WO2021193179A1 - Endoscopic device - Google Patents

Endoscopic device Download PDF

Info

Publication number
WO2021193179A1
WO2021193179A1 PCT/JP2021/010282 JP2021010282W WO2021193179A1 WO 2021193179 A1 WO2021193179 A1 WO 2021193179A1 JP 2021010282 W JP2021010282 W JP 2021010282W WO 2021193179 A1 WO2021193179 A1 WO 2021193179A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical
endoscope device
optical fiber
data
Prior art date
Application number
PCT/JP2021/010282
Other languages
French (fr)
Japanese (ja)
Inventor
のりこ 安間
達夫 長▲崎▼
広朗 長▲崎▼
Original Assignee
のりこ 安間
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by のりこ 安間 filed Critical のりこ 安間
Publication of WO2021193179A1 publication Critical patent/WO2021193179A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/045Control thereof
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/26Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes using light guides

Definitions

  • the present invention enables high-definition imaging with a deep depth of focus and wide-field to microscopic enlargement by enabling pixel-by-pixel focusing without using an optical system and an image sensor.
  • the present invention relates to a small and small-diameter endoscope device that enables continuous switching of imaging and, in addition, enables pixel-level spectral analysis.
  • the main issues of the conventional endoscope device are as follows: -To reduce the pain of the patient and to make it possible to observe a narrow space in the body, the size and diameter are reduced.
  • Achieve wide-field and high-definition imaging in order to quickly detect diseases of 3 mm or less (which cannot be detected by X-ray imaging or CT).
  • the diagonal dimension of the image sensor's imaging surface must be suppressed to 1.4 mm or less.
  • the pixel pitch is required to be 0.65 ⁇ m, which exceeds the limit values in the pixel pitch and sensitivity of the image sensor and the resolution of the optical system.
  • the image sensor is to be equipped with a spectrum detection function, it is necessary to separately prepare a pixel equipped with an optical filter for spectrum detection in addition to the RGB filter, which makes the image sensor more compact. It gets even more difficult.
  • the optical system that enables wide-field observation to microscopic magnified observation has a large shape, and the diameter of the endoscopic device must be increased. If the electronic zoom function is used together to increase the magnification in order to reduce the size of the optical system, it is not possible to provide a high-definition image. Displaying a wide-field, high-definition image on a high-definition screen that matches the visual resolution leads to quicker detection of the diseased part, rather than displaying an enlarged display that is unnecessarily lower than the visual resolution by electronic zoom. This is because it is much faster to visually screen on a wide-field, high-definition screen than to operate an endoscope device for screening.
  • -Patent Document 1 discloses an endoscope device that does not use an image sensor. This is an endoscope device that scans spot light in two dimensions for imaging.
  • high-speed scanning of 15.7 kHz is required for the horizontal line, and 65.7 kHz is required for the HD image of progressive scanning. Difficult to achieve.
  • fatigue (transmission loss) of the optical fiber is started in minutes due to the bending resistance of the optical fiber.
  • Patent Document 1 the realization of a thinner endoscope device is limited by the size of the imaging optical system.
  • the imaging optical system is to have functions from wide-field imaging to microscopic magnified imaging, the optical system becomes larger and it becomes difficult to reduce the diameter.
  • the present invention has been made in view of such circumstances. That is, in the present invention, the imaging optical system, the image sensor, and the like provided in the conventional endoscope device are replaced with one optical fiber and a one-dimensional scanning mechanism, and the reflected light received by the optical fiber is solved outside the imaging unit.
  • the problems caused by providing an image sensor and the like and the problems caused by high-speed horizontal scanning in Patent Document 1 can be solved, and the human body of the endoscopy device can be used.
  • the purpose is to reduce the size and diameter of the inserted part.
  • the present invention is an imaging type endoscope device that does not use an imaging optical system and an image sensor in order to collectively solve the above-mentioned problems.
  • the outline of the imaging method of the present invention will be described with reference to FIG.
  • the diffused light 10 is obliquely irradiated to the subject surface 3, and the obtained reflected light is subjected to OCI (Optical Coherence Imaging) processing to perform resolution in the line 4 direction, and while repeating resolution in the line 4 direction,
  • OCI Optical Coherence Imaging
  • the endoscope device includes a method of performing pipeline processing to image the resolution of the scanning direction Y orthogonal to the line 4 direction and the line 4 direction on the subject surface 3.
  • the OCI process is technically based on the OCT (Optical Coherence Tomography) process, but since the detection target and purpose are different, the name OCI is used in this application. The details of OCI processing will be described later.
  • FIGS. 2 (a) to 2 (c) The principle of the above resolution will be described with reference to FIGS. 2 (a) to 2 (c).
  • the resolution in the direction in which the illumination light is diffused is performed by the OCI process
  • the same resolution as that transmitted and received by the spherical light pulse P1 is obtained as shown in FIG. 2 (a)
  • the diffused light is obtained by the synthetic aperture processing.
  • the resolution of the scanning direction Y orthogonal to the central axis X (see FIG. 1) of 10 is performed
  • the resolution of the fan-shaped P2 is obtained as shown in FIG. 2 (b), and the product of both is integrated. It becomes the resolution of.
  • the overall resolution is the same as transmitting and receiving arc-shaped light pulses 5 having a thickness on the order of microns, like a radar, to obtain reflected light.
  • the arc-shaped light pulse 5 enters the subject surface 3 diagonally within the diffused range, the reflected light that is in focus can be obtained at any position on the line 4, and the resolution is made for each pixel. Therefore, the depth of focus is deep, and by switching between the OCI range OC and the synthetic aperture range SA, continuous switching from wide-field imaging to microscopic magnified imaging becomes possible.
  • the imaging method of the present invention has dynamic focusing that greatly expands the depth of field while maintaining high resolution by electrical processing, and microscopic enlargement from wide-field / high-definition imaging. Super zooming that continuously switches up to imaging is possible.
  • the image obtained by the endoscope device of the present invention has a wave surface at a reflection point 6 where the line 4 and the wave surface 5 of the illumination light intersect when the diffused light 10 is illuminated at an oblique angle ⁇ with respect to the subject. It becomes the same as the image observed from the observation direction 7 which is the tangential direction of 5.
  • the reflected signal (reflected brightness) from the same wave plane inside the subject is superimposed, and the transmitted image is transmitted from the tangential direction (observation direction 7). You will get the same image as you observed.
  • near-infrared light wavelength 0.68 ⁇ m to 1.5 ⁇ m
  • the irradiation angle ⁇ of the illumination is manipulated according to the purpose.
  • a first aspect of the endoscope device of the present invention is an optical fiber that guides light supplied from a light source, emits it as diffused light, and receives reflected light returned from a subject.
  • An optical interference resolution processing unit that performs resolution processing in the traveling direction of the wavefront of the diffused light according to the imaging principle of the optical coherence tomography method.
  • a scanning mechanism that scans the diffused light in a scanning direction that intersects the central axis of the diffused light.
  • a storage unit that stores a data string generated by resolution processing by the optical interference resolution processing unit, and a storage unit. It is provided with a synthetic aperture processing unit that extracts and adds data that matches the optical path length from one end of the optical fiber to the position of the pixel to be detected from the data string stored in the storage unit.
  • the second aspect of the endoscope device of the present invention is the endoscope device according to the first aspect, in which the scanning direction is orthogonal to the central axis of the diffused light.
  • the third aspect of the endoscope device of the present invention is the endoscope device according to the first or second aspect, and the light source produces wideband light or wideband wavelength sweep light.
  • a fourth aspect of the endoscope device of the present invention is the endoscope device according to any one of the first to third aspects, and the optical interference resolution processing unit is the reflection received by the optical fiber.
  • a sixth aspect of the endoscope device of the present invention is the endoscope device according to any one of the first to fifth aspects, wherein a plurality of endoscope devices having clusters are known in descending order of Fisher ratio from the reflection spectrum of a subject.
  • a discriminating means is provided for calculating a spectral component and using the spectral component to discriminate from the reflection spectrum of an unknown subject by a cluster.
  • the seventh aspect of the endoscope device of the present invention is the endoscope device according to the sixth aspect, and the identification means uses an AI that performs deep learning.
  • the imaging unit of the endoscope device since the imaging unit of the endoscope device has a simple configuration including an optical fiber and a scanning mechanism in a one-dimensional direction, it is possible to make the diameter of the insertion unit of the endoscope device extremely small.
  • the endoscope device of the present invention since horizontal scanning is performed by electrical processing (for example, Fourier conversion processing), high-speed horizontal scanning required for HD, 4K, and 8K can be realized, and images are repeated.
  • a scanning mechanism having a low vertical scanning frequency for example, 60 Hz
  • the endoscope device of the present invention is capable of high-definition imaging of HD, 4K, and 8K in spite of its small size and small diameter, and can continuously switch from such an image to a microscopic magnified image, and is covered. It is possible to electrically increase the depth of field.
  • the endoscope device of the present invention is small and has a small diameter, it is possible to identify the substance of the subject at the pixel level by spectral analysis.
  • the endoscope device of the present invention does not use a heat-sensitive image sensor, autoclave sterilization is possible.
  • FIG. 1 It is a block diagram which shows the structure of the endoscope apparatus which is an embodiment. It is a figure for demonstrating the principle of imaging by an endoscopic apparatus which is an embodiment, (a) is a figure which shows the resolution by OCI, (b) is a figure which shows the resolution by a synthetic aperture. Yes, (c) is a schematic diagram schematically showing an optical pulse diffused on a subject surface. It is a figure for demonstrating the observation image. It is a figure for demonstrating the relationship of the reciprocating optical path length between the fiber end of the irradiation light which irradiates from an optical fiber, and an arc. It is a block diagram which shows the structure of a scanning mechanism.
  • (A) is a diagram for explaining a method of imaging a living body by OCT processing
  • (a) is a diagram for explaining a method of imaging a living body by OCI processing.
  • It is a block diagram which shows OCI processing using a wide band light source. It is a figure for demonstrating OCI processing by Fourier analysis.
  • It is a block diagram which shows the OCI processing using the wavelength sweep light source.
  • It is a conceptual diagram which shows the concept of a synthetic aperture in a sector scan system.
  • It is a block diagram which shows the example of the completion processing which complements the acquired data, and the synthesis opening processing by a Fourier transform.
  • FIG. 1 It is a block diagram which shows the structure of the scanning mechanism which uses a MEMS mirror.
  • (A) and (b) are configuration diagrams showing the configuration of a scanning mechanism that vibrates the optical fiber end by a piezoelectric bimorph, and (c) shows the optical fiber end by two piezoelectric bimorph oscillators whose vibration directions are orthogonal to each other. It is a block diagram which shows the structure of the scanning mechanism which causes rotational vibration.
  • the reflected light from the arc ARCs (ARC1 and ARC2) is superimposed in the same phase because the round-trip optical path lengths from the optical fiber end 51 are the same, and is received by the optical fiber end 51.
  • Line 4 shows one of the lines on the subject surface 3 orthogonal to the arc ARC.
  • the optical path length OPL from the optical fiber end 51 to the arc ARC gradually increases as the position of the arc ARC becomes farther from one end (line end) 104 of the line 4.
  • the reflected light received at the optical fiber end 51 is guided to the OCI processing unit 207 via an optical circulator (see reference numeral 203 in FIG. 1).
  • the OCI processing unit 207 by the same processing as OCT, the direction orthogonal to the arc ARC (longitudinal direction of the line 4) is utilized by utilizing the difference in the round-trip optical path length OPL from the optical fiber end 51 to the arc ARC shown in FIG. Resolution is made.
  • the operation of the OCI processing unit 207 will be described in detail in sections 2) to 5) described later.
  • the diffused light 10 is scanned in the scanning direction Y intersecting the central axis X by the one-dimensional scanning mechanism 8, and the data string required for the composite opening is acquired and stored. It is stored in the unit 211.
  • FIG. 5 shows an example of the scanning mechanism.
  • Reference numeral 511 indicates an optical fiber that rotates and reciprocates while illuminating the subject surface 3 at an angle
  • 555 indicates a microgalvano scanner
  • 555 indicates an optical rotary joint
  • 112 indicates an optical fiber for transmission.
  • Reference numeral 12 indicates a GRIN (Gradient Index) lens.
  • the GRIN lens 12 is used not for forming an image but for adjusting the diffusion distribution of light intensity, and the aperture diameter can be made relatively small.
  • a rotary scanning micromotor may be used. When using a micromotor, the coil spring 533 becomes unnecessary. Micromotors of 0.9 mm ⁇ and 0.6 mm ⁇ are commercially available, and there is no concern about their size. Examples of other scanning mechanisms will be described later.
  • the composite aperture processing unit 213 performs a process of synthesizing the aperture in the scanning direction Y, and resolution in the scanning direction Y is performed.
  • the operation of the synthetic opening processing unit 213 will be described in detail in Sections 6) and 7) described later.
  • the display processing unit 205 performs matrix conversion to an RGB image, processing for displaying the AI determination result, scanning conversion according to the display device 215, and the like, and the display device 215 performs RGB image and spectrum image. Is displayed.
  • OCI processing is optical interference resolution processing (processing based on the imaging principle of optical coherence tomography) based on OCT processing, but the purpose is as shown below. Are different from each other, so there are differences in both processes.
  • the purpose of the OCT process is to detect an internal tomographic image from the living body surface OS, the depth of field D1 is set deeply as shown in FIG. 6A. Therefore, the numerical aperture NA1 of the optical system cannot be increased (the resolution is increased) (NA1 is relatively small).
  • NA1 the numerical aperture of the optical system cannot be increased (the resolution is increased) (NA1 is relatively small).
  • the wavelength band used in OCT processing is limited to near-infrared light with high biotransparency, and attenuation and scattering for each wavelength are superimposed during propagation in the living body, so RGB images can be generated and quantitatively generated. Spectral analysis is not possible.
  • the OCI process aims to detect an image of the biological surface OS which is the surface of the subject, the numerical aperture NA2 can be set relatively large as shown in FIG. 6 (b).
  • the irradiation light is not attenuated when propagating in the living body, so there is a margin in sensitivity, and by adjusting the opening of the optical fiber end 51 with a pinhole, high microscopic resolution can be achieved. realizable.
  • wideband light can be used, and unlike OCT processing, there is no attenuation or scattering for each wavelength that occurs superimposed when the irradiation light propagates in the body, so RGB image detection and quantitative spectrum Analysis is possible.
  • OCT processing technology is used as a base, OCT processing is performed using wideband light, and in addition, processing for RGB image detection and spectrum analysis is performed.
  • RGB image detection and spectrum analysis will be described in [2. Spectrum analysis] will be described in detail.
  • the OCI processing unit using a wideband light source will be described. As shown in FIG. 7, the light of the broadband light source 21 is divided into two by the branch coupler 22, and one of the branched lights is reflected by the reflector 24 via the optical circulator 23, and the reference light. 25 is obtained.
  • the other branched light is guided to the endoscope tip portion 201 by the optical fiber 1 via the optical circulator 26, and is obliquely irradiated to the subject surface 3 as shown in FIG.
  • the reflected light from the arc ARC shown in FIG. 4 is received by the optical fiber 1, and is interfered with the reference light by the interference coupler 27 via the optical circulator 26.
  • interference fringes are generated at a frequency proportional to the difference between the reflected light and the optical path length OPL of the reference light 25, and these are superimposed by the number of reflection points from the line 4. The longer the optical path length OPL of the reflected light is longer than the optical path length of the reference light 25, the higher the frequency of the interference fringes.
  • the output light of the interference coupler 27 is split into a wave number (inverse wavelength) component by the toroidal type grating spectroscope 28, and the light carrier disappears by receiving the wave number component with the light receiving line detector 29.
  • An electric signal in which the wavenumber components are in chronological order can be obtained.
  • This electric signal has components indicating interference fringes generated according to the difference in the round-trip optical path lengths of the reflected light and the reference light 25, which are superimposed by the number of reflection points on the line 4.
  • the frequency component after the Fourier transform corresponds to the difference between the reference light 25 and the optical path length OPL of each arcuate reflection point ARC, and the amplitude of each frequency component. However, it corresponds to the reflection intensity.
  • the resolution is made in the direction orthogonal to the arc-shaped reflection point ARC, and the reflected signal reflected from the arc-shaped reflection point ARC is obtained.
  • the wave number of the interference fringes increases in proportion to it, so that the width of the single spectrum when the wavelength signal is Fourier transformed becomes narrow and the line 4 direction. Will increase the resolution of.
  • the resolution ⁇ is proportional to the width of the wavelength band. ⁇ indicates the wavelength bandwidth, ⁇ c indicates the central wavelength, and ⁇ indicates the angle at which the central axis X of the diffused light and the line 4 intersect.
  • the output of the light receiving line detector 29 becomes larger, so that the sensitivity of the OCI process increases.
  • the following is a supplementary explanation of OCI processing by Fourier analysis.
  • the first term of the equation shown in FIG. 8A schematically represents a wide band illumination light.
  • the second term in FIG. 8A expresses the relationship between the reference light 25 and the optical path length OPL of the reflected light by a ⁇ function when the number of reflection points on the line 4 is one.
  • the value of L indicates the reciprocating optical path length of the reflected light when the optical path length OPL of the reference light 25 is 0.
  • the process of interfering the reference light 25 with the reflected light can be expressed as a superposition integration (*) of the illumination light on the reflection positions of the reference light 25 and the reflected light as shown in the equation of FIG. 8A.
  • the second term k in FIG. 8A indicates the amplitude of the reference wave, and A indicates the amplitude of the reflected wave.
  • the composite product obtained by the formula of FIG. 8 (a) is separated by a toroidal type grating spectroscope 28 (see FIG. 7), and the electric signal converted by the light receiving line detector 29 is shown in FIG. 8 (a). Since it is equivalent to detecting the carriers of light by Fourier transforming (spectroscopically) the equation, the wavenumber band and the second term of the illumination light of the first term of the equation of FIG. 8 (b) are based on the theorem of superposition integration. The electrical signal of the third term obtained by multiplying the interference fringes of (X) is obtained.
  • the first term ⁇ in FIG. 8 (b) means the wave number component of the broadband light.
  • FIGS. 8 (a) and 8 (b) the second term of FIGS. 8 (a) and 8 (b) is a Fourier transform pair, the waveform after the Fourier transform can be obtained by exchanging the position axis (time axis) and the wave number axis (frequency axis). easy to understand.
  • the position (distance) axis is Fourier transformed, it becomes the wave number (spatial frequency) axis, but since it is converted into a time-series electric signal by the light receiving line detector 29 (see FIG. 7), FIG. 8 (b)
  • the wave number axis is the time axis.
  • the light whose wave number (reciprocal of the wavelength) of the illumination light is linearly modulated by the wavelength sweep light source 31 is input to the branch coupler 32. Further, the output light from the interference coupler 33 is converted into an electric signal by the light receiving detector 34.
  • Other processing is the same as the processing performed in the OCI processing of the wideband light source 21 described with reference to FIG. 7.
  • the grating spectroscope 28 and the light receiving line detector 29 shown in FIG. 7 are not required, and a single light receiving detector 34 having good sensitivity and SN can be used.
  • the light source is selected according to the purpose in consideration of applications such as multispectral analysis described later. To do or use a light source in combination.
  • the interpolation circuit 46 shown in FIG. 11 performs amplitude and phase interpolation from the data of the preceding and following addresses, and reads the data AD-1. -Improve the accuracy of AD-n.
  • the addresses of the data AD-1 to AD-n to be read are parabolic 175 by the first-order approximation.
  • phase shifts corresponding to the optical path differences OPD-1 to OPD-n of the read data AD-1 to AD-n were matched and added, pixel 173 was detected by the optical system having the same aperture. It will be the same as.
  • the amplitude of the detected pixel 173 is increased by the number of the data strings DL-1 to DL-n, and the amplitude of the other pixels used in the synthetic aperture 171 is the arc of FIG.
  • the phases (positions) shift and cancel each other out.
  • a supplementary explanation of this phase shift will be given in Section 7) using Fourier analysis.
  • the correlation calculation unit 48 causes the data DL-1 to be added.
  • the correlation calculation of the reference signal RS for matching with DLn is performed in the direction of the data string 177.
  • the reference signal RS selects the data string DL-, which is selected according to the optical path length of the pixel 173 to be detected (according to the reflection position on the line 4).
  • the range 177 of 1 to DL-n (the range 171 of the synthetic aperture) and the reference signal RS must be adaptively switched.
  • the reference signal RS required for the pixel 173 to be detected (combined) is stored in the lookup table of the reference signal generation unit 45.
  • the reference signal RS since the reference signal RS is a function of the optical path length of the pixel 173 to be detected, it may be generated by calculation.
  • the range of data for which the Fourier transform 401 is performed is the range of data stored in the scanning direction Y.
  • the reference signal in the scanning direction Y is constant as in the scanning method of FIG. 5
  • the method of Fourier transform 401 in FIG. 12 requires fewer multiplications than the method of correlation calculation in FIG.
  • the small-diameter endoscope (2 mm ⁇ ) shown in FIG. 5 is passed through the forceps opening (2 to 3 mm ⁇ ) 405 of the existing endoscope (6 mm ⁇ thin endoscope) 407.
  • the reason for pressing it against the subject surface is to prevent blurring and to increase the numerical aperture of the synthetic aperture.
  • the operation performed by the observer is as follows: first, the diseased part is screened by the wide-field image of the parent endoscope 407, and then the high-definition observation of the part of interest is performed by the small-diameter endoscope 500 through the forceps opening 405. I do. Then, the observer continues the screening while shortening the observation distance of the high-definition image (while enlarging the image), and presses the small-diameter endoscope 500 against the screened site where cytodiagnosis is required. And observe the magnified microscopic image.
  • the small-diameter endoscope 500 has a deep depth of focus and can automatically switch from high-definition imaging to microscopic magnified imaging simply by changing the distance of the subject. Can be easily done.
  • the small-diameter endoscope 500 has a first flexible portion 409 that can be refracted by wire control and a spring-shaped second flexible portion 411 that can be refracted.
  • the optical fiber end 51 is rotationally scanned in an arcuate scanning range 343 0.7 mm from the center (rotary scanning axis) R of the endoscope device 301, and the optical fiber end 51 is 1 mm from the optical fiber end 51.
  • the resolution for obtaining 1000 ⁇ 1000 pixels for the 2 ⁇ 2 mm imaging range 571 needs to be 2 ⁇ m or less according to the sampling theorem.
  • the resolution ⁇ in the line 4 direction is calculated from the above-mentioned OCI resolution formula, a resolution of 2 ⁇ m or less can be sufficiently achieved by using the visible light band for the diffused light.
  • reference numeral 511 is an optical fiber for lighting
  • 525 is a bearing
  • 259 is a magnet
  • 556 is a micromotor
  • 533 is a coil spring
  • 533 is an optical rotary joint
  • 513 is an electric coil
  • 571 is a 2x2 mm imaging range.
  • Reference numeral 341 in FIG. 15 indicates a surface mucous membrane, and 343 indicates a scanning range of 1.34 mm at the end 51 of the optical fiber.
  • the interval P when the diffused light 10 is rotationally scanned to acquire the data strings DL-1 to DL-n in FIG. 10 is obtained by Fourier analysis.
  • the openings 171 to be combined are discrete, as shown in the equation of FIG. 16A, the COM (comb) function of the first term representing the interval P for acquiring the data strings DL-1 to DL-n can be used.
  • the composite aperture process is a Fourier transform, according to the theorem of superimposed integration, as shown in the equation of Fig. 16 (b), the square wave is Fouriered into the com function with an interval of 1 / P that can be obtained by Fourier transforming the COM function. It can be expressed by an equation obtained by superimposing and integrating the sync function formed by the transform and multiplying it by the distribution of diffused light (light receiving sensitivity distribution of the optical fiber) on the focal point of the third term.
  • the axis unit of the equation of FIG. 16 (b) is represented by the spatial frequency, but when converted into the unit of distance, it is represented by the waveform of FIG. 16 (c).
  • the interval P becomes wider, the interval between the 0th and ⁇ 1st orders of the waveform in FIG. 16 (c) becomes narrower, and the 0th order PSF (Point Spread Function: light receiving sensitivity)
  • the ⁇ 1st order PSF enters the distribution) as an artifact (a virtual image that does not originally exist).
  • the integral value (artifact) of the ⁇ 1st order PSF (side lobe) overlapping the 0th order PSF must be smaller than the signal noise.
  • the diffusion range DA of the diffused light 10 see FIG.
  • the diffusion range DA of the diffused light 10 (see FIG. 1) is set. By narrowing it, it is not possible to suppress ⁇ 1st order or higher. By adjusting the interval P, the effect of ⁇ 1st order can be suppressed.
  • the smaller the interval P the wider the interval between 0th order and ⁇ 1st order, and the influence of ⁇ 1st order becomes smaller, but the number of data increases by that amount, so consider the balance between SN and the amount of calculation (circuit scale). Set.
  • the interval P in the equation shown in FIG. 16 (a) is set to 1 ⁇ m
  • the optical fiber end 51 is scanned and scanned over a 1.34 mm scanning range 343 (scanning angle ⁇ is 68 degrees) including the opening to be combined.
  • 1340 data strings are acquired, and the synthetic aperture processing is performed using the 340 data strings corresponding to the size of the aperture in the acquired data strings.
  • FIG. 17 shows a scanning method for scanning diffused light 10 (see FIG. 3).
  • a is a linear system
  • c is a sector scan system
  • d is a multi-scan system in which a, b, and c are combined.
  • Apertures can be combined in any scanning method.
  • the convex method of b is convenient when imaging the inside of a blood vessel or the respiratory tract
  • the linear method is convenient when imaging a joint or the like
  • the scanning method can be used properly according to the shape of the subject. Items to be described later 2.
  • the scanning method of d is used to suppress the interference pattern.
  • the scanning method in FIG. 5 corresponds to the convex method in b.
  • the diameter of the endoscope can be reduced because the scanning range 343 (see FIG. 15) for scanning the diffused light 10 may be the size of the opening.
  • the scanning range 343 where the synthetic aperture is possible is an area where the diffusion range DA (see FIG. 1) of the scanned diffused light 10 overlaps, it is necessary to widen the diffusion range DA of the illumination light by the amount of widening the viewing angle. There is.
  • the reference signal RS is generated in accordance with the deflection of the central axis X, so that the number of reference signals RS (see FIGS. 11 and 12) increases.
  • the amount of calculation of the synthetic aperture can be considerably reduced only by reducing the peripheral resolution ⁇ by about -3 dB as compared with the center of the diffusion range DA.
  • the opening AP (scanning range of diffused light) required for detecting the pixel 42 (see FIG. 18) having the longest optical path length OPER. Is selected, the interval P required for the pixel 42 having the shortest optical path length is selected, and the diffusion range DA of the diffused light 10 required for the pixel 42 having the largest deflection angle ⁇ (see FIG. 18) (see FIG. 18). (See FIG. 1) may be selected.
  • FIG. 18 shows a conceptual diagram of phase matching of the sector scan method c.
  • Reference numeral AP in FIG. 18 indicates an opening required for detection.
  • tissue characterization tissue characterization
  • the wavelength band of spectrum analysis is the region from the visible light region excluding ultraviolet rays and X-rays, which are highly invasive, to the infrared region and terahertz.
  • Reflection and absorption in the wavelength band The mechanism of light reflection and absorption in the living body differs depending on the wavelength band. -In the visible light band, changes in the spectral components that are absorbed by exciting the vibrations and spins of biomolecules are superimposed on the reflected light of Rayleigh scattering to form a color.
  • the optimal spectral space axis for identifying the substance (the axis with the largest Fisher ratio between the clusters to be identified) is determined in advance by multivariate analysis, and the number of axes is calculated from the cumulative contribution rate.
  • assigning the information obtained on that axis to the axis with high visual resolution in the color space (3D) (for example, YIQ with visual resolution of 4: 1.5: 0.5) is effective for diagnostic imaging. Can be supported. Once displayed in color space, the observer's visual brain then performs non-linear discrimination.
  • the clusters formed in that axis space are narrowed down to 3 axes by AI (Deep Learning), which is good at non-linear identification, and as described above, a color space that is easy for human vision to recognize. You may support the diagnosis by converting it to the axis of and displaying it.
  • AI Deep Learning
  • the scale of AI can be significantly reduced by narrowing down the number of AI inputs by multivariate analysis, which is a preprocessing. As with data compression, the number of input axes can be narrowed down to at most 5-6.
  • ⁇ AI is better than human beings in learning a large amount of information in a short time and giving an answer in a short time from a large amount of information if the application scene and range are limited.
  • the reason is that AI does not get tired, so it is possible to learn a large amount of information in a short time by the speed of electricity day and night, and forget the large amount of information used for learning and the learning result. Since there is no such thing (in the case of human beings, forgetting is said to be a means to debug the brain), if the scenes and scope of application are limited, there are many cases where it is superior to human beings.
  • AI is effective in cases such as multispectral analysis where simple spectral pattern recognition is performed, but the number of variables is large, and unstable noise is mixed with various generation factors such as Rayleigh scattering. ..
  • ⁇ First in order to acquire as many multi-spectral image data as possible by dividing the visible light to infrared wavelength band as finely as possible by the endoscopy device, and to reduce the tags and cluster dispersion consistent with the definitive diagnosis.
  • Information necessary for preprocessing of (for example, wavelength band characteristics of the light source at the time of data acquisition, wavelength band characteristics until conversion into an electric signal by the light receiving line detector, etc.) is attached to the image data, and the external computer It is sent to a storage device and stored.
  • the optimum spectral space axis is calculated to identify the target substance by principal component analysis or FS (Foley-Sammon) conversion. do. Since the spectral space axes are calculated in descending order of cumulative contribution rate, the number of spectral space axes is narrowed down in the same manner as for data compression.
  • FS Principal component analysis
  • the accumulated multi-spectral data is projected onto the narrowed-down spectral space axis, and the accumulated multi-spectral data is used as training data to cause AI on the computer to perform "supervised learning" to identify the cluster.
  • the configuration of AI is the same as the configuration of AI installed in the endoscope device.
  • the basal vector component of the narrowed-down spectral space axis and the knowledge data learned by AI are sent from the computer to the endoscopy device for storage and identification. These coefficients are switched and used for each substance.
  • the number of spectral space axes narrowed down is at most 5 to 6 axes (according to the experience of the inventor, etc.), and since the scale of AI is small, it is easy to incorporate into an endoscope device and the identification speed is also high. Since it will be faster, real-time substance identification will be possible in vivo.
  • the endoscope device acquires a large number of multispectral data in vivo and can store them in an external storage device, and detects the signal of the spectral axis determined by multivariate analysis. It has two functions that enable real-time substance identification in vivo. Examples of these two functions will be described in Section 5). Twice
  • FIG. 20 shows the wavelength bands of various spectral images generated by the Fourier transform.
  • the output of the light receiving line detector 29 may be multiplied by a predetermined coefficient to perform a Fourier transform to generate a Y (luminance) signal.
  • the band including the near-infrared region 85 having good biopermeability shown in FIG. 20 may be Fourier transformed and generated as a W signal 81.
  • the FFT 62 of FIG. 19 performs the Fourier transform of the R band shown in FIG. 20 to generate the R signal 82. Pixels of the R signal 82 are interpolated by the interpolation memory unit 63 shown in FIG. 19, and the number of pixels and the time axis are synchronized with the W signal 81. Subsequently, the FFT 62 performs the Fourier transform of the B band shown in FIG. 20 to generate the B signal 83.
  • the B signal 83 is also interpolated by the interpolation memory unit 64 shown in FIG. 19, and the number of pixels and the time axis are synchronized with the W signal 81.
  • the data strings of the W, R, and B signals are stored in the memories 211-1 to 211-3 of the storage unit 211, and then in the synthetic aperture processing unit 213, W , R, and B signals are subjected to synthetic aperture processing 213-1 to 213-3, and then the matrix conversion unit 205-1 performs matrix conversion to an RGB signal to generate a video signal. ..
  • the wavelength bandwidth of the R signal 82 and the B signal 83 is 1/3 that of the W signal 81, the resolution is also 1/3, but the resolution for R and B of the human eye is compared with the luminance information. There is no problem because it is 1/3.
  • the output of the light receiving line detector 29 (see FIG. 7) can be multiplied by the coefficient of the XYZ color matching function to perform a Fourier transform to obtain an XYZ signal. It is possible.
  • the R signal 82 and the B signal 83 can be generated by performing the Fourier transform on the divided R and B bands (see FIG. 20).
  • the wideband light source 21 (see FIG. 7) consists of the linear sum of a plurality of light sources such as R, G, B and infrared, and everything from illumination to Fourier transform. Since it is a linear process, the process of extracting signals 82 and 83 corresponding to the bands of R and B from the output of the light receiving line detector 29 and performing Fourier transform by the principle of superposition is separate using a single light source of R and B. It is the same as acquiring the signal to and Fourier transforming it.
  • the output of the light receiving line detector 29 is multiplied by a predetermined coefficient to obtain the band of each spectrum.
  • images corresponding to the respective spectra can be obtained.
  • images of multispectral MS1 to MSn (reference numeral 84 in FIG. 20) obtained by dividing the wavelength band from visible light to infrared light as finely as possible are acquired by an endoscope device. do.
  • the site of the cancer tissue and the site of the normal tissue for which the multispectral MS1 to MSn are acquired are designated on the displayed RGB image by an input means such as a mouse.
  • the control unit 71 generates a gate signal 76 for cutting out a designated area based on the mouse information.
  • the multispectral MS1 to MSn which are the outputs of the light receiving line detector (reference numeral 29 in FIG. 7), are Fourier transformed by FFT68 to generate images of the respective spectra. A designated area is cut out from those images by the gate signal 76 and stored in the memory unit 69.
  • tags for definitive diagnosis of cancer tags indicating the type, malignancy, progression, etc. of cancer, and spectral characteristics of illumination required for pretreatment, etc.
  • Information is attached to the cut out multispectral MS1 to MSn image data, sent to an external computer, and stored.
  • image data of multispectral MS1 to MSn of such cancer tissue and normal tissue are acquired and accumulated for each case.
  • the processing by the data format creation unit 70 described above may be performed on an external computer by sending the images of the multispectral MS1 to MSn and the corresponding RGB images to a storage device managed by an external computer.
  • the resolution of the spectrum and the resolution of the spectral image are in a trade-off relationship.
  • a trade-off relationship based on SN including the completion time, holds. If you want to apply multi-spectral analysis to texture enhancement and contour identification, focus on the resolution (bandwidth) of the spectral image, and if you focus on the accuracy of substance identification, you should focus on the spectral resolution. The number of multispectral to be acquired will be increased.
  • the balance between the number of multispectral MS1 to MSn and the bandwidth is appropriately set according to the purpose of application. Since the bandwidths of the multispectral MS1 to MSn used for multivariate analysis should be divided as finely as possible, the emphasis is on the resolution of the spectrum, but the target site is specified by an input means such as a mouse. Since a certain resolution is required for the spectral image in order to cut out from the image, the balance is set according to the purpose.
  • a large amount of multispectral image data of cancer tissue and normal tissue accumulated in an external computer is normalized by the computer, such as the spectral characteristics of illumination, the wavelength band characteristics of the optical processing circuit, and the average brightness.
  • Preprocessing is performed. Preprocessing is important to reduce cluster distribution and improve identification accuracy.
  • a computer performs multivariate analysis of the preprocessed image data.
  • the spectral data of the cancer tissue and the normal cell is displayed pixel by pixel in the space where the multi-spectral component is the multidimensional orthogonal axis (O in FIG. 21)
  • a cluster of the cancer tissue and the normal tissue is formed. If pretreatment is performed to normalize the spectral characteristics of the illumination, the average brightness, and the variation in the sensitivity of the endoscopic device, the dispersion of each cluster is mainly caused by the instability of the superimposed Rayleigh scattering. ..
  • the variance of each of the clusters 361 and 362 is the smallest, and the distance between the clusters 361 and 362 is the largest (the Fisher ratio is the largest) so that the two clusters 361 and 362 of the cancer tissue and the normal tissue can be separated and distinguished.
  • the projective space by orthogonal transformation. For example, when this projective space is obtained by FS (Foley-Sammon) transformation, the projective axes (eigenvectors) EU1 to EUn are calculated in descending order of Fisher ratio. The inventors have obtained the finding that the number of EU1 to EUn can be reduced to at most 5 to 6 or less, similar to data compression.
  • AI similar configuration as AI137 in FIG. 23
  • AI is composed of a multi-layer neural network capable of learning Deep Learning.
  • "supervised learning” is performed on AI for each identification target.
  • the neuron coefficients obtained by learning are sent to AI137 in FIG. 23 and stored.
  • FIG. 21 schematically shows the identification of clusters in the projected space of the calculated intrinsic spectra EU1 to EUn so that the non-linear identification by AI can be easily understood visually.
  • Reference numeral 363 indicates the projection of clusters of cancerous tissue on the planes of EU1 and EU2
  • reference numeral 364 indicates the projection of clusters of normal tissue
  • Z indicates the non-linear threshold value that AI identifies on that plane. Shown. It shows that the data of the two orthogonal axes EU1 and EU2 are converted into one-axis information (in this case, the axis that distinguishes between cancerous tissue and normal tissue) by the non-linear discrimination of AI.
  • AI enables non-linear identification in the information space by performing identification for each minute area of the information space for each layer, and performs conversion to different information axes.
  • the number of orthogonal axes increases or decreases as needed (due to backpropagation).
  • the basis vector component values of EU1 to EUn are sent from an external computer to the control unit 71 shown in FIG. 19, and are set in the control unit 71 as the coefficients 72-1 to 72-n of the multipliers 73-1 to 73-n. It is stored in the memory of. Values necessary for preprocessing such as correction by monitoring the spectral characteristics of the wideband light source are added to the values of the coefficients 72-1 to 72-n.
  • the coefficients 72-1 to 72-n are read out from the memory of the control unit 71, and the spectral components output in time series from the light receiving line detector 29 (see FIG. 7) by the multipliers 73-1 to 73-n. To generate a time-series signal projected on the EU1 to EUn axes. By Fourier transforming the time-series signals with FFT 74-1 to 74-n, spectral images for EU1 to EUn can be obtained, respectively.
  • the YIQ signal with a resolution ratio of 4: 1.5: 0.5 is assigned in descending order of contribution on the EU axis, and then converted to RGB by the matrix conversion unit 205-2 and displayed.
  • the identification accuracy on the image of the tissue can be maximized. After that, non-linear discrimination is made by the observer's visual brain in this color space.
  • the element that senses the contrast of the image is not the difference in brightness between the pixel of interest and neighboring pixels, but the ratio of brightness (according to the Retinex theory of the visual model).
  • the image of the spectral component corresponding to each axis is input to the trained AI137, narrowed down to 3 axes, and assigned to the YIQ signal described above for display. You may.
  • the substance may be directly specified by AI137. Then, depending on the degree of ignition of the AI output, the hue of the image of the cancer part is changed and expressed, or the outline of the cancer is emphasized and displayed, and the display is converted into a display that is easy to visually identify. Then, the diagnosis support may be effectively performed.
  • the detected spectral components are used to distinguish between two clusters of normal tissue and cancer tissue for each region of the image, and then the cancer tissue is determined.
  • the type and malignancy of the cancer are determined from the combination of identification of the two clusters, and then the two clusters are shown in 3. of FIG. 24.
  • the degree of progress is judged from the combination of identification of.
  • the coefficients 72-1 to 72-n of EU1 to EUn which are optimal for identification, are read out from the control unit 71 and used, and by switching the knowledge data of AI137, the scale shown in FIG. 23 is small. AI137 can be used to identify multiple clusters without increasing the time required for identification. 6) Application example of spectrum analysis
  • the endoscope device of the present invention can be used for the spectrum analysis of biological substances having unique reflection characteristics with respect to the spectrum of light (particularly infrared rays).
  • the endoscope device of the present invention can also be used for spectrum analysis of biomolecules having the property of binding to a specific dye, or biomolecules having staining or fluorescence that develop color by reacting with a specific enzyme.
  • a specific dye or biomolecules having staining or fluorescence that develop color by reacting with a specific enzyme.
  • dyeing and fluorescent dyes such as ICG (indocyanine green), 5-ALA, BBG, triamcinolone acetonide, and fluorescein.
  • the staining is based on the absorption spectrum, and Rayleigh scattered light is mixed in, but the absorption is strong, so the stability and SN are high.
  • the result of staining can be emphasized by using the above-mentioned spectrum analysis. Since some dyes, such as ICG, are weakly toxic, the amount used can be reduced by emphasizing the dyeing results.
  • the fluorescent dye (probe) that attaches to the cancer the photodynamic therapy that kills the attached cancer when exposed to near infrared rays is added to the fluorescent dye, and the cancer is displaced by the immune effect on the remains of the cancer that died by the photodynamic therapy.
  • Various new reagents and therapeutic agents are being developed, including those with photoimmunotherapy that kills the cancer. For these as well, it is expected that the situation of the probe will be recognized by the above-mentioned spectrum analysis.
  • Raman scattered light has extremely low signal energy ( 10-6 of excitation light)
  • Rayleigh scattering of excitation light can be removed by a spectral filter that utilizes wavelength shift, so it is detected by the reflection method. Suitable for. Since the Raman scattered light is emitted first, which is a linear phenomenon, and the remaining energy is absorbed as intermolecular vibration, it is possible to detect the Raman spectrum of the subject by the above-mentioned spectral analysis.
  • a method for improving the image resolution of the Raman spectrum as disclosed in Japanese Patent Application No. 2019-087128 and optimization of the detection band for each substance specified by multivariate analysis are performed by AI. By identifying the substance, it is possible to improve the sensitivity of identification.
  • the endoscope device of the present invention it is possible to utilize the combined use of the SERS (Surface Enhanced Raman Scattering) effect of Raman scattering and the process of CARS (Coherent anti-Stokes Raman Scattering).
  • SERS Surface Enhanced Raman Scattering
  • CARS Coherent anti-Stokes Raman Scattering
  • -Fig. 27 shows an example of using a micromotor 231 (0.9 mm ⁇ ) as a scanning mechanism.
  • the tip of the micromotor 231 is connected to the optical fiber end 51 via the flexible joint 237, and when the micromotor 231 is driven, the flexible joint 237 and the optical fiber end 51 are rotated. Since the tip of the endoscope device having the optical fiber end 51 can be further thinned, it is suitable for observing a luminal-shaped subject such as a blood vessel or an airway.
  • the length of the flexible joint 237 is appropriately set within a range in which the rigidity of the flexible joint 237 can be maintained so that the rotation speed does not become uneven due to twisting.
  • reference numeral 235 indicates a sliding member
  • 233 indicates an optical rotary joint
  • RX1 indicates a rotation axis.
  • FIG. 28 is an example of a scanning mechanism using the MEMS mirror 131.
  • reference numeral 51 indicates an optical fiber end
  • 137 indicates a virtual scanning line of the optical fiber end 51.
  • -Fig. 29 is a scanning mechanism that vibrates and scans the optical fiber end with a voice coil or a piezoelectric bimorph such as piezo or polyvinylidene fluoride because the optical fiber has high bending resistance.
  • the tip becomes thinner, and it is possible to perform scanning according to the shape of the subject.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Surgery (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

[Problem] To provide an endoscopic device that does not require an image forming optical system and an image sensor, that can be made small and with a small diameter, and that performs imaging and spectrum analysis. [Solution] An endoscopic device is provided with: an optical fiber 1 that guides light supplied from a light source 209, emits the light as diffused light 10, and receives reflected light that returns from a subject 3; an optical interference resolution processing unit 207 that carries out resolution processing on an advancing direction of a wave surface 5 of the diffused light 10 by the imaging principle of optical coherence tomography; a scanning mechanism 8 that scans the diffused light 10 in a scanning direction Y that crosses a center axis X of the diffused light 10; a storage unit 211 that stores a data string 177 generated by the resolution processing carried out by the optical interference resolution processing unit 207; and a combined aperture processing unit 213 that extracts and adds data AD-1 to AD-n, from the data string 177 stored in the storage unit 211, that match an optical path length OPL from one end 51 of the optical fiber 1 to a position of a pixel 173 to be detected.

