WO2021193211A1 - Method and apparatus for manufacturing arc spring - Google Patents

Method and apparatus for manufacturing arc spring Download PDF

Info

Publication number
WO2021193211A1
WO2021193211A1 PCT/JP2021/010461 JP2021010461W WO2021193211A1 WO 2021193211 A1 WO2021193211 A1 WO 2021193211A1 JP 2021010461 W JP2021010461 W JP 2021010461W WO 2021193211 A1 WO2021193211 A1 WO 2021193211A1
Authority
WO
WIPO (PCT)
Prior art keywords
arc spring
twist
semi
driving
finished product
Prior art date
Application number
PCT/JP2021/010461
Other languages
French (fr)
Japanese (ja)
Inventor
昌昭 前田
高橋 秀志
Original Assignee
日本発條株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本発條株式会社 filed Critical 日本発條株式会社
Priority to JP2021533638A priority Critical patent/JP6975873B1/en
Priority to CN202180023433.7A priority patent/CN115315323B/en
Publication of WO2021193211A1 publication Critical patent/WO2021193211A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F35/00Making springs from wire
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/04Wound springs
    • F16F1/06Wound springs with turns lying in cylindrical surfaces

Definitions

  • the present invention relates to a method and an apparatus for manufacturing an arc spring in which the axis of the coil spring is curved.
  • the arc spring may be subjected to injection processing such as shot peening after that. In this case, even if the twist is suppressed when the wedge portion is driven, the twist is generated after the injection process.
  • the problem to be solved is that the arc spring was twisted after the injection process.
  • the present invention provides a method and an apparatus for manufacturing an arc spring capable of suppressing twisting of the arc spring after injection processing.
  • the method of manufacturing an arc spring is a method of manufacturing an arc spring in which the axis of a coil spring in which a wire is spirally wound is curved.
  • a cuneus is sequentially driven between the spiral lines of a semi-finished product of the arc spring before the axis is curved, and at least one of the driving positions where the cuneus is sequentially driven is rotated.
  • the arc spring is injected.
  • a twist in the opposite direction to the twist of the arc spring is applied to cancel the twist.
  • the arc spring manufacturing device is an arc spring manufacturing device in which the axis of the coil spring in which the wire is spirally wound is curved.
  • a cuneus is sequentially driven between the spiral lines with respect to the semi-finished product of the arc spring before the axis is curved, and at least one of the driving positions where the cuneus is sequentially driven is rotated.
  • the driving portion for increasing or decreasing the twist generated in the arc spring due to the driving of the wedge portion and the arc spring are injected.
  • an injection processing unit that imparts a twist in the opposite direction to the twist of the arc spring and cancels the twist.
  • the twist can be canceled by performing the injection processing, it is possible to suppress the occurrence of the twist in the arc spring after the injection processing.
  • FIG. 1 (A) is a side view showing an arc spring according to an embodiment of the present invention
  • FIG. 1 (B) is a side view showing a semi-finished product of an S-winding arc spring
  • FIG. 1 (C) is a Z-winding arc spring. It is a side view which shows the semi-finished product of.
  • FIG. 2 is a block diagram showing an arc spring manufacturing apparatus according to an embodiment together with a twisted state of the arc spring.
  • 3 (A) and 3 (B) are partially omitted side views showing a driving portion of the arc spring manufacturing apparatus according to the embodiment
  • FIG. 3 (A) is the initial driving stage
  • FIG. 3 (B) is the driving stage. It is in the state of.
  • FIG. 4 (A) and 4 (B) are plan views of semi-finished products showing the driving position and the twisting direction of the wedge portion according to the embodiment, FIG. 4 (A) is winding S, and FIG. 4 (B) is Z. It is a volume.
  • FIG. 5 is a graph showing the amount of twist in each step in comparison between Examples and Comparative Examples.
  • FIG. 6 is a schematic view of an arc spring showing a method of measuring the twist amount of FIG.
  • the method for manufacturing the arc spring (1) of the present invention is to manufacture the arc spring (1) by bending the axis (X) of the coil spring in which the wire rod (3) is spirally wound.
  • the wedge portion (21) is driven and the injection process is performed on the semi-finished products (5A, 5B) of the arc spring (1).
  • the wedge portion (21) is sequentially driven between the spiral lines (9a) with respect to the semi-finished products (5A, 5B) of the arc spring (1) before the axis (X) is curved. ..
  • the driving positions where these wedge portions (21) are sequentially driven is shifted in the circumferential direction and the axis (X) of the semi-finished products (5A, 5B) is curved to form the arc spring (1).
  • the twist of the arc spring (1) caused by the driving of the wedge portion (21) is increased or decreased.
  • the injection process cancels the twist by imparting a twist in the opposite direction to the twist of the arc spring (1).
  • the direction of twisting due to injection processing is set according to the direction of the coiled winding of the arc spring (1).
  • the offsetting of the twist may not only completely eliminate the twist, but may also leave the twist within a predetermined allowable range remaining.
  • the increase or decrease of the twist of the arc spring (1) sets the twist that is offset by the reverse twist due to the injection process, and is performed according to the reverse twist.
  • the increase or decrease of the twist of the arc spring (1) can be set by the direction in which the driving position is shifted, the amount of the shift, and the number of shifts.
  • the driving position can be shifted by relative rotation between the semi-finished products (5A, 5B) and the wedge portion (21).
  • the driving position may be gradually shifted in the circumferential direction.
  • the amount of shift of the driving position may be the same.
  • the molded arc spring (1) may be heat-treated before the injection process.
  • the heat treatment imparts a twist in the opposite direction to the twist of the arc spring (1) to partially cancel the twist.
  • the injection process imparts a reverse twist to the remaining twist after the partial offset.
  • the injection process may be shot peening performed from the radial outside of the arc spring (1).
  • the compressive residual stress on the outer circumference is made larger than the inner circumference of the arc spring (1).
  • the arc spring (1) manufacturing apparatus (13) includes a driving portion (15) and an injection processing portion (19).
  • the driving portion (15) sequentially drives the wedge portion (21) between the spiral lines (9a) with respect to the semi-finished products (5A, 5B) of the arc spring (1) before the axis (X) is curved.
  • the driving portion (15) at least one of the driving positions in which these wedge portions (21) are sequentially driven is shifted in the circumferential direction, and the axis (X) of the semi-finished products (5A, 5B) is curved to form an arc spring. While forming (1), the twist of the arc spring (1) caused by the driving of the wedge portion (21) is increased or decreased.
  • the injection processing unit (19) performs injection processing on the arc spring (1) to impart a twist in the opposite direction to the twist of the arc spring (1) and cancel the twist.
  • [Arc spring] 1 (A) to 1 (C) are a side view showing an arc spring, a side view showing a semi-finished product of an S-winding arc spring, and a side view showing a semi-finished product of a Z-winding arc spring, respectively.
  • the arc spring 1 of this embodiment is an arc-shaped coil spring in which the wire rod 3 is spirally wound and the axis X is curved.
  • the semi-finished product 5A is in a state before the axis X is curved, and is in a straight shape in this embodiment.
  • the arc spring 1 and the semi-finished product 5A have a so-called S winding (left winding), and are wound counterclockwise around the axis X when viewed from the ends 7a and 7b.
  • the winding direction may be reversed as in the semi-finished product 5B.
  • the semi-finished product 5B is a so-called Z winding (right winding), and is wound clockwise around the axis X when viewed from the ends 7a and 7b.
  • the arc spring (not shown) formed from this semi-finished product 5B is also Z-wound.
  • the semi-finished products 5A and 5B mean those before the axis X is curved, and do not have to be straight. Therefore, the semi-finished products 5A and 5B also include those in which the axis X is curved or bent with respect to the straight shape in the manufacturing process.
  • the arc spring 1 of this embodiment has a main body portion 9 and endwind portions 11a and 11b on both sides.
  • the main body 9 is formed with a relatively large distance (hereinafter referred to as “pitch”) in the direction along the axis X of the spiral line 9a (gap between adjacent coil portions 9b), and is a countersunk portion.
  • the pitches of 11a and 11b are relatively small.
  • Seat surfaces 12a and 12b formed by cutting on both end surfaces of the arc spring 1 are formed on the end winding portions 11a and 11b.
  • the end winding portions 11a and 11b can be omitted.
  • axial direction the direction along the curved axis X
  • curved front axial direction the direction along the curved axis X before bending
  • the semi-finished product 5A has the same configuration as the arc spring 1 except that the axis X is straight. Further, the semi-finished product 5B has the same configuration as the arc spring 1 except that the axis X is straight and the winding direction is different.
  • FIG. 2 is a block diagram showing an arc spring manufacturing apparatus together with a twisted state of the arc spring.
  • 3 (A) and 3 (B) are partially omitted side views showing a driving portion of the arc spring manufacturing apparatus, FIG. 3 (A) is a state at the initial stage of driving, and FIG. 3 (B) is a state at the late stage of driving. ..
  • the manufacturing apparatus 13 of the arc spring 1 of this embodiment (hereinafter, simply referred to as “manufacturing apparatus 13”) includes a driving unit 15, a heat treatment unit 17, and an injection processing unit 19.
  • the driving portion 15 sequentially drives the wedge portion 21 into the spiral line spacing 9a of the semi-finished product 5A before the axis X is curved.
  • the driving position of the wedge portion 21 is gradually shifted in the circumferential direction (see FIG. 4).
  • the circumferential direction refers to the circumferential direction around the axis X of the semi-finished product 5A.
  • the driving portion 15 of this embodiment includes a pair of grip portions 23a and 23b and a wedge portion 21.
  • the pair of gripping portions 23a and 23b are composed of gripping mechanisms such as an air chuck, and can rotate around the axis X and move in the curved front axial direction, respectively.
  • the grip portions 23a and 23b rotate the semi-finished product 5A by a predetermined angle around the axis X and move the semi-finished product 5A by a predetermined amount in the curved front axis direction.
  • the rotation around the axis X and the movement in the curved front axis direction may be relative to the wedge portion 21. Therefore, it is also possible to rotate the wedge portion 21 and move it in the curved front axis direction.
  • the gripping portions 23a and 23b may be rotated or moved in the curved front axis direction by an appropriate driving portion.
  • the rotation of the grip portions 23a and 23b can be performed by a servomotor.
  • the grip portions 23a and 23b can be moved in the curved front axis direction by a servomotor and a ball screw.
  • One grip 23a grips one end 7a of the semi-finished product 5A
  • the other grip 23b grips the other end 7b of the semi-finished product 5A.
  • the grip by one grip portion 23a is performed from the beginning of driving the wedge portion 21, and the grip by the other grip portion 23b is performed by the one grip portion 23a while the wedge portion 21 is being sequentially driven into the semi-finished product 5A. It is performed by switching from gripping.
  • the wedge portion 21 is an expansion tool having a wedge-shaped tip.
  • the wedge portion 21 is driven in synchronization with the movement and rotation of the semi-finished product 5A so that the wedge portion 21 is driven into the line interval 9a of the semi-finished product 5A.
  • the semi-finished product 5A is supported by the die 25 facing the wedge portion 21 in the driving direction (vertical direction in the embodiment).
