distillation, and in the second distillation Highly purified acetic acid can be obtained with a high recovery rate while using a simple device.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施形態を示す工程図。FIG. 1 is a process drawing showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…酢酸・水混合物 2…第一蒸留塔 3…貧水相 4,11…豊水相 14…第一塔底液 15…第二蒸留塔 16…貧水相 17,24…豊水相 27…精製酢酸 1 ... Acetic acid / water mixture 2 ... First distillation column 3 ... Poor water phase 4, 11 ... Pouring water phase 14 ... First tower bottom liquid 15 ... Second distillation column 16 ... Poor water phase 17, 24 ... Pouring water phase 27 ... Purification Acetic acid

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西野 宏 大分県大分市大字中の州2 昭和電工株式 会社大分工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroshi Nishino Oita City, Oita Prefecture Nakano 2 in Showa Denko Oita Factory

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 酢酸と水との混合物からなる原料液を第
一の蒸留塔に導入し、水と最低共沸混合物を形成し得る
第一の共沸剤の存在下に共沸蒸留し、塔頂から溜出する
塔頂ガスを冷却して凝縮させ、得られた塔頂凝縮液を水
に富む豊水相と共沸剤に富む貧水相とに液液分離し、こ
の豊水相の少なくとも一部を系外に排出し、貧水相の少
なくとも一部を第一蒸留塔に還流し、第一蒸留塔の塔底
から濃縮された含水酢酸を第一塔底液として抜き出し、 次いでこの第一塔底液を第二の蒸留塔に導入し、水と最
低共沸混合物を形成し得てその共沸混合物が前記の第一
共沸剤と水との最低共沸混合物より低い最低共沸温度を
有する第二の共沸剤の存在下に共沸蒸留し、塔頂から溜
出する塔頂ガスを冷却して凝縮させ、得られた塔頂凝縮
液を水に富む豊水相と共沸剤に富む貧水相とに液液分離
し、この豊水相の少なくとも一部を系外に排出し、貧水
相の少なくとも一部を第二蒸留塔に還流し、第二蒸留塔
の塔底から脱水された精製酢酸を回収する酢酸の精製方
法。
1. A raw material liquid consisting of a mixture of acetic acid and water is introduced into a first distillation column and azeotropically distilled in the presence of a first azeotropic agent capable of forming a minimum azeotropic mixture with water, The overhead gas that distills from the overhead is cooled and condensed, and the obtained overhead condensate is liquid-liquid separated into a rich water phase rich in water and a poor aqueous phase rich in azeotropic agent, and at least this rich water phase. A part is discharged to the outside of the system, at least a part of the poor water phase is refluxed to the first distillation column, the concentrated hydrous acetic acid is extracted from the bottom of the first distillation column as the first bottom liquid, and then this first One bottom liquid can be introduced into the second distillation column to form a minimum azeotrope with water, the azeotrope being lower than the minimum azeotrope of the first azeotrope and water. Azeotropic distillation in the presence of a second azeotropic agent having a temperature, the overhead gas distilled from the overhead is cooled and condensed, and the obtained overhead condensate is enriched with water. Liquid-liquid separation into a poor water phase rich in azeotropic agent, at least a part of this rich water phase is discharged out of the system, at least a part of the poor water phase is refluxed to the second distillation column, and the second distillation column A method for purifying acetic acid, in which dehydrated purified acetic acid is recovered from the bottom of the column.
【請求項2】 第一塔底液の水濃度が1重量%〜15重
量%の範囲内となるまで第一蒸留塔において原料液を濃
縮する請求項1に記載の酢酸の精製方法。
2. The method for purifying acetic acid according to claim 1, wherein the raw material liquid is concentrated in the first distillation column until the water concentration of the first bottom liquid is within the range of 1% by weight to 15% by weight.
【請求項3】 前記の第一共沸剤が、水と液液分離し得
て沸点が100℃以上であるアルキルエステル類、ケト
ン類、アルコール類、芳香族炭化水素類、エーテル類お
よび多価アルコール誘導体からなる群から選ばれた1種
以上である請求項1または請求項2に記載の酢酸の精製
方法。
3. The first azeotropic agent is an alkyl ester, a ketone, an alcohol, an aromatic hydrocarbon, an ether and a polyvalent compound which can be liquid-liquid separated from water and has a boiling point of 100 ° C. or higher. The method for purifying acetic acid according to claim 1 or 2, which is one or more selected from the group consisting of alcohol derivatives.
【請求項4】 前記の第二共沸剤が、水と液液分離し得
て沸点が100℃未満であるアルキルエステル類、ケト
ン類、アルコール類、芳香族炭化水素類、脂環族炭化水
素類およびエーテル類からなる群から選ばれた1種以上
である請求項1または請求項2に記載の酢酸の精製方
法。
4. The second azeotropic agent is an alkyl ester, a ketone, an alcohol, an aromatic hydrocarbon, or an alicyclic hydrocarbon which has a boiling point of less than 100 ° C. and which can be liquid-liquid separated from water. The method for purifying acetic acid according to claim 1 or 2, which is one or more selected from the group consisting of compounds and ethers.
JP20006495A 1995-08-04 1995-08-04 Acetic acid purification method Expired - Fee Related JP3202150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20006495A JP3202150B2 (en) 1995-08-04 1995-08-04 Acetic acid purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20006495A JP3202150B2 (en) 1995-08-04 1995-08-04 Acetic acid purification method