Description

内視鏡装置Endoscope device
 本発明は、光学系とイメージセンサーを使用せず、電気的な処理によって画素ごとの合焦を可能にすることで、焦点深度の深い高精細な撮像と、広視野から顕微鏡的な拡大までの撮像の連続切り換えを可能にし、加えて、画素レベルのスペクトル解析を可能にする小型・細径の内視鏡装置に関する。 The present invention enables high-definition imaging with a deep depth of focus and wide-field to microscopic enlargement by enabling pixel-by-pixel focusing without using an optical system and an image sensor. The present invention relates to a small and small-diameter endoscope device that enables continuous switching of imaging and, in addition, enables pixel-level spectral analysis.
従来の内視鏡装置の主な課題として、以下のものがあげられる
・患者の苦痛を低減し、体内狭所の観察を可能にするために、小型・細径化を実現する。
The main issues of the conventional endoscope device are as follows: -To reduce the pain of the patient and to make it possible to observe a narrow space in the body, the size and diameter are reduced.
・3mm以下の疾患(X線撮像やCTで検出できない)を迅速に検出するために、広視野かつ高精細な撮像を実現する。
・細胞レベルの観察を可能にするために、顕微鏡的な拡大撮像を実現する。
・疾患部の質的情報を取得するために、画素レベルのスペクトル解析を実現する。
・ Achieve wide-field and high-definition imaging in order to quickly detect diseases of 3 mm or less (which cannot be detected by X-ray imaging or CT).
-Achieve microscopic magnified imaging to enable observation at the cellular level.
-Realize pixel-level spectral analysis to obtain qualitative information on the diseased part.
 上記の課題に対する既存の内視鏡装置の現状を以下に記す。
・イメージファイバー束を使用した2mmφの細径内視鏡装置が存在するが、イメージファイバーの径の波動光学的な限界から、画素数は4万画素程度に留まっている。
The current status of existing endoscopic devices for the above problems is described below.
-Although there is a 2 mmφ small-diameter endoscope device that uses an image fiber bundle, the number of pixels is limited to about 40,000 due to the wave-optical limit of the diameter of the image fiber.
・また、最先端のデザインルールで製造したイメージセンサーを内装した2 mmφの細径内視鏡装置が存在するが、画素数は14万画素程度に留まっている。 -Although there is a 2 mmφ small-diameter endoscope device with an image sensor manufactured according to the latest design rules, the number of pixels is only about 140,000.
・広視野から顕微鏡的な拡大までが可能な内視鏡装置が存在するが、光学系が大きいため、径が10mmφと太い。また、電子ズーム機能を併用しているため、高精細な画像を提供できていない。
・スペクトルの解析機能を有する内視鏡装置は存在しない。
-Although there are endoscopic devices that can magnify from a wide field of view to a microscope, the diameter is as large as 10 mmφ due to the large optical system. Moreover, since the electronic zoom function is also used, it is not possible to provide a high-definition image.
-There is no endoscope device that has a spectrum analysis function.
・イメージセンサーを使用した撮像方式では、上述した内視鏡装置の課題を解決する手法が、それぞれトレードオフの関係になるため、解決課題を纏めて解決することが難しい。 -In the imaging method using an image sensor, it is difficult to solve the problems collectively because the methods for solving the problems of the endoscope device described above are in a trade-off relationship.
・例えば、内視鏡先端の2mmφのスペースに、HD(2000×1000画素)のイメージセンサーを内装しようとすると、イメージセンサーの撮像面の対角寸法を1.4mm以下に抑えなければならず、そのときの画素ピッチは0.65μmが必要とされ、イメージセンサーの画素ピッチと感度、光学系の解像度において限界値を超えてしまう。 -For example, if you try to install an HD (2000 x 1000 pixels) image sensor in a space of 2 mmφ at the tip of the endoscope, the diagonal dimension of the image sensor's imaging surface must be suppressed to 1.4 mm or less. At this time, the pixel pitch is required to be 0.65 μm, which exceeds the limit values in the pixel pitch and sensitivity of the image sensor and the resolution of the optical system.
・また、スペクトルを検出する機能をイメージセンサーに搭載しようとすると、RGBのフィルタ以外に、別途、スペクトル検出用の光フィルタを搭載した画素を用意しなければならず、イメージセンサーの小型化がより一層難しくなる。 -In addition, if the image sensor is to be equipped with a spectrum detection function, it is necessary to separately prepare a pixel equipped with an optical filter for spectrum detection in addition to the RGB filter, which makes the image sensor more compact. It gets even more difficult.
・また、広視野観察から顕微鏡的な拡大観察までを可能にする光学系は、形状が大きくなり、内視鏡装置の径を太くせざるを得ない。光学系の大きさを抑えるために、電子ズーム機能を併用して拡大倍率を稼ぐと、高精細な画像を提供できない。電子ズームによって、目視の解像度をいたずらに下回る拡大表示をするよりも、広視野・高精細な画像を目視の解像度に適合した高精細画面に表示する方が、疾患部位の迅速な検出に繋がる。内視鏡装置を操作してスクリーニングするよりも、広視野・高精細の画面上を目視でスクリーニングするほうが遥かに速いからである。 -In addition, the optical system that enables wide-field observation to microscopic magnified observation has a large shape, and the diameter of the endoscopic device must be increased. If the electronic zoom function is used together to increase the magnification in order to reduce the size of the optical system, it is not possible to provide a high-definition image. Displaying a wide-field, high-definition image on a high-definition screen that matches the visual resolution leads to quicker detection of the diseased part, rather than displaying an enlarged display that is unnecessarily lower than the visual resolution by electronic zoom. This is because it is much faster to visually screen on a wide-field, high-definition screen than to operate an endoscope device for screening.
特開2008-165236号公報Japanese Unexamined Patent Publication No. 2008-165236
・特許文献1に、イメージセンサーを使用しない内視鏡装置が開示されている。スポット光を2次元に走査させて撮像する内視鏡装置である。ところが、このような2次元走査の撮像方式によってSD画像を得ようとすると、水平ラインに15.7kHz の高速走査が必要になり、プログレッシブ走査のHD画像では65.7kHzが必要になるため、走査機構の実現が難しい。また、光ファイバーを揺動させて走査するため、光ファイバーの屈曲耐性から、光ファイバーの疲労(伝送損失)が分単位で開始される。さらに、画素ごとにスペクトル解析を行う回路の実現が難しい。 -Patent Document 1 discloses an endoscope device that does not use an image sensor. This is an endoscope device that scans spot light in two dimensions for imaging. However, when trying to obtain an SD image by such a two-dimensional scanning imaging method, high-speed scanning of 15.7 kHz is required for the horizontal line, and 65.7 kHz is required for the HD image of progressive scanning. Difficult to achieve. In addition, since the optical fiber is oscillated and scanned, fatigue (transmission loss) of the optical fiber is started in minutes due to the bending resistance of the optical fiber. Furthermore, it is difficult to realize a circuit that performs spectrum analysis for each pixel.
・また、特許文献1において、更に細い内視鏡装置の実現が、結像光学系の大きさによって制限される。特に、広視野撮像から顕微鏡的な拡大撮像までの機能を、結像光学系に持たせようとすると、光学系が一段と大きくなり、細径化が難しくなる。 Further, in Patent Document 1, the realization of a thinner endoscope device is limited by the size of the imaging optical system. In particular, if the imaging optical system is to have functions from wide-field imaging to microscopic magnified imaging, the optical system becomes larger and it becomes difficult to reduce the diameter.
 本発明は、かかる事情に鑑みてなされたものである。すなわち、本発明は、従来の内視鏡装置が備える結像光学系およびイメージセンサー等を、光ファイバー1本と1次元の走査機構に置き換え、光ファイバーで受光した反射光を、撮像部外にて解像およびスペクトル解析に必要な光情報の処理を行なうことで、イメージセンサー等を備えることに起因する課題や、特許文献1の高速水平走査に起因する課題を解決し、内視鏡装置の人体に挿入される部分の小型・細径化を実現することを目的とする。 The present invention has been made in view of such circumstances. That is, in the present invention, the imaging optical system, the image sensor, and the like provided in the conventional endoscope device are replaced with one optical fiber and a one-dimensional scanning mechanism, and the reflected light received by the optical fiber is solved outside the imaging unit. By processing the optical information necessary for image and spectrum analysis, the problems caused by providing an image sensor and the like and the problems caused by high-speed horizontal scanning in Patent Document 1 can be solved, and the human body of the endoscopy device can be used. The purpose is to reduce the size and diameter of the inserted part.
〔課題を解決する手段〕
 本発明は、以上に述べた課題を纏めて解決するために、結像光学系とイメージセンサーを使用しない撮像方式の内視鏡装置である。
・本発明の撮像方式の概要を、図 1を参照しつつ説明する。拡散光10を被写体面3に斜めに照射し、得られた反射光を、OCI(Optical Coherence Imaging)処理を行うことでライン4方向の解像を行い、ライン4方向の解像を繰返しながら、ライン4方向と交差する走査方向Yへ拡散光10を走査する。ライン4方向及び走査方向Yの走査により得た反射光に関する複数のデータ列を使用して合成開口処理を行うことで走査方向Yの解像を行う。このように、内視鏡装置は、被写体面3上でライン4方向及びライン4方向に直交する走査方向Yの解像を、パイプライン処理的に行って撮像する方式を備える。OCI処理は、技術的にOCT(Optical Coherence Tomography)の処理をベースとするが、検出する対象や目的が異なるため、本願ではOCIという名称を使用する。OCI処理の詳細については、後述する。
[Means to solve problems]
The present invention is an imaging type endoscope device that does not use an imaging optical system and an image sensor in order to collectively solve the above-mentioned problems.
-The outline of the imaging method of the present invention will be described with reference to FIG. The diffused light 10 is obliquely irradiated to the subject surface 3, and the obtained reflected light is subjected to OCI (Optical Coherence Imaging) processing to perform resolution in the line 4 direction, and while repeating resolution in the line 4 direction, The diffused light 10 is scanned in the scanning direction Y that intersects the line 4 direction. Resolution in the scanning direction Y is performed by performing a synthetic aperture process using a plurality of data strings relating to the reflected light obtained by scanning in the line 4 direction and the scanning direction Y. As described above, the endoscope device includes a method of performing pipeline processing to image the resolution of the scanning direction Y orthogonal to the line 4 direction and the line 4 direction on the subject surface 3. The OCI process is technically based on the OCT (Optical Coherence Tomography) process, but since the detection target and purpose are different, the name OCI is used in this application. The details of OCI processing will be described later.
・図2(a)~(c)を用いて、上記の解像の原理を説明する。OCI処理によって照明光が拡散する方向の解像を行なうと、図2(a)に示すように、球面状の光パルスP1で送受信したのと同じ解像が得られ、合成開口処理によって拡散光10の中心軸X(図1参照。)と直交する走査方向Yの解像を行うと、図2(b)に示すように、扇状P2の解像がなされ、両方を掛け合わせたものが総合の解像度となる。総合の解像は、図2(c)に示すように、あたかもミクロンオーダーの太さの円弧状の光パルス5を、レーダーのように送受信して反射光を得たのと同じことになる。 -The principle of the above resolution will be described with reference to FIGS. 2 (a) to 2 (c). When the resolution in the direction in which the illumination light is diffused is performed by the OCI process, the same resolution as that transmitted and received by the spherical light pulse P1 is obtained as shown in FIG. 2 (a), and the diffused light is obtained by the synthetic aperture processing. When the resolution of the scanning direction Y orthogonal to the central axis X (see FIG. 1) of 10 is performed, the resolution of the fan-shaped P2 is obtained as shown in FIG. 2 (b), and the product of both is integrated. It becomes the resolution of. As shown in FIG. 2C, the overall resolution is the same as transmitting and receiving arc-shaped light pulses 5 having a thickness on the order of microns, like a radar, to obtain reflected light.
・この円弧状の光パルス5が拡散する範囲で被写体面3に斜めに入ると、ライン4上のどの位置においても焦点が合った反射光が得られることになり、画素ごとに解像がなされるため、焦点深度が深く、また、OCIの範囲OCと、合成開口の範囲SAを切換えることで、広視野撮像から顕微鏡的な拡大撮像までの連続切り換えが可能になる。 -If the arc-shaped light pulse 5 enters the subject surface 3 diagonally within the diffused range, the reflected light that is in focus can be obtained at any position on the line 4, and the resolution is made for each pixel. Therefore, the depth of focus is deep, and by switching between the OCI range OC and the synthetic aperture range SA, continuous switching from wide-field imaging to microscopic magnified imaging becomes possible.
・以上から分かるように、本発明の撮像方式は、電気的な処理によって、高解像度を保ったまま、被写界深度を大幅に広げるダイナミックフォーカシングと、広視野・高精細撮像から顕微鏡的な拡大撮像までを連続的に切換えるスーパーズーミングが可能である。 -As can be seen from the above, the imaging method of the present invention has dynamic focusing that greatly expands the depth of field while maintaining high resolution by electrical processing, and microscopic enlargement from wide-field / high-definition imaging. Super zooming that continuously switches up to imaging is possible.
本発明の内視鏡装置で得られる画像の特徴を次に説明する。
・本発明の撮像方式で得られる画像は、図3に示すように、拡散光10を被写体に対し斜めの角度θで照明すると、ライン4と照明光の波面5が交わる反射点6を、波面5の接線方向である観察方向7から観察した画像と同じになる。
The features of the image obtained by the endoscope device of the present invention will be described below.
As shown in FIG. 3, the image obtained by the imaging method of the present invention has a wave surface at a reflection point 6 where the line 4 and the wave surface 5 of the illumination light intersect when the diffused light 10 is illuminated at an oblique angle θ with respect to the subject. It becomes the same as the image observed from the observation direction 7 which is the tangential direction of 5.
・また、被写体が半透明の場合、図3の左下の拡大図3Aに示すように、被写体内部の同一波面からの反射信号(反射輝度)が重畳され、接線方向(観察方向7)から透過像を観察したのと同じ画像が得られる。生体透過性が高い近赤外光(波長0.68μm~1.5μm )を照明に含めれば、生体表面(被写体面)から数mmの深さにおける透過像を得ることも可能である。 -When the subject is translucent, as shown in the enlarged view 3A at the lower left of FIG. 3, the reflected signal (reflected brightness) from the same wave plane inside the subject is superimposed, and the transmitted image is transmitted from the tangential direction (observation direction 7). You will get the same image as you observed. By including near-infrared light (wavelength 0.68 μm to 1.5 μm) with high biotransparency in the illumination, it is possible to obtain a transmitted image at a depth of several mm from the surface of the living body (subject surface).
・被写体に対し斜めから照明を行い得られる画像は、照射方向と直交する方向(観察方向7)から観察することになるので、粘膜表面の正反射が前方(図3の左方向)に逃げ、血管などの組織Tの影が出やすく、血管の輪郭が強調されるため、血管の構造が把握しやすくなる。ちなみに、血管の構造から癌の悪性度や進行度が診断されている。 -Since the image obtained by illuminating the subject from an angle is observed from the direction orthogonal to the irradiation direction (observation direction 7), the specular reflection on the mucosal surface escapes forward (to the left in FIG. 3). Since the shadow of the tissue T such as a blood vessel is easily cast and the outline of the blood vessel is emphasized, the structure of the blood vessel can be easily grasped. By the way, the malignancy and progression of cancer are diagnosed from the structure of blood vessels.
・また、照明の照射角度θを調節すると、被写体面3のわずかな凹凸や、粘膜下の小さな組織の陰影を強調することができる。例えば、粘膜下の毛細血管の輪郭、関節表面の僅かな凹凸、網膜上の黄斑上膜の端の僅かな段差などが観察しやすくなる。目的に応じて照明の照射角度θが操作される。 -In addition, by adjusting the irradiation angle θ of the illumination, it is possible to emphasize the slight unevenness of the subject surface 3 and the shadow of a small tissue under the mucous membrane. For example, the contours of submucosal capillaries, slight irregularities on the joint surface, and slight steps at the edges of the epiretinal membrane on the retina can be easily observed. The irradiation angle θ of the illumination is manipulated according to the purpose.
 本発明の内視鏡装置の第1の態様は、光源から供給される光を導光し、拡散光として出射し、被写体から戻る反射光を受光する光ファイバーと、
 光干渉断層法の撮像原理によって前記拡散光の波面の進行方向の解像処理を行う光干渉解像処理部と、
 前記拡散光の中心軸と交差する走査方向に前記拡散光を走査する走査機構と、
 前記光干渉解像処理部による解像処理により生成されるデータ列を記憶する記憶部と、
 前記光ファイバーの一端から検出する画素の位置までの光路長と一致するデータを、前記記憶部に記憶されている前記データ列から抽出し、加算する合成開口処理部と、を備える。
A first aspect of the endoscope device of the present invention is an optical fiber that guides light supplied from a light source, emits it as diffused light, and receives reflected light returned from a subject.
An optical interference resolution processing unit that performs resolution processing in the traveling direction of the wavefront of the diffused light according to the imaging principle of the optical coherence tomography method.
A scanning mechanism that scans the diffused light in a scanning direction that intersects the central axis of the diffused light.
A storage unit that stores a data string generated by resolution processing by the optical interference resolution processing unit, and a storage unit.
It is provided with a synthetic aperture processing unit that extracts and adds data that matches the optical path length from one end of the optical fiber to the position of the pixel to be detected from the data string stored in the storage unit.
 本発明の内視鏡装置の第2の態様は、第1の態様に係る内視鏡装置であって、前記走査方向が、前記拡散光の中心軸と直交する。 The second aspect of the endoscope device of the present invention is the endoscope device according to the first aspect, in which the scanning direction is orthogonal to the central axis of the diffused light.
 本発明の内視鏡装置の第3の態様は、第1又は第2の態様に係る内視鏡装置であって、前記光源は、広帯域光又は広帯域の波長掃引光を生成する。 The third aspect of the endoscope device of the present invention is the endoscope device according to the first or second aspect, and the light source produces wideband light or wideband wavelength sweep light.
 本発明の内視鏡装置の第4の態様は、第1~3の態様の何れかに係る内視鏡装置であって、前記光干渉解像処理部は、前記光ファイバーにより受光される前記反射光に対し、参照光を生成するための反射板と、前記参照光を干渉させる干渉カプラと、所定の波長帯域成分を取り出す分光器と、前記所定の波長帯域成分のフーリエ変換を行い所定の波長帯域に対応する所定信号を生成するフーリエ変換部と、を備える。 A fourth aspect of the endoscope device of the present invention is the endoscope device according to any one of the first to third aspects, and the optical interference resolution processing unit is the reflection received by the optical fiber. A reflector for generating reference light with respect to light, an interference coupler that interferes with the reference light, a spectroscope that extracts a predetermined wavelength band component, and a Fourier conversion of the predetermined wavelength band component to perform a Fourier conversion to a predetermined wavelength. It includes a Fourier transform unit that generates a predetermined signal corresponding to the band.
 本発明の内視鏡装置の第6の態様は、第1~5の態様の何れかに係る内視鏡装置であって、クラスタが既知の被写体の反射スペクトルからフィッシャー・レシオが大きい順に複数のスペクトル成分を算出し、前記スペクトル成分を用い、クラスタが未知の被写体の反射スペクトルから識別を行う識別手段を備える。 A sixth aspect of the endoscope device of the present invention is the endoscope device according to any one of the first to fifth aspects, wherein a plurality of endoscope devices having clusters are known in descending order of Fisher ratio from the reflection spectrum of a subject. A discriminating means is provided for calculating a spectral component and using the spectral component to discriminate from the reflection spectrum of an unknown subject by a cluster.
 本発明の内視鏡装置の第7の態様は、第6の態様に係る内視鏡装置であって、前記識別手段は、ディープラーニングを実行するAIを用いる。 The seventh aspect of the endoscope device of the present invention is the endoscope device according to the sixth aspect, and the identification means uses an AI that performs deep learning.
・本発明によれば、内視鏡装置の撮像部が光ファイバーと1次元方向の走査機構とを備える簡素な構成であるため、内視鏡装置の挿入部の極細径化が可能になる。
  本発明の内視鏡装置によれば、水平走査が電気的な処理(例えば、フーリエ変換処理)によって行われるため、HD、4K、8K、に必要な高速水平走査が実現でき、画像を繰り返すための垂直走査には、低速な垂直走査周波数(例えば,60Hz)を有する走査機構を利用できる
-According to the present invention, since the imaging unit of the endoscope device has a simple configuration including an optical fiber and a scanning mechanism in a one-dimensional direction, it is possible to make the diameter of the insertion unit of the endoscope device extremely small.
According to the endoscope device of the present invention, since horizontal scanning is performed by electrical processing (for example, Fourier conversion processing), high-speed horizontal scanning required for HD, 4K, and 8K can be realized, and images are repeated. For vertical scanning, a scanning mechanism having a low vertical scanning frequency (for example, 60 Hz) can be used.
・本発明の内視鏡装置は、小型・細径でありながら、HD、4K、8Kの高精細撮像が可能であって、そのような画像から顕微鏡的な拡大画像までの連続切り換えや、被写界深度の拡大を電気的に実施することが可能である。 -The endoscope device of the present invention is capable of high-definition imaging of HD, 4K, and 8K in spite of its small size and small diameter, and can continuously switch from such an image to a microscopic magnified image, and is covered. It is possible to electrically increase the depth of field.
・本発明の内視鏡装置は、小型・細径でありながら、スペクトル解析により被写体の物質の特定を画素レベルで可能である。 -Although the endoscope device of the present invention is small and has a small diameter, it is possible to identify the substance of the subject at the pixel level by spectral analysis.
・本発明の内視鏡装置は、熱に弱いイメージセンサーを使用しないため、オートクレーブ滅菌が可能である。 -Since the endoscope device of the present invention does not use a heat-sensitive image sensor, autoclave sterilization is possible.
