WO2021193285A1 - Electrical storage device, and method for manufacturing same - Google Patents

Electrical storage device, and method for manufacturing same Download PDF

Info

Publication number
WO2021193285A1
WO2021193285A1 PCT/JP2021/010816 JP2021010816W WO2021193285A1 WO 2021193285 A1 WO2021193285 A1 WO 2021193285A1 JP 2021010816 W JP2021010816 W JP 2021010816W WO 2021193285 A1 WO2021193285 A1 WO 2021193285A1
Authority
WO
WIPO (PCT)
Prior art keywords
mark
welding
power storage
bus bar
melting
Prior art date
Application number
PCT/JP2021/010816
Other languages
French (fr)
Japanese (ja)
Inventor
繁樹 森口
伸介 吉竹
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to JP2022510006A priority Critical patent/JPWO2021193285A1/ja
Publication of WO2021193285A1 publication Critical patent/WO2021193285A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/514Methods for interconnecting adjacent batteries or cells
    • H01M50/516Methods for interconnecting adjacent batteries or cells by welding, soldering or brazing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a power storage device including a power storage element and a bus bar, and a method for manufacturing the same.
  • Patent Document 1 discloses a welded structure in which a bus bar (first member: aluminum bus bar) and a conductive member (second member: nickel-plated copper terminal) are joined by laser welding.
  • An object of the present invention is to provide a power storage device capable of suppressing deterioration in quality and a method for manufacturing the same.
  • the power storage device is a power storage device including a power storage element and a bus bar, and includes a conductive member to be joined to the bus bar, and the joint portion between the bus bar and the conductive member is the bus bar and the bus bar.
  • One surface of the conductive member is arranged adjacent to the molten surface melting mark and the surface melting mark, and the internal melting mark melted from the one surface to the inside and arranged adjacent to the internal melting mark. It has a first welding mark to which the bus bar and the conductive member are welded.
  • the present invention can be realized not only as such a power storage device, but also as a joining structure or joining method of a bus bar and a conductive member, or a manufacturing method of a power storage device including the joining method.
  • FIG. 1 is a perspective view showing the appearance of the power storage device according to the embodiment.
  • FIG. 2 is a perspective view showing the appearance of the power storage element according to the embodiment.
  • FIG. 3 is a plan view showing a joint portion between the bus bar and the electrode terminal of the power storage element according to the embodiment.
  • FIG. 4 is a plan view showing the configuration of the joint portion according to the embodiment.
  • FIG. 5 is a plan view and a cross-sectional view showing the configurations of the surface melting marks, the internal melting marks, and the first welding marks of the joint portion according to the embodiment.
  • FIG. 6 is a photograph showing a cross section of a surface melting mark, an internal melting mark, and a first welding mark of the joint portion according to the embodiment.
  • FIG. 7 is a plan view and a cross-sectional view showing the configuration of the second weld mark of the joint portion according to the embodiment.
  • FIG. 8 is a plan view showing the configuration of the joint portion according to the first modification of the embodiment.
  • FIG. 9 is a plan view showing the configuration of the joint portion according to the second modification of the embodiment.
  • FIG. 10A is a plan view showing the configuration of the joint portion according to the third modification of the embodiment.
  • FIG. 10B is a plan view showing the configuration of the joint portion according to the third modification of the embodiment.
  • spatter may occur during laser welding.
  • the welding quality may deteriorate due to insufficient strength of the welded portion.
  • Sputter adheres to electrical equipment such as a substrate to cause a short circuit
  • spatter adheres to a container of a power storage element and short-circuits the containers of the power storage element, or spatter occurs on the heat seal portion of the exterior body accommodating the power storage element. May cause problems such as poor bonding of the heat-sealed portion due to adhesion.
  • the quality of the power storage device may be significantly affected by the deterioration of the welding quality or the occurrence of a short circuit.
  • the present invention has been made by the inventor of the present application paying new attention to the above problems, and an object of the present invention is to provide a power storage device capable of suppressing deterioration in quality and a method for manufacturing the same.
  • the power storage device is a power storage device including a power storage element and a bus bar, and includes a conductive member joined to the bus bar, and the bus bar and the conductive member.
  • the joint portion is arranged adjacent to the surface melting mark where one surface of the bus bar and the conductive member is melted, the internal melting mark which is arranged adjacent to the surface melting mark and melted from the one surface to the inside, and the internal melting. It has a first weld mark, which is arranged adjacent to the mark and to which the bus bar and the conductive member are welded.
  • the joint portion between the bus bar and the conductive member includes a surface melting mark in which one surface of the bus bar and the conductive member is melted, an internal melting mark in which the one surface is melted to the inside, and the bus bar and the conductive member. It has a first welding mark to which the conductive member is welded. That is, during laser welding, the laser output is reduced to melt one surface of the bus bar and the conductive member to form a surface melting mark, and the laser output is slightly increased to melt the internal melting mark from the one surface to the inside. To form. The laser output is further increased, and the bus bar and the conductive member are welded to form the first weld mark.
  • the welding target portion is preheated by gradually increasing the laser output from the front of the welding target portion to form surface melting marks and internal melting marks, so that the first welding mark is formed on the welding target portion.
  • the laser output at the time of forming can be suppressed. If the laser output can be suppressed, the occurrence of spatter can be suppressed. As a result, it is possible to suppress the influence of sputtering on the quality of the power storage device, and thus it is possible to suppress the deterioration of the quality of the power storage device.
  • the joint portion further has a second weld mark extending along the first weld mark in the extending direction of the first weld mark, and the second weld mark is the surface of the first weld mark. It may have a welding mark end portion that is far from the melting mark and has no molten pool mark formed.
  • the joint portion of the bus bar and the conductive member has a second welding mark along the first welding mark, and the second welding mark does not have a molten pool mark formed at a position far from the surface melting mark. It has a weld mark end.
  • the heat in the first weld mark is transferred to the second weld by forming the second weld mark along the first weld mark.
  • no molten pool mark is formed at the welding mark end portion far from the surface melting mark of the second welding mark, it can be determined that the welding is started from the welding mark end portion of the second welding mark.
  • the heat at the end after forming the first welding mark can be used as preheating to start welding of the second welding mark. ..
  • the laser output can be suppressed when the second welding mark is formed, so that the generation of spatter can be suppressed. Therefore, even when forming the second welding mark, it is possible to suppress the influence of sputtering on the quality of the power storage device, so that the deterioration of the quality of the power storage device can be suppressed.
  • the second welding mark may be extended along the first welding mark from one end to the other end of the first welding mark in the extending direction.
  • the second welding mark extends along the first welding mark from one end to the other end of the first welding mark, the bus bar and the conductive member can be joined more firmly. There is. As a result, it is possible to suppress the generation of spatter while improving the joint strength at the joint portion, and thus it is possible to suppress the deterioration of the quality of the power storage device.
  • the second welding mark extends along the first welding mark from the end of the welding mark to a position away from the surface melting mark from the boundary position between the surface melting mark and the internal melting mark. Welded and placed.
  • the bus bar and the conductive member are joined by the first welding mark, and the surface melting mark and the internal melting mark are the parts that do not contribute to the joining of the bus bar and the conductive member (the parts that do not require welding). Therefore, it is not necessary to form the second welding mark at a position corresponding to the surface melting mark and the internal melting mark, and the formation position of the second welding mark is set from the welding mark end to the surface melting mark and the internal melting mark. The position is far from the surface melting mark rather than the boundary position of. As a result, it is possible to prevent spatter from being generated due to the formation of a second welding mark at an unnecessary position and an increase in the welding temperature. Therefore, since it is possible to suppress the influence of sputtering on the quality of the power storage device, it is possible to suppress the deterioration of the quality of the power storage device.
  • the boundary position between the surface melting mark and the internal melting mark may be a position where at least one of the width and the depth of the melting mark when reaching the internal melting mark from the surface melting mark changes.
  • At least a part of the first welding mark and the second welding mark may be connected.
  • the heat in the first welding mark is effectively utilized as preheating, and the first (Ii) Welding marks can be formed.
  • the laser output can be suppressed when the second welding mark is formed, so that the generation of spatter can be suppressed. Therefore, when forming the second welding mark, it is possible to suppress the influence of sputtering on the quality of the power storage device, so that the deterioration of the quality of the power storage device can be suppressed.
  • the method for manufacturing a power storage device is a method for manufacturing a power storage device including a power storage element and a bus bar, and includes a joining step of joining the bus bar and a conductive member.
  • One surface of the bus bar and the conductive member forms a molten surface melting mark, is arranged adjacent to the surface melting mark, forms an internal melting mark melted from the one surface to the inside, and forms the internal melting mark.
  • the bus bar and the conductive member are welded to each other to form a first welding mark. According to this, as described above, since it is possible to suppress the influence of sputtering on the quality of the power storage device, it is possible to suppress the deterioration of the quality of the power storage device.
  • the direction in which the pair of (positive electrode side and negative electrode side) electrode terminals in one power storage element is arranged, or the direction in which the short side surfaces of the container of the power storage element face each other is defined as the X-axis direction.
  • the arrangement direction of the plurality of power storage elements, the direction opposite to the long side surface of the container of the power storage element, or the thickness direction of the container is defined as the Y-axis direction.
  • the alignment direction between the container body and the lid of the container of the power storage element, the arrangement direction of the container and the electrode terminal of the power storage element, the arrangement direction of the power storage element and the bus bar, or the vertical direction is defined as the Z-axis direction.
  • X-axis directions, Y-axis directions, and Z-axis directions are directions that intersect each other (orthogonally in the present embodiment).
  • the Z-axis direction may not be the vertical direction, but for convenience of explanation, the Z-axis direction will be described below as the vertical direction.
  • the X-axis plus direction indicates the arrow direction of the X-axis
  • the X-axis minus direction indicates the direction opposite to the X-axis plus direction.
  • Representations that indicate a relative direction or orientation, such as parallel and orthogonal also include cases that are not strictly that direction or orientation.
  • the fact that the two directions are orthogonal not only means that the two directions are completely orthogonal, but also that they are substantially orthogonal, that is, a difference of, for example, about several percent is included. It also means that.
  • FIG. 1 is a perspective view showing the appearance of the power storage device 1 according to the present embodiment.
  • FIG. 1 is a view showing the inside of the exterior body 30 through the exterior body 30, and the exterior body 30 (and the two external terminals 31) is shown by a broken line.
  • FIG. 2 is a perspective view showing the appearance of the power storage element 10 according to the present embodiment.
  • FIG. 3 is a plan view showing a joint portion 40 between the bus bar 20 and the electrode terminal 200 of the power storage element 10 according to the present embodiment. Since the plurality of power storage elements 10 shown in FIG. 1 all have the same configuration, only one power storage element 10 is shown in FIG. Similarly, FIG. 3 illustrates a joint 40 between one bus bar 20 and one electrode terminal 200 of the power storage element 10.
  • the power storage device 1 is a device capable of charging electricity from the outside and discharging electricity to the outside, and has a substantially rectangular parallelepiped shape in the present embodiment.
  • the power storage device 1 is a battery module (assembled battery) used for power storage, power supply, and the like.
  • the power storage device 1 is used for driving a moving body such as an automobile, a motorcycle, a watercraft, a ship, a snowmobile, an agricultural machine, a construction machine, or a railroad vehicle for an electric railway, or for starting an engine. Used as a battery or the like.
  • Examples of the above-mentioned automobiles include electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and gasoline vehicles.
  • Examples of the railway vehicle for the electric railway include a train, a monorail, and a linear motor car.
  • the power storage device 1 can also be used as a stationary battery or the like used for home use, a generator, or the like.
  • the power storage device 1 includes a plurality of power storage elements 10, a plurality of bus bars 20, and an exterior body 30 that houses the power storage elements 10 and the bus bar 20.
  • the power storage device 1 is for monitoring a spacer arranged between the power storage elements 10, an end plate and a side plate for restraining the power storage element 10, a bus bar frame for positioning the bus bar 20, and a charging state and a discharging state of the power storage element 10.
  • An electric device such as a circuit board, a fuse, a relay and a connector, and an exhaust portion for exhausting the gas discharged from the power storage element 10 to the outside of the exterior body 30 may be provided, but these are not shown. It is omitted, and a detailed description is also omitted.
  • the exterior body 30 is a container (module case) having a substantially rectangular parallelepiped shape (box shape) that constitutes the exterior body of the power storage device 1. That is, the exterior body 30 is arranged outside the power storage element 10 and the bus bar 20, and these power storage elements 10 and the bus bar 20 are fixed at predetermined positions to protect them from impacts and the like.
  • the exterior body 30 is made of polycarbonate (PC), polypropylene (PP), polyethylene (PE), polystyrene (PS), polyphenylene sulfide resin (PPS), polyphenylene ether (PPE (including modified PPE)), polyethylene terephthalate (PET).
  • PC polycarbonate
  • PP polypropylene
  • PE polyethylene
  • PS polystyrene
  • PPS polyphenylene sulfide resin
  • PPE polyphenylene ether
  • PET polyethylene terephthalate
  • the exterior body 30 prevents the power storage element 10 and the like from coming into contact with the external metal member and the like.
  • the exterior body 30 may be formed of a conductive member such as metal as long as the electrical insulation of the power storage element 10 or the like is maintained.
  • the exterior body 30 is provided with two external terminals 31. These two external terminals 31 are external connection terminals on the positive electrode side and the negative electrode side for charging electricity from the outside of the power storage device 1 and discharging electricity to the outside of the power storage device 1, and are aluminum, aluminum alloy, and the like. It is made of a conductive member made of metal such as copper, copper alloy, iron, steel, and stainless steel.
  • the power storage element 10 is a secondary battery (cell battery) capable of charging electricity and discharging electricity, and more specifically, a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery. ..
  • the power storage element 10 has a flat rectangular parallelepiped shape (square shape), and in the present embodiment, six power storage elements 10 are arranged side by side in the Y-axis direction.
  • the size and shape of the power storage element 10 and the number of power storage elements 10 arranged are not limited, and for example, only one power storage element 10 may be arranged.
  • the power storage element 10 is not limited to the non-aqueous electrolyte secondary battery, and may be a secondary battery other than the non-aqueous electrolyte secondary battery, or may be a capacitor.
  • the power storage element 10 may be a primary battery that can use the stored electricity without being charged by the user, instead of the secondary battery.
  • the power storage element 10 may be a battery using a solid electrolyte.
  • the power storage element 10 may be a pouch-type power storage element.
  • the power storage element 10 includes a container 100, a pair of electrode terminals 200 (positive electrode side and negative electrode side), and a pair of gaskets 300 (positive electrode side and negative electrode side). ing.
  • An electrode body, a pair of current collectors (positive electrode side and negative electrode side), an electrolytic solution (non-aqueous electrolyte), and the like are housed inside the container 100, but these are not shown.
  • the type of electrolytic solution is not particularly limited as long as it does not impair the performance of the power storage element 10, and various types can be selected.
  • Spacers may be arranged on the side of the current collector, or an insulating sheet covering the outer surface of the container 100 may be arranged.
  • the container 100 is a rectangular parallelepiped (square or box-shaped) case, and has a container body 110 having an opening and a lid 120 that closes the opening of the container body 110.
  • the container body 110 is a rectangular tubular member having a bottom that constitutes the main body of the container 100, has a pair of long side surfaces on both sides in the Y-axis direction, and has a pair of short side surfaces on both sides in the X-axis direction. However, it has a bottom surface on the negative side of the Z axis.
  • the lid body 120 is a flat plate-shaped and rectangular member that constitutes the lid portion of the container 100, and is arranged in the Z-axis plus direction of the container body 110.
  • the lid 120 has a gas discharge valve 121 that discharges gas to release the pressure when the pressure inside the container 100 rises, and a liquid injection unit for injecting an electrolytic solution into the inside of the container 100. 122 is arranged.
  • the material of the container 100 is not particularly limited, but is preferably a weldable metal such as stainless steel, aluminum, aluminum alloy, iron, or plated steel plate.
  • the electrode terminal 200 is a terminal (positive electrode terminal and negative electrode terminal) of the power storage element 10 arranged on the lid 120 of the container 100, and is electrically connected to the positive electrode plate and the negative electrode plate of the electrode body via the current collector.
  • the electrode terminal 200 is made of metal for leading the electricity stored in the electrode body to the external space of the power storage element 10 and introducing electricity into the internal space of the power storage element 10 in order to store the electricity in the electrode body. It is a member.
  • the electrode terminal 200 is arranged so as to project upward (Z-axis plus direction) from the lid body 120.
  • the electrode terminal 200 is made of a metal (conductive) member such as aluminum, an aluminum alloy, copper, or a copper alloy.
  • the gasket 300 is arranged between the lid 120 of the container 100 and the electrode terminal 200, and is a flat plate-shaped insulating seal that electrically insulates and seals between the lid 120 and the electrode terminal 200. It is a stop member.
  • a gasket that electrically insulates and seals between the lid 120 and the current collector is also arranged between the lid 120 and the current collector, but detailed description thereof will be omitted.
  • These gaskets can be formed of any of the insulating members such as PP and PE that can be used for the exterior body 30 described above.
  • the electrode body is a power storage element (power generation element) formed by laminating a positive electrode plate, a negative electrode plate, and a separator.
  • the positive electrode plate is a positive electrode active material layer formed on a positive electrode base material layer which is a current collecting foil made of a metal such as aluminum or an aluminum alloy.
  • the negative electrode plate is a negative electrode active material layer formed on a negative electrode base material layer which is a current collecting foil made of a metal such as copper or a copper alloy.
  • the active material used for the positive electrode active material layer and the negative electrode active material layer known materials can be appropriately used as long as they can occlude and release lithium ions.
  • the electrode body is a wound electrode body formed by winding electrode plates (positive electrode plate and negative electrode plate), and a laminated type (stack type) electrode formed by laminating a plurality of flat plate-shaped electrode plates.
  • a wound electrode body formed by winding electrode plates (positive electrode plate and negative electrode plate), and a laminated type (stack type) electrode formed by laminating a plurality of flat plate-shaped electrode plates.
  • Any form of electrode body such as a body or a bellows-shaped electrode body obtained by folding a electrode plate into a bellows shape may be used.
  • the current collector is a conductive member (positive electrode current collector and negative electrode current collector) that is electrically connected to the electrode terminal 200 and the electrode body.
  • the positive electrode current collector is formed of aluminum or an aluminum alloy or the like like the positive electrode base material layer of the positive electrode plate
  • the negative electrode current collector is formed of copper or a copper alloy or the like like the negative electrode base material layer of the negative electrode plate.
  • the bus bar 20 is a conductive flat and rectangular member connected to the power storage element 10. Specifically, the bus bar 20 is arranged above the plurality of power storage elements 10 and is connected (bonded) to the electrode terminals 200 of the plurality of power storage elements 10 to electrically connect the electrode terminals 200 of the plurality of power storage elements 10 to each other. Connect to.
  • the bus bar 20 connects a plurality of power storage elements 10 in series by connecting the positive electrode terminals and the negative electrode terminals of adjacent power storage elements 10 in order. Specifically, both ends of the bus bar 20 are joined to the positive electrode terminal and the negative electrode terminal of the adjacent power storage element 10 by welding, so that the positive electrode terminal and the negative electrode terminal of the adjacent power storage element 10 are electrically connected to each other. Connecting.
  • connection portion of the bus bar 20 with the external terminal 31 is omitted, but the external terminals 31 on the positive electrode side and the negative electrode side are connected to the bus bar 20 arranged at the end portion.
  • the bus bar 20 arranged at the end portion is joined to the external terminal 31 by welding, bolting, or the like to electrically connect the power storage element 10 arranged at the end portion and the external terminal 31.
  • the bus bar 20 has a thickness of about 1 to 3 mm, and is formed of a conductive member made of metal such as aluminum, aluminum alloy, copper, copper alloy, nickel, or a combination thereof, or a conductive member other than metal. ing.
  • the bus bar 20 may be as thin as less than 1 mm.
  • the shape (outer shape, thickness, etc.) and material of the bus bar 20 are not particularly limited.
  • the connection form of the bus bar 20 is not particularly limited, and a plurality of power storage elements 10 may be connected in series in any combination, or may be arranged so as to be connected in parallel.
  • the bus bar 20 is joined to the electrode terminal 200 of the power storage element 10 by welding to form a joint portion 40.
  • two joints 40 extending in the Y-axis direction are formed on both sides of the overlapping portion of the bus bar 20 and the electrode terminal 200 in the X-axis direction.
  • the configuration of the joint portion 40 will be described in detail below. Since the two joints 40 shown in FIG. 3 have the same configuration, one joint 40 will be described in detail below.
  • FIG. 4 is a plan view showing the configuration of the joint portion 40 according to the present embodiment.
  • FIG. 4 shows an enlarged view of the joint portion 40 shown in FIG. 3 and a short omission of the length of the first weld mark 43.
  • FIG. 5 is a plan view and a cross-sectional view showing the configurations of the surface melting mark 41, the internal melting mark 42, and the first welding mark 43 of the joint portion 40 according to the present embodiment.
  • FIG. 5A is a plan view of a state in which a surface melting mark 41, an internal melting mark 42, and a first welding mark 43 are formed in the process of forming the joint portion 40 as viewed from the Z-axis plus direction. Is.
  • FIG. 5B is a cross-sectional view showing a configuration when the state of FIG. 5A is cut along a plane parallel to the YZ plane through the Vb-Vb line.
  • FIG. 6 is a photograph showing a cross section of the surface melting mark 41, the internal melting mark 42, and the first welding mark 43 of the joint portion 40 according to the present embodiment. Specifically, FIG. 6 is a photograph corresponding to FIG. 5 (b).
  • FIG. 7 is a plan view and a cross-sectional view showing the configuration of the second welding mark 44 of the joint portion 40 according to the present embodiment.
  • FIG. 7A is a plan view of the state in which the second welding mark 44 is formed in the process of forming the joint portion 40, as viewed from the Z-axis plus direction.
  • FIG. 7A is a plan view of the state in which the second welding mark 44 is formed in the process of forming the joint portion 40, as viewed from the Z-axis plus direction.
  • FIG. 7B is a cross-sectional view showing a configuration when the state of FIG. 7A is cut along a plane parallel to the YZ plane through the VIb-VIb line. That is, FIGS. 5 to 7 show a method of joining the bus bar 20 and the electrode terminal 200 in the method of manufacturing the power storage device 1.
  • the scale in the X-axis direction with respect to the Y-axis direction in (a) of FIG. 5 and (a) of FIG. 7 is an example, and can be enlarged or reduced in the X-axis direction with respect to the Y-axis direction.
  • the scale in the Z-axis direction with respect to the Y-axis direction in (b) of FIG. 5 and (b) of FIG. 7 can be enlarged or reduced in the Z-axis direction with respect to the Y-axis direction.
  • the joint portion 40 between the bus bar 20 and the electrode terminal 200 of the power storage element 10 has a surface melting mark 41, an internal melting mark 42, a first welding mark 43, and a second welding mark 44. have.
  • the electrode terminal 200 of the power storage element 10 is an example of a conductive member to be joined to the bus bar
  • the joint portion 40 is an example of a joint portion between the bus bar and the conductive member.
  • the surface melting mark 41 is a melting mark in which one surface of the bus bar 20 and the electrode terminal 200 (conductive member) is melted.
  • the surface melting mark 41 is a melting mark in which the flat (planar) surface 20a of the bus bar 20 is melted.
  • the surface 20a of the bus bar 20 is irradiated with a laser beam L1 having a minute output, the surface 20a of the bus bar 20 is melted, and a surface melting mark extending in the Y-axis direction is formed. 41 is formed.
  • the output of the laser light L1 is about 0 to 30% of the maximum output of the laser light L3 described later.
  • the output of the laser beam L1 gradually increases from 0% to 30% of the laser beam L3 from the end of the surface melting mark 41 in the minus direction of the Y axis to the end in the plus direction of the Y axis toward the plus direction of the Y axis. It is increased (or the output is maintained at a constant value between 0 and 30% of the laser beam L3) and irradiated.
  • the surface 20a of the bus bar 20 is melted, the depth in the Z-axis direction is about 0.01 to 0.2 mm, the length in the Y-axis direction is about 0.3 to 0.8 mm, and the X-axis direction.
  • a surface melting mark 41 having a width of about 0.3 to 0.5 mm is formed.
  • the numerical value is an example and is not limited to the numerical value, and may be appropriately changed according to the spot diameter of the laser beam and the like. If the spot diameter of the laser beam is large, the width of the surface melting mark 41 in the X-axis direction is large, and if the spot diameter of the laser light is small, the width of the surface melting mark 41 in the X-axis direction is small.