  • the wedge portion 21 may be driven by an appropriate drive unit, but for example, the rotational operation of the servomotor can be converted into an operation in the driving direction by a cam and transmitted to the wedge portion 21.
  • the arc spring 1 formed by driving the wedge portion 21 is conveyed to the heat treatment portion 17 by a conveying means (not shown).
  • the heat treatment unit 17 performs annealing as a heat treatment on the arc spring 1 before the injection process.
  • the heat treatment unit 17 can be configured by a well-known electric furnace or the like. Therefore, the details of the heat treatment unit 17 will be omitted.
  • the heat treatment in the heat treatment section 17 imparts a twist in the opposite direction to the twist of the arc spring 1 due to the driving of the wedge portion 21, and partially cancels the twist of the arc spring 1.
  • the injection processing unit 19 performs shot peening from the radial outside of the arc spring 1 as injection processing.
  • the injection processing unit 19 can be configured by a well-known shot peening device. Therefore, the details of the injection processing unit 19 will be omitted.
  • the twist of the arc spring 1 due to the driving of the wedge portion 21 is offset by giving a twist in the opposite direction.
  • a reverse twist is applied to the remaining twist after being partially offset by the heat treatment.
  • each part of the manufacturing apparatus 13 may be controlled by a computer (not shown).
  • the arc spring 1 is first formed by driving the wedge portion 21 into the semi-finished product 5A.
  • the semi-finished product 5A is conveyed to the driving portion 15 by a conveying means (not shown), and as shown in FIG. 3A, one end portion 7a of the semi-finished product 5A is gripped by one grip portion 23a and the other end.
  • the portion 7b is positioned on the die 25.
  • the wedge portion is formed from the other end 7b side of the semi-finished product 5A to the spiral line interval 9a.
  • Type 21 in sequence.
  • the semi-finished product 5A is plastically deformed so as to bend the axis X, and the arc spring 1 is formed.
  • the wedge portion 21 is driven 49 times.
  • the arc spring 1 is twisted by driving the wedge portion 21, and the twist is increased or decreased by the rotation of the semi-finished product 5A.
  • FIG. 4 (A) and 4 (B) are plan views of semi-finished products showing the driving position of the wedge portion and the direction of twisting, FIG. 4 (A) is winding S, and FIG. 4 (B) is winding Z.
  • the arc spring 1 is twisted in the S direction due to the driving of the wedge portion 21.
  • the S direction refers to a direction in which the other end portion 7b of the arc spring 1 or the semi-finished product 5A is rotated counterclockwise when viewed from the axial direction.
  • the Z direction is a direction opposite to the S direction, and refers to a direction in which the other end portion 7b of the arc spring 1 or the semi-finished product 5A is rotated clockwise when viewed from the axial direction.
  • the twist in the S direction is added by rotating the semi-finished product 5A in the S direction by a predetermined angle each time the wedge portion 21 is driven. Therefore, in this embodiment, the driving position is gradually shifted, and the amount of shifting of the driving position at this time is the same.
  • the semi-finished product 5A is rotated in the Z direction by a predetermined angle each time the wedge portion 21 is driven, thereby adding the twist in the Z direction and partially canceling the twist in the S direction. .. In the case of volume Z, the opposite is true for volume S.
  • the arc spring 1 of this embodiment increases the twist in the S direction in the S winding in response to the twist in the heat treatment and the injection process described later. Therefore, each time the wedge portion 21 is driven, the semi-finished product 5A is rotated in the S direction by a predetermined angle.
  • the rotation of the semi-finished product 5A may be performed by rotating the grip portion 23a or 23b in the Z direction, which is the opposite direction to the initial position, and returning the grip portion 23a or 23b to the initial position.
  • the driving position of the wedge portion 21 due to rotation is gradually shifted in the Z direction from the other end portion 7b to the one end portion 7a.
  • the virtual line L1 connecting the driving positions of the wedge portions 21 is as shown in FIG.
  • the virtual line L2 in the case of the Z winding is the opposite of that in the case of the S winding.
  • the semi-finished product 5A is rotated by 0.489 degrees each time the wedge portion 21 is driven in the twist of 8.5 degrees in the S direction when the semi-finished product 5A is not rotated.
  • a twist of 24 degrees in the S direction is added by driving 49 times. Therefore, the twist in the S direction generated in the molded arc spring 1 is 32.5 degrees.
  • the angle indicates the amount of twist and corresponds to the angle obtained by rotating the other end 7b of the semi-finished product 5A in the circumferential direction with respect to the initial position. Further, the angle is positive in the S direction and negative in the Z direction.
  • the arc spring 1 thus formed is annealed as a heat treatment. That is, the arc spring 1 is conveyed from the driving unit 15 to the heat treatment unit 17 by a transfer means (not shown), and the heat treatment unit 17 performs appropriate annealing.
  • the arc spring 1 After annealing, the arc spring 1 is subjected to shot peening as an injection process. That is, the arc spring 1 is conveyed from the heat treatment unit 17 to the injection processing unit 19 by a transfer means (not shown), and the injection processing unit 19 performs appropriate shot peening.
  • the twist of the arc spring 1 remaining partially offset by the heat treatment is offset by giving a twist in the opposite direction.
  • the compressive residual stress on the outer circumference becomes larger than that on the inner circumference of the arc spring 1 due to the difference in the amount of collision of the shot particles on the inner circumference and the outer circumference of the arc spring 1, and twisting due to shot peening occurs in the Z direction. ..
  • the amount of twist can be set by the compressive residual stress on the inner circumference and the outer circumference.
  • volume Z the opposite is true for volume S.
  • the twist in the Z direction due to shot peening in this embodiment is -32.5 degrees when combined with the twist due to annealing. Therefore, in this embodiment, after the shot peening is completed, the twist of the arc spring 1 is removed, and a flat arc spring 1 without twist can be obtained.
  • the amount of twist due to annealing is significantly smaller than the amount of twist due to shot peening. Therefore, the amount of twist due to annealing can be ignored.
  • annealing may be performed as a heat treatment even after shot peening. This annealing offsets the twist that remains after shot peening. However, as with the annealing before shot peening, the amount of twist due to annealing after shot peening is significantly smaller than the amount of twist due to shot peening, and can be ignored. In this case, only one of the twist amounts due to annealing before and after shot peening may be ignored.
  • angles related to the offsetting of the above-mentioned twist can be expressed by the following equation.
  • the angle has a directional property in the circumferential direction, and when the angle in one circumferential direction is positive, the angle in the other circumferential direction is negative.
  • is the angle of twist that occurs when the wedge portion 21 is driven without rotating the semi-finished product 5A
  • is the angle at which the semi-finished product 5A is rotated each time the wedge portion 21 is driven
  • N is the wedge portion. The number of times 21 is driven and ⁇ are the total values of the twist angles generated in the process after the wedge portion 21 is driven.
  • FIG. 5 is a graph showing the amount of twist in each step in comparison between the examples and the comparative examples.
  • FIG. 6 is a schematic view of an arc spring showing a method of measuring the twist amount of FIG.
  • an example shows an arc spring 1 manufactured by the manufacturing method of the above embodiment.
  • the same semi-finished product 5A as in the example was used, the twist of the arc spring was removed when the wedge portion was driven, and then annealing and shot peening were performed. That is, in the comparative example, the twist in the Z direction of ⁇ 8.5 degrees is added by rotating the semi-finished product, and the twist in the S direction of 8.5 degrees due to the driving of the wedge portion is offset.
  • the height H represents the amount of twist of the arc spring 1 on a scale different from the angle, and the arc spring 1 with respect to the surface F in a state where the arc spring 1 is placed on the flat surface F. Shows the height of the top of the. This height H is measured after each step on the left end, and the corresponding twist angle is shown on the right end.
  • the value of the height H means that the flatness of the arc spring 1 increases as the outer diameter of the semi-finished product 5A approaches 15.25 mm. This is shown as (height H-outer diameter) in FIG.
  • the angles at the right end are added up after heat treatment and injection processing.
  • the twist in the S direction of 32.5 degrees occurs after the arc spring 1 is formed, whereas in the comparative example, the twist is offset. Therefore, the value of (height H-outer diameter) is significantly smaller in the comparative example than in the example.
  • the twist in the S direction is offset by the twist in the Z direction in the embodiment.
  • a twist of -32.5 degrees in the Z direction occurs. Therefore, the value of (height H-outer diameter) is significantly larger in the comparative example than in the example.
  • the wedge portion 21 is sequentially driven into the spiral line interval 9a with respect to the semi-finished product 5A of the arc spring 1 before the axis X is curved, and the wedge portion is formed. At least one of the driving positions in which 21 is sequentially driven is shifted in the circumferential direction to increase the twist of the arc spring 1 caused by the driving of the wedge portion 21 when the semi-finished product 5A is curved to form the arc spring 1. By performing injection processing on the arc spring 1, a twist in the opposite direction to the twist of the arc spring 1 is imparted to cancel the twist.
  • the twist can be controlled when the wedge portion 21 is driven, and the controlled twist can be offset by the reverse twist during the injection process. Therefore, it is possible to reliably suppress the occurrence of twisting in the arc spring 1 after the injection process.
  • the arc spring 1 is heat-treated before the injection process to partially cancel the twist of the arc spring 1 by the reverse twist, and after the twist is partially offset by the injection process. Gives a reverse twist to the remaining twist.
  • the injection process is shot peening performed from the radial outside of the arc spring 1, and the compressive residual stress on the outer circumference is larger than that on the inner circumference of the arc spring 1.
  • the twisting in the direction opposite to the twisting caused by the driving of the wedge portion 21 can be reliably imparted by the injection processing, and the twisting of the arc spring 1 after the injection processing can be more reliably suppressed.
  • the driving position is gradually shifted, and the shifting amount of the driving position at this time is the same. Therefore, the twist of the arc spring 1 can be easily and surely increased.
  • the manufacturing apparatus 13 sequentially drives the cuneus 21 into the spiral interline 9a with respect to the semi-finished product 5A of the arc spring 1 before bending the axis X, and at least one of the driving positions where the cuneus 21 is sequentially driven. Is shifted in the circumferential direction, and when the semi-finished product 5A is curved to form the arc spring 1, the driving portion 15 for increasing the twist of the arc spring 1 caused by the driving of the wedge portion 21 and the arc spring 1 are injected. As a result, the injection processing unit 19 is provided so as to impart a twist in the opposite direction to the twist of the arc spring 1 and cancel the twist of the arc spring 1.
  • the manufacturing apparatus 13 can surely suppress the occurrence of twisting of the arc spring 1 after the injection processing, as in the above manufacturing method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Springs (AREA)
  • Wire Processing (AREA)