実施形態である内視鏡装置の構成を示す構成図である。It is a block diagram which shows the structure of the endoscope apparatus which is an embodiment. 実施形態である内視鏡装置による撮像の原理を説明するための図であり、(a)は、OCI による解像を示す図であり、(b)は、合成開口による解像を示す図であり、(c)は、被写体面上に拡散する光パルスを模式的に示す模式図である。It is a figure for demonstrating the principle of imaging by an endoscopic apparatus which is an embodiment, (a) is a figure which shows the resolution by OCI, (b) is a figure which shows the resolution by a synthetic aperture. Yes, (c) is a schematic diagram schematically showing an optical pulse diffused on a subject surface. 観察画像を説明するための図である。It is a figure for demonstrating the observation image. 光ファイバーから照射される照射光のファイバー端と円弧とのの往復光路長の関係を説明するための図である。It is a figure for demonstrating the relationship of the reciprocating optical path length between the fiber end of the irradiation light which irradiates from an optical fiber, and an arc. 走査機構の構成を示す構成図である。It is a block diagram which shows the structure of a scanning mechanism. (a)は、OCT処理により生体の撮像方法を説明する図であり、(a)は、OCI処理により生体の撮像方法を説明する図である。(A) is a diagram for explaining a method of imaging a living body by OCT processing, and (a) is a diagram for explaining a method of imaging a living body by OCI processing. 広帯域光源を用いたOCI処理を示すブロック図である。It is a block diagram which shows OCI processing using a wide band light source. フーリエ解析によるOCI処理を説明するための図である。It is a figure for demonstrating OCI processing by Fourier analysis. 波長掃引光源を用いたOCI処理を示すブロック図である。It is a block diagram which shows the OCI processing using the wavelength sweep light source. セクタスキャン方式における合成開口の概念を示す概念図である。It is a conceptual diagram which shows the concept of a synthetic aperture in a sector scan system. 取得データを補完する補完処理と相関演算による合成開口処理の例を示すブロック図である。It is a block diagram which shows the example of the completion processing which complements the acquired data, and the synthesis opening processing by the correlation calculation. 取得データを補完する補完処理とフーリエ変換による合成開口処理の例を示すブロック図である。It is a block diagram which shows the example of the completion processing which complements the acquired data, and the synthesis opening processing by a Fourier transform. 既存の内視鏡と組合せた構成により顕微鏡撮像を行う例を説明するための説明図である。It is explanatory drawing for demonstrating an example of performing microscope imaging by the configuration combined with the existing endoscope. 細径内視鏡装置の撮像部の構成を示す構成図である。It is a block diagram which shows the structure of the image pickup part of a small-diameter endoscope apparatus. 顕微鏡撮像を説明するための断面説明図である。It is sectional drawing explanatory drawing for demonstrating microscopic imaging. 合成開口処理を説明する図である。It is a figure explaining the synthetic opening process. 拡散光を走査する走査方式を説明する図であり、(a)はリニア方式、(b)はコンベックス方式、(c)はセクタスキャン方式、(d)はマルチスキャン方式の一例、(e)はマルチスキャン方式の別の例である。It is a figure explaining the scanning system which scans diffused light, (a) is a linear system, (b) is a convex system, (c) is a sector scan system, (d) is an example of a multi-scan system, (e) is an example. This is another example of the multi-scan method. セクタスキャン方式における位相整合の概念を示す概念図である。It is a conceptual diagram which shows the concept of phase matching in a sector scan system. RGBとスペクトル画像の検出を示すブロック図である。It is a block diagram which shows the detection of RGB and a spectrum image. フーリエ変換の範囲を説明する図である。It is a figure explaining the range of the Fourier transform. FS(Foley Sammon)変換を説明する図である。It is a figure explaining FS (Foley Sammon) conversion. RGBとスペクトル画像の合成開口処理とマトリクス変換処理を示すブロック図である。It is a block diagram which shows the synthetic aperture processing and the matrix conversion processing of RGB and a spectrum image. スペクトル画像をAIで識別することを説明するブロック図である。It is a block diagram explaining that the spectrum image is identified by AI. クラスタ識別フローを説明する図である。It is a figure explaining the cluster identification flow. 血液と表層粘膜の反射スペクトル特性を示すグラフである。It is a graph which shows the reflection spectrum characteristic of blood and a superficial mucosa. 酸化ヘモグロビン(動脈)と還元ヘモグロビン(静脈)の吸収係数特性を示すグラフである。It is a graph which shows the absorption coefficient characteristic of oxidized hemoglobin (artery) and reduced hemoglobin (vein). マイクロモーターにより光ファイバー端を回転する走査機構の構成を示す構成図である。It is a block diagram which shows the structure of the scanning mechanism which rotates the end of an optical fiber by a micromotor. MEMSミラーを使用する走査機構の構成を示す構成図である。It is a block diagram which shows the structure of the scanning mechanism which uses a MEMS mirror. (a)、(b)は、圧電バイモルフにより光ファーバー端を振動させる走査機構の構成を示す構成図であり、(c)は、振動方向が直交する2つの圧電バイモルフ振動子により光ファーバー端を回転振動させる走査機構の構成を示す構成図である。(A) and (b) are configuration diagrams showing the configuration of a scanning mechanism that vibrates the optical fiber end by a piezoelectric bimorph, and (c) shows the optical fiber end by two piezoelectric bimorph oscillators whose vibration directions are orthogonal to each other. It is a block diagram which shows the structure of the scanning mechanism which causes rotational vibration.
 以下に、本発明の実施例に係る内視鏡装置について図面を参照しつつ説明する。尚、図面において同一部分は同一符号で示されている。 Hereinafter, the endoscope device according to the embodiment of the present invention will be described with reference to the drawings. In the drawings, the same parts are indicated by the same reference numerals.
1.〔本発明の実施例〕
本発明の撮像方式の実施例を以下に説明する。
1)本発明の撮像方式の実施例の基本動作
・図1に示すように、広帯域光源209の光が、光サーキュレータ203を介し、光ファイバー1により内視鏡先端部201に導光され、光ファイバー端51から出射され、被写体面3が所定の拡散範囲DAで斜めから照明される。拡散光の中心軸Xと被写体面3が交差する角度θが、0°<θ<90°の範囲、好ましくは45度になるように、被写体面3に対して内視鏡先端部201の位置が操作される。
1. 1. [Examples of the present invention]
Examples of the imaging method of the present invention will be described below.
1) Basic operation of the embodiment of the imaging method of the present invention-As shown in FIG. 1, the light of the broadband light source 209 is guided to the endoscope tip 201 by the optical fiber 1 via the optical circulator 203, and the optical fiber end. It is emitted from 51, and the subject surface 3 is illuminated obliquely in a predetermined diffusion range DA. The position of the endoscope tip 201 with respect to the subject surface 3 so that the angle θ at which the central axis X of the diffused light and the subject surface 3 intersect is in the range of 0 ° <θ <90 °, preferably 45 degrees. Is operated.
・このとき、図4に示すように、円弧ARC(ARC1、ARC2)からの反射光は、光ファイバー端51からの往復光路長が等しいため、同一位相で重畳され、光ファイバー端51に受光される。ライン4は、円弧ARCと直交する被写体面3上の線の一つを示している。光ファイバー端51から円弧ARCまでの光路長OPLは、円弧ARCの位置が、ライン4の一端(ライン端)104から遠くなるにつれ漸次長くなっている。 At this time, as shown in FIG. 4, the reflected light from the arc ARCs (ARC1 and ARC2) is superimposed in the same phase because the round-trip optical path lengths from the optical fiber end 51 are the same, and is received by the optical fiber end 51. Line 4 shows one of the lines on the subject surface 3 orthogonal to the arc ARC. The optical path length OPL from the optical fiber end 51 to the arc ARC gradually increases as the position of the arc ARC becomes farther from one end (line end) 104 of the line 4.
・光ファイバー端51で受光した反射光は、光サーキュレータ(図1の符号203を参照。)を介してOCI処理部207へ導光される。OCI処理部207において、OCTと同じ処理によって、図4に示した光ファイバー端51から円弧ARCまでの往復光路長OPLの違いを利用して、円弧ARCに直交する方向(ライン4の長手方向)の解像がなされる。後述の2)~5)項で、OCI処理部207の動作について詳細に述べる。 The reflected light received at the optical fiber end 51 is guided to the OCI processing unit 207 via an optical circulator (see reference numeral 203 in FIG. 1). In the OCI processing unit 207, by the same processing as OCT, the direction orthogonal to the arc ARC (longitudinal direction of the line 4) is utilized by utilizing the difference in the round-trip optical path length OPL from the optical fiber end 51 to the arc ARC shown in FIG. Resolution is made. The operation of the OCI processing unit 207 will be described in detail in sections 2) to 5) described later.
・そして、OCI処理部207の動作を繰返しながら、一次元走査機構8によって、拡散光10を、中心軸Xと交差する走査方向Yへ走査し、合成開口に必要なデータ列が取得され、記憶部211に記憶される。 Then, while repeating the operation of the OCI processing unit 207, the diffused light 10 is scanned in the scanning direction Y intersecting the central axis X by the one-dimensional scanning mechanism 8, and the data string required for the composite opening is acquired and stored. It is stored in the unit 211.
 図5に走査機構の例を示す。参照符号511は、被写体面3を斜めに照明しながら回転往復走査する光ファイバーを示し、555は、マイクロガルバノスキャナーを示し、553は、光ロータリージョイントを示し、112は、伝送用の光ファイバーを示す。参照符号12は、GRIN(Gradient Index)レンズを示す。GRINレンズ12は、結像するためではなく、光強度の拡散分布を調整するために用いられ、開口径を相対的に小さくできる。マイクロガルバノスキャナー555の代わりに、回転走査するマイクロモーターを用いてもよい。マイクロモーターを用いるときコイルバネ533は不要になる。マイクロモーターは0.9mmφや0.6mmφのものが市販されていて大きさに対する懸念はない。その他の走査機構の例については、後述する。 Figure 5 shows an example of the scanning mechanism. Reference numeral 511 indicates an optical fiber that rotates and reciprocates while illuminating the subject surface 3 at an angle, 555 indicates a microgalvano scanner, 555 indicates an optical rotary joint, and 112 indicates an optical fiber for transmission. Reference numeral 12 indicates a GRIN (Gradient Index) lens. The GRIN lens 12 is used not for forming an image but for adjusting the diffusion distribution of light intensity, and the aperture diameter can be made relatively small. Instead of the microgalvano scanner 555, a rotary scanning micromotor may be used. When using a micromotor, the coil spring 533 becomes unnecessary. Micromotors of 0.9 mmφ and 0.6 mmφ are commercially available, and there is no concern about their size. Examples of other scanning mechanisms will be described later.
・次に、記憶部211から合成開口に必要なデータが読みだされ、合成開口処理部213において、走査方向Yの開口を合成する処理が行われ、走査方向Yにおける解像がなされる。合成開口処理部213の動作については、後述の6)項と7)項で詳細に述べる。 Next, the data required for the composite aperture is read from the storage unit 211, the composite aperture processing unit 213 performs a process of synthesizing the aperture in the scanning direction Y, and resolution in the scanning direction Y is performed. The operation of the synthetic opening processing unit 213 will be described in detail in Sections 6) and 7) described later.
・最後に、表示処理部205において、RGB画像へのマトリクス変換、AIの判定結果を表示するための処理、表示装置215に合わせた走査変換などが行われ、表示装置215によりRGB画像、スペクトル画像が表示される。 -Finally, the display processing unit 205 performs matrix conversion to an RGB image, processing for displaying the AI determination result, scanning conversion according to the display device 215, and the like, and the display device 215 performs RGB image and spectrum image. Is displayed.
2)OCI処理とOCT処理の違い
 前述したように、OCI処理はOCT処理をベースとする光干渉解像処理(光干渉断層法の撮像原理に基づく処理)であるが、以下に示すように目的が互いに異なるため、両処理において異なる部分がある。
2) Difference between OCI processing and OCT processing As described above, OCI processing is optical interference resolution processing (processing based on the imaging principle of optical coherence tomography) based on OCT processing, but the purpose is as shown below. Are different from each other, so there are differences in both processes.
・OCT処理は、生体表面OSから内部の断層像の検出を目的とするため、図6(a)に示すように、被写界深度D1を深く設定する。ゆえに、光学系の開口数NA1を大きく(解像度を高く)することができない(NA1が相対的に小さい。)。また、OCT処理で使用される波長帯域は生体透過性が高い近赤外光に限られ、また、生体内伝播時に波長ごとの減衰や散乱が重畳されるため、RGB画像の生成や定量的なスペクトル解析ができない。 -Since the purpose of the OCT process is to detect an internal tomographic image from the living body surface OS, the depth of field D1 is set deeply as shown in FIG. 6A. Therefore, the numerical aperture NA1 of the optical system cannot be increased (the resolution is increased) (NA1 is relatively small). In addition, the wavelength band used in OCT processing is limited to near-infrared light with high biotransparency, and attenuation and scattering for each wavelength are superimposed during propagation in the living body, so RGB images can be generated and quantitatively generated. Spectral analysis is not possible.
・それに対して、OCI処理は、被写体表面である生体表面OSの画像の検出を目的とするため、図6(b)に示すように、開口数NA2を相対的に大きく設定することができる。また、OCI処理によれば、OCT処理のように照射光が生体内伝播時に減衰しないため、感度に余裕があり、光ファイバー端51の開口をピンホールで調整することで、顕微鏡的な高解像度を実現できる。加えて、OCI処理では、広帯域光が使用できるのと、OCT処理のような照射光の生体内伝播時に重畳的に起きる波長ごとの減衰や散乱がないため、RGB画像の検出や定量的なスペクトル解析が可能である。 On the other hand, since the OCI process aims to detect an image of the biological surface OS which is the surface of the subject, the numerical aperture NA2 can be set relatively large as shown in FIG. 6 (b). In addition, according to the OCI process, unlike the OCT process, the irradiation light is not attenuated when propagating in the living body, so there is a margin in sensitivity, and by adjusting the opening of the optical fiber end 51 with a pinhole, high microscopic resolution can be achieved. realizable. In addition, in OCI processing, wideband light can be used, and unlike OCT processing, there is no attenuation or scattering for each wavelength that occurs superimposed when the irradiation light propagates in the body, so RGB image detection and quantitative spectrum Analysis is possible.
・ゆえに、OCI処理では、OCT処理の技術がベースとして利用され、広帯域光を用いOCT処理を行い、加えて、RGB画像の検出とスペクトル解析についての処理が行われる。RGB画像の検出とスペクトル解析の動作について、後述の〔2.スペクトル解析〕のところで詳細に述べる。 -Therefore, in OCI processing, OCT processing technology is used as a base, OCT processing is performed using wideband light, and in addition, processing for RGB image detection and spectrum analysis is performed. The operation of RGB image detection and spectrum analysis will be described in [2. Spectrum analysis] will be described in detail.
3)OCI処理
 次に、広帯域光源を使用したOCI処理部について説明する。
・図7に示すように、広帯域光源21の光は、分岐カプラ22によって2つに分けられ、分岐された光の1つは、光サーキュレータ23を介して、反射板24によって反射され、参照光25が得らされる。
3) OCI processing Next, the OCI processing unit using a wideband light source will be described.
As shown in FIG. 7, the light of the broadband light source 21 is divided into two by the branch coupler 22, and one of the branched lights is reflected by the reflector 24 via the optical circulator 23, and the reference light. 25 is obtained.
・分岐されたもう一方の光は、光サーキュレータ26を介して、光ファイバー1によって内視鏡先端部201に導かれ、図1に示したように、被写体面3に斜めから照射される。 The other branched light is guided to the endoscope tip portion 201 by the optical fiber 1 via the optical circulator 26, and is obliquely irradiated to the subject surface 3 as shown in FIG.
・次に、図4に示した円弧ARCからの反射光が、光ファイバー1で受光され、光サーキュレータ26を介して、干渉カプラ27によって参照光と干渉される。干渉が行われると、反射光と参照光25の光路長OPLの差に比例した周波数で干渉縞が発生し、それらがライン4上からの反射点の数だけ重畳された光になる。反射光の光路長OPLが参照光25の光路長より長くなるほど、干渉縞の周波数が高くなる。 Next, the reflected light from the arc ARC shown in FIG. 4 is received by the optical fiber 1, and is interfered with the reference light by the interference coupler 27 via the optical circulator 26. When interference occurs, interference fringes are generated at a frequency proportional to the difference between the reflected light and the optical path length OPL of the reference light 25, and these are superimposed by the number of reflection points from the line 4. The longer the optical path length OPL of the reflected light is longer than the optical path length of the reference light 25, the higher the frequency of the interference fringes.
・次に、干渉カプラ27の出力光は、トロイダル型のグレーティング分光器28によって波数(波長の逆数)成分に分光され、当該波数成分を受光ラインディテクタ29で受光することによって、光のキャリアが消え、波数成分が時系列になった電気信号が得られる。この電気信号は、反射光と参照光25の往復光路長の差に応じて発生した干渉縞を示す成分が、ライン4上の反射点の数だけ重畳された成分を有する。 Next, the output light of the interference coupler 27 is split into a wave number (inverse wavelength) component by the toroidal type grating spectroscope 28, and the light carrier disappears by receiving the wave number component with the light receiving line detector 29. , An electric signal in which the wavenumber components are in chronological order can be obtained. This electric signal has components indicating interference fringes generated according to the difference in the round-trip optical path lengths of the reflected light and the reference light 25, which are superimposed by the number of reflection points on the line 4.
・次に、FFT30によって、この電気信号についてフーリエ変換を行なうと、フーリエ変換後の周波数成分が、参照光25と各円弧状反射点ARCの光路長OPLの差に相当し、周波数成分ごとの振幅が、反射強度に相当する。結果として、円弧状反射点ARCと直交する方向についての解像がなされたことになり、円弧状反射点ARCから反射した反射信号が得られる。 Next, when the Fourier transform is performed on this electric signal by the FFT30, the frequency component after the Fourier transform corresponds to the difference between the reference light 25 and the optical path length OPL of each arcuate reflection point ARC, and the amplitude of each frequency component. However, it corresponds to the reflection intensity. As a result, the resolution is made in the direction orthogonal to the arc-shaped reflection point ARC, and the reflected signal reflected from the arc-shaped reflection point ARC is obtained.
・そして、後述する走査機構によって、走査方向Yへ拡散光10を走査しながら、上記の動作を繰返し、得られた円弧状反射点ARCの反射信号の振幅と位相のデータ列が、記憶部211に送られ、記憶される。 Then, while scanning the diffused light 10 in the scanning direction Y by the scanning mechanism described later, the above operation is repeated, and the data string of the amplitude and phase of the reflected signal of the arc-shaped reflection point ARC obtained is stored in the storage unit 211. Is sent to and remembered.
・図7に示される広帯域光源21の波長(波数)帯域を広くすると、それに比例して干渉縞の波数が増えるため、波長信号をフーリエ変換したときの単スペクトルの幅が狭くなり、ライン4方向の解像度が上がることになる。 When the wavelength (wave number) band of the wideband light source 21 shown in FIG. 7 is widened, the wave number of the interference fringes increases in proportion to it, so that the width of the single spectrum when the wavelength signal is Fourier transformed becomes narrow and the line 4 direction. Will increase the resolution of.
・図1に記載のライン4方向の解像度σは、光ファイバー端51を点光源とみなし、広帯域光源209の波長帯域の形状を正規関数としたとき、σ=〔0.44・λc/Δλ〕/cosθで表される。解像度σは、波長帯域の幅に比例する。Δλは波長の帯域幅を示し、λcは中心波長を示し、θは拡散光の中心軸Xとライン4が交差する角度を示す。 The resolution σ in the line 4 direction shown in FIG. 1 is σ = [0.44 · λc 2 / Δλ] / cos θ, where the optical fiber end 51 is regarded as a point light source and the shape of the wavelength band of the broadband light source 209 is a normal function. It is represented by. The resolution σ is proportional to the width of the wavelength band. Δλ indicates the wavelength bandwidth, λc indicates the central wavelength, and θ indicates the angle at which the central axis X of the diffused light and the line 4 intersect.
・また、OCI処理の繰返し周期が長くなるほど、受光ラインディテクタ29(図7参照。)の出力が大きくなるため、OCI処理の感度が上がることになる。 -In addition, as the repetition cycle of the OCI process becomes longer, the output of the light receiving line detector 29 (see FIG. 7) becomes larger, so that the sensitivity of the OCI process increases.
4)OCI処理の補足説明
 以下に、フーリエ解析によるOCI処理の補足説明を行う。
・図8(a)に示した式の第1項は、広帯域の照明光を模式的に表したものである。図8(a)の第2項は、ライン4上の反射点を1つとしたときの参照光25と反射光の光路長OPLの関係をδ関数で表したものである。Lの値は、参照光25の光路長OPLを0としたときの反射光の往復光路長を示す。反射光に参照光25を干渉させる処理は、図8(a)の式のように、参照光25と反射光の反射位置に照明光を重畳積分(*)したものとして表すことができる。図8(a)の第2項のkは、参照波の振幅を示し、Aは、反射波の振幅を示す。
4) Supplementary explanation of OCI processing The following is a supplementary explanation of OCI processing by Fourier analysis.
The first term of the equation shown in FIG. 8A schematically represents a wide band illumination light. The second term in FIG. 8A expresses the relationship between the reference light 25 and the optical path length OPL of the reflected light by a δ function when the number of reflection points on the line 4 is one. The value of L indicates the reciprocating optical path length of the reflected light when the optical path length OPL of the reference light 25 is 0. The process of interfering the reference light 25 with the reflected light can be expressed as a superposition integration (*) of the illumination light on the reflection positions of the reference light 25 and the reflected light as shown in the equation of FIG. 8A. The second term k in FIG. 8A indicates the amplitude of the reference wave, and A indicates the amplitude of the reflected wave.
・図8(a)の式で得られた合成積をトロイダル型のグレーティング分光器28(図7参照。)で分光し、受光ラインディテクタ29により変換される電気信号は、図8(a)の式をフーリエ変換(分光)して、光のキャリアを検波したことと等価になるため、重畳積分の定理により、図8(b)の式の第1項の照明光の波数帯域と第2項の干渉縞を掛け合わせ(X)た第3項の電気信号が得られる。図8(b)の第1項のτは、広帯域光の波数成分を意味する。図8(b)の式の第2項は、距離Lに比例した周波数の干渉縞を示している(周期が距離Lに反比例する)。実際の反射光は、ライン4上の反射位置からの反射光がすべて重畳されるので、それに相当した周波数の干渉縞がすべて重畳されている。図8(b)の式の第2項に示した参照光の振幅kが、干渉縞の直流成分になり、反射光の強度Aが干渉縞の振幅になる。 The composite product obtained by the formula of FIG. 8 (a) is separated by a toroidal type grating spectroscope 28 (see FIG. 7), and the electric signal converted by the light receiving line detector 29 is shown in FIG. 8 (a). Since it is equivalent to detecting the carriers of light by Fourier transforming (spectroscopically) the equation, the wavenumber band and the second term of the illumination light of the first term of the equation of FIG. 8 (b) are based on the theorem of superposition integration. The electrical signal of the third term obtained by multiplying the interference fringes of (X) is obtained. The first term τ in FIG. 8 (b) means the wave number component of the broadband light. The second term of the equation of FIG. 8 (b) shows the interference fringes of the frequency proportional to the distance L (the period is inversely proportional to the distance L). In the actual reflected light, all the reflected light from the reflected position on the line 4 is superimposed, so that all the interference fringes having the corresponding frequencies are superimposed. The amplitude k of the reference light shown in the second term of the equation of FIG. 8B becomes the DC component of the interference fringes, and the intensity A of the reflected light becomes the amplitude of the interference fringes.
・図8(a)と図8(b)の第2項は、フーリエ変換対であるため、位置軸(時間軸)と波数軸(周波数軸)を入れ替えて考えると、フーリエ変換後の波形を理解しやすい。ちなみに、位置(距離)軸をフーリエ変換すると、波数(空間周波数)軸になるが、受光ラインディテクタ29(図7参照。)で時系列な電気信号に変換しているので、図8(b)の第3項に示すように波数軸が時間軸になっている。 -Since the second term of FIGS. 8 (a) and 8 (b) is a Fourier transform pair, the waveform after the Fourier transform can be obtained by exchanging the position axis (time axis) and the wave number axis (frequency axis). easy to understand. By the way, when the position (distance) axis is Fourier transformed, it becomes the wave number (spatial frequency) axis, but since it is converted into a time-series electric signal by the light receiving line detector 29 (see FIG. 7), FIG. 8 (b) As shown in the third term of the above, the wave number axis is the time axis.
・次に、電気信号に変換された図8(b)の式を、FFT30で逆フーリエ変換すると、図8(b)の式の第1項の波数帯域成分の位相が整合され、図8(c)の式の第1項に示したパルスになる。図8(b)の式の第2項の干渉縞は、図8(c)の式の第2項に示すように、δ関数にもどる。重畳積分の定理により、図8(b)の式の掛け算は、図8(c)の式では重畳積分となるため、図8(c)の式の第3項に示すように、距離Lの位置に振幅がAで照明光の波数帯域に逆比例した幅のパルスが得られることになる。図8(c)の式の第3項のパルスの半値全幅が、円弧ARCと直交する方向(ライン4方向)の解像度になる。 Next, when the equation of FIG. 8 (b) converted into an electric signal is inverse Fourier transformed by FFT30, the phases of the wavenumber band components of the first term of the equation of FIG. 8 (b) are matched, and FIG. 8 ( It becomes the pulse shown in the first term of the equation of c). The interference fringe of the second term of the equation of FIG. 8 (b) returns to the δ function as shown in the second term of the equation of FIG. 8 (c). According to the superimposition integral theorem, the multiplication of the equation of FIG. 8 (b) is the superimposition integral in the equation of FIG. 8 (c). A pulse having an amplitude of A at the position and a width inversely proportional to the wave number band of the illumination light can be obtained. The full width at half maximum of the pulse of the third term of the equation of FIG. 8C is the resolution in the direction orthogonal to the arc ARC (line 4 direction).
5)波長掃引光源を使用したOCI処理
次に、広帯域光源21の代わりに波長掃引光源31を使用したときのOCI処理について、図9を用いて説明する。
5) OCI processing using a wavelength sweep light source Next, the OCI processing when a wavelength sweep light source 31 is used instead of the wideband light source 21 will be described with reference to FIG.
・OCI処理の繰り返し走査時間(TIME)内に、波長掃引光源31によって照明光の波数(波長の逆数)が直線的に変調された光が、分岐カプラ32に入力される。また、干渉カプラ33からの出力光は、受光ディテクタ34によって電気信号に変換される。その他の処理は、図7に参照しつつ説明した広帯域光源21のOCI処理で行われる処理と同じである。 -Within the repeated scanning time (TIME) of the OCI process, the light whose wave number (reciprocal of the wavelength) of the illumination light is linearly modulated by the wavelength sweep light source 31 is input to the branch coupler 32. Further, the output light from the interference coupler 33 is converted into an electric signal by the light receiving detector 34. Other processing is the same as the processing performed in the OCI processing of the wideband light source 21 described with reference to FIG. 7.
・波長掃引光源31を使用すると、図7で示したグレーティング分光器28や受光ラインディテクタ29が不要になり、感度とSNの良い単一の受光ディテクタ34を使用することができる。ただし、可視光のような広帯域の波長掃引光源31は、複数の波長掃引光源を合成することが必要になるため、後述するマルチスペクトル解析などの用途も加味して、目的に応じて光源を選択することや複合的に光源を使用する。 When the wavelength sweep light source 31 is used, the grating spectroscope 28 and the light receiving line detector 29 shown in FIG. 7 are not required, and a single light receiving detector 34 having good sensitivity and SN can be used. However, since it is necessary to synthesize a plurality of wavelength sweep light sources for a wide band wavelength sweep light source 31 such as visible light, the light source is selected according to the purpose in consideration of applications such as multispectral analysis described later. To do or use a light source in combination.
6)合成開口処理
 次に、合成開口処理部213(図1参照。)の動作について説明する。
・図10に示すように、合成する開口171の大きさに応じて、図1の記憶部211に記憶してあるデータ列から合成開口に必要なデータ列DL‐1~DL‐n(177)を選択し、光ファイバー端51から検出される検出画素173までの光路長に一致するデータAD‐1~AD‐nを、上記データ列DL‐1~DL‐nから読み出す。データAD‐1~AD‐nを読み取るときに量子化誤差を抑えるために、図11に示した補間回路46によって、前後のアドレスのデータから振幅と位相の補間を行って、読み出すデータAD‐1~AD‐nの精度を高める。読み出すデータAD‐1~AD‐nのアドレスは、一次近似により放物線状175になる。
6) Synthetic opening processing Next, the operation of the synthetic opening processing unit 213 (see FIG. 1) will be described.
As shown in FIG. 10, the data strings DL-1 to DL-n (177) required for the composite opening from the data sequence stored in the storage unit 211 of FIG. 1 according to the size of the opening 171 to be combined. Is selected, and the data AD-1 to AD-n corresponding to the optical path lengths from the optical fiber end 51 to the detection pixel 173 are read from the data strings DL-1 to DL-n. In order to suppress the quantization error when reading the data AD-1 to AD-n, the interpolation circuit 46 shown in FIG. 11 performs amplitude and phase interpolation from the data of the preceding and following addresses, and reads the data AD-1. -Improve the accuracy of AD-n. The addresses of the data AD-1 to AD-n to be read are parabolic 175 by the first-order approximation.
・次に、読み出したデータAD‐1~AD‐nの光路差OPD-1~OPD-nに相当する位相のズレを整合して加算を行うと、同じ開口の光学系で画素173を検出したのと同じことになる。位相を整合して加算することによって、検出する画素173の振幅は、データ列DL-1~DL-nの数だけ大きくなり、合成開口171で使用する他の画素の振幅は、図4の円弧ARC上をライン4から遠ざかるにつれ、位相(位置)がずれて打ち消し合う。この位相ずれについての補足説明を、7)項でフーリエ解析を用いて行う。 Next, when the phase shifts corresponding to the optical path differences OPD-1 to OPD-n of the read data AD-1 to AD-n were matched and added, pixel 173 was detected by the optical system having the same aperture. It will be the same as. By matching and adding the phases, the amplitude of the detected pixel 173 is increased by the number of the data strings DL-1 to DL-n, and the amplitude of the other pixels used in the synthetic aperture 171 is the arc of FIG. As the distance from the line 4 on the ARC increases, the phases (positions) shift and cancel each other out. A supplementary explanation of this phase shift will be given in Section 7) using Fourier analysis.
・上記したデータDL‐1~DL‐nの位相を整合させて加算を行ない、その処理を走査方向Yに繰り返すということは、図11に示すように、相関演算部48によって、データDL‐1~DL‐nと整合させるための参照信号RSの相関演算を、データ列177の方向に対して行うことである。参照信号RSは、ライン4上で一定の解像度(開口数)を得るためには、検出する画素173の光路長に応じて(ライン4上の反射位置に応じて)、選択するデータ列DL-1~DL-nの範囲177(合成開口の範囲171)と参照信号RSを適応的に切換えなくてはならない。検出(合成)する画素173に必要な参照信号RSを参照信号発生部45のルックアップテーブルに記憶させておく。または、参照信号RSは、検出する画素173の光路長の関数となるため、計算によって発生させてもよい。 -The phase of the data DL-1 to DL-n described above is matched, the addition is performed, and the process is repeated in the scanning direction Y. As shown in FIG. 11, the correlation calculation unit 48 causes the data DL-1 to be added. The correlation calculation of the reference signal RS for matching with DLn is performed in the direction of the data string 177. In order to obtain a constant resolution (numerical aperture) on the line 4, the reference signal RS selects the data string DL-, which is selected according to the optical path length of the pixel 173 to be detected (according to the reflection position on the line 4). The range 177 of 1 to DL-n (the range 171 of the synthetic aperture) and the reference signal RS must be adaptively switched. The reference signal RS required for the pixel 173 to be detected (combined) is stored in the lookup table of the reference signal generation unit 45. Alternatively, since the reference signal RS is a function of the optical path length of the pixel 173 to be detected, it may be generated by calculation.
・相関演算については、重畳積分の定理に従い、図12に示すように、相関を行う信号をそれぞれフーリエ変換401してから掛け合わせ、それを逆フーリエ変換403する方法でも、図11の相関演算部48による方法でも同じ結果が得られる。フーリエ変換401を行うデータの範囲は、走査方向Yに格納されているデータの範囲である。図5の走査方式のように、走査方向Yにおける参照信号が一定の場合、図12のフーリエ変換401の方式は、図11の相関演算の方式より乗算の回数が少なくなる。 -As for the correlation calculation, according to the theorem of superimposition integration, as shown in FIG. 12, the correlation calculation unit of FIG. The same result can be obtained by the method according to 48. The range of data for which the Fourier transform 401 is performed is the range of data stored in the scanning direction Y. When the reference signal in the scanning direction Y is constant as in the scanning method of FIG. 5, the method of Fourier transform 401 in FIG. 12 requires fewer multiplications than the method of correlation calculation in FIG.
7)合成開口処理の補足説明
 次に、本発明の内視鏡装置を適用する細径内視鏡の具体例を示し、細径内視鏡における合成開口処理について、フーリエ解析を用いて説明を行う。
7) Supplementary explanation of synthetic aperture processing Next, a specific example of a small-diameter endoscope to which the endoscope device of the present invention is applied will be shown, and synthetic aperture processing in a small-diameter endoscope will be explained using Fourier analysis. conduct.
・いま、図13に示すように、既存の内視鏡(6mmφの細い内視鏡)407の鉗子口(2~3mmφ)405を介して、図5に示した細径内視鏡(2mmφ)500を目的部位に押し当てて、顕微鏡的な撮像を行う場合について説明を行う。被写体面に押し当てるのは、ブレを防ぐのと、合成開口の開口数を大きくとるためである。 -As shown in FIG. 13, the small-diameter endoscope (2 mmφ) shown in FIG. 5 is passed through the forceps opening (2 to 3 mmφ) 405 of the existing endoscope (6 mmφ thin endoscope) 407. A case where the 500 is pressed against the target site to perform microscopic imaging will be described. The reason for pressing it against the subject surface is to prevent blurring and to increase the numerical aperture of the synthetic aperture.
・観察者が行う操作は、先ず、親内視鏡407の広視野画像によって疾患部のスクリーニングを行い、次に、注目部位について鉗子口405を介した細径内視鏡500によって高精細な観察を行う。そして、観察者は、その高精細画像の観察距離を縮めながら(画像を拡大しながら)スクリーニングを続け、スクリーニングされた部位の中で細胞診が必要な部位に細径内視鏡500を押し当てて、顕微鏡的な拡大画像を観察する。前述したように、細径内視鏡500は、焦点深度が深く、高精細撮像から顕微鏡的な拡大撮像までの切換えが、被写体の距離を変えるだけで自動的に行えるため、上記の操作と観察が容易に行える。なお、図13において、細径内視鏡500は、ワイヤー制御により屈折できる第1の可撓部409と、屈折できるばね状の第2の可撓部411とを有する。 -The operation performed by the observer is as follows: first, the diseased part is screened by the wide-field image of the parent endoscope 407, and then the high-definition observation of the part of interest is performed by the small-diameter endoscope 500 through the forceps opening 405. I do. Then, the observer continues the screening while shortening the observation distance of the high-definition image (while enlarging the image), and presses the small-diameter endoscope 500 against the screened site where cytodiagnosis is required. And observe the magnified microscopic image. As described above, the small-diameter endoscope 500 has a deep depth of focus and can automatically switch from high-definition imaging to microscopic magnified imaging simply by changing the distance of the subject. Can be easily done. In FIG. 13, the small-diameter endoscope 500 has a first flexible portion 409 that can be refracted by wire control and a spring-shaped second flexible portion 411 that can be refracted.
 次に、この顕微鏡的な拡大撮像における合成開口の開口数と、合成開口のためのデータ列177を取得する間隔P(図10参照。)について説明する。 Next, the numerical aperture of the synthetic aperture in this microscopic magnified imaging and the interval P (see FIG. 10) for acquiring the data sequence 177 for the synthetic aperture will be described.
・図14と図15に示すように、内視鏡装置301の中心(回転走査軸)Rから0.7mmの円弧状の走査範囲343で、光ファイバー端51を回転走査させ、光ファイバー端51から1mmの距離にある2×2mmの撮像範囲571の撮像を行う場合、この2×2mmの撮像範囲571について1000×1000画素を得るための解像度は、サンプリング定理により2μm以下が必要になる。ライン4方向の解像度σは、前述のOCIの解像度の式から計算すると、拡散光に可視光帯を使用すれば2μm以下の解像度を充分に達成できる。走査方向Yの解像度ξを2μm(図16(c)のRes.参照。)にするために必要な開口の大きさTは、焦点距離を1mmとし、拡散光10の中心波長λcを550nmとしたとき、結像の近似式、ξ=0.61×λc/NA(NA=sinα)から逆算すると、T=0.34mmが必要になる。なお、図14中の符号511は照明用光ファイバー、525は軸受、529は磁石、556はマイクロモーター、533はコイルばね、553は光ロータリージョイント、531は電動コイル、571は2x2mmの撮像範囲を示し、図15中の参照符号341は表層粘膜、343は光ファイバー端51の走査範囲1.34mmを示す。 As shown in FIGS. 14 and 15, the optical fiber end 51 is rotationally scanned in an arcuate scanning range 343 0.7 mm from the center (rotary scanning axis) R of the endoscope device 301, and the optical fiber end 51 is 1 mm from the optical fiber end 51. When imaging a 2 × 2 mm imaging range 571 at a distance, the resolution for obtaining 1000 × 1000 pixels for the 2 × 2 mm imaging range 571 needs to be 2 μm or less according to the sampling theorem. When the resolution σ in the line 4 direction is calculated from the above-mentioned OCI resolution formula, a resolution of 2 μm or less can be sufficiently achieved by using the visible light band for the diffused light. The aperture size T required to set the resolution ξ in the scanning direction Y to 2 μm (see Res. In FIG. 16 (c)) is that the focal length is 1 mm and the center wavelength λc of the diffused light 10 is 550 nm. Then, when calculated back from the approximate expression of imaging, ξ = 0.61 × λc / NA (NA = sinα), T = 0.34 mm is required. In FIG. 14, reference numeral 511 is an optical fiber for lighting, 525 is a bearing, 259 is a magnet, 556 is a micromotor, 533 is a coil spring, 533 is an optical rotary joint, 513 is an electric coil, and 571 is a 2x2 mm imaging range. Reference numeral 341 in FIG. 15 indicates a surface mucous membrane, and 343 indicates a scanning range of 1.34 mm at the end 51 of the optical fiber.
 次に、以上の条件で、拡散光10を回転走査して図10のデータ列DL-1~DL-nを取得するときの間隔Pをフーリエ解析によって求める。 Next, under the above conditions, the interval P when the diffused light 10 is rotationally scanned to acquire the data strings DL-1 to DL-n in FIG. 10 is obtained by Fourier analysis.
・合成する開口171は、離散的なため、図16(a)の式に示すように、データ列DL-1~DL-nを取得する間隔Pを表す第1項のCOM(櫛)関数に、開口Tを表す第2項の窓関数(T=0.34mm)を掛け合わせ、更に、第3項に示した光ファイバー端面の受光感度分布を重畳積分した式で表される。 -Since the openings 171 to be combined are discrete, as shown in the equation of FIG. 16A, the COM (comb) function of the first term representing the interval P for acquiring the data strings DL-1 to DL-n can be used. , The window function (T = 0.34 mm) of the second term representing the opening T is multiplied, and the light receiving sensitivity distribution of the optical fiber end face shown in the third term is superimposed and integrated.
・合成開口処理はフーリエ変換であるため、重畳積分の定理に従い、図16(b)の式に示すように、COM関数をフーリエ変換してできる間隔1/Pのcom関数に、方形波をフーリエ変換してできるsync関数を重畳積分し、それに、第3項の焦点上における拡散光の分布(光ファイバーの受光感度分布)を掛け合わせた式で表すことができる。図16(b)の式の軸単位は、空間周波数で表示してあるが、距離の単位に変換すると図16(c)の波形で表される。 -Since the composite aperture process is a Fourier transform, according to the theorem of superimposed integration, as shown in the equation of Fig. 16 (b), the square wave is Fouriered into the com function with an interval of 1 / P that can be obtained by Fourier transforming the COM function. It can be expressed by an equation obtained by superimposing and integrating the sync function formed by the transform and multiplying it by the distribution of diffused light (light receiving sensitivity distribution of the optical fiber) on the focal point of the third term. The axis unit of the equation of FIG. 16 (b) is represented by the spatial frequency, but when converted into the unit of distance, it is represented by the waveform of FIG. 16 (c).
・図16(c)の波形から分かるように、間隔Pが広くなると、図16(c)の波形の0次と±1次の間隔が狭くなり、0次のPSF(Point Spread Function:受光感度分布)に±1次のPSFがアーチファクト(本来は存在しない虚像)として入り込む。正確に言うと、0次のPSFに重なる±1次のPSF(サイドローブ)の積分値(アーチファクト)が、信号雑音より小さくなるようにしなくてはならない。ここで、拡散光10の拡散範囲DA(図1参照。)は、開口を合成するうえで開口より大きい範囲が必要とされるため、拡散光10の拡散範囲DA(図1の参照。)を狭くすることで±1次以上を抑えることはできない。間隔Pを調整することで±1次の影響を抑えることになる。間隔Pを小さくするほど0次と±1次の間隔が広くなり、±1次の影響が少なくなるが、データ数がその分増えるので、SNと計算量(回路規模)のバランスを考慮して設定する。 ・ As can be seen from the waveform in FIG. 16 (c), as the interval P becomes wider, the interval between the 0th and ± 1st orders of the waveform in FIG. 16 (c) becomes narrower, and the 0th order PSF (Point Spread Function: light receiving sensitivity) The ± 1st order PSF enters the distribution) as an artifact (a virtual image that does not originally exist). To be precise, the integral value (artifact) of the ± 1st order PSF (side lobe) overlapping the 0th order PSF must be smaller than the signal noise. Here, since the diffusion range DA of the diffused light 10 (see FIG. 1) needs to be larger than the aperture in synthesizing the aperture, the diffusion range DA of the diffused light 10 (see FIG. 1) is set. By narrowing it, it is not possible to suppress ± 1st order or higher. By adjusting the interval P, the effect of ± 1st order can be suppressed. The smaller the interval P, the wider the interval between 0th order and ± 1st order, and the influence of ± 1st order becomes smaller, but the number of data increases by that amount, so consider the balance between SN and the amount of calculation (circuit scale). Set.
・いま、図16(a)の式の間隔Pを1μmに設定した場合、図16(c)の波形に示すように、0次と±1次の間隔は、拡散光10に必要な範囲の2倍の0.68mm(=0.61×λc×2f/P/cosθ,f:焦点距離,θ:開口角)になるため、±1次のアーチファクトを抑制することができる。2mmの撮像範囲571について撮像を行う場合、図15に示すように、合成する開口分を含めた1.34mmの走査範囲343(走査角βが68度)について光ファイバー端51の走査を行い、走査する間に1340のデータ列を取得し、取得したデータ列の中の開口の大きさに相当する340のデータ列を使用して合成開口処理を行うことになる. -When the interval P in the equation shown in FIG. 16 (a) is set to 1 μm, the interval between the 0th order and the ± 1st order is within the range required for the diffused light 10 as shown in the waveform of FIG. 16 (c). Since it is doubled to 0.68 mm (= 0.61 x λc x 2 f / P / cos θ, f: focal length, θ: aperture angle), ± 1st-order artifacts can be suppressed. When imaging a 2 mm imaging range 571, as shown in FIG. 15, the optical fiber end 51 is scanned and scanned over a 1.34 mm scanning range 343 (scanning angle β is 68 degrees) including the opening to be combined. In the meantime, 1340 data strings are acquired, and the synthetic aperture processing is performed using the 340 data strings corresponding to the size of the aperture in the acquired data strings.
8)拡散光の走査方式
・図17に拡散光10(図3参照。)を走査する走査方式を示す。aはリニア方式、cはセクタスキャン方式、dは、a、b、cを複合させたマルチスキャン方式である。どの走査方式においても、開口を合成することが可能である。例えば、血管内や気道内を撮像するときはbのコンベックス方式が都合よく、関節などを撮像するときはリニア方式という具合に、被写体の形状に応じて走査方式を使い分けることができる。後述する項目2.のスペクトル解析において、被検体の特徴を示すスペクトル帯域が狭くなり、画像にスペックルパターンが生じるとき、干渉模様を抑制するためにdの走査方式を使用する。
・図5の走査方式は、bのコンベックス方式に相当する。
8) Scanning method of diffused light ・ FIG. 17 shows a scanning method for scanning diffused light 10 (see FIG. 3). a is a linear system, c is a sector scan system, and d is a multi-scan system in which a, b, and c are combined. Apertures can be combined in any scanning method. For example, the convex method of b is convenient when imaging the inside of a blood vessel or the respiratory tract, and the linear method is convenient when imaging a joint or the like, and the scanning method can be used properly according to the shape of the subject. Items to be described later 2. In the spectral analysis of the above, when the spectral band showing the characteristics of the subject is narrowed and a speckle pattern is generated in the image, the scanning method of d is used to suppress the interference pattern.
-The scanning method in FIG. 5 corresponds to the convex method in b.
・また、セクタスキャン方式cは、拡散光10を走査する走査範囲343(図15参照。)が開口の大きさでよいため、内視鏡の径を細くできる。ただし、合成開口が可能な走査範囲343は、走査した拡散光10の拡散範囲DA(図1参照。)が重なるエリアになるため、視野角を広くする分、照明光の拡散範囲DAを広げる必要がある。また、中心軸Xを偏向させるには、中心軸Xの偏向に合わせて参照信号RSを生成するため、参照信号RS(図11、12参照。)の数が増える。ちなみに、拡散範囲DAの中央に比べて周辺の解像度ξを-3dBほど落とすだけで、合成開口の計算量をかなり減らすことができる。 Further, in the sector scanning method c, the diameter of the endoscope can be reduced because the scanning range 343 (see FIG. 15) for scanning the diffused light 10 may be the size of the opening. However, since the scanning range 343 where the synthetic aperture is possible is an area where the diffusion range DA (see FIG. 1) of the scanned diffused light 10 overlaps, it is necessary to widen the diffusion range DA of the illumination light by the amount of widening the viewing angle. There is. Further, in order to deflect the central axis X, the reference signal RS is generated in accordance with the deflection of the central axis X, so that the number of reference signals RS (see FIGS. 11 and 12) increases. By the way, the amount of calculation of the synthetic aperture can be considerably reduced only by reducing the peripheral resolution ξ by about -3 dB as compared with the center of the diffusion range DA.
・また、セクタスキャン方式cにおいて、全画素の解像度ξを一定にするには、光路長OPLの最も長い画素42(図18参照。)の検出に必要になる開口AP(拡散光の走査範囲)を選択し、光路長が最も短くなる画素42に必要になる間隔Pを選択し、偏向の角度α(図18参照。)が最も大きくなる画素42に必要になる拡散光10の拡散範囲DA(図1参照。)を選択すればよい。図18に、セクタスキャン方式cの位相整合の概念図を示す。図18中の符号APは、検出に必要な開口を示す。 Further, in the sector scan method c, in order to make the resolution ξ of all pixels constant, the opening AP (scanning range of diffused light) required for detecting the pixel 42 (see FIG. 18) having the longest optical path length OPER. Is selected, the interval P required for the pixel 42 having the shortest optical path length is selected, and the diffusion range DA of the diffused light 10 required for the pixel 42 having the largest deflection angle α (see FIG. 18) (see FIG. 18). (See FIG. 1) may be selected. FIG. 18 shows a conceptual diagram of phase matching of the sector scan method c. Reference numeral AP in FIG. 18 indicates an opening required for detection.
2.スペクトル解析
 次に、本発明の内視鏡装置のスペクトル解析機能について説明を行う。先ず、スペクトル解析の有意性を述べ、次に、反射スペクトルの性質を述べ、次に、スペクトル解析の課題と解決手段を述べ、最後に、スペクトル解析の実施例を説明する。
2. Spectrum analysis Next, the spectrum analysis function of the endoscope device of the present invention will be described. First, the significance of spectrum analysis will be described, then the properties of the reflection spectrum will be described, then the problems and solutions of spectrum analysis will be described, and finally, examples of spectrum analysis will be described.
1)スペクトル解析の有意性
・人の視覚機能は、目と脳が一体となって、広視野、高解像、高ダイナミックレンジを実現している。人の目の高精細な視野(中心窩)は、わずか2°の視野角の範囲しかなく、視野の外側にいくに従い解像度が急に落ちる。この視野角2°の範囲を高速に走査し、得た像を脳内で合成することで、あたかも、視野全体を高精細に観察しているように捉える。また、視野角2°の視野の平均輝度に応じて瞳孔を高速に調整することで、視野全体にわたって高ダイナミックレンジの像を合成している。まさに、人の視覚機能は視ると覚るが一体となった機能である。
1) Significance of spectrum analysis ・ As for human visual function, the eyes and brain are integrated to realize a wide field of view, high resolution, and high dynamic range. The high-definition visual field (fovea) of the human eye has a viewing angle range of only 2 °, and the resolution drops sharply as it goes outside the visual field. By scanning this range of viewing angle of 2 ° at high speed and synthesizing the obtained image in the brain, it is as if the entire field of view is being observed in high definition. In addition, by adjusting the pupil at high speed according to the average brightness of the field of view with a viewing angle of 2 °, an image with a high dynamic range is synthesized over the entire field of view. Indeed, human visual function is an integrated function that awakens when viewed.
・このような視覚機能は、被写体の形態やテクスチャーや動きについて、高い認識能力を発揮する。ところが、人の視覚機能はスペクトルに関しては、XYZの3原色の分解能しか持っておらず、光のスペクトル成分を認識して物質を特定するという能力は決して高くない。 -Such visual functions demonstrate high recognition ability for the form, texture, and movement of the subject. However, human visual function has only the resolution of the three primary colors of XYZ in terms of spectrum, and the ability to recognize the spectral components of light and identify substances is by no means high.
・画像診断においては、非侵襲、かつ、非接触な組織性状診断(Tissue Characterization)を画素レベルで行いたいというニーズが高く、その手段の一つとして、人の色覚を超えるスペクトル解析が期待されている。スペクトル解析の波長帯域は、侵襲性が高い紫外線やX線を除いた可視光領域から赤外領域やテラヘルツまでの領域となる。 -In diagnostic imaging, there is a strong need to perform non-invasive and non-contact tissue characterization (Tissue characterization) at the pixel level, and as one of the means, spectral analysis beyond human color vision is expected. There is. The wavelength band of spectrum analysis is the region from the visible light region excluding ultraviolet rays and X-rays, which are highly invasive, to the infrared region and terahertz.
2)波長帯域における反射と吸収
 生体における光の反射と吸収のメカニズムは波長帯域によって異なる。
・可視光帯は、生体分子の振動やスピンを励起して吸収されるスペクトル成分の変化が、レイリー散乱の反射光に重畳されて色を形成する。
2) Reflection and absorption in the wavelength band The mechanism of light reflection and absorption in the living body differs depending on the wavelength band.
-In the visible light band, changes in the spectral components that are absorbed by exciting the vibrations and spins of biomolecules are superimposed on the reflected light of Rayleigh scattering to form a color.
・赤外の帯域は、波長が長い分、分子振動及び分子間振動を励起しやすく、分子構造と相関性の高いスペクトルの吸収が強く起きる。指紋領域といわれる波長帯域があり、物質を特定する赤外分光法が確立されている。赤外帯域も同じく、吸収スペクトルの変化はレイリー散乱の反射光に重畳されている。 -In the infrared band, since the wavelength is long, molecular vibration and intermolecular vibration are easily excited, and absorption of a spectrum highly correlated with the molecular structure occurs strongly. There is a wavelength band called the fingerprint region, and infrared spectroscopy for identifying substances has been established. Similarly in the infrared band, changes in the absorption spectrum are superimposed on the reflected light of Rayleigh scattering.
・また、波長帯域に関わらず、光のエネルギーの一部が分子振動に吸収され、残りのエネルギーを自家蛍光やラマン散乱光として放出する現象が起きる。蛍光やラマン散乱光のスペクトル成分は、分子構造と相関性が高いが光強度が弱い。ところが、放出エネルギーに準じた波長シフト(ε=h・v)が起きるため、波長帯域フィルタによって背景光となる励起光のレイリー散乱を除去することができ、安定性とSNが確保できる。ゆえに、蛍光やラマン散乱光の分光法は、反射方式の検出に向いている。 -Also, regardless of the wavelength band, a phenomenon occurs in which part of the light energy is absorbed by molecular vibrations and the remaining energy is emitted as autofluorescence or Raman scattered light. The spectral components of fluorescence and Raman scattered light have a high correlation with the molecular structure, but the light intensity is weak. However, since the wavelength shift (ε = h · v) according to the emitted energy occurs, Rayleigh scattering of the excitation light as the background light can be removed by the wavelength band filter, and stability and SN can be ensured. Therefore, fluorescence and Raman scattered light spectroscopy are suitable for reflection-type detection.
3)スペクトル解析の課題と解決の手段
・照明の角度や被検体の屈折率の分布状況など、環境によってレイリー散乱光自体のスペクトル成分がある程度変化するため、レイリー散乱光(反射光)に重畳されている吸収スペクトルの安定性とSNは総じて高くない。
3) Problems of spectrum analysis and means of solution ・ Since the spectral components of Rayleigh scattered light itself change to some extent depending on the environment, such as the angle of illumination and the distribution of the refractive index of the subject, it is superimposed on Rayleigh scattered light (reflected light). Absorption spectrum stability and SN are generally not high.
・ところが、人の色覚は、照明の角度によってレイリー散乱の状態が変わったり、照明の分光特性がある程度変わったりしても、色を判別できる(Retinex理論の色の恒常性)。それは、目と脳が一体となって形成する色空間で、経験による統計的な識別と非線形な識別を行っているからである。 -However, human color vision can distinguish colors even if the state of Rayleigh scattering changes depending on the angle of illumination or the spectral characteristics of illumination change to some extent (color constancy in Retinex theory). This is because the color space formed by the eyes and the brain as one unit performs statistical discrimination and non-linear discrimination by experience.
・同様に、マルチスペクトルについて、統計的な解析やAIのような非線形な識別を適用すると、人の色覚を超えたスペクトル解析を実現できる。反射光のスペクトルデータを大量に取得し、スペクトル成分を多次元直交軸とした空間で、直交変換などによる多変量解析を行ってみると、正常細胞と癌細胞などのクラスタを切り分けて識別できるケースが多いことが概に分かっている。 -Similarly, by applying statistical analysis or non-linear discrimination such as AI to multispectral, it is possible to realize spectrum analysis beyond human color vision. When a large amount of reflected light spectrum data is acquired and multivariate analysis is performed by orthogonal transformation in a space where the spectral components are multidimensional orthogonal axes, clusters such as normal cells and cancer cells can be separated and identified. It is generally known that there are many.
・物質ごとに、多変量解析によって、物質の特定に最適なスペクトル空間軸(識別するクラスタ間のフィッシャー・レシオが最も大きくなる軸)を事前に求めておき、累積寄与率から軸の数を3以下に絞れる場合、その軸で得た情報を、色空間(3次元)の視覚分解能が高い軸(例えば、視覚分解能が4:1.5:0.5であるYIQ)に割り当てて表示すると、画像診断を効果的に支援することができる。色空間に表示すれば、その後は観察者の視覚脳によって、非線形な識別が行われる。 -For each substance, the optimal spectral space axis for identifying the substance (the axis with the largest Fisher ratio between the clusters to be identified) is determined in advance by multivariate analysis, and the number of axes is calculated from the cumulative contribution rate. When narrowing down to the following, assigning the information obtained on that axis to the axis with high visual resolution in the color space (3D) (for example, YIQ with visual resolution of 4: 1.5: 0.5) is effective for diagnostic imaging. Can be supported. Once displayed in color space, the observer's visual brain then performs non-linear discrimination.
・軸の数が多い場合は、その軸空間に形成されるクラスタを、非線形な識別が得意なAI(Deep Learning)によって3軸に絞り込み、上記のように、人の視覚が認識しやすい色空間の軸に変換して表示することで、診断を支援してもよい。 -If the number of axes is large, the clusters formed in that axis space are narrowed down to 3 axes by AI (Deep Learning), which is good at non-linear identification, and as described above, a color space that is easy for human vision to recognize. You may support the diagnosis by converting it to the axis of and displaying it.
・マルチスペクトルそのものを学習済みのAIに入力して、物質の特定を行ってもよいが、前処理である多変量解析によってAIの入力数を絞り込むと、AIの規模を大幅に小さくできる。入力軸の数は、データ圧縮と同様に、多くても5~6に絞り込める。 -Although the multispectral itself may be input to the trained AI to identify the substance, the scale of AI can be significantly reduced by narrowing down the number of AI inputs by multivariate analysis, which is a preprocessing. As with data compression, the number of input axes can be narrowed down to at most 5-6.
・AIは、適用する場面と範囲を限定すれば、多種・大量の情報を短時間で学習し、また、多種・大量の情報から短時間で答えを出すことが人より得意である。その理由は、AIは疲れが無いため、昼夜を問わず電気のスピードによって、多種・大量の情報を短時間で学習し、また、学習に使用する大量の情報や、学習した結果を忘れることが無いため(もっとも、人の場合,忘却が脳をデバックする手段と言われている)、あくまでも、適用する場面と範囲を限定すれば、人に優るケースが多くなる。マルチスペクトル解析のように、単純なスペクトルパターンの認識であるのに、変量の数が多く、レイリー散乱のような発生要因が多様で不安定な雑音が混じるケースは、AIの活用が有効である。 ・ AI is better than human beings in learning a large amount of information in a short time and giving an answer in a short time from a large amount of information if the application scene and range are limited. The reason is that AI does not get tired, so it is possible to learn a large amount of information in a short time by the speed of electricity day and night, and forget the large amount of information used for learning and the learning result. Since there is no such thing (in the case of human beings, forgetting is said to be a means to debug the brain), if the scenes and scope of application are limited, there are many cases where it is superior to human beings. AI is effective in cases such as multispectral analysis where simple spectral pattern recognition is performed, but the number of variables is large, and unstable noise is mixed with various generation factors such as Rayleigh scattering. ..
 以上の課題と背景を踏まえ、本発明を適用した実施形態の内視鏡装置によって、スペクトル解析を行う手順と、それに必要な機能を以下に説明する。 Based on the above problems and background, the procedure for performing spectrum analysis by the endoscope device of the embodiment to which the present invention is applied and the functions required for the spectrum analysis will be described below.
・先ず、可視光から赤外の波長帯域を、なるべく細かく分割したマルチスペクトルの画像データを、内視鏡装置によって出来るだけ数多く取得し、確定診断と整合したタグや、クラスタの分散を小さくするための前処理に必要な情報(例えば、データ取得時の光源の波長帯域特性、受光ラインディテクタで電気信号に変換するまでの波長帯域特性など)を、その画像データに添付して、外部のコンピュータの記憶装置に送り蓄積する。 ・ First, in order to acquire as many multi-spectral image data as possible by dividing the visible light to infrared wavelength band as finely as possible by the endoscopy device, and to reduce the tags and cluster dispersion consistent with the definitive diagnosis. Information necessary for preprocessing of (for example, wavelength band characteristics of the light source at the time of data acquisition, wavelength band characteristics until conversion into an electric signal by the light receiving line detector, etc.) is attached to the image data, and the external computer It is sent to a storage device and stored.
・次に、外部のコンピュータによって、蓄積したマルチスペクトルデータの前処理を行った後、主成分分析やFS(Foley-Sammon)変換などによって、目的物質を特定するために最適なスペクトル空間軸を算出する。累積寄与率の高い順にスペクトル空間軸が算出されるので、データ圧縮と同様に、スペクトル空間軸の数を絞り込む。 -Next, after preprocessing the accumulated multispectral data with an external computer, the optimum spectral space axis is calculated to identify the target substance by principal component analysis or FS (Foley-Sammon) conversion. do. Since the spectral space axes are calculated in descending order of cumulative contribution rate, the number of spectral space axes is narrowed down in the same manner as for data compression.
・次に、絞り込んだスペクトル空間軸へ、蓄積してあるマルチスペクトルデータを射影し、それを学習データとして、コンピュータ上のAIに、クラスタを識別するための「教師あり学習」を行わせる。AIの構成は、内視鏡装置に内装してあるAIの構成と同じである。 -Next, the accumulated multi-spectral data is projected onto the narrowed-down spectral space axis, and the accumulated multi-spectral data is used as training data to cause AI on the computer to perform "supervised learning" to identify the cluster. The configuration of AI is the same as the configuration of AI installed in the endoscope device.
・そして、絞り込んだスペクトル空間軸の基底ベクトル成分と、AIが学習した知識データ(AIを構成する階層型ニューラルネットワークのニューロンの係数)を、コンピュータから内視鏡装置に送って記憶させ、特定する物質ごとに、これらの係数を切換えて使用する。絞り込んだスペクトル空間軸の数は、多くても5~6軸(発明者等の経験上)になり、AIの規模が小さくて済むため、内視鏡装置への組み込みが容易で、識別速度も速くなるため、リアルタイムな物質特定がin vivoにて可能になる。 -Then, the basal vector component of the narrowed-down spectral space axis and the knowledge data learned by AI (coefficients of neurons of the hierarchical neural network that composes AI) are sent from the computer to the endoscopy device for storage and identification. These coefficients are switched and used for each substance. The number of spectral space axes narrowed down is at most 5 to 6 axes (according to the experience of the inventor, etc.), and since the scale of AI is small, it is easy to incorporate into an endoscope device and the identification speed is also high. Since it will be faster, real-time substance identification will be possible in vivo.
・以上の説明から分かるように、内視鏡装置は、マルチスペクトルデータをin vivoで多数取得し、外部の記憶装置に蓄積できる機能と、多変量解析によって決定したスペクトル軸の信号を検出し、リアルタイムな物質特定をin vivoにて行なえる機能の2つを併せ持つ。この2つの機能の実施例を5)項で説明する。  -As can be seen from the above explanation, the endoscope device acquires a large number of multispectral data in vivo and can store them in an external storage device, and detects the signal of the spectral axis determined by multivariate analysis. It has two functions that enable real-time substance identification in vivo. Examples of these two functions will be described in Section 5). Twice
4)RGB画像の生成
 スペクトル解析の実施例を説明する前に、OCI処理部(図1の207)のRGB画像を生成する動作について説明する。
4) Generation of RGB image Before explaining the embodiment of the spectrum analysis, the operation of generating the RGB image of the OCI processing unit (207 in FIG. 1) will be described.
・図7に示した受光ラインディテクタ29の出力は、図19のFFT61に入力され、図20に示す可視光帯域80についてフーリエ変換が行われ、図20に示すW(ホワイト)信号81が生成される。図20は、フーリエ変換によって生成する各種スペクトル画像の波長帯域を示している。 The output of the light receiving line detector 29 shown in FIG. 7 is input to the FFT 61 of FIG. 19, Fourier transform is performed on the visible light band 80 shown in FIG. 20, and the W (white) signal 81 shown in FIG. 20 is generated. NS. FIG. 20 shows the wavelength bands of various spectral images generated by the Fourier transform.
・W信号の代わりに、受光ラインディテクタ29の出力に所定の係数を乗じてフーリエ変換を行い、Y(輝度)信号を生成してもよい。 -Instead of the W signal, the output of the light receiving line detector 29 may be multiplied by a predetermined coefficient to perform a Fourier transform to generate a Y (luminance) signal.
・また、生体表面からある程度深い部分を描出する場合、図20に示した生体透過性のよい近赤外領域85を含めた帯域についてフーリエ変換を行い、W信号81として生成してもよい。 -In addition, when drawing a part deep from the surface of the living body to some extent, the band including the near-infrared region 85 having good biopermeability shown in FIG. 20 may be Fourier transformed and generated as a W signal 81.
・W信号81の生成と並行して、図19のFFT62によって、図20に示すR帯域のフーリエ変換が行われ、R信号82が生成される。R信号82は、図19に示す補間メモリ部63によって画素の補間が行われ 、W信号81と、画素数と時間軸の同期がなされる。続いて、FFT62によって、図20に示すB帯域のフーリエ変換が行なわれ、B信号83が生成される。B信号83も、同じく図19に示す補間メモリ部64によって画素の補間が行われ、W信号81と、画素数と時間軸の同期がなされる。 -In parallel with the generation of the W signal 81, the FFT 62 of FIG. 19 performs the Fourier transform of the R band shown in FIG. 20 to generate the R signal 82. Pixels of the R signal 82 are interpolated by the interpolation memory unit 63 shown in FIG. 19, and the number of pixels and the time axis are synchronized with the W signal 81. Subsequently, the FFT 62 performs the Fourier transform of the B band shown in FIG. 20 to generate the B signal 83. The B signal 83 is also interpolated by the interpolation memory unit 64 shown in FIG. 19, and the number of pixels and the time axis are synchronized with the W signal 81.
・次に、図22に示すように、記憶部211のメモリ211-1~211-3に、W、R、Bの信号のデータ列が記憶され、次に、合成開口処理部213において、W、R、Bの信号のそれぞれについての合成開口処理213-1~213-3が行われ、次に、マトリクス変換部205-1でRGB信号へのマトリクス変換が行われ、映像信号が生成される。 Next, as shown in FIG. 22, the data strings of the W, R, and B signals are stored in the memories 211-1 to 211-3 of the storage unit 211, and then in the synthetic aperture processing unit 213, W , R, and B signals are subjected to synthetic aperture processing 213-1 to 213-3, and then the matrix conversion unit 205-1 performs matrix conversion to an RGB signal to generate a video signal. ..
・R信号82とB信号83は、W信号81に比べて波長帯域幅が1/3になるため、解像度も1/3になるが、人の目のRとBに対する解像度が輝度情報に比べて1/3であるため問題はない。 -Since the wavelength bandwidth of the R signal 82 and the B signal 83 is 1/3 that of the W signal 81, the resolution is also 1/3, but the resolution for R and B of the human eye is compared with the luminance information. There is no problem because it is 1/3.
・また、正確な色再現の情報が必要ならば、受光ラインディテクタ29(図7参照。)の出力に、XYZ等色関数の係数を乗じてフーリエ変換を行なえば、XYZの信号を得ることも可能である。 -If accurate color reproduction information is required, the output of the light receiving line detector 29 (see FIG. 7) can be multiplied by the coefficient of the XYZ color matching function to perform a Fourier transform to obtain an XYZ signal. It is possible.
・上記のように、分割したRとBの帯域に対してフーリエ変換を行うことで、R信号82とB信号83を生成することができる(図20参照。)。これは、広帯域光源21(図7参照。)は、R、G、Bや赤外など、複数の光源の線形和から成り立っていると考えることができ、また、照明からフーリエ変換までのすべてが線形処理であるため、重ね合わせの原理によって、受光ラインディテクタ29の出力からRやBの帯域に相当する信号82、83を抜き出してフーリエ変換する処理は、RやBの単独光源を用いて別々に信号を取得してフーリエ変換したのと同じである。同様な考え方で、後述する図20の参照符号84に示したマルチスペクトルMS1~MSnや固有スペクトルEU1~EUnについても、受光ラインディテクタ29の出力に所定の係数を乗じることで、それぞれのスペクトルの帯域を生成することができ、それをフーリエ変換すること(図20のFFT74-1~74-n、FFT68参照。)で、それぞれのスペクトルに対応した画像が得られる。 -As described above, the R signal 82 and the B signal 83 can be generated by performing the Fourier transform on the divided R and B bands (see FIG. 20). It can be considered that the wideband light source 21 (see FIG. 7) consists of the linear sum of a plurality of light sources such as R, G, B and infrared, and everything from illumination to Fourier transform. Since it is a linear process, the process of extracting signals 82 and 83 corresponding to the bands of R and B from the output of the light receiving line detector 29 and performing Fourier transform by the principle of superposition is separate using a single light source of R and B. It is the same as acquiring the signal to and Fourier transforming it. In the same way, for the multispectral MS1 to MSn and the intrinsic spectra EU1 to EUn shown by reference numeral 84 in FIG. 20, which will be described later, the output of the light receiving line detector 29 is multiplied by a predetermined coefficient to obtain the band of each spectrum. By Fourier transforming it (see FFT74-1 to 74-n and FFT68 in FIG. 20), images corresponding to the respective spectra can be obtained.
5)スペクトル解析の実施例
 次に、スペクトル解析の実施例として、癌と正常組織の2つの組織を識別する場合を説明する。
5) Example of spectrum analysis Next, as an example of spectrum analysis, a case of distinguishing between two tissues, cancer and normal tissue, will be described.
・多変量解析を外部のコンピュータで行うために、可視光から赤外までの波長帯域をなるべく細かく分割したマルチスペクトルMS1~MSn(図20の参照符号84)の画像を、内視鏡装置で取得する。先ず、表示されたRGB画像上でマルチスペクトルMS1~MSnを取得する癌組織の部位と正常組織の部位をマウス等の入力手段で指定する。そして、図19に示すように、マウスの情報を基に、指定領域を切り出すためのゲート信号76をコントロール部71で生成する。次に、受光ラインディテクタ(図7の参照符号29)の出力であるマルチスペクトルMS1~MSnを、FFT68によってフーリエ変換することで、それぞれのスペクトルの画像が、生成される。それらの画像から、ゲート信号76によって指定領域が切り出され、メモリ部69に記憶される。 -In order to perform multivariate analysis on an external computer, images of multispectral MS1 to MSn (reference numeral 84 in FIG. 20) obtained by dividing the wavelength band from visible light to infrared light as finely as possible are acquired by an endoscope device. do. First, the site of the cancer tissue and the site of the normal tissue for which the multispectral MS1 to MSn are acquired are designated on the displayed RGB image by an input means such as a mouse. Then, as shown in FIG. 19, the control unit 71 generates a gate signal 76 for cutting out a designated area based on the mouse information. Next, the multispectral MS1 to MSn, which are the outputs of the light receiving line detector (reference numeral 29 in FIG. 7), are Fourier transformed by FFT68 to generate images of the respective spectra. A designated area is cut out from those images by the gate signal 76 and stored in the memory unit 69.
・次に、図19に示されるデータフォーマット作成部70において、癌の確定診断のタグや、癌の種類、悪性度、進行度などを示すタグ、そして、前処理に必要な照明の分光特性などの情報が、切り出されたマルチスペクトルMS1~MSnの画像データに添付され、外部のコンピュータに送られ蓄積される。正常組織についても癌組織と同様な手順を実施する。このような癌組織と正常組織のマルチスペクトルMS1~MSnの画像データを、症例ごとに出来るだけ数多く取得して蓄積する。以上に述べたデータフォーマット作成部70による処理は、マルチスペクトルMS1~MSnの画像とそれに対応するRGB画像を、外部のコンピュータが管理する記憶装置に送り、外部のコンピュータ上で行ってもよい。 Next, in the data format creation unit 70 shown in FIG. 19, tags for definitive diagnosis of cancer, tags indicating the type, malignancy, progression, etc. of cancer, and spectral characteristics of illumination required for pretreatment, etc. Information is attached to the cut out multispectral MS1 to MSn image data, sent to an external computer, and stored. Follow the same procedure for normal tissue as for cancer tissue. As many image data of multispectral MS1 to MSn of such cancer tissue and normal tissue are acquired and accumulated for each case. The processing by the data format creation unit 70 described above may be performed on an external computer by sending the images of the multispectral MS1 to MSn and the corresponding RGB images to a storage device managed by an external computer.
・マルチスペクトル解析おいては、スペクトルの分解能とスペクトル画像の解像度は、トレードオフの関係になる。マルチスペクトルを検出する如何なる方法においても、完像時間を含め、SNを基準としたトレードオフの関係が成り立つ。マルチスペクトルの解析を、テクスチャーの強調や輪郭の見極めに応用するのであれば、スペクトル画像の解像度(帯域幅)に重きを置き、物質特定の精度に重きを置くのであれば、スペクトルの分解能、ようするに取得するマルチスペクトルの数を増やすことになる。 -In multispectral analysis, the resolution of the spectrum and the resolution of the spectral image are in a trade-off relationship. In any method of detecting multispectrums, a trade-off relationship based on SN, including the completion time, holds. If you want to apply multi-spectral analysis to texture enhancement and contour identification, focus on the resolution (bandwidth) of the spectral image, and if you focus on the accuracy of substance identification, you should focus on the spectral resolution. The number of multispectral to be acquired will be increased.
 このように、応用目的に応じてマルチスペクトルMS1~MSnの数と帯域幅のバランスを適宜設定する。多変量解析に使用するマルチスペクトルMS1~MSnは、帯域幅がなるべく細かく分割されているほうが良いので、スペクトルの分解能に重きを置くことになるが、目的部位をマウス等の入力手段で指定して画像から切り出すためには、スペクトル画像にある程度の解像度が必要とされるため、目的に照らし合わせてバランスを設定する。 In this way, the balance between the number of multispectral MS1 to MSn and the bandwidth is appropriately set according to the purpose of application. Since the bandwidths of the multispectral MS1 to MSn used for multivariate analysis should be divided as finely as possible, the emphasis is on the resolution of the spectrum, but the target site is specified by an input means such as a mouse. Since a certain resolution is required for the spectral image in order to cut out from the image, the balance is set according to the purpose.
・次に、上記の通り外部のコンピュータに蓄積した癌組織と正常組織の大量のマルチスペクトルの画像データは、コンピュータによって、照明の分光特性や光処理回路の波長帯域特性、平均輝度による正規化などの前処理が行われる。前処理は、クラスタの分散を抑えて識別精度を上げるために重要である。 -Next, as described above, a large amount of multispectral image data of cancer tissue and normal tissue accumulated in an external computer is normalized by the computer, such as the spectral characteristics of illumination, the wavelength band characteristics of the optical processing circuit, and the average brightness. Preprocessing is performed. Preprocessing is important to reduce cluster distribution and improve identification accuracy.
・次に、コンピュータによって、前処理を済ませた画像データの多変量解析を行なう。マルチスペクトル成分を多次元直交軸(図21のO)とした空間に、癌組織と正常細胞のスペクトルデータを画素ごとに表示すると、癌組織と正常組織のクラスタが形成される。照明の分光特性や平均輝度、内視鏡装置の感度のバラツキなどを正規化する前処理がなされていれば、それぞれのクラスタの分散は、主に重畳されているレイリー散乱の不安定さによって生じる。癌組織と正常組織の2つのクラスタ361、362を切り分けて識別できるように、クラスタ361、362それぞれの分散が最も小さく、クラスタ361、362間の距離が最も大きくなる(フィッシャー・レシオが最も大きくなる)射影空間を直交変換によって求める。例えば、FS(Foley-Sammon)変換によってこの射影空間を求めると、フィッシャー・レシオの大きい順に射影軸(固有ベクトル)EU1~EUnが算出される。発明者等は、EU1~EUnの数は、データ圧縮と同様に、多くても5~6以下に絞ることができる、という知見を得ている。 -Next, a computer performs multivariate analysis of the preprocessed image data. When the spectral data of the cancer tissue and the normal cell is displayed pixel by pixel in the space where the multi-spectral component is the multidimensional orthogonal axis (O in FIG. 21), a cluster of the cancer tissue and the normal tissue is formed. If pretreatment is performed to normalize the spectral characteristics of the illumination, the average brightness, and the variation in the sensitivity of the endoscopic device, the dispersion of each cluster is mainly caused by the instability of the superimposed Rayleigh scattering. .. The variance of each of the clusters 361 and 362 is the smallest, and the distance between the clusters 361 and 362 is the largest (the Fisher ratio is the largest) so that the two clusters 361 and 362 of the cancer tissue and the normal tissue can be separated and distinguished. ) Find the projective space by orthogonal transformation. For example, when this projective space is obtained by FS (Foley-Sammon) transformation, the projective axes (eigenvectors) EU1 to EUn are calculated in descending order of Fisher ratio. The inventors have obtained the finding that the number of EU1 to EUn can be reduced to at most 5 to 6 or less, similar to data compression.
・次に、蓄積してある癌組織と正常組織の大量マルチスペクトルデータMS1~MSnを、コンピュータによって固有スペクトルEU1~EUnの射影軸に射影し直し、固有スペクトルのデータを使用して、コンピュータ上のAI(図23のAI137と同じ構成)に、二つのクラスタを識別するための「教師あり学習」を行わせる。AIは、Deep Learningの学習が可能な多階層ニューラルネットワークで構成されている。識別の精度向上(ローカルミニマム(最小値の他の極小値)を抑制)とAIの規模(層数)を削減するために、識別の対象ごとにAIに「教師あり学習」が行われる。学習によって得たニューロンの係数は、図23のAI137に送られ、記憶される。 -Next, a large amount of accumulated multispectral data MS1 to MSn of cancer tissue and normal tissue is reprojected on the projection axis of the intrinsic spectrum EU1 to EUn by a computer, and the data of the intrinsic spectrum is used on the computer. Have the AI (same configuration as AI137 in FIG. 23) perform "supervised learning" to distinguish between the two clusters. AI is composed of a multi-layer neural network capable of learning Deep Learning. In order to improve the accuracy of identification (suppress the local minimum (other minimum values of the minimum value)) and reduce the scale (number of layers) of AI, "supervised learning" is performed on AI for each identification target. The neuron coefficients obtained by learning are sent to AI137 in FIG. 23 and stored.
・図21は、AIによる非線形な識別を視覚的に理解しやすいように、算出した固有スペクトルEU1~EUnの射影空間におけるクラスタの識別を模式的に示したものである。参照符号363は、EU1 とEU2 の平面への癌組織のクラスタの射影を示し、参照符号364は、正常組織のクラスタ群の射影を示し、Zは、AIがその平面で識別する非線形な閾値を示している。EU1とEU2の2つの直交軸のデータが、AIの非線形な識別によって1軸の情報(この場合、癌組織か正常組織かを識別する軸)に変換されることを示している。このように、AIは、情報空間の微小領域ごとの識別を、階層ごとに行うことで、情報空間内の非線形な識別を可能にし、異なる情報軸への変換を行う。直交軸の数は、必要に応じて(バックプロパゲーションによって)増減する。 -Fig. 21 schematically shows the identification of clusters in the projected space of the calculated intrinsic spectra EU1 to EUn so that the non-linear identification by AI can be easily understood visually. Reference numeral 363 indicates the projection of clusters of cancerous tissue on the planes of EU1 and EU2, reference numeral 364 indicates the projection of clusters of normal tissue, and Z indicates the non-linear threshold value that AI identifies on that plane. Shown. It shows that the data of the two orthogonal axes EU1 and EU2 are converted into one-axis information (in this case, the axis that distinguishes between cancerous tissue and normal tissue) by the non-linear discrimination of AI. In this way, AI enables non-linear identification in the information space by performing identification for each minute area of the information space for each layer, and performs conversion to different information axes. The number of orthogonal axes increases or decreases as needed (due to backpropagation).
・EU1~EUnの基底ベクトル成分値は、外部コンピュータから図19に示されるコントロール部71に送られ、乗算器73-1~73-nの係数72-1~72-nとして、コントロール部71内のメモリに記憶される。係数72-1~72-nの値には、広帯域光源の分光特性のモニタリングによる補正など前処理に必要な値が加えられる。 -The basis vector component values of EU1 to EUn are sent from an external computer to the control unit 71 shown in FIG. 19, and are set in the control unit 71 as the coefficients 72-1 to 72-n of the multipliers 73-1 to 73-n. It is stored in the memory of. Values necessary for preprocessing such as correction by monitoring the spectral characteristics of the wideband light source are added to the values of the coefficients 72-1 to 72-n.
・そして、係数72-1~72-nをコントロール部71のメモリから読み出し、乗算器73-1~73-nによって、受光ラインディテクタ29(図7参照。)から時系列に出力されるスペクトル成分に乗じ、EU1~EUnの軸に射影した時系列な信号を生成する。その時系列信号をFFT 74-1~74-nによってフーリエ変換することで、EU1~EUnについてのスペクトル画像をそれぞれ得ることができる。 -Then, the coefficients 72-1 to 72-n are read out from the memory of the control unit 71, and the spectral components output in time series from the light receiving line detector 29 (see FIG. 7) by the multipliers 73-1 to 73-n. To generate a time-series signal projected on the EU1 to EUn axes. By Fourier transforming the time-series signals with FFT 74-1 to 74-n, spectral images for EU1 to EUn can be obtained, respectively.
・累積寄与率の高いEU軸が、EU1、EU2、EU3の3軸に絞れる場合、図22に示すように、スペクトル成分の合成開口処理214-1~214-3を行った後に、人の目の分解能の比が4:1.5:0.5であるYIQ信号に、EU軸の寄与率の高い順に割りあて、その後、マトリクス変換部205-2でRGBに変換して表示することで、癌組織と正常組織の画像上での識別精度を最大化することができる。あとは、この色空間において非線形な識別が、観察者の視覚脳によってなされる。また、このように画像から目視によってクラスタを識別する場合、画像のコントラストを感じる要素は、注目画素と近傍画素との輝度の差ではなく輝度の比となるため(視覚モデルのRetinex理論より)、マルチスペクトルデータの対数変換を行ってスペクトルデータ間の比を差に変換してから、多変量解析を行えば、目視による識別に最適なEU軸を求めることができる。 -When the EU axis with a high cumulative contribution rate is narrowed down to the three axes of EU1, EU2, and EU3, as shown in FIG. 22, after performing the synthetic aperture treatments 214-1 to 214-3 of the spectral components, the human eye. The YIQ signal with a resolution ratio of 4: 1.5: 0.5 is assigned in descending order of contribution on the EU axis, and then converted to RGB by the matrix conversion unit 205-2 and displayed. The identification accuracy on the image of the tissue can be maximized. After that, non-linear discrimination is made by the observer's visual brain in this color space. In addition, when visually identifying clusters from an image in this way, the element that senses the contrast of the image is not the difference in brightness between the pixel of interest and neighboring pixels, but the ratio of brightness (according to the Retinex theory of the visual model). By performing logarithmic conversion of multispectral data to convert the ratio between spectral data into a difference and then performing multivariate analysis, the optimum EU axis for visual identification can be obtained.
・識別の寄与率が高いEU軸が4軸以上になる場合、各軸に対応するスペクトル成分の画像を学習済みのAI137に入力して3軸に絞り込んで、前述したYIQ信号に割り当てて表示してもよい。または、寄与率の高いEU軸の数は、多くても5~6であるため、AI137で物質の特定を直接行ってもよい。そして、AIの出力の発火度に応じて、癌の部分の画像の色相などを変えて表現したり、癌の輪郭を強調して表示したりするなど、視覚上の識別が容易な表示に変換して、効果的に診断支援が行えるようにしてもよい。 -When the EU axis, which has a high identification contribution rate, is 4 or more axes, the image of the spectral component corresponding to each axis is input to the trained AI137, narrowed down to 3 axes, and assigned to the YIQ signal described above for display. You may. Alternatively, since the number of EU axes having a high contribution rate is at most 5 to 6, the substance may be directly specified by AI137. Then, depending on the degree of ignition of the AI output, the hue of the image of the cancer part is changed and expressed, or the outline of the cancer is emphasized and displayed, and the display is converted into a display that is easy to visually identify. Then, the diagnosis support may be effectively performed.
・以上に、癌組織と正常組織のように2つのクラスタの識別についてのスペクトル解析を述べたが、複数のクラスタをAIで一括して識別(等級判別)することも可能である。ただし、AIの規模(層数)が大きくなるので、以下に説明する識別方法を行ってもよい。 -Although the spectral analysis for the identification of two clusters such as cancer tissue and normal tissue has been described above, it is also possible to collectively identify (grade) a plurality of clusters with AI. However, since the scale (number of layers) of AI becomes large, the identification method described below may be used.
・図24の1.に示すように、先ず、検出したスペクトル成分を使用して、画像の領域ごとに正常組織か癌組織かの2つのクラスタの識別を行い、次に、癌組織の判定が出た部位について、図24の2.に示すように、2つのクラスタの識別の組合せから癌の種類や悪性度の判定を行い、次に、図24の3.に示すように、2つのクラスタの識別の組合せから進行度合いを判定する。このように、2つのクラスタの識別をツリー状に行なうことで、複数(3つ以上)のクラスタの識別が可能になる。識別ごとに、識別に最適なEU1~EUnの係数72-1~72-nをコントロール部71から読みだして使用するのと、AI137の知識データを切換えることで、図23に示した規模の小さいAI137を使用して、識別に要する時間を増やすことなく、複数のクラスタの識別ができる。
6)スペクトル解析の応用例
-As shown in 1. of FIG. 24, first, the detected spectral components are used to distinguish between two clusters of normal tissue and cancer tissue for each region of the image, and then the cancer tissue is determined. As shown in 2. of FIG. 24, the type and malignancy of the cancer are determined from the combination of identification of the two clusters, and then the two clusters are shown in 3. of FIG. 24. The degree of progress is judged from the combination of identification of. By identifying the two clusters in a tree shape in this way, it is possible to identify a plurality of (three or more) clusters. For each identification, the coefficients 72-1 to 72-n of EU1 to EUn, which are optimal for identification, are read out from the control unit 71 and used, and by switching the knowledge data of AI137, the scale shown in FIG. 23 is small. AI137 can be used to identify multiple clusters without increasing the time required for identification.
6) Application example of spectrum analysis
・図25に示すように、血液BVと表層粘膜MMの反射スペクトルの特性が明らかに異なるため、上述したスペクトル解析によって、二つの組織の識別を効果的に行える画像表示が可能になる。このように本発明の内視鏡装置のスペクトル解析により血管構造から癌の診断を行うことができる。 -As shown in FIG. 25, since the characteristics of the reflection spectra of the blood BV and the surface mucosa MM are clearly different, the above-mentioned spectrum analysis enables an image display that can effectively distinguish between the two tissues. As described above, cancer can be diagnosed from the vascular structure by the spectral analysis of the endoscope device of the present invention.
・また、図26に示すように、酸化ヘモグロビン(動脈)OHと還元ヘモグロビン(静脈)RHの吸収係数特性が異なるため、上述したスペクトル解析によって、動脈OHと静脈RHの組織の識別や、累積寄与率の高いスペクトルの値をルックアップテーブルによって変換することで、酸素飽和度の画像を検出することが可能である。癌組織と正常組織では、酸素飽和度が異なる。
・上述の通り、光のスペクトル(特に赤外)に対して、独自の反射特性を有する生体物質のスペクトル解析に対し、本発明の内視鏡装置が利用できることは言うまでもない。
-As shown in FIG. 26, since the absorption coefficient characteristics of oxidized hemoglobin (arterial) OH and reduced hemoglobin (vein) RH are different, the above-mentioned spectral analysis can be used to identify the tissues of arterial OH and venous RH and to make a cumulative contribution. It is possible to detect an image of oxygen saturation by converting the values of the high-rate spectrum with a lookup table. Oxygen saturation differs between cancerous tissue and normal tissue.
-As described above, it goes without saying that the endoscope device of the present invention can be used for the spectrum analysis of biological substances having unique reflection characteristics with respect to the spectrum of light (particularly infrared rays).
・また、特定の色素が結合する性質を有する生体分子や、特定の酵素と反応して発色する染色や蛍光がある生体分子のスペクトル解析にも本発明の内視鏡装置が利用できる。特定の色素として、ICG(インドシアニングリーン)、5-ALA、BBG、トリアムシノロンアセトニド、フルオレセインなど、染色や蛍光の色素が数多くある。染色は吸収スペクトルによるもので、レイリー散乱光が混入するが、吸収が強いため安定性とSNが高い。このような染色や蛍光についても、上述したスペクトル解析を利用して、染色の結果を強調することができる。色素のなかには、ICGのように、弱毒性のものもあるため、染色の結果を強調することで使用量を抑えることができる。 -In addition, the endoscope device of the present invention can also be used for spectrum analysis of biomolecules having the property of binding to a specific dye, or biomolecules having staining or fluorescence that develop color by reacting with a specific enzyme. There are many dyeing and fluorescent dyes such as ICG (indocyanine green), 5-ALA, BBG, triamcinolone acetonide, and fluorescein. The staining is based on the absorption spectrum, and Rayleigh scattered light is mixed in, but the absorption is strong, so the stability and SN are high. For such staining and fluorescence, the result of staining can be emphasized by using the above-mentioned spectrum analysis. Since some dyes, such as ICG, are weakly toxic, the amount used can be reduced by emphasizing the dyeing results.
・また、癌に取り付く蛍光色素(プローブ)や、近赤外線を当てると取り付いた癌が死滅する光線力学療法を蛍光色素に付加したものや、光線力学療法で死滅した癌の残骸に対する免疫効果で転位した癌を死滅させる光免疫療法を加えたものなど、様々な新しい試薬や治療薬の開発が進められている。これらについても、上述したスペクトル解析によって、プローブの状況を認識することが期待される。 -In addition, the fluorescent dye (probe) that attaches to the cancer, the photodynamic therapy that kills the attached cancer when exposed to near infrared rays is added to the fluorescent dye, and the cancer is displaced by the immune effect on the remains of the cancer that died by the photodynamic therapy. Various new reagents and therapeutic agents are being developed, including those with photoimmunotherapy that kills the cancer. For these as well, it is expected that the situation of the probe will be recognized by the above-mentioned spectrum analysis.
・ただし、蛍光現象においては、原子(外殻電子)のエネルギーが一旦励起された後、先に分子間振動として、エネルギーの一部が吸収され、残りのエネルギーが蛍光として放出される。分子間振動への吸収という非線形現象が先に起きるため、蛍光と励起光(参照光)の位相の相関性が無くなる。ゆえに、本発明の撮像方式のOCI処理によって蛍光を検出することができない。 -However, in the fluorescence phenomenon, after the energy of an atom (outer shell electron) is once excited, a part of the energy is first absorbed as an intermolecular vibration, and the remaining energy is emitted as fluorescence. Since the non-linear phenomenon of absorption into intermolecular vibration occurs first, the phase correlation between fluorescence and excitation light (reference light) is lost. Therefore, fluorescence cannot be detected by the OCI treatment of the imaging method of the present invention.
 しかし、特願2019-087128に発明者等が開示するように、生体物質に注入される蛍光色素やプローブに励起光を当て蛍光の自然放出を起こす際、蛍光の放出を促進させるための誘導放出光を当てて、励起光側の吸収スペクトルを増幅し、励起光側のスペクトルの変化を上述したスペクトル解析によって検出すれば、蛍光現象を測定することができる。 However, as disclosed by the inventors in Japanese Patent Application No. 2019-087128, stimulated emission for promoting fluorescence emission when excitation light is applied to a fluorescent dye or probe injected into a biological material to cause spontaneous emission of fluorescence. The fluorescence phenomenon can be measured by irradiating light to amplify the absorption spectrum on the excitation light side and detecting the change in the spectrum on the excitation light side by the above-mentioned spectrum analysis.
・また、ラマン散乱光は、信号エネルギーが極めて小さい(励起光の10-6)が、波長のシフトを利用した分光フィルタによって、励起光のレイリー散乱を除去することができるため、反射方式による検出に適している。ラマン散乱光は、線形現象である放出が先に起き、残りのエネルギーが分子間振動として吸収されるため、上述したスペクトル解析によって被検体のラマンスペクトルを検出することが可能である。また、特願2019-087128に開示されるようなラマンスペクトルの画像の解像度を向上させる手法や、多変量解析(図21参照。)によって特定する物質ごとに検出帯域の最適化を行い、AIにより物質を特定することで、識別の感度を向上させることが可能である。また、本発明の内視鏡装置のスペクトル解析は、ラマン散乱のSERS(Surface Enhanced Raman Scattering)効果の併用や、CARS(Coherent anti-Stokes Raman Scattering)の過程を利用することが可能である。 -Although Raman scattered light has extremely low signal energy ( 10-6 of excitation light), Rayleigh scattering of excitation light can be removed by a spectral filter that utilizes wavelength shift, so it is detected by the reflection method. Suitable for. Since the Raman scattered light is emitted first, which is a linear phenomenon, and the remaining energy is absorbed as intermolecular vibration, it is possible to detect the Raman spectrum of the subject by the above-mentioned spectral analysis. In addition, a method for improving the image resolution of the Raman spectrum as disclosed in Japanese Patent Application No. 2019-087128 and optimization of the detection band for each substance specified by multivariate analysis (see FIG. 21) are performed by AI. By identifying the substance, it is possible to improve the sensitivity of identification. Further, in the spectral analysis of the endoscope device of the present invention, it is possible to utilize the combined use of the SERS (Surface Enhanced Raman Scattering) effect of Raman scattering and the process of CARS (Coherent anti-Stokes Raman Scattering).
3.走査機構の例
 目的に応じて、以下に示すような走査機構を利用できる。
・図27に、走査機構としてマイクロモーター231(0.9mmφ)を利用する例が示されている。マイクロモーター231の先端が、フレキシブルジョイント237を介して、光ファイバー端51に連結され、マイクロモーター231が駆動されるとフレキシブルジョイント237及び光ファイバー端51を回転する。光ファイバー端51を有する内視鏡装置の先端部を更に細くできるため、血管や気道のように漸次細くなる管腔状の被検体を観察するのに適する。フレキシブルジョイント237の長さは、捩れによる回転速度のムラが生じないように、フレキシブルジョイント237の剛性を保てる範囲で適宜設定される。図27中、参照符号235は摺動材、233は光ロータリージョイント、RX1は回転軸を示す。
3. 3. Example of scanning mechanism Depending on the purpose, the scanning mechanism as shown below can be used.
-Fig. 27 shows an example of using a micromotor 231 (0.9 mmφ) as a scanning mechanism. The tip of the micromotor 231 is connected to the optical fiber end 51 via the flexible joint 237, and when the micromotor 231 is driven, the flexible joint 237 and the optical fiber end 51 are rotated. Since the tip of the endoscope device having the optical fiber end 51 can be further thinned, it is suitable for observing a luminal-shaped subject such as a blood vessel or an airway. The length of the flexible joint 237 is appropriately set within a range in which the rigidity of the flexible joint 237 can be maintained so that the rotation speed does not become uneven due to twisting. In FIG. 27, reference numeral 235 indicates a sliding member, 233 indicates an optical rotary joint, and RX1 indicates a rotation axis.
・図28は、MEMSミラー131を使用した走査機構の例である。図28、図27中、参照符号51は光ファイバー端、137は光ファイバー端51の仮想走査ラインを示す。 -Fig. 28 is an example of a scanning mechanism using the MEMS mirror 131. In FIGS. 28 and 27, reference numeral 51 indicates an optical fiber end, and 137 indicates a virtual scanning line of the optical fiber end 51.
・図29は、光ファイバーが耐屈曲性の高さを有することから、ボイスコイルや、ピエゾやポリフッ化ビニリデンのような圧電バイモルフによって、光ファーバー端を振動させて走査する走査機構である。先端が細くなり、被写体の形状に応じた走査を行なうことが可能である。 -Fig. 29 is a scanning mechanism that vibrates and scans the optical fiber end with a voice coil or a piezoelectric bimorph such as piezo or polyvinylidene fluoride because the optical fiber has high bending resistance. The tip becomes thinner, and it is possible to perform scanning according to the shape of the subject.
 以上、本発明の実施形態、実施例、例等について説明したが、本発明はこれらの実施形態、実施例、例等に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。 Although the embodiments, examples, examples, etc. of the present invention have been described above, the present invention is not limited to these embodiments, examples, examples, etc., and various modifications and changes can be made within the scope of the gist thereof. be.
AD データ; AP 開口; ARC 円弧; BV 血液; 
DA 拡散範囲; DL データ列; L 距離; MM 表層粘膜; 
NA1 開口数; NA2 開口数; OH 動脈; OPL 光路長; 
OS 生体表面; P1 光パルス; P2 光パルス; R 回転走査軸;
RH 静脈; RS 参照信号; RX1 光ロータリージョイント;
X 中心軸; Y 走査方向;
1 光ファイバー; 4 ライン; 10 拡散光; 12 レンズ; 
21 広帯域光源; 22 分岐カプラ; 23,26 
光サーキュレータ; 25 参照光; 27 干渉カプラ;       
28 グレーティング分光器; 29 受光ラインディテクタ; 
31 波長掃引光源; 32 分岐カプラ; 34 受光ディテクタ; 
42 画素; 45 参照信号発生部; 46 補間回路; 48 相関演算部; 51 光ファイバー端; 63,64 補間メモリ部; 
69 メモリ部; 70 データフォーマット作成部; 
71 コントロール部; 73 乗算器; 76 ゲート信号; 
104 ライン端; 131 ミラー; 137 光ファイバー端;
171 合成開口; 173 画素; 177 データ列; 
201 内視鏡先端部;203 光サーキュレータ; 
205-1,205-2 マトリクス変換部; 205 
表示処理部; 207 処理部;
209 広帯域光源; 211 記憶部; 213 合成開口処理部;
215 表示装置; 231,556 マイクロモーター; 233 摺動材;
233 光ロータリージョイント; 237 フレキシブルジョイント;
301 内視鏡装置; 343 走査範囲; 361,362 クラスタ; 
401 フーリエ変換; 403 逆フーリエ変換; 407 内視鏡;
407 細径内視鏡; 409 第1の可撓部; 411 第2の可撓部;
413 鉗子口; 525 照明用光ファイバー; 529 軸受;
553 光ロータリージョイント; 533 コイルバネ;
555 マイクロガルバノスキャナー; 557 透明カバー
529 磁石; 571 撮像範囲; 531 電動コイル
  本出願は、2020年3月21日に出願された日本特許出願2020-050385号の利益を主張するものであり 、その内容は全体として参照して本明細書に援用される。
 
AD data; AP opening; ARC arc; BV blood;
DA diffusion range; DL data sequence; L distance; MM surface mucosa;
NA1 numerical aperture; NA2 numerical aperture; OH artery; OPL optical path length;
OS biological surface; P1 optical pulse; P2 optical pulse; R rotating scanning axis;
RH vein; RS reference signal; RX1 optical rotary joint;
X central axis; Y scanning direction;
1 optical fiber; 4 lines; 10 diffused light; 12 lenses;
21 wideband light source; 22 branch couplers; 23,26
Optical circulator; 25 Reference light; 27 Interfering coupler;
28 Grating spectroscope; 29 Light receiving line detector;
31 wavelength sweep light source; 32 branch coupler; 34 light receiving detector;
42 pixels; 45 Reference signal generator; 46 Interpolation circuit; 48 Correlation calculation unit; 51 Optical fiber end; 63, 64 Interpolation memory unit;
69 Memory section; 70 Data format creation section;
71 Control section; 73 Multiplier; 76 Gate signal;
104 line end; 131 mirror; 137 optical fiber end;
171 Synthetic aperture; 173 pixels; 177 data sequence;
201 Endoscope tip; 203 Optical circulator;
205-1, 205-2 Matrix converter; 205
Display processing unit; 207 processing unit;
209 Wideband light source; 211 Storage unit; 213 Synthetic aperture processing unit;
215 Display device; 231,556 micromotors; 233 sliding materials;
233 Optical rotary joint; 237 Flexible joint;
301 Endoscope device; 343 scanning range; 361,362 clusters;
401 Fourier transform; 403 inverse Fourier transform; 407 endoscope;
407 Small-diameter endoscope; 409 1st flexible part; 411 2nd flexible part;
413 Forceps opening; 525 Optical fiber for lighting; 259 Bearings;
553 optical rotary joint; 533 coil spring;
555 Micro Galvano Scanner; 557 Transparent Cover 529 Magnet; 571 Imaging Range; 531 Electric Coil This application claims the benefit of Japanese Patent Application No. 2020-050385 filed on March 21, 2020. Is incorporated herein by reference in its entirety.

Claims (7)

  1.  光源から供給される光を導光し、拡散光として出射し、被写体から戻る反射光を受光する光ファイバーと、
     光干渉断層法の撮像原理によって前記拡散光の波面の進行方向の解像処理を行う光干渉解像処理部と、
     前記拡散光の中心軸と交差する走査方向に前記拡散光を走査する走査機構と、
     前記光干渉解像処理部による解像処理により生成されるデータ列を記憶する記憶部と、
     前記光ファイバーの一端から検出する画素の位置までの光路長と一致するデータを、前記記憶部に記憶されている前記データ列から抽出し、加算する合成開口処理部と、を備えることを特徴とする内視鏡装置。
    An optical fiber that guides the light supplied from the light source, emits it as diffused light, and receives the reflected light returned from the subject.
    An optical interference resolution processing unit that performs resolution processing in the traveling direction of the wavefront of the diffused light according to the imaging principle of the optical coherence tomography method.
    A scanning mechanism that scans the diffused light in a scanning direction that intersects the central axis of the diffused light.
    A storage unit that stores a data string generated by resolution processing by the optical interference resolution processing unit, and a storage unit.
    It is characterized by including a synthetic aperture processing unit that extracts and adds data that matches the optical path length from one end of the optical fiber to the position of the pixel to be detected from the data string stored in the storage unit. Endoscope device.
  2.  前記走査方向が、前記拡散光の中心軸と直交することを特徴とする請求項1に記載の内視鏡装置。 The endoscope device according to claim 1, wherein the scanning direction is orthogonal to the central axis of the diffused light.
  3.  前記光源は、広帯域光又は広帯域の波長掃引光を生成することを特徴とする請求項1又は2に記載の内視鏡装置。 The endoscope device according to claim 1 or 2, wherein the light source produces wideband light or wideband wavelength sweep light.
  4.  前記光干渉解像処理部は、前記光ファイバーにより受光される前記反射光に対し、参照光を生成するための反射板と、前記参照光を干渉させる干渉カプラと、所定の波長帯域成分を取り出す分光器と、前記所定の波長帯域成分のフーリエ変換を行い所定の波長帯域に対応する所定信号を生成するフーリエ変換部と、を備えることを特徴とする請求項1~3の何れか一項に記載の内視鏡装置。 The optical interference resolution processing unit extracts a reflecting plate for generating reference light, an interference coupler that interferes with the reference light, and a predetermined wavelength band component with respect to the reflected light received by the optical fiber. The invention according to any one of claims 1 to 3, further comprising a device and a Fourier conversion unit that performs Fourier conversion of the predetermined wavelength band component to generate a predetermined signal corresponding to the predetermined wavelength band. Endoscope device.
  5.  前記合成開口処理部は、前記光路長が一致する反射光に対応するデータ列が有する複数のデータ間に生じる位相差を整合する相関演算部、もしくは、フーリエ変換部を備えることを特徴とする請求項1~4の何れか一項に記載の内視鏡装置。 The synthetic aperture processing unit includes a correlation calculation unit or a Fourier transform unit that matches the phase difference generated between a plurality of data included in the data strings corresponding to the reflected light having the same optical path length. Item 2. The endoscope device according to any one of Items 1 to 4.
  6.  クラスタが既知の被写体の反射スペクトルからフィッシャー・レシオが大きい順に複数のスペクトル成分を算出し、前記スペクトル成分を用い、クラスタが未知の被写体の反射スペクトルから識別を行う識別手段を備えることを特徴とする請求項1~5の何れか一項に記載の内視鏡装置。 It is characterized in that a plurality of spectral components are calculated from the reflection spectrum of a subject whose cluster is known in descending order of Fisher ratio, and the cluster is provided with an identification means for distinguishing from the reflection spectrum of an unknown subject by using the spectral components. The endoscope device according to any one of claims 1 to 5.
  7.  前記識別手段は、ディープラーニングを実行するAIを用いることを特徴とする請求項6に記載の内視鏡装置。 The endoscope device according to claim 6, wherein the identification means uses an AI that performs deep learning.
PCT/JP2021/010282 2020-03-21 2021-03-15 Endoscopic device WO2021193179A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-050385 2020-03-21
JP2020050385A JP6748932B1 (en) 2020-03-21 2020-03-21 Endoscope device

Publications (1)

Publication Number Publication Date
WO2021193179A1 true WO2021193179A1 (en) 2021-09-30

Family

ID=72276724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/010282 WO2021193179A1 (en) 2020-03-21 2021-03-15 Endoscopic device

Country Status (2)

Country Link
JP (1) JP6748932B1 (en)
WO (1) WO2021193179A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116548910B (en) * 2023-05-19 2023-12-08 北京至真互联网技术有限公司 Resolution self-adaptive adjusting method and system of ophthalmic coherence tomography scanner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007135989A (en) * 2005-11-21 2007-06-07 Olympus Corp Spectral endoscope
JP2010201077A (en) * 2009-03-05 2010-09-16 Fujifilm Corp Biomedical tomographic image generating apparatus and information processing method for the same
JP2017505667A (en) * 2014-01-31 2017-02-23 ザ ジェネラル ホスピタル コーポレイション Optical probe, light intensity detection, imaging method and system
JP2017170006A (en) * 2016-03-25 2017-09-28 キヤノン株式会社 Tomography system, image processing method, and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007135989A (en) * 2005-11-21 2007-06-07 Olympus Corp Spectral endoscope
JP2010201077A (en) * 2009-03-05 2010-09-16 Fujifilm Corp Biomedical tomographic image generating apparatus and information processing method for the same
JP2017505667A (en) * 2014-01-31 2017-02-23 ザ ジェネラル ホスピタル コーポレイション Optical probe, light intensity detection, imaging method and system
JP2017170006A (en) * 2016-03-25 2017-09-28 キヤノン株式会社 Tomography system, image processing method, and program

Also Published As

Publication number Publication date
JP2021146008A (en) 2021-09-27
JP6748932B1 (en) 2020-09-02

Similar Documents

Publication Publication Date Title
JP6643251B2 (en) Device and method for photoacoustic imaging of objects
CN104684457B (en) Use OCT light source and the two-dimentional confocal imaging of scanning optics
US10045692B2 (en) Self-referenced optical coherence tomography
RU2489091C2 (en) Method of visualisation by means of optic tomography and device for visualisation by means of optic tomography
EP2583617A2 (en) Systems for generating fluorescent light images
US20200129068A1 (en) Intraoral oct with color texture
JP2005510323A (en) Confocal microscopy using multispectral encoding and systems and apparatus for spectroscopy-encoded confocal microscopy
WO2020222307A1 (en) Endoscopic device capable of high-definition imaging and spectral analysis
JP2004502957A (en) Method and apparatus for high resolution coherent light imaging
JP2006522341A (en) Speckle reduction in optically interfering tomography by combining light of different angles with varying path length
CN107957401A (en) A kind of EO-1 hyperion microscopic imaging apparatus available for insertion type diagnosing tumor
US6088099A (en) Method for interferometer based spectral imaging of moving objects
Guay-Lord et al. Combined optical coherence tomography and hyperspectral imaging using a double-clad fiber coupler
WO2021193179A1 (en) Endoscopic device
JP5653087B2 (en) Optical tomographic imaging apparatus and operating method thereof
Qiu et al. Spectral imaging with scattered light: from early cancer detection to cell biology
US8567948B2 (en) Device and method for examining the eye fundus, especially the photoreceptors
CN107224267B (en) Fundus hyperspectral imaging device
WO2011158848A1 (en) Optical tomography device and optical tomography method
JP2023095625A (en) Three-dimensional imaging apparatus
JP3474883B2 (en) Spectral imaging device for moving objects based on interference
JP5373389B2 (en) Optical structure information acquisition apparatus and optical interference signal processing method thereof
Fujimoto Optical coherence tomography: principles and applications
JP5657941B2 (en) Optical tomographic imaging apparatus and operating method thereof
Dickens et al. Removal of optical fiber interference in color micro-endoscopic images

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21774521

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21774521

Country of ref document: EP

Kind code of ref document: A1