Publications (2)

Publication Number Publication Date
JPH0948744A true JPH0948744A (en) 1997-02-18
JP3202150B2 JP3202150B2 (en) 2001-08-27

Family

ID=16418247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20006495A Expired - Fee Related JP3202150B2 (en) 1995-08-04 1995-08-04 Acetic acid purification method

Country Status (1)

Country Link
JP (1) JP3202150B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100744753B1 (en) * 2005-08-31 2007-08-01 삼성석유화학(주) Recovering method of acetic acid according to azeotropic distillation using butanol as entrainer
US7273559B2 (en) 2004-10-28 2007-09-25 Eastman Chemical Company Process for removal of impurities from an oxidizer purge stream
US7282151B2 (en) 2003-06-05 2007-10-16 Eastman Chemical Company Process for removal of impurities from mother liquor in the synthesis of carboxylic acid using pressure filtration
US7291270B2 (en) 2004-10-28 2007-11-06 Eastman Chemical Company Process for removal of impurities from an oxidizer purge stream
US7351396B2 (en) 2003-06-05 2008-04-01 Eastman Chemical Company Extraction process for removal of impurities from an aqueous mixture
US7381386B2 (en) 2003-06-05 2008-06-03 Eastman Chemical Company Extraction process for removal of impurities from mother liquor in the synthesis of carboxylic acid
US7402694B2 (en) 2005-08-11 2008-07-22 Eastman Chemical Company Process for removal of benzoic acid from an oxidizer purge stream
US7410632B2 (en) 2003-06-05 2008-08-12 Eastman Chemical Company Extraction process for removal of impurities from mother liquor in the synthesis of carboxylic acid
US7452522B2 (en) 2003-06-05 2008-11-18 Eastman Chemical Company Extraction process for removal of impurities from an oxidizer purge stream in the synthesis of carboxylic acid
US7494641B2 (en) 2003-06-05 2009-02-24 Eastman Chemical Company Extraction process for removal of impurities from an oxidizer purge stream in the synthesis of carboxylic acid
US7556784B2 (en) 2004-09-02 2009-07-07 Eastman Chemical Company Optimized production of aromatic dicarboxylic acids
US7569722B2 (en) 2005-08-11 2009-08-04 Eastman Chemical Company Process for removal of benzoic acid from an oxidizer purge stream
US7759516B2 (en) 2006-03-01 2010-07-20 Eastman Chemical Company Versatile oxidation byproduct purge process
US7863481B2 (en) 2006-03-01 2011-01-04 Eastman Chemical Company Versatile oxidation byproduct purge process
US7880032B2 (en) 2006-03-01 2011-02-01 Eastman Chemical Company Versatile oxidation byproduct purge process
US7888530B2 (en) 2004-09-02 2011-02-15 Eastman Chemical Company Optimized production of aromatic dicarboxylic acids
US7897808B2 (en) 2006-03-01 2011-03-01 Eastman Chemical Company Versatile oxidation byproduct purge process
US7897810B2 (en) 2004-09-02 2011-03-01 Eastman Chemical Company Optimized production of aromatic dicarboxylic acids
CN104045549A (en) * 2013-03-15 2014-09-17 江苏天成生化制品有限公司 Method for recovery of acetic acid from ethenone wastewater by side dedusting rectification
JP2016520096A (en) * 2013-05-20 2016-07-11 サウディ ベーシック インダストリーズ コーポレイション Method for purifying acetic acid and acrylic acid
KR20170141145A (en) * 2016-06-14 2017-12-22 베니트엠 주식회사 Method for recovering acetic acid from aromatic oxidation process
WO2021200785A1 (en) 2020-03-31 2021-10-07 株式会社ダイセル Method for producing purified acetic acid