Abstract

Provided is a method for manufacturing an arc spring whereby the formation of twists in an arc spring after blasting can be inhibited. In this manufacturing method, wedges 21 are sequentially driven into spiral-shaped gaps 9a in a semi-finished product 5A of an arc spring 1 before a wire X thereof has been curved, at least one of the driving positions at which the wedges 21 have been sequentially driven in is shifted in the circumferential direction to increase the twist, in the arc spring 1, produced by the driving in of the wedges 21 when the semi-finished product 5A is curved to shape the arc spring 1, and the arc spring 1 is blasted to impart a twist in the opposite direction, with respect the twist in the arc spring 1, to cancel out the twist.

Description

アークスプリングの製造方法及び装置Arc spring manufacturing method and equipment
 本発明は、コイルばねの軸線が湾曲したアークスプリングの製造方法及び装置に関する。 The present invention relates to a method and an apparatus for manufacturing an arc spring in which the axis of the coil spring is curved.
 従来のアークスプリングの製造方法としては、軸線を湾曲させる前のアークスプリングの半製品に対し、螺旋状の線間に楔部を順次打ち込んで軸線を湾曲させるものがある。 As a conventional method for manufacturing an arc spring, there is a method in which a wedge portion is sequentially driven between spiral lines to bend the axis of a semi-finished arc spring before the axis is curved.
 かかるアークスプリングの製造方法では、単純に半製品を軸方向にずらしつつ楔部を順次線間に打ち込むと、楔部が打ち込まれるたびに螺旋状に応じて半製品に捩じれが生じることになる。 In such an arc spring manufacturing method, if the cuneus is driven between the lines in sequence while simply shifting the semi-finished product in the axial direction, the semi-finished product will be twisted according to the spiral shape each time the wedge is driven.
 このため、従来は、特許文献1のように、楔部の打ち込み位置を漸次周方向にずらすことで、直前の打ち込みによって生じた捩じれを、直後の打ち込みによって生じる捩じれによって相殺していた。 For this reason, conventionally, as in Patent Document 1, by gradually shifting the driving position of the wedge portion in the circumferential direction, the twist caused by the immediately preceding driving is offset by the twist generated by the immediately following driving.
 この製造方法によれば、捩じれを抑制しつつ軸線が湾曲したコイルばねを得ることが可能となる。 According to this manufacturing method, it is possible to obtain a coil spring having a curved axis while suppressing twisting.
 しかし、アークスプリングは、その後にショットピーニング等の噴射加工が行われることがある。この場合、楔部の打込み時に捩じれを抑制しても、噴射加工後に捩じれが生じてしまっていた。 However, the arc spring may be subjected to injection processing such as shot peening after that. In this case, even if the twist is suppressed when the wedge portion is driven, the twist is generated after the injection process.
特許第6538486号公報Japanese Patent No. 6538486
 解決しようとする問題点は、噴射加工後にアークスプリングに捩じれが生じていた点である。 The problem to be solved is that the arc spring was twisted after the injection process.
 本発明は、噴射加工後にアークスプリングに捩じれが生じることを抑制可能なアークスプリングの製造方法及び装置を提供する。 The present invention provides a method and an apparatus for manufacturing an arc spring capable of suppressing twisting of the arc spring after injection processing.
 アークスプリングの製造方法は、線材が螺旋状に巻かれたコイルばねの軸線が湾曲したアークスプリングの製造方法である。この製造方法は、前記軸線を湾曲させる前の前記アークスプリングの半製品に対し螺旋状の線間に楔部を順次打ち込み、前記楔部が順次打ち込まれた打込み位置の内、少なくとも一つを周方向にずらし、前記半製品の軸線を湾曲させて前記アークスプリングを成形する際に前記楔部の打ち込みによって前記アークスプリングに生じる捩じれを増大又は減少させ、前記アークスプリングに噴射加工を行うことにより、前記アークスプリングの捩じれに対する逆向きの捩じれを付与して前記捩じれを相殺する。 The method of manufacturing an arc spring is a method of manufacturing an arc spring in which the axis of a coil spring in which a wire is spirally wound is curved. In this manufacturing method, a cuneus is sequentially driven between the spiral lines of a semi-finished product of the arc spring before the axis is curved, and at least one of the driving positions where the cuneus is sequentially driven is rotated. By shifting in the direction and bending the axis of the semi-finished product to increase or decrease the twist generated in the arc spring by driving the cuneus when forming the arc spring, the arc spring is injected. A twist in the opposite direction to the twist of the arc spring is applied to cancel the twist.
 また、アークスプリングの製造装置は、線材が螺旋状に巻かれたコイルばねの軸線が湾曲したアークスプリングの製造装置である。この製造装置は、前記軸線を湾曲させる前の前記アークスプリングの半製品に対し螺旋状の線間に楔部を順次打ち込み、前記楔部が順次打ち込まれた打込み位置の内、少なくとも一つを周方向にずらし、前記半製品の軸線を湾曲させて前記アークスプリングを成形する際に前記楔部の打ち込みによって前記アークスプリングに生じる捩じれを増大又は減少させる打込み部と、前記アークスプリングに噴射加工を行うことにより、前記アークスプリングの捩じれに対する逆向きの捩じれを付与して前記捩じれを相殺する噴射加工部と、を備える。 The arc spring manufacturing device is an arc spring manufacturing device in which the axis of the coil spring in which the wire is spirally wound is curved. In this manufacturing apparatus, a cuneus is sequentially driven between the spiral lines with respect to the semi-finished product of the arc spring before the axis is curved, and at least one of the driving positions where the cuneus is sequentially driven is rotated. When the semi-finished product is displaced in the direction and the axis of the semi-finished product is curved to form the arc spring, the driving portion for increasing or decreasing the twist generated in the arc spring due to the driving of the wedge portion and the arc spring are injected. As a result, it is provided with an injection processing unit that imparts a twist in the opposite direction to the twist of the arc spring and cancels the twist.
 本発明は、噴射加工を行うことによって捩じれを相殺することができるため、噴射加工後にアークスプリングに捩じれが生じることを抑制できる。 In the present invention, since the twist can be canceled by performing the injection processing, it is possible to suppress the occurrence of the twist in the arc spring after the injection processing.
図1(A)は本発明の実施例に係るアークスプリングを示す側面図、図1(B)はS巻のアークスプリングの半製品を示す側面図、図1(C)はZ巻のアークスプリングの半製品を示す側面図である。1 (A) is a side view showing an arc spring according to an embodiment of the present invention, FIG. 1 (B) is a side view showing a semi-finished product of an S-winding arc spring, and FIG. 1 (C) is a Z-winding arc spring. It is a side view which shows the semi-finished product of. 図2は、実施例に係るアークスプリングの製造装置をアークスプリングの捩じれ状態と共に示すブロック図である。FIG. 2 is a block diagram showing an arc spring manufacturing apparatus according to an embodiment together with a twisted state of the arc spring. 図3(A)及び(B)は、実施例に係るアークスプリングの製造装置の打込み部を示す一部省略側面図であり、図3(A)は打込み初期、図3(B)は打込み後期の状態である。3 (A) and 3 (B) are partially omitted side views showing a driving portion of the arc spring manufacturing apparatus according to the embodiment, FIG. 3 (A) is the initial driving stage, and FIG. 3 (B) is the driving stage. It is in the state of. 図4(A)及び(B)は、実施例に係る楔部の打込み位置と捩じれの方向を示す半製品の平面図であり、図4(A)はS巻、図4(B)はZ巻である。4 (A) and 4 (B) are plan views of semi-finished products showing the driving position and the twisting direction of the wedge portion according to the embodiment, FIG. 4 (A) is winding S, and FIG. 4 (B) is Z. It is a volume. 図5は、実施例と比較例との比較において、各工程における捩じれ量を示すグラフである。FIG. 5 is a graph showing the amount of twist in each step in comparison between Examples and Comparative Examples. 図6は、図5の捩じれ量の測定方法を示すアークスプリングの概略図である。FIG. 6 is a schematic view of an arc spring showing a method of measuring the twist amount of FIG.
 噴射加工後にアークスプリングに捩じれが生じることを抑制するという目的を、アークスプリングを成形する際の楔部の打込みによって、噴射加工で相殺されるねじれを生じさせることにより実現した。 The purpose of suppressing the occurrence of twisting in the arc spring after injection processing was realized by causing twisting that is offset by injection processing by driving the wedge part when molding the arc spring.
 本発明のアークスプリング(1)の製造方法は、線材(3)が螺旋状に巻かれたコイルばねの軸線(X)を湾曲させてアークスプリング(1)を製造するものである。この製造方法は、アークスプリング(1)の半製品(5A,5B)に対し、楔部(21)の打ち込みと、噴射加工を行う。 The method for manufacturing the arc spring (1) of the present invention is to manufacture the arc spring (1) by bending the axis (X) of the coil spring in which the wire rod (3) is spirally wound. In this manufacturing method, the wedge portion (21) is driven and the injection process is performed on the semi-finished products (5A, 5B) of the arc spring (1).
