WO2021192601A1 - Line beam scanning optical system, and laser radar - Google Patents

Line beam scanning optical system, and laser radar Download PDF

Info

Publication number
WO2021192601A1
WO2021192601A1 PCT/JP2021/003109 JP2021003109W WO2021192601A1 WO 2021192601 A1 WO2021192601 A1 WO 2021192601A1 JP 2021003109 W JP2021003109 W JP 2021003109W WO 2021192601 A1 WO2021192601 A1 WO 2021192601A1
Authority
WO
WIPO (PCT)
Prior art keywords
line beam
laser
optical system
mirror
beam scanning
Prior art date
Application number
PCT/JP2021/003109
Other languages
French (fr)
Japanese (ja)
Inventor
公博 村上
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2021192601A1 publication Critical patent/WO2021192601A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems

Definitions

  • the present invention relates to a line beam scanning optical system that generates a long line beam in one direction and scans the line beam in the short side direction thereof, and a laser radar that detects an object using the line beam scanning optical system.
  • laser radars that detect objects using laser light have been developed in various fields. For example, in an in-vehicle laser radar, laser light is projected from the front of the vehicle, and it is determined whether or not an object such as a vehicle exists in front of the vehicle based on the presence or absence of the reflected light. Further, the distance to the object is measured based on the projection timing of the laser beam and the reception timing of the reflected light.
  • Patent Documents 1 and 2 disclose a device that scans a linear beam to detect an obstacle in front of a vehicle.
  • the line beam is required to have a safe amount of light so as not to affect the eyes even if it is incident on the human eye.
  • an object of the present invention is to provide a line beam scanning optical system and a laser radar capable of effectively increasing the amount of light of a line beam while suppressing the influence on the human eye.
  • the first aspect of the present invention relates to a line beam scanning optical system that generates a long line beam in one direction and scans the line beam in the short side direction thereof.
  • the line beam scanning optical system according to this aspect includes a plurality of laser light sources arranged side by side in a direction corresponding to the long side of the line beam, and an optical deflector having a mirror for deflecting the line beam in the short side direction.
  • the laser light emitted from the plurality of laser light sources is converted into parallel light, and the parallelized laser light is focused on the mirror, respectively, and the plurality of lasers reflected by the mirror.
  • a diffusion optical element that diffuses light in the long side direction is provided. Each of the plurality of laser beams is incident on the diffusion optical element in a state of being collimated by the lens portion.
  • the laser beam is diffused by the diffusing optical element to generate a line beam, so that the light emitting region of the line beam on the diffusing surface of the diffusing optical element is the target of eye-safe determination. It becomes an effective light source.
  • the diffusing optical element when the diffusing optical element is not used, a minute region where the laser beams overlap on the mirror of the optical deflector becomes an appropriate light source for eye safe determination. Therefore, in this embodiment, the light emitting area of the pearl light source can be remarkably expanded and the influence of the line beam on the human eye can be remarkably suppressed as compared with the case where the diffusion optical element is not used. Therefore, it is possible to suppress the influence of the line beam on the human eye while effectively increasing the amount of light of the line beam by arranging a plurality of laser light sources.
  • each laser beam can be appropriately beam-shaped into a predetermined diffusion state by the diffusion optical element.
  • the second aspect of the present invention relates to a laser radar.
  • the laser radar according to this aspect includes a line beam scanning optical system according to the first aspect and a light receiving optical system that receives reflected light from an object of laser light projected from the line beam scanning optical system. ..
  • the line beam scanning optical system according to the first aspect since the line beam scanning optical system according to the first aspect is provided, a plurality of laser light sources are arranged to effectively increase the amount of light of the line beam, and the line beam with respect to the human eye. The influence of can be suppressed. Therefore, it is possible to improve the safety of the laser radar while expanding the distance range in which the object can be detected.
  • FIG. 1 is a diagram showing a configuration of an optical system and a circuit unit of a laser radar according to an embodiment.
  • FIG. 2 is a perspective view showing the configuration of the line beam scanning optical system according to the embodiment.
  • 3A and 3B are perspective views showing the configuration of the laser light source according to the embodiment, respectively, and
  • FIG. 3C is a perspective view showing the configuration of the light source array of the laser radar according to the embodiment.
  • Is. 4 (a) and 4 (b) are a top view and a front view schematically showing the configuration of the diffusion optical element according to the embodiment, respectively.
  • FIG. 4C is a diagram showing the optical action of the diffusion optical element according to the embodiment.
  • FIG. 5 is a diagram schematically showing a state in which a laser beam of a laser radar is emitted and a state of a line beam in a target region according to an embodiment.
  • FIG. 6A is a diagram schematically showing the arrangement of each member in the line beam scanning optical system according to the embodiment.
  • FIG. 6B is a diagram showing an acceptance angle of an apparent light source of the human eye (naked eye) based on the "Safety Standards for Laser Products" (JISC 6802: 2014) according to the embodiment.
  • FIG. 7A is a perspective view showing the configuration of the line beam scanning optical system according to the first modification.
  • FIG. 7B is a diagram schematically showing the arrangement of each member in the line beam scanning optical system according to the first modification.
  • FIG. 8 (a) and 8 (b) are side views and perspective views showing the configuration of the line beam scanning optical system according to the second modification, respectively.
  • 9 (a) and 9 (b) are perspective views showing the configuration of the laser light source according to the modified example 3, respectively
  • FIG. 9 (c) is a perspective view showing the configuration of the light source array of the laser radar according to the modified example 3.
  • FIG. 10A is a diagram schematically showing the traveling direction of the laser light emitted from each of the three laser light sources arranged vertically according to the third modification.
  • FIG. 10B is a diagram schematically showing the spread of the laser light emitted from the laser light source in the fast axis direction according to the embodiment.
  • FIG. 10A is a diagram schematically showing the traveling direction of the laser light emitted from each of the three laser light sources arranged vertically according to the third modification.
  • FIG. 10B is a diagram schematically showing the spread of the laser light emitted from the laser light source in the fast axis direction according to the embodiment
  • FIG. 11A is a perspective view showing the configuration of the optical deflector according to the embodiment.
  • FIG. 11B is a diagram schematically showing the relationship between the beam incident on the mirror and the mirror according to the embodiment.
  • FIG. 12A is a perspective view showing the configuration of the optical deflector according to the fourth modification.
  • FIG. 12B is a diagram schematically showing the relationship between the beam incident on the mirror and the mirror according to the fourth modification.
  • the X, Y, and Z axes that are orthogonal to each other are added to each figure.
  • the X-axis direction and the Y-axis direction are the long side direction and the short side direction of the line beam, respectively, and the Z-axis positive direction is the projection direction of the line beam.
  • FIG. 1 is a diagram showing a configuration of an optical system and a circuit unit of the laser radar 1.
  • FIG. 2 is a perspective view showing the configuration of the line beam scanning optical system 10.
  • the laser radar 1 includes a line beam scanning optical system 10 and a light receiving optical system 20 as an optical system configuration.
  • the line beam scanning optical system 10 generates a long line beam B10 in one direction (X-axis direction) and scans the line beam B10 in the short side direction (Y-axis direction) thereof.
  • the light receiving optical system 20 receives the reflected light from the object of the laser light projected from the line beam scanning optical system 10.
  • the line beam scanning optical system 10 includes a light source array 11, a fast-axis cylindrical lens 12, a slow-axis cylindrical lens 13, an optical deflector 14, and a diffusion optical element 15. Further, the light receiving optical system 20 includes a light receiving lens 21 and a light receiving element 22.
  • the light source array 11 is configured by integrating a plurality of laser light sources 11a.
  • the laser light source 11a emits a laser beam having a predetermined wavelength.
  • the laser light source 11a is an end face emitting type laser diode.
  • the laser light source 11a may be a surface emitting type laser light source.
  • the emission wavelength of each laser light source 11a is set in the infrared wavelength band (for example, 905 nm).
  • the emission wavelength of the laser light source 11a can be appropriately changed depending on the usage mode of the laser radar 1.
  • FIG. 3 (a) and 3 (b) are perspective views showing the configuration of the laser light source 11a, respectively, and FIG. 3 (c) is a perspective view showing the configuration of the light source array 11.
  • the laser light source 11a has a structure in which the active layer 111 is sandwiched between the N-type clad layer 112 and the P-type clad layer 113.
  • the N-type clad layer 112 is laminated on the N-type substrate 114.
  • the contact layer 115 is laminated on the P-type clad layer 113.
  • the axis in the short side direction of the light emitting region 117 that is, the axis in the direction perpendicular to the active layer 111 (Z axis direction) is called the fast axis
  • the axis in the long side direction of the light emitting region 117 that is, the active layer 111.
  • An axis in the parallel direction (X-axis direction) is called a slow axis.
  • 118a indicates a fast axis
  • 118b indicates a slow axis.
  • the laser beam emitted from the light emitting region 117 has a larger spread angle in the fast axis direction than in the slow axis direction. Therefore, as shown in FIG. 3B, the shape of the beam B20 is an elliptical shape that is long in the fast axis direction.
  • a plurality of laser light sources 11a are installed on the base 120 so as to be arranged along the slow axis, and the light source array 11 is configured. Therefore, the light emitting regions 117 of each laser light source 11a are arranged in a row in the slow axis direction.
  • each laser light source 11a is arranged so that the fast axis 118a of the light emitting region 117 is parallel to the direction corresponding to the short side direction of the line beam B10 shown in FIG.
  • the plurality of laser light sources 11a constituting the light source array 11 all have emission characteristics that are distributed within a certain range indicated in the specifications.
  • the light source array 11 is configured by installing the plurality of laser light sources 11a adjacent to each other on the base 120, but the plurality of light emitting regions 117 are arranged in the slow axis direction.
  • One formed semiconductor light source may be installed on the base 120.
  • the structural portion that emits the laser light from each light emitting region 117 corresponds to the laser light source 11a, respectively.
  • the fast-axis cylindrical lens 12 converges the laser light emitted from each laser light source 11a of the light source array 11 in the fast-axis direction, and substantially spreads the laser light in the fast-axis direction. Adjust to a parallel state. That is, the fast-axis cylindrical lens 12 has an action of parallelizing the laser light emitted from each laser light source 11a of the light source array 11 only in the fast-axis direction.
  • the slow-axis cylindrical lens 13 parallelizes the laser light emitted from the plurality of laser light sources 11a of the light source array 11 in the slow-axis direction, and collects the plurality of parallel-lighted laser light in the slow-axis direction. Let me. Each laser beam transmitted through the slow-axis cylindrical lens 13 heads toward the mirror 14a in a state of being parallelized. At this time, the laser beams approach each other as they approach the mirror 14a, and are incident on the mirror 14a at substantially the same position.
  • the fast-axis cylindrical lens 12 has a lens surface 12a that is curved only in a direction parallel to the YY plane.
  • the generatrix of the lens surface 12a is parallel to the X axis.
  • Fast Axis The fast axis of each laser beam incident on the cylindrical lens 12 is perpendicular to the generatrix of the lens surface 12a.
  • the laser beams are aligned in the X-axis direction and incident on the fast-axis cylindrical lens 12.
  • Each laser beam receives a convergence action in the fast axis direction (Z axis direction) on the lens surface 12a and becomes parallel light in the fast axis direction.
  • the slow axis cylindrical lens 13 has a lens surface 13a that curves only in a direction parallel to the XY plane.
  • the generatrix of the lens surface 13a is parallel to the Z axis.
  • the bus lines of the lens surfaces 12a and 13a are perpendicular to each other.
  • the fast-axis cylindrical lens 12 and the slow-axis cylindrical lens 13 parallelize the laser beams emitted from the plurality of laser light sources 11a, and collect the parallelized laser beams on the mirror 14a, respectively.
  • a shining lens unit 40 is configured.
  • the configuration of the lens unit 40 is not limited to this, and for example, parallel lightening in the slow axis direction and focusing on the mirror 14a may be realized by different lenses.
  • the optical deflector 14 is, for example, a MEMS (Micro Electro Mechanical Systems) mirror using a piezoelectric actuator, an electrostatic actuator, or the like.
  • the reflectance of the mirror 14a is increased by a dielectric multilayer film, a metal film, or the like.
  • the mirror 14a is arranged at a position near the focal length on the positive side of the Y-axis of the slow-axis cylindrical lens 13.
  • the mirror 14a is driven so as to rotate about a rotation axis R1 parallel to the X axis.
  • the mirror 14a has, for example, a circular shape having a diameter of about 3 mm.
  • the diffusion optical element 15 diffuses the laser light from each laser light source 11a incident from the mirror 14a side in the X-axis direction.
  • the diffusion optical element 15 has a plate-like shape curved in an arc shape in a direction parallel to the rotation axis R1 of the mirror 14a with the mirror 14a substantially in the center as the center. That is, the diffusion optical element 15 has a shape in which a flat plate whose incident surface and exit surface are parallel to each other is curved in an arc shape.
  • the diffusing optical element 15 either the incident surface or the exit surface is a diffusing surface that diffuses the laser beam.
  • the exit surface is the diffusion surface 15a.
  • 4 (a) and 4 (b) are a top view and a front view schematically showing the configuration of the diffusion optical element 15, respectively.
  • a large number of semi-cylindrical microlenses 15b are integrally formed adjacent to each other on the diffusion surface 15a of the diffusion optical element 15.
  • the generatrix of the microlens 15b is parallel to the Y axis.
  • the microlenses 15b are arranged without gaps along the arc shape of the diffusion surface 15a.
  • the microlens 15b is a protruding lens, but the microlens 15b may be a concave lens.
  • FIG. 4C is a diagram showing the optical action of the diffusion optical element 15.
  • FIG. 4C shows a state in which the optical system from the light source array 11 to the diffusion optical element 15 is developed in one plane. Further, in FIG. 4C, the number of laser light sources 11a is set to 5 for convenience.
  • the plurality of laser beams LB10 parallelized by the slow-axis cylindrical lens 13 are reflected by the mirror 14a and then incident on the diffused optical element 15 in the collimated state.
  • each laser beam LB10 incident on the diffusion optical element 15 is separated from the adjacent laser beam LB10 by a predetermined distance.
  • the pitch between the intensity centers of the adjacent incident regions 15c of the laser beam LB10 in the diffusion optical element 15 is the pitch between the laser light sources 11a, the lens surface design (curvature) of the slow axis cylindrical lens 13, and the mirror 14a and the diffusion optical element 15. It depends on the distance between them.
  • Each laser beam LB10 is diffused in a direction parallel to the XX plane by the microlens 15b on the diffusion surface 15a. At this time, each laser beam LB10 is incident on the diffusion surface 15a so as to pass through the plurality of microlenses 15b. As a result, each laser beam LB10 is diffused by the plurality of microlenses 15b at a spread angle of full-width ⁇ 10. The diffused laser light LB10 travels in different directions from the mirror 14a as a starting point. Further, each laser beam LB10 after diffusion overlaps with other laser beam LB10 due to diffusion. In this way, all the laser beams LB10 are diffused and overlapped with each other to generate a line beam B10 that spreads in the X-axis direction.
  • the line beam B10 is set to have a spread angle in the long side direction of 60 ° or more and a spread angle in the short side direction of 1 ° or less.
  • the optical deflector 14 drives the mirror 14a by the drive signal from the mirror drive circuit 33, and scans the beam reflected from the mirror 14a in the Y-axis direction.
  • the line beam B10 is scanned in the lateral direction (Y-axis direction).
  • the mirror 14a in the state where the mirror 14a is in the neutral position, the mirror 14a is tilted by 45 ° with respect to the emission light axis of the laser light source 11a, but the tilt angle of the mirror 14a with respect to the emission light axis of the laser light source 11a. Is not limited to this.
  • the tilt angle of the mirror 14a can be appropriately changed according to the layout of the line beam scanning optical system 10.
  • FIG. 5 is a diagram schematically showing the emission state of the laser beam of the laser radar 1 and the state of the line beam B10 in the target region.
  • the cross-sectional shape of the line beam B10 when viewed in the projection direction (Z-axis positive direction) is schematically shown.
  • the laser radar 1 is mounted on the front side of the vehicle 200, and the line beam B10 is projected in front of the vehicle 200.
  • the spread angle ⁇ 11 in the long side direction of the line beam B10 is, for example, 90 °.
  • the upper limit of the distance D11 capable of detecting an object is, for example, about 250 m. In FIG. 5, for convenience, the spread angle ⁇ 11 is expressed smaller than it actually is.
  • the reflected light of the line beam B10 reflected from the target region is collected by the light receiving lens 21 on the light receiving surface of the light receiving element 22.
  • the light receiving lens 21 is, for example, a camera lens unit for imaging composed of a plurality of lenses
  • the light receiving element 22 is, for example, an image sensor or a sensor array in which pixels are arranged in a matrix in the vertical and horizontal directions.
  • an avalanche photodiode sensor may be arranged at the position of each pixel.
  • the avalanche photodiode is used, for example, in Geiger mode (Geiger multiplication mode).
  • the avalanche multiplier causes the charge collected on the cathode of the avalanche photodiode to be multiplied to the saturated charge amount. Therefore, the presence or absence of light incident on the pixel is detected with high sensitivity, and distance measurement at a longer distance becomes possible.
  • the light receiving element 22 has, for example, a rectangular light receiving surface, and is arranged so that the long side of the light receiving surface is parallel to the X axis.
  • the long side direction of the light receiving surface of the light receiving element 22 corresponds to the long side direction of the line beam B10 in the target region.
  • the reflected light of the line beam B10 is imaged on the light receiving surface of the light receiving element 22 by the light receiving lens 21 so as to extend along the long side direction of the light receiving surface.
  • the pixel position in the X-axis direction of the light receiving surface corresponds to the position in the X-axis direction in the target region.
  • the pixel position of the light receiving surface in the Y-axis direction corresponds to the position in the Y-axis direction in the target region.
  • a licensor in which pixels are arranged in the X-axis direction may be used as the light receiving element 22.
  • the Y position of the object to be detected is specified in synchronization with the movement of the line beam B10.
  • the laser radar 1 includes a controller 31, a laser drive circuit 32, a mirror drive circuit 33, and a signal processing circuit 34 as a circuit unit configuration.
  • the controller 31 includes an arithmetic processing circuit such as a CPU (CentralProcessingUnit) and a storage medium such as a ROM (ReadOnlyMemory) and a RAM (RandomAccessMemory), and controls each part according to a preset program.
  • the laser drive circuit 32 causes each laser light source 11a of the light source array 11 to emit pulses in response to control from the controller 31.
  • the controller 31 causes each laser light source 11a to repeatedly emit a pulse a plurality of times at a timing when the moving position of the reflected light of the line beam B10 is included in each pixel row of the light receiving element 22.
  • the laser drive circuit 32 causes each laser light source 11a to emit a pulse at the same time.
  • each laser light source 11a may be made to emit pulses in order with a predetermined time difference.
  • the mirror drive circuit 33 drives the optical deflector 14 according to the control from the controller 31.
  • the optical deflector 14 rotates the mirror 14a with respect to the rotation axis R1 to scan the line beam B10 in the short side direction of the line beam B10.
  • the signal processing circuit 34 outputs the light receiving signal of each pixel of the light receiving element 22 to the controller 31.
  • the controller 31 can detect the position of the object in the X-axis direction of the target region based on the position of the pixel in which the received light signal is generated. Further, the controller 31 is based on the time difference between the timing at which the light source array 11 is pulsed and the timing at which the light receiving element 22 receives the reflected light from the target region, that is, the timing at which the light receiving signal is received from the light receiving element 22. , Get the distance to the object in the target area.
  • the controller 31 detects the presence or absence of an object in the target region by scanning the line beam B10 with the light deflector 14 while causing the light source array 11 to emit light in pulses, and further determines the position of the object and the distance to the object. measure. These measurement results are transmitted to the control unit on the vehicle side at any time.
  • FIG. 6A is a diagram schematically showing the arrangement of each member in the line beam scanning optical system 10. For convenience, FIG. 6A also shows a state in which the optical system from the light source array 11 to the diffusion optical element 15 is developed in one plane, as in FIG. 4C.
  • Fp1 is the focal position of the slow-axis cylindrical lens 13 on the laser light source 11a side (hereinafter, referred to as “front focal position”)
  • Fp2 is the optical deflector 14 side of the slow-axis cylindrical lens 13.
  • Focus position hereinafter referred to as "rear focal position”
  • the straight line extending from each laser light source 11a indicates the optical axis of the laser light emitted from each laser light source 11a.
  • the light source array 11 is arranged so that the emission end surface of the laser light source 11a coincides with the front focal position Fp1.
  • each laser beam emitted from each laser light source 11a is incident on the slow-axis cylindrical lens 13 while diverging, and is converted into parallel light by the refraction action thereof.
  • the optical axis of each laser beam is in a positional relationship of incident parallel to the optical axis of the slow axis cylindrical lens regardless of the distance to the light source array, the light is focused near the rear focal position Fp2.
  • the mirror 14a is arranged near the focusing position of the optical axis of each laser beam, that is, near the rear focal position Fp2.
  • the arrangement position of the mirror 14a does not necessarily have to coincide with the rear focal position Fp2, and the mirror is within the range W10 capable of receiving the beam (bundle of all laser light) focused by the slow axis cylindrical lens 13.
  • 14a may be arranged. After being reflected by the mirror 14a, the laser beams travel in directions away from each other. At this time, since each laser beam is collimated by the slow axis cylindrical lens 13 as described above, each laser beam is separated from each other and incident on the diffuse optical element 15.
  • the distance between the intensity centers of the laser light on the diffusion optical element 15, that is, the incident position of the laser light with respect to the diffusion surface 15a is set.
  • the distance between the incident positions when projected onto the projection surface P1 is preferably set to 10 mm or more from the viewpoint of ensuring eye safety, as described below.
  • FIG. 6B shows the acceptance angle of the special light source with respect to the human eye (naked eye) when measuring the exposure emission amount of the pulse laser based on the “Safety Standards for Laser Products” (JIS C 6802: 2014). It is a figure.
  • the viewing angle ⁇ of the pearl light source is larger than the minimum value of 1.5 mrad (when the pearl light source is a distributed light source).
  • the measurement conditions applied to determine the exposure dose when the scanning beam that repeats pulse emission is incident on the naked eye are as follows.
  • Measurement distance ... 100 mm Aperture diameter: 7 mm (equivalent to human pupil diameter) Maximum viewing angle ⁇ max ... 5 to 100 mrad (depending on the pulse duration of the laser beam)
  • the maximum width of the apparent light source is when the maximum viewing angle ⁇ max is 100 mrad, and is a region having a diameter of 10 mm. This region needs to be applied to all positions on the appropriate light source, but no matter where it is, the energy emitted from the range W20 of the viewing angle ⁇ outside the maximum viewing angle ⁇ max for each position is eye safe. It does not contribute to the amount of exposure compared to the reference energy of. That is, eye safety can be ensured if the amount of exposure emission from the appropriate light source in the range of the maximum width of 10 mm is equal to or less than the class 1 accessible emission limit (AEL).
  • AEL class 1 accessible emission limit
  • the light emitting