  • the depth of the surface melting mark 41 in the Z-axis direction and the length in the Y-axis direction are also appropriately changed depending on welding conditions and the like.
  • the surface melting mark 41 has a curved edge (an oval or elliptical arc shape) in the minus direction of the Y axis when viewed from the Z axis direction, and extends in the plus direction of the Y axis. Has a shaped shape.
  • the surface melting mark 41 has a shape extending linearly in the Y-axis direction when the cross-sectional shape is viewed from the X-axis direction.
  • the internal melting mark 42 is a melting mark that is arranged adjacent to the surface melting mark 41 and melts from one surface of the bus bar 20 and the electrode terminal 200 to the inside.
  • the internal melting mark 42 is a melting mark that is arranged so as to be connected to the surface melting mark 41 in the Y-axis plus direction of the surface melting mark 41 and melted from the surface 20a of the bus bar 20 to the inside.
  • the surface 20a of the bus bar 20 is irradiated with the laser light L2 having an output larger than that of the laser light L1, and the surface 20a to the inside of the bus bar 20 is melted.
  • An internal melting mark 42 extending in the Y-axis direction is formed.
  • the output of the laser light L2 is about 30 to 80% of the maximum output of the laser light L3.
  • the output of the laser beam L2 is gradually increased from the end of the surface melting mark 41 in the Y-axis plus direction to about 30 to 80% of the laser beam L3 (or the output is the laser beam L3). (Maintained at a constant value between 30 and 80% of) is irradiated.
  • the position where the laser beam L2 starts to be irradiated (the end of the surface melting mark 41 in the positive direction of the Y-axis or the end of the internal melting mark 42 in the negative direction of the Y-axis) is the boundary position 42a between the surface melting mark 41 and the internal melting mark 42. Also called.
  • the output of the laser beam is increased so that the output of the laser beam changes from the laser beam L1 to the laser beam L2, the melting width (width in the X-axis direction) of the melting mark begins to increase, and the melting depth (melting depth) ( This is the position where the depth in the Z-axis direction) begins to deepen (keyholes begin to form).
  • the boundary position 42a between the surface melting mark 41 and the internal melting mark 42 is a position where at least one of the width and the depth of the melting mark changes from the surface melting mark 41 to the internal melting mark 42.
  • the surface melting mark 41 in the Y-axis minus direction from the boundary position 42a is a melting portion where the keyhole was not formed, and the internal melting mark 42 in the Y-axis plus direction from the boundary position 42a is formed by the keyhole. It is a melted part that has been made.
  • the surface 20a to the inside of the bus bar 20 is melted, the depth in the Z-axis direction is about 1 to 2 mm, the length in the Y-axis direction is about 4 to 8 mm, and the width in the X-axis direction is 1 to 1.
  • An internal melting mark 42 of about 3 mm is formed.
  • the depth of the internal melting mark 42 in the Z-axis direction is about 1/4 to 3/4 of the thickness of the bus bar 20 in the Z-axis direction, and the length in the Y-axis direction is 2 to 4 of the depth in the Z-axis direction. It is about double.
  • the numerical value is an example and is not limited to the numerical value, and may be appropriately changed according to the thickness of the bus bar 20 and the like.
  • the depth of the internal melting mark 42 in the Z-axis direction becomes deep, and if the thickness of the bus bar 20 is small, the depth of the internal melting mark 42 in the Z-axis direction becomes shallow.
  • the width of the internal melting mark 42 in the X-axis direction and the length in the Y-axis direction are also appropriately changed depending on welding conditions and the like.
  • the internal melting mark 42 has a curved edge (boundary position 42a) in the minus direction of the Y axis (arc shape of an oval or ellipse) when viewed from the Z axis direction, and the Y axis. It has a shape that extends in the positive direction.
  • the internal melting mark 42 is a curved shape in which the edge in the minus direction of the Y axis is curved so as to be recessed in the minus direction of the Z axis when the cross-sectional shape is viewed from the plus direction of the Y axis, and is extended in the plus direction of the Y axis. It has a shape.
  • the first welding mark 43 is a welding mark that is arranged adjacent to the internal melting mark 42 and in which the bus bar 20 and the electrode terminal 200 (conductive member) are welded.
  • the first welding mark 43 is arranged so as to be connected to the internal melting mark 42 in the Y-axis plus direction of the internal melting mark 42, penetrates the inside from the surface 20a of the bus bar 20, and is inside the electrode terminal 200. It is a weld mark that has melted up to.
  • the surface 20a of the bus bar 20 is irradiated with the laser light L3 having an output larger than that of the laser light L2, from the surface 20a of the bus bar 20 to the inside of the electrode terminal 200. Is melted to form a first welding mark 43 extending in the Y-axis direction.
  • the output of the laser beam L3 gradually increases from the output of the laser beam L2 (about 30 to 80% of the maximum output of the laser beam L3) from the end of the internal melting mark 42 in the Y-axis plus direction toward the Y-axis plus direction. It is enlarged and irradiated, and then maintained and irradiated at the maximum output of the laser beam L3.
  • the position where the laser beam L3 starts to be irradiated is the boundary between the internal melting mark 42 and the first welding mark 43. Also called position 43a.
  • the boundary position 43a is a position where the output of the laser beam is increased from the laser beam L2 to the laser beam L3 so that the melting depth begins to deepen.
  • the first welding mark 43 is formed.
  • the numerical value is an example and is not limited to the numerical value, and may be appropriately changed depending on the thickness of the bus bar 20 and the electrode terminal 200 and the like. If the thickness of the bus bar 20 and the electrode terminal 200 is large, the depth of the first welding mark 43 in the Z-axis direction becomes deep, and if the thickness of the bus bar 20 and the electrode terminal 200 is small, the depth of the first welding mark 43 in the Z-axis direction becomes deep. The depth becomes shallow.
  • the width of the first welding mark 43 in the X-axis direction is also appropriately changed depending on the welding conditions and the like.
  • the first welding mark 43 has a curved edge (boundary position 43a) in the minus direction of the Y axis (an elliptical or elliptical arc shape) when viewed from the Z axis direction, and is Y. It extends in the plus direction of the axis, and the edge in the plus direction of the Y axis also has a curved shape (an oval or elliptical arc shape).
  • the first welding mark 43 is a curved shape in which the edge in the minus direction of the Y axis is curved so as to be recessed in the minus direction of the Z axis when the cross-sectional shape is viewed from the plus direction of the Y axis, and extends in the plus direction of the Y axis. Moreover, the edge in the positive direction of the Y axis also has a curved shape curved so as to be recessed in the negative direction of the Z axis.
  • the first molten pool mark 43b is formed at the end of the first welding mark 43 in the positive direction of the Y-axis.
  • the first molten pool mark 43b is a mark formed by the molten pool at the time of welding, and has an oval shape or an elliptical shape when viewed from the Z-axis direction. In FIG. 5B, the first molten pool mark 43b is not shown.
  • the second welding mark 44 is a welding mark extending along the first welding mark 43 in the extending direction (Y-axis direction) of the first welding mark 43.
  • the second welding mark 44 is arranged so as to be connected to the first welding mark 43 in the X-axis plus direction of the first welding mark 43, penetrates the inside from the surface 20a of the bus bar 20, and is the electrode terminal 200. It is a welding mark that has melted to the inside of.
  • the surface 20a of the bus bar 20 is irradiated with the laser beam L4 to melt the surface 20a of the bus bar 20 to the inside of the electrode terminal 200, and the second welding extends in the Y-axis direction. Traces 44 are formed.
  • the laser beam L4 has an output equivalent to that of the laser beam L3, and moves in the Y-axis minus direction from a position slightly deviated in the X-axis plus direction from the end of the first welding mark 43 in the Y-axis plus direction, while advancing in the Y-axis minus direction. It is irradiated toward the surface 20a of 20. As a result, the surface 20a of the bus bar 20 to the inside of the electrode terminal 200 are melted to form a second welding mark 44 having a depth, width and length similar to that of the first welding mark 43.
  • the second welding mark 44 extends along the first welding mark 43 from one end to the other end of the first welding mark 43 in the extending direction (Y-axis direction) of the first welding mark 43. It is installed and arranged. Specifically, the second welding mark 44 is surface-melted from the welding mark end 44a, which is the end far from the surface melting mark 41 (the end opposite to the surface melting mark 41 (Y-axis plus direction)). It is arranged so as to extend along the first welding mark 43 from the boundary position 42a of the mark 41 and the internal melting mark 42 to a position away from the surface melting mark 41 (the position on the internal melting mark 42 side).
  • the welding mark end portion 44a is an end portion of the second welding mark 44 on the side where welding is started, and is arranged in the Y-axis plus direction with respect to the end portion of the first welding mark 43 in the Y-axis plus direction. That is, the second welding mark 44 is from the position in the Y-axis plus direction of the first welding mark 43 in the Y-axis plus direction to the end in the Y-axis minus direction of the first welding mark 43 (boundary position 43a). It is extended and arranged in parallel with the first welding mark 43. As a result, preheating can be performed at the start of welding at the second welding mark 44. Since the welding mark end portion 44a is the end portion on the side where welding is started, no molten pool mark is formed.
  • the second welding mark 44 may be formed so as to deviate from the first welding mark 43 in the Y-axis direction, may be formed longer in the Y-axis direction, or may be formed shorter. ..
  • the end of the second welding mark 44 in the Y-axis plus direction (welding mark end 44a) is at the same position as the end of the first welding mark 43 in the Y-axis plus direction in the Y-axis direction, or the first welding mark 43. It may be arranged in the Y-axis minus direction from the end of the Y-axis in the plus direction.
  • the end of the second welding mark 44 in the negative direction of the Y axis may be arranged in the negative direction of the Y axis or the positive direction of the Y axis with respect to the end of the first welding mark 43 in the negative direction of the Y axis.
  • the second welding mark 44 is formed so as to overlap (connect) with the first welding mark 43. That is, the second welding mark 44 extends in the Y-axis direction while overlapping (connecting) with the first welding mark 43 in the X-axis direction. In this way, at least a part of the first welding mark 43 and the second welding mark 44 are connected. In the present embodiment, the first welding mark 43 and the second welding mark 44 are overlapped (connected) from one end to the other end in the Y-axis direction.
  • the amount of overlap between the first welding mark 43 and the second welding mark 44 is not particularly limited, but is about 1/4 to 1/2 of the width of the first welding mark 43 or the second welding mark 44 in the X-axis direction ( For example, about 0.5 to 1 mm) overlap.
  • the second welding mark 44 has a curved edge (an oval or elliptical arc shape) in the positive direction of the Y axis when viewed from the Z axis direction, and extends in the negative direction of the Y axis. It is provided, and the edge in the minus direction of the Y-axis also has a curved shape (an elliptical or elliptical arc shape).
  • the second welding mark 44 is a curved shape whose cross-sectional shape is curved so that the edge in the positive direction of the Y axis is recessed in the negative direction of the Z axis when the cross-sectional shape is viewed from the negative direction of the Y axis, and extends in the negative direction of the Y axis.
  • the edge in the minus direction of the Y axis also has a curved shape curved so as to be recessed in the minus direction of the Z axis.
  • a second molten pool mark 44b is formed at the end of the second welding mark 44 in the negative direction on the Y-axis.
  • the second molten pool mark 44b is a mark formed by the molten pool at the time of welding, and has an oval shape or an elliptical shape when viewed from the Z-axis direction. In FIG. 7B, the second molten pool mark 44b is not shown.
  • the bus bar 20 and the electrode terminal 200 are irradiated with the laser light, and the output of the laser light is changed from the output of the laser light L1 to the output of the laser light L4, so that the bus bar 20 and the electrode terminal 200 are lasered.
  • a welded joint 40 is formed.
  • the welding of the bus bar 20 and the electrode terminal 200 is not pulse welding but continuous welding.
  • the laser welding can be performed by controlling the output of the laser beam using a known device such as an oscillator.
  • the joint portion 40 is formed in the bus bar 20 and the electrode terminal 200 (conductive member).
  • the joint portion 40 includes a surface melting mark 41 in which the surface 20a of one of the bus bar 20 and the electrode terminal 200 (bus bar 20) is melted, an internal melting mark 42 in which the surface 20a of the one surface 20a is melted to the inside, and the bus bar 20 and the electrode terminal. It has a first weld mark 43, to which 200 has been welded. That is, during laser welding, the laser output is reduced to melt the one surface 20a to form a surface melting mark 41, and the laser output is slightly increased to melt the internal melting mark 42 from the one surface 20a to the inside.
  • the laser output is further increased, and the bus bar 20 and the electrode terminal 200 are welded to form the first welding mark 43.
  • the welding target portion is preheated by gradually increasing the laser output from the front of the welding target portion to form the surface melting mark 41 and the internal melting mark 42, the first welding is performed on the welding target portion.
  • the laser output when forming the mark 43 can be suppressed.
  • a material to be welded such as aluminum has a low laser absorption rate in a solid state and a high laser absorption rate in a molten state, the surface of the material to be welded is melted by preheating to increase the laser absorption rate and laser output. Can be kept low.
  • the occurrence of spatter can be suppressed.
  • the bus bar 20 is thick, it is necessary to increase the laser output in order to penetrate the bus bar 20, and spatter is likely to occur.
  • the thick bus bar 20 is used. Can also suppress the occurrence of spatter. As a result, it is possible to suppress the influence of sputtering on the quality of the power storage device 1, and thus it is possible to suppress the deterioration of the quality of the power storage device 1.
  • the joint portion 40 has a second welding mark 44 along the first welding mark 43, and the second welding mark 44 is a welding mark end portion 44a in which a molten pool mark is not formed at a position far from the surface melting mark 41. have.
  • the second welding mark 44 is formed along the first welding mark 43 to form the first welding mark 43.
  • the heat can be used for preheating at the second weld mark 44.
  • the second welding mark 44 is the one in which welding is started from the welding mark end portion 44a. Can be judged.
  • the second welding mark 44 Welding can be started.
  • the laser output can be suppressed, so that the generation of spatter can be suppressed. Therefore, even when the second welding mark 44 is formed, it is possible to suppress the influence of sputtering on the quality of the power storage device 1, and thus it is possible to suppress the deterioration of the quality of the power storage device 1.
  • the bus bar 20 and the electrode terminal 200 are made stronger. Can be joined to. As a result, it is possible to suppress the generation of spatter while improving the joint strength at the joint portion 40, so that the deterioration of the quality of the power storage device 1 can be suppressed.
  • the bus bar 20 and the electrode terminal 200 are joined by the first welding mark 43, and the surface melting mark 41 and the internal melting mark 42 are portions that do not contribute to the joining of the bus bar 20 and the electrode terminal 200 (welding is required).
  • the first welding mark 43 and the second welding mark 44 By forming the first welding mark 43 and the second welding mark 44 so that at least a part thereof is connected (overlapping), the heat in the first welding mark 43 is effectively utilized as preheating, and the second welding is performed. Traces 44 can be formed. As a result, when the second welding mark 44 is formed, the laser output can be suppressed, so that the generation of spatter can be suppressed. Therefore, when forming the second welding mark 44, it is possible to suppress spatter from affecting the quality of the power storage device 1, so that deterioration of the quality of the power storage device 1 can be suppressed. By forming the first welding mark 43 and the second welding mark 44 in an overlapping manner, the bonding strength of the bus bar 20 and the electrode terminal 200 can be improved, and space can be saved.
  • the manufacturing method of the power storage device 1 (the method of joining the bus bar 20 and the electrode terminal 200) also has the same effect as that of the power storage device 1 described above.
  • FIG. 8 is a plan view showing the configuration of the joint portion 40a according to the first modification of the present embodiment.
  • FIG. 8 is a diagram corresponding to FIG.
  • the joint portion 40a in the present modification is different from the joint portion 40 in the above embodiment, and has a surface melting mark 41, an internal melting mark 42, a first welding mark 43, and a second welding mark 44.
  • the second welding mark 44 is arranged along the first welding mark 43 in the extending direction (Y-axis direction) of the first welding mark 43, but is arranged in the first welding.
  • the mark 43 and the second welding mark 44 are not connected and are arranged in the vicinity. Since the other configurations of this modification are the same as those of the above embodiment, detailed description thereof will be omitted.
  • the second welding mark 44 is separated from the first welding mark 43, but is arranged in the vicinity of the first welding mark 43, so that the heat in the first welding mark 43 is used as preheating. It can be used.
  • the occurrence of spatter can be suppressed, so that the spatter can be suppressed from affecting the quality of the power storage device, and the deterioration of the quality of the power storage device can be suppressed.
  • a part of the second welding mark 44 in the Y-axis direction may be connected (overlapping) with the first welding mark 43.
  • the end of the second welding mark 44 in the positive direction of the Y-axis may be connected to the first welding mark 43, and the central part in the Y-axis direction or the end in the negative direction of the Y-axis is connected to the first welding mark 43. It may have been done.
  • FIG. 9 is a plan view showing the configuration of the joint portion 40b according to the second modification of the present embodiment.
  • FIG. 9 is a diagram corresponding to FIG.
  • the joint portion 40b in the present modification has a surface melt mark 45a, an internal melt mark 45b, and a third weld mark 45c instead of the second weld mark 44 of the joint portion 40 in the above embodiment.
  • a surface melt mark 45a an internal melt mark 45b
  • a third weld mark 45c instead of the second weld mark 44 of the joint portion 40 in the above embodiment.
  • the surface melting marks 45a, the internal melting marks 45b, and the third welding marks 45c have the same configurations as the surface melting marks 41, the internal melting marks 42, and the first welding marks 43, and from these, the X-axis plus direction. It is placed in a position shifted to. That is, the surface melting mark 45a is a melting mark in which the surface 20a of the bus bar 20 is melted, and the internal melting mark 45b is a melting mark arranged adjacent to the surface melting mark 45a and melted from the surface 20a of the bus bar 20 to the inside. Is.
  • the third welding mark 45c is a welding mark that is arranged adjacent to the internal melting mark 45b and the bus bar 20 and the electrode terminal 200 are welded to each other.
  • a molten pool mark 45d is formed.
  • the third welding mark 45c extends from one end to the other end of the first welding mark 43 in the extension direction (Y-axis direction) of the first welding mark 43, and is the first welding mark along the first welding mark 43. It is extended and arranged in the extension direction (Y-axis direction) of 43. At least a part of the first welding mark 43 and the third welding mark 45c is connected.
  • the same effect as that of the above embodiment can be obtained.
  • the welding target portion is preheated by forming the surface melting mark 45a and the internal melting mark 45b, so that the third welding mark 45c is formed in the welding target portion. It is possible to suppress the laser output at the time of welding. As a result, even in this modification, the occurrence of spatter can be suppressed, so that the spatter can be suppressed from affecting the quality of the power storage device, and the deterioration of the quality of the power storage device can be suppressed.
  • 10A and 10B are plan views showing the configurations of the joint portions 40c and 40d according to the third modification of the present embodiment.
  • 10A and 10B are views corresponding to the bus bar 20 and the electrode terminal 200 in FIG.
  • the joint portion 40c in the present modification replaces the surface melt mark 41, the internal melt mark 42, the first weld mark 43, and the second weld mark 44 of the joint portion 40 in the above embodiment. It has a surface melting mark 46a, an internal melting mark 46b, a first welding mark 46c, and a second welding mark 46d. Since the other configurations of this modification are the same as those of the above embodiment, detailed description thereof will be omitted.
  • the surface melting mark 46a, the internal melting mark 46b, the first welding mark 46c and the second welding mark 46d are the surface melting mark 41, the internal melting mark 42, the first welding mark 43 and the second welding mark 44 in the above embodiment. It has a similar configuration, but unlike the above embodiment, it has a curved shape. Specifically, a circular opening 21 is formed in the bus bar 20, and a surface melting mark 46a, an internal melting mark 46b, a first welding mark 46c, and a second welding mark 46c are formed so as to surround the opening 21.
  • the welding mark 46d is formed so as to extend in a curved shape in the Y-axis direction.
  • the opening 21 is a circular through hole in which a circular convex portion formed in the electrode terminal 200 is arranged.
  • the second welding mark 46d is arranged so as to extend along the first welding mark 46c in the extending direction (Y-axis direction) of the first welding mark 46c, and the first welding mark 46d is arranged in the same manner as in the above embodiment. It is formed so as to be overlapped with the welding mark 46c. That is, after the first welding mark 46c is formed on the outside of the periphery of the opening 21, the second welding mark 46d is formed on the inside of the first welding mark 46c.
  • the joint portion 40d in the present modification replaces the surface melt mark 41, the internal melt mark 42, the first weld mark 43, and the second weld mark 44 of the joint portion 40 in the above embodiment. It has a surface melting mark 47a, an internal melting mark 47b, a first welding mark 47c, and a second welding mark 47d. Since the other configurations of this modification are the same as those of the above embodiment, detailed description thereof will be omitted.
  • the surface melting marks 47a, the internal melting marks 47b, the first welding marks 47c, and the second welding marks 47d have the same configurations as the respective components in the joint portion 40c shown in FIG. 10A, but the joint portion 40c and the joint portion 40c Unlike this, after the first welding mark 47c is formed, the second welding mark 47d is formed on the outside of the first welding mark 47c.
  • the same effect as that of the above embodiment can be obtained.
  • the first welding mark 46c is formed in the joint portion 40c of the present modification.
  • the heat of the first welding mark 46c can be retained inside the first welding mark 46c.
  • the heat generated when the first welding mark 46c is formed can be used as the preheating when the second welding mark 46d is formed.
  • a heat sink is arranged around the first welding mark 46c to dissipate heat when the first welding mark 46c is formed, the heat is not dissipated from the inside of the first welding mark 46c.
  • the second welding mark 47d is formed on the outside of the first welding mark 47c. Therefore, the inner first welding mark 47c can be formed to suppress the warp of the bus bar 20, and then the outer second welding mark 47d can be formed. As a result, the joining quality at the joining portion 40d can be improved, so that deterioration of the quality of the power storage device can be suppressed.
  • the opening 21 may not be formed in the bus bar 20. In the above-described embodiment and the first and second modifications, the opening 21 may be formed in the bus bar 20.
  • two joints extending linearly or curvedly in the Y-axis direction are formed on both sides of the overlapping portion of the bus bar 20 and the electrode terminal 200 in the X-axis direction. bottom.
  • the joints may be formed on both sides of the overlapping portion in the Y-axis direction, or may be formed at other positions.
  • the number of joints is not particularly limited, and may be one or three or more.
  • the direction in which the joint extends is not particularly limited, and may extend in the X-axis direction, or may extend in a direction inclined from the X-axis direction or the Y-axis direction.
  • the surface melting mark is arranged at the end portion in the minus direction of the Y axis (welding starts from the end portion in the minus direction of the Y axis).
  • the surface melting marks may be arranged at the end in the Y-axis plus direction (welding starts from the end in the Y-axis plus direction), and the formation position and shape (length, length, of the joint) of the joint may be formed. Depending on the extension direction, etc.), it may be arranged at another position.
  • the second welding mark is arranged so as to extend in the extending direction of the first welding mark (parallel to the first welding mark) at the joint portion of the bus bar 20 and the electrode terminal 200. It was decided to be done. However, the second welding mark intersects the extending direction of the first welding mark, such as a direction inclined with respect to the extending direction of the first welding mark or a direction orthogonal to the extending direction of the first welding mark. It may be extended in the direction. Even in this case, since the heat generated by the formation of the first welding mark can be used as preheating at the start of welding of the second welding mark, the laser output can be suppressed and the generation of spatter can be suppressed.
  • the second welding mark may be formed in the same direction as the direction in which the first welding mark is formed.
  • the second welding mark 44 since the first welding mark 43 is formed in the Y-axis plus direction, the second welding mark 44 may also be formed in the Y-axis plus direction, and the second welding mark 44 may also be formed.
  • a second molten pool mark 44b may be formed at the end of the Y-axis in the positive direction.
  • the joint portion between the bus bar 20 and the electrode terminal 200 has been exemplified as an example of the “joint portion between the bus bar and the conductive member”, but the present invention is not limited thereto.
  • the "joint portion between the bus bar and the conductive member” a joint portion between the bus bars, a joint portion between the bus bar and the voltage detection terminal, and the like can be exemplified. That is, no matter what kind of conductive member is joined to the bus bar, it can be an example of "joint portion between the bus bar and the conductive member".
  • the laser beam may be irradiated from the conductive member side to form surface melting marks and internal melting marks on the conductive member.
  • the conductive member is the electrode terminal 200, depending on the shape, laser light may be irradiated from the electrode terminal 200 side to form a surface melting mark and an internal melting mark on the electrode terminal 200.
  • the scope of the present invention also includes a form constructed by arbitrarily combining the above-described embodiments and the components included in the modified examples.
  • the present invention can be realized not only as such a power storage device, but also as a joining structure or joining method of a bus bar and a conductive member (bus bar 20 and an electrode terminal 200), or as a manufacturing method of a power storage device including the joining method. ..
  • the present invention can be applied to a power storage device or the like equipped with a power storage element such as a lithium ion secondary battery.
  • Power storage device 10 Power storage element 20 Bus bar 20a Surface 21 Opening 30 Exterior 31 External terminals 40, 40a, 40b, 40c, 40d Joints 41, 45a, 46a, 47a Surface melting marks 42, 45b, 46b, 47b Internal melting marks 42a, 43a Boundary position 43, 46c, 47c First welding mark 43b First welding mark 44, 46d, 47d Second welding mark 44a Welding mark end 44b Second welding mark 45c Third welding mark 45d Third molten pond Trace 100 Container 110 Container body 120 Lid 121 Gas discharge valve 122 Lubrication part 200 Electrode terminal 300 Gasket