 楔部(21)の打ち込みは、軸線(X)を湾曲させる前のアークスプリング(1)の半製品(5A,5B)に対し螺旋状の線間(9a)に楔部(21)を順次打ち込む。これら楔部(21)が順次打ち込まれた打込み位置の内、少なくとも一つを周方向にずらし、半製品(5A,5B)の軸線(X)を湾曲させてアークスプリング(1)を成形する際に楔部(21)の打ち込みによって生じるアークスプリング(1)の捩じれを増大又は減少させる。 To drive the wedge portion (21), the wedge portion (21) is sequentially driven between the spiral lines (9a) with respect to the semi-finished products (5A, 5B) of the arc spring (1) before the axis (X) is curved. .. When at least one of the driving positions where these wedge portions (21) are sequentially driven is shifted in the circumferential direction and the axis (X) of the semi-finished products (5A, 5B) is curved to form the arc spring (1). The twist of the arc spring (1) caused by the driving of the wedge portion (21) is increased or decreased.
 噴射加工は、アークスプリング(1)の捩じれに対する逆向きの捩じれを付与して捩じれを相殺する。なお、噴射加工による捩じれの方向は、アークスプリング(1)のコイル状の巻の方向に応じて設定される。捩じれの相殺は、完全に捩じれをなくすことだけでなく、所定の許容範囲内の捩じれが残っている状態とするものであってもよい。 The injection process cancels the twist by imparting a twist in the opposite direction to the twist of the arc spring (1). The direction of twisting due to injection processing is set according to the direction of the coiled winding of the arc spring (1). The offsetting of the twist may not only completely eliminate the twist, but may also leave the twist within a predetermined allowable range remaining.
 アークスプリング(1)の捩じれの増大又は減少は、噴射加工による逆向きの捩じれと相殺される捩じれを設定するものであり、その逆向きの捩じれに応じて行われる。アークスプリング(1)の捩じれの増大又は減少は、打込み位置をずらす方向、ずらす量、ずらす数によって設定が可能である。 The increase or decrease of the twist of the arc spring (1) sets the twist that is offset by the reverse twist due to the injection process, and is performed according to the reverse twist. The increase or decrease of the twist of the arc spring (1) can be set by the direction in which the driving position is shifted, the amount of the shift, and the number of shifts.
 打込み位置のずらしは、半製品(5A,5B)と楔部(21)との間の相対回転によって行うことが可能である。 The driving position can be shifted by relative rotation between the semi-finished products (5A, 5B) and the wedge portion (21).
 打込み位置は、漸次周方向にずらしてもよい。この場合において、打込み位置のずらし量は、同一としてもよい。 The driving position may be gradually shifted in the circumferential direction. In this case, the amount of shift of the driving position may be the same.
 噴射加工の前に、成形されたアークスプリング(1)に対して熱処理を行ってもよい。熱処理は、アークスプリング(1)の捩じれに対する逆向きの捩じれを付与して捩じれを部分的に相殺する。この場合、噴射加工では、部分的に相殺された後の残りの捩じれに対する逆向きの捩じれを付与する。 The molded arc spring (1) may be heat-treated before the injection process. The heat treatment imparts a twist in the opposite direction to the twist of the arc spring (1) to partially cancel the twist. In this case, the injection process imparts a reverse twist to the remaining twist after the partial offset.
 噴射加工は、アークスプリング(1)の径方向外側から行われるショットピーニングとしてもよい。この場合、アークスプリング(1)の内周よりも外周の圧縮残留応力を大きくする。 The injection process may be shot peening performed from the radial outside of the arc spring (1). In this case, the compressive residual stress on the outer circumference is made larger than the inner circumference of the arc spring (1).
 アークスプリング(1)の製造装置(13)は、打込み部(15)と、噴射加工部(19)とを備える。打込み部(15)は、軸線(X)を湾曲させる前のアークスプリング(1)の半製品(5A,5B)に対し螺旋状の線間(9a)に楔部(21)を順次打ち込む。打込み部(15)は、これら楔部(21)が順次打ち込まれた打込み位置の内、少なくとも一つを周方向にずらし、半製品(5A,5B)の軸線(X)を湾曲させてアークスプリング(1)を成形すると共に楔部(21)の打ち込みによって生じるアークスプリング(1)の捩じれを増大又は減少させる。噴射加工部(19)は、アークスプリング(1)に噴射加工を行うことにより、アークスプリング(1)の捩じれに対する逆向きの捩じれを付与して捩じれを相殺する。 The arc spring (1) manufacturing apparatus (13) includes a driving portion (15) and an injection processing portion (19). The driving portion (15) sequentially drives the wedge portion (21) between the spiral lines (9a) with respect to the semi-finished products (5A, 5B) of the arc spring (1) before the axis (X) is curved. In the driving portion (15), at least one of the driving positions in which these wedge portions (21) are sequentially driven is shifted in the circumferential direction, and the axis (X) of the semi-finished products (5A, 5B) is curved to form an arc spring. While forming (1), the twist of the arc spring (1) caused by the driving of the wedge portion (21) is increased or decreased. The injection processing unit (19) performs injection processing on the arc spring (1) to impart a twist in the opposite direction to the twist of the arc spring (1) and cancel the twist.
 [アークスプリング]
 図1(A)~(C)は、それぞれアークスプリングを示す側面図、S巻のアークスプリングの半製品を示す側面図、及びZ巻のアークスプリングの半製品を示す側面図である。
[Arc spring]
1 (A) to 1 (C) are a side view showing an arc spring, a side view showing a semi-finished product of an S-winding arc spring, and a side view showing a semi-finished product of a Z-winding arc spring, respectively.
 本実施例のアークスプリング1は、線材3が螺旋状に巻かれ、軸線Xが湾曲した弧状のコイルばねである。半製品5Aは、軸線Xが湾曲する前の状態であり、本実施例では直状となっている。アークスプリング1及び半製品5Aは、巻の方向がいわゆるS巻(左巻)であり、端部7a及び7bから見て軸線X周りに反時計回りで巻かれている。 The arc spring 1 of this embodiment is an arc-shaped coil spring in which the wire rod 3 is spirally wound and the axis X is curved. The semi-finished product 5A is in a state before the axis X is curved, and is in a straight shape in this embodiment. The arc spring 1 and the semi-finished product 5A have a so-called S winding (left winding), and are wound counterclockwise around the axis X when viewed from the ends 7a and 7b.
 巻きの方向は、半製品5Bのように逆向きにしてもよい。半製品5Bは、いわゆるZ巻(右巻)であり、端部7a及び7bから見て軸線X周りに時計回りで巻かれている。この半製品5Bから成形されるアークスプリング(図示せず)も、同様にZ巻となる。 The winding direction may be reversed as in the semi-finished product 5B. The semi-finished product 5B is a so-called Z winding (right winding), and is wound clockwise around the axis X when viewed from the ends 7a and 7b. The arc spring (not shown) formed from this semi-finished product 5B is also Z-wound.
 なお、半製品5A及び5Bは、軸線Xを湾曲させる前のものを意味し、直状である必要はない。このため、半製品5A及び5Bには、製造過程において軸線Xが直状に対して湾曲したり屈曲したもの等も含まれる。 Note that the semi-finished products 5A and 5B mean those before the axis X is curved, and do not have to be straight. Therefore, the semi-finished products 5A and 5B also include those in which the axis X is curved or bent with respect to the straight shape in the manufacturing process.
 本実施例のアークスプリング1は、本体部9と、両側の座巻部11a,11bとを有している。本体部9は、螺旋状の線間9a(隣接するコイル部分9b間の隙間)の軸線Xに沿った方向の距離(以下、「ピッチ」と称する)が相対的に大きく形成され、座巻部11a,11bは、ピッチが相対的に小さく形成されている。座巻部11a,11bには、アークスプリング1の両端面である切削による座面12a,12bが形成されている。なお、座巻部11a,11bは省略することも可能である。 The arc spring 1 of this embodiment has a main body portion 9 and endwind portions 11a and 11b on both sides. The main body 9 is formed with a relatively large distance (hereinafter referred to as “pitch”) in the direction along the axis X of the spiral line 9a (gap between adjacent coil portions 9b), and is a countersunk portion. The pitches of 11a and 11b are relatively small. Seat surfaces 12a and 12b formed by cutting on both end surfaces of the arc spring 1 are formed on the end winding portions 11a and 11b. The end winding portions 11a and 11b can be omitted.
 以下において、湾曲した軸線Xに沿った方向は、「軸方向」と称し、湾曲前の軸線Xに沿った方向は、「湾曲前軸方向」と称する。 In the following, the direction along the curved axis X is referred to as "axial direction", and the direction along the curved axis X before bending is referred to as "curved front axial direction".
 半製品5Aは、軸線Xが直状であることを除き、アークスプリング1と同一構成である。また、半製品5Bは、軸線Xが直状であること及び巻の方向が異なることを除き、アークスプリング1と同一構成である。 The semi-finished product 5A has the same configuration as the arc spring 1 except that the axis X is straight. Further, the semi-finished product 5B has the same configuration as the arc spring 1 except that the axis X is straight and the winding direction is different.
 [アークスプリングの製造装置]
 図2は、アークスプリングの製造装置をアークスプリングの捩じれ状態と共に示すブロック図である。図3(A)及び(B)は、アークスプリングの製造装置の打込み部を示す一部省略側面図であり、図3(A)は打込み初期、図3(B)は打込み後期の状態である。
[Arc spring manufacturing equipment]
FIG. 2 is a block diagram showing an arc spring manufacturing apparatus together with a twisted state of the arc spring. 3 (A) and 3 (B) are partially omitted side views showing a driving portion of the arc spring manufacturing apparatus, FIG. 3 (A) is a state at the initial stage of driving, and FIG. 3 (B) is a state at the late stage of driving. ..
 本実施例のアークスプリング1の製造装置13(以下、単に「製造装置13」と称する)は、打込み部15と、熱処理部17と、噴射加工部19とを備えている。 The manufacturing apparatus 13 of the arc spring 1 of this embodiment (hereinafter, simply referred to as “manufacturing apparatus 13”) includes a driving unit 15, a heat treatment unit 17, and an injection processing unit 19.
 打込み部15は、軸線Xを湾曲させる前の半製品5Aの螺旋状の線間9aに楔部21を順次打ち込む。本実施例において、楔部21の打込み位置は、漸次周方向にずらされる(図4参照)。この打込みにより、半製品5Aを湾曲させてアークスプリング1を成形すると共に、楔部21の打ち込みによって生じるアークスプリング1の捩じれを増大させる。なお、周方向とは、半製品5Aの軸心X周りの円周方向をいう。 The driving portion 15 sequentially drives the wedge portion 21 into the spiral line spacing 9a of the semi-finished product 5A before the axis X is curved. In this embodiment, the driving position of the wedge portion 21 is gradually shifted in the circumferential direction (see FIG. 4). By this driving, the semi-finished product 5A is curved to form the arc spring 1, and the twist of the arc spring 1 caused by the driving of the wedge portion 21 is increased. The circumferential direction refers to the circumferential direction around the axis X of the semi-finished product 5A.
 本実施例の打込み部15は、一対の把持部23a,23bと、楔部21とを備えている。一対の把持部23a,23bは、エアーチャック等の把持機構からなり、それぞれ軸心X周り回転及び湾曲前軸方向への移動が可能となっている。これにより、把持部23a,23bは、楔部21の打込みが行われるたびに、半製品5Aを軸線X周りに所定角度回転させると共に湾曲前軸方向に所定量移動させる。なお、軸心X周り回転及び湾曲前軸方向への移動は、楔部21との相対的なものであれば良い。このため、楔部21を回転させ湾曲前軸方向に移動させる構成とすることも可能である。 The driving portion 15 of this embodiment includes a pair of grip portions 23a and 23b and a wedge portion 21. The pair of gripping portions 23a and 23b are composed of gripping mechanisms such as an air chuck, and can rotate around the axis X and move in the curved front axial direction, respectively. As a result, each time the wedge portion 21 is driven, the grip portions 23a and 23b rotate the semi-finished product 5A by a predetermined angle around the axis X and move the semi-finished product 5A by a predetermined amount in the curved front axis direction. The rotation around the axis X and the movement in the curved front axis direction may be relative to the wedge portion 21. Therefore, it is also possible to rotate the wedge portion 21 and move it in the curved front axis direction.
 把持部23a,23bの回転や湾曲前軸方向への移動は、適宜の駆動部によって行えば良い。例えば、把持部23a,23bの回転は、サーボモーターによって行わせることができる。また、把持部23a,23bの湾曲前軸方向への移動は、サーボモーター及びボールねじによって行わせることができる。 The gripping portions 23a and 23b may be rotated or moved in the curved front axis direction by an appropriate driving portion. For example, the rotation of the grip portions 23a and 23b can be performed by a servomotor. Further, the grip portions 23a and 23b can be moved in the curved front axis direction by a servomotor and a ball screw.
 一方の把持部23aは、半製品5Aの一端部7aを把持し、他方の把持部23bは、半製品5Aの他端部7bを把持する。一方の把持部23aによる把持は、楔部21の打ち込み当初から行われ、他方の把持部23bによる把持は、半製品5Aに楔部21を順次打ち込んでいる途中において、一方の把持部23aでの把持から切り替わって行われる。 One grip 23a grips one end 7a of the semi-finished product 5A, and the other grip 23b grips the other end 7b of the semi-finished product 5A. The grip by one grip portion 23a is performed from the beginning of driving the wedge portion 21, and the grip by the other grip portion 23b is performed by the one grip portion 23a while the wedge portion 21 is being sequentially driven into the semi-finished product 5A. It is performed by switching from gripping.
 楔部21は、先端が楔状に形成された拡開ツールである。楔部21は、半製品5Aの移動及び回転と同期して駆動されることで、半製品5Aの線間9aに打ち込まれるようになっている。この打込み時には、楔部21に打込み方向(実施例では上下方向)で対向するダイ25によって半製品5Aが支持される。 The wedge portion 21 is an expansion tool having a wedge-shaped tip. The wedge portion 21 is driven in synchronization with the movement and rotation of the semi-finished product 5A so that the wedge portion 21 is driven into the line interval 9a of the semi-finished product 5A. At the time of this driving, the semi-finished product 5A is supported by the die 25 facing the wedge portion 21 in the driving direction (vertical direction in the embodiment).
 なお、楔部21の打込みは、適宜の駆動部により行えば良いが、例えばサーボモーターの回転動作をカムによって打ち込み方向の動作に変換して楔部21に伝達することで行うことができる。 The wedge portion 21 may be driven by an appropriate drive unit, but for example, the rotational operation of the servomotor can be converted into an operation in the driving direction by a cam and transmitted to the wedge portion 21.
 楔部21の打込みによって成形されたアークスプリング1は、図示しない搬送手段によって熱処理部17に搬送される。 The arc spring 1 formed by driving the wedge portion 21 is conveyed to the heat treatment portion 17 by a conveying means (not shown).
 熱処理部17は、噴射加工の前に、アークスプリング1に対し、熱処理としての焼鈍しを行うものである。熱処理部17は、周知の電気炉等によって構成することが可能である。このため、熱処理部17の詳細については説明を省略する。 The heat treatment unit 17 performs annealing as a heat treatment on the arc spring 1 before the injection process. The heat treatment unit 17 can be configured by a well-known electric furnace or the like. Therefore, the details of the heat treatment unit 17 will be omitted.
 この熱処理部17での熱処理により、楔部21の打込みによるアークスプリング1の捩じれに対する逆向きの捩じれを付与し、アークスプリング1の捩じれを部分的に相殺する。 The heat treatment in the heat treatment section 17 imparts a twist in the opposite direction to the twist of the arc spring 1 due to the driving of the wedge portion 21, and partially cancels the twist of the arc spring 1.
 噴射加工部19は、噴射加工として、アークスプリング1の径方向外側からのショットピーニングを施すものである。噴射加工部19は、周知のショットピーニング装置によって構成することが可能である。このため、噴射加工部19の詳細については説明を省略する。 The injection processing unit 19 performs shot peening from the radial outside of the arc spring 1 as injection processing. The injection processing unit 19 can be configured by a well-known shot peening device. Therefore, the details of the injection processing unit 19 will be omitted.
 この噴射加工部19での噴射加工により、楔部21の打込みによるアークスプリング1の捩じれに対し、逆向きの捩じれを付与して相殺する。本実施例では、熱処理によって部分的に相殺された後の残りの捩じれに対する逆向きの捩じれを付与する。 By the injection processing in the injection processing unit 19, the twist of the arc spring 1 due to the driving of the wedge portion 21 is offset by giving a twist in the opposite direction. In this embodiment, a reverse twist is applied to the remaining twist after being partially offset by the heat treatment.
 なお、製造装置13の各部は、図示しないコンピューターによって制御すれば良い。 Note that each part of the manufacturing apparatus 13 may be controlled by a computer (not shown).
  [アークスプリングの製造方法]
 本実施例のアークスプリング1の製造方法では、有効巻き数が49、外径が15.25mmの半製品5Aからアークスプリング1を製造する場合について説明する。ただし、本実施例の製造方法を適用して、他の寸法の半製品5Aからアークスプリング1を製造することも可能である。
[Manufacturing method of arc spring]
In the method of manufacturing the arc spring 1 of this embodiment, a case where the arc spring 1 is manufactured from a semi-finished product 5A having an effective number of turns of 49 and an outer diameter of 15.25 mm will be described. However, it is also possible to manufacture the arc spring 1 from the semi-finished product 5A having other dimensions by applying the manufacturing method of this embodiment.
 かかる製造方法では、まず半製品5Aに対する楔部21の打込みにより、アークスプリング1が成形される。 In such a manufacturing method, the arc spring 1 is first formed by driving the wedge portion 21 into the semi-finished product 5A.
 打込みの際には、図示しない搬送手段によって半製品5Aが打込み部15に搬送され、図3(A)のように、半製品5Aの一端部7aを一方の把持部23aで把持すると共に他端部7bをダイ25上に位置させる。 At the time of driving, the semi-finished product 5A is conveyed to the driving portion 15 by a conveying means (not shown), and as shown in FIG. 3A, one end portion 7a of the semi-finished product 5A is gripped by one grip portion 23a and the other end. The portion 7b is positioned on the die 25.
 そして、図3(B)のように、半製品5Aを軸線X周りに回転させると共に湾曲前軸方向に移動させつつ、半製品5Aの他端部7b側から螺旋状の線間9aに楔部21を順次打ち込む。これにより、軸線Xを湾曲させるように半製品5Aを塑性変形させ、アークスプリング1を成形する。なお、本実施例において、楔部21の打込みは49回行われる。 Then, as shown in FIG. 3B, while rotating the semi-finished product 5A around the axis X and moving it in the curved front axis direction, the wedge portion is formed from the other end 7b side of the semi-finished product 5A to the spiral line interval 9a. Type 21 in sequence. As a result, the semi-finished product 5A is plastically deformed so as to bend the axis X, and the arc spring 1 is formed. In this embodiment, the wedge portion 21 is driven 49 times.
 このとき、アークスプリング1には、楔部21の打込みによる捩じれが生じるが、かかる捩じれは、半製品5Aの回転によって増大又は減少される。 At this time, the arc spring 1 is twisted by driving the wedge portion 21, and the twist is increased or decreased by the rotation of the semi-finished product 5A.
 図4(A)及び(B)は、楔部の打込み位置と捩じれの方向を示す半製品の平面図であり、図4(A)はS巻、図4(B)はZ巻である。 4 (A) and 4 (B) are plan views of semi-finished products showing the driving position of the wedge portion and the direction of twisting, FIG. 4 (A) is winding S, and FIG. 4 (B) is winding Z.
 S巻の半製品5Aの場合、楔部21の打ち込みによるアークスプリング1の捩じれはS方向に生じる。S方向とは、アークスプリング1又は半製品5Aの他端部7bを軸方向から見て反時計回りに回転させる方向をいう。Z方向は、S方向とは逆向きの方向であり、アークスプリング1又は半製品5Aの他端部7bを軸方向から見て時計回りに回転させる方向をいう。なお、S方向の捩じれにより、捩じれのあるアークスプリング1の他端部7bを軸方向から見た場合、捩じれのないアークスプリング1(図1(A)参照)の軸線Xを中心として、捩じれのあるアークスプリング1の軸線Xt(図6参照)が時計回りに螺旋を描くように変形する。Z巻の半製品5Bの場合は、この逆である。 In the case of the S-wound semi-finished product 5A, the arc spring 1 is twisted in the S direction due to the driving of the wedge portion 21. The S direction refers to a direction in which the other end portion 7b of the arc spring 1 or the semi-finished product 5A is rotated counterclockwise when viewed from the axial direction. The Z direction is a direction opposite to the S direction, and refers to a direction in which the other end portion 7b of the arc spring 1 or the semi-finished product 5A is rotated clockwise when viewed from the axial direction. When the other end 7b of the twisted arc spring 1 is viewed from the axial direction due to the twist in the S direction, the twist is centered on the axis X of the non-twisted arc spring 1 (see FIG. 1 (A)). The axis Xt (see FIG. 6) of a certain arc spring 1 is deformed in a clockwise spiral. The opposite is true for the Z-volume semi-finished product 5B.
 S巻において捩じれを増大させる場合は、楔部21を打ち込む度に半製品5Aを所定角度だけS方向に回転させることにより、S方向の捩じれを付加する。従って、本実施例では、打込み位置を漸次ずらし、このときの打込み位置のずらし量は、全て同一となっている。逆に、捩じれを減少させる場合は、楔部21を打ち込む度に半製品5Aを所定角度だけZ方向に回転させることにより、Z方向の捩じれを付加してS方向の捩じれを部分的に相殺する。Z巻の場合は、S巻の場合とは逆になる。 When increasing the twist in the S winding, the twist in the S direction is added by rotating the semi-finished product 5A in the S direction by a predetermined angle each time the wedge portion 21 is driven. Therefore, in this embodiment, the driving position is gradually shifted, and the amount of shifting of the driving position at this time is the same. On the contrary, when reducing the twist, the semi-finished product 5A is rotated in the Z direction by a predetermined angle each time the wedge portion 21 is driven, thereby adding the twist in the Z direction and partially canceling the twist in the S direction. .. In the case of volume Z, the opposite is true for volume S.
 本実施例のアークスプリング1は、後述する熱処理及び噴射加工での捩じれに応じ、S巻においてS方向の捩じれを増大させる。このため、楔部21を打ち込む度に半製品5Aを所定角度だけS方向に回転させることになる。半製品5Aの回転は、把持部23a又は23bを初期位置に対して予め逆方向であるZ方向に回転させておき、初期位置に戻すことで行われてもよい。回転による楔部21の打込み位置は、他端部7bから一端部7aにかけて、漸次Z方向にずらされることになる。これら楔部21の打込み位置を連ねた仮想線L1は、図4のとおりである。Z巻の場合の仮想線L2は、S巻の場合の逆になる。 The arc spring 1 of this embodiment increases the twist in the S direction in the S winding in response to the twist in the heat treatment and the injection process described later. Therefore, each time the wedge portion 21 is driven, the semi-finished product 5A is rotated in the S direction by a predetermined angle. The rotation of the semi-finished product 5A may be performed by rotating the grip portion 23a or 23b in the Z direction, which is the opposite direction to the initial position, and returning the grip portion 23a or 23b to the initial position. The driving position of the wedge portion 21 due to rotation is gradually shifted in the Z direction from the other end portion 7b to the one end portion 7a. The virtual line L1 connecting the driving positions of the wedge portions 21 is as shown in FIG. The virtual line L2 in the case of the Z winding is the opposite of that in the case of the S winding.
 かかる打込み位置のずらしにより、本実施例では、半製品5Aを回転させないときのS方向の8.5度の捩じれに、楔部21を打ち込む度に半製品5Aを0.489度回転させることで49回の打込みによりS方向の24度の捩じれが付加される。従って、成形されたアークスプリング1に生じるS方向の捩じれは32.5度となる。 Due to such a shift in the driving position, in this embodiment, the semi-finished product 5A is rotated by 0.489 degrees each time the wedge portion 21 is driven in the twist of 8.5 degrees in the S direction when the semi-finished product 5A is not rotated. A twist of 24 degrees in the S direction is added by driving 49 times. Therefore, the twist in the S direction generated in the molded arc spring 1 is 32.5 degrees.
 ここで、角度は、捩じれ量を示し、半製品5Aの他端部7bを初期位置に対して周方向に回転させた角度に相当する。また、角度はS方向をプラスとし、Z方向をマイナスとする。 Here, the angle indicates the amount of twist and corresponds to the angle obtained by rotating the other end 7b of the semi-finished product 5A in the circumferential direction with respect to the initial position. Further, the angle is positive in the S direction and negative in the Z direction.
 こうして成形されたアークスプリング1には、熱処理としての焼鈍しが行われる。すなわち、図示しない搬送手段によってアークスプリング1が打込み部15から熱処理部17に搬送され、熱処理部17において適宜の焼鈍しが行われる。 The arc spring 1 thus formed is annealed as a heat treatment. That is, the arc spring 1 is conveyed from the driving unit 15 to the heat treatment unit 17 by a transfer means (not shown), and the heat treatment unit 17 performs appropriate annealing.
 焼鈍し時には、楔部21の打込みによるアークスプリング1の捩じれに対する逆向きの捩じれが付与され、アークスプリング1の捩じれを部分的に相殺する。 At the time of annealing, a twist in the opposite direction to the twist of the arc spring 1 due to the driving of the wedge portion 21 is given, and the twist of the arc spring 1 is partially offset.
 S巻の場合、アークスプリング1に、焼鈍しによってZ方向の捩じれが生じる。このため、アークスプリング1に生じているS方向の捩じれが部分的に相殺される。Z巻の場合はS巻の場合とは逆になる。 In the case of winding S, the arc spring 1 is twisted in the Z direction due to annealing. Therefore, the twist in the S direction generated in the arc spring 1 is partially offset. The case of volume Z is the opposite of that of volume S.
 焼鈍し後は、アークスプリング1には、噴射加工としてのショットピーニングが施される。すなわち、図示しない搬送手段によってアークスプリング1が熱処理部17から噴射加工部19に搬送され、噴射加工部19において適宜のショットピーニングが行われる。 After annealing, the arc spring 1 is subjected to shot peening as an injection process. That is, the arc spring 1 is conveyed from the heat treatment unit 17 to the injection processing unit 19 by a transfer means (not shown), and the injection processing unit 19 performs appropriate shot peening.
 この噴射加工部19でのショットピーニングにより、熱処理によって部分的に相殺されて残ったアークスプリング1の捩じれに対し、逆向きの捩じれを付与して相殺する。 By shot peening in the injection processing unit 19, the twist of the arc spring 1 remaining partially offset by the heat treatment is offset by giving a twist in the opposite direction.
 S巻の場合は、アークスプリング1の内周と外周へのショット粒の衝突量差により、アークスプリング1の内周よりも外周の圧縮残留応力が大きくなり、ショットピーニングによる捩じれがZ方向に生じる。なお、捩じれ量は、内周及び外周の圧縮残留応力によって設定することが可能である。Z巻の場合は、S巻の場合とは逆になる。 In the case of winding S, the compressive residual stress on the outer circumference becomes larger than that on the inner circumference of the arc spring 1 due to the difference in the amount of collision of the shot particles on the inner circumference and the outer circumference of the arc spring 1, and twisting due to shot peening occurs in the Z direction. .. The amount of twist can be set by the compressive residual stress on the inner circumference and the outer circumference. In the case of volume Z, the opposite is true for volume S.
 本実施例のショットピーニングによるZ方向の捩じれは、焼鈍しによる捩じれと合わせて、-32.5度となる。このため、本実施例では、ショットピーニング完了後、アークスプリング1の捩じれが除去され、捩じれのない平坦なアークスプリング1を得ることができる。なお、焼鈍しによる捩じれ量は、ショットピーニングによる捩じれ量と比較して大幅に小さい。このため、焼鈍しによる捩じれ量は、無視することも可能である。 The twist in the Z direction due to shot peening in this embodiment is -32.5 degrees when combined with the twist due to annealing. Therefore, in this embodiment, after the shot peening is completed, the twist of the arc spring 1 is removed, and a flat arc spring 1 without twist can be obtained. The amount of twist due to annealing is significantly smaller than the amount of twist due to shot peening. Therefore, the amount of twist due to annealing can be ignored.
 なお、ショットピーニング後にも、熱処理としての焼鈍しを行ってもよい。この焼鈍しでは、ショットピーニングの後に残った捩じれを相殺する。ただし、ショットピーニング前の焼鈍しと同様、ショットピーニング後の焼鈍しによる捩じれ量は、ショットピーニングによる捩じれ量と比較して大幅に小さいので、無視することも可能である。この場合、ショットピーニング前後の焼鈍しによる捩じれ量の何れか一方のみを無視してもよい。 Note that annealing may be performed as a heat treatment even after shot peening. This annealing offsets the twist that remains after shot peening. However, as with the annealing before shot peening, the amount of twist due to annealing after shot peening is significantly smaller than the amount of twist due to shot peening, and can be ignored. In this case, only one of the twist amounts due to annealing before and after shot peening may be ignored.
 前述した捩じれの相殺に関する角度の関係は、下式で表すことができる。θがゼロに近づくほど、アークスプリング1の平坦度が高くなる。なお、角度は、周方向に方向性を有し、一方の周方向への角度をプラスとした場合、他方の周方向への角度はマイナスとなる。 The relationship of angles related to the offsetting of the above-mentioned twist can be expressed by the following equation. The closer θ is to zero, the higher the flatness of the arc spring 1. The angle has a directional property in the circumferential direction, and when the angle in one circumferential direction is positive, the angle in the other circumferential direction is negative.
 θ=α+β×N+γ Θ = α + β × N + γ
 ここで、αは、半製品5Aを回転させずに楔部21を打ち込んだときに生じる捩じれの角度、βは、楔部21を打ち込む度に半製品5Aを回転させる角度、Nは、楔部21を打ち込む回数、γは、楔部21の打込み後の工程で生じる捩じれの角度の合算値である。 Here, α is the angle of twist that occurs when the wedge portion 21 is driven without rotating the semi-finished product 5A, β is the angle at which the semi-finished product 5A is rotated each time the wedge portion 21 is driven, and N is the wedge portion. The number of times 21 is driven and γ are the total values of the twist angles generated in the process after the wedge portion 21 is driven.
 図5は、実施例と比較例との比較において、各工程における捩じれ量を示すグラフである。図6は、図5の捩じれ量の測定方法を示すアークスプリングの概略図である。 FIG. 5 is a graph showing the amount of twist in each step in comparison between the examples and the comparative examples. FIG. 6 is a schematic view of an arc spring showing a method of measuring the twist amount of FIG.
 図5中、実施例は、上記実施例の製造方法によって製造されたアークスプリング1を示す。比較例は、実施例と同一の半製品5Aを使用し、楔部の打込み時にアークスプリングの捩じれを除去し、その後に焼鈍しとショットピーニングを行ったものである。すなわち、比較例は、半製品を回転させることによって-8.5度のZ方向の捩じれを付加し、楔部の打込みによる8.5度のS方向の捩じれと相殺している。 In FIG. 5, an example shows an arc spring 1 manufactured by the manufacturing method of the above embodiment. In the comparative example, the same semi-finished product 5A as in the example was used, the twist of the arc spring was removed when the wedge portion was driven, and then annealing and shot peening were performed. That is, in the comparative example, the twist in the Z direction of −8.5 degrees is added by rotating the semi-finished product, and the twist in the S direction of 8.5 degrees due to the driving of the wedge portion is offset.
 図5において、高さHは、アークスプリング1の捩じれ量を角度とは別の尺度で表すものであり、平坦な面F上にアークスプリング1を載置した状態で、面Fに対するアークスプリング1の頂部の高さを示している。この高さHは、それぞれ左端の工程後に測定し、対応する捩じれの角度は、右端に示す。高さHの値は、半製品5Aの外径である15.25mmに近づくほどアークスプリング1の平坦度が高くなることを意味する。これを、図5において(高さH-外径)として示している。なお、右端の角度において、熱処理後及び噴射加工後は合算してある。 In FIG. 5, the height H represents the amount of twist of the arc spring 1 on a scale different from the angle, and the arc spring 1 with respect to the surface F in a state where the arc spring 1 is placed on the flat surface F. Shows the height of the top of the. This height H is measured after each step on the left end, and the corresponding twist angle is shown on the right end. The value of the height H means that the flatness of the arc spring 1 increases as the outer diameter of the semi-finished product 5A approaches 15.25 mm. This is shown as (height H-outer diameter) in FIG. The angles at the right end are added up after heat treatment and injection processing.
 実施例では、アークスプリング1を成形した後に32.5度のS方向の捩じれが生じているのに対し、比較例では、捩じれが相殺されている。このため、実施例よりも比較例の方が、(高さH-外径)の値が大幅に小さい。 In the embodiment, the twist in the S direction of 32.5 degrees occurs after the arc spring 1 is formed, whereas in the comparative example, the twist is offset. Therefore, the value of (height H-outer diameter) is significantly smaller in the comparative example than in the example.
 しかし、焼鈍しを経てショットピーニングまで終了すると、実施例では、S方向の捩じれがZ方向の捩じれによって相殺されている。これに対し、比較例では、-32.5度のZ方向の捩じれが生じている。このため、実施例よりも比較例の方が、(高さH-外径)の値が大幅に大きくなっている。 However, when the shot peening is completed through annealing, the twist in the S direction is offset by the twist in the Z direction in the embodiment. On the other hand, in the comparative example, a twist of -32.5 degrees in the Z direction occurs. Therefore, the value of (height H-outer diameter) is significantly larger in the comparative example than in the example.
 [実施例の効果]
 以上説明したように、本実施例のアークスプリング1の製造方法は、軸線Xを湾曲させる前のアークスプリング1の半製品5Aに対し螺旋状の線間9aに楔部21を順次打ち込み、楔部21を順次打ち込んだ打込み位置の内、少なくとも一つを周方向にずらし、半製品5Aを湾曲させてアークスプリング1を成形する際に楔部21の打ち込みによって生じるアークスプリング1の捩じれを増大させ、アークスプリング1に噴射加工を行うことにより、アークスプリング1の捩じれに対する逆向きの捩じれを付与して捩じれを相殺する。
[Effect of Examples]
As described above, in the method of manufacturing the arc spring 1 of the present embodiment, the wedge portion 21 is sequentially driven into the spiral line interval 9a with respect to the semi-finished product 5A of the arc spring 1 before the axis X is curved, and the wedge portion is formed. At least one of the driving positions in which 21 is sequentially driven is shifted in the circumferential direction to increase the twist of the arc spring 1 caused by the driving of the wedge portion 21 when the semi-finished product 5A is curved to form the arc spring 1. By performing injection processing on the arc spring 1, a twist in the opposite direction to the twist of the arc spring 1 is imparted to cancel the twist.
 従って、本実施例では、楔部21の打込み時に捩じれをコントロールし、コントロールされた捩じれを噴射加工時に逆向きの捩じれによって相殺することができる。このため、噴射加工後にアークスプリング1に捩じれが生じることを確実に抑制できる。 Therefore, in this embodiment, the twist can be controlled when the wedge portion 21 is driven, and the controlled twist can be offset by the reverse twist during the injection process. Therefore, it is possible to reliably suppress the occurrence of twisting in the arc spring 1 after the injection process.
 本実施例では、噴射加工の前にアークスプリング1に対して熱処理を行うことにより、アークスプリング1の捩じれを逆向きの捩じれによって部分的に相殺し、噴射加工で部分的に相殺された後の残りの捩じれに対する逆向きの捩じれを付与する。 In this embodiment, the arc spring 1 is heat-treated before the injection process to partially cancel the twist of the arc spring 1 by the reverse twist, and after the twist is partially offset by the injection process. Gives a reverse twist to the remaining twist.
 従って、本実施例では、噴射加工前に熱処理を行っても、噴射加工後にアークスプリング1に捩じれが生じることを確実に抑制できる。 Therefore, in this embodiment, even if the heat treatment is performed before the injection processing, it is possible to reliably suppress the occurrence of twisting in the arc spring 1 after the injection processing.
 噴射加工は、アークスプリング1の径方向外側から行われるショットピーニングであり、アークスプリング1の内周よりも外周の圧縮残留応力を大きくする。 The injection process is shot peening performed from the radial outside of the arc spring 1, and the compressive residual stress on the outer circumference is larger than that on the inner circumference of the arc spring 1.
 これにより、本実施例では、噴射加工により楔部21の打込みによる捩じれとは逆向きの捩じれを確実に付与し、より確実に噴射加工後にアークスプリング1に捩じれが生じることを抑制できる。 Thereby, in the present embodiment, the twisting in the direction opposite to the twisting caused by the driving of the wedge portion 21 can be reliably imparted by the injection processing, and the twisting of the arc spring 1 after the injection processing can be more reliably suppressed.
 また、本実施例では、楔部21を順次打ち込む際に打込み位置を漸次ずらし、このときの打込み位置のずらし量が全て同一となっている。このため、容易且つ確実にアークスプリング1の捩じれを増大させることができる。 Further, in this embodiment, when the wedge portions 21 are sequentially driven, the driving position is gradually shifted, and the shifting amount of the driving position at this time is the same. Therefore, the twist of the arc spring 1 can be easily and surely increased.
 製造装置13は、軸線Xを湾曲させる前のアークスプリング1の半製品5Aに対し螺旋状の線間9aに楔部21を順次打ち込み、楔部21を順次打ち込んだ打込み位置の内、少なくとも一つを周方向にずらし、半製品5Aを湾曲させてアークスプリング1を成形する際に楔部21の打ち込みによって生じるアークスプリング1の捩じれを増大させる打込み部15と、アークスプリング1に噴射加工を行うことにより、アークスプリング1の捩じれに対する逆向きの捩じれを付与してアークスプリング1の捩じれを相殺する噴射加工部19と、を備える。 The manufacturing apparatus 13 sequentially drives the cuneus 21 into the spiral interline 9a with respect to the semi-finished product 5A of the arc spring 1 before bending the axis X, and at least one of the driving positions where the cuneus 21 is sequentially driven. Is shifted in the circumferential direction, and when the semi-finished product 5A is curved to form the arc spring 1, the driving portion 15 for increasing the twist of the arc spring 1 caused by the driving of the wedge portion 21 and the arc spring 1 are injected. As a result, the injection processing unit 19 is provided so as to impart a twist in the opposite direction to the twist of the arc spring 1 and cancel the twist of the arc spring 1.
 従って、製造装置13は、上記製造方法と同様、噴射加工後にアークスプリング1に捩じれが生じることを確実に抑制できる。 Therefore, the manufacturing apparatus 13 can surely suppress the occurrence of twisting of the arc spring 1 after the injection processing, as in the above manufacturing method.
1 アークスプリング
3 線材
5A,5B 半製品
9a 線間
13 製造装置
15 打込み部
17 熱処理部
19 噴射加工部
21 楔部
 
 
1 Arc spring 3 Wire 5A, 5B Semi-finished product 9a Line-to-line 13 Manufacturing equipment 15 Driving part 17 Heat treatment part 19 Injection processing part 21 Wedge part

Claims (6)

  1.  線材が螺旋状に巻かれたコイルばねの軸線が湾曲したアークスプリングの製造方法であって、
     前記軸線を湾曲させる前の前記アークスプリングの半製品に対し前記螺旋状の線間に楔部を順次打ち込み、前記楔部が順次打ち込まれた打込み位置の内、少なくとも一つを周方向にずらし、前記半製品の軸線を湾曲させて前記アークスプリングを成形する際に前記楔部の打ち込みによって前記アークスプリングに生じる捩じれを増大又は減少させ、
     前記アークスプリングに噴射加工を行うことにより、前記アークスプリングの捩じれに対する逆向きの捩じれを付与して前記捩じれを相殺する、
     アークスプリングの製造方法。
    A method for manufacturing an arc spring in which the axis of a coil spring in which a wire is spirally wound is curved.
    A wedge portion is sequentially driven between the spiral lines of the semi-finished product of the arc spring before the axis is curved, and at least one of the driving positions where the wedge portion is sequentially driven is shifted in the circumferential direction. When the axis of the semi-finished product is curved to form the arc spring, the twist generated in the arc spring due to the driving of the wedge portion is increased or decreased.
    By performing injection processing on the arc spring, a twist in the opposite direction to the twist of the arc spring is imparted to cancel the twist.
    How to manufacture an arc spring.
  2.  請求項1記載のアークスプリングの製造方法であって、
     前記噴射加工の前に前記アークスプリングに対して熱処理を行うことにより、前記アークスプリングの捩じれに対する逆向きの捩じれを付与して前記捩じれを部分的に相殺し、
     前記噴射加工では、前記部分的に相殺された後の残りの捩じれに対する逆向きの捩じれを付与する、
     アークスプリングの製造方法。
    The method for manufacturing an arc spring according to claim 1.
    By heat-treating the arc spring before the injection process, a twist in the opposite direction to the twist of the arc spring is imparted to partially cancel the twist.
    The injection process imparts a reverse twist to the remaining twist after the partial offset.
    How to manufacture an arc spring.
  3.  請求項1又は2記載のアークスプリングの製造方法であって、
     前記噴射加工は、前記アークスプリングの径方向外側から行われるショットピーニングであり、前記半製品の内周よりも外周の圧縮残留応力を大きくする、
     アークスプリングの製造方法。
    The method for manufacturing an arc spring according to claim 1 or 2.
    The injection process is shot peening performed from the radial outside of the arc spring, and the compressive residual stress on the outer circumference is made larger than the inner circumference of the semi-finished product.
    How to manufacture an arc spring.
  4.  請求項1~3の何れか一項に記載のアークスプリングの製造方法であって、
     前記打込み位置は、漸次周方向にずらされる、
     アークスプリングの製造方法。
    The method for manufacturing an arc spring according to any one of claims 1 to 3.
    The driving position is gradually shifted in the circumferential direction.
    How to manufacture an arc spring.
  5.  請求項4記載のアークスプリングの製造方法であって、
     前記漸次周方向にずらされる前記打込み位置のずらし量は、同一である、
     アークスプリングの製造方法。
    The method for manufacturing an arc spring according to claim 4.
    The amount of shift of the driving position that is gradually shifted in the circumferential direction is the same.
    How to manufacture an arc spring.
  6.  線材が螺旋状に巻かれたコイルばねの軸線が湾曲したアークスプリングの製造装置であって、
     前記軸線を湾曲させる前の前記アークスプリングの半製品に対し前記螺旋状の線間に楔部を順次打ち込み、前記楔部が順次打ち込まれた打込み位置の内、少なくとも一つを周方向にずらし、前記半製品の軸線を湾曲させて前記アークスプリングを成形する際に前記楔部の打ち込みによって前記アークスプリングに生じる捩じれを増大又は減少させる打込み部と、
     前記アークスプリングに噴射加工を行うことにより、前記アークスプリングの捩じれに対する逆向きの捩じれを付与して前記捩じれを相殺する噴射加工部と、
     を備えるアークスプリングの製造装置。
     

     
    This is an arc spring manufacturing device in which the axis of a coil spring in which a wire is spirally wound is curved.
    A wedge portion is sequentially driven between the spiral lines of the semi-finished product of the arc spring before the axis is curved, and at least one of the driving positions where the wedge portion is sequentially driven is shifted in the circumferential direction. A driving portion that increases or decreases the twist generated in the arc spring by driving the wedge portion when the axis of the semi-finished product is curved to form the arc spring, and a driving portion.
    By performing injection processing on the arc spring, an injection processing portion that imparts a twist in the opposite direction to the twist of the arc spring and cancels the twist, and an injection processing portion.
    An arc spring manufacturing device equipped with.


PCT/JP2021/010461 2020-03-25 2021-03-15 Method and apparatus for manufacturing arc spring WO2021193211A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021533638A JP6975873B1 (en) 2020-03-25 2021-03-15 Arc spring manufacturing method and equipment
CN202180023433.7A CN115315323B (en) 2020-03-25 2021-03-15 Method and device for manufacturing arc spring

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020054668 2020-03-25
JP2020-054668 2020-03-25

Publications (1)

Publication Number Publication Date
WO2021193211A1 true WO2021193211A1 (en) 2021-09-30

Family

ID=77892118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/010461 WO2021193211A1 (en) 2020-03-25 2021-03-15 Method and apparatus for manufacturing arc spring

Country Status (3)

Country Link
JP (1) JP6975873B1 (en)
CN (1) CN115315323B (en)
WO (1) WO2021193211A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116921590B (en) * 2023-09-18 2023-12-01 毕克礼斯精密部件(太仓)有限公司 Arc spring threading type clamp
CN117324517A (en) * 2023-09-18 2024-01-02 毕克礼斯精密部件(太仓)有限公司 Arc spring clamp

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58192643A (en) * 1982-05-07 1983-11-10 Nhk Spring Co Ltd Manufacture of coil spring
JP2007009915A (en) * 2005-06-30 2007-01-18 General Electric Co <Ge> Offsetting twist in laser shock-induced airfoil part using shot peening
US20080209731A1 (en) * 2007-03-01 2008-09-04 Jack Champaigne Method of shot peening coil springs
JP2010255742A (en) * 2009-04-24 2010-11-11 Chuo Spring Co Ltd Method of manufacturing coil spring and coil spring
WO2019026373A1 (en) * 2017-07-31 2019-02-07 株式会社テック Arc-shaped coil spring manufacturing method and manufacturing device
JP6538486B2 (en) * 2015-08-28 2019-07-03 中央発條株式会社 Method of manufacturing coil spring and manufacturing apparatus of coil spring

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08135704A (en) * 1994-11-09 1996-05-31 Togo Seisakusho:Kk Arc shape coil spring
WO2012014672A1 (en) * 2010-07-26 2012-02-02 中央発條株式会社 Method for manufacturing spring and device for heating by passage of electric current
CN102699242B (en) * 2012-04-13 2014-04-02 杭州富春弹簧有限公司 Process for processing arc-shaped spring
EP2869950B1 (en) * 2012-07-06 2020-06-17 Barnes Group Inc. High fatigue arcuate spring
JP6113891B1 (en) * 2016-05-25 2017-04-12 株式会社システムテクニカ Arc coil spring manufacturing method and manufacturing apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58192643A (en) * 1982-05-07 1983-11-10 Nhk Spring Co Ltd Manufacture of coil spring
JP2007009915A (en) * 2005-06-30 2007-01-18 General Electric Co <Ge> Offsetting twist in laser shock-induced airfoil part using shot peening
US20080209731A1 (en) * 2007-03-01 2008-09-04 Jack Champaigne Method of shot peening coil springs
JP2010255742A (en) * 2009-04-24 2010-11-11 Chuo Spring Co Ltd Method of manufacturing coil spring and coil spring
JP6538486B2 (en) * 2015-08-28 2019-07-03 中央発條株式会社 Method of manufacturing coil spring and manufacturing apparatus of coil spring
WO2019026373A1 (en) * 2017-07-31 2019-02-07 株式会社テック Arc-shaped coil spring manufacturing method and manufacturing device

Also Published As

Publication number Publication date
JP6975873B1 (en) 2021-12-01
CN115315323A (en) 2022-11-08
JPWO2021193211A1 (en) 2021-09-30
CN115315323B (en) 2023-09-19

Similar Documents

Publication Publication Date Title
WO2021193211A1 (en) Method and apparatus for manufacturing arc spring
JP2000233625A (en) Manufacture of hollow stabilizer
KR101075323B1 (en) Manufacturing method of coil spring using helicoid reduction mill
CN102388232B (en) Compression coil spring, and coil spring manufacturing device and manufacturing method
JPWO2011007810A1 (en) Bending member manufacturing method and manufacturing apparatus
WO2016027554A1 (en) Vertical motion impeller-type shot peening device and coil spring
WO2010146907A1 (en) Method for manufacturing coil spring
WO2022123960A1 (en) Coil spring
JPWO2018143105A1 (en) Coil spring
JPH05177544A (en) Manufacture of coil spring
WO2009136514A1 (en) Modified cross-section coil spring
JP6538486B2 (en) Method of manufacturing coil spring and manufacturing apparatus of coil spring
WO2018155414A1 (en) Mandrel, curved pipe, and method and device for manufacturing same
JP4875588B2 (en) Round bar material forging method
JP2005007402A (en) Forging method
JP6503482B2 (en) Coil spring
JP2014151363A (en) Torsion processing method for long workpiece
JPH08238526A (en) Production of small diameter electric resistance welded steel tube having excellent fatigue characteristic on bending part
JP6061685B2 (en) Rack manufacturing method
JP2001032183A (en) Steel wire for reinforcing rubber article, its correction and pneumatic tire
KR101464856B1 (en) Method of manufacturing driving shaft
JP6554569B2 (en) Impeller lift type shot peening system
JPH06142812A (en) Manufacture of torsion bar for power steering device
JP2003181580A (en) Method and device for manufacturing coil spring
JPS59190529A (en) Metal torsion bar and producing method thereof

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021533638

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21773998

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21773998

Country of ref document: EP

Kind code of ref document: A1