WO2021193114A1 - Film formation device - Google Patents

Film formation device Download PDF

Info

Publication number
WO2021193114A1
WO2021193114A1 PCT/JP2021/009855 JP2021009855W WO2021193114A1 WO 2021193114 A1 WO2021193114 A1 WO 2021193114A1 JP 2021009855 W JP2021009855 W JP 2021009855W WO 2021193114 A1 WO2021193114 A1 WO 2021193114A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
terminals
film forming
connector
solid raw
Prior art date
Application number
PCT/JP2021/009855
Other languages
French (fr)
Japanese (ja)
Inventor
幸一 関戸
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to CN202180021030.9A priority Critical patent/CN115298354A/en
Priority to KR1020227035190A priority patent/KR20220152310A/en
Publication of WO2021193114A1 publication Critical patent/WO2021193114A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/08Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides
    • C23C16/14Deposition of only one other metal element
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process

Definitions

  • This disclosure relates to a film forming apparatus.
  • a connector device having a connector that relays a signal connection between a plurality of electric devices, and is installed corresponding to at least one connector that connects to another electric device via a connection cable and the at least one connector. , It is determined whether or not the input signal input from the connector is an appropriate input signal, and the determination result is output, and when the input signal is an appropriate input signal, the input signal is output.
  • a connection that holds at least one connection detector and connection information of the connector that has already been connected, and generates connection guidance information regarding the connection that the user should make next based on the connection information and the determination result.
  • a technique for a connector device including a guidance unit and an output unit that provides the connection guidance information to a user is disclosed.
  • the present disclosure provides a technique capable of suppressing erroneous connection of a solid raw material container in a film forming apparatus.
  • a solid raw material container for accommodating a solid raw material for film formation, and a plurality of terminals mechanically connected to the solid raw material container and capable of changing the electrical state.
  • a film forming apparatus including a control unit that detects an electrical state of the plurality of terminals and determines the type of the solid raw material based on the detected electrical state.
  • FIG. 120A It is a block diagram which shows an example of the structure of the film forming apparatus 100 of an embodiment. It is a figure which shows the connector 120A. It is a figure which shows the connector 120A. It is a figure which shows the connector 120B. It is a figure which shows the connection state of a connector 120A, a cable 130, a connector 140A, 140B, and an I / O board 150. It is a figure which shows the connection state of a connector 120A, a cable 130, a connector 140A, 140B, and an I / O board 150. It is a figure which shows the exemplary cross-sectional structure of the film forming apparatus 100.
  • FIG. 1 is a block diagram showing an example of the configuration of the film forming apparatus 100 of the embodiment.
  • the film forming apparatus 100 has, as main components, a raw material storage unit 110, connectors 120A and 120B, a cable 130, connectors 140A and 140B, an I / O (Input / Output) board 150, an MC (Module Controller) 160, and a valve 170. , And the alarm unit 180.
  • FIGS. 2A, 2B, and 2C are diagrams showing the connector 120A
  • FIG. 2C is a diagram showing the connector 120B.
  • EC (Equipment Controller) 200 is connected to MC160.
  • the EC200 is a controller that comprehensively controls the film forming apparatus 100 and the film forming apparatus other than the film forming apparatus 100, and is located above the MC160.
  • the film forming apparatus 100 and EC200 constitute a film forming system.
  • the MC160 and EC200 are, for example, computers including a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), an HDD (Hard Disk Drive), an input / output interface, a user interface, an internal bus, and the like. Realized by.
  • the user interface is, for example, a keyboard, a mouse, a display, and the like.
  • FIG. 1 shows the memory 201 of the EC200.
  • the memory 201 is realized by a ROM as an example.
  • the raw material storage unit 110 is a space for storing one or more raw material containers (ampoules), and in FIG. 1, the raw material container 111 is arranged in the raw material storage unit 110.
  • the raw material container 111 is, for example, an example of a solid raw material container for accommodating a solid raw material.
  • the solid raw material is, for example, tungsten pentachloride (WCl 5 ) or tungsten hexachloride (WCl 6 ). Tungsten hexachloride (WCl 5 ) and tungsten hexachloride (WCl 6 ) are solids at room temperature at atmospheric pressure.
  • the raw material gas delivery pipe 111A is connected to the raw material container 111.
  • the raw material gas delivery pipe 111A connects the raw material container 111 and the chamber of the film forming apparatus 100, and is provided with a valve 170. Further, the raw material container 111 is provided with a heater (not shown), and the solid raw material is sublimated by heating and supplied to the chamber as a raw material gas.
  • the connectors 120A and 120B are connected to each other in the raw material storage unit 110.
  • the connector 120A is an example of the first connector
  • the connector 120B is an example of the second connector.
  • the connector 120A is connected to the wire 125A attached to the raw material container 111
  • the connector 120B is connected to the cable 130.
  • the connector 120A and the wire 125A have a configuration as shown in FIG. 2A, the connector 120A is fixed to one end of the wire 125A, and the connector 120A is provided with a removable lid 126A.
  • the connector 120A and the wire 125A are only fixed and not electrically connected.
  • the wire 125A is provided for attaching the connector 120A to the raw material container 111.
  • it is a prerequisite for performing the film forming process that the connector 120A is attached to the raw material container 111 with the wire 125A and the connector 120A is connected to the connector 120B.
  • the connector 120A has a substantially cylindrical base portion 121A, a plurality of hole portions 122A, a plurality of terminals 123A, and a bolt portion 124A.
  • the plurality of holes 122A penetrate the base 121A, and a plurality of terminals 123A are provided inside each of the holes 122A.
  • the bolt portion 124A is provided on the outer side in the radial direction of the base portion 121A, and a screw is formed on the inner peripheral surface.
  • the bolt portion 124A is rotatably attached to the base portion 121A.
  • the plurality of terminals 123A are examples of a plurality of terminals and a plurality of first terminals, and are female terminals into which the pin terminal 123B of the connector 120B can be inserted and removed. Regarding the terminal 123A, only the terminal 123A on the front side in FIG. 2B is shown by a broken line.
  • the connector 120A is a female connector.
  • An identifier is assigned to each terminal 123A.
  • the identifier is, for example, an identification number.
  • the plurality of terminals 123A are insulated from each other, but are configured so that any two can be short-circuited on the other surface (the back surface that cannot be seen in FIG. 2B) of the base 121A. The remaining unshorted terminals 123A remain electrically isolated from each other and open.
  • the fact that the terminal 123A is insulated and that it is short-circuited is an example of the electrical state of the terminal 123A, and that the terminal 123A has a configuration that can short-circuit any two terminals means that the terminal 123A is electrically connected. This is an example of having a configuration in which the target state can be changed.
  • the two terminals 123A are connected and made conductive by wiring or the like having pin terminals at both ends. You can do it.
  • the number of terminals 123A to be short-circuited may be at least two, and three or more terminals 123A may be short-circuited so as to be electrically connected to each other. Further, each group including at least two terminals 123A may be short-circuited.
  • the combination of the identification numbers of the two short-circuited terminals 123A is used to distinguish the types of solid raw materials contained in the raw material container 111. That is, the combination of the identification numbers of the two short-circuited terminals 123A differs depending on the type of the solid raw material contained in the raw material container 111, and is a unique combination.
  • the connector 120A attached to the raw material container 111 containing tungsten hexachloride (WCl 5 ) and the connector 120A attached to the raw material container 111 containing tungsten hexachloride (WCl 6 ) are short-circuited.
  • the combination of the identification numbers of the terminals 123A is different.
  • the connector 120B has a base portion 121B, a protruding portion 122B, and a plurality of pin terminals 123B.
  • the plurality of pin terminals 123B are examples of the plurality of second terminals.
  • the base portion 121B is, for example, a thin rectangular plate-shaped member, and a plurality of pin terminals 123B are inserted into a plurality of through holes provided in the center.
  • the number of the plurality of pin terminals 123B is equal to the number of the plurality of terminals 123A.
  • a cylindrical protruding portion 122B is provided on one surface of the base portion 121B, and a screw portion 122B1 is formed on the outer peripheral surface of the protruding portion 122B.
  • a positioning convex portion provided on the outer peripheral surface of the base portion 121A and a positioning concave portion provided on the inner peripheral surface of the protruding portion 122B are engaged with each other.
  • the plurality of pin terminals 123B are inserted into the plurality of holes 122A of the connector 120A.
  • the connectors 120A and 120B are fixed to each other by engaging the bolt portion 124A with the screw portion 122B1 of the protrusion 122B.
  • the cable 130 has a plurality of wires for connecting the plurality of pin terminals 123B and the plurality of terminals (not shown) of the connector 140A.
  • the connector 140A is connected to the connector 140B provided on the I / O board 150.
  • the connectors 140A and 140B each have the same number of terminals as the wiring included in the cable 130, and have a configuration in which predetermined terminals are connected to each other in a state of being aligned with each other like the connectors 120A and 120B. .. Therefore, each terminal of the connector 140B is connected to each terminal 123A of the connector 120A via the connector 140A, the cable 130, and the connector 120B.
  • the connector 120B, the cable 130, the connectors 140A and 140B, the I / O board 150, and the cable 155 are examples of electrical connection portions that electrically connect a plurality of terminals 123A and MC160.
  • the I / O board 150 is provided with a connector 140B and an FPGA (Field Programmable Gate Array) 151.
  • the FPGA 151 is connected to the connector 140B via the wiring of the I / O board 150 and is connected to the MC160 via the cable 155.
  • the FPGA 151 reads the voltage value of each terminal of the connector 140B and detects the connection state (whether or not it is short-circuited) of each terminal 123A of the connector 120A.
  • the FPGA 151 detects the connection state of a plurality of terminals 123A of the connector 120A via the connectors 140A and 140B, the cable 130, and the connector 120B, and generates I / O data representing the combination of the short-circuited terminals 123A.
  • the FPGA 151 transmits the I / O data to the MC160.
  • the processing unit that performs such processing is not limited to FPGA 151, and various processing units can be used.
  • the MC160 is an example of a control unit, and controls each part (for example, a valve, a power supply, a heater, a pump, etc.) of the film forming apparatus 100 according to a film forming process recipe (processing recipe). Further, the MC 160 is connected to the FPGA 151 provided on the I / O board 150 via the serial interface cable 155 as an example, and is connected to the EC 200 via a LAN (Local Area Network) cable 205 as an example. Has been done.
  • LAN Local Area Network
  • the MC160 determines the type of connector 120A based on the I / O data acquired from FPGA 151. The MC160 determines the type of the connector 120A by reading the reference data stored in the memory 201 of the EC200 and comparing the reference data with the I / O data at the time of determination.
  • the valve 170 is provided in the raw material gas delivery pipe 111A that connects the raw material container 111 and the processing container (not shown).
  • the opening / closing (blocking) of the valve 170 is switched by the MC160.
  • the valve 170 is held in a closed state when no film formation is performed. Further, the valve 170 is held in a closed state by the MC 160 when the connector 120A of the raw material container 111 containing the solid raw material different from the solid raw material originally used for the film forming process is connected to the connector 120B. .. This is because if the raw material container 111 containing the solid raw material that is not originally used is erroneously connected to the raw material gas delivery pipe 111A, a lot defect may cause a huge economic loss.
  • the alarm unit 180 is operated by the MC 160 when the connector 120A of the raw material container 111 containing the solid raw material different from the solid raw material originally used for the film forming process is connected to the connector 120B.
  • the alarm unit 180 may be any device that can notify the operator (user) of the film forming apparatus 100 that an abnormal situation has occurred, and as an example, an alarm device that issues an alarm, a display of MC160 or EC200, or the like. A device that displays an alarm message.
  • FIG. 3 is a diagram showing a connection state of the connector 120A, the cable 130, the connectors 140A, 140B, and the I / O board 150 for detecting the raw material container 111 containing the tungsten pentoxide (WCl 5).
  • FIG. 4 is a diagram showing a connection state of the connector 120A, the cable 130, the connectors 140A, 140B, and the I / O board 150 for detecting the raw material container 111 containing the tungsten hexachloride (WCl 6).
  • FIGS. 3 and 4 show the connection state of the terminal 123A, the pin terminal 123B, the wiring of the cable 130, the terminals of the connectors 140A and 140B, and the I / O board 150 from the left side to the right side.
  • FPGA 151 is omitted.
  • the identification numbers of the terminals 123A are from 1 to 28.
  • the terminal of 140B has an identification number from 1 to 28. It is assumed that the terminals 123A, the pin terminals 123B, the wiring of the cable 130, and the terminals of the connectors 140A and 140B have the same identification number and are connected to each other.
  • the identification numbers are 5, 6, 17, and 18 as an example.
  • the four terminals 123A of the above are used, and the terminals 123A of other identification numbers are not used. Therefore, in FIGS. 3 and 4, only the identification numbers 5, 6, 17, and 18 are shown for the wiring of the cable 130, the terminals of the connectors 140A and 140B, and the I / O board 150, and the identification numbers are 1 to 4, 7 to 16, 19 to 28 are described as Not Connected.
  • FIG. 3 shows a state in which terminals 123A having identification numbers 5 and 17 are connected, and terminals 123A having identification numbers 6 and 18 are described as Not Connected.
  • FIG. 4 shows a state in which terminals 123A having identification numbers 6 and 18 are connected, and terminals 123A having identification numbers 5 and 17 are described as Not Connected.
  • the FPGA 151 provided on the I / O board 150 determines the connector 140B when discriminating between the raw material container 111 containing tungsten pentachloride (WCl 5 ) and the raw material container 111 containing tungsten hexachloride (WCl 6). Of the 28 terminals, only the voltage values of the terminals whose identification numbers are 5, 6, 17, and 18 are detected.
  • the voltage values of the terminals of the connectors 140B of the identification numbers 5, 17, 6, and 18 are A1, B1, A2, and B2, respectively.
  • the FPGA 151 detects the voltage values A1, B1, A2, and B2 and creates I / O data.
  • the current flows through the following path.
  • the current flows from the power supply (+ 24V) of the identification number 5 of the I / O board 150 to the connectors 140A and 140B of the identification number 5, the wiring of the cable 130, the pin terminal 123B, and the terminal 123A.
  • the current passes from the terminal 123A of the identification number 5 of the connector 120A to the terminal 123A of the identification number 17, passes through the pin terminal 123B of the identification number 17, the wiring of the cable 130, the connectors 140A and 140B, and the I / O board 150. It flows through the resistor R of the identification number 17 to the ground (GND).
  • the power supply (+ 24V) of the identification number 6 of the I / O board 150, the resistor R of the identification number 18, and the ground (GND) are used. No current flows between and.
  • the voltage values A1 and B1 of the connector 140B detected by the FPGA 151 provided on the I / O board 150 become the voltage values V1 and V2 when a current flows, respectively, and the voltage values A2 and B2 are the currents. It becomes + 24V, 0V when is not flowing.
  • the current flows through the following path. ..
  • the current flows from the power supply (+ 24V) of the identification number 6 of the I / O board 150 to the connectors 140A and 140B of the identification number 6, the wiring of the cable 130, the pin terminal 123B, and the terminal 123A.
  • the current passes from the terminal 123A of the identification number 6 of the connector 120A to the terminal 123A of the identification number 18, passes through the pin terminal 123B of the identification number 18, the wiring of the cable 130, the connectors 140A and 140B, and the I / O board 150. It flows through the resistor R of the identification number 18 to the ground (GND).
  • the power supply (+ 24V) of the identification number 5 of the I / O board 150, the resistor R of the identification number 17, and the ground (GND) are used. No current flows between and.
  • the voltage values A2 and B2 of the connector 140B detected by the FPGA 151 provided on the I / O board 150 are the voltage values V1 and V2 when a current flows, respectively, and the voltage values A1 and B1 are respectively. , + 24V, 0V when no current is flowing.
  • the FPGA 151 creates 2-bit I / O data as an example based on the voltage values A1, B1, A2, and B2.
  • the FPGA 151 creates 2-bit I / O data '01', and the voltage values A1, B1, A2, and B2 are 24V.
  • 2-bit I / O data '10' is created.
  • the I / O data '01' indicates that the terminals 123A of the identification numbers 5 and 17 are short-circuited
  • the I / O data '10' indicates that the terminals 123A of the identification numbers 6 and 18 are short-circuited. show.
  • the FPGA 151 creates I / O data '01' from the connection state of each terminal 123A of the connector 120 attached to the raw material container 111 of tungsten hexachloride (WCl 5 ), and puts it in the raw material container 111 of tungsten hexachloride (WCl 6 ).
  • I / O data '10' is created from the connection state of each terminal 123A of the attached connector 120.
  • the MC 160 controls the opening / closing (blocking) of the valve 170 and operates the alarm unit 180 based on the film formation parameters and the I / O data.
  • the film forming parameter represents the type of solid raw material used according to the type of film forming process.
  • the film forming parameter indicates that tungsten pentachloride (WCl 5 ) is used in the case of the film forming process (1), and tungsten hexachloride (WCl 6 ) in the case of the film forming process (2). Will be used.
  • Data representing such film formation parameters are stored in the memory 201 of the EC200.
  • the film forming apparatus 100 performs any one of the film forming processes (1) and (2), and the memory 201 has any one of the film forming processes (1) and (2). It is assumed that the data representing the film formation parameters of the above is stored.
  • reference data is stored in the memory 201 of the EC200.
  • the reference data is 2-bit data having the same value as the I / O data obtained by the connection state (whether or not it is short-circuited) of the terminal 123A of the connector 120 attached to the raw material container 111. Since the film forming apparatus 100 performs any one of the film forming processes (1) and (2), the reference data stored in the memory 201 is the film forming process (1) performed by the film forming apparatus 100. And the same value as the I / O data obtained by the connection state (whether or not it is short-circuited) of the terminal 123A of the connector 120 attached to the raw material container 111 containing the solid raw material used in any one of (2). Have.
  • the reference data stored in the memory 201 is '01'. Further, when the film forming apparatus 100 performs the film forming process (2), the reference data stored in the memory 201 is '10'.
  • the MC160 reads out the film forming parameters and the reference data for the film forming apparatus 100 from the memory 201.
  • the MC 160 acquires the I / O data from the FPGA 151, it compares it with the reference data read from the memory 201, and opens the valve 170 if they match.
  • the raw material gas obtained by sublimating the solid raw material is supplied to the chamber.
  • the MC 160 holds the valve 170 in the closed state and operates the alarm unit 180.
  • the connector 120B at one end of the cable 130 is connected to the connector 120A attached to the raw material container 111, and the connector 140A at the other end of the cable 130 is provided on the I / O board 150. Connect to connector 140B. Then, in order to discriminate the types of the two types of solid raw materials, as an example, the four terminals 123A of the identification numbers 5, 17, 6, and 18 of the 28 terminals 123A are used, and the identification numbers 5, 17 are used. , 6, 18 of the four terminals 123A, two terminals 123A are short-circuited with a unique combination according to the type of solid raw material.
  • the FPGA 151 provided on the I / O board 150 creates I / O data based on the voltage values A1, B1, A2, and B2 of the terminals of the connectors 140B of the identification numbers 5, 17, 6, and 18, and creates I / O data based on the MC160.
  • the MC 160 reads the film formation parameter and the reference data from the memory 201, and if the reference data and the I / O data acquired from the FPGA 151 do not match, the valve 170 is held in the closed state and an alarm is given.
  • the unit 180 is operated.
  • the interlock control of the film forming apparatus 100 is started. To start the interlock control is, for example, to execute a control for operating the alarm unit 180, a control for stopping the film forming process, and the like. As a result, a fail safe operation and a fool proof operation are realized.
  • the connector 120A instead of directly detecting that the raw material gas delivery pipe 111A is erroneously connected, the connector 120A newly attached to the raw material container 111, the cable 130 having the connector 120B and the connector 140A at both ends, and the cable 130.
  • An erroneous connection of the raw material container 111 is detected by using the connector 140B provided on the I / O board 150.
  • the determination accuracy is very high.
  • the valve 170 is held in the closed state, so that it is possible to suppress the supply of the raw material gas different from the original to the chamber. If the wrong source gas is supplied to the chamber, defective lots can result in enormous economic losses, which can be suppressed.
  • the raw material in the case of a liquid raw material or a gas raw material, the raw material can be added to the raw material container, but in the case of a solid raw material, the raw material cannot be added, so the raw material container 111 must be replaced. Human error may occur during replacement.
  • film formation is performed using a solid raw material in this way, it is possible to provide a film forming apparatus 100 having extremely high utility value.
  • the film forming apparatus 100 performs any one of the film forming treatments (1) and (2), and accommodates any one of tungsten pentachloride (WCl 5 ) and tungsten hexachloride (WCl 6).
  • the mode in which the raw material container 111 to be connected to the raw material gas delivery pipe 111A has been described.
  • the film forming apparatus 100 has two raw material gas delivery pipes 111A, and switches between a raw material container 111 containing tungsten pentachloride (WCl 5 ) and a raw material container 111 containing tungsten hexachloride (WCl 6). May be used.
  • the memory 201 contains the film forming parameters of both the film forming processes (1) and (2), the raw material container 111 containing the tungsten pentoxide (WCl 5 ), and the tungsten hexachloride (WCl 6 ). It suffices to store the reference data corresponding to the raw material container 111 that houses the material. Then, the MC160 may read out the reference data about the solid raw material represented by the film forming parameters of the film forming process (1) or (2) to be executed from now on, and determine whether or not it matches the I / O data acquired from the FPGA 151. ..
  • the MC160 reads the reference data '01' and determines whether it matches the I / O data acquired from the FPGA 151. Just do it. Further, when the solid raw material represented by the film formation parameter is tungsten hexachloride (WCl 6 ), the MC160 reads out the reference data '10' and determines whether or not it matches the I / O data acquired from the FPGA 151. Just do it.
  • the mode in which the FPGA 151 creates I / O data based on the voltage values A1, B1, A2, and B2 has been described, but instead of the voltage values A1, B1, A2, and B2, the current value or the resistance value. May be used.
  • tungsten pentachloride WCl 5
  • tungsten hexachloride WCl 6
  • the solid raw material is not limited to these two types.
  • connection state of the plurality of terminals 123A As a configuration in which the connection state of the plurality of terminals 123A can be changed, a configuration in which the plurality of terminals 123A are short-circuited has been described. It is not limited.
  • the connection state of the plurality of terminals 123A may be changed by connecting resistors having different resistance values between the plurality of terminals 123A.
  • the configuration in which the connection state of the plurality of terminals 123A can be changed is described as the configuration in which the terminal 123A can change the electrical state, but the configuration in which the electrical state can be changed is such a configuration. It is not limited to.
  • the capacitance may be changeable.
  • FIG. 5 is a diagram showing an exemplary cross-sectional configuration of the film forming apparatus 100.
  • the film forming apparatus 100 has a substantially cylindrical chamber 1 that is airtightly configured, and a susceptor 2 for horizontally supporting the wafer W as a substrate to be processed is contained therein in an exhaust chamber described later. It is arranged in a state of being supported by a cylindrical support member 3 extending from the bottom to the lower center thereof.
  • the susceptor 2 is made of ceramics such as AlN.
  • a heater 5 is embedded in the susceptor 2, and a heater power supply 6 is connected to the heater 5.
  • a thermocouple 7 is provided near the upper surface of the susceptor 2, and the signal of the thermocouple 7 is transmitted to the heater controller 8.
  • the heater controller 8 transmits a command to the heater power supply 6 in response to the signal of the thermocouple 7, controls the heating of the heater 5, and controls the wafer W to a predetermined temperature.
  • the susceptor 2 is provided with three wafer elevating pins (not shown) so as to be recessed from the surface of the susceptor 2, and is in a state of protruding from the surface of the susceptor 2 when the wafer W is conveyed. Be made. Further, the susceptor 2 can be raised and lowered by an elevating mechanism (not shown).
  • a circular hole 1b is formed in the top wall 1a of the chamber 1, and the shower head 10 is fitted so as to project from the hole 1b into the chamber 1.
  • the shower head 10 is for discharging WCl 6 gas, which is a film-forming raw material gas supplied from the gas supply mechanism 30 described later, into the chamber 1.
  • WCl 6 gas which is a film-forming raw material gas supplied from the gas supply mechanism 30 described later.
  • a first introduction path 11 for introducing WCl 6 gas and N 2 gas as a purge gas and a second introduction path 12 for introducing H 2 gas as a reducing gas and N 2 gas as a purge gas. And are provided.
  • Spaces 13 and 14 are provided in two upper and lower stages inside the shower head 10.
  • a first introduction path 11 is connected to the upper space 13, and a first gas discharge path 15 extends from the space 13 to the bottom surface of the shower head 10.
  • a second introduction path 12 is connected to the lower space 14, and a second gas discharge path 16 extends from the space 14 to the bottom surface of the shower head 10. That is, in the shower head 10, WCl 6 gas as a film-forming raw material gas and H 2 gas as a reducing gas are independently discharged from the discharge paths 15 and 16, respectively.
  • the bottom wall of the chamber 1 is provided with an exhaust chamber 21 that projects downward.
  • An exhaust pipe 22 is connected to the side surface of the exhaust chamber 21, and an exhaust device 23 having a vacuum pump, a pressure control valve, or the like is connected to the exhaust pipe 22. By operating the exhaust device 23, it is possible to bring the inside of the chamber 1 into a predetermined decompression state.
  • the side wall of the chamber 1 is provided with an carry-in / out port 24 for carrying in / out the wafer W and a gate valve 25 for opening / closing the carry-in / out port 24. Further, a heater 26 is provided on the wall portion of the chamber 1, so that the temperature of the inner wall of the chamber 1 can be controlled during the film forming process.
  • the gas supply mechanism 30 has a raw material container 111 for accommodating WCl 6 , which is a film-forming raw material.
  • WCl 6 in the normal temperature is solid
  • WCl 6 in the raw material container 111 is tungsten chloride as tungsten raw material is accommodated as a solid.
  • a heater 31a is provided around the raw material container 111 to heat the film-forming raw material in the raw material container 111 to an appropriate temperature to sublimate WCl 6.
  • WCl 5 can also be used as the tungsten chloride. Even if WCl 5 is used, the behavior is almost the same as that of WCl 6.
  • N 2 gas supply source 33 is connected to the carrier gas pipe 32.
  • the carrier gas pipe 32 is interposed with a mass flow controller 34 as a flow rate controller and valves 35 before and after the mass flow controller 34.
  • a raw material gas delivery pipe 111A serving as a raw material gas line is inserted into the raw material container 111 from above, and the other end of the raw material gas delivery pipe 111A is connected to the first introduction path 11 of the shower head 10. There is.
  • a valve 37 is interposed in the raw material gas delivery pipe 111A.
  • the raw material gas delivery pipe 111A is provided with a heater 38 for preventing condensation of WCl 6 gas, which is a film-forming raw material gas. Then, the WCl 6 gas sublimated in the raw material container 111 is conveyed by the N 2 gas (carrier N 2 ) as the carrier gas, and is conveyed into the shower head 10 via the raw material gas delivery pipe 111A and the first introduction path 11. Be supplied. Further, the raw material gas delivery pipe 111A is, N 2 gas supply source 71 is connected for supplying the N 2 gas as a purge gas through a pipe 74 (the purge N 2). A mass flow controller 72 as a flow rate controller and valves 73 before and after the mass flow controller 72 are interposed in the pipe 74. N 2 gas from the N 2 gas supply source 71 is used as a purge gas of the source gas line side.
  • the carrier gas pipe 32 and the raw material gas delivery pipe 111A are connected by a bypass pipe 48, and a valve 49 is interposed in the bypass pipe 48.
  • Valves 35a and 37a are interposed on the downstream side of the pipe 48 connection portion in the carrier gas pipe 32 and the raw material gas delivery pipe 111A, respectively.
  • the valve 35a by opening the valve 49 closes the 37a, the N 2 gas from the N 2 gas supply source 33, a carrier gas pipe 32, through the bypass pipe 48, is possible to purge the feed gas delivery pipe 111A It is possible.
  • the carrier gas and the purge gas is not limited to N 2 gas, it may be another inert gas such as Ar gas.
  • the second inlet channel 12 of the shower head 10 is connected a pipe 40 which is a H 2 gas line
  • the pipe 40 includes a H 2 gas supply source 42 for supplying H 2 gas as a reducing gas, N 2 gas supply source 61 for supplying N 2 gas (purge N 2) as purge gas via the pipe 64 is connected.
  • the pipe 40 is interposed with a mass flow controller 44 as a flow rate controller and valves 45 before and after the mass flow controller 44
  • the pipe 64 is interposed with a mass flow controller 62 as a flow rate controller and valves 63 before and after the mass flow controller 62.
  • N 2 gas from the N 2 gas supply source 61 is used as a purge gas of the H 2 gas line side.
  • the reducing gas is not limited to H 2 gas, but SiH 4 gas, B 2 H 6 gas, and NH 3 gas can also be used. Two or more of H 2 gas, SiH 4 gas, B 2 H 6 gas, and NH 3 gas may be supplied. Further, other reducing gases other than these, such as PH 3 gas and SiH 2 Cl 2 gas, may be used.
  • the MC160 controls each component of the film forming apparatus 100, specifically, a valve, a power supply, a heater, a pump, and the like. Each component of the film forming apparatus 100 is electrically connected to the MC 160 and controlled.
  • the user interface of the MC160 is a keyboard that allows the operator to input commands to manage each component of the film forming apparatus 100, a display that visualizes and displays the operating status of each component of the film forming apparatus, and the like. be.
  • a control program for realizing various processes executed by the film forming apparatus 100 and a control for causing each component of the film forming apparatus 100 to execute a predetermined process according to the processing conditions. Programs (processing recipes) and various databases are stored.
  • the memory of the MC160 is a ROM or an HDD.
  • the film forming apparatus 100 performs a desired film forming process under the control of the MC160.
  • the MC 160 opens the gate valve 25, carries the wafer W into the chamber 1 by a transfer device (not shown) via the carry-in outlet 24, and puts the wafer W on the susceptor 2 heated to a predetermined temperature by the heater 5. Place it.
  • a tungsten film is formed by a CVD (Chemical Vapor Deposition) method or an ALD (Atomic Layer Deposition) method.
  • a CVD Chemical Vapor Deposition
  • ALD Atomic Layer Deposition
  • the wafer W for example, a wafer in which a barrier metal film (for example, TiN film or TiSiN film) is formed as a base film on the surface of a thermal oxide film or the surface of an interlayer insulating film having recesses such as trenches and holes can be used. can.
  • the tungsten film can be easily formed by using a TiN film or a TiSiN film as a base film.
  • the base film is not limited to this.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

Provided is a technique for preventing the misconnection of a solid raw material container in a film formation device. A film formation device is provided, which comprises: a solid raw material container in which a solid raw material for forming a film is contained; a plurality of terminals which are mechanically connected to the solid raw material container and of which the electrical state can be altered; and a control unit in which the electrical state of the plurality of terminals is detected and the type of the solid raw material is determined on the basis of the detected electrical state.

Description

成膜装置Film deposition equipment
 本開示は、成膜装置に関する。 This disclosure relates to a film forming apparatus.
 複数の電気機器間の信号接続を中継するコネクタを有するコネクタ機器であって、接続ケーブルを介して他の電気機器に接続する少なくとも一つのコネクタと、前記少なくとも一つのコネクタに対応してそれぞれ設置され、前記コネクタから入力される入力信号が、適切な入力信号であるか否かを判定して判定結果を出力するとともに、当該入力信号が適切な入力信号である場合に、当該入力信号を出力する少なくとも一つの接続検出部と、既に接続された前記コネクタの接続情報を保持しており、当該接続情報と前記判定結果とに基づいて、ユーザが次に行うべき接続に関する接続ガイダンス情報を生成する接続ガイダンス部と、前記接続ガイダンス情報をユーザに提供する出力部とを備える、コネクタ機器についての技術が開示されている。 A connector device having a connector that relays a signal connection between a plurality of electric devices, and is installed corresponding to at least one connector that connects to another electric device via a connection cable and the at least one connector. , It is determined whether or not the input signal input from the connector is an appropriate input signal, and the determination result is output, and when the input signal is an appropriate input signal, the input signal is output. A connection that holds at least one connection detector and connection information of the connector that has already been connected, and generates connection guidance information regarding the connection that the user should make next based on the connection information and the determination result. A technique for a connector device including a guidance unit and an output unit that provides the connection guidance information to a user is disclosed.
特開2006-1788889号公報Japanese Unexamined Patent Publication No. 2006-17888889
 本開示は、成膜装置において固体原料容器の誤接続を抑制できる技術を提供する。 The present disclosure provides a technique capable of suppressing erroneous connection of a solid raw material container in a film forming apparatus.
 本開示の一の態様によれば、成膜用の固体原料を収容する固体原料容器と、前記固体原料容器に機械的に接続され、かつ、電気的な状態を変更な可能な複数の端子と、前記複数の端子の電気的な状態を検出し、検出された電気的な状態に基づいて、前記固体原料の種類を判定する制御部と、を含む、成膜装置が提供される。 According to one aspect of the present disclosure, a solid raw material container for accommodating a solid raw material for film formation, and a plurality of terminals mechanically connected to the solid raw material container and capable of changing the electrical state. Provided is a film forming apparatus including a control unit that detects an electrical state of the plurality of terminals and determines the type of the solid raw material based on the detected electrical state.
 一の側面によれば、成膜装置において固体原料容器の誤接続を抑制できる。 According to one aspect, it is possible to suppress erroneous connection of the solid raw material container in the film forming apparatus.
実施形態の成膜装置100の構成の一例を示すブロック図である。It is a block diagram which shows an example of the structure of the film forming apparatus 100 of an embodiment. コネクタ120Aを示す図である。It is a figure which shows the connector 120A. コネクタ120Aを示す図である。It is a figure which shows the connector 120A. コネクタ120Bを示す図である。It is a figure which shows the connector 120B. コネクタ120A、ケーブル130、コネクタ140A、140B、I/Oボード150の接続状態を示す図である。It is a figure which shows the connection state of a connector 120A, a cable 130, a connector 140A, 140B, and an I / O board 150. コネクタ120A、ケーブル130、コネクタ140A、140B、I/Oボード150の接続状態を示す図である。It is a figure which shows the connection state of a connector 120A, a cable 130, a connector 140A, 140B, and an I / O board 150. 成膜装置100の例示的な断面構成を示す図である。It is a figure which shows the exemplary cross-sectional structure of the film forming apparatus 100.
 以下、本開示を実施するための形態について図面を参照して説明する。なお、本明細書及び図面において、実質的に同一の構成については、同一の符号を付すことにより重複した説明を省く場合がある。 Hereinafter, the mode for carrying out the present disclosure will be described with reference to the drawings. In the present specification and the drawings, substantially the same configuration may be designated by the same reference numerals to omit duplicate explanations.
 <実施形態>
 図1は、実施形態の成膜装置100の構成の一例を示すブロック図である。成膜装置100は、主な構成要素として、原料収納部110、コネクタ120A、120B、ケーブル130、コネクタ140A、140B、I/O(Input/Output)ボード150、MC(Module Controller)160、バルブ170、及び警報部180を含む。
<Embodiment>
FIG. 1 is a block diagram showing an example of the configuration of the film forming apparatus 100 of the embodiment. The film forming apparatus 100 has, as main components, a raw material storage unit 110, connectors 120A and 120B, a cable 130, connectors 140A and 140B, an I / O (Input / Output) board 150, an MC (Module Controller) 160, and a valve 170. , And the alarm unit 180.
 以下では、コネクタ120A、120Bに関しては、図1に加えて図2A、図2B、及び図2Cを用いて説明する。図2A及び図2Bは、コネクタ120Aを示す図であり、図2Cは、コネクタ120Bを示す図である。 In the following, the connectors 120A and 120B will be described with reference to FIGS. 2A, 2B, and 2C in addition to FIG. 2A and 2B are diagrams showing the connector 120A, and FIG. 2C is a diagram showing the connector 120B.
 また、MC160には、EC(Equipment Controller)200が接続されている。EC200は、成膜装置100と、成膜装置100以外の成膜装置等とを統括的に制御するコントローラであり、MC160の上位に位置する。成膜装置100とEC200とは、成膜システムを構成する。MC160及びEC200は、一例として、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、HDD(Hard Disk Drive)、入出力インターフェース、ユーザインターフェース、及び内部バス等を含むコンピュータによって実現される。ユーザインターフェースは、一例として、キーボード、マウス、ディスプレイ等である。また、図1には、EC200のメモリ201を示す。メモリ201は、一例として、ROMによって実現される。 In addition, EC (Equipment Controller) 200 is connected to MC160. The EC200 is a controller that comprehensively controls the film forming apparatus 100 and the film forming apparatus other than the film forming apparatus 100, and is located above the MC160. The film forming apparatus 100 and EC200 constitute a film forming system. The MC160 and EC200 are, for example, computers including a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), an HDD (Hard Disk Drive), an input / output interface, a user interface, an internal bus, and the like. Realized by. The user interface is, for example, a keyboard, a mouse, a display, and the like. Further, FIG. 1 shows the memory 201 of the EC200. The memory 201 is realized by a ROM as an example.
 原料収納部110は、1又は複数の原料容器(アンプル)が収納されるスペースであり、図1では原料収納部110内に原料容器111が配置されている。原料容器111は、一例として、固体原料を収容する固体原料容器の一例である。固体原料は、一例として、五塩化タングステン(WCl)又は六塩化タングステン(WCl)である。五塩化タングステン(WCl)及び六塩化タングステン(WCl)は、大気圧における常温では固体である。 The raw material storage unit 110 is a space for storing one or more raw material containers (ampoules), and in FIG. 1, the raw material container 111 is arranged in the raw material storage unit 110. The raw material container 111 is, for example, an example of a solid raw material container for accommodating a solid raw material. The solid raw material is, for example, tungsten pentachloride (WCl 5 ) or tungsten hexachloride (WCl 6 ). Tungsten hexachloride (WCl 5 ) and tungsten hexachloride (WCl 6 ) are solids at room temperature at atmospheric pressure.
 原料容器111には、原料ガス送出配管111Aが接続されている。原料ガス送出配管111Aは、原料容器111と成膜装置100のチャンバとを接続しており、バルブ170が設けられている。また、原料容器111には、ヒータ(不図示)が設けられており、固体原料は、加熱によって昇華されて原料ガスとしてチャンバに供給される。 The raw material gas delivery pipe 111A is connected to the raw material container 111. The raw material gas delivery pipe 111A connects the raw material container 111 and the chamber of the film forming apparatus 100, and is provided with a valve 170. Further, the raw material container 111 is provided with a heater (not shown), and the solid raw material is sublimated by heating and supplied to the chamber as a raw material gas.
 コネクタ120A、120Bは、原料収納部110内において互いに接続されている。コネクタ120Aは、第1コネクタの一例であり、コネクタ120Bは、第2コネクタの一例である。コネクタ120Aは、原料容器111に取り付けられたワイヤ125Aに接続され、コネクタ120Bは、ケーブル130に接続されている。 The connectors 120A and 120B are connected to each other in the raw material storage unit 110. The connector 120A is an example of the first connector, and the connector 120B is an example of the second connector. The connector 120A is connected to the wire 125A attached to the raw material container 111, and the connector 120B is connected to the cable 130.
 より具体的には、コネクタ120A及びワイヤ125Aは、図2Aに示すような構成であり、ワイヤ125Aの一端にコネクタ120Aが固定され、コネクタ120Aには着脱可能な蓋126Aが設けられている。コネクタ120Aとワイヤ125Aとは、固定されているだけで電気的には接続されていない。ワイヤ125Aは、コネクタ120Aを原料容器111に取り付けるために設けられている。ここでは、原料容器111にワイヤ125Aでコネクタ120Aを取り付け、コネクタ120Aをコネクタ120Bに接続することが、成膜処理を行うための前提条件になっている。 More specifically, the connector 120A and the wire 125A have a configuration as shown in FIG. 2A, the connector 120A is fixed to one end of the wire 125A, and the connector 120A is provided with a removable lid 126A. The connector 120A and the wire 125A are only fixed and not electrically connected. The wire 125A is provided for attaching the connector 120A to the raw material container 111. Here, it is a prerequisite for performing the film forming process that the connector 120A is attached to the raw material container 111 with the wire 125A and the connector 120A is connected to the connector 120B.
 コネクタ120Aは、図2Bに示すように、略円筒状の基部121Aと、複数の孔部122Aと、複数の端子123Aと、ボルト部124Aとを有する。複数の孔部122Aは、基部121Aを貫通しており、それぞれの内部に複数の端子123Aが設けられている。また、ボルト部124Aは、基部121Aの径方向の外側に設けられており、内周面にネジが形成されている。ボルト部124Aは、基部121Aに対して、回動自在に取り付けられている。 As shown in FIG. 2B, the connector 120A has a substantially cylindrical base portion 121A, a plurality of hole portions 122A, a plurality of terminals 123A, and a bolt portion 124A. The plurality of holes 122A penetrate the base 121A, and a plurality of terminals 123A are provided inside each of the holes 122A. Further, the bolt portion 124A is provided on the outer side in the radial direction of the base portion 121A, and a screw is formed on the inner peripheral surface. The bolt portion 124A is rotatably attached to the base portion 121A.
 複数の端子123Aは、複数の端子の一例であるとともに、複数の第1端子の一例であり、コネクタ120Bのピン端子123Bを挿抜可能な雌型の端子である。端子123Aについては、複数のうちの図2Bにおける手前側にあるもののみを破線で示す。コネクタ120Aは、雌型のコネクタである。 The plurality of terminals 123A are examples of a plurality of terminals and a plurality of first terminals, and are female terminals into which the pin terminal 123B of the connector 120B can be inserted and removed. Regarding the terminal 123A, only the terminal 123A on the front side in FIG. 2B is shown by a broken line. The connector 120A is a female connector.
 各端子123Aには、識別子が付与されている。識別子は、一例として識別番号である。複数の端子123Aは、互いに絶縁されているが、基部121Aの他方の面(図2Bでは見えない裏側の面)側において、任意の2個を短絡できるように構成されている。短絡されていない残りの端子123A同士は、互いに電気的に絶縁され、開放された状態のままである。 An identifier is assigned to each terminal 123A. The identifier is, for example, an identification number. The plurality of terminals 123A are insulated from each other, but are configured so that any two can be short-circuited on the other surface (the back surface that cannot be seen in FIG. 2B) of the base 121A. The remaining unshorted terminals 123A remain electrically isolated from each other and open.
 端子123Aが絶縁されていることと、短絡されていることとは、端子123Aの電気的な状態の一例であり、端子123Aが任意の2個を短絡できる構成を有することは、端子123Aが電気的な状態を変更可能な構成を有することの一例である。 The fact that the terminal 123A is insulated and that it is short-circuited is an example of the electrical state of the terminal 123A, and that the terminal 123A has a configuration that can short-circuit any two terminals means that the terminal 123A is electrically connected. This is an example of having a configuration in which the target state can be changed.
 2個の端子123Aの短絡は、例えば、基部121Aの他方の面(図2Bでは見えない裏側の面)側において、両端にピン端子を有する配線等で2個の端子123Aを接続して導通させることで行えばよい。また、短絡させる端子123Aの数は、少なくとも2個であればよく、3個以上の端子123Aが互いに導通するように短絡させてもよい。また、少なくとも2個の端子123Aを含むグループ毎に短絡させてもよい。 To short-circuit the two terminals 123A, for example, on the other surface of the base 121A (the back surface that cannot be seen in FIG. 2B), the two terminals 123A are connected and made conductive by wiring or the like having pin terminals at both ends. You can do it. Further, the number of terminals 123A to be short-circuited may be at least two, and three or more terminals 123A may be short-circuited so as to be electrically connected to each other. Further, each group including at least two terminals 123A may be short-circuited.
 ここでは、一例として、複数の端子123Aのうちの2個の端子123Aを短絡させる形態について説明する。短絡している2個の端子123Aの識別番号の組み合わせは、原料容器111に収容される固体原料の種類を区別するために利用される。すなわち、短絡している2個の端子123Aの識別番号の組み合わせは、原料容器111に収容される固体原料の種類によって異なり、固有の組み合わせである。 Here, as an example, a mode in which two terminals 123A out of a plurality of terminals 123A are short-circuited will be described. The combination of the identification numbers of the two short-circuited terminals 123A is used to distinguish the types of solid raw materials contained in the raw material container 111. That is, the combination of the identification numbers of the two short-circuited terminals 123A differs depending on the type of the solid raw material contained in the raw material container 111, and is a unique combination.
 このため、五塩化タングステン(WCl)を収容する原料容器111に取り付けられるコネクタ120Aと、六塩化タングステン(WCl)を収容する原料容器111に取り付けられるコネクタ120Aとでは、短絡される2個の端子123Aの識別番号の組み合わせは異なる。 Therefore, the connector 120A attached to the raw material container 111 containing tungsten hexachloride (WCl 5 ) and the connector 120A attached to the raw material container 111 containing tungsten hexachloride (WCl 6 ) are short-circuited. The combination of the identification numbers of the terminals 123A is different.
 コネクタ120Bは、図2Cに示すように、基部121Bと、突出部122Bと、複数のピン端子123Bとを有する。複数のピン端子123Bは、複数の第2端子の一例である。基部121Bは、一例として薄い矩形状の板状の部材であり、中央に設けられた複数の貫通孔には、それぞれ複数のピン端子123Bが差し込まれている。複数のピン端子123Bの数は、複数の端子123Aの数と等しい。また、基部121Bの一方の面には、円筒状の突出部122Bが設けられており、突出部122Bの外周面には、ネジ部122B1が形成されている。 As shown in FIG. 2C, the connector 120B has a base portion 121B, a protruding portion 122B, and a plurality of pin terminals 123B. The plurality of pin terminals 123B are examples of the plurality of second terminals. The base portion 121B is, for example, a thin rectangular plate-shaped member, and a plurality of pin terminals 123B are inserted into a plurality of through holes provided in the center. The number of the plurality of pin terminals 123B is equal to the number of the plurality of terminals 123A. Further, a cylindrical protruding portion 122B is provided on one surface of the base portion 121B, and a screw portion 122B1 is formed on the outer peripheral surface of the protruding portion 122B.
 このようなコネクタ120A及び120Bを接続するには、基部121Aの外周面に設けられた位置決め用の凸部と、突出部122Bの内周面に設けられた位置決め用の凹部とを係合させた状態で、コネクタ120Aの複数の孔部122Aに複数のピン端子123Bを挿入する。そして、複数の端子123Aと、複数のピン端子123Bとをそれぞれ接続した状態で、ボルト部124Aを突出部122Bのネジ部122B1に係合させることによって、コネクタ120A及び120Bは互いに固定される。 In order to connect such connectors 120A and 120B, a positioning convex portion provided on the outer peripheral surface of the base portion 121A and a positioning concave portion provided on the inner peripheral surface of the protruding portion 122B are engaged with each other. In this state, the plurality of pin terminals 123B are inserted into the plurality of holes 122A of the connector 120A. Then, with the plurality of terminals 123A and the plurality of pin terminals 123B connected to each other, the connectors 120A and 120B are fixed to each other by engaging the bolt portion 124A with the screw portion 122B1 of the protrusion 122B.
 ケーブル130は、一端がコネクタ120Bに接続されており、他端がコネクタ140Aに接続されている。ケーブル130は、複数のピン端子123Bと、コネクタ140Aの複数の端子(不図示)とをそれぞれ接続する複数の配線を有する。 One end of the cable 130 is connected to the connector 120B, and the other end is connected to the connector 140A. The cable 130 has a plurality of wires for connecting the plurality of pin terminals 123B and the plurality of terminals (not shown) of the connector 140A.
 コネクタ140Aは、I/Oボード150に設けられるコネクタ140Bに接続される。コネクタ140A及び140Bは、ケーブル130に含まれる配線と同一数の端子をそれぞれ有し、コネクタ120A及び120Bと同様に互いに位置合わせをした状態で、予め決められた端子同士が接続される構成を有する。このため、コネクタ140Bの各端子は、コネクタ140A、ケーブル130、及びコネクタ120Bを介して、コネクタ120Aの各端子123Aに接続されている。なお、コネクタ120B、ケーブル130、コネクタ140A、140B、I/Oボード150、及びケーブル155は、複数の端子123AとMC160を電気的に接続する電気接続部の一例である。 The connector 140A is connected to the connector 140B provided on the I / O board 150. The connectors 140A and 140B each have the same number of terminals as the wiring included in the cable 130, and have a configuration in which predetermined terminals are connected to each other in a state of being aligned with each other like the connectors 120A and 120B. .. Therefore, each terminal of the connector 140B is connected to each terminal 123A of the connector 120A via the connector 140A, the cable 130, and the connector 120B. The connector 120B, the cable 130, the connectors 140A and 140B, the I / O board 150, and the cable 155 are examples of electrical connection portions that electrically connect a plurality of terminals 123A and MC160.
 I/Oボード150には、コネクタ140BとFPGA(Field Programmable Gate Array)151が設けられている。FPGA151は、I/Oボード150の配線を介してコネクタ140Bに接続されるとともに、ケーブル155を介してMC160に接続されている。FPGA151は、コネクタ140Bの各端子の電圧値を読み取り、コネクタ120Aの各端子123Aの接続状態(短絡しているかどうか)を検出する。 The I / O board 150 is provided with a connector 140B and an FPGA (Field Programmable Gate Array) 151. The FPGA 151 is connected to the connector 140B via the wiring of the I / O board 150 and is connected to the MC160 via the cable 155. The FPGA 151 reads the voltage value of each terminal of the connector 140B and detects the connection state (whether or not it is short-circuited) of each terminal 123A of the connector 120A.
 FPGA151は、コネクタ140A、140B、ケーブル130、及びコネクタ120Bを介してコネクタ120Aの複数の端子123Aの接続状態を検出し、短絡している端子123Aの組み合わせを表すI/Oデータを生成する。FPGA151は、I/OデータをMC160に伝送する。なお、このような処理を行う処理部はFPGA151に限らず、様々な処理部を用いることができる。 The FPGA 151 detects the connection state of a plurality of terminals 123A of the connector 120A via the connectors 140A and 140B, the cable 130, and the connector 120B, and generates I / O data representing the combination of the short-circuited terminals 123A. The FPGA 151 transmits the I / O data to the MC160. The processing unit that performs such processing is not limited to FPGA 151, and various processing units can be used.
 MC160は、制御部の一例であり、成膜処理のレシピ(処理レシピ)に従って成膜装置100の各部(例えば、バルブ、電源、ヒータ、ポンプ等)の制御を行う。また、MC160は、一例として、シリアルインターフェース用のケーブル155を介してI/Oボード150に設けられたFPGA151に接続されるとともに、一例として、LAN(Local Area Network)ケーブル205を介してEC200に接続されている。 The MC160 is an example of a control unit, and controls each part (for example, a valve, a power supply, a heater, a pump, etc.) of the film forming apparatus 100 according to a film forming process recipe (processing recipe). Further, the MC 160 is connected to the FPGA 151 provided on the I / O board 150 via the serial interface cable 155 as an example, and is connected to the EC 200 via a LAN (Local Area Network) cable 205 as an example. Has been done.
 MC160は、FPGA151から取得するI/Oデータに基づいて、コネクタ120Aの種類を判別する。MC160は、判別する際にEC200のメモリ201に格納されている参照データを読み出し、参照データとI/Oデータとを比較することで、コネクタ120Aの種類を判別する。 MC160 determines the type of connector 120A based on the I / O data acquired from FPGA 151. The MC160 determines the type of the connector 120A by reading the reference data stored in the memory 201 of the EC200 and comparing the reference data with the I / O data at the time of determination.
 バルブ170は、原料容器111と処理容器(不図示)とを接続する原料ガス送出配管111Aに設けられている。バルブ170の開放/閉成(遮断)の切り替えは、MC160によって行われる。バルブ170は、成膜を行わないときには閉成された状態に保持される。また、バルブ170は、成膜処理に本来用いる固体原料とは異なる固体原料を収容する原料容器111のコネクタ120Aがコネクタ120Bに接続された場合には、MC160によって閉成された状態に保持される。本来用いない固体原料を含む原料容器111が原料ガス送出配管111Aに誤って接続されると、ロットの不良で膨大な経済的な損失が生じる可能性があるからである。 The valve 170 is provided in the raw material gas delivery pipe 111A that connects the raw material container 111 and the processing container (not shown). The opening / closing (blocking) of the valve 170 is switched by the MC160. The valve 170 is held in a closed state when no film formation is performed. Further, the valve 170 is held in a closed state by the MC 160 when the connector 120A of the raw material container 111 containing the solid raw material different from the solid raw material originally used for the film forming process is connected to the connector 120B. .. This is because if the raw material container 111 containing the solid raw material that is not originally used is erroneously connected to the raw material gas delivery pipe 111A, a lot defect may cause a huge economic loss.
 警報部180は、成膜処理に本来用いる固体原料とは異なる固体原料を収容する原料容器111のコネクタ120Aがコネクタ120Bに接続された場合に、MC160によって作動される。警報部180は、成膜装置100のオペレータ(利用者)に異常事態が生じたことを報知できる装置であればよく、一例として、アラームを発報するアラーム装置や、MC160やEC200のディスプレイ等に警報メッセージを表示する装置等である。 The alarm unit 180 is operated by the MC 160 when the connector 120A of the raw material container 111 containing the solid raw material different from the solid raw material originally used for the film forming process is connected to the connector 120B. The alarm unit 180 may be any device that can notify the operator (user) of the film forming apparatus 100 that an abnormal situation has occurred, and as an example, an alarm device that issues an alarm, a display of MC160 or EC200, or the like. A device that displays an alarm message.
 図3は、五塩化タングステン(WCl)を収容する原料容器111を検出するためのコネクタ120A、ケーブル130、コネクタ140A、140B、I/Oボード150の接続状態を示す図である。図4は、六塩化タングステン(WCl)を収容する原料容器111を検出するためのコネクタ120A、ケーブル130、コネクタ140A、140B、I/Oボード150の接続状態を示す図である。 FIG. 3 is a diagram showing a connection state of the connector 120A, the cable 130, the connectors 140A, 140B, and the I / O board 150 for detecting the raw material container 111 containing the tungsten pentoxide (WCl 5). FIG. 4 is a diagram showing a connection state of the connector 120A, the cable 130, the connectors 140A, 140B, and the I / O board 150 for detecting the raw material container 111 containing the tungsten hexachloride (WCl 6).
 図3及び図4では、左側から右側にかけて、端子123A、ピン端子123B、ケーブル130の配線、コネクタ140A、140Bの端子、及びI/Oボード150の接続状態を示す。図3及び図4では、FPGA151を省略する。 3 and 4 show the connection state of the terminal 123A, the pin terminal 123B, the wiring of the cable 130, the terminals of the connectors 140A and 140B, and the I / O board 150 from the left side to the right side. In FIGS. 3 and 4, FPGA 151 is omitted.
 ここでは、一例として、コネクタ120Aの端子123Aが28個あり、端子123Aの識別番号は1から28まであることとする。また、端子123A、ピン端子123B、ケーブル130の配線、及び、コネクタ140A、140Bの端子は、それぞれ28個あることになるため、端子123A、ピン端子123B、ケーブル130の配線、及び、コネクタ140A、140Bの端子に、1から28の識別番号があることとして説明する。端子123A、ピン端子123B、ケーブル130の配線、及び、コネクタ140A、140Bの端子は、識別番号が同一のもの同士が接続されていることとする。 Here, as an example, it is assumed that there are 28 terminals 123A of the connector 120A, and the identification numbers of the terminals 123A are from 1 to 28. Further, since there are 28 terminals each for the terminals 123A, the pin terminals 123B, the wiring of the cable 130, and the connectors 140A, 140B, the wiring of the terminals 123A, the pin terminal 123B, the cable 130, and the connector 140A, It will be described that the terminal of 140B has an identification number from 1 to 28. It is assumed that the terminals 123A, the pin terminals 123B, the wiring of the cable 130, and the terminals of the connectors 140A and 140B have the same identification number and are connected to each other.
 また、五塩化タングステン(WCl)を収容する原料容器111と、六塩化タングステン(WCl)を収容する原料容器111とを判別するために、一例として、識別番号が5、6、17、18の4個の端子123Aを用い、他の識別番号の端子123Aは用いない。このため、図3及び図4では、ケーブル130の配線、コネクタ140A、140Bの端子、及びI/Oボード150については、識別番号が5、6、17、18の分のみを示し、識別番号が1~4、7~16、19~28については、Not Connectedと記す。 Further, in order to distinguish between the raw material container 111 containing tungsten pentachloride (WCl 5 ) and the raw material container 111 containing tungsten hexachloride (WCl 6 ), the identification numbers are 5, 6, 17, and 18 as an example. The four terminals 123A of the above are used, and the terminals 123A of other identification numbers are not used. Therefore, in FIGS. 3 and 4, only the identification numbers 5, 6, 17, and 18 are shown for the wiring of the cable 130, the terminals of the connectors 140A and 140B, and the I / O board 150, and the identification numbers are 1 to 4, 7 to 16, 19 to 28 are described as Not Connected.
 図3に示すように、五塩化タングステン(WCl)の原料容器111に取り付けるコネクタ120Aでは、識別番号が5と17の端子123Aを短絡し、識別番号が6と18の端子123Aは短絡しない(開放する)。このため、図3では、識別番号が5と17の端子123Aを接続した状態を示し、識別番号が6と18の端子123Aについては、Not Connectedと記す。 As shown in FIG. 3, in the connector 120A attached to the raw material container 111 of tungsten pentachloride (WCl 5 ), the terminals 123A having the identification numbers 5 and 17 are short-circuited, and the terminals 123A having the identification numbers 6 and 18 are not short-circuited (the terminals 123A having the identification numbers 6 and 18 are not short-circuited). Open). Therefore, FIG. 3 shows a state in which terminals 123A having identification numbers 5 and 17 are connected, and terminals 123A having identification numbers 6 and 18 are described as Not Connected.
 また、図4に示すように、六塩化タングステン(WCl)の原料容器111に取り付けるコネクタ120Aでは、識別番号が6と18の端子123Aを短絡し、識別番号が5と17の端子123Aは短絡しない(開放する)。このため、図4では、識別番号が6と18の端子123Aを接続した状態を示し、識別番号が5と17の端子123Aについては、Not Connectedと記す。 Further, as shown in FIG. 4, in the connector 120A attached to the raw material container 111 of tungsten hexachloride (WCl 6 ), the terminals 123A having the identification numbers 6 and 18 are short-circuited, and the terminals 123A having the identification numbers 5 and 17 are short-circuited. Do not (open). Therefore, FIG. 4 shows a state in which terminals 123A having identification numbers 6 and 18 are connected, and terminals 123A having identification numbers 5 and 17 are described as Not Connected.
 I/Oボード150に設けられたFPGA151は、五塩化タングステン(WCl)を収容する原料容器111と、六塩化タングステン(WCl)を収容する原料容器111とを判別する際には、コネクタ140Bの28個の端子のうちの識別番号が5、6、17、18の端子の電圧値のみを検出する。 The FPGA 151 provided on the I / O board 150 determines the connector 140B when discriminating between the raw material container 111 containing tungsten pentachloride (WCl 5 ) and the raw material container 111 containing tungsten hexachloride (WCl 6). Of the 28 terminals, only the voltage values of the terminals whose identification numbers are 5, 6, 17, and 18 are detected.
 図3及び図4では、識別番号5、17、6、18のコネクタ140Bの端子の電圧値を、それぞれ、A1、B1、A2、B2とする。FPGA151は、電圧値A1、B1、A2、B2を検出し、I/Oデータを作成する。 In FIGS. 3 and 4, the voltage values of the terminals of the connectors 140B of the identification numbers 5, 17, 6, and 18 are A1, B1, A2, and B2, respectively. The FPGA 151 detects the voltage values A1, B1, A2, and B2 and creates I / O data.
 図3に示すように、識別番号が5と17の端子123Aを短絡し、識別番号が6と18の端子123Aを短絡しない(開放する)場合は、次のような経路で電流が流れる。電流は、I/Oボード150の識別番号5の電源(+24V)から、識別番号5のコネクタ140A、140B、ケーブル130の配線、ピン端子123B、端子123Aに流れる。そして、電流は、コネクタ120Aの識別番号5の端子123Aから識別番号17の端子123Aを通り、識別番号17のピン端子123B、ケーブル130の配線、コネクタ140A、140Bを経て、I/Oボード150の識別番号17の抵抗器Rを通り、グランド(GND)に流れる。 As shown in FIG. 3, when the terminals 123A having the identification numbers 5 and 17 are short-circuited and the terminals 123A having the identification numbers 6 and 18 are not short-circuited (opened), the current flows through the following path. The current flows from the power supply (+ 24V) of the identification number 5 of the I / O board 150 to the connectors 140A and 140B of the identification number 5, the wiring of the cable 130, the pin terminal 123B, and the terminal 123A. Then, the current passes from the terminal 123A of the identification number 5 of the connector 120A to the terminal 123A of the identification number 17, passes through the pin terminal 123B of the identification number 17, the wiring of the cable 130, the connectors 140A and 140B, and the I / O board 150. It flows through the resistor R of the identification number 17 to the ground (GND).
 また、このときに、識別番号が6と18の端子123Aは開放されているため、I/Oボード150の識別番号6の電源(+24V)と、識別番号18の抵抗器R、グランド(GND)との間には電流は流れない。 Further, at this time, since the terminals 123A having the identification numbers 6 and 18 are open, the power supply (+ 24V) of the identification number 6 of the I / O board 150, the resistor R of the identification number 18, and the ground (GND) are used. No current flows between and.
 このため、I/Oボード150に設けられたFPGA151が検出するコネクタ140Bの電圧値A1、B1は、それぞれ、電流が流れた場合の電圧値V1、V2になり、電圧値A2、B2は、電流が流れていない場合の+24V、0Vになる。 Therefore, the voltage values A1 and B1 of the connector 140B detected by the FPGA 151 provided on the I / O board 150 become the voltage values V1 and V2 when a current flows, respectively, and the voltage values A2 and B2 are the currents. It becomes + 24V, 0V when is not flowing.
 また、図4に示すように、識別番号が6と18の端子123Aを短絡し、識別番号が5と17の端子123Aを短絡しない(開放する)場合は、次のような経路で電流が流れる。電流は、I/Oボード150の識別番号6の電源(+24V)から、識別番号6のコネクタ140A、140B、ケーブル130の配線、ピン端子123B、端子123Aに流れる。そして、電流は、コネクタ120Aの識別番号6の端子123Aから識別番号18の端子123Aを通り、識別番号18のピン端子123B、ケーブル130の配線、コネクタ140A、140Bを経て、I/Oボード150の識別番号18の抵抗器Rを通り、グランド(GND)に流れる。 Further, as shown in FIG. 4, when the terminals 123A having the identification numbers 6 and 18 are short-circuited and the terminals 123A having the identification numbers 5 and 17 are not short-circuited (opened), the current flows through the following path. .. The current flows from the power supply (+ 24V) of the identification number 6 of the I / O board 150 to the connectors 140A and 140B of the identification number 6, the wiring of the cable 130, the pin terminal 123B, and the terminal 123A. Then, the current passes from the terminal 123A of the identification number 6 of the connector 120A to the terminal 123A of the identification number 18, passes through the pin terminal 123B of the identification number 18, the wiring of the cable 130, the connectors 140A and 140B, and the I / O board 150. It flows through the resistor R of the identification number 18 to the ground (GND).
 また、このときに、識別番号が5と17の端子123Aは開放されているため、I/Oボード150の識別番号5の電源(+24V)と、識別番号17の抵抗器R、グランド(GND)との間には電流は流れない。 Further, at this time, since the terminals 123A having the identification numbers 5 and 17 are open, the power supply (+ 24V) of the identification number 5 of the I / O board 150, the resistor R of the identification number 17, and the ground (GND) are used. No current flows between and.
 このため、I/Oボード150に設けられたFPGA151が検出するコネクタ140Bの電圧値A2、B2は、それぞれ、電流が流れた場合の電圧値V1、V2になり、電圧値A1、B1は、それぞれ、電流が流れていない場合の+24V、0Vになる。 Therefore, the voltage values A2 and B2 of the connector 140B detected by the FPGA 151 provided on the I / O board 150 are the voltage values V1 and V2 when a current flows, respectively, and the voltage values A1 and B1 are respectively. , + 24V, 0V when no current is flowing.
 FPGA151は、電圧値A1、B1、A2、B2に基づいて、一例として、2ビットのI/Oデータを作成する。FPGA151は、電圧値A1、B1、A2、B2がV1、V2、24V、0Vの場合は、2ビットのI/Oデータ‘01’を作成し、電圧値A1、B1、A2、B2が24V、0V、V1、V2の場合は、2ビットのI/Oデータ‘10’を作成する。I/Oデータ‘01’は、識別番号5と17の端子123Aを短絡していることを表し、I/Oデータ‘10’は、識別番号6と18の端子123Aを短絡していることを表す。FPGA151は、五塩化タングステン(WCl)の原料容器111に取り付けられるコネクタ120の各端子123Aの接続状態からI/Oデータ‘01’を作成し、六塩化タングステン(WCl)の原料容器111に取り付けられるコネクタ120の各端子123Aの接続状態からI/Oデータ‘10’を作成する。 The FPGA 151 creates 2-bit I / O data as an example based on the voltage values A1, B1, A2, and B2. When the voltage values A1, B1, A2, and B2 are V1, V2, 24V, and 0V, the FPGA 151 creates 2-bit I / O data '01', and the voltage values A1, B1, A2, and B2 are 24V. In the case of 0V, V1 and V2, 2-bit I / O data '10' is created. The I / O data '01' indicates that the terminals 123A of the identification numbers 5 and 17 are short-circuited, and the I / O data '10' indicates that the terminals 123A of the identification numbers 6 and 18 are short-circuited. show. The FPGA 151 creates I / O data '01' from the connection state of each terminal 123A of the connector 120 attached to the raw material container 111 of tungsten hexachloride (WCl 5 ), and puts it in the raw material container 111 of tungsten hexachloride (WCl 6 ). I / O data '10' is created from the connection state of each terminal 123A of the attached connector 120.
 MC160は、成膜パラメータと、I/Oデータとに基づいて、バルブ170の開放/閉成(遮断)を制御するとともに、警報部180の作動を行う。成膜パラメータは、成膜処理の種類に応じて用いる固体原料の種類を表す。一例として、成膜パラメータは、成膜処理(1)の場合には、五塩化タングステン(WCl)を用いることを表し、成膜処理(2)の場合には、六塩化タングステン(WCl)を用いることを表すこととする。このような成膜パラメータを表すデータは、EC200のメモリ201に格納されている。ここでは、成膜装置100は、成膜処理(1)及び(2)のいずれか1つを行うものであり、メモリ201には、成膜処理(1)及び(2)のいずれか1つについての成膜パラメータを表すデータが格納されていることとする。 The MC 160 controls the opening / closing (blocking) of the valve 170 and operates the alarm unit 180 based on the film formation parameters and the I / O data. The film forming parameter represents the type of solid raw material used according to the type of film forming process. As an example, the film forming parameter indicates that tungsten pentachloride (WCl 5 ) is used in the case of the film forming process (1), and tungsten hexachloride (WCl 6 ) in the case of the film forming process (2). Will be used. Data representing such film formation parameters are stored in the memory 201 of the EC200. Here, the film forming apparatus 100 performs any one of the film forming processes (1) and (2), and the memory 201 has any one of the film forming processes (1) and (2). It is assumed that the data representing the film formation parameters of the above is stored.
 また、EC200のメモリ201には、参照データが格納されている。参照データは、原料容器111に取り付けられるコネクタ120の端子123Aの接続状態(短絡しているかどうか)によって得られるI/Oデータと同一の値を有する2ビットのデータである。成膜装置100は、成膜処理(1)及び(2)のいずれか1つを行うものであるため、メモリ201に格納される参照データは、成膜装置100が行う成膜処理(1)及び(2)のいずれか1つで用いられる固体原料を収容する原料容器111に取り付けられるコネクタ120の端子123Aの接続状態(短絡しているかどうか)によって得られるI/Oデータと同一の値を有する。 In addition, reference data is stored in the memory 201 of the EC200. The reference data is 2-bit data having the same value as the I / O data obtained by the connection state (whether or not it is short-circuited) of the terminal 123A of the connector 120 attached to the raw material container 111. Since the film forming apparatus 100 performs any one of the film forming processes (1) and (2), the reference data stored in the memory 201 is the film forming process (1) performed by the film forming apparatus 100. And the same value as the I / O data obtained by the connection state (whether or not it is short-circuited) of the terminal 123A of the connector 120 attached to the raw material container 111 containing the solid raw material used in any one of (2). Have.
 成膜装置100が成膜処理(1)を行う場合には、メモリ201に格納される参照データは、‘01’である。また、成膜装置100が成膜処理(2)を行う場合には、メモリ201に格納される参照データは、‘10’である。 When the film forming apparatus 100 performs the film forming process (1), the reference data stored in the memory 201 is '01'. Further, when the film forming apparatus 100 performs the film forming process (2), the reference data stored in the memory 201 is '10'.
 MC160は、メモリ201から成膜装置100についての成膜パラメータと参照データとを読み出す。MC160は、FPGA151からI/Oデータを取得すると、メモリ201から読み出した参照データと比較し、一致すればバルブ170を開放する。この結果、固体原料を昇華させて得た原料ガスがチャンバに供給される。 The MC160 reads out the film forming parameters and the reference data for the film forming apparatus 100 from the memory 201. When the MC 160 acquires the I / O data from the FPGA 151, it compares it with the reference data read from the memory 201, and opens the valve 170 if they match. As a result, the raw material gas obtained by sublimating the solid raw material is supplied to the chamber.
 また、MC160は、FPGA151から取得したI/Oデータと、メモリ201から読み出した参照データとが一致しなければ、バルブ170を閉成状態に保持するとともに、警報部180を作動させる。 Further, if the I / O data acquired from the FPGA 151 and the reference data read from the memory 201 do not match, the MC 160 holds the valve 170 in the closed state and operates the alarm unit 180.
 以上のように、成膜装置100では、原料容器111に取り付けたコネクタ120Aに、ケーブル130の一端のコネクタ120Bを接続し、ケーブル130の他端のコネクタ140AをI/Oボード150に設けられたコネクタ140Bに接続する。そして、2種類の固体原料の種類を判別するために、一例として、28個の端子123Aのうちの識別番号5、17、6、18の4個の端子123Aを利用し、識別番号5、17、6、18の4個の端子123Aのうちの2個の端子123Aを固体原料の種類に応じた固有の組み合わせで短絡させている。 As described above, in the film forming apparatus 100, the connector 120B at one end of the cable 130 is connected to the connector 120A attached to the raw material container 111, and the connector 140A at the other end of the cable 130 is provided on the I / O board 150. Connect to connector 140B. Then, in order to discriminate the types of the two types of solid raw materials, as an example, the four terminals 123A of the identification numbers 5, 17, 6, and 18 of the 28 terminals 123A are used, and the identification numbers 5, 17 are used. , 6, 18 of the four terminals 123A, two terminals 123A are short-circuited with a unique combination according to the type of solid raw material.
 また、I/Oボード150に設けられたFPGA151は、識別番号5、17、6、18のコネクタ140Bの端子の電圧値A1、B1、A2、B2に基づいてI/Oデータを作成し、MC160に伝送する。そして、MC160は、メモリ201から成膜パラメータと参照データとを読み出し、参照データと、FPGA151から取得したI/Oデータとが一致しない場合には、バルブ170を閉成状態に保持するとともに、警報部180を作動させる。 Further, the FPGA 151 provided on the I / O board 150 creates I / O data based on the voltage values A1, B1, A2, and B2 of the terminals of the connectors 140B of the identification numbers 5, 17, 6, and 18, and creates I / O data based on the MC160. To transmit to. Then, the MC 160 reads the film formation parameter and the reference data from the memory 201, and if the reference data and the I / O data acquired from the FPGA 151 do not match, the valve 170 is held in the closed state and an alarm is given. The unit 180 is operated.
 このため、本来用いない固体原料を収容する原料容器111が原料ガス送出配管111Aに誤って接続されることを未然に抑制できる。 Therefore, it is possible to prevent the raw material container 111 containing the solid raw material that is not originally used from being erroneously connected to the raw material gas delivery pipe 111A.
 したがって、原料容器111の誤接続を抑制できる成膜装置100を提供できる。 Therefore, it is possible to provide a film forming apparatus 100 capable of suppressing erroneous connection of the raw material container 111.
 また、MC160は、コネクタ120Aとコネクタ120Bが外れている場合、及び、コネクタ140Aとコネクタ140Bが外れている場合には、識別番号が5と17の端子123Aの間が開放であり、かつ、識別番号が6と18の端子123Aの間が開放であると判断する。その結果、識別番号が5と17の端子123Aの間の電気的状態(電気的な接続状態)と、識別番号が6と18の端子123Aの間の電気的状態が正常に接続された場合の電気的状態とは異なると判断し、成膜装置100のインターロック制御を開始する。インターロック制御を開始するとは、例えば、警報部180を作動させる制御、又は、成膜処理を停止する制御等を実行することである。この結果、フェールセーフ(fail safe)動作とフールプループ(fool proof)動作が実現される。 Further, in the MC160, when the connector 120A and the connector 120B are disconnected, or when the connector 140A and the connector 140B are disconnected, the space between the terminals 123A having the identification numbers 5 and 17 is open and the identification number is identified. It is determined that the area between the terminals 123A having the numbers 6 and 18 is open. As a result, when the electrical state between the terminals 123A having the identification numbers 5 and 17 (electrical connection state) and the electrical state between the terminals 123A having the identification numbers 6 and 18 are normally connected. Judging that it is different from the electrical state, the interlock control of the film forming apparatus 100 is started. To start the interlock control is, for example, to execute a control for operating the alarm unit 180, a control for stopping the film forming process, and the like. As a result, a fail safe operation and a fool proof operation are realized.
 また、原料ガス送出配管111Aに誤って接続されたことを直接的に検出するのではなく、原料容器111に新たに取り付けたコネクタ120Aと、コネクタ120B及びコネクタ140Aを両端にそれぞれ有するケーブル130と、I/Oボード150に設けたコネクタ140Bとを利用して、原料容器111の誤接続を検出している。 Further, instead of directly detecting that the raw material gas delivery pipe 111A is erroneously connected, the connector 120A newly attached to the raw material container 111, the cable 130 having the connector 120B and the connector 140A at both ends, and the cable 130. An erroneous connection of the raw material container 111 is detected by using the connector 140B provided on the I / O board 150.
 原料容器111の誤接続は、コネクタ120Aの短絡される2個の端子123Aの固有の組み合わせに基づく電圧値を利用して判別しているため、判別の精度が非常に高い。 Since the incorrect connection of the raw material container 111 is determined by using the voltage value based on the unique combination of the two short-circuited terminals 123A of the connector 120A, the determination accuracy is very high.
 したがって、原料容器111の誤接続を非常に高い精度で判別できる信頼性の高い成膜装置100を提供できる。 Therefore, it is possible to provide a highly reliable film forming apparatus 100 capable of discriminating erroneous connection of the raw material container 111 with extremely high accuracy.
 また、原料容器111の誤接続があった場合には、バルブ170を閉成状態に保持するため、本来とは異なる原料ガスがチャンバに供給されることを抑制できる。誤った原料ガスがチャンバに供給されると、ロットの不良で膨大な経済的な損失が生じる可能性があるが、このような損失を未然に抑制できる。 Further, when the raw material container 111 is erroneously connected, the valve 170 is held in the closed state, so that it is possible to suppress the supply of the raw material gas different from the original to the chamber. If the wrong source gas is supplied to the chamber, defective lots can result in enormous economic losses, which can be suppressed.
 また、液体原料や気体原料の場合は、原料容器に原料の注ぎ足しが可能であるが、固体原料の場合は注ぎ足しができないため、原料容器111を交換することになる。交換の際には、人的な誤りが発生するおそれがある。このように固体原料を用いて成膜を行う場合に、非常に利用価値の高い成膜装置100を提供できる。 Further, in the case of a liquid raw material or a gas raw material, the raw material can be added to the raw material container, but in the case of a solid raw material, the raw material cannot be added, so the raw material container 111 must be replaced. Human error may occur during replacement. When film formation is performed using a solid raw material in this way, it is possible to provide a film forming apparatus 100 having extremely high utility value.
 なお、以上では、成膜装置100が成膜処理(1)及び(2)のいずれか1つを行い、五塩化タングステン(WCl)及び六塩化タングステン(WCl)のいずれか1つを収容する原料容器111が原料ガス送出配管111Aに接続される形態について説明した。しかしながら、成膜装置100が2本の原料ガス送出配管111Aを有し、五塩化タングステン(WCl)を収容する原料容器111と、六塩化タングステン(WCl)を収容する原料容器111とを切り替えて用いてもよい。 In the above, the film forming apparatus 100 performs any one of the film forming treatments (1) and (2), and accommodates any one of tungsten pentachloride (WCl 5 ) and tungsten hexachloride (WCl 6). The mode in which the raw material container 111 to be connected to the raw material gas delivery pipe 111A has been described. However, the film forming apparatus 100 has two raw material gas delivery pipes 111A, and switches between a raw material container 111 containing tungsten pentachloride (WCl 5 ) and a raw material container 111 containing tungsten hexachloride (WCl 6). May be used.
 この場合には、メモリ201に、成膜処理(1)及び(2)の両方の成膜パラメータと、五塩化タングステン(WCl)を収容する原料容器111、及び、六塩化タングステン(WCl)を収容する原料容器111に対応した参照データとを格納しておけばよい。そして、MC160は、これから実行する成膜処理(1)又は(2)の成膜パラメータが表す固体原料についての参照データを読み出し、FPGA151から取得するI/Oデータと一致するかを判定すればよい。例えば、成膜パラメータが表す固体原料が五塩化タングステン(WCl)である場合には、MC160は、参照データ‘01’を読み出して、FPGA151から取得するI/Oデータと一致するかを判定すればよい。また、成膜パラメータが表す固体原料が六塩化タングステン(WCl)である場合には、MC160は、参照データ‘10’を読み出して、FPGA151から取得するI/Oデータと一致するかを判定すればよい。 In this case, the memory 201 contains the film forming parameters of both the film forming processes (1) and (2), the raw material container 111 containing the tungsten pentoxide (WCl 5 ), and the tungsten hexachloride (WCl 6 ). It suffices to store the reference data corresponding to the raw material container 111 that houses the material. Then, the MC160 may read out the reference data about the solid raw material represented by the film forming parameters of the film forming process (1) or (2) to be executed from now on, and determine whether or not it matches the I / O data acquired from the FPGA 151. .. For example, when the solid raw material represented by the film formation parameter is tungsten pentachloride (WCl 5 ), the MC160 reads the reference data '01' and determines whether it matches the I / O data acquired from the FPGA 151. Just do it. Further, when the solid raw material represented by the film formation parameter is tungsten hexachloride (WCl 6 ), the MC160 reads out the reference data '10' and determines whether or not it matches the I / O data acquired from the FPGA 151. Just do it.
 また、以上では、FPGA151が電圧値A1、B1、A2、B2に基づいてI/Oデータを作成する形態について説明したが、電圧値A1、B1、A2、B2の代わりに、電流値又は抵抗値を用いてもよい。 Further, in the above, the mode in which the FPGA 151 creates I / O data based on the voltage values A1, B1, A2, and B2 has been described, but instead of the voltage values A1, B1, A2, and B2, the current value or the resistance value. May be used.
 また、以上では、固体原料として五塩化タングステン(WCl)と六塩化タングステン(WCl)を用い、2種類の固体原料を判別する形態について説明した。しかしながら、固体原料は、これらの2種類のものに限られるものではない。 Further, in the above, a mode for discriminating between two types of solid raw materials has been described using tungsten pentachloride (WCl 5 ) and tungsten hexachloride (WCl 6) as solid raw materials. However, the solid raw material is not limited to these two types.
 また、以上では、複数の端子123Aの接続状態を変更可能な構成として、複数の端子123Aの間を短絡する構成について説明したが、電気的な状態を変更可能な構成は、このような構成に限られるものではない。例えば、複数の端子123Aの間に抵抗値の異なる抵抗器を接続することによって、複数の端子123Aの接続状態を変更してもよい。 Further, in the above, as a configuration in which the connection state of the plurality of terminals 123A can be changed, a configuration in which the plurality of terminals 123A are short-circuited has been described. It is not limited. For example, the connection state of the plurality of terminals 123A may be changed by connecting resistors having different resistance values between the plurality of terminals 123A.
 また、以上では、端子123Aが電気的な状態を変更可能な構成として複数の端子123Aの接続状態を変更可能な構成について説明したが、電気的な状態を変更可能な構成は、このような構成に限られるものではない。例えば、静電容量を変更可能な構成であってもよい。 Further, in the above, the configuration in which the connection state of the plurality of terminals 123A can be changed is described as the configuration in which the terminal 123A can change the electrical state, but the configuration in which the electrical state can be changed is such a configuration. It is not limited to. For example, the capacitance may be changeable.
 また、以上では、原料容器111の誤接続を抑制するための上述のような技術を成膜装置100に適用した形態について説明したが、上述のような技術は、成膜装置以外の製造装置等に適用してもよい。 Further, in the above, the mode in which the above-mentioned technique for suppressing the erroneous connection of the raw material container 111 is applied to the film forming apparatus 100 has been described. May be applied to.
 最後に、図5を用いて、タングステン膜の成膜が可能な成膜装置100の一例について説明する。図5は、成膜装置100の例示的な断面構成を示す図である。 Finally, an example of a film forming apparatus 100 capable of forming a tungsten film will be described with reference to FIG. FIG. 5 is a diagram showing an exemplary cross-sectional configuration of the film forming apparatus 100.
 成膜装置100は、気密に構成された略円筒状のチャンバ1を有しており、その中には被処理基板であるウエハWを水平に支持するためのサセプタ2が、後述する排気室の底部からその中央下部に達する円筒状の支持部材3により支持された状態で配置されている。サセプタ2は例えばAlN等のセラミックス製である。また、サセプタ2にはヒータ5が埋め込まれており、ヒータ5にはヒータ電源6が接続されている。一方、サセプタ2の上面近傍には熱電対7が設けられており、熱電対7の信号はヒータコントローラ8に伝送されるようになっている。そして、ヒータコントローラ8は熱電対7の信号に応じてヒータ電源6に指令を送信し、ヒータ5の加熱を制御してウエハWを所定の温度に制御するようになっている。なお、サセプタ2には3本のウエハ昇降ピン(図示せず)がサセプタ2の表面に対して突没可能に設けられており、ウエハWを搬送する際に、サセプタ2の表面から突出した状態にされる。また、サセプタ2は昇降機構(図示せず)により昇降可能となっている。 The film forming apparatus 100 has a substantially cylindrical chamber 1 that is airtightly configured, and a susceptor 2 for horizontally supporting the wafer W as a substrate to be processed is contained therein in an exhaust chamber described later. It is arranged in a state of being supported by a cylindrical support member 3 extending from the bottom to the lower center thereof. The susceptor 2 is made of ceramics such as AlN. Further, a heater 5 is embedded in the susceptor 2, and a heater power supply 6 is connected to the heater 5. On the other hand, a thermocouple 7 is provided near the upper surface of the susceptor 2, and the signal of the thermocouple 7 is transmitted to the heater controller 8. Then, the heater controller 8 transmits a command to the heater power supply 6 in response to the signal of the thermocouple 7, controls the heating of the heater 5, and controls the wafer W to a predetermined temperature. The susceptor 2 is provided with three wafer elevating pins (not shown) so as to be recessed from the surface of the susceptor 2, and is in a state of protruding from the surface of the susceptor 2 when the wafer W is conveyed. Be made. Further, the susceptor 2 can be raised and lowered by an elevating mechanism (not shown).
 チャンバ1の天壁1aには、円形の孔1bが形成されており、孔1bからチャンバ1内へ突出するようにシャワーヘッド10が嵌め込まれている。シャワーヘッド10は、後述するガス供給機構30から供給された成膜原料ガスであるWClガスをチャンバ1内に吐出するためのものである。シャワーヘッド10の上部には、WClガスおよびパージガスとしてNガスを導入する第1の導入路11と、還元ガスとしてのHガスおよびパージガスとしてNガスを導入する第2の導入路12とが設けられている。 A circular hole 1b is formed in the top wall 1a of the chamber 1, and the shower head 10 is fitted so as to project from the hole 1b into the chamber 1. The shower head 10 is for discharging WCl 6 gas, which is a film-forming raw material gas supplied from the gas supply mechanism 30 described later, into the chamber 1. In the upper part of the shower head 10, a first introduction path 11 for introducing WCl 6 gas and N 2 gas as a purge gas, and a second introduction path 12 for introducing H 2 gas as a reducing gas and N 2 gas as a purge gas. And are provided.
 シャワーヘッド10の内部には上下2段に空間13、14が設けられている。上側の空間13には第1の導入路11が繋がっており、空間13から第1のガス吐出路15がシャワーヘッド10の底面まで延びている。下側の空間14には第2の導入路12が繋がっており、空間14から第2のガス吐出路16がシャワーヘッド10の底面まで延びている。すなわち、シャワーヘッド10は、成膜原料ガスとしてのWClガスと還元ガスであるHガスとがそれぞれ独立して吐出路15および16から吐出するようになっている。 Spaces 13 and 14 are provided in two upper and lower stages inside the shower head 10. A first introduction path 11 is connected to the upper space 13, and a first gas discharge path 15 extends from the space 13 to the bottom surface of the shower head 10. A second introduction path 12 is connected to the lower space 14, and a second gas discharge path 16 extends from the space 14 to the bottom surface of the shower head 10. That is, in the shower head 10, WCl 6 gas as a film-forming raw material gas and H 2 gas as a reducing gas are independently discharged from the discharge paths 15 and 16, respectively.
 チャンバ1の底壁には、下方に向けて突出する排気室21が設けられている。排気室21の側面には排気管22が接続されており、排気管22には真空ポンプや圧力制御バルブ等を有する排気装置23が接続されている。排気装置23を作動させることによりチャンバ1内を所定の減圧状態とすることが可能となっている。 The bottom wall of the chamber 1 is provided with an exhaust chamber 21 that projects downward. An exhaust pipe 22 is connected to the side surface of the exhaust chamber 21, and an exhaust device 23 having a vacuum pump, a pressure control valve, or the like is connected to the exhaust pipe 22. By operating the exhaust device 23, it is possible to bring the inside of the chamber 1 into a predetermined decompression state.
 チャンバ1の側壁には、ウエハWの搬入出を行うための搬入出口24と、この搬入出口24を開閉するゲートバルブ25とが設けられている。また、チャンバ1の壁部には、ヒータ26が設けられており、成膜処理の際にチャンバ1の内壁の温度を制御可能となっている。 The side wall of the chamber 1 is provided with an carry-in / out port 24 for carrying in / out the wafer W and a gate valve 25 for opening / closing the carry-in / out port 24. Further, a heater 26 is provided on the wall portion of the chamber 1, so that the temperature of the inner wall of the chamber 1 can be controlled during the film forming process.
 ガス供給機構30は、成膜原料であるWClを収容する原料容器111を有している。WClは常温では固体であり、原料容器111内にはタングステン原料としての塩化タングステンであるWClが固体として収容されている。原料容器111の周囲にはヒータ31aが設けられており、原料容器111内の成膜原料を適宜の温度に加熱して、WClを昇華させるようになっている。なお、塩化タングステンとしてはWClを用いることもできる。WClを用いてもWClとほぼ同じ挙動を示す。 The gas supply mechanism 30 has a raw material container 111 for accommodating WCl 6 , which is a film-forming raw material. WCl 6 in the normal temperature is solid, WCl 6 in the raw material container 111 is tungsten chloride as tungsten raw material is accommodated as a solid. A heater 31a is provided around the raw material container 111 to heat the film-forming raw material in the raw material container 111 to an appropriate temperature to sublimate WCl 6. WCl 5 can also be used as the tungsten chloride. Even if WCl 5 is used, the behavior is almost the same as that of WCl 6.
 原料容器111には、上方からキャリアガスであるNガスを供給するためのキャリアガス配管32が挿入されている。キャリアガス配管32にはNガス供給源33が接続されている。また、キャリアガス配管32には、流量制御器としてのマスフローコントローラ34およびその前後のバルブ35が介装されている。また、原料容器111内には原料ガスラインとなる原料ガス送出配管111Aが上方から挿入されており、この原料ガス送出配管111Aの他端はシャワーヘッド10の第1の導入路11に接続されている。原料ガス送出配管111Aにはバルブ37が介装されている。原料ガス送出配管111Aには成膜原料ガスであるWClガスの凝縮防止のためのヒータ38が設けられている。そして、原料容器111内で昇華したWClガスがキャリアガスとしてのNガス(キャリアN)により搬送されて、原料ガス送出配管111Aおよび第1の導入路11を介してシャワーヘッド10内に供給される。また、原料ガス送出配管111Aには、配管74を介してパージガスとしてのNガス(パージN)を供給するNガス供給源71が接続されている。配管74には流量制御器としてのマスフローコントローラ72およびその前後のバルブ73が介装されている。Nガス供給源71からのNガスは原料ガスライン側のパージガスとして用いられる。 A carrier gas pipe 32 for supplying N 2 gas, which is a carrier gas, is inserted into the raw material container 111 from above. N 2 gas supply source 33 is connected to the carrier gas pipe 32. Further, the carrier gas pipe 32 is interposed with a mass flow controller 34 as a flow rate controller and valves 35 before and after the mass flow controller 34. Further, a raw material gas delivery pipe 111A serving as a raw material gas line is inserted into the raw material container 111 from above, and the other end of the raw material gas delivery pipe 111A is connected to the first introduction path 11 of the shower head 10. There is. A valve 37 is interposed in the raw material gas delivery pipe 111A. The raw material gas delivery pipe 111A is provided with a heater 38 for preventing condensation of WCl 6 gas, which is a film-forming raw material gas. Then, the WCl 6 gas sublimated in the raw material container 111 is conveyed by the N 2 gas (carrier N 2 ) as the carrier gas, and is conveyed into the shower head 10 via the raw material gas delivery pipe 111A and the first introduction path 11. Be supplied. Further, the raw material gas delivery pipe 111A is, N 2 gas supply source 71 is connected for supplying the N 2 gas as a purge gas through a pipe 74 (the purge N 2). A mass flow controller 72 as a flow rate controller and valves 73 before and after the mass flow controller 72 are interposed in the pipe 74. N 2 gas from the N 2 gas supply source 71 is used as a purge gas of the source gas line side.
 なお、キャリアガス配管32と原料ガス送出配管111Aとの間は、バイパス配管48により接続されており、このバイパス配管48にはバルブ49が介装されている。キャリアガス配管32および原料ガス送出配管111Aにおける配管48接続部分の下流側にはそれぞれバルブ35a,37aが介装されている。そして、バルブ35a,37aを閉じてバルブ49を開くことにより、Nガス供給源33からのNガスを、キャリアガス配管32、バイパス配管48を経て、原料ガス送出配管111Aをパージすることが可能となっている。なお、キャリアガスおよびパージガスとしては、Nガスに限らず、Arガス等の他の不活性ガスであってもよい。 The carrier gas pipe 32 and the raw material gas delivery pipe 111A are connected by a bypass pipe 48, and a valve 49 is interposed in the bypass pipe 48. Valves 35a and 37a are interposed on the downstream side of the pipe 48 connection portion in the carrier gas pipe 32 and the raw material gas delivery pipe 111A, respectively. Then, the valve 35a, by opening the valve 49 closes the 37a, the N 2 gas from the N 2 gas supply source 33, a carrier gas pipe 32, through the bypass pipe 48, is possible to purge the feed gas delivery pipe 111A It is possible. As the carrier gas and the purge gas is not limited to N 2 gas, it may be another inert gas such as Ar gas.
 シャワーヘッド10の第2の導入路12には、Hガスラインとなる配管40が接続されており、配管40には、還元ガスであるHガスを供給するHガス供給源42と、配管64を介してパージガスとしてのNガス(パージN)を供給するNガス供給源61が接続されている。また、配管40には流量制御器としてのマスフローコントローラ44およびその前後のバルブ45が介装され、配管64には流量制御器としてのマスフローコントローラ62およびその前後のバルブ63が介装されている。Nガス供給源61からのNガスはHガスライン側のパージガスとして用いられる。還元ガスとしては、Hガスに限らず、SiHガス、Bガス、NHガスを用いることもできる。Hガス、SiHガス、Bガス、およびNHガスのうち2個以上を供給できるようにしてもよい。また、これら以外の他の還元ガス、例えばPHガス、SiHClガスを用いてもよい。 The second inlet channel 12 of the shower head 10 is connected a pipe 40 which is a H 2 gas line, the pipe 40 includes a H 2 gas supply source 42 for supplying H 2 gas as a reducing gas, N 2 gas supply source 61 for supplying N 2 gas (purge N 2) as purge gas via the pipe 64 is connected. Further, the pipe 40 is interposed with a mass flow controller 44 as a flow rate controller and valves 45 before and after the mass flow controller 44, and the pipe 64 is interposed with a mass flow controller 62 as a flow rate controller and valves 63 before and after the mass flow controller 62. N 2 gas from the N 2 gas supply source 61 is used as a purge gas of the H 2 gas line side. The reducing gas is not limited to H 2 gas, but SiH 4 gas, B 2 H 6 gas, and NH 3 gas can also be used. Two or more of H 2 gas, SiH 4 gas, B 2 H 6 gas, and NH 3 gas may be supplied. Further, other reducing gases other than these, such as PH 3 gas and SiH 2 Cl 2 gas, may be used.
 成膜装置100の各構成部、具体的にはバルブ、電源、ヒータ、ポンプ等の制御は、MC160によって行われる。MC160には成膜装置100の各構成部が電気的に接続されて制御される構成となっている。MC160のユーザインターフェースは、オペレータが成膜装置100の各構成部を管理するためにコマンドの入力操作などを行うキーボードや、成膜装置の各構成部の稼働状況を可視化して表示するディスプレイ等である。また、MC160のメモリには、成膜装置100で実行される各種処理を実現するための制御プログラムや、処理条件に応じて成膜装置100の各構成部に所定の処理を実行させるための制御プログラム(処理レシピ)や、各種データベース等が格納されている。なお、MC160のメモリとは、ROMやHDDである。 The MC160 controls each component of the film forming apparatus 100, specifically, a valve, a power supply, a heater, a pump, and the like. Each component of the film forming apparatus 100 is electrically connected to the MC 160 and controlled. The user interface of the MC160 is a keyboard that allows the operator to input commands to manage each component of the film forming apparatus 100, a display that visualizes and displays the operating status of each component of the film forming apparatus, and the like. be. Further, in the memory of the MC 160, a control program for realizing various processes executed by the film forming apparatus 100 and a control for causing each component of the film forming apparatus 100 to execute a predetermined process according to the processing conditions. Programs (processing recipes) and various databases are stored. The memory of the MC160 is a ROM or an HDD.
 MC160が必要に応じてユーザインターフェースからの指示等にて所定の処理レシピをメモリから呼び出して実行することで、MC160の制御の下において成膜装置100で所望の成膜処理が行われる。 When the MC160 calls a predetermined processing recipe from the memory and executes it according to an instruction from the user interface as necessary, the film forming apparatus 100 performs a desired film forming process under the control of the MC160.
 具体的には、MC160は、ゲートバルブ25を開け、搬入出口24を介して搬送装置(不図示)によりウエハWをチャンバ1内に搬入し、ヒータ5により所定温度に加熱されたサセプタ2上に載置する。所定の真空度まで減圧した後、CVD(Chemical Vapor Deposition)法またはALD(Atomic Layer Deposition)法によりタングステン膜の成膜を行う。ウエハWとしては、例えば熱酸化膜の表面、またはトレンチやホール等の凹部を有する層間絶縁膜の表面に下地膜としてバリアメタル膜(例えばTiN膜、TiSiN膜)が形成されたものを用いることができる。タングステン膜は、TiN膜やTiSiN膜を下地膜として用いることにより、成膜が容易となる。ただし、下地膜はこれに限るものではない。 Specifically, the MC 160 opens the gate valve 25, carries the wafer W into the chamber 1 by a transfer device (not shown) via the carry-in outlet 24, and puts the wafer W on the susceptor 2 heated to a predetermined temperature by the heater 5. Place it. After depressurizing to a predetermined degree of vacuum, a tungsten film is formed by a CVD (Chemical Vapor Deposition) method or an ALD (Atomic Layer Deposition) method. As the wafer W, for example, a wafer in which a barrier metal film (for example, TiN film or TiSiN film) is formed as a base film on the surface of a thermal oxide film or the surface of an interlayer insulating film having recesses such as trenches and holes can be used. can. The tungsten film can be easily formed by using a TiN film or a TiSiN film as a base film. However, the base film is not limited to this.
 以上、本開示に係る成膜装置の実施形態について説明したが、本開示は上記実施形態等に限定されない。特許請求の範囲に記載された範疇内において、各種の変更、修正、置換、付加、削除、及び組み合わせが可能である。それらについても当然に本開示の技術的範囲に属する。 Although the embodiment of the film forming apparatus according to the present disclosure has been described above, the present disclosure is not limited to the above embodiment and the like. Within the scope of the claims, various changes, modifications, replacements, additions, deletions, and combinations are possible. Of course, they also belong to the technical scope of the present disclosure.
 なお、本国際出願は、2020年3月23日に出願した日本国特許出願2020-051463号に基づく優先権を主張するものであり、その全内容は本国際出願にここでの参照により援用されるものとする。 This international application claims priority based on Japanese Patent Application No. 2020-051463 filed on March 23, 2020, the entire contents of which are incorporated in this international application by reference here. Shall be.
 100 成膜装置
 110 原料収納部
 120A、120B コネクタ
 160 MC
 170 バルブ
 180 警報部
100 Film forming equipment 110 Raw material storage 120A, 120B connector 160 MC
170 valve 180 alarm

Claims (8)

  1.  成膜用の固体原料を収容する固体原料容器と、
     前記固体原料容器に機械的に接続され、かつ、電気的な状態を変更な可能な複数の端子と、
     前記複数の端子の電気的な状態を検出し、検出された電気的な状態に基づいて、前記固体原料の種類を判定する制御部と、
     を含む、成膜装置。
    A solid raw material container that houses a solid raw material for film formation,
    With a plurality of terminals mechanically connected to the solid raw material container and capable of changing the electrical state,
    A control unit that detects the electrical state of the plurality of terminals and determines the type of the solid raw material based on the detected electrical state.
    Including a film forming apparatus.
  2.  前記制御部は、予め決められた固体原料を用いる成膜プロセスの前に、前記複数の端子の前記検出された電気的な状態が、前記予め決められた固体原料に対応する前記複数の端子の電気的な状態と異なる場合は、警報を発報する、請求項1に記載の成膜装置。 Prior to the film forming process using the predetermined solid raw material, the control unit determines that the detected electrical state of the plurality of terminals of the plurality of terminals corresponds to the predetermined solid raw material. The film forming apparatus according to claim 1, which issues an alarm when the state is different from the electrical state.
  3.  前記制御部は、前記複数の端子の前記検出された電気的な状態が、前記予め決められた固体原料に対応する前記複数の端子の電気的な状態と異なる場合は、さらに、前記固体原料容器に接続される原料供給ラインのバルブを閉状態に保持する、請求項2に記載の成膜装置。 When the detected electrical state of the plurality of terminals is different from the electrical state of the plurality of terminals corresponding to the predetermined solid raw material, the control unit further obtains the solid raw material container. The film forming apparatus according to claim 2, wherein the valve of the raw material supply line connected to is held in a closed state.
  4.  前記制御部は、予め決められた固体原料を用いる成膜プロセスの前に、前記複数の端子の前記検出された電気的な状態が、前記予め決められた固体原料に対応する前記複数の端子の電気的な状態と異なる場合は、前記固体原料容器に接続される原料供給ラインのバルブを閉状態に保持する、請求項1に記載の成膜装置。 Prior to the film forming process using the predetermined solid raw material, the control unit determines that the detected electrical state of the plurality of terminals of the plurality of terminals corresponds to the predetermined solid raw material. The film forming apparatus according to claim 1, wherein the valve of the raw material supply line connected to the solid raw material container is held in a closed state when the state is different from the electrical state.
  5.  前記制御部は、前記複数の端子の前記検出された電気的な状態が、前記予め決められた固体原料に対応する前記複数の端子の電気的な状態と異なる場合は、さらに、警報を発報する、請求項4に記載の成膜装置。 The control unit further issues an alarm when the detected electrical state of the plurality of terminals is different from the electrical state of the plurality of terminals corresponding to the predetermined solid raw material. The film forming apparatus according to claim 4.
  6.  前記複数の端子の電気的な状態は、前記固体原料の種類に対応する固有の状態である、請求項1から5のいずれか一項に記載の成膜装置。 The film forming apparatus according to any one of claims 1 to 5, wherein the electrical state of the plurality of terminals is a unique state corresponding to the type of the solid raw material.
  7.  前記複数の端子の電気的な状態は、前記複数の端子のうちの少なくとも2個の端子が短絡している状態である、請求項1から6のいずれか一項に記載の成膜装置。 The film forming apparatus according to any one of claims 1 to 6, wherein the electrical state of the plurality of terminals is a state in which at least two of the plurality of terminals are short-circuited.
  8.  前記複数の端子と前記制御部を電気的に接続する電気接続部をさらに有する、請求項1から7のいずれか一項に記載の成膜装置。 The film forming apparatus according to any one of claims 1 to 7, further comprising an electrical connection unit that electrically connects the plurality of terminals and the control unit.
PCT/JP2021/009855 2020-03-23 2021-03-11 Film formation device WO2021193114A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180021030.9A CN115298354A (en) 2020-03-23 2021-03-11 Film forming apparatus
KR1020227035190A KR20220152310A (en) 2020-03-23 2021-03-11 tabernacle equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-051463 2020-03-23
JP2020051463A JP2021147693A (en) 2020-03-23 2020-03-23 Film deposition apparatus

Publications (1)

Publication Number Publication Date
WO2021193114A1 true WO2021193114A1 (en) 2021-09-30

Family

ID=77851124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/009855 WO2021193114A1 (en) 2020-03-23 2021-03-11 Film formation device

Country Status (4)

Country Link
JP (1) JP2021147693A (en)
KR (1) KR20220152310A (en)
CN (1) CN115298354A (en)
WO (1) WO2021193114A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10147871A (en) * 1996-11-15 1998-06-02 Daido Steel Co Ltd Vaporizer for vapor-phase epitaxial growth system
JP2015185824A (en) * 2014-03-26 2015-10-22 株式会社日立国際電気 State detector, substrate processing apparatus, state detection method and method of manufacturing semiconductor device
JP2018145459A (en) * 2017-03-02 2018-09-20 東京エレクトロン株式会社 Gas supply device, gas supply method, and film deposition method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3143795B2 (en) * 1989-08-25 2001-03-07 相互薬工株式会社 Automated reactor
KR100361746B1 (en) * 1998-12-30 2003-01-24 주식회사 포스코 Raw material transportation identification system
JP2002260309A (en) * 2001-02-28 2002-09-13 Matsushita Electric Ind Co Ltd Identification device, recording medium identified by identification device, and recorder/reproducing device equipped with identification device
JP2006178889A (en) 2004-12-24 2006-07-06 Matsushita Electric Ind Co Ltd Connector device having easy installation connection guidance function
CN101750503A (en) * 2008-12-18 2010-06-23 王利兵 Intelligent and portable flammables quick-detection instrument with logic identification module
CN201319033Y (en) * 2008-12-18 2009-09-30 王利兵 Intelligent and portable combustible substance rapid detection instrument with function of logically recognition
JP2010236048A (en) * 2009-03-31 2010-10-21 Tokyo Electron Ltd Gas treatment apparatus
CN203565027U (en) * 2013-09-29 2014-04-30 广州顶津饮品有限公司 Beverage mixing system
CN110862704B (en) * 2019-12-02 2021-09-14 湖北巴司特科技股份有限公司 Preparation method and preparation device of water-based workshop precoating primer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10147871A (en) * 1996-11-15 1998-06-02 Daido Steel Co Ltd Vaporizer for vapor-phase epitaxial growth system
JP2015185824A (en) * 2014-03-26 2015-10-22 株式会社日立国際電気 State detector, substrate processing apparatus, state detection method and method of manufacturing semiconductor device
JP2018145459A (en) * 2017-03-02 2018-09-20 東京エレクトロン株式会社 Gas supply device, gas supply method, and film deposition method

Also Published As

Publication number Publication date
CN115298354A (en) 2022-11-04
KR20220152310A (en) 2022-11-15
JP2021147693A (en) 2021-09-27

Similar Documents

Publication Publication Date Title
US11784027B2 (en) Apparatuses and methods for avoiding electrical breakdown from RF terminal to adjacent non-RF terminal
US10879092B2 (en) Fault detection using showerhead voltage variation
CN102804351A (en) Barrier layer, film deposition method, and treating system
US20210313205A1 (en) Substrate Processing Apparatus, Method of Manufacturing Semiconductor Device and Heater
US6506994B2 (en) Low profile thick film heaters in multi-slot bake chamber
WO2021193114A1 (en) Film formation device
KR20180131317A (en) Method of manufacturing semiconductor device, non-transitory computer-readable recording medium and substrate processing apparatus
KR102512456B1 (en) Substrate processing device, semiconductor device manufacturing method and program
KR20200099213A (en) Advanced temperature monitoring systems and methods for semiconductor manufacturing productivity
US6183562B1 (en) Thermal protection system for a chemical vapor deposition machine
JP2002043398A (en) Substrate processing device and method of manufacturing semiconductor device
CN102800605A (en) System and method for monitoring copper barrier layer preclean process
JP5273961B2 (en) Substrate processing system and substrate processing method
US20230030233A1 (en) Autoconfiguration of hardware components of various modules of a substrate processing tool
JP7352667B2 (en) Substrate processing equipment, semiconductor device manufacturing method and program
WO2019053869A1 (en) Substrate processing device
JP5522776B2 (en) Substrate processing apparatus, control method and maintenance method for substrate processing apparatus
JP2009088314A (en) Substrate treatment device
TW202225472A (en) Advanced temperature monitoring system with expandable modular layout design
US20110190924A1 (en) Control device for controlling substrate processing apparatus and method therefor
JP5885945B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, and program
WO2024097853A1 (en) Segregated reactant delivery using showerhead and shroud
JP2009010030A (en) Management system for substrate treatment apparatus
KR20040003333A (en) Equipment for monitoring heat current of semiconductor production device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21776828

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227035190

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21776828

Country of ref document: EP

Kind code of ref document: A1