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

An electrical storage device (1) comprising an electrical storage element (10) and a busbar (20) is provided with an electrode terminal (200) (electroconductive member) joined to the busbar (20). A joining part (40) of the busbar (20) and the electrode terminal (200) has: a surface melting mark (41) at which the surface of one (busbar (20)) of the busbar (20) and the electrode terminal (200) is melted; an internal melting mark (42) at which a location toward the interior from the surface of said one (busbar (20)) is melted, the internal melting mark (42) being positioned adjacent to the surface melting mark (41); and a first welding mark (43) at which the busbar (20) and the electrode terminal (200) are welded, the first welding mark (43) being positioned adjacent to the internal melting mark (42).

Description

蓄電装置及びその製造方法Power storage device and its manufacturing method
 本発明は、蓄電素子とバスバーとを備える蓄電装置及びその製造方法に関する。 The present invention relates to a power storage device including a power storage element and a bus bar, and a method for manufacturing the same.
 従来、蓄電素子とバスバーとを備え、バスバーと導電部材とが溶接により接合された蓄電装置が知られている。特許文献1には、バスバー(第1部材:アルミバスバー)と導電部材(第2部材:ニッケルめっきの銅端子)とが、レーザ溶接により接合された溶接構造が開示されている。 Conventionally, there is known a power storage device that includes a power storage element and a bus bar, and the bus bar and a conductive member are joined by welding. Patent Document 1 discloses a welded structure in which a bus bar (first member: aluminum bus bar) and a conductive member (second member: nickel-plated copper terminal) are joined by laser welding.
特開2019-81183号公報Japanese Unexamined Patent Publication No. 2019-81183
 従来の構成では、溶接品質の低下または短絡の発生等により、蓄電装置の品質に大きく影響を及ぼすおそれがある。 With the conventional configuration, there is a risk that the quality of the power storage device will be significantly affected due to deterioration of welding quality or the occurrence of short circuits.
 本発明は、品質の低下を抑制できる蓄電装置及びその製造方法を提供することを目的とする。 An object of the present invention is to provide a power storage device capable of suppressing deterioration in quality and a method for manufacturing the same.
 本発明の一態様に係る蓄電装置は、蓄電素子とバスバーとを備える蓄電装置であって、前記バスバーと接合される導電部材を備え、前記バスバー及び前記導電部材の接合部は、前記バスバー及び前記導電部材の一方の表面が溶融した表面溶融痕と、前記表面溶融痕に隣接して配置され、前記一方の表面から内部まで溶融した内部溶融痕と、前記内部溶融痕に隣接して配置され、前記バスバー及び前記導電部材が溶接された第一溶接痕と、を有する。 The power storage device according to one aspect of the present invention is a power storage device including a power storage element and a bus bar, and includes a conductive member to be joined to the bus bar, and the joint portion between the bus bar and the conductive member is the bus bar and the bus bar. One surface of the conductive member is arranged adjacent to the molten surface melting mark and the surface melting mark, and the internal melting mark melted from the one surface to the inside and arranged adjacent to the internal melting mark. It has a first welding mark to which the bus bar and the conductive member are welded.
 本発明は、このような蓄電装置として実現できるだけでなく、バスバー及び導電部材の接合構造若しくは接合方法、または、当該接合方法を含む蓄電装置の製造方法としても実現できる。 The present invention can be realized not only as such a power storage device, but also as a joining structure or joining method of a bus bar and a conductive member, or a manufacturing method of a power storage device including the joining method.
 本発明における蓄電装置等によれば、品質の低下を抑制できる。 According to the power storage device or the like in the present invention, deterioration of quality can be suppressed.
図1は、実施の形態に係る蓄電装置の外観を示す斜視図である。FIG. 1 is a perspective view showing the appearance of the power storage device according to the embodiment. 図2は、実施の形態に係る蓄電素子の外観を示す斜視図である。FIG. 2 is a perspective view showing the appearance of the power storage element according to the embodiment. 図3は、実施の形態に係るバスバーと蓄電素子の電極端子との接合部を示す平面図である。FIG. 3 is a plan view showing a joint portion between the bus bar and the electrode terminal of the power storage element according to the embodiment. 図4は、実施の形態に係る接合部の構成を示す平面図である。FIG. 4 is a plan view showing the configuration of the joint portion according to the embodiment. 図5は、実施の形態に係る接合部の表面溶融痕、内部溶融痕及び第一溶接痕の構成を示す平面図及び断面図である。FIG. 5 is a plan view and a cross-sectional view showing the configurations of the surface melting marks, the internal melting marks, and the first welding marks of the joint portion according to the embodiment. 図6は、実施の形態に係る接合部の表面溶融痕、内部溶融痕及び第一溶接痕の断面を示す写真である。FIG. 6 is a photograph showing a cross section of a surface melting mark, an internal melting mark, and a first welding mark of the joint portion according to the embodiment. 図7は、実施の形態に係る接合部の第二溶接痕の構成を示す平面図及び断面図である。FIG. 7 is a plan view and a cross-sectional view showing the configuration of the second weld mark of the joint portion according to the embodiment. 図8は、実施の形態の変形例1に係る接合部の構成を示す平面図である。FIG. 8 is a plan view showing the configuration of the joint portion according to the first modification of the embodiment. 図9は、実施の形態の変形例2に係る接合部の構成を示す平面図である。FIG. 9 is a plan view showing the configuration of the joint portion according to the second modification of the embodiment. 図10Aは、実施の形態の変形例3に係る接合部の構成を示す平面図である。FIG. 10A is a plan view showing the configuration of the joint portion according to the third modification of the embodiment. 図10Bは、実施の形態の変形例3に係る接合部の構成を示す平面図である。FIG. 10B is a plan view showing the configuration of the joint portion according to the third modification of the embodiment.
 上記従来のような溶接構造では、バスバーと導電部材とがレーザ溶接により接合されるため、レーザ溶接時にスパッタが発生するおそれがある。スパッタが発生すると、溶接箇所が強度不足になる等により、溶接品質が低下するおそれがある。スパッタが基板等の電気機器に付着して短絡が発生したり、スパッタが蓄電素子の容器に付着して蓄電素子の容器同士が短絡したり、蓄電素子を収容する外装体のヒートシール部にスパッタが付着してヒートシール部が接合不良となったりする等の不具合が生じるおそれもある。このように、従来の構成では、溶接品質の低下または短絡の発生等により、蓄電装置の品質に大きく影響を及ぼすおそれがある。 In the above-mentioned conventional welding structure, since the bus bar and the conductive member are joined by laser welding, spatter may occur during laser welding. When spatter occurs, the welding quality may deteriorate due to insufficient strength of the welded portion. Sputter adheres to electrical equipment such as a substrate to cause a short circuit, spatter adheres to a container of a power storage element and short-circuits the containers of the power storage element, or spatter occurs on the heat seal portion of the exterior body accommodating the power storage element. May cause problems such as poor bonding of the heat-sealed portion due to adhesion. As described above, in the conventional configuration, the quality of the power storage device may be significantly affected by the deterioration of the welding quality or the occurrence of a short circuit.
 本発明は、本願発明者が上記課題に新たに着目することによってなされたものであり、品質の低下を抑制できる蓄電装置及びその製造方法を提供することを目的とする。 The present invention has been made by the inventor of the present application paying new attention to the above problems, and an object of the present invention is to provide a power storage device capable of suppressing deterioration in quality and a method for manufacturing the same.
 上記目的を達成するために、本発明の一態様に係る蓄電装置は、蓄電素子とバスバーとを備える蓄電装置であって、前記バスバーと接合される導電部材を備え、前記バスバー及び前記導電部材の接合部は、前記バスバー及び前記導電部材の一方の表面が溶融した表面溶融痕と、前記表面溶融痕に隣接して配置され、前記一方の表面から内部まで溶融した内部溶融痕と、前記内部溶融痕に隣接して配置され、前記バスバー及び前記導電部材が溶接された第一溶接痕と、を有する。 In order to achieve the above object, the power storage device according to one aspect of the present invention is a power storage device including a power storage element and a bus bar, and includes a conductive member joined to the bus bar, and the bus bar and the conductive member. The joint portion is arranged adjacent to the surface melting mark where one surface of the bus bar and the conductive member is melted, the internal melting mark which is arranged adjacent to the surface melting mark and melted from the one surface to the inside, and the internal melting. It has a first weld mark, which is arranged adjacent to the mark and to which the bus bar and the conductive member are welded.
 これによれば、蓄電装置において、バスバー及び導電部材の接合部は、バスバー及び導電部材の一方の表面が溶融した表面溶融痕と、当該一方の表面から内部まで溶融した内部溶融痕と、バスバー及び導電部材が溶接された第一溶接痕と、を有している。つまり、レーザ溶接時にレーザ出力を小さくしてバスバー及び導電部材の一方の表面を溶融させて表面溶融痕を形成し、レーザ出力を少し大きくして、当該一方の表面から内部まで溶融した内部溶融痕を形成する。レーザ出力をさらに大きくして、バスバー及び導電部材を溶接して第一溶接痕を形成する。このように、溶接対象部分の手前からレーザ出力を徐々に大きくして表面溶融痕及び内部溶融痕を形成していくことにより溶接対象部分が予熱されるため、溶接対象部分に第一溶接痕を形成する際のレーザ出力を抑制できる。レーザ出力を抑制できれば、スパッタの発生を抑制できる。これにより、スパッタが蓄電装置の品質に影響を及ぼすのを抑制できるため、蓄電装置の品質の低下を抑制できる。 According to this, in the power storage device, the joint portion between the bus bar and the conductive member includes a surface melting mark in which one surface of the bus bar and the conductive member is melted, an internal melting mark in which the one surface is melted to the inside, and the bus bar and the conductive member. It has a first welding mark to which the conductive member is welded. That is, during laser welding, the laser output is reduced to melt one surface of the bus bar and the conductive member to form a surface melting mark, and the laser output is slightly increased to melt the internal melting mark from the one surface to the inside. To form. The laser output is further increased, and the bus bar and the conductive member are welded to form the first weld mark. In this way, the welding target portion is preheated by gradually increasing the laser output from the front of the welding target portion to form surface melting marks and internal melting marks, so that the first welding mark is formed on the welding target portion. The laser output at the time of forming can be suppressed. If the laser output can be suppressed, the occurrence of spatter can be suppressed. As a result, it is possible to suppress the influence of sputtering on the quality of the power storage device, and thus it is possible to suppress the deterioration of the quality of the power storage device.
 前記接合部は、さらに、前記第一溶接痕に沿って、前記第一溶接痕の延設方向に延設されて配置される第二溶接痕を有し、前記第二溶接痕は、前記表面溶融痕から遠い端部であって、溶融池痕が形成されていない溶接痕端部を有してもよい。 The joint portion further has a second weld mark extending along the first weld mark in the extending direction of the first weld mark, and the second weld mark is the surface of the first weld mark. It may have a welding mark end portion that is far from the melting mark and has no molten pool mark formed.
 これによれば、バスバー及び導電部材の接合部は、第一溶接痕に沿う第二溶接痕を有し、第二溶接痕は、表面溶融痕から遠い位置に、溶融池痕が形成されていない溶接痕端部を有している。このように、接合部での接合強度を高めるために第二溶接痕も形成する場合、第一溶接痕に沿って第二溶接痕を形成することで、第一溶接痕における熱を第二溶接痕での予熱に使用できる。特に、第二溶接痕の表面溶融痕から遠い溶接痕端部には溶融池痕が形成されていないため、第二溶接痕は、溶接痕端部から溶接が開始されたものと判断できる。このため、第一溶接痕の終端の溶接痕端部から溶接を開始することにより、第一溶接痕を形成した後の当該終端における熱を予熱として使用し、第二溶接痕の溶接を開始できる。これにより、第二溶接痕を形成する際に、レーザ出力を抑制できるため、スパッタの発生を抑制できる。したがって、第二溶接痕を形成する際においても、スパッタが蓄電装置の品質に影響を及ぼすのを抑制できるため、蓄電装置の品質の低下を抑制できる。 According to this, the joint portion of the bus bar and the conductive member has a second welding mark along the first welding mark, and the second welding mark does not have a molten pool mark formed at a position far from the surface melting mark. It has a weld mark end. In this way, when a second weld mark is also formed in order to increase the joint strength at the joint portion, the heat in the first weld mark is transferred to the second weld by forming the second weld mark along the first weld mark. Can be used for preheating at scars. In particular, since no molten pool mark is formed at the welding mark end portion far from the surface melting mark of the second welding mark, it can be determined that the welding is started from the welding mark end portion of the second welding mark. Therefore, by starting welding from the end of the welding mark at the end of the first welding mark, the heat at the end after forming the first welding mark can be used as preheating to start welding of the second welding mark. .. As a result, the laser output can be suppressed when the second welding mark is formed, so that the generation of spatter can be suppressed. Therefore, even when forming the second welding mark, it is possible to suppress the influence of sputtering on the quality of the power storage device, so that the deterioration of the quality of the power storage device can be suppressed.
 前記第二溶接痕は、前記延設方向における前記第一溶接痕の一端から他端までに亘って、前記第一溶接痕に沿って延設されて配置されてもよい。 The second welding mark may be extended along the first welding mark from one end to the other end of the first welding mark in the extending direction.
 これによれば、第二溶接痕が、第一溶接痕の一端から他端までに亘って第一溶接痕に沿って延設されていることにより、バスバー及び導電部材をより強固に接合できている。これにより、接合部での接合強度を向上させつつスパッタの発生を抑制できるため、蓄電装置の品質の低下を抑制できる。 According to this, since the second welding mark extends along the first welding mark from one end to the other end of the first welding mark, the bus bar and the conductive member can be joined more firmly. There is. As a result, it is possible to suppress the generation of spatter while improving the joint strength at the joint portion, and thus it is possible to suppress the deterioration of the quality of the power storage device.
 前記第二溶接痕は、前記溶接痕端部から、前記表面溶融痕及び前記内部溶融痕の境界位置よりも前記表面溶融痕から離れる位置までに亘って、前記第一溶接痕に沿って延設されて配置されてもよい。 The second welding mark extends along the first welding mark from the end of the welding mark to a position away from the surface melting mark from the boundary position between the surface melting mark and the internal melting mark. Welded and placed.
 バスバー及び導電部材の接合は第一溶接痕によって行われ、表面溶融痕及び内部溶融痕は、バスバー及び導電部材の接合に寄与しない部分(溶接を必要としなかった部分)である。このため、第二溶接痕も、表面溶融痕及び内部溶融痕に対応する位置には形成する必要はなく、第二溶接痕の形成位置を、溶接痕端部から、表面溶融痕及び内部溶融痕の境界位置よりも表面溶融痕から離れる位置までとする。これにより、不要な位置に第二溶接痕を形成して溶接温度が上昇したりしてスパッタが発生してしまうのを抑制できる。したがって、スパッタが蓄電装置の品質に影響を及ぼすのを抑制できるため、蓄電装置の品質の低下を抑制できる。 The bus bar and the conductive member are joined by the first welding mark, and the surface melting mark and the internal melting mark are the parts that do not contribute to the joining of the bus bar and the conductive member (the parts that do not require welding). Therefore, it is not necessary to form the second welding mark at a position corresponding to the surface melting mark and the internal melting mark, and the formation position of the second welding mark is set from the welding mark end to the surface melting mark and the internal melting mark. The position is far from the surface melting mark rather than the boundary position of. As a result, it is possible to prevent spatter from being generated due to the formation of a second welding mark at an unnecessary position and an increase in the welding temperature. Therefore, since it is possible to suppress the influence of sputtering on the quality of the power storage device, it is possible to suppress the deterioration of the quality of the power storage device.
 前記表面溶融痕及び前記内部溶融痕の境界位置は、前記表面溶融痕から前記内部溶融痕に至る際の溶融痕の幅及び深さの少なくとも一方が変化する位置であってもよい。 The boundary position between the surface melting mark and the internal melting mark may be a position where at least one of the width and the depth of the melting mark when reaching the internal melting mark from the surface melting mark changes.
 表面溶融痕において溶融痕の幅及び深さの少なくとも一方を変化させることで、表面溶融痕から内部溶融痕に移行できる。 By changing at least one of the width and depth of the melting mark in the surface melting mark, it is possible to shift from the surface melting mark to the internal melting mark.
 前記第一溶接痕と前記第二溶接痕とは、少なくとも一部が接続されていてもよい。 At least a part of the first welding mark and the second welding mark may be connected.
 これによれば、第一溶接痕と第二溶接痕とを、少なくとも一部が接続(重複)するように形成することで、第一溶接痕における熱を予熱として効果的に活用して、第二溶接痕を形成できる。これにより、第二溶接痕を形成する際に、レーザ出力を抑制できるため、スパッタの発生を抑制できる。したがって、第二溶接痕を形成する際に、スパッタが蓄電装置の品質に影響を及ぼすのを抑制できるため、蓄電装置の品質の低下を抑制できる。 According to this, by forming at least a part of the first welding mark and the second welding mark so as to be connected (overlapping), the heat in the first welding mark is effectively utilized as preheating, and the first (Ii) Welding marks can be formed. As a result, the laser output can be suppressed when the second welding mark is formed, so that the generation of spatter can be suppressed. Therefore, when forming the second welding mark, it is possible to suppress the influence of sputtering on the quality of the power storage device, so that the deterioration of the quality of the power storage device can be suppressed.
 本発明の一態様に係る蓄電装置の製造方法は、蓄電素子とバスバーとを備える蓄電装置の製造方法であって、前記バスバーと導電部材とを接合する接合工程を含み、前記接合工程では、前記バスバー及び前記導電部材の一方の表面が溶融した表面溶融痕を形成し、前記表面溶融痕に隣接して配置され、前記一方の表面から内部まで溶融した内部溶融痕を形成し、前記内部溶融痕に隣接して配置され、前記バスバー及び前記導電部材が溶接された第一溶接痕を形成する。これによれば、上述の通り、スパッタが蓄電装置の品質に影響を及ぼすのを抑制できるため、蓄電装置の品質の低下を抑制できる。 The method for manufacturing a power storage device according to one aspect of the present invention is a method for manufacturing a power storage device including a power storage element and a bus bar, and includes a joining step of joining the bus bar and a conductive member. One surface of the bus bar and the conductive member forms a molten surface melting mark, is arranged adjacent to the surface melting mark, forms an internal melting mark melted from the one surface to the inside, and forms the internal melting mark. The bus bar and the conductive member are welded to each other to form a first welding mark. According to this, as described above, since it is possible to suppress the influence of sputtering on the quality of the power storage device, it is possible to suppress the deterioration of the quality of the power storage device.
 以下、図面を参照しながら、本発明の実施の形態(その変形例も含む)に係る蓄電装置及びその製造方法について説明する。以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、製造工程、製造工程の順序等は、一例であり、本発明を限定する主旨ではない。各図において、寸法等は厳密に図示したものではない。 Hereinafter, the power storage device and the manufacturing method thereof according to the embodiment of the present invention (including a modification thereof) will be described with reference to the drawings. Each of the embodiments described below provides a comprehensive or specific example. The numerical values, shapes, materials, components, arrangement positions and connection forms of the components, manufacturing processes, order of manufacturing processes, etc. shown in the following embodiments are examples, and are not intended to limit the present invention. In each figure, the dimensions and the like are not strictly illustrated.
 以下の説明及び図面中において、1つの蓄電素子における一対(正極側及び負極側)の電極端子の並び方向、または、蓄電素子の容器の短側面の対向方向を、X軸方向と定義する。複数の蓄電素子の配列方向、蓄電素子の容器の長側面の対向方向、または、容器の厚さ方向を、Y軸方向と定義する。蓄電素子の容器の容器本体と蓋体との並び方向、蓄電素子の容器と電極端子との並び方向、蓄電素子とバスバーとの並び方向、または、上下方向を、Z軸方向と定義する。これらX軸方向、Y軸方向及びZ軸方向は、互いに交差(本実施の形態では直交)する方向である。使用態様によってはZ軸方向が上下方向にならない場合も考えられるが、以下では説明の便宜のため、Z軸方向を上下方向として説明する。 In the following description and drawings, the direction in which the pair of (positive electrode side and negative electrode side) electrode terminals in one power storage element is arranged, or the direction in which the short side surfaces of the container of the power storage element face each other is defined as the X-axis direction. The arrangement direction of the plurality of power storage elements, the direction opposite to the long side surface of the container of the power storage element, or the thickness direction of the container is defined as the Y-axis direction. The alignment direction between the container body and the lid of the container of the power storage element, the arrangement direction of the container and the electrode terminal of the power storage element, the arrangement direction of the power storage element and the bus bar, or the vertical direction is defined as the Z-axis direction. These X-axis directions, Y-axis directions, and Z-axis directions are directions that intersect each other (orthogonally in the present embodiment). Depending on the usage mode, the Z-axis direction may not be the vertical direction, but for convenience of explanation, the Z-axis direction will be described below as the vertical direction.
 以下の説明において、X軸プラス方向とは、X軸の矢印方向を示し、X軸マイナス方向とは、X軸プラス方向とは反対方向を示す。Y軸方向及びZ軸方向についても同様である。平行及び直交などの、相対的な方向または姿勢を示す表現は、厳密には、その方向または姿勢ではない場合も含む。2つの方向が直交している、とは、当該2つの方向が完全に直交していることを意味するだけでなく、実質的に直交していること、すなわち、例えば数%程度の差異を含むことも意味する。 In the following description, the X-axis plus direction indicates the arrow direction of the X-axis, and the X-axis minus direction indicates the direction opposite to the X-axis plus direction. The same applies to the Y-axis direction and the Z-axis direction. Representations that indicate a relative direction or orientation, such as parallel and orthogonal, also include cases that are not strictly that direction or orientation. The fact that the two directions are orthogonal not only means that the two directions are completely orthogonal, but also that they are substantially orthogonal, that is, a difference of, for example, about several percent is included. It also means that.
 (実施の形態)
 [1 蓄電装置1の全般的な説明]
 まず、本実施の形態における蓄電装置1の全般的な説明を行う。図1は、本実施の形態に係る蓄電装置1の外観を示す斜視図である。図1は、外装体30を透視して外装体30内方を示した図となっており、外装体30(及び2つの外部端子31)は破線で示している。図2は、本実施の形態に係る蓄電素子10の外観を示す斜視図である。図3は、本実施の形態に係るバスバー20と蓄電素子10の電極端子200との接合部40を示す平面図である。図1に示された複数の蓄電素子10は、全て同様の構成を有するため、図2では、1つの蓄電素子10のみを図示している。同様に、図3では、1つのバスバー20と1つの蓄電素子10の電極端子200との接合部40を図示している。
(Embodiment)
[1 General description of power storage device 1]
First, a general description of the power storage device 1 according to the present embodiment will be given. FIG. 1 is a perspective view showing the appearance of the power storage device 1 according to the present embodiment. FIG. 1 is a view showing the inside of the exterior body 30 through the exterior body 30, and the exterior body 30 (and the two external terminals 31) is shown by a broken line. FIG. 2 is a perspective view showing the appearance of the power storage element 10 according to the present embodiment. FIG. 3 is a plan view showing a joint portion 40 between the bus bar 20 and the electrode terminal 200 of the power storage element 10 according to the present embodiment. Since the plurality of power storage elements 10 shown in FIG. 1 all have the same configuration, only one power storage element 10 is shown in FIG. Similarly, FIG. 3 illustrates a joint 40 between one bus bar 20 and one electrode terminal 200 of the power storage element 10.
 蓄電装置1は、外部からの電気を充電し、また外部へ電気を放電できる装置であり、本実施の形態では、略直方体形状を有している。蓄電装置1は、電力貯蔵用途または電源用途等に使用される電池モジュール(組電池)である。具体的には、蓄電装置1は、自動車、自動二輪車、ウォータークラフト、船舶、スノーモービル、農業機械、建設機械、または、電気鉄道用の鉄道車両等の移動体の駆動用またはエンジン始動用等のバッテリ等として用いられる。上記の自動車としては、電気自動車(EV)、ハイブリッド電気自動車(HEV)、プラグインハイブリッド電気自動車(PHEV)及びガソリン自動車が例示される。上記の電気鉄道用の鉄道車両としては、電車、モノレール及びリニアモーターカーが例示される。蓄電装置1は、家庭用または発電機用等に使用される定置用のバッテリ等としても用いることができる。 The power storage device 1 is a device capable of charging electricity from the outside and discharging electricity to the outside, and has a substantially rectangular parallelepiped shape in the present embodiment. The power storage device 1 is a battery module (assembled battery) used for power storage, power supply, and the like. Specifically, the power storage device 1 is used for driving a moving body such as an automobile, a motorcycle, a watercraft, a ship, a snowmobile, an agricultural machine, a construction machine, or a railroad vehicle for an electric railway, or for starting an engine. Used as a battery or the like. Examples of the above-mentioned automobiles include electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and gasoline vehicles. Examples of the railway vehicle for the electric railway include a train, a monorail, and a linear motor car. The power storage device 1 can also be used as a stationary battery or the like used for home use, a generator, or the like.
 図1に示すように、蓄電装置1は、複数の蓄電素子10と、複数のバスバー20と、これら蓄電素子10及びバスバー20を収容する外装体30と、を備えている。蓄電装置1は、蓄電素子10間に配置されるスペーサ、蓄電素子10を拘束するエンドプレート及びサイドプレート、バスバー20の位置決めを行うバスバーフレーム、蓄電素子10の充電状態及び放電状態を監視するための回路基板、ヒューズ、リレー及びコネクタ等の電気機器、並びに、蓄電素子10から排出されるガスを外装体30の外方へ排気するための排気部等も備えていてもよいが、これらの図示は省略し、詳細な説明も省略する。 As shown in FIG. 1, the power storage device 1 includes a plurality of power storage elements 10, a plurality of bus bars 20, and an exterior body 30 that houses the power storage elements 10 and the bus bar 20. The power storage device 1 is for monitoring a spacer arranged between the power storage elements 10, an end plate and a side plate for restraining the power storage element 10, a bus bar frame for positioning the bus bar 20, and a charging state and a discharging state of the power storage element 10. An electric device such as a circuit board, a fuse, a relay and a connector, and an exhaust portion for exhausting the gas discharged from the power storage element 10 to the outside of the exterior body 30 may be provided, but these are not shown. It is omitted, and a detailed description is also omitted.
 外装体30は、蓄電装置1の外装体を構成する略直方体形状(箱形)の容器(モジュールケース)である。つまり、外装体30は、蓄電素子10及びバスバー20の外方に配置され、これら蓄電素子10及びバスバー20を所定の位置で固定し、衝撃等から保護する。外装体30は、ポリカーボネート(PC)、ポリプロピレン(PP)、ポリエチレン(PE)、ポリスチレン(PS)、ポリフェニレンサルファイド樹脂(PPS)、ポリフェニレンエーテル(PPE(変性PPEを含む))、ポリエチレンテレフタラート(PET)、ポリブチレンテレフタレート(PBT)、ポリエーテルエーテルケトン(PEEK)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル(PFA)、ポリテトラフルオロエチレン(PTFE)、ポリエーテルサルフォン(PES)、ABS樹脂、若しくは、それらの複合材料等の絶縁部材、または、絶縁塗装をした金属等により形成されている。外装体30は、これにより、蓄電素子10等が外部の金属部材等に接触することを回避する。蓄電素子10等の電気的絶縁性が保たれる構成であれば、外装体30は、金属等の導電部材で形成されていてもよい。 The exterior body 30 is a container (module case) having a substantially rectangular parallelepiped shape (box shape) that constitutes the exterior body of the power storage device 1. That is, the exterior body 30 is arranged outside the power storage element 10 and the bus bar 20, and these power storage elements 10 and the bus bar 20 are fixed at predetermined positions to protect them from impacts and the like. The exterior body 30 is made of polycarbonate (PC), polypropylene (PP), polyethylene (PE), polystyrene (PS), polyphenylene sulfide resin (PPS), polyphenylene ether (PPE (including modified PPE)), polyethylene terephthalate (PET). , Polybutylene terephthalate (PBT), polyether ether ketone (PEEK), tetrafluoroethylene / perfluoroalkyl vinyl ether (PFA), polytetrafluoroethylene (PTFE), polyether sulfone (PES), ABS resin, or theirs. It is formed of an insulating member such as a composite material of the above, or an insulating coated metal or the like. As a result, the exterior body 30 prevents the power storage element 10 and the like from coming into contact with the external metal member and the like. The exterior body 30 may be formed of a conductive member such as metal as long as the electrical insulation of the power storage element 10 or the like is maintained.
 外装体30には、2つの外部端子31が設けられている。この2つの外部端子31は、蓄電装置1の外部からの電気を充電し、また蓄電装置1の外部へ電気を放電するための正極側及び負極側の外部接続端子であり、アルミニウム、アルミニウム合金、銅、銅合金、鉄、鋼、ステンレス等の金属製の導電部材で形成されている。 The exterior body 30 is provided with two external terminals 31. These two external terminals 31 are external connection terminals on the positive electrode side and the negative electrode side for charging electricity from the outside of the power storage device 1 and discharging electricity to the outside of the power storage device 1, and are aluminum, aluminum alloy, and the like. It is made of a conductive member made of metal such as copper, copper alloy, iron, steel, and stainless steel.
 蓄電素子10は、電気を充電し、また、電気を放電することのできる二次電池(単電池)であり、より具体的には、リチウムイオン二次電池等の非水電解質二次電池である。蓄電素子10は、扁平な直方体形状(角形)を有しており、本実施の形態では、6個の蓄電素子10がY軸方向に並んで配列されている。蓄電素子10の大きさ、形状、及び、配列される蓄電素子10の個数は限定されず、例えば1つの蓄電素子10しか配置されていなくてもよい。蓄電素子10は、非水電解質二次電池には限定されず、非水電解質二次電池以外の二次電池であってもよいし、キャパシタであってもよい。蓄電素子10は、二次電池ではなく、使用者が充電をしなくても蓄えられている電気を使用できる一次電池であってもよい。蓄電素子10は、固体電解質を用いた電池であってもよい。蓄電素子10は、パウチタイプの蓄電素子であってもよい。 The power storage element 10 is a secondary battery (cell battery) capable of charging electricity and discharging electricity, and more specifically, a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery. .. The power storage element 10 has a flat rectangular parallelepiped shape (square shape), and in the present embodiment, six power storage elements 10 are arranged side by side in the Y-axis direction. The size and shape of the power storage element 10 and the number of power storage elements 10 arranged are not limited, and for example, only one power storage element 10 may be arranged. The power storage element 10 is not limited to the non-aqueous electrolyte secondary battery, and may be a secondary battery other than the non-aqueous electrolyte secondary battery, or may be a capacitor. The power storage element 10 may be a primary battery that can use the stored electricity without being charged by the user, instead of the secondary battery. The power storage element 10 may be a battery using a solid electrolyte. The power storage element 10 may be a pouch-type power storage element.
 具体的には、図2に示すように、蓄電素子10は、容器100と、一対(正極側及び負極側)の電極端子200と、一対(正極側及び負極側)のガスケット300と、を備えている。容器100の内方には、電極体、一対(正極側及び負極側)の集電体、及び、電解液(非水電解質)等が収容されているが、これらの図示は省略する。電解液としては、蓄電素子10の性能を損なうものでなければその種類に特に制限はなく、様々なものを選択できる。集電体の側方等にスペーサが配置されていてもよいし、容器100の外面を覆う絶縁シートが配置されていてもよい。 Specifically, as shown in FIG. 2, the power storage element 10 includes a container 100, a pair of electrode terminals 200 (positive electrode side and negative electrode side), and a pair of gaskets 300 (positive electrode side and negative electrode side). ing. An electrode body, a pair of current collectors (positive electrode side and negative electrode side), an electrolytic solution (non-aqueous electrolyte), and the like are housed inside the container 100, but these are not shown. The type of electrolytic solution is not particularly limited as long as it does not impair the performance of the power storage element 10, and various types can be selected. Spacers may be arranged on the side of the current collector, or an insulating sheet covering the outer surface of the container 100 may be arranged.
 容器100は、直方体形状(角形または箱形)のケースであり、開口が形成された容器本体110と、容器本体110の開口を閉塞する蓋体120と、を有している。容器本体110は、容器100の本体部を構成する矩形筒状で底を備える部材であり、Y軸方向両側に一対の長側面部を有し、X軸方向両側に一対の短側面部を有し、Z軸マイナス方向側に底面部を有している。蓋体120は、容器100の蓋部を構成する平板状かつ矩形状の部材であり、容器本体110のZ軸プラス方向に配置されている。蓋体120には、容器100内方の圧力が上昇した場合にガスを排出して当該圧力を開放するガス排出弁121、及び、容器100内方に電解液を注液するための注液部122が配置されている。容器100の材質は特に限定されないが、例えばステンレス鋼、アルミニウム、アルミニウム合金、鉄、メッキ鋼板など溶接可能な金属であるのが好ましい。 The container 100 is a rectangular parallelepiped (square or box-shaped) case, and has a container body 110 having an opening and a lid 120 that closes the opening of the container body 110. The container body 110 is a rectangular tubular member having a bottom that constitutes the main body of the container 100, has a pair of long side surfaces on both sides in the Y-axis direction, and has a pair of short side surfaces on both sides in the X-axis direction. However, it has a bottom surface on the negative side of the Z axis. The lid body 120 is a flat plate-shaped and rectangular member that constitutes the lid portion of the container 100, and is arranged in the Z-axis plus direction of the container body 110. The lid 120 has a gas discharge valve 121 that discharges gas to release the pressure when the pressure inside the container 100 rises, and a liquid injection unit for injecting an electrolytic solution into the inside of the container 100. 122 is arranged. The material of the container 100 is not particularly limited, but is preferably a weldable metal such as stainless steel, aluminum, aluminum alloy, iron, or plated steel plate.
 電極端子200は、容器100の蓋体120に配置される蓄電素子10の端子(正極端子及び負極端子)であり、集電体を介して、電極体の正極板及び負極板に電気的に接続されている。つまり、電極端子200は、電極体に蓄えられている電気を蓄電素子10の外部空間に導出し、電極体に電気を蓄えるために蓄電素子10の内部空間に電気を導入するための金属製の部材である。電極端子200は、蓋体120から上方(Z軸プラス方向)に向けて突出して配置されている。電極端子200は、アルミニウム、アルミニウム合金、銅または銅合金等の金属製(導電性)の部材で形成されている。 The electrode terminal 200 is a terminal (positive electrode terminal and negative electrode terminal) of the power storage element 10 arranged on the lid 120 of the container 100, and is electrically connected to the positive electrode plate and the negative electrode plate of the electrode body via the current collector. Has been done. That is, the electrode terminal 200 is made of metal for leading the electricity stored in the electrode body to the external space of the power storage element 10 and introducing electricity into the internal space of the power storage element 10 in order to store the electricity in the electrode body. It is a member. The electrode terminal 200 is arranged so as to project upward (Z-axis plus direction) from the lid body 120. The electrode terminal 200 is made of a metal (conductive) member such as aluminum, an aluminum alloy, copper, or a copper alloy.
 ガスケット300は、容器100の蓋体120と電極端子200との間に配置され、蓋体120と電極端子200との間を電気的に絶縁し、かつ、封止する平板状の絶縁性の封止部材である。蓋体120と集電体との間にも、蓋体120と集電体との間を電気的に絶縁し、かつ、封止するガスケットが配置されるが、詳細な説明は省略する。これらのガスケットは、PP、PE等の、上述した外装体30に使用可能ないずれかの絶縁部材により形成できる。 The gasket 300 is arranged between the lid 120 of the container 100 and the electrode terminal 200, and is a flat plate-shaped insulating seal that electrically insulates and seals between the lid 120 and the electrode terminal 200. It is a stop member. A gasket that electrically insulates and seals between the lid 120 and the current collector is also arranged between the lid 120 and the current collector, but detailed description thereof will be omitted. These gaskets can be formed of any of the insulating members such as PP and PE that can be used for the exterior body 30 described above.
 電極体は、正極板と負極板とセパレータとが積層されて形成された蓄電要素(発電要素)である。正極板は、アルミニウムまたはアルミニウム合金等の金属からなる集電箔である正極基材層上に正極活物質層が形成されたものである。負極板は、銅または銅合金等の金属からなる集電箔である負極基材層上に負極活物質層が形成されたものである。正極活物質層及び負極活物質層に用いられる活物質としては、リチウムイオンを吸蔵放出可能なものであれば、適宜公知の材料を使用できる。電極体は、極板(正極板及び負極板)が巻回されて形成された巻回型の電極体、複数の平板状の極板が積層されて形成された積層型(スタック型)の電極体、または、極板を蛇腹状に折り畳んだ蛇腹型の電極体等、どのような形態の電極体でもよい。 The electrode body is a power storage element (power generation element) formed by laminating a positive electrode plate, a negative electrode plate, and a separator. The positive electrode plate is a positive electrode active material layer formed on a positive electrode base material layer which is a current collecting foil made of a metal such as aluminum or an aluminum alloy. The negative electrode plate is a negative electrode active material layer formed on a negative electrode base material layer which is a current collecting foil made of a metal such as copper or a copper alloy. As the active material used for the positive electrode active material layer and the negative electrode active material layer, known materials can be appropriately used as long as they can occlude and release lithium ions. The electrode body is a wound electrode body formed by winding electrode plates (positive electrode plate and negative electrode plate), and a laminated type (stack type) electrode formed by laminating a plurality of flat plate-shaped electrode plates. Any form of electrode body such as a body or a bellows-shaped electrode body obtained by folding a electrode plate into a bellows shape may be used.
 集電体は、電極端子200と電極体とに電気的に接続される導電性の部材(正極集電体及び負極集電体)である。正極集電体は、正極板の正極基材層と同様、アルミニウムまたはアルミニウム合金等で形成され、負極集電体は、負極板の負極基材層と同様、銅または銅合金等で形成されている。 The current collector is a conductive member (positive electrode current collector and negative electrode current collector) that is electrically connected to the electrode terminal 200 and the electrode body. The positive electrode current collector is formed of aluminum or an aluminum alloy or the like like the positive electrode base material layer of the positive electrode plate, and the negative electrode current collector is formed of copper or a copper alloy or the like like the negative electrode base material layer of the negative electrode plate. There is.
 バスバー20は、蓄電素子10に接続される導電性の平板状かつ矩形状の部材である。具体的には、バスバー20は、複数の蓄電素子10の上方に配置され、複数の蓄電素子10の電極端子200に接続(接合)されて、複数の蓄電素子10の電極端子200同士を電気的に接続する。本実施の形態では、バスバー20は、隣り合う蓄電素子10の正極端子と負極端子とを順に接続することで、複数の蓄電素子10を直列に接続している。具体的には、バスバー20は、両端が、隣り合う蓄電素子10の正極端子と負極端子とに溶接により接合されることで、当該隣り合う蓄電素子10の正極端子と負極端子とを電気的に接続する。 The bus bar 20 is a conductive flat and rectangular member connected to the power storage element 10. Specifically, the bus bar 20 is arranged above the plurality of power storage elements 10 and is connected (bonded) to the electrode terminals 200 of the plurality of power storage elements 10 to electrically connect the electrode terminals 200 of the plurality of power storage elements 10 to each other. Connect to. In the present embodiment, the bus bar 20 connects a plurality of power storage elements 10 in series by connecting the positive electrode terminals and the negative electrode terminals of adjacent power storage elements 10 in order. Specifically, both ends of the bus bar 20 are joined to the positive electrode terminal and the negative electrode terminal of the adjacent power storage element 10 by welding, so that the positive electrode terminal and the negative electrode terminal of the adjacent power storage element 10 are electrically connected to each other. Connecting.
 図1では、バスバー20の外部端子31との接続部分は省略して図示しているが、端部に配置されるバスバー20には、正極側及び負極側の外部端子31が接続されている。当該端部に配置されるバスバー20は、外部端子31に溶接またはボルト締結等により接合されることで、端部に配置される蓄電素子10と外部端子31とを電気的に接続する。バスバー20は、厚みが1~3mm程度と厚く、また、アルミニウム、アルミニウム合金、銅、銅合金、ニッケル等の金属製の導電部材若しくはそれらの組み合わせ、または、金属以外の導電性の部材で形成されている。バスバー20は、厚みが1mm未満の薄いものでもよい。 In FIG. 1, the connection portion of the bus bar 20 with the external terminal 31 is omitted, but the external terminals 31 on the positive electrode side and the negative electrode side are connected to the bus bar 20 arranged at the end portion. The bus bar 20 arranged at the end portion is joined to the external terminal 31 by welding, bolting, or the like to electrically connect the power storage element 10 arranged at the end portion and the external terminal 31. The bus bar 20 has a thickness of about 1 to 3 mm, and is formed of a conductive member made of metal such as aluminum, aluminum alloy, copper, copper alloy, nickel, or a combination thereof, or a conductive member other than metal. ing. The bus bar 20 may be as thin as less than 1 mm.
 バスバー20の形状(外形状及び厚み等)並びに材質は、特に限定されない。バスバー20の接続形態も特に限定されず、複数の蓄電素子10がどのような組み合わせで直列に接続され、また、並列に接続されるように配置されていてもよい。 The shape (outer shape, thickness, etc.) and material of the bus bar 20 are not particularly limited. The connection form of the bus bar 20 is not particularly limited, and a plurality of power storage elements 10 may be connected in series in any combination, or may be arranged so as to be connected in parallel.
 図3に示すように、バスバー20は、蓄電素子10の電極端子200と溶接によって接合されて、接合部40が形成されている。本実施の形態では、バスバー20及び電極端子200の重なり部分におけるX軸方向両側に、Y軸方向に延びる2つの接合部40が形成されている。以下に、この接合部40の構成について、詳細に説明する。図3に示した2つの接合部40は、同様の構成を有するため、以下では、1つの接合部40について、詳細に説明する。 As shown in FIG. 3, the bus bar 20 is joined to the electrode terminal 200 of the power storage element 10 by welding to form a joint portion 40. In the present embodiment, two joints 40 extending in the Y-axis direction are formed on both sides of the overlapping portion of the bus bar 20 and the electrode terminal 200 in the X-axis direction. The configuration of the joint portion 40 will be described in detail below. Since the two joints 40 shown in FIG. 3 have the same configuration, one joint 40 will be described in detail below.
 [2 接合部40の説明]
 図4は、本実施の形態に係る接合部40の構成を示す平面図である。図4は、図3に示した接合部40を拡大し、かつ、第一溶接痕43の長さを短く省略して図示している。図5は、本実施の形態に係る接合部40の表面溶融痕41、内部溶融痕42及び第一溶接痕43の構成を示す平面図及び断面図である。具体的には、図5の(a)は、接合部40の形成過程において、表面溶融痕41、内部溶融痕42及び第一溶接痕43を形成した状態をZ軸プラス方向から見た平面図である。図5の(b)は、図5の(a)の状態をVb-Vb線を通りYZ平面に平行な面で切断した場合の構成を示す断面図である。図6は、本実施の形態に係る接合部40の表面溶融痕41、内部溶融痕42及び第一溶接痕43の断面を示す写真である。具体的には、図6は、図5の(b)に対応する写真である。図7は、本実施の形態に係る接合部40の第二溶接痕44の構成を示す平面図及び断面図である。具体的には、図7の(a)は、接合部40の形成過程において、図5に引き続き第二溶接痕44を形成した状態をZ軸プラス方向から見た平面図である。図7の(b)は、図7の(a)の状態をVIb-VIb線を通りYZ平面に平行な面で切断した場合の構成を示す断面図である。つまり、図5~図7は、蓄電装置1の製造方法におけるバスバー20及び電極端子200の接合方法を示している。
[Explanation of 2 joint 40]
FIG. 4 is a plan view showing the configuration of the joint portion 40 according to the present embodiment. FIG. 4 shows an enlarged view of the joint portion 40 shown in FIG. 3 and a short omission of the length of the first weld mark 43. FIG. 5 is a plan view and a cross-sectional view showing the configurations of the surface melting mark 41, the internal melting mark 42, and the first welding mark 43 of the joint portion 40 according to the present embodiment. Specifically, FIG. 5A is a plan view of a state in which a surface melting mark 41, an internal melting mark 42, and a first welding mark 43 are formed in the process of forming the joint portion 40 as viewed from the Z-axis plus direction. Is. FIG. 5B is a cross-sectional view showing a configuration when the state of FIG. 5A is cut along a plane parallel to the YZ plane through the Vb-Vb line. FIG. 6 is a photograph showing a cross section of the surface melting mark 41, the internal melting mark 42, and the first welding mark 43 of the joint portion 40 according to the present embodiment. Specifically, FIG. 6 is a photograph corresponding to FIG. 5 (b). FIG. 7 is a plan view and a cross-sectional view showing the configuration of the second welding mark 44 of the joint portion 40 according to the present embodiment. Specifically, FIG. 7A is a plan view of the state in which the second welding mark 44 is formed in the process of forming the joint portion 40, as viewed from the Z-axis plus direction. FIG. 7B is a cross-sectional view showing a configuration when the state of FIG. 7A is cut along a plane parallel to the YZ plane through the VIb-VIb line. That is, FIGS. 5 to 7 show a method of joining the bus bar 20 and the electrode terminal 200 in the method of manufacturing the power storage device 1.
 図5の(a)及び図7の(a)におけるY軸方向に対するX軸方向の縮尺は、一例であり、Y軸方向に対してX軸方向に拡大されたり縮小されたりされ得る。図5の(b)及び図7の(b)におけるY軸方向に対するZ軸方向の縮尺についても同様に、Y軸方向に対してZ軸方向に拡大されたり縮小されたりされ得る。以降の図についても同様である。 The scale in the X-axis direction with respect to the Y-axis direction in (a) of FIG. 5 and (a) of FIG. 7 is an example, and can be enlarged or reduced in the X-axis direction with respect to the Y-axis direction. Similarly, the scale in the Z-axis direction with respect to the Y-axis direction in (b) of FIG. 5 and (b) of FIG. 7 can be enlarged or reduced in the Z-axis direction with respect to the Y-axis direction. The same applies to the following figures.
 これらの図に示すように、バスバー20と蓄電素子10の電極端子200との接合部40は、表面溶融痕41と、内部溶融痕42と、第一溶接痕43と、第二溶接痕44とを有している。蓄電素子10の電極端子200は、バスバーと接合される導電部材の一例であり、接合部40は、バスバー及び導電部材の接合部の一例である。 As shown in these figures, the joint portion 40 between the bus bar 20 and the electrode terminal 200 of the power storage element 10 has a surface melting mark 41, an internal melting mark 42, a first welding mark 43, and a second welding mark 44. have. The electrode terminal 200 of the power storage element 10 is an example of a conductive member to be joined to the bus bar, and the joint portion 40 is an example of a joint portion between the bus bar and the conductive member.
 表面溶融痕41は、バスバー20及び電極端子200(導電部材)の一方の表面が溶融した溶融痕である。本実施の形態では、表面溶融痕41は、バスバー20の平坦な(平面状の)表面20aが溶融した溶融痕である。具体的には、図5及び図6に示すように、バスバー20の表面20aに微小な出力のレーザ光L1が照射されて、バスバー20の表面20aが溶融され、Y軸方向に延びる表面溶融痕41が形成される。 The surface melting mark 41 is a melting mark in which one surface of the bus bar 20 and the electrode terminal 200 (conductive member) is melted. In the present embodiment, the surface melting mark 41 is a melting mark in which the flat (planar) surface 20a of the bus bar 20 is melted. Specifically, as shown in FIGS. 5 and 6, the surface 20a of the bus bar 20 is irradiated with a laser beam L1 having a minute output, the surface 20a of the bus bar 20 is melted, and a surface melting mark extending in the Y-axis direction is formed. 41 is formed.
 レーザ光L1の出力は、後述するレーザ光L3の最大出力の0~30%程度である。レーザ光L1は、表面溶融痕41のY軸マイナス方向の端部からY軸プラス方向の端部に亘って、Y軸プラス方向に向かうほど出力がレーザ光L3の0%から30%まで徐々に大きくされて(または、出力がレーザ光L3の0~30%の間の一定値で維持されて)照射される。 The output of the laser light L1 is about 0 to 30% of the maximum output of the laser light L3 described later. The output of the laser beam L1 gradually increases from 0% to 30% of the laser beam L3 from the end of the surface melting mark 41 in the minus direction of the Y axis to the end in the plus direction of the Y axis toward the plus direction of the Y axis. It is increased (or the output is maintained at a constant value between 0 and 30% of the laser beam L3) and irradiated.
 これにより、バスバー20の表面20aが溶融して、Z軸方向の深さが0.01~0.2mm程度、Y軸方向の長さが0.3~0.8mm程度、及び、X軸方向の幅が0.3~0.5mm程度の表面溶融痕41が形成される。当該数値は一例であって、当該数値に限定されるものではなく、レーザ光のスポット径等に応じて適宜変更され得る。レーザ光のスポット径が大きければ、表面溶融痕41のX軸方向の幅が大きくなり、レーザ光のスポット径が小さければ、表面溶融痕41のX軸方向の幅が小さくなる。表面溶融痕41のZ軸方向の深さ及びY軸方向の長さについても、溶接条件等により、適宜変更される。 As a result, the surface 20a of the bus bar 20 is melted, the depth in the Z-axis direction is about 0.01 to 0.2 mm, the length in the Y-axis direction is about 0.3 to 0.8 mm, and the X-axis direction. A surface melting mark 41 having a width of about 0.3 to 0.5 mm is formed. The numerical value is an example and is not limited to the numerical value, and may be appropriately changed according to the spot diameter of the laser beam and the like. If the spot diameter of the laser beam is large, the width of the surface melting mark 41 in the X-axis direction is large, and if the spot diameter of the laser light is small, the width of the surface melting mark 41 in the X-axis direction is small. The depth of the surface melting mark 41 in the Z-axis direction and the length in the Y-axis direction are also appropriately changed depending on welding conditions and the like.
 本実施の形態では、表面溶融痕41は、Z軸方向から見た場合に、Y軸マイナス方向の端縁が曲線状(長円または楕円の弧形状)であり、Y軸プラス方向に延設された形状を有している。表面溶融痕41は、断面形状をX軸方向から見た場合に、Y軸方向に直線状に延設された形状を有している。 In the present embodiment, the surface melting mark 41 has a curved edge (an oval or elliptical arc shape) in the minus direction of the Y axis when viewed from the Z axis direction, and extends in the plus direction of the Y axis. Has a shaped shape. The surface melting mark 41 has a shape extending linearly in the Y-axis direction when the cross-sectional shape is viewed from the X-axis direction.
 内部溶融痕42は、表面溶融痕41に隣接して配置され、バスバー20及び電極端子200の一方の表面から内部まで溶融した溶融痕である。本実施の形態では、内部溶融痕42は、表面溶融痕41のY軸プラス方向に表面溶融痕41と接続されて配置され、バスバー20の表面20aから内部まで溶融した溶融痕である。具体的には、図5及び図6に示すように、バスバー20の表面20aに、レーザ光L1よりも大きな出力のレーザ光L2が照射されて、バスバー20の表面20aから内部までが溶融され、Y軸方向に延びる内部溶融痕42が形成される。 The internal melting mark 42 is a melting mark that is arranged adjacent to the surface melting mark 41 and melts from one surface of the bus bar 20 and the electrode terminal 200 to the inside. In the present embodiment, the internal melting mark 42 is a melting mark that is arranged so as to be connected to the surface melting mark 41 in the Y-axis plus direction of the surface melting mark 41 and melted from the surface 20a of the bus bar 20 to the inside. Specifically, as shown in FIGS. 5 and 6, the surface 20a of the bus bar 20 is irradiated with the laser light L2 having an output larger than that of the laser light L1, and the surface 20a to the inside of the bus bar 20 is melted. An internal melting mark 42 extending in the Y-axis direction is formed.
 レーザ光L2の出力は、レーザ光L3の最大出力の30~80%程度である。レーザ光L2は、表面溶融痕41のY軸プラス方向の端部からY軸プラス方向に向けて出力がレーザ光L3の30~80%程度まで徐々に大きくされて(または、出力がレーザ光L3の30~80%の間の一定値で維持されて)照射される。レーザ光L2が照射され始める位置(表面溶融痕41のY軸プラス方向の端部または内部溶融痕42のY軸マイナス方向の端部)を、表面溶融痕41及び内部溶融痕42の境界位置42aとも呼ぶ。境界位置42aは、レーザ光の出力がレーザ光L1からレーザ光L2になるように出力を増加させて、溶融痕の溶融幅(X軸方向の幅)が大きくなり始め、かつ、溶融深さ(Z軸方向の深さ)が深くなり始める(キーホールが形成され始める)位置である。表面溶融痕41及び内部溶融痕42の境界位置42aは、表面溶融痕41から内部溶融痕42に至る際の溶融痕の幅及び深さの少なくとも一方が変化する位置である。つまり、境界位置42aよりもY軸マイナス方向の表面溶融痕41は、キーホールが形成されなかった溶融部分であり、境界位置42aよりもY軸プラス方向の内部溶融痕42は、キーホールが形成された溶融部分である。 The output of the laser light L2 is about 30 to 80% of the maximum output of the laser light L3. The output of the laser beam L2 is gradually increased from the end of the surface melting mark 41 in the Y-axis plus direction to about 30 to 80% of the laser beam L3 (or the output is the laser beam L3). (Maintained at a constant value between 30 and 80% of) is irradiated. The position where the laser beam L2 starts to be irradiated (the end of the surface melting mark 41 in the positive direction of the Y-axis or the end of the internal melting mark 42 in the negative direction of the Y-axis) is the boundary position 42a between the surface melting mark 41 and the internal melting mark 42. Also called. At the boundary position 42a, the output of the laser beam is increased so that the output of the laser beam changes from the laser beam L1 to the laser beam L2, the melting width (width in the X-axis direction) of the melting mark begins to increase, and the melting depth (melting depth) ( This is the position where the depth in the Z-axis direction) begins to deepen (keyholes begin to form). The boundary position 42a between the surface melting mark 41 and the internal melting mark 42 is a position where at least one of the width and the depth of the melting mark changes from the surface melting mark 41 to the internal melting mark 42. That is, the surface melting mark 41 in the Y-axis minus direction from the boundary position 42a is a melting portion where the keyhole was not formed, and the internal melting mark 42 in the Y-axis plus direction from the boundary position 42a is formed by the keyhole. It is a melted part that has been made.
 これにより、バスバー20の表面20aから内部までが溶融して、Z軸方向の深さが1~2mm程度、Y軸方向の長さが4~8mm程度、及び、X軸方向の幅が1~3mm程度の内部溶融痕42が形成される。内部溶融痕42は、Z軸方向の深さがバスバー20のZ軸方向の厚みの1/4~3/4程度であり、Y軸方向の長さがZ軸方向の深さの2~4倍程度である。当該数値は一例であって、当該数値に限定されるものではなく、バスバー20の厚み等に応じて適宜変更され得る。バスバー20の厚みが大きければ、内部溶融痕42のZ軸方向の深さが深くなり、バスバー20の厚みが小さければ、内部溶融痕42のZ軸方向の深さが浅くなる。内部溶融痕42のX軸方向の幅及びY軸方向の長さについても、溶接条件等により、適宜変更される。 As a result, the surface 20a to the inside of the bus bar 20 is melted, the depth in the Z-axis direction is about 1 to 2 mm, the length in the Y-axis direction is about 4 to 8 mm, and the width in the X-axis direction is 1 to 1. An internal melting mark 42 of about 3 mm is formed. The depth of the internal melting mark 42 in the Z-axis direction is about 1/4 to 3/4 of the thickness of the bus bar 20 in the Z-axis direction, and the length in the Y-axis direction is 2 to 4 of the depth in the Z-axis direction. It is about double. The numerical value is an example and is not limited to the numerical value, and may be appropriately changed according to the thickness of the bus bar 20 and the like. If the thickness of the bus bar 20 is large, the depth of the internal melting mark 42 in the Z-axis direction becomes deep, and if the thickness of the bus bar 20 is small, the depth of the internal melting mark 42 in the Z-axis direction becomes shallow. The width of the internal melting mark 42 in the X-axis direction and the length in the Y-axis direction are also appropriately changed depending on welding conditions and the like.
 本実施の形態では、内部溶融痕42は、Z軸方向から見た場合に、Y軸マイナス方向の端縁(境界位置42a)が曲線状(長円または楕円の弧形状)であり、Y軸プラス方向に延設された形状を有している。内部溶融痕42は、断面形状をX軸方向から見た場合に、Y軸マイナス方向の端縁がZ軸マイナス方向に凹むように湾曲する曲線状であり、Y軸プラス方向に延設された形状を有している。 In the present embodiment, the internal melting mark 42 has a curved edge (boundary position 42a) in the minus direction of the Y axis (arc shape of an oval or ellipse) when viewed from the Z axis direction, and the Y axis. It has a shape that extends in the positive direction. The internal melting mark 42 is a curved shape in which the edge in the minus direction of the Y axis is curved so as to be recessed in the minus direction of the Z axis when the cross-sectional shape is viewed from the plus direction of the Y axis, and is extended in the plus direction of the Y axis. It has a shape.
 第一溶接痕43は、内部溶融痕42に隣接して配置され、バスバー20及び電極端子200(導電部材)が溶接された溶接痕である。本実施の形態では、第一溶接痕43は、内部溶融痕42のY軸プラス方向に内部溶融痕42と接続されて配置され、バスバー20の表面20aから内部を貫通し、電極端子200の内部まで溶融した溶接痕である。具体的には、図5及び図6に示すように、バスバー20の表面20aに、レーザ光L2よりも大きな出力のレーザ光L3が照射されて、バスバー20の表面20aから電極端子200の内部までが溶融され、Y軸方向に延びる第一溶接痕43が形成される。 The first welding mark 43 is a welding mark that is arranged adjacent to the internal melting mark 42 and in which the bus bar 20 and the electrode terminal 200 (conductive member) are welded. In the present embodiment, the first welding mark 43 is arranged so as to be connected to the internal melting mark 42 in the Y-axis plus direction of the internal melting mark 42, penetrates the inside from the surface 20a of the bus bar 20, and is inside the electrode terminal 200. It is a weld mark that has melted up to. Specifically, as shown in FIGS. 5 and 6, the surface 20a of the bus bar 20 is irradiated with the laser light L3 having an output larger than that of the laser light L2, from the surface 20a of the bus bar 20 to the inside of the electrode terminal 200. Is melted to form a first welding mark 43 extending in the Y-axis direction.
 レーザ光L3は、内部溶融痕42のY軸プラス方向の端部からY軸プラス方向に向けて、出力がレーザ光L2の出力(レーザ光L3の最大出力の30~80%程度)から徐々に大きくされて照射され、その後、レーザ光L3の最大出力で維持されて照射される。レーザ光L3が照射され始める位置(内部溶融痕42のY軸プラス方向の端部または第一溶接痕43のY軸マイナス方向の端部)を、内部溶融痕42及び第一溶接痕43の境界位置43aとも呼ぶ。境界位置43aは、レーザ光の出力がレーザ光L2からレーザ光L3になるように出力を増加させて、溶融深さが深くなり始める位置である。 The output of the laser beam L3 gradually increases from the output of the laser beam L2 (about 30 to 80% of the maximum output of the laser beam L3) from the end of the internal melting mark 42 in the Y-axis plus direction toward the Y-axis plus direction. It is enlarged and irradiated, and then maintained and irradiated at the maximum output of the laser beam L3. The position where the laser beam L3 starts to be irradiated (the end of the internal melting mark 42 in the positive direction of the Y-axis or the end of the first welding mark 43 in the negative direction of the Y-axis) is the boundary between the internal melting mark 42 and the first welding mark 43. Also called position 43a. The boundary position 43a is a position where the output of the laser beam is increased from the laser beam L2 to the laser beam L3 so that the melting depth begins to deepen.
 これにより、バスバー20の表面20aから電極端子200の内部までが溶融して、Z軸方向の深さが2~4mm程度、及び、X軸方向の幅が1~3mm程度のY軸方向に延びる第一溶接痕43が形成される。当該数値は一例であって、当該数値に限定されるものではなく、バスバー20及び電極端子200の厚み等に応じて適宜変更され得る。バスバー20及び電極端子200の厚みが大きければ、第一溶接痕43のZ軸方向の深さが深くなり、バスバー20及び電極端子200の厚みが小さければ、第一溶接痕43のZ軸方向の深さが浅くなる。第一溶接痕43のX軸方向の幅についても、溶接条件等により、適宜変更される。 As a result, the surface 20a of the bus bar 20 to the inside of the electrode terminal 200 is melted, and the depth in the Z-axis direction is about 2 to 4 mm and the width in the X-axis direction is extended in the Y-axis direction of about 1 to 3 mm. The first welding mark 43 is formed. The numerical value is an example and is not limited to the numerical value, and may be appropriately changed depending on the thickness of the bus bar 20 and the electrode terminal 200 and the like. If the thickness of the bus bar 20 and the electrode terminal 200 is large, the depth of the first welding mark 43 in the Z-axis direction becomes deep, and if the thickness of the bus bar 20 and the electrode terminal 200 is small, the depth of the first welding mark 43 in the Z-axis direction becomes deep. The depth becomes shallow. The width of the first welding mark 43 in the X-axis direction is also appropriately changed depending on the welding conditions and the like.
 本実施の形態では、第一溶接痕43は、Z軸方向から見た場合に、Y軸マイナス方向の端縁(境界位置43a)が曲線状(長円または楕円の弧形状)であり、Y軸プラス方向に延設され、かつ、Y軸プラス方向の端縁も曲線状(長円または楕円の弧形状)を有している。第一溶接痕43は、断面形状をX軸方向から見た場合に、Y軸マイナス方向の端縁がZ軸マイナス方向に凹むように湾曲する曲線状であり、Y軸プラス方向に延設され、かつ、Y軸プラス方向の端縁もZ軸マイナス方向に凹むように湾曲する曲線状を有している。 In the present embodiment, the first welding mark 43 has a curved edge (boundary position 43a) in the minus direction of the Y axis (an elliptical or elliptical arc shape) when viewed from the Z axis direction, and is Y. It extends in the plus direction of the axis, and the edge in the plus direction of the Y axis also has a curved shape (an oval or elliptical arc shape). The first welding mark 43 is a curved shape in which the edge in the minus direction of the Y axis is curved so as to be recessed in the minus direction of the Z axis when the cross-sectional shape is viewed from the plus direction of the Y axis, and extends in the plus direction of the Y axis. Moreover, the edge in the positive direction of the Y axis also has a curved shape curved so as to be recessed in the negative direction of the Z axis.
 第一溶接痕43のY軸プラス方向の端部には、第一溶融池痕43bが形成されている。第一溶融池痕43bは、溶接時に溶融池が形成された痕であり、Z軸方向から見て長円形状または楕円形状を有している。図5の(b)では、第一溶融池痕43bの図示は省略している。 The first molten pool mark 43b is formed at the end of the first welding mark 43 in the positive direction of the Y-axis. The first molten pool mark 43b is a mark formed by the molten pool at the time of welding, and has an oval shape or an elliptical shape when viewed from the Z-axis direction. In FIG. 5B, the first molten pool mark 43b is not shown.
 第二溶接痕44は、第一溶接痕43に沿って、第一溶接痕43の延設方向(Y軸方向)に延設されて配置される溶接痕である。本実施の形態では、第二溶接痕44は、第一溶接痕43のX軸プラス方向に第一溶接痕43と接続されて配置され、バスバー20の表面20aから内部を貫通し、電極端子200の内部まで溶融した溶接痕である。具体的には、図7に示すように、バスバー20の表面20aにレーザ光L4が照射されて、バスバー20の表面20aから電極端子200の内部までが溶融され、Y軸方向に延びる第二溶接痕44が形成される。 The second welding mark 44 is a welding mark extending along the first welding mark 43 in the extending direction (Y-axis direction) of the first welding mark 43. In the present embodiment, the second welding mark 44 is arranged so as to be connected to the first welding mark 43 in the X-axis plus direction of the first welding mark 43, penetrates the inside from the surface 20a of the bus bar 20, and is the electrode terminal 200. It is a welding mark that has melted to the inside of. Specifically, as shown in FIG. 7, the surface 20a of the bus bar 20 is irradiated with the laser beam L4 to melt the surface 20a of the bus bar 20 to the inside of the electrode terminal 200, and the second welding extends in the Y-axis direction. Traces 44 are formed.
 レーザ光L4は、レーザ光L3と同等の出力を有し、第一溶接痕43のY軸プラス方向の端部よりもX軸プラス方向に少しずれた位置からY軸マイナス方向に進みながら、バスバー20の表面20aに向けて照射される。これにより、バスバー20の表面20aから電極端子200の内部までが溶融して、第一溶接痕43と同程度の深さ、幅及び長さの第二溶接痕44が形成される。 The laser beam L4 has an output equivalent to that of the laser beam L3, and moves in the Y-axis minus direction from a position slightly deviated in the X-axis plus direction from the end of the first welding mark 43 in the Y-axis plus direction, while advancing in the Y-axis minus direction. It is irradiated toward the surface 20a of 20. As a result, the surface 20a of the bus bar 20 to the inside of the electrode terminal 200 are melted to form a second welding mark 44 having a depth, width and length similar to that of the first welding mark 43.
 このように、第二溶接痕44は、第一溶接痕43の延設方向(Y軸方向)における第一溶接痕43の一端から他端までに亘って、第一溶接痕43に沿って延設されて配置される。具体的には、第二溶接痕44は、表面溶融痕41から遠い端部(表面溶融痕41とは反対側(Y軸プラス方向)の端部)である溶接痕端部44aから、表面溶融痕41及び内部溶融痕42の境界位置42aよりも表面溶融痕41から離れる位置(内部溶融痕42側の位置)までに亘って、第一溶接痕43に沿って延設されて配置される。溶接痕端部44aは、第二溶接痕44において溶接が開始される側の端部であり、第一溶接痕43のY軸プラス方向の端部よりもY軸プラス方向に配置される。つまり、第二溶接痕44は、第一溶接痕43のY軸プラス方向の端部よりもY軸プラス方向の位置から、第一溶接痕43のY軸マイナス方向の端部(境界位置43a)までに亘って、第一溶接痕43と平行に延設されて配置される。これにより、第二溶接痕44における溶接の開始時点で予熱を行うことができている。溶接痕端部44aは、溶接が開始される側の端部であるため、溶融池痕は形成されていない。 As described above, the second welding mark 44 extends along the first welding mark 43 from one end to the other end of the first welding mark 43 in the extending direction (Y-axis direction) of the first welding mark 43. It is installed and arranged. Specifically, the second welding mark 44 is surface-melted from the welding mark end 44a, which is the end far from the surface melting mark 41 (the end opposite to the surface melting mark 41 (Y-axis plus direction)). It is arranged so as to extend along the first welding mark 43 from the boundary position 42a of the mark 41 and the internal melting mark 42 to a position away from the surface melting mark 41 (the position on the internal melting mark 42 side). The welding mark end portion 44a is an end portion of the second welding mark 44 on the side where welding is started, and is arranged in the Y-axis plus direction with respect to the end portion of the first welding mark 43 in the Y-axis plus direction. That is, the second welding mark 44 is from the position in the Y-axis plus direction of the first welding mark 43 in the Y-axis plus direction to the end in the Y-axis minus direction of the first welding mark 43 (boundary position 43a). It is extended and arranged in parallel with the first welding mark 43. As a result, preheating can be performed at the start of welding at the second welding mark 44. Since the welding mark end portion 44a is the end portion on the side where welding is started, no molten pool mark is formed.
 第二溶接痕44は、第一溶接痕43に対して、Y軸方向にずれて形成されていてもよいし、Y軸方向に長く形成されていてもよいし、短く形成されていてもよい。第二溶接痕44のY軸プラス方向の端部(溶接痕端部44a)は、第一溶接痕43のY軸プラス方向の端部とY軸方向において同じ位置、または、第一溶接痕43のY軸プラス方向の端部よりもY軸マイナス方向に配置されていてもよい。第二溶接痕44のY軸マイナス方向の端部は、第一溶接痕43のY軸マイナス方向の端部よりも、Y軸マイナス方向またはY軸プラス方向に配置されていてもよい。 The second welding mark 44 may be formed so as to deviate from the first welding mark 43 in the Y-axis direction, may be formed longer in the Y-axis direction, or may be formed shorter. .. The end of the second welding mark 44 in the Y-axis plus direction (welding mark end 44a) is at the same position as the end of the first welding mark 43 in the Y-axis plus direction in the Y-axis direction, or the first welding mark 43. It may be arranged in the Y-axis minus direction from the end of the Y-axis in the plus direction. The end of the second welding mark 44 in the negative direction of the Y axis may be arranged in the negative direction of the Y axis or the positive direction of the Y axis with respect to the end of the first welding mark 43 in the negative direction of the Y axis.
 第二溶接痕44は、第一溶接痕43と重ねられて(接続されて)形成されている。つまり、第二溶接痕44は、X軸方向において第一溶接痕43と重なりつつ(接続されつつ)、Y軸方向に延設されている。このように、第一溶接痕43と第二溶接痕44とは、少なくとも一部が接続されている。本実施の形態では、第一溶接痕43と第二溶接痕44とは、Y軸方向の一端から他端までに亘って重ねられて(接続されて)いる。第一溶接痕43と第二溶接痕44との重なり量は、特に限定されないが、X軸方向において、第一溶接痕43または第二溶接痕44の幅の1/4~1/2程度(例えば0.5~1mm程度)重なっている。 The second welding mark 44 is formed so as to overlap (connect) with the first welding mark 43. That is, the second welding mark 44 extends in the Y-axis direction while overlapping (connecting) with the first welding mark 43 in the X-axis direction. In this way, at least a part of the first welding mark 43 and the second welding mark 44 are connected. In the present embodiment, the first welding mark 43 and the second welding mark 44 are overlapped (connected) from one end to the other end in the Y-axis direction. The amount of overlap between the first welding mark 43 and the second welding mark 44 is not particularly limited, but is about 1/4 to 1/2 of the width of the first welding mark 43 or the second welding mark 44 in the X-axis direction ( For example, about 0.5 to 1 mm) overlap.
 さらに具体的には、第二溶接痕44は、Z軸方向から見た場合に、Y軸プラス方向の端縁が曲線状(長円または楕円の弧形状)であり、Y軸マイナス方向に延設され、かつ、Y軸マイナス方向の端縁も曲線状(長円または楕円の弧形状)を有している。第二溶接痕44は、断面形状をX軸方向から見た場合に、Y軸プラス方向の端縁がZ軸マイナス方向に凹むように湾曲する曲線状であり、Y軸マイナス方向に延設され、かつ、Y軸マイナス方向の端縁もZ軸マイナス方向に凹むように湾曲する曲線状を有している。 More specifically, the second welding mark 44 has a curved edge (an oval or elliptical arc shape) in the positive direction of the Y axis when viewed from the Z axis direction, and extends in the negative direction of the Y axis. It is provided, and the edge in the minus direction of the Y-axis also has a curved shape (an elliptical or elliptical arc shape). The second welding mark 44 is a curved shape whose cross-sectional shape is curved so that the edge in the positive direction of the Y axis is recessed in the negative direction of the Z axis when the cross-sectional shape is viewed from the negative direction of the Y axis, and extends in the negative direction of the Y axis. Moreover, the edge in the minus direction of the Y axis also has a curved shape curved so as to be recessed in the minus direction of the Z axis.
 第二溶接痕44のY軸マイナス方向の端部には、第二溶融池痕44bが形成されている。第二溶融池痕44bは、溶接時に溶融池が形成された痕であり、Z軸方向から見て長円形状または楕円形状を有している。図7の(b)では、第二溶融池痕44bの図示は省略している。 A second molten pool mark 44b is formed at the end of the second welding mark 44 in the negative direction on the Y-axis. The second molten pool mark 44b is a mark formed by the molten pool at the time of welding, and has an oval shape or an elliptical shape when viewed from the Z-axis direction. In FIG. 7B, the second molten pool mark 44b is not shown.
 このように、バスバー20及び電極端子200にレーザ光を照射し、当該レーザ光の出力をレーザ光L1の出力からレーザ光L4の出力まで変化していくことにより、バスバー20及び電極端子200がレーザ溶接された接合部40が形成される。バスバー20及び電極端子200の溶接は、パルス溶接ではなく連続的な溶接である。当該レーザ溶接は、発振器等の公知の装置を用いて、レーザ光の出力を制御することにより行うことができる。 In this way, the bus bar 20 and the electrode terminal 200 are irradiated with the laser light, and the output of the laser light is changed from the output of the laser light L1 to the output of the laser light L4, so that the bus bar 20 and the electrode terminal 200 are lasered. A welded joint 40 is formed. The welding of the bus bar 20 and the electrode terminal 200 is not pulse welding but continuous welding. The laser welding can be performed by controlling the output of the laser beam using a known device such as an oscillator.
 [3 効果の説明]
 以上のように、本発明の実施の形態に係る蓄電装置1によれば、バスバー20及び電極端子200(導電部材)には、接合部40が形成されている。接合部40は、バスバー20及び電極端子200の一方(バスバー20)の表面20aが溶融した表面溶融痕41と、当該一方の表面20aから内部まで溶融した内部溶融痕42と、バスバー20及び電極端子200が溶接された第一溶接痕43と、を有している。つまり、レーザ溶接時にレーザ出力を小さくして当該一方の表面20aを溶融させて表面溶融痕41を形成し、レーザ出力を少し大きくして、当該一方の表面20aから内部まで溶融した内部溶融痕42を形成する。レーザ出力をさらに大きくして、バスバー20及び電極端子200を溶接して第一溶接痕43を形成する。このように、溶接対象部分の手前からレーザ出力を徐々に大きくして表面溶融痕41及び内部溶融痕42を形成していくことにより溶接対象部分が予熱されるため、溶接対象部分に第一溶接痕43を形成する際のレーザ出力を抑制できる。特に、アルミニウム等の被溶接材は固体状態ではレーザ吸収率が低く、溶融状態ではレーザ吸収率が高くなるため、予熱により被溶接材の表面を溶融することで、レーザ吸収率を上げ、レーザ出力を低く抑えることができる。レーザ出力を抑制できれば、スパッタの発生を抑制できる。特に、バスバー20の厚みが厚いと、バスバー20を貫通させるためにレーザ出力を高くする必要がありスパッタが出やすいが、上述の通りレーザ出力を抑制することで、厚みが厚いバスバー20を用いてもスパッタの発生を抑制できる。これにより、スパッタが蓄電装置1の品質に影響を及ぼすのを抑制できるため、蓄電装置1の品質の低下を抑制できる。
[3 Explanation of effect]
As described above, according to the power storage device 1 according to the embodiment of the present invention, the joint portion 40 is formed in the bus bar 20 and the electrode terminal 200 (conductive member). The joint portion 40 includes a surface melting mark 41 in which the surface 20a of one of the bus bar 20 and the electrode terminal 200 (bus bar 20) is melted, an internal melting mark 42 in which the surface 20a of the one surface 20a is melted to the inside, and the bus bar 20 and the electrode terminal. It has a first weld mark 43, to which 200 has been welded. That is, during laser welding, the laser output is reduced to melt the one surface 20a to form a surface melting mark 41, and the laser output is slightly increased to melt the internal melting mark 42 from the one surface 20a to the inside. To form. The laser output is further increased, and the bus bar 20 and the electrode terminal 200 are welded to form the first welding mark 43. In this way, since the welding target portion is preheated by gradually increasing the laser output from the front of the welding target portion to form the surface melting mark 41 and the internal melting mark 42, the first welding is performed on the welding target portion. The laser output when forming the mark 43 can be suppressed. In particular, since a material to be welded such as aluminum has a low laser absorption rate in a solid state and a high laser absorption rate in a molten state, the surface of the material to be welded is melted by preheating to increase the laser absorption rate and laser output. Can be kept low. If the laser output can be suppressed, the occurrence of spatter can be suppressed. In particular, if the bus bar 20 is thick, it is necessary to increase the laser output in order to penetrate the bus bar 20, and spatter is likely to occur. However, by suppressing the laser output as described above, the thick bus bar 20 is used. Can also suppress the occurrence of spatter. As a result, it is possible to suppress the influence of sputtering on the quality of the power storage device 1, and thus it is possible to suppress the deterioration of the quality of the power storage device 1.
 接合部40は、第一溶接痕43に沿う第二溶接痕44を有し、第二溶接痕44は、表面溶融痕41から遠い位置に、溶融池痕が形成されていない溶接痕端部44aを有している。このように、接合部40での接合強度を高めるために第二溶接痕44も形成する場合、第一溶接痕43に沿って第二溶接痕44を形成することで、第一溶接痕43における熱を第二溶接痕44での予熱に使用できる。特に、第二溶接痕44の表面溶融痕41から遠い溶接痕端部44aには溶融池痕が形成されていないため、第二溶接痕44は、溶接痕端部44aから溶接が開始されたものと判断できる。このため、第一溶接痕43の終端の溶接痕端部44aから溶接を開始することにより、第一溶接痕43を形成した後の当該終端における熱を予熱として使用し、第二溶接痕44の溶接を開始できる。これにより、第二溶接痕44を形成する際に、レーザ出力を抑制できるため、スパッタの発生を抑制できる。したがって、第二溶接痕44を形成する際においても、スパッタが蓄電装置1の品質に影響を及ぼすのを抑制できるため、蓄電装置1の品質の低下を抑制できる。 The joint portion 40 has a second welding mark 44 along the first welding mark 43, and the second welding mark 44 is a welding mark end portion 44a in which a molten pool mark is not formed at a position far from the surface melting mark 41. have. In this way, when the second welding mark 44 is also formed in order to increase the joining strength at the joining portion 40, the second welding mark 44 is formed along the first welding mark 43 to form the first welding mark 43. The heat can be used for preheating at the second weld mark 44. In particular, since no molten pool mark is formed at the welding mark end portion 44a far from the surface melting mark 41 of the second welding mark 44, the second welding mark 44 is the one in which welding is started from the welding mark end portion 44a. Can be judged. Therefore, by starting welding from the welding mark end portion 44a at the end of the first welding mark 43, the heat at the end after forming the first welding mark 43 is used as preheating, and the second welding mark 44 Welding can be started. As a result, when the second welding mark 44 is formed, the laser output can be suppressed, so that the generation of spatter can be suppressed. Therefore, even when the second welding mark 44 is formed, it is possible to suppress the influence of sputtering on the quality of the power storage device 1, and thus it is possible to suppress the deterioration of the quality of the power storage device 1.
 第二溶接痕44が、第一溶接痕43の一端から他端までに亘って第一溶接痕43に沿って延設されていることにより、バスバー20及び電極端子200(導電部材)をより強固に接合できている。これにより、接合部40での接合強度を向上させつつスパッタの発生を抑制できるため、蓄電装置1の品質の低下を抑制できる。 Since the second welding mark 44 extends along the first welding mark 43 from one end to the other end of the first welding mark 43, the bus bar 20 and the electrode terminal 200 (conductive member) are made stronger. Can be joined to. As a result, it is possible to suppress the generation of spatter while improving the joint strength at the joint portion 40, so that the deterioration of the quality of the power storage device 1 can be suppressed.
 バスバー20及び電極端子200(導電部材)の接合は第一溶接痕43によって行われ、表面溶融痕41及び内部溶融痕42は、バスバー20及び電極端子200の接合に寄与しない部分(溶接を必要としなかった部分)である。このため、第二溶接痕44も、表面溶融痕41及び内部溶融痕42に対応する位置には形成する必要はなく、第二溶接痕44の形成位置を、溶接痕端部44aから、表面溶融痕41及び内部溶融痕42の境界位置42aよりも表面溶融痕41から離れる位置までとする。これにより、不要な位置に第二溶接痕44を形成して溶接温度が上昇したりしてスパッタが発生してしまうのを抑制できる。したがって、スパッタが蓄電装置1の品質に影響を及ぼすのを抑制できるため、蓄電装置1の品質の低下を抑制できる。溶接温度の上昇を抑制できれば、蓄電装置1の部品の劣化を抑制できるため、蓄電装置1の品質の低下を抑制できる。 The bus bar 20 and the electrode terminal 200 (conductive member) are joined by the first welding mark 43, and the surface melting mark 41 and the internal melting mark 42 are portions that do not contribute to the joining of the bus bar 20 and the electrode terminal 200 (welding is required). The part that did not exist). Therefore, it is not necessary to form the second welding mark 44 at a position corresponding to the surface melting mark 41 and the internal melting mark 42, and the forming position of the second welding mark 44 is surface-melted from the welding mark end portion 44a. It is set to a position away from the surface melting mark 41 from the boundary position 42a of the mark 41 and the internal melting mark 42. As a result, it is possible to prevent spatter from being generated due to the formation of the second welding mark 44 at an unnecessary position and the welding temperature rising. Therefore, since it is possible to suppress the influence of sputtering on the quality of the power storage device 1, it is possible to suppress the deterioration of the quality of the power storage device 1. If the increase in the welding temperature can be suppressed, the deterioration of the parts of the power storage device 1 can be suppressed, so that the deterioration of the quality of the power storage device 1 can be suppressed.
 表面溶融痕41において溶融痕の幅及び深さの少なくとも一方を変化させることで、表面溶融痕41から内部溶融痕42に移行できる。 By changing at least one of the width and the depth of the melting mark in the surface melting mark 41, it is possible to shift from the surface melting mark 41 to the internal melting mark 42.
 第一溶接痕43と第二溶接痕44とを、少なくとも一部が接続(重複)するように形成することで、第一溶接痕43における熱を予熱として効果的に活用して、第二溶接痕44を形成できる。これにより、第二溶接痕44を形成する際に、レーザ出力を抑制できるため、スパッタの発生を抑制できる。したがって、第二溶接痕44を形成する際に、スパッタが蓄電装置1の品質に影響を及ぼすのを抑制できるため、蓄電装置1の品質の低下を抑制できる。第一溶接痕43と第二溶接痕44とを重複させて形成することで、バスバー20及び電極端子200の接合強度を向上させ、また、省スペース化を図ることもできる。 By forming the first welding mark 43 and the second welding mark 44 so that at least a part thereof is connected (overlapping), the heat in the first welding mark 43 is effectively utilized as preheating, and the second welding is performed. Traces 44 can be formed. As a result, when the second welding mark 44 is formed, the laser output can be suppressed, so that the generation of spatter can be suppressed. Therefore, when forming the second welding mark 44, it is possible to suppress spatter from affecting the quality of the power storage device 1, so that deterioration of the quality of the power storage device 1 can be suppressed. By forming the first welding mark 43 and the second welding mark 44 in an overlapping manner, the bonding strength of the bus bar 20 and the electrode terminal 200 can be improved, and space can be saved.
 蓄電装置1の製造方法(バスバー20及び電極端子200の接合方法)においても、上記の蓄電装置1についての効果と同様の効果を奏する。 The manufacturing method of the power storage device 1 (the method of joining the bus bar 20 and the electrode terminal 200) also has the same effect as that of the power storage device 1 described above.
 [4 変形例の説明]
 (変形例1)
 次に、上記実施の形態の変形例1について、説明する。図8は、本実施の形態の変形例1に係る接合部40aの構成を示す平面図である。図8は、図4に対応する図である。
[4 Description of modified example]
(Modification example 1)
Next, a modification 1 of the above embodiment will be described. FIG. 8 is a plan view showing the configuration of the joint portion 40a according to the first modification of the present embodiment. FIG. 8 is a diagram corresponding to FIG.
 図8に示すように、本変形例における接合部40aは、上記実施の形態における接合部40とは異なり、表面溶融痕41、内部溶融痕42及び第一溶接痕43と、第二溶接痕44とが離間している。つまり、本変形例では、第二溶接痕44は、第一溶接痕43に沿って、第一溶接痕43の延設方向(Y軸方向)に延設されて配置されるが、第一溶接痕43と第二溶接痕44とは、接続されておらず、近傍に配置されている。本変形例のその他の構成については、上記実施の形態と同様であるため、詳細な説明は省略する。 As shown in FIG. 8, the joint portion 40a in the present modification is different from the joint portion 40 in the above embodiment, and has a surface melting mark 41, an internal melting mark 42, a first welding mark 43, and a second welding mark 44. Are separated from each other. That is, in this modification, the second welding mark 44 is arranged along the first welding mark 43 in the extending direction (Y-axis direction) of the first welding mark 43, but is arranged in the first welding. The mark 43 and the second welding mark 44 are not connected and are arranged in the vicinity. Since the other configurations of this modification are the same as those of the above embodiment, detailed description thereof will be omitted.
 以上のように、本変形例に係る蓄電装置によれば、上記実施の形態と同様の効果を奏することができる。特に、本変形例において、第二溶接痕44は、第一溶接痕43から離間しているが、第一溶接痕43の近傍に配置されているため、第一溶接痕43における熱を予熱として活用できる。これにより、本変形例においても、スパッタの発生を抑制できるため、スパッタが蓄電装置の品質に影響を及ぼすのを抑制でき、蓄電装置の品質の低下を抑制できる。 As described above, according to the power storage device according to the present modification, the same effect as that of the above embodiment can be obtained. In particular, in this modification, the second welding mark 44 is separated from the first welding mark 43, but is arranged in the vicinity of the first welding mark 43, so that the heat in the first welding mark 43 is used as preheating. It can be used. As a result, even in this modification, the occurrence of spatter can be suppressed, so that the spatter can be suppressed from affecting the quality of the power storage device, and the deterioration of the quality of the power storage device can be suppressed.
 本変形例において、第二溶接痕44は、Y軸方向における一部が、第一溶接痕43と接続(重複)されていてもよい。第二溶接痕44は、Y軸プラス方向の端部が第一溶接痕43と接続されていてもよいし、Y軸方向中央部またはY軸マイナス方向の端部が第一溶接痕43と接続されていてもよい。 In this modification, a part of the second welding mark 44 in the Y-axis direction may be connected (overlapping) with the first welding mark 43. The end of the second welding mark 44 in the positive direction of the Y-axis may be connected to the first welding mark 43, and the central part in the Y-axis direction or the end in the negative direction of the Y-axis is connected to the first welding mark 43. It may have been done.
 (変形例2)
 次に、上記実施の形態の変形例2について、説明する。図9は、本実施の形態の変形例2に係る接合部40bの構成を示す平面図である。図9は、図4に対応する図である。
(Modification 2)
Next, a modification 2 of the above embodiment will be described. FIG. 9 is a plan view showing the configuration of the joint portion 40b according to the second modification of the present embodiment. FIG. 9 is a diagram corresponding to FIG.
 図9に示すように、本変形例における接合部40bは、上記実施の形態における接合部40の第二溶接痕44に代えて、表面溶融痕45a、内部溶融痕45b及び第三溶接痕45cを有している。本変形例のその他の構成については、上記実施の形態と同様であるため、詳細な説明は省略する。 As shown in FIG. 9, the joint portion 40b in the present modification has a surface melt mark 45a, an internal melt mark 45b, and a third weld mark 45c instead of the second weld mark 44 of the joint portion 40 in the above embodiment. Have. Since the other configurations of this modification are the same as those of the above embodiment, detailed description thereof will be omitted.
 表面溶融痕45a、内部溶融痕45b及び第三溶接痕45cは、表面溶融痕41、内部溶融痕42及び第一溶接痕43と同様の構成を有しており、かつ、これらからX軸プラス方向にずれた位置に配置されている。つまり、表面溶融痕45aは、バスバー20の表面20aが溶融した溶融痕であり、内部溶融痕45bは、表面溶融痕45aに隣接して配置され、バスバー20の表面20aから内部まで溶融した溶融痕である。第三溶接痕45cは、内部溶融痕45bに隣接して配置され、バスバー20及び電極端子200が溶接された溶接痕であり、第三溶接痕45cのY軸プラス方向の端部には、第三溶融池痕45dが形成されている。第三溶接痕45cは、第一溶接痕43の延設方向(Y軸方向)における第一溶接痕43の一端から他端までに亘って、第一溶接痕43に沿って、第一溶接痕43の延設方向(Y軸方向)に延設されて配置されている。第一溶接痕43と第三溶接痕45cとは、少なくとも一部が接続されている。 The surface melting marks 45a, the internal melting marks 45b, and the third welding marks 45c have the same configurations as the surface melting marks 41, the internal melting marks 42, and the first welding marks 43, and from these, the X-axis plus direction. It is placed in a position shifted to. That is, the surface melting mark 45a is a melting mark in which the surface 20a of the bus bar 20 is melted, and the internal melting mark 45b is a melting mark arranged adjacent to the surface melting mark 45a and melted from the surface 20a of the bus bar 20 to the inside. Is. The third welding mark 45c is a welding mark that is arranged adjacent to the internal melting mark 45b and the bus bar 20 and the electrode terminal 200 are welded to each other. (3) A molten pool mark 45d is formed. The third welding mark 45c extends from one end to the other end of the first welding mark 43 in the extension direction (Y-axis direction) of the first welding mark 43, and is the first welding mark along the first welding mark 43. It is extended and arranged in the extension direction (Y-axis direction) of 43. At least a part of the first welding mark 43 and the third welding mark 45c is connected.
 以上のように、本変形例に係る蓄電装置によれば、上記実施の形態と同様の効果を奏することができる。特に、本変形例において、第三溶接痕45cにおいても、表面溶融痕45a及び内部溶融痕45bを形成することにより、溶接対象部分が予熱されるため、溶接対象部分に第三溶接痕45cを形成する際のレーザ出力を抑制できる。これにより、本変形例においても、スパッタの発生を抑制できるため、スパッタが蓄電装置の品質に影響を及ぼすのを抑制でき、蓄電装置の品質の低下を抑制できる。 As described above, according to the power storage device according to the present modification, the same effect as that of the above embodiment can be obtained. In particular, in this modification, even in the third welding mark 45c, the welding target portion is preheated by forming the surface melting mark 45a and the internal melting mark 45b, so that the third welding mark 45c is formed in the welding target portion. It is possible to suppress the laser output at the time of welding. As a result, even in this modification, the occurrence of spatter can be suppressed, so that the spatter can be suppressed from affecting the quality of the power storage device, and the deterioration of the quality of the power storage device can be suppressed.
 (変形例3)
 次に、上記実施の形態の変形例3について、説明する。図10A及び図10Bは、本実施の形態の変形例3に係る接合部40c及び40dの構成を示す平面図である。図10A及び図10Bは、図3におけるバスバー20及び電極端子200に対応する図である。
(Modification example 3)
Next, a modification 3 of the above embodiment will be described. 10A and 10B are plan views showing the configurations of the joint portions 40c and 40d according to the third modification of the present embodiment. 10A and 10B are views corresponding to the bus bar 20 and the electrode terminal 200 in FIG.
 図10Aに示すように、本変形例における接合部40cは、上記実施の形態における接合部40の表面溶融痕41、内部溶融痕42、第一溶接痕43及び第二溶接痕44に代えて、表面溶融痕46a、内部溶融痕46b、第一溶接痕46c及び第二溶接痕46dを有している。本変形例のその他の構成については、上記実施の形態と同様であるため、詳細な説明は省略する。 As shown in FIG. 10A, the joint portion 40c in the present modification replaces the surface melt mark 41, the internal melt mark 42, the first weld mark 43, and the second weld mark 44 of the joint portion 40 in the above embodiment. It has a surface melting mark 46a, an internal melting mark 46b, a first welding mark 46c, and a second welding mark 46d. Since the other configurations of this modification are the same as those of the above embodiment, detailed description thereof will be omitted.
 表面溶融痕46a、内部溶融痕46b、第一溶接痕46c及び第二溶接痕46dは、上記実施の形態における表面溶融痕41、内部溶融痕42、第一溶接痕43及び第二溶接痕44と同様の構成を有しているが、上記実施の形態と異なり、湾曲した形状を有している。具体的には、バスバー20に、円形状の開口部21が形成されており、この開口部21の周囲を囲うように、表面溶融痕46a、内部溶融痕46b、第一溶接痕46c及び第二溶接痕46dが、Y軸方向に湾曲状に延びて形成されている。開口部21は、電極端子200に形成された円形状の凸部が配置される円形状の貫通孔である。 The surface melting mark 46a, the internal melting mark 46b, the first welding mark 46c and the second welding mark 46d are the surface melting mark 41, the internal melting mark 42, the first welding mark 43 and the second welding mark 44 in the above embodiment. It has a similar configuration, but unlike the above embodiment, it has a curved shape. Specifically, a circular opening 21 is formed in the bus bar 20, and a surface melting mark 46a, an internal melting mark 46b, a first welding mark 46c, and a second welding mark 46c are formed so as to surround the opening 21. The welding mark 46d is formed so as to extend in a curved shape in the Y-axis direction. The opening 21 is a circular through hole in which a circular convex portion formed in the electrode terminal 200 is arranged.
 第二溶接痕46dは、上記実施の形態と同様に、第一溶接痕46cに沿って、第一溶接痕46cの延設方向(Y軸方向)に延設されて配置され、かつ、第一溶接痕46cに重ねられて形成されている。つまり、開口部21の周囲の外側に第一溶接痕46cが形成された後に、第一溶接痕46cの内側に第二溶接痕46dが形成されている。 The second welding mark 46d is arranged so as to extend along the first welding mark 46c in the extending direction (Y-axis direction) of the first welding mark 46c, and the first welding mark 46d is arranged in the same manner as in the above embodiment. It is formed so as to be overlapped with the welding mark 46c. That is, after the first welding mark 46c is formed on the outside of the periphery of the opening 21, the second welding mark 46d is formed on the inside of the first welding mark 46c.
 図10Bに示すように、本変形例における接合部40dは、上記実施の形態における接合部40の表面溶融痕41、内部溶融痕42、第一溶接痕43及び第二溶接痕44に代えて、表面溶融痕47a、内部溶融痕47b、第一溶接痕47c及び第二溶接痕47dを有している。本変形例のその他の構成については、上記実施の形態と同様であるため、詳細な説明は省略する。 As shown in FIG. 10B, the joint portion 40d in the present modification replaces the surface melt mark 41, the internal melt mark 42, the first weld mark 43, and the second weld mark 44 of the joint portion 40 in the above embodiment. It has a surface melting mark 47a, an internal melting mark 47b, a first welding mark 47c, and a second welding mark 47d. Since the other configurations of this modification are the same as those of the above embodiment, detailed description thereof will be omitted.
 表面溶融痕47a、内部溶融痕47b、第一溶接痕47c及び第二溶接痕47dは、図10Aに示した接合部40cにおける各構成要素と同様の構成を有しているが、接合部40cと異なり、第一溶接痕47cが形成された後に、第一溶接痕47cの外側に第二溶接痕47dが形成されている。 The surface melting marks 47a, the internal melting marks 47b, the first welding marks 47c, and the second welding marks 47d have the same configurations as the respective components in the joint portion 40c shown in FIG. 10A, but the joint portion 40c and the joint portion 40c Unlike this, after the first welding mark 47c is formed, the second welding mark 47d is formed on the outside of the first welding mark 47c.
 以上のように、本変形例に係る蓄電装置によれば、上記実施の形態と同様の効果を奏することができる。特に、本変形例の接合部40cにおいては、第一溶接痕46cが形成された後に、第一溶接痕46cの内側に第二溶接痕46dが形成されているため、第一溶接痕46cを形成した際の熱を第一溶接痕46cの内側に留めておくことができる。これにより、第一溶接痕46cを形成した際の熱を、第二溶接痕46dを形成する際の予熱として用いることができる。第一溶接痕46cの周囲にヒートシンクを配置して、第一溶接痕46cを形成した際の熱を放熱する構成の場合でも、第一溶接痕46cの内側からは放熱されないため、当該熱を、第二溶接痕46dを形成する際の予熱として用いることができる。したがって、スパッタの発生を抑制できるため、スパッタが蓄電装置の品質に影響を及ぼすのを抑制でき、蓄電装置の品質の低下を抑制できる。 As described above, according to the power storage device according to the present modification, the same effect as that of the above embodiment can be obtained. In particular, in the joint portion 40c of the present modification, since the second welding mark 46d is formed inside the first welding mark 46c after the first welding mark 46c is formed, the first welding mark 46c is formed. The heat of the first welding mark 46c can be retained inside the first welding mark 46c. As a result, the heat generated when the first welding mark 46c is formed can be used as the preheating when the second welding mark 46d is formed. Even in the case where a heat sink is arranged around the first welding mark 46c to dissipate heat when the first welding mark 46c is formed, the heat is not dissipated from the inside of the first welding mark 46c. It can be used as a preheat when forming the second welding mark 46d. Therefore, since the occurrence of spatter can be suppressed, it is possible to suppress the influence of sputtering on the quality of the power storage device, and it is possible to suppress the deterioration of the quality of the power storage device.
 本変形例の接合部40dにおいては、第一溶接痕47cが形成された後に、第一溶接痕47cの外側に第二溶接痕47dが形成されている。このため、内側の第一溶接痕47cを形成してバスバー20の反りを抑制してから、外側の第二溶接痕47dを形成できる。これにより、接合部40dにおける接合品質の向上を図ることができるため、蓄電装置の品質の低下を抑制できる。 In the joint portion 40d of this modified example, after the first welding mark 47c is formed, the second welding mark 47d is formed on the outside of the first welding mark 47c. Therefore, the inner first welding mark 47c can be formed to suppress the warp of the bus bar 20, and then the outer second welding mark 47d can be formed. As a result, the joining quality at the joining portion 40d can be improved, so that deterioration of the quality of the power storage device can be suppressed.
 本変形例において、バスバー20には、開口部21は形成されていなくてもよい。上記実施の形態及び変形例1、2において、バスバー20に開口部21が形成されていてもよい。 In this modification, the opening 21 may not be formed in the bus bar 20. In the above-described embodiment and the first and second modifications, the opening 21 may be formed in the bus bar 20.
 (その他の変形例)
 以上、本実施の形態及びその変形例に係る蓄電装置について説明したが、本発明は、上記実施の形態及びその変形例には限定されない。つまり、今回開示された実施の形態及びその変形例は、全ての点で例示であって制限的なものではなく、本発明の範囲には、請求の範囲と均等の意味及び範囲内での全ての変更が含まれる。
(Other variants)
Although the power storage device according to the present embodiment and its modified example has been described above, the present invention is not limited to the above-described embodiment and its modified example. That is, the embodiments disclosed this time and examples thereof are exemplary in all respects and are not limiting, and the scope of the present invention includes all meanings and scopes equivalent to those claimed. Changes are included.
 上記実施の形態及びその変形例では、バスバー20及び電極端子200の重なり部分におけるX軸方向両側に、Y軸方向に向けて直線状または湾曲状に延びる2つの接合部が形成されていることとした。しかし、接合部は、当該重なり部分におけるY軸方向両側に形成されていてもよいし、その他の位置に形成されていてもよい。接合部の数も特に限定されず、1つでもよいし、3つ以上でもよい。接合部の延びる方向についても特に限定されず、X軸方向でもよいし、X軸方向またはY軸方向から傾斜した方向に延びていてもよい。 In the above-described embodiment and its modification, two joints extending linearly or curvedly in the Y-axis direction are formed on both sides of the overlapping portion of the bus bar 20 and the electrode terminal 200 in the X-axis direction. bottom. However, the joints may be formed on both sides of the overlapping portion in the Y-axis direction, or may be formed at other positions. The number of joints is not particularly limited, and may be one or three or more. The direction in which the joint extends is not particularly limited, and may extend in the X-axis direction, or may extend in a direction inclined from the X-axis direction or the Y-axis direction.
 上記実施の形態及びその変形例では、バスバー20及び電極端子200の接合部において、表面溶融痕は、Y軸マイナス方向の端部に配置(Y軸マイナス方向の端部から溶接が開始)されることとした。しかし、接合部において、表面溶融痕は、Y軸プラス方向の端部に配置(Y軸プラス方向の端部から溶接を開始)されてもよいし、接合部の形成位置及び形状(長さ、延設方向等)によっては、その他の位置に配置されてもよい。 In the above embodiment and its modified example, at the joint portion between the bus bar 20 and the electrode terminal 200, the surface melting mark is arranged at the end portion in the minus direction of the Y axis (welding starts from the end portion in the minus direction of the Y axis). I decided. However, at the joint, the surface melting marks may be arranged at the end in the Y-axis plus direction (welding starts from the end in the Y-axis plus direction), and the formation position and shape (length, length, of the joint) of the joint may be formed. Depending on the extension direction, etc.), it may be arranged at another position.
 上記実施の形態及びその変形例では、バスバー20及び電極端子200の接合部において、第二溶接痕は、第一溶接痕の延設方向に(第一溶接痕と平行に)延設されて配置されることとした。しかし、第二溶接痕は、第一溶接痕の延設方向に対して傾斜した方向、または、第一溶接痕の延設方向と直交する方向等、第一溶接痕の延設方向と交差する方向に延設されてもよい。この場合でも、第二溶接痕の溶接開始時点では第一溶接痕の形成による熱を予熱として使用できるため、レーザ出力を抑制でき、スパッタの発生を抑制できる。 In the above embodiment and its modification, the second welding mark is arranged so as to extend in the extending direction of the first welding mark (parallel to the first welding mark) at the joint portion of the bus bar 20 and the electrode terminal 200. It was decided to be done. However, the second welding mark intersects the extending direction of the first welding mark, such as a direction inclined with respect to the extending direction of the first welding mark or a direction orthogonal to the extending direction of the first welding mark. It may be extended in the direction. Even in this case, since the heat generated by the formation of the first welding mark can be used as preheating at the start of welding of the second welding mark, the laser output can be suppressed and the generation of spatter can be suppressed.
 上記実施の形態及び変形例1、3において、第二溶接痕は、第一溶接痕が形成された方向と同じ方向に向けて形成されてもよい。上記実施の形態においては、第一溶接痕43はY軸プラス方向に向けて形成されるため、第二溶接痕44も、Y軸プラス方向に向けて形成されてもよく、第二溶接痕44のY軸プラス方向の端部に第二溶融池痕44bが形成されてもよい。第一溶接痕43を形成した際の熱を利用することで、第二溶接痕44を当該方向でも形成できる。変形例1等においても同様である。 In the above-described embodiments and modifications 1 and 3, the second welding mark may be formed in the same direction as the direction in which the first welding mark is formed. In the above embodiment, since the first welding mark 43 is formed in the Y-axis plus direction, the second welding mark 44 may also be formed in the Y-axis plus direction, and the second welding mark 44 may also be formed. A second molten pool mark 44b may be formed at the end of the Y-axis in the positive direction. By utilizing the heat generated when the first welding mark 43 is formed, the second welding mark 44 can also be formed in that direction. The same applies to the first modification and the like.
 上記実施の形態及びその変形例では、バスバー20及び電極端子200の全ての接合部が、上記の構成を有していることしたが、いずれかの接合部が上記の構成を有していなくてもよい。 In the above-described embodiment and its modification, all the joints of the bus bar 20 and the electrode terminal 200 have the above-mentioned configuration, but none of the joints has the above-mentioned configuration. May be good.
 上記実施の形態及びその変形例では、「バスバー及び導電部材の接合部」の一例として、バスバー20及び電極端子200の接合部を例示したが、これには限定されない。「バスバー及び導電部材の接合部」の一例として、バスバー同士の接合部、または、バスバー及び電圧検出端子の接合部等を例示することもできる。つまり、バスバーにどのような導電部材が接合されても、「バスバー及び導電部材の接合部」の一例とできる。この場合、バスバー側からレーザ光を照射するのではなく、導電部材側からレーザ光を照射し、導電部材に表面溶融痕及び内部溶融痕を形成してもよい。導電部材が電極端子200の場合でも、形状によっては、電極端子200側からレーザ光を照射し、電極端子200に表面溶融痕及び内部溶融痕を形成することもできる。 In the above-described embodiment and its modification, the joint portion between the bus bar 20 and the electrode terminal 200 has been exemplified as an example of the “joint portion between the bus bar and the conductive member”, but the present invention is not limited thereto. As an example of the "joint portion between the bus bar and the conductive member", a joint portion between the bus bars, a joint portion between the bus bar and the voltage detection terminal, and the like can be exemplified. That is, no matter what kind of conductive member is joined to the bus bar, it can be an example of "joint portion between the bus bar and the conductive member". In this case, instead of irradiating the laser beam from the bus bar side, the laser beam may be irradiated from the conductive member side to form surface melting marks and internal melting marks on the conductive member. Even when the conductive member is the electrode terminal 200, depending on the shape, laser light may be irradiated from the electrode terminal 200 side to form a surface melting mark and an internal melting mark on the electrode terminal 200.
 上記実施の形態及びその変形例に含まれる構成要素を任意に組み合わせて構築される形態も、本発明の範囲内に含まれる。 The scope of the present invention also includes a form constructed by arbitrarily combining the above-described embodiments and the components included in the modified examples.
 本発明は、このような蓄電装置として実現できるだけでなく、バスバー及び導電部材(バスバー20及び電極端子200)の接合構造若しくは接合方法、または、当該接合方法を含む蓄電装置の製造方法としても実現できる。 The present invention can be realized not only as such a power storage device, but also as a joining structure or joining method of a bus bar and a conductive member (bus bar 20 and an electrode terminal 200), or as a manufacturing method of a power storage device including the joining method. ..
 本発明は、リチウムイオン二次電池等の蓄電素子を備えた蓄電装置等に適用できる。 The present invention can be applied to a power storage device or the like equipped with a power storage element such as a lithium ion secondary battery.
 1 蓄電装置
 10 蓄電素子
 20 バスバー
 20a 表面
 21 開口部
 30 外装体
 31 外部端子
 40、40a、40b、40c、40d 接合部
 41、45a、46a、47a 表面溶融痕
 42、45b、46b、47b 内部溶融痕
 42a、43a 境界位置
 43、46c、47c 第一溶接痕
 43b 第一溶融池痕
 44、46d、47d 第二溶接痕
 44a 溶接痕端部
 44b 第二溶融池痕
 45c 第三溶接痕
 45d 第三溶融池痕
 100 容器
 110 容器本体
 120 蓋体
 121 ガス排出弁
 122 注液部
 200 電極端子
 300 ガスケット
1 Power storage device 10 Power storage element 20 Bus bar 20a Surface 21 Opening 30 Exterior 31 External terminals 40, 40a, 40b, 40c, 40d Joints 41, 45a, 46a, 47a Surface melting marks 42, 45b, 46b, 47b Internal melting marks 42a, 43a Boundary position 43, 46c, 47c First welding mark 43b First welding mark 44, 46d, 47d Second welding mark 44a Welding mark end 44b Second welding mark 45c Third welding mark 45d Third molten pond Trace 100 Container 110 Container body 120 Lid 121 Gas discharge valve 122 Lubrication part 200 Electrode terminal 300 Gasket