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7410632B2 (en) 2003-06-05 2008-08-12 Eastman Chemical Company Extraction process for removal of impurities from mother liquor in the synthesis of carboxylic acid
US7494641B2 (en) 2003-06-05 2009-02-24 Eastman Chemical Company Extraction process for removal of impurities from an oxidizer purge stream in the synthesis of carboxylic acid
US7282151B2 (en) 2003-06-05 2007-10-16 Eastman Chemical Company Process for removal of impurities from mother liquor in the synthesis of carboxylic acid using pressure filtration
US7470370B2 (en) 2003-06-05 2008-12-30 Eastman Chemical Company Process for removal of impurities from mother liquor in the synthesis of carboxylic acid using pressure filtration
US7351396B2 (en) 2003-06-05 2008-04-01 Eastman Chemical Company Extraction process for removal of impurities from an aqueous mixture
US7381386B2 (en) 2003-06-05 2008-06-03 Eastman Chemical Company Extraction process for removal of impurities from mother liquor in the synthesis of carboxylic acid
US7452522B2 (en) 2003-06-05 2008-11-18 Eastman Chemical Company Extraction process for removal of impurities from an oxidizer purge stream in the synthesis of carboxylic acid
US7959879B2 (en) 2004-09-02 2011-06-14 Grupo Petrotemex, S.A. De C.V. Optimized production of aromatic dicarboxylic acids
US7888530B2 (en) 2004-09-02 2011-02-15 Eastman Chemical Company Optimized production of aromatic dicarboxylic acids
US7556784B2 (en) 2004-09-02 2009-07-07 Eastman Chemical Company Optimized production of aromatic dicarboxylic acids
US7897810B2 (en) 2004-09-02 2011-03-01 Eastman Chemical Company Optimized production of aromatic dicarboxylic acids
US7291270B2 (en) 2004-10-28 2007-11-06 Eastman Chemical Company Process for removal of impurities from an oxidizer purge stream
US7273559B2 (en) 2004-10-28 2007-09-25 Eastman Chemical Company Process for removal of impurities from an oxidizer purge stream
US7402694B2 (en) 2005-08-11 2008-07-22 Eastman Chemical Company Process for removal of benzoic acid from an oxidizer purge stream
US7569722B2 (en) 2005-08-11 2009-08-04 Eastman Chemical Company Process for removal of benzoic acid from an oxidizer purge stream
KR100744753B1 (en) * 2005-08-31 2007-08-01 삼성석유화학(주) Recovering method of acetic acid according to azeotropic distillation using butanol as entrainer
US7956215B2 (en) 2006-03-01 2011-06-07 Grupo Petrotemex, S.A. De C.V. Versatile oxidation byproduct purge process
US7897808B2 (en) 2006-03-01 2011-03-01 Eastman Chemical Company Versatile oxidation byproduct purge process
US7759516B2 (en) 2006-03-01 2010-07-20 Eastman Chemical Company Versatile oxidation byproduct purge process
US7902395B2 (en) 2006-03-01 2011-03-08 Eastman Chemical Company Versatile oxidation byproduct purge process
US7863481B2 (en) 2006-03-01 2011-01-04 Eastman Chemical Company Versatile oxidation byproduct purge process
US7880032B2 (en) 2006-03-01 2011-02-01 Eastman Chemical Company Versatile oxidation byproduct purge process
CN104045549A (en) * 2013-03-15 2014-09-17 江苏天成生化制品有限公司 Method for recovery of acetic acid from ethenone wastewater by side dedusting rectification
JP2016520096A (en) * 2013-05-20 2016-07-11 サウディ ベーシック インダストリーズ コーポレイション Method for purifying acetic acid and acrylic acid
US9944582B2 (en) 2013-05-20 2018-04-17 Saudi Basic Industries Corporation Method for the purification of acetic acid and acrylic acid
KR20170141145A (en) * 2016-06-14 2017-12-22 베니트엠 주식회사 Method for recovering acetic acid from aromatic oxidation process
WO2021200785A1 (en) 2020-03-31 2021-10-07 株式会社ダイセル Method for producing purified acetic acid

Also Published As

Publication number Publication date
JP3202150B2 (en) 2001-08-27

Similar Documents

Publication Publication Date Title
JP3202150B2 (en) Acetic acid purification method
KR100414249B1 (en) Process for purifying acetic acid
KR101093958B1 (en) Method of separating cyclohexene and production process
US10562836B2 (en) Process for producing acetic acid
JP3934163B2 (en) Purification method of butyl acrylate
CN102666457A (en) Recovery of butanol from a mixture of butanol, water, and an organic extractant
EP0973717B1 (en) Water separation process
US4250330A (en) Process for the recovery of the solvent and of the by-produced methylacetate in the synthesis of terephthalic acid
WO2004020076A1 (en) Separator, reactor, and process for producing aromatic carboxylic acid
JP2003513945A (en) Formulation of formic acid
JPH0665139A (en) Method for recovering acetic acid
EP0031097B1 (en) Method for distilling ethyl alcohol
JP3219682B2 (en) Method for purifying acetic acid and method for producing acetic acid
US10661196B2 (en) Process for producing acetic acid
JP2017165693A (en) Method for producing acetic acid
JP2010138169A (en) Purification and production method of cyclohexene
JPH0147454B2 (en)
JPS6012336B2 (en) Method for producing acetone with a water content lower than 0.2% by weight by extractive distillation
CN102144151A (en) Method of recovering carboxylic acids from dilute aqueous streams
JPH0142252B2 (en)
JP3217242B2 (en) Acetic acid purification method
JP2681667B2 (en) Method for separating acetic acid / water / vinyl acetate mixture
US4220596A (en) Separation of phthalic anhydride from vapor mixture also containing water vapor
KR102673536B1 (en) How to Make Acetic Acid
JPS6215542B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010605

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees