WO2021193337A1 - Endoscope - Google Patents

Endoscope Download PDF

Info

Publication number
WO2021193337A1
WO2021193337A1 PCT/JP2021/011029 JP2021011029W WO2021193337A1 WO 2021193337 A1 WO2021193337 A1 WO 2021193337A1 JP 2021011029 W JP2021011029 W JP 2021011029W WO 2021193337 A1 WO2021193337 A1 WO 2021193337A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
lens
lens barrel
image
fiber
Prior art date
Application number
PCT/JP2021/011029
Other languages
French (fr)
Japanese (ja)
Inventor
将人 瀧ヶ平
雄大 松田
Original Assignee
株式会社フジクラ
ファイバーテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ, ファイバーテック株式会社 filed Critical 株式会社フジクラ
Priority to JP2022510031A priority Critical patent/JP7362902B2/en
Publication of WO2021193337A1 publication Critical patent/WO2021193337A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes

Definitions

  • the present invention relates to an endoscope.
  • the present application claims priority with respect to Japanese Patent Application No. 2020-056093 filed in Japan on March 26, 2020, the contents of which are incorporated herein by reference.
  • Patent Document 1 describes an image guide (image fiber) that transmits a subject image created by an objective lens unit to an endoscope operation unit, and an endoscope operation unit that reimages the subject image on a solid-state imaging element.
  • an endoscope comprising a reimaging optical system arranged in.
  • a bilateral telecentric optical system is used for the lens system that optically couples the image fiber and the image sensor.
  • the bilateral telecentric optical system is an optical system in which a diaphragm having a small aperture is placed at a focal position between the front lens group and the rear lens group so that the optical axis and the main ray can be regarded as parallel.
  • This optical system has an advantage that a stable image can be obtained even if the end face position of the image fiber is displaced with respect to the lens.
  • Patent Document 1 in order to obtain the above effect sufficiently, it is necessary to set the aperture diameter of the diaphragm to 1/5 to 1/10 or less of the effective diameter of the lens. Therefore, there is a problem that the subject image acquired by the image sensor becomes darker than that of a normal lens system.
  • the present invention has been made in view of the above problems, and it is possible to prevent the end face of the image fiber from deviating from the focal position of the reimaging optical system and obtain a stable image formation on the image sensor.
  • the purpose is to provide an endoscope.
  • the endoscope has an image fiber, an image pickup element, a first lens optical system and a second lens optical system, and is arranged between the image fiber and the image pickup element.
  • An urging member arranged between the first lens barrel and the second lens barrel and urging the first lens barrel toward the image fiber, and the first lens optical system and the second lens optical system.
  • the first lens optical system is configured to convert light incident from the image fiber into parallel light
  • the second lens optical system is configured to focus the parallel light on the image pickup element.
  • the diaphragm is fixed to the first lens barrel. According to this configuration, the variation in the length of the image fiber in manufacturing is absorbed by the variation in the distance between the first lens optical system and the second lens optical system via the urging member, so that the end face of the image fiber is absorbed. It is always arranged within the depth of field of the first lens optical system.
  • the re-imaging optical system can be a non-telecentric system, the number of lenses is small and the total length can be made compact. Further, since the diaphragm is arranged between the first lens optical system and the second lens optical system and the diaphragm is fixed to the first lens barrel, unnecessary light that does not need to be incident on the second lens optical system is required. It is possible to leave the light that needs to be incident on the second lens optical system while cutting the light.
  • the image fiber may be held by a fiber holder detachably attached to the housing portion.
  • the fiber holder has an insertion portion that is insertably inserted into the housing portion, and the first lens barrel is inserted into the insertion portion by the urging of the urging member. It may be pressed.
  • the housing portion has a wall portion in which an insertion hole for the insertion portion is formed, and the insertion portion projects to the accommodation space of the first lens barrel inside the wall portion. You may be.
  • the aperture diameter of the diaphragm may be set to 1 / 1.1 or more and 1 / 1.3 or less of the effective diameter of the first lens optical system.
  • the length of the diaphragm in the arrangement direction of the first lens barrel and the second lens barrel may be 1.1 mm or more and 3.8 mm or less.
  • an endoscope capable of preventing the end face of the image fiber from deviating from the focal position with the reimaging optical system and obtaining a stable image formation on the image pickup device. ..
  • FIG. 1 is a perspective view of an endoscope 1 equipped with a protective cap 2 according to an embodiment.
  • FIG. 2 is a perspective view of the endoscope 1 from which the protective cap 2 according to the embodiment is removed.
  • FIG. 3 is a cross-sectional configuration diagram of the endoscope 1 according to the embodiment.
  • the endoscope 1 includes an endoscope operation unit 10, an insertion observation unit 20 extending forward from the endoscope operation unit 10, and a removable protective cap 2 that covers the insertion observation unit 20. And have.
  • the X-axis direction is the longitudinal direction in which the insertion observation unit 20 extends
  • the Y-axis direction and the Z-axis direction are two-axis orthogonal directions (also referred to as the lateral directions of the insertion observation unit 20) orthogonal to the X-axis direction. ..
  • the "front” is the tip 21 side (+ X side) in the insertion observation unit 20, and the “rear” is opposite to the tip 21 in the insertion observation unit 20.
  • This is the side (-X side, that is, the base end (root) side of the insertion observation unit 20).
  • the protective cap 2 includes a mounting portion 3 mounted on the endoscope operating portion 10 and a tip accommodating portion 4 extending forward from the mounting portion 3 and covering the insertion observation portion 20.
  • the mounting portion 3 is formed in a substantially cylindrical shape surrounding the outer periphery of the endoscope operating portion 10.
  • the tip accommodating portion 4 is formed in a substantially bottomed cylindrical shape surrounding the outer periphery of the insertion observation portion 20 and the tip 21.
  • An engagement hole 5 that opens in the Z-axis direction and a plurality of communication holes 6 are formed on the outer periphery of the mounting portion 3.
  • the protective cap 2 is engaged with the engaging hole 5 by the engaging projection 12 formed on the front side of the endoscope operating portion 10 shown in FIGS. 2 and 3 and protruding in the Z-axis direction, whereby the protective cap 2 is attached to the endoscope. It is detachably attached to the operation unit 10.
  • the communication hole 6 enables sterilization of the endoscope operation unit 10 and the insertion observation unit 20 with the protective cap 2 attached. That is, the structure is such that the sterilizing gas can flow into the protective cap 2 from the communication hole 6.
  • the insertion observation unit 20 is formed in the shape of an elongated needle extending in the X-axis direction.
  • An objective lens is provided at the tip 21 of the insertion observation unit 20.
  • the insertion observation unit 20 includes an image fiber 22 (optical fiber) that transmits the subject image acquired via the objective lens to the endoscope operation unit 10, and an illumination fiber 23 (optical fiber) that irradiates illumination light forward from the tip 21. Fiber) and.
  • the image fiber 22 is arranged inside a hard outer cylinder (stainless steel pipe or the like) (not shown).
  • the illumination fiber 23 is also arranged inside the hard outer cylinder, like the image fiber 22.
  • the other end of the illumination fiber 23 passes through the subcutaneous portion of the outer surface of the endoscope operation unit 10 and is connected to an illumination device (light source) (not shown).
  • an illumination device light source
  • a small illumination device LED or the like
  • the endoscope operation unit 10 is formed in a substantially pen shape (also referred to as a substantially columnar shape having a conical portion on the front side) having a grip portion 11 on the front side in the X-axis direction.
  • an image pickup device 30 such as a CCD or CMOS and reimaging optics for re-imaging the subject image transmitted by the image fiber 22 on the image pickup device 30.
  • System 40 and.
  • the image sensor 30 converts the reimaged subject image into electronic image data. As shown in FIG. 2, the electronic image data is transmitted to an image processing device (not shown) via a cable 13 extending rearward from the endoscope operating unit 10.
  • the image processing device displays electronic image data on a monitor or stores it in a storage medium.
  • FIG. 4 is an enlarged cross-sectional configuration view of the inside of the endoscope 1 according to the embodiment.
  • FIG. 5 is a configuration diagram of the re-imaging optical system 40 according to the embodiment. As shown in these figures, a reimaging optical system 40 is provided between the image fiber 22 and the image sensor 30 to reimage the subject image transmitted by the image fiber 22 on the image sensor 30. ..
  • the re-imaging optical system 40 has a first lens optical system 40A that converts light incident from the end surface 22a of the image fiber 22 into parallel light, and the parallel light is focused on the image pickup element 30. It has a second lens optical system 40B.
  • the first lens optical system 40A is arranged on the image fiber 22 side (front side). Further, the second lens optical system 40B is arranged on the rear side (image sensor 30 side) of the first lens optical system 40A.
  • the first lens optical system 40A is formed by a lens group in which the first lens 41, the second lens 42, and the third lens 43 are arranged in this order from the image fiber 22 side in the optical axis direction (X-axis direction).
  • the first lens 41 is a plano-convex lens and mainly has a function of converting light incident from the end surface 22a of the image fiber 22 into parallel light.
  • the second lens 42 is a biconvex lens, and is characterized in that the difference in refractive index depending on the color is small.
  • the third lens 43 is a concave meniscus lens, and in the present embodiment, the emitted light is made parallel.
  • the second lens 42 which is a convex lens and the third lens 43 which is a concave meniscus lens have opposite directions in which spherical aberration occurs, it is possible to suppress spherical aberration by combining them as shown in FIG. Become. Further, the second lens 42 has a small difference in the refractive index depending on the color, and conversely, the third lens 43 has a large difference in the refractive index depending on the color. By combining lenses with different refractive indexes in this way, axial chromatic aberration can be corrected.
  • the second lens optical system 40B is formed by a lens group in which the fourth lens 44, the fifth lens 45, the sixth lens 46, and the seventh lens 47 are arranged in this order from the image fiber 22 side in the optical axis direction (X-axis direction). It is formed.
  • the fourth lens 44 is a plano-convex lens, and in the present embodiment, it has a function of collecting light incident in parallel.
  • the fifth lens 45 is a biconvex lens, and like the second lens 42, has a feature that the difference in refractive index depending on the color is small.
  • the sixth lens 46 is a plano-concave lens, and similarly, it corrects spherical aberration and axial chromatic aberration by combining with the fifth lens 45, which is a biconvex lens.
  • the seventh lens 47 is an IR cut filter and has a function of preventing infrared light outside the visible region from being incident on the image sensor 30.
  • the first lens optical system 40A is held in the first lens barrel 70.
  • the inner peripheral surface of the first lens barrel 70 has a diameter reduced in two steps toward the front side, and has a first step portion 71 and a second step portion 72.
  • the first lens optical system 40A is arranged in the first step portion 71.
  • the front side of the inner peripheral surface of the first lens barrel 70 from the first step portion 71 has a slightly smaller diameter than the outer diameter of the first lens optical system 40A, and the outer peripheral edge of the first lens optical system 40A and the X-axis. They are facing each other in the direction.
  • a second step portion 72 is provided on the rear side of the first step portion 71.
  • a diaphragm 100 is screwed into the second step portion 72.
  • the diaphragm 100 is formed in a cylindrical shape, and a male screw is formed on the outer peripheral surface thereof.
  • the throttle 100 is formed with a slit 101 that can be screwed.
  • the inner peripheral surface of the aperture 100 is slightly reduced in diameter from the outer diameter of the first lens optical system 40A.
  • the diaphragm 100 is fixed to the first lens barrel 70 by screwing with a female screw formed on the inner peripheral surface of the second step portion 72. That is, the aperture 100 is arranged at a fixed position from the first lens barrel 70. As a result, the relative positions of the aperture 100 and the first lens optical system 40A are not changed.
  • the light emitted from the first lens optical system 40A is parallel light, but the optical path is slightly different depending on the wavelength.
  • the optical paths corresponding to these wavelengths overlap at a position separated from the first lens optical system 40A by a predetermined distance (hereinafter, this position is referred to as an overlapping position).
  • the diaphragm 100 is arranged at this overlapping position. Since the overlapping position is determined by the first lens optical system 40A, it is not necessary to enter the second lens optical system 40B by fixing the aperture 100 to the first lens barrel 70 so that the aperture 100 is located at the overlapping position. It is possible to leave the light that needs to be incident on the second lens optical system 40B while cutting unnecessary light.
  • the aperture diameter of the aperture 100 may be set to 1 / 1.1 or more and 1 / 1.3 or less of the effective diameter of the first lens optical system 40A.
  • the aperture diameter of the diaphragm 100 is not limited, but the minimum diaphragm inner diameter that does not block the optical path of the light emitted from the first lens optical system 40A is preferably 1 / 1.1 or more.
  • the aperture diameter of the diaphragm 100 is preferably 1 / 1.3 of the effective diameter of the first lens optical system 40A.
  • the length L of the aperture 100 in the arrangement direction (X-axis direction) of the first lens barrel 70 and the second lens barrel 80 may be 1.1 mm or more and 3.8 mm or less.
  • the length L of the diaphragm 100 is not limited, but it is preferable that the length L of the diaphragm 100 is 1.1 mm or more as a length that can be manufactured in manufacturing. Further, if the length L of the diaphragm is too long, it interferes with the second lens optical system 40B arranged after the first lens optical system 40A, so that the length L of the diaphragm 100 is 3.8 mm or less. It is preferable to have.
  • the second lens optical system 40B is held in the second lens barrel 80.
  • the inner peripheral surface of the second lens barrel 80 has a stepped portion 81 whose diameter is reduced in one step toward the rear side.
  • the second lens optical system 40B is arranged on the step portion 81.
  • a ring-shaped spacer 82 is arranged between the sixth lens 46 and the seventh lens 47.
  • the rear side of the inner peripheral surface of the second lens barrel 80 from the stepped portion 81 is slightly smaller than the outer diameter of the second lens optical system 40B, and is slightly smaller than the outer diameter of the second lens optical system 40B in the X-axis direction with the outer peripheral edge of the second lens optical system 40B. Are facing each other.
  • the first lens barrel 70 and the second lens barrel 80 are housed in the housing portion 50 of the endoscope operation unit 10.
  • the endoscope operating unit 10 has a housing unit 50 and a fiber holder 60 that is detachably attached to the housing unit 50.
  • the housing portion 50 is the main body portion of the endoscope 1 that holds the re-imaging optical system 40, the image pickup element 30, and the like.
  • the fiber holder 60 is a replacement part for the endoscope 1 that holds the insertion observation unit 20 (image fiber 22 and illumination fiber 23) and the like.
  • the fiber holder 60 has a bottomed cylindrical hard cover 61 made of polycarbonate or the like, and an elastic cover 62 formed of silicone rubber or the like and covering at least a part of the outer surface of the hard cover 61.
  • a columnar insertion portion 61a projecting rearward toward the housing portion 50 is formed on the front bottom portion of the hard cover 61.
  • the image fiber 22 is arranged so as to pass through the central axis of the insertion portion 61a. As shown in FIG. 4, the end face 22a of the image fiber 22 is end face processed (polished or the like) so as to be flush with the tip of the insertion portion 61a.
  • the housing portion 50 has a first tubular body 51 having a wall portion 51a, a second tubular body 52 fitted to the rear side of the first tubular body 51, and a second tubular body 52 fitted to the rear side of the second tubular body 52. It has a three-cylinder body 53 and.
  • the wall portion 51a is formed with an insertion hole 51b into which the insertion portion 61a is inserted in the X-axis direction.
  • a protrusion (not shown) is formed on the outer peripheral surface of the first cylinder 51, and the connection piece 54 of the fiber holder 60 is engaged with the protrusion.
  • the fiber holder 60 is bayonet-connected to the outer peripheral surface of the first tubular body 51 via a connecting piece 54.
  • the first cylinder body 51 accommodates the above-mentioned first lens barrel 70 so as to be movable in the X-axis direction.
  • the wall portion 51a described above is provided on the front side of the first tubular body 51, and the second tubular body 52 is fitted on the rear side of the first tubular body 51.
  • the second lens barrel 80 is fixed to the second cylinder 52 via a set screw 84.
  • the second lens barrel 80 projects forward from the second barrel 52 and is inserted inside the first barrel 51.
  • the third cylinder 53 is fitted on the rear side of the second cylinder 52.
  • the image sensor 30 is fixed to the third cylinder 53.
  • the third cylinder 53 By fitting the third cylinder 53 into the second cylinder 52, the relative positions of the second lens barrel 80 and the image sensor 30 are fixed.
  • the first lens barrel 70 is housed in the first barrel body 51 and is configured to be movable relative to the second lens barrel 80 in the X-axis direction.
  • an urging member 90 is arranged between the first lens barrel 70 and the second lens barrel 80.
  • the urging member 90 of the present embodiment is a coil spring that urges the first lens barrel 70 toward the image fiber 22.
  • a spring receiver 83 for the urging member 90 is formed on the outer peripheral surface of the front end portion of the second lens barrel 80.
  • the urging member 90 may be an elastic member such as a rubber ring as long as it has an elastic force without obstructing the optical path like the coil spring.
  • the front side of the first lens barrel 70 is pressed against the tip of the insertion portion 61a of the fiber holder 60 (hard cover 61) by the urging of the urging member 90.
  • the insertion portion 61a projects to a space inside the wall portion 51a of the first cylinder body 51 (accommodation space of the first lens barrel 70). That is, the first lens barrel 70 is in contact with the insertion portion 61a due to the urging of the urging member 90, but is not in contact with the wall portion 51a.
  • the first lens barrel 70 is pressed against the insertion portion 61a by the urging of the urging member 90, and the relative position between the end surface 22a of the image fiber 22 and the first lens optical system 40A.
  • the relationship is fixed. Therefore, the variation in the length of the image fiber 22 in manufacturing (the variation in the position in the X-axis direction due to the processing of the end face 22a (tip of the insertion portion 61a) of the image fiber 22) is caused by the urging member 90. It is absorbed by the fluctuation of the distance between the one-lens optical system 40A and the second lens optical system 40B.
  • the end face 22a of the image fiber 22 is always arranged within the depth of field of the first lens optical system 40A. Since there is almost parallel light between the first lens optical system 40A and the second lens optical system 40B, even if the distance between the first lens optical system 40A and the second lens optical system 40B changes, the same as in the telecentric system. , A stable image can be obtained on the image pickup element 30. Further, since the re-imaging optical system 40 can be a non-telecentric system, the number of lenses is small and the total length can be made compact.
  • the re-imaging optical system 40 includes a re-imaging optical system 40 that reimages the light, and the re-imaging optical system 40 captures the first lens optical system 40A that converts the light incident from the image fiber 22 into parallel light and the parallel light.
  • a first lens barrel 70 that has a second lens optical system 40B that condenses light on the element 30 and holds the first lens optical system 40A, and a second lens barrel 80 that holds the second lens optical system 40B.
  • the housing portion 50 which fixes the relative positions of the second lens barrel 80 and the image pickup element 30 and accommodates the first lens barrel 70 so as to be relatively movable, and the first lens barrel 70 and the second lens barrel 80.
  • the first lens barrel 70 is provided with an urging member 90 for urging the image fiber 22 toward the image fiber 22, the end face 22a of the image fiber 22 is reimaged with the optical system 40. It is possible to prevent deviation from the focal position with and to obtain a stable image formation on the image pickup element 30.
  • the diaphragm 100 is arranged between the first lens optical system 40A and the second lens optical system 40B. According to this configuration, by fixing the aperture 100 to the first lens barrel 70 so that the aperture 100 is located at the overlapping position, unnecessary light that does not need to be incident on the second lens optical system 40B (unnecessary place). It is possible to leave the light that needs to be incident on the second lens optical system 40B while cutting the reflected light and the light that passes through the outer edge of the lens. As a result, the endoscope according to the present embodiment can obtain a clear image.
  • the aperture diameter of the diaphragm is set to 1 / 1.1 or more and 1 / 1.3 or less of the effective diameter of the first lens optical system 40A, the aperture of the diaphragm 100 is large and the image is brighter than that of the telecentric system. Is obtained.
  • the image fiber 22 is held by the fiber holder 60 which is detachably attached to the housing portion 50. According to this configuration, even if there is a variation in the length of the image fiber 22 for each replacement part of the fiber holder 60, this variation is caused by the first lens optical system 40A and the second lens optical via the urging member 90. It can be absorbed by the variation of the distance of the system 40B.
  • the fiber holder 60 has an insertion portion 61a that is insertably inserted into the housing portion 50, and the first lens barrel 70 is an urging member 90 as shown in FIG. It is pressed against the insertion portion 61a by the urging of. According to this configuration, since the first lens barrel 70 is pressed against the fiber holder 60 itself that holds the image fiber 22, it is possible to prevent the end surface 22a of the image fiber 22 from deviating from the focal position of the first lens optical system 40A.
  • the housing portion 50 has a wall portion 51a in which the insertion hole 51b of the insertion portion 61a is formed, and the insertion portion 61a accommodates the first lens barrel 70 inside the wall portion 51a. It protrudes to the space. According to this configuration, the first lens barrel 70 is not pressed against the wall portion 51a but is pressed only against the insertion portion 61a, so that the end face 22a of the image fiber 22 is surely the depth of field of the first lens optical system 40A. Placed inside.

Abstract

This endoscope comprises an image fiber, an imaging element, and a re-imaging optical system. The re-imaging optical system comprises: a re-imaging optical system that has a first lens optical system and a second lens optical system, is disposed between the image fiber and the imaging element, and re-images, on the imaging element, a subject image transmitted by the image fiber; a first lens barrel that holds the first lens optical system; a second lens barrel that holds the second lens optical system; a housing part that fixes the relative positions of the second lens barrel and the imaging element, and accommodates the first lens barrel to be relatively movable; and an urging member that is disposed between the first lens barrel and the second lens barrel and urges the first lens barrel toward the image fiber. The first lens optical system is configured to convert light incident from the image fiber into parallel light, and the second lens optical system is configured to collect the parallel light onto the imaging element. A diaphragm is disposed between the first lens optical system and the second lens optical system, and the diaphragm is fixed to the first lens barrel.

Description

内視鏡Endoscope
 本発明は、内視鏡に関する。
 本願は、2020年3月26日に日本に出願された特願2020-056093号について優先権を主張し、その内容をここに援用する。
The present invention relates to an endoscope.
The present application claims priority with respect to Japanese Patent Application No. 2020-056093 filed in Japan on March 26, 2020, the contents of which are incorporated herein by reference.
 下記特許文献1には、対物レンズ部で作られた被写体像を内視鏡操作部まで伝送するイメージガイド(イメージファイバ)と、その被写体像を固体撮像素子に再結像させる内視鏡操作部内に配置された再結像光学系と、を備えた内視鏡が開示されている。 The following Patent Document 1 describes an image guide (image fiber) that transmits a subject image created by an objective lens unit to an endoscope operation unit, and an endoscope operation unit that reimages the subject image on a solid-state imaging element. Disclosed is an endoscope comprising a reimaging optical system arranged in.
日本国特開2003-84214号公報Japanese Patent Application Laid-Open No. 2003-84214
 このような内視鏡では、製造誤差などでイメージファイバの長さがばらつくと、イメージファイバの端面がレンズの焦点位置からずれてしまい、撮像素子上で所望の結像が得られないという問題がある。この問題に対処するため、上記従来技術では、イメージファイバと撮像素子とを光学的に結合するレンズ系に、両側テレセントリック光学系を使用している。両側テレセントリック光学系は、前側レンズ群と後側レンズ群との間の焦点位置に開口の小さな絞りを置き、光軸と主光線が平行とみなせるように構成された光学系である。
 この光学系は、レンズに対してイメージファイバの端面位置がずれても、安定した結像を得ることができるという利点がある。ただし、特許文献1には、明確な記載がないが、前記効果を十分に得るためには、絞りの開口径をレンズの有効径の1/5~1/10以下にする必要がある。このため、通常のレンズ系と比較して撮像素子で取得される被写体像が暗くなるという問題がある。
In such an endoscope, if the length of the image fiber varies due to manufacturing error or the like, the end face of the image fiber deviates from the focal position of the lens, and there is a problem that a desired image formation cannot be obtained on the image sensor. be. In order to deal with this problem, in the above-mentioned prior art, a bilateral telecentric optical system is used for the lens system that optically couples the image fiber and the image sensor. The bilateral telecentric optical system is an optical system in which a diaphragm having a small aperture is placed at a focal position between the front lens group and the rear lens group so that the optical axis and the main ray can be regarded as parallel.
This optical system has an advantage that a stable image can be obtained even if the end face position of the image fiber is displaced with respect to the lens. However, although there is no clear description in Patent Document 1, in order to obtain the above effect sufficiently, it is necessary to set the aperture diameter of the diaphragm to 1/5 to 1/10 or less of the effective diameter of the lens. Therefore, there is a problem that the subject image acquired by the image sensor becomes darker than that of a normal lens system.
 本発明は、上記問題点に鑑みてなされたものであり、イメージファイバの端面が再結像光学系の焦点位置からずれることを防止し、撮像素子上で安定した結像を得ることができる内視鏡の提供を目的とする。 The present invention has been made in view of the above problems, and it is possible to prevent the end face of the image fiber from deviating from the focal position of the reimaging optical system and obtain a stable image formation on the image sensor. The purpose is to provide an endoscope.
 本発明の一態様に係る内視鏡は、イメージファイバと、撮像素子と、第1レンズ光学系と第2レンズ光学系とを有し、前記イメージファイバと前記撮像素子との間に配置され、前記イメージファイバで伝送された被写体像を前記撮像素子に再結像させる再結像光学系と、前記第1レンズ光学系を保持する第1鏡筒と、
 前記第2レンズ光学系を保持する第2鏡筒と、前記第2鏡筒と前記撮像素子との相対位置を固定し、前記第1鏡筒を相対移動可能に収容する筐体部と、前記第1鏡筒と前記第2鏡筒との間に配置され、前記第1鏡筒を前記イメージファイバに向かって付勢する付勢部材と、前記第1レンズ光学系と前記第2レンズ光学系との間に配置された絞りと、を備える。前記第1レンズ光学系は、前記イメージファイバから入射した光を平行光に変換するように構成され、前記第2レンズ光学系は、前記平行光を前記撮像素子に集光するように構成されている。前記絞りが前記第1鏡筒に固定されている。
 この構成によれば、製造上のイメージファイバの長さのばらつきは、付勢部材を介した第1レンズ光学系と第2レンズ光学系の距離の変動により吸収されるため、イメージファイバの端面は常に第1レンズ光学系の被写界深度内に配置される。第1レンズ光学系と第2レンズ光学系との間はほぼ平行光であるため、第1レンズ光学系と第2レンズ光学系との距離が変わっても、テレセントリック系と同様に、撮像素子上で安定した結像を得ることができる。また、再結像光学系は、非テレセントリック系で済むため、レンズの枚数も少なく、全長もコンパクトにすることができる。
 さらに、第1レンズ光学系と第2レンズ光学系との間に、絞りが配置され、絞りが第1鏡筒に固定されているため、第2レンズ光学系に入射する必要のない不要な光をカットしつつ、第2レンズ光学系に入射する必要のある光を残すことが可能となる。
The endoscope according to one aspect of the present invention has an image fiber, an image pickup element, a first lens optical system and a second lens optical system, and is arranged between the image fiber and the image pickup element. A re-imaging optical system for re-imaging the subject image transmitted by the image fiber on the image pickup element, a first lens barrel holding the first lens optical system, and the like.
A second lens barrel that holds the second lens optical system, a housing portion that fixes the relative positions of the second lens barrel and the image pickup element, and accommodates the first lens barrel so as to be relatively movable, and the above. An urging member arranged between the first lens barrel and the second lens barrel and urging the first lens barrel toward the image fiber, and the first lens optical system and the second lens optical system. It is equipped with an optics arranged between and. The first lens optical system is configured to convert light incident from the image fiber into parallel light, and the second lens optical system is configured to focus the parallel light on the image pickup element. There is. The diaphragm is fixed to the first lens barrel.
According to this configuration, the variation in the length of the image fiber in manufacturing is absorbed by the variation in the distance between the first lens optical system and the second lens optical system via the urging member, so that the end face of the image fiber is absorbed. It is always arranged within the depth of field of the first lens optical system. Since there is almost parallel light between the first lens optical system and the second lens optical system, even if the distance between the first lens optical system and the second lens optical system changes, it is on the image pickup element as in the telecentric system. A stable image can be obtained with. Further, since the re-imaging optical system can be a non-telecentric system, the number of lenses is small and the total length can be made compact.
Further, since the diaphragm is arranged between the first lens optical system and the second lens optical system and the diaphragm is fixed to the first lens barrel, unnecessary light that does not need to be incident on the second lens optical system is required. It is possible to leave the light that needs to be incident on the second lens optical system while cutting the light.
 上記内視鏡において、前記イメージファイバは、前記筐体部に対して着脱可能に装着されたファイバホルダに保持されていてもよい。 In the endoscope, the image fiber may be held by a fiber holder detachably attached to the housing portion.
 上記内視鏡において、前記ファイバホルダは、前記筐体部の内部に挿抜可能に挿入された挿入部を有し、前記第1鏡筒は、前記付勢部材の付勢によって、前記挿入部に押し付けられていてもよい。 In the endoscope, the fiber holder has an insertion portion that is insertably inserted into the housing portion, and the first lens barrel is inserted into the insertion portion by the urging of the urging member. It may be pressed.
 上記内視鏡において、前記筐体部は、前記挿入部の挿入孔が形成された壁部を有し、前記挿入部は、前記壁部よりも内側の前記第1鏡筒の収容空間まで突出していてもよい。 In the endoscope, the housing portion has a wall portion in which an insertion hole for the insertion portion is formed, and the insertion portion projects to the accommodation space of the first lens barrel inside the wall portion. You may be.
 上記内視鏡において、前記絞りの開口径は、前記第1レンズ光学系の有効径の1/1.1以上1/1.3以下に設定されていてもよい。 In the endoscope, the aperture diameter of the diaphragm may be set to 1 / 1.1 or more and 1 / 1.3 or less of the effective diameter of the first lens optical system.
 上記内視鏡において、前記第1鏡筒と前記第2鏡筒との配列方向における絞りの長さは、1.1mm以上3.8mm以下であってもよい。 In the endoscope, the length of the diaphragm in the arrangement direction of the first lens barrel and the second lens barrel may be 1.1 mm or more and 3.8 mm or less.
 上記本発明の一態様によれば、イメージファイバの端面が再結像光学系との焦点位置からずれることを防止し、撮像素子上で安定した結像を得ることができる内視鏡を提供できる。 According to the above aspect of the present invention, it is possible to provide an endoscope capable of preventing the end face of the image fiber from deviating from the focal position with the reimaging optical system and obtaining a stable image formation on the image pickup device. ..
一実施形態に係る保護キャップを装着した内視鏡の斜視図である。It is a perspective view of the endoscope which attached the protective cap which concerns on one Embodiment. 一実施形態に係る保護キャップを外した内視鏡斜視図である。It is an endoscope perspective view which removed the protective cap which concerns on one Embodiment. 一実施形態に係る内視鏡の断面構成図である。It is sectional drawing of the endoscope which concerns on one Embodiment. 一実施形態に係る内視鏡の内部を拡大した断面構成図である。It is sectional drawing which enlarged the inside of the endoscope which concerns on one Embodiment. 一実施形態に係る再結像光学系の構成図である。It is a block diagram of the re-imaging optical system which concerns on one Embodiment.
 以下、本発明の一実施形態について図面を参照して説明する。以下の説明では、眼科用電子内視鏡を例示する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In the following description, an electronic endoscope for ophthalmology will be illustrated.
 先ず、内視鏡1の全体の概要について説明する。
 図1は、一実施形態に係る保護キャップ2を装着した内視鏡1の斜視図である。図2は、一実施形態に係る保護キャップ2を外した内視鏡1の斜視図である。図3は、一実施形態に係る内視鏡1の断面構成図である。
 これらの図に示すように、内視鏡1は、内視鏡操作部10と、内視鏡操作部10から前方に延びる挿入観察部20と、挿入観察部20を覆う着脱可能な保護キャップ2と、を備えている。
First, the overall outline of the endoscope 1 will be described.
FIG. 1 is a perspective view of an endoscope 1 equipped with a protective cap 2 according to an embodiment. FIG. 2 is a perspective view of the endoscope 1 from which the protective cap 2 according to the embodiment is removed. FIG. 3 is a cross-sectional configuration diagram of the endoscope 1 according to the embodiment.
As shown in these figures, the endoscope 1 includes an endoscope operation unit 10, an insertion observation unit 20 extending forward from the endoscope operation unit 10, and a removable protective cap 2 that covers the insertion observation unit 20. And have.
 なお、以下の説明においては、XYZ直交座標系を設定し、このXYZ直交座標系を参照しつつ各部材の位置関係について説明する場合がある。X軸方向は、挿入観察部20が延びる長手方向であり、Y軸方向及びZ軸方向は、それぞれX軸方向と直交する2軸直交方向(挿入観察部20の短手方向とも言う)である。 In the following description, the XYZ Cartesian coordinate system may be set, and the positional relationship of each member may be described with reference to this XYZ Cartesian coordinate system. The X-axis direction is the longitudinal direction in which the insertion observation unit 20 extends, and the Y-axis direction and the Z-axis direction are two-axis orthogonal directions (also referred to as the lateral directions of the insertion observation unit 20) orthogonal to the X-axis direction. ..
 挿入観察部20が延びる長手方向において、「前」とは、挿入観察部20でいうと先端21側(+X側)であり、「後」とは、挿入観察部20でいうと先端21と反対側(-X側、すなわち挿入観察部20の基端(根本)側)である。 In the longitudinal direction in which the insertion observation unit 20 extends, the "front" is the tip 21 side (+ X side) in the insertion observation unit 20, and the "rear" is opposite to the tip 21 in the insertion observation unit 20. This is the side (-X side, that is, the base end (root) side of the insertion observation unit 20).
 保護キャップ2は、図1に示すように、内視鏡操作部10に装着される装着部3と、装着部3から前方に延び、挿入観察部20を覆う先端収容部4と、を備えている。装着部3は、内視鏡操作部10の外周を囲う略円筒状に形成されている。先端収容部4は、挿入観察部20の外周及び先端21を囲う略有底筒状に形成されている。 As shown in FIG. 1, the protective cap 2 includes a mounting portion 3 mounted on the endoscope operating portion 10 and a tip accommodating portion 4 extending forward from the mounting portion 3 and covering the insertion observation portion 20. There is. The mounting portion 3 is formed in a substantially cylindrical shape surrounding the outer periphery of the endoscope operating portion 10. The tip accommodating portion 4 is formed in a substantially bottomed cylindrical shape surrounding the outer periphery of the insertion observation portion 20 and the tip 21.
 装着部3の外周には、Z軸方向に開口する係合孔5と、複数の連通孔6と、が形成されている。係合孔5に対し、図2及び図3に示す内視鏡操作部10の前側に形成され、Z軸方向に突出する係合突起12が係合することで、保護キャップ2が内視鏡操作部10に着脱可能に装着される。連通孔6は、保護キャップ2を装着したままで内視鏡操作部10及び挿入観察部20の滅菌が可能となる。つまり、連通孔6から保護キャップ2の内部に、滅菌ガスが流入できるように構成されている。 An engagement hole 5 that opens in the Z-axis direction and a plurality of communication holes 6 are formed on the outer periphery of the mounting portion 3. The protective cap 2 is engaged with the engaging hole 5 by the engaging projection 12 formed on the front side of the endoscope operating portion 10 shown in FIGS. 2 and 3 and protruding in the Z-axis direction, whereby the protective cap 2 is attached to the endoscope. It is detachably attached to the operation unit 10. The communication hole 6 enables sterilization of the endoscope operation unit 10 and the insertion observation unit 20 with the protective cap 2 attached. That is, the structure is such that the sterilizing gas can flow into the protective cap 2 from the communication hole 6.
 挿入観察部20は、図2及び図3に示すように、X軸方向に延びる細長い針状に形成されている。挿入観察部20の先端21には、対物レンズが設けられている。挿入観察部20は、対物レンズを介して取得した被写体像を内視鏡操作部10まで伝送するイメージファイバ22(光ファイバ)と、先端21から前方に照明光を照射する照明用ファイバ23(光ファイバ)と、を備えている。 As shown in FIGS. 2 and 3, the insertion observation unit 20 is formed in the shape of an elongated needle extending in the X-axis direction. An objective lens is provided at the tip 21 of the insertion observation unit 20. The insertion observation unit 20 includes an image fiber 22 (optical fiber) that transmits the subject image acquired via the objective lens to the endoscope operation unit 10, and an illumination fiber 23 (optical fiber) that irradiates illumination light forward from the tip 21. Fiber) and.
 イメージファイバ22は、図示しない硬質外筒(ステンレス鋼管など)の内部に配設されている。照明用ファイバ23も、イメージファイバ22と同様に、硬質外筒の内部に配設されている。照明用ファイバ23の他端は、内視鏡操作部10の外表面の皮下部を通り、図示しない照明装置(光源)と接続されている。なお、照明用ファイバ23の代わりに、小型の照明装置(LEDなど)を、挿入観察部20の先端21に設けてもよい。 The image fiber 22 is arranged inside a hard outer cylinder (stainless steel pipe or the like) (not shown). The illumination fiber 23 is also arranged inside the hard outer cylinder, like the image fiber 22. The other end of the illumination fiber 23 passes through the subcutaneous portion of the outer surface of the endoscope operation unit 10 and is connected to an illumination device (light source) (not shown). Instead of the illumination fiber 23, a small illumination device (LED or the like) may be provided at the tip 21 of the insertion observation unit 20.
 内視鏡操作部10は、図2に示すように、X軸方向の前側に把持部11を備える略ペン状(前側に円錐部を有する略円柱状とも言う)に形成されている。内視鏡操作部10の内部には、図3に示すように、CCDやCMOSなどの撮像素子30と、イメージファイバ22で伝送された被写体像を撮像素子30に再結像させる再結像光学系40と、が設けられている。 As shown in FIG. 2, the endoscope operation unit 10 is formed in a substantially pen shape (also referred to as a substantially columnar shape having a conical portion on the front side) having a grip portion 11 on the front side in the X-axis direction. Inside the endoscope operation unit 10, as shown in FIG. 3, an image pickup device 30 such as a CCD or CMOS and reimaging optics for re-imaging the subject image transmitted by the image fiber 22 on the image pickup device 30. System 40 and.
 撮像素子30は、再結像した被写体像を電子画像データに変換する。電子画像データは、図2に示すように、内視鏡操作部10から後方に延びるケーブル13を介して図示しない画像処理装置に伝送される。画像処理装置は、電子画像データをモニターに表示したり、記憶媒体に記憶したりする。 The image sensor 30 converts the reimaged subject image into electronic image data. As shown in FIG. 2, the electronic image data is transmitted to an image processing device (not shown) via a cable 13 extending rearward from the endoscope operating unit 10. The image processing device displays electronic image data on a monitor or stores it in a storage medium.
 次に、図4及び図5を追加参照して、内視鏡1の内部構成について詳しく説明する。 Next, the internal configuration of the endoscope 1 will be described in detail with reference to FIGS. 4 and 5.
 図4は、一実施形態に係る内視鏡1の内部を拡大した断面構成図である。図5は、一実施形態に係る再結像光学系40の構成図である。
 これらの図に示すように、イメージファイバ22と撮像素子30との間には、イメージファイバ22で伝送された被写体像を撮像素子30に再結像させる再結像光学系40が設けられている。
FIG. 4 is an enlarged cross-sectional configuration view of the inside of the endoscope 1 according to the embodiment. FIG. 5 is a configuration diagram of the re-imaging optical system 40 according to the embodiment.
As shown in these figures, a reimaging optical system 40 is provided between the image fiber 22 and the image sensor 30 to reimage the subject image transmitted by the image fiber 22 on the image sensor 30. ..
 再結像光学系40は、図5に示すように、イメージファイバ22の端面22aから入射した光を平行光に変換する第1レンズ光学系40Aと、当該平行光を撮像素子30に集光させる第2レンズ光学系40Bと、を有している。第1レンズ光学系40Aは、イメージファイバ22側(前側)に配置されている。また、第2レンズ光学系40Bは、第1レンズ光学系40Aの後側(撮像素子30側)に配置されている。 As shown in FIG. 5, the re-imaging optical system 40 has a first lens optical system 40A that converts light incident from the end surface 22a of the image fiber 22 into parallel light, and the parallel light is focused on the image pickup element 30. It has a second lens optical system 40B. The first lens optical system 40A is arranged on the image fiber 22 side (front side). Further, the second lens optical system 40B is arranged on the rear side (image sensor 30 side) of the first lens optical system 40A.
 第1レンズ光学系40Aは、光軸方向(X軸方向)において、イメージファイバ22側から、第1レンズ41、第2レンズ42、第3レンズ43の順に並んだレンズ群によって形成されている。第1レンズ41は、平凸レンズであり、主にイメージファイバ22の端面22aから入射した光を平行光に変換する機能を有する。第2レンズ42は、両凸レンズであり、色による屈折率差が小さい特徴がある。第3レンズ43は、凹メニスカスレンズであり、本実施形態では、出射される光を平行にしている。また、凸レンズである第2レンズ42と凹メニスカスレンズである第3レンズ43は、球面収差の発生する向きが逆のため、図5に示すように組み合わせることで、球面収差を抑えることが可能となる。また、第2レンズ42は色による屈折率差が小さく、逆に第3レンズ43は色による屈折率差が大きい。このように屈折率の異なるレンズを組み合わせることで軸上色収差の補正が可能となる。 The first lens optical system 40A is formed by a lens group in which the first lens 41, the second lens 42, and the third lens 43 are arranged in this order from the image fiber 22 side in the optical axis direction (X-axis direction). The first lens 41 is a plano-convex lens and mainly has a function of converting light incident from the end surface 22a of the image fiber 22 into parallel light. The second lens 42 is a biconvex lens, and is characterized in that the difference in refractive index depending on the color is small. The third lens 43 is a concave meniscus lens, and in the present embodiment, the emitted light is made parallel. Further, since the second lens 42 which is a convex lens and the third lens 43 which is a concave meniscus lens have opposite directions in which spherical aberration occurs, it is possible to suppress spherical aberration by combining them as shown in FIG. Become. Further, the second lens 42 has a small difference in the refractive index depending on the color, and conversely, the third lens 43 has a large difference in the refractive index depending on the color. By combining lenses with different refractive indexes in this way, axial chromatic aberration can be corrected.
 第2レンズ光学系40Bは、光軸方向(X軸方向)において、イメージファイバ22側から、第4レンズ44、第5レンズ45、第6レンズ46、第7レンズ47の順に並んだレンズ群によって形成されている。第4レンズ44は、平凸レンズであり、本実施形態では、平行に入射した光を集光する機能を有する。第5レンズ45は、両凸レンズであり、第2レンズ42と同様、色による屈折率差が小さい特徴がある。第6レンズ46は、平凹レンズであり、前記同様、両凸レンズである第5レンズ45と組み合わせることで球面収差と軸上色収差の補正をしている。第7レンズ47は、IRカットフィルタであり、撮像素子30への可視領域外である赤外光の入射を防ぐ機能を有する。 The second lens optical system 40B is formed by a lens group in which the fourth lens 44, the fifth lens 45, the sixth lens 46, and the seventh lens 47 are arranged in this order from the image fiber 22 side in the optical axis direction (X-axis direction). It is formed. The fourth lens 44 is a plano-convex lens, and in the present embodiment, it has a function of collecting light incident in parallel. The fifth lens 45 is a biconvex lens, and like the second lens 42, has a feature that the difference in refractive index depending on the color is small. The sixth lens 46 is a plano-concave lens, and similarly, it corrects spherical aberration and axial chromatic aberration by combining with the fifth lens 45, which is a biconvex lens. The seventh lens 47 is an IR cut filter and has a function of preventing infrared light outside the visible region from being incident on the image sensor 30.
 図4に示すように、第1レンズ光学系40Aは、第1鏡筒70に保持されている。第1鏡筒70の内周面は、前側に向かうに従って2段階で縮径しており、第1段差部71と、第2段差部72と、を有する。第1段差部71には、第1レンズ光学系40Aが配置されている。第1鏡筒70の内周面の第1段差部71より前側は、第1レンズ光学系40Aの外径よりも僅かに縮径しており、第1レンズ光学系40Aの外周縁とX軸方向で対向している。 As shown in FIG. 4, the first lens optical system 40A is held in the first lens barrel 70. The inner peripheral surface of the first lens barrel 70 has a diameter reduced in two steps toward the front side, and has a first step portion 71 and a second step portion 72. The first lens optical system 40A is arranged in the first step portion 71. The front side of the inner peripheral surface of the first lens barrel 70 from the first step portion 71 has a slightly smaller diameter than the outer diameter of the first lens optical system 40A, and the outer peripheral edge of the first lens optical system 40A and the X-axis. They are facing each other in the direction.
 第1段差部71の後側には、第2段差部72が設けられている。第2段差部72には、絞り100が螺合している。絞り100は、円筒状に形成され、その外周面には雄ねじが形成されている。絞り100には、ねじ回し可能とするすり割り101が形成されている。絞り100の内周面は、第1レンズ光学系40Aの外径よりも僅かに縮径している。絞り100は、第2段差部72の内周面に形成された雌ねじと螺合することにより、第1鏡筒70に固定されている。すなわち、絞り100は、第1鏡筒70から一定の位置に配置されている。これにより、絞り100と第1レンズ光学系40Aとの相対位置が変化しないように構成されている。 A second step portion 72 is provided on the rear side of the first step portion 71. A diaphragm 100 is screwed into the second step portion 72. The diaphragm 100 is formed in a cylindrical shape, and a male screw is formed on the outer peripheral surface thereof. The throttle 100 is formed with a slit 101 that can be screwed. The inner peripheral surface of the aperture 100 is slightly reduced in diameter from the outer diameter of the first lens optical system 40A. The diaphragm 100 is fixed to the first lens barrel 70 by screwing with a female screw formed on the inner peripheral surface of the second step portion 72. That is, the aperture 100 is arranged at a fixed position from the first lens barrel 70. As a result, the relative positions of the aperture 100 and the first lens optical system 40A are not changed.
 次に、絞り100の位置について説明する。
 第1レンズ光学系40Aから出射される光は平行光であるが、波長によって光路が若干異なる。これらの波長に応じた光路は、第1レンズ光学系40Aから所定の距離だけ離れた位置で重なる(この位置を以下、重なり位置と称する)。この重なり位置に絞り100が配置されている。第1レンズ光学系40Aによって重なり位置は定まるため、重なり位置に絞り100が位置するように、絞り100を第1鏡筒70に固定することにより、第2レンズ光学系40Bに入射する必要のない不要な光をカットしつつ、第2レンズ光学系40Bに入射する必要のある光を残すことが可能となる。
Next, the position of the aperture 100 will be described.
The light emitted from the first lens optical system 40A is parallel light, but the optical path is slightly different depending on the wavelength. The optical paths corresponding to these wavelengths overlap at a position separated from the first lens optical system 40A by a predetermined distance (hereinafter, this position is referred to as an overlapping position). The diaphragm 100 is arranged at this overlapping position. Since the overlapping position is determined by the first lens optical system 40A, it is not necessary to enter the second lens optical system 40B by fixing the aperture 100 to the first lens barrel 70 so that the aperture 100 is located at the overlapping position. It is possible to leave the light that needs to be incident on the second lens optical system 40B while cutting unnecessary light.
 絞り100の開口径は、第1レンズ光学系40Aの有効径の1/1.1以上1/1.3以下に設定されていてもよい。特に、絞り100の開口径は限定されないが、第1レンズ光学系40Aから出射される光の光路を遮らない最小絞り内径として、1/1.1以上であることが好ましい。また、加工可能な最大絞り内径として、絞り100の開口径は、第1レンズ光学系40Aの有効径の1/1.3であることが好ましい。
 第1鏡筒70と第2鏡筒80との配列方向(X軸方向)における絞り100の長さLは、1.1mm以上3.8mm以下であってもよい。特に、絞り100の長さLは、限定されないが、製造上、作製可能な長さとして、絞り100の長さLを1.1mm以上とすることが好ましい。また、絞りの長さLが長すぎると、第1レンズ光学系40Aの後段に配置された第2レンズ光学系40Bに干渉してしまうため、絞り100の長さLは、3.8mm以下であることが好ましい。
The aperture diameter of the aperture 100 may be set to 1 / 1.1 or more and 1 / 1.3 or less of the effective diameter of the first lens optical system 40A. In particular, the aperture diameter of the diaphragm 100 is not limited, but the minimum diaphragm inner diameter that does not block the optical path of the light emitted from the first lens optical system 40A is preferably 1 / 1.1 or more. Further, as the maximum inner diameter of the diaphragm that can be processed, the aperture diameter of the diaphragm 100 is preferably 1 / 1.3 of the effective diameter of the first lens optical system 40A.
The length L of the aperture 100 in the arrangement direction (X-axis direction) of the first lens barrel 70 and the second lens barrel 80 may be 1.1 mm or more and 3.8 mm or less. In particular, the length L of the diaphragm 100 is not limited, but it is preferable that the length L of the diaphragm 100 is 1.1 mm or more as a length that can be manufactured in manufacturing. Further, if the length L of the diaphragm is too long, it interferes with the second lens optical system 40B arranged after the first lens optical system 40A, so that the length L of the diaphragm 100 is 3.8 mm or less. It is preferable to have.
 また、図4に示すように、第2レンズ光学系40Bは、第2鏡筒80に保持されている。第2鏡筒80の内周面は、後側に向かうに従って1段階で縮径した段差部81を有する。段差部81には、第2レンズ光学系40Bが配置されている。なお、第6レンズ46と第7レンズ47との間には、リング状のスペーサ82が配置されている。第2鏡筒80の内周面の段差部81より後側は、第2レンズ光学系40Bの外径よりも僅かに縮径しており、第2レンズ光学系40Bの外周縁とX軸方向で対向している。 Further, as shown in FIG. 4, the second lens optical system 40B is held in the second lens barrel 80. The inner peripheral surface of the second lens barrel 80 has a stepped portion 81 whose diameter is reduced in one step toward the rear side. The second lens optical system 40B is arranged on the step portion 81. A ring-shaped spacer 82 is arranged between the sixth lens 46 and the seventh lens 47. The rear side of the inner peripheral surface of the second lens barrel 80 from the stepped portion 81 is slightly smaller than the outer diameter of the second lens optical system 40B, and is slightly smaller than the outer diameter of the second lens optical system 40B in the X-axis direction with the outer peripheral edge of the second lens optical system 40B. Are facing each other.
 第1鏡筒70及び第2鏡筒80は、内視鏡操作部10の筐体部50に収容されている。内視鏡操作部10は、図3に示すように、筐体部50と、筐体部50に対して着脱可能に装着されたファイバホルダ60と、を有する。筐体部50は、再結像光学系40や撮像素子30など保持する内視鏡1の本体部である。ファイバホルダ60は、挿入観察部20(イメージファイバ22及び照明用ファイバ23)などを保持する内視鏡1の交換部品である。 The first lens barrel 70 and the second lens barrel 80 are housed in the housing portion 50 of the endoscope operation unit 10. As shown in FIG. 3, the endoscope operating unit 10 has a housing unit 50 and a fiber holder 60 that is detachably attached to the housing unit 50. The housing portion 50 is the main body portion of the endoscope 1 that holds the re-imaging optical system 40, the image pickup element 30, and the like. The fiber holder 60 is a replacement part for the endoscope 1 that holds the insertion observation unit 20 (image fiber 22 and illumination fiber 23) and the like.
 ファイバホルダ60は、ポリカーボネートなどから形成された有底筒状の硬質カバー61と、シリコーンゴムなどから形成され、硬質カバー61の外面の少なくとも一部を覆う弾性カバー62と、を有する。硬質カバー61の前側底部には、筐体部50に向かって後側に突出した円柱状の挿入部61aが形成されている。イメージファイバ22は、挿入部61aの中心軸を通るように配設されている。図4に示すように、イメージファイバ22の端面22aは、挿入部61aの先端と面一になるように、端面加工(研磨等)されている。 The fiber holder 60 has a bottomed cylindrical hard cover 61 made of polycarbonate or the like, and an elastic cover 62 formed of silicone rubber or the like and covering at least a part of the outer surface of the hard cover 61. A columnar insertion portion 61a projecting rearward toward the housing portion 50 is formed on the front bottom portion of the hard cover 61. The image fiber 22 is arranged so as to pass through the central axis of the insertion portion 61a. As shown in FIG. 4, the end face 22a of the image fiber 22 is end face processed (polished or the like) so as to be flush with the tip of the insertion portion 61a.
 筐体部50は、壁部51aを有する第1筒体51と、第1筒体51の後側に嵌合した第2筒体52と、第2筒体52の後側に嵌合した第3筒体53と、を有する。壁部51aには、挿入部61aがX軸方向で挿入される挿入孔51bが形成されている。第1筒体51の外周面には、図示しない突起部が形成され、該突起部にファイバホルダ60の接続片54が係合している。ファイバホルダ60は、第1筒体51の外周面に接続片54を介してバヨネット接続されている。 The housing portion 50 has a first tubular body 51 having a wall portion 51a, a second tubular body 52 fitted to the rear side of the first tubular body 51, and a second tubular body 52 fitted to the rear side of the second tubular body 52. It has a three-cylinder body 53 and. The wall portion 51a is formed with an insertion hole 51b into which the insertion portion 61a is inserted in the X-axis direction. A protrusion (not shown) is formed on the outer peripheral surface of the first cylinder 51, and the connection piece 54 of the fiber holder 60 is engaged with the protrusion. The fiber holder 60 is bayonet-connected to the outer peripheral surface of the first tubular body 51 via a connecting piece 54.
 図4に示すように、第1筒体51は、上述した第1鏡筒70をX軸方向に移動自在に収容している。第1筒体51の前側には、上述した壁部51aが設けられ、第1筒体51の後側には、第2筒体52が嵌入している。第2筒体52には、止めねじ84を介して第2鏡筒80が固定されている。第2鏡筒80は、第2筒体52から前方に突出し、第1筒体51の内側に挿入されている。 As shown in FIG. 4, the first cylinder body 51 accommodates the above-mentioned first lens barrel 70 so as to be movable in the X-axis direction. The wall portion 51a described above is provided on the front side of the first tubular body 51, and the second tubular body 52 is fitted on the rear side of the first tubular body 51. The second lens barrel 80 is fixed to the second cylinder 52 via a set screw 84. The second lens barrel 80 projects forward from the second barrel 52 and is inserted inside the first barrel 51.
 第2筒体52の後側には、第3筒体53が嵌入している。第3筒体53には、撮像素子30が固定されている。第2筒体52に第3筒体53が嵌入することによって、第2鏡筒80と撮像素子30との相対位置が固定されている。第1鏡筒70は、第1筒体51に収容され、第2鏡筒80に対してX軸方向に相対移動可能に構成されている。 The third cylinder 53 is fitted on the rear side of the second cylinder 52. The image sensor 30 is fixed to the third cylinder 53. By fitting the third cylinder 53 into the second cylinder 52, the relative positions of the second lens barrel 80 and the image sensor 30 are fixed. The first lens barrel 70 is housed in the first barrel body 51 and is configured to be movable relative to the second lens barrel 80 in the X-axis direction.
 図4に示すように、第1鏡筒70と第2鏡筒80との間には、付勢部材90が配置されている。本実施形態の付勢部材90は、第1鏡筒70をイメージファイバ22に向かって付勢するコイルばねである。第2鏡筒80の前端部の外周面には、付勢部材90のばね受け83が形成されている。なお、付勢部材90は、コイルばねと同様に光路を邪魔せずに弾性力を有するものであれば、例えばゴムリングのような弾性部材であってもよい。 As shown in FIG. 4, an urging member 90 is arranged between the first lens barrel 70 and the second lens barrel 80. The urging member 90 of the present embodiment is a coil spring that urges the first lens barrel 70 toward the image fiber 22. A spring receiver 83 for the urging member 90 is formed on the outer peripheral surface of the front end portion of the second lens barrel 80. The urging member 90 may be an elastic member such as a rubber ring as long as it has an elastic force without obstructing the optical path like the coil spring.
 第1鏡筒70の前側は、付勢部材90の付勢によって、ファイバホルダ60(硬質カバー61)の挿入部61aの先端に押し付けられている。挿入部61aは、第1筒体51の壁部51aよりも内側の空間(第1鏡筒70の収容空間)まで突出している。つまり、第1鏡筒70は、付勢部材90の付勢によって挿入部61aとは接触するが、壁部51aとは非接触である。 The front side of the first lens barrel 70 is pressed against the tip of the insertion portion 61a of the fiber holder 60 (hard cover 61) by the urging of the urging member 90. The insertion portion 61a projects to a space inside the wall portion 51a of the first cylinder body 51 (accommodation space of the first lens barrel 70). That is, the first lens barrel 70 is in contact with the insertion portion 61a due to the urging of the urging member 90, but is not in contact with the wall portion 51a.
 上記構成の内視鏡1によれば、付勢部材90の付勢によって、第1鏡筒70が挿入部61aに押し付けられ、イメージファイバ22の端面22aと第1レンズ光学系40Aとの相対位置関係が固定される。このため、製造上のイメージファイバ22の長さのばらつき(イメージファイバ22の端面22a(挿入部61aの先端)の加工などによるX軸方向の位置のばらつき)は、付勢部材90を介した第1レンズ光学系40Aと第2レンズ光学系40Bの距離の変動により吸収される。したがって、イメージファイバ22の端面22aは常に第1レンズ光学系40Aの被写界深度内に配置される。第1レンズ光学系40Aと第2レンズ光学系40Bとの間はほぼ平行光であるため、第1レンズ光学系40Aと第2レンズ光学系40Bとの距離が変わっても、テレセントリック系と同様に、撮像素子30上で安定した結像を得ることができる。また、再結像光学系40は、非テレセントリック系で済むため、レンズの枚数も少なく、全長もコンパクトにすることができる。 According to the endoscope 1 having the above configuration, the first lens barrel 70 is pressed against the insertion portion 61a by the urging of the urging member 90, and the relative position between the end surface 22a of the image fiber 22 and the first lens optical system 40A. The relationship is fixed. Therefore, the variation in the length of the image fiber 22 in manufacturing (the variation in the position in the X-axis direction due to the processing of the end face 22a (tip of the insertion portion 61a) of the image fiber 22) is caused by the urging member 90. It is absorbed by the fluctuation of the distance between the one-lens optical system 40A and the second lens optical system 40B. Therefore, the end face 22a of the image fiber 22 is always arranged within the depth of field of the first lens optical system 40A. Since there is almost parallel light between the first lens optical system 40A and the second lens optical system 40B, even if the distance between the first lens optical system 40A and the second lens optical system 40B changes, the same as in the telecentric system. , A stable image can be obtained on the image pickup element 30. Further, since the re-imaging optical system 40 can be a non-telecentric system, the number of lenses is small and the total length can be made compact.
 このように、上述した本実施形態によれば、イメージファイバ22と、撮像素子30と、イメージファイバ22と撮像素子30との間に配置され、イメージファイバ22で伝送された被写体像を撮像素子30に再結像させる再結像光学系40と、を備え、再結像光学系40は、イメージファイバ22から入射した光を平行光に変換する第1レンズ光学系40Aと、当該平行光を撮像素子30に集光させる第2レンズ光学系40Bと、を有しており、第1レンズ光学系40Aを保持する第1鏡筒70と、第2レンズ光学系40Bを保持する第2鏡筒80と、第2鏡筒80と撮像素子30との相対位置を固定し、第1鏡筒70を相対移動可能に収容する筐体部50と、第1鏡筒70と第2鏡筒80との間に配置され、第1鏡筒70をイメージファイバ22に向かって付勢する付勢部材90と、を備える、という構成を採用することによって、イメージファイバ22の端面22aが再結像光学系40との焦点位置からずれることを防止し、撮像素子30上で安定した結像を得ることができる。 As described above, according to the above-described embodiment, the image fiber 22, the image pickup element 30, and the subject image transmitted between the image fiber 22 and the image pickup element 30 are captured by the image pickup element 30. The re-imaging optical system 40 includes a re-imaging optical system 40 that reimages the light, and the re-imaging optical system 40 captures the first lens optical system 40A that converts the light incident from the image fiber 22 into parallel light and the parallel light. A first lens barrel 70 that has a second lens optical system 40B that condenses light on the element 30 and holds the first lens optical system 40A, and a second lens barrel 80 that holds the second lens optical system 40B. The housing portion 50, which fixes the relative positions of the second lens barrel 80 and the image pickup element 30 and accommodates the first lens barrel 70 so as to be relatively movable, and the first lens barrel 70 and the second lens barrel 80. By adopting a configuration in which the first lens barrel 70 is provided with an urging member 90 for urging the image fiber 22 toward the image fiber 22, the end face 22a of the image fiber 22 is reimaged with the optical system 40. It is possible to prevent deviation from the focal position with and to obtain a stable image formation on the image pickup element 30.
 さらに、本実施形態では、第1レンズ光学系40Aと第2レンズ光学系40Bとの間に、絞り100が配置されている。この構成によれば、重なり位置に絞り100が位置するように、絞り100を第1鏡筒70に固定することにより、第2レンズ光学系40Bに入射する必要のない不要な光(不要なところで反射した光やレンズ外縁を通る光)をカットしつつ、第2レンズ光学系40Bに入射する必要のある光を残すことが可能となる。これにより、本実施形態に係る内視鏡は、鮮明な画像を得ることができる。
 絞りの開口径は、第1レンズ光学系40Aの有効径の1/1.1以上1/1.3以下に設定されているので、絞り100の開口が大きく、テレセントリック系と比較して明るい像が得られる。
Further, in the present embodiment, the diaphragm 100 is arranged between the first lens optical system 40A and the second lens optical system 40B. According to this configuration, by fixing the aperture 100 to the first lens barrel 70 so that the aperture 100 is located at the overlapping position, unnecessary light that does not need to be incident on the second lens optical system 40B (unnecessary place). It is possible to leave the light that needs to be incident on the second lens optical system 40B while cutting the reflected light and the light that passes through the outer edge of the lens. As a result, the endoscope according to the present embodiment can obtain a clear image.
Since the aperture diameter of the diaphragm is set to 1 / 1.1 or more and 1 / 1.3 or less of the effective diameter of the first lens optical system 40A, the aperture of the diaphragm 100 is large and the image is brighter than that of the telecentric system. Is obtained.
 また、本実施形態では、イメージファイバ22は、図3に示すように、筐体部50に対して着脱可能に装着されたファイバホルダ60に保持されている。この構成によれば、ファイバホルダ60の交換部品ごとにイメージファイバ22の長さのばらつきがあったとしても、このばらつきを、付勢部材90を介した第1レンズ光学系40Aと第2レンズ光学系40Bの距離の変動により吸収することができる。 Further, in the present embodiment, as shown in FIG. 3, the image fiber 22 is held by the fiber holder 60 which is detachably attached to the housing portion 50. According to this configuration, even if there is a variation in the length of the image fiber 22 for each replacement part of the fiber holder 60, this variation is caused by the first lens optical system 40A and the second lens optical via the urging member 90. It can be absorbed by the variation of the distance of the system 40B.
 また、本実施形態では、ファイバホルダ60は、筐体部50の内部に挿抜可能に挿入された挿入部61aを有し、第1鏡筒70は、図4に示すように、付勢部材90の付勢によって、挿入部61aに押し付けられている。この構成によれば、イメージファイバ22を保持するファイバホルダ60自体に第1鏡筒70が押し付けられるため、イメージファイバ22の端面22aが第1レンズ光学系40Aの焦点位置からずれることを防止できる。 Further, in the present embodiment, the fiber holder 60 has an insertion portion 61a that is insertably inserted into the housing portion 50, and the first lens barrel 70 is an urging member 90 as shown in FIG. It is pressed against the insertion portion 61a by the urging of. According to this configuration, since the first lens barrel 70 is pressed against the fiber holder 60 itself that holds the image fiber 22, it is possible to prevent the end surface 22a of the image fiber 22 from deviating from the focal position of the first lens optical system 40A.
 また、本実施形態では、筐体部50は、挿入部61aの挿入孔51bが形成された壁部51aを有し、挿入部61aは、壁部51aよりも内側の第1鏡筒70の収容空間まで突出している。この構成によれば、第1鏡筒70が壁部51aに押し付けられることなく、挿入部61aのみに押し付けられるため、イメージファイバ22の端面22aが確実に第1レンズ光学系40Aの被写界深度内に配置される。 Further, in the present embodiment, the housing portion 50 has a wall portion 51a in which the insertion hole 51b of the insertion portion 61a is formed, and the insertion portion 61a accommodates the first lens barrel 70 inside the wall portion 51a. It protrudes to the space. According to this configuration, the first lens barrel 70 is not pressed against the wall portion 51a but is pressed only against the insertion portion 61a, so that the end face 22a of the image fiber 22 is surely the depth of field of the first lens optical system 40A. Placed inside.
 以上、本発明の好ましい実施形態を記載し説明してきたが、これらは本発明の例示的なものであり、限定するものとして考慮されるべきではないことを理解すべきである。追加、省略、置換、およびその他の変更は、本発明の範囲から逸脱することなく行うことができる。従って、本発明は、前述の説明によって限定されていると見なされるべきではなく、特許請求の範囲によって制限されている。 Although the preferred embodiments of the present invention have been described and described above, it should be understood that these are exemplary of the present invention and should not be considered as limiting. Additions, omissions, substitutions, and other modifications can be made without departing from the scope of the invention. Therefore, the present invention should not be considered limited by the above description, but is limited by the claims.
 1…内視鏡、22…イメージファイバ、22a…端面、30…撮像素子、40…再結像光学系、40A…第1レンズ光学系、40B…第2レンズ光学系、50…筐体部、51a…壁部、51b…挿入孔、60…ファイバホルダ、61a…挿入部、70…第1鏡筒、80…第2鏡筒、90…付勢部材 1 ... Endoscope, 22 ... Image fiber, 22a ... End face, 30 ... Imaging element, 40 ... Reimaging optical system, 40A ... 1st lens optical system, 40B ... 2nd lens optical system, 50 ... Housing 51a ... wall part, 51b ... insertion hole, 60 ... fiber holder, 61a ... insertion part, 70 ... first lens barrel, 80 ... second lens barrel, 90 ... urging member

Claims (6)

  1.  イメージファイバと、
     撮像素子と、
     第1レンズ光学系と第2レンズ光学系とを有し、前記イメージファイバと前記撮像素子との間に配置され、前記イメージファイバで伝送された被写体像を前記撮像素子に再結像させる再結像光学系と、
     前記第1レンズ光学系を保持する第1鏡筒と、
     前記第2レンズ光学系を保持する第2鏡筒と、
     前記第2鏡筒と前記撮像素子との相対位置を固定し、前記第1鏡筒を相対移動可能に収容する筐体部と、
     前記第1鏡筒と前記第2鏡筒との間に配置され、前記第1鏡筒を前記イメージファイバに向かって付勢する付勢部材と、
     前記第1レンズ光学系と前記第2レンズ光学系との間に配置された絞りと、
    を備え、
     前記第1レンズ光学系は、前記イメージファイバから入射した光を平行光に変換するように構成され、
     前記第2レンズ光学系は、前記平行光を前記撮像素子に集光するように構成され、
     前記絞りが前記第1鏡筒に固定されている
    内視鏡。
    Image fiber and
    Image sensor and
    Reconnection that has a first lens optical system and a second lens optical system, is arranged between the image fiber and the image sensor, and reimages a subject image transmitted by the image fiber on the image sensor. Image optics and
    The first lens barrel that holds the first lens optical system and
    A second lens barrel that holds the second lens optical system and
    A housing portion that fixes the relative position of the second lens barrel and the image sensor and accommodates the first lens barrel so as to be relatively movable.
    An urging member arranged between the first lens barrel and the second lens barrel and urging the first lens barrel toward the image fiber.
    A diaphragm arranged between the first lens optical system and the second lens optical system,
    With
    The first lens optical system is configured to convert light incident from the image fiber into parallel light.
    The second lens optical system is configured to collect the parallel light on the image pickup device.
    An endoscope in which the diaphragm is fixed to the first lens barrel.
  2.  前記イメージファイバは、前記筐体部に対して着脱可能に装着されたファイバホルダに保持されている、請求項1に記載の内視鏡。 The endoscope according to claim 1, wherein the image fiber is held by a fiber holder detachably attached to the housing portion.
  3.  前記ファイバホルダは、前記筐体部の内部に挿抜可能に挿入された挿入部を有し、
     前記第1鏡筒は、前記付勢部材の付勢によって、前記挿入部に押し付けられている、請求項2に記載の内視鏡。
    The fiber holder has an insertion portion that is removably inserted inside the housing portion.
    The endoscope according to claim 2, wherein the first lens barrel is pressed against the insertion portion by the urging of the urging member.
  4.  前記筐体部は、前記挿入部の挿入孔が形成された壁部を有し、
     前記挿入部は、前記壁部よりも内側の前記第1鏡筒の収容空間まで突出している、請求項3に記載の内視鏡。
    The housing portion has a wall portion in which an insertion hole for the insertion portion is formed.
    The endoscope according to claim 3, wherein the insertion portion projects to the accommodation space of the first lens barrel inside the wall portion.
  5.  前記絞りの開口径は、前記第1レンズ光学系の有効径の1/1.1以上1/1.3以下に設定されている
    請求項1から請求項4のいずれか一項に記載の内視鏡。
    The method according to any one of claims 1 to 4, wherein the aperture diameter of the diaphragm is set to 1 / 1.1 or more and 1 / 1.3 or less of the effective diameter of the first lens optical system. Endoscope.
  6.  前記第1鏡筒と前記第2鏡筒との配列方向における前記絞りの長さは、
    1.1mm以上3.8mm以下である
    請求項1から請求項5のいずれか一項に記載の内視鏡。
    The length of the diaphragm in the arrangement direction of the first lens barrel and the second lens barrel is
    The endoscope according to any one of claims 1 to 5, which is 1.1 mm or more and 3.8 mm or less.
PCT/JP2021/011029 2020-03-26 2021-03-18 Endoscope WO2021193337A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022510031A JP7362902B2 (en) 2020-03-26 2021-03-18 Endoscope

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020056093 2020-03-26
JP2020-056093 2020-03-26

Publications (1)

Publication Number Publication Date
WO2021193337A1 true WO2021193337A1 (en) 2021-09-30

Family

ID=77890257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/011029 WO2021193337A1 (en) 2020-03-26 2021-03-18 Endoscope

Country Status (2)

Country Link
JP (1) JP7362902B2 (en)
WO (1) WO2021193337A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07234365A (en) * 1994-02-21 1995-09-05 Olympus Optical Co Ltd Image pickup device for endoscope
JP2019005446A (en) * 2017-06-28 2019-01-17 長田電機工業株式会社 Dental endoscope

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07234365A (en) * 1994-02-21 1995-09-05 Olympus Optical Co Ltd Image pickup device for endoscope
JP2019005446A (en) * 2017-06-28 2019-01-17 長田電機工業株式会社 Dental endoscope

Also Published As

Publication number Publication date
JPWO2021193337A1 (en) 2021-09-30
JP7362902B2 (en) 2023-10-17

Similar Documents

Publication Publication Date Title
US11457802B2 (en) Borescopic optical system for medical diagnostic instruments and medical diagnostic instruments having interlocking assembly features
JP4843121B2 (en) Objective optical system
JP5054230B2 (en) Imaging unit
EP2385406A1 (en) Optical element and optical unit using the same
US20210275006A1 (en) Micro endoscope camera module and micro endoscope having same
US20150223678A1 (en) Eye viewing device enabled for performing ear examinations and adapter
US20180017779A1 (en) Endoscope and variable power optical system for the same
WO2015050100A1 (en) Rigid endoscope
US11889981B2 (en) Observation instrument
WO2021193337A1 (en) Endoscope
JP2015045837A (en) Endoscope lens unit and endoscope having the same
JP2014191222A (en) Endoscope lens unit and endoscope having the same
JPH07234365A (en) Image pickup device for endoscope
CN211511722U (en) Endoscope assembly structure and objective lens device
US11525998B2 (en) Endoscope objective lens unit and endoscope
JPS60165614A (en) Assembling method of hard endoscope
JP2021153779A (en) Endoscope
JP2009225947A (en) Illumination optics for endoscope and its assembly method
WO2015050101A1 (en) Endoscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21775768

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022510031

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21775768

Country of ref document: EP

Kind code of ref document: A1