Claims (7)

  1.  蓄電素子とバスバーとを備える蓄電装置であって、
     前記バスバーと接合される導電部材を備え、
     前記バスバー及び前記導電部材の接合部は、
     前記バスバー及び前記導電部材の一方の表面が溶融した表面溶融痕と、
     前記表面溶融痕に隣接して配置され、前記一方の表面から内部まで溶融した内部溶融痕と、
     前記内部溶融痕に隣接して配置され、前記バスバー及び前記導電部材が溶接された第一溶接痕と、を有する
     蓄電装置。
    A power storage device including a power storage element and a bus bar.
    A conductive member to be joined to the bus bar is provided.
    The joint between the bus bar and the conductive member is
    Surface melting marks where the surface of one of the bus bar and the conductive member is melted, and
    Internal melting marks that are placed adjacent to the surface melting marks and melted from one surface to the inside,
    A power storage device having a first welding mark arranged adjacent to the internal melting mark and to which the bus bar and the conductive member are welded.
  2.  前記接合部は、さらに、
     前記第一溶接痕に沿って、前記第一溶接痕の延設方向に延設されて配置される第二溶接痕を有し、
     前記第二溶接痕は、前記表面溶融痕から遠い端部であって、溶融池痕が形成されていない溶接痕端部を有する
     請求項1に記載の蓄電装置。
    The joint is further
    It has a second welding mark that is extended and arranged along the first welding mark in the extending direction of the first welding mark.
    The power storage device according to claim 1, wherein the second welding mark is an end portion far from the surface melting mark and has a welding mark end portion in which a molten pool mark is not formed.
  3.  前記第二溶接痕は、前記延設方向における前記第一溶接痕の一端から他端までに亘って、前記第一溶接痕に沿って延設されて配置される
     請求項2に記載の蓄電装置。
    The power storage device according to claim 2, wherein the second welding mark is extended along the first welding mark from one end to the other end of the first welding mark in the extending direction. ..
  4.  前記第二溶接痕は、前記溶接痕端部から、前記表面溶融痕及び前記内部溶融痕の境界位置よりも前記表面溶融痕から離れる位置までに亘って、前記第一溶接痕に沿って延設されて配置される
     請求項2または3に記載の蓄電装置。
    The second welding mark extends along the first welding mark from the end of the welding mark to a position away from the surface melting mark from the boundary position between the surface melting mark and the internal melting mark. The power storage device according to claim 2 or 3, wherein the power storage device is arranged and arranged.
  5.  前記表面溶融痕及び前記内部溶融痕の境界位置は、前記表面溶融痕から前記内部溶融痕に至る際の溶融痕の幅及び深さの少なくとも一方が変化する位置である
     請求項4に記載の蓄電装置。
    The power storage according to claim 4, wherein the boundary position between the surface melting mark and the internal melting mark is a position where at least one of the width and the depth of the melting mark changes from the surface melting mark to the internal melting mark. Device.
  6.  前記第一溶接痕と前記第二溶接痕とは、少なくとも一部が接続されている
     請求項2~5のいずれか1項に記載の蓄電装置。
    The power storage device according to any one of claims 2 to 5, wherein at least a part of the first welding mark and the second welding mark are connected.
  7.  蓄電素子とバスバーとを備える蓄電装置の製造方法であって、
     前記バスバーと導電部材とを接合する接合工程を含み、
     前記接合工程では、
     前記バスバー及び前記導電部材の一方の表面が溶融した表面溶融痕を形成し、
     前記表面溶融痕に隣接して配置され、前記一方の表面から内部まで溶融した内部溶融痕を形成し、
     前記内部溶融痕に隣接して配置され、前記バスバー及び前記導電部材が溶接された第一溶接痕を形成する
     蓄電装置の製造方法。
    A method for manufacturing a power storage device including a power storage element and a bus bar.
    The joining step of joining the bus bar and the conductive member is included.
    In the joining step,
    The surface of one of the bus bar and the conductive member is melted to form a surface melting mark.
    It is arranged adjacent to the surface melting mark and forms an internal melting mark that melts from one surface to the inside.
    A method for manufacturing a power storage device, which is arranged adjacent to the internal melting mark and forms a first welding mark in which the bus bar and the conductive member are welded.
PCT/JP2021/010816 2020-03-24 2021-03-17 Electrical storage device, and method for manufacturing same WO2021193285A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022510006A JPWO2021193285A1 (en) 2020-03-24 2021-03-17

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020053190 2020-03-24
JP2020-053190 2020-03-24

Publications (1)

Publication Number Publication Date
WO2021193285A1 true WO2021193285A1 (en) 2021-09-30

Family

ID=77890245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/010816 WO2021193285A1 (en) 2020-03-24 2021-03-17 Electrical storage device, and method for manufacturing same

Country Status (2)

Country Link
JP (1) JPWO2021193285A1 (en)
WO (1) WO2021193285A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014063696A (en) * 2012-09-24 2014-04-10 Hitachi Vehicle Energy Ltd Power storage device and method for manufacturing the same
WO2017047050A1 (en) * 2015-09-15 2017-03-23 パナソニックIpマネジメント株式会社 Welded structure of metal member and welding method
JP2017164811A (en) * 2016-03-09 2017-09-21 日本特殊陶業株式会社 Laser welding method, method for manufacturing welding-joined body, method for manufacturing electrode for spark plug, and method for manufacturing spark plug
JP2018174059A (en) * 2017-03-31 2018-11-08 パナソニックIpマネジメント株式会社 Welded structure and manufacturing method thereof
WO2019087455A1 (en) * 2017-10-30 2019-05-09 パナソニックIpマネジメント株式会社 Welding structure for metal member and welding method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014063696A (en) * 2012-09-24 2014-04-10 Hitachi Vehicle Energy Ltd Power storage device and method for manufacturing the same
WO2017047050A1 (en) * 2015-09-15 2017-03-23 パナソニックIpマネジメント株式会社 Welded structure of metal member and welding method
JP2017164811A (en) * 2016-03-09 2017-09-21 日本特殊陶業株式会社 Laser welding method, method for manufacturing welding-joined body, method for manufacturing electrode for spark plug, and method for manufacturing spark plug
JP2018174059A (en) * 2017-03-31 2018-11-08 パナソニックIpマネジメント株式会社 Welded structure and manufacturing method thereof
WO2019087455A1 (en) * 2017-10-30 2019-05-09 パナソニックIpマネジメント株式会社 Welding structure for metal member and welding method

Also Published As

Publication number Publication date
JPWO2021193285A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
KR101110406B1 (en) Battery cell and power supply
CN106257711B (en) Secondary battery and battery pack using the same
JP6138963B2 (en) Square battery
JP5941654B2 (en) Single cells and batteries
US20090223940A1 (en) Different metallic thin plates welding method, bimetallic thin plates jointing element, electric device, and electric device assembly
KR20080114504A (en) Sealed battery and preparing method thereof
CN103427063A (en) Monocell and assembled battery
WO2013065523A1 (en) Cell assembly, and rectangular secondary cell for use in cell assembly
US11189874B2 (en) Secondary battery and method of manufacturing the same
JP2019106274A (en) Square secondary battery and manufacturing method thereof
US11264679B2 (en) Secondary battery
KR102654717B1 (en) Battery and manufacturing method thereof
US20220140453A1 (en) Battery and manufacturing method therefor
CN109920967B (en) Secondary battery
CN109585770B (en) Secondary battery and method for manufacturing same
WO2021193285A1 (en) Electrical storage device, and method for manufacturing same
JP7427903B2 (en) Power storage device
WO2020196189A1 (en) Electricity storage device
US20230275327A1 (en) Energy storage apparatus
WO2024058219A1 (en) Power storage device
JP2022043692A (en) Power storage element
KR20190106073A (en) Rechargeable battery
WO2024058235A1 (en) Power storage device
US20230170587A1 (en) Secondary battery and assembled battery, and production method thereof
US20230163424A1 (en) Energy storage apparatus and method for manufacturing energy storage apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21774842

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022510006

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21774842

Country of ref document: EP

Kind code of ref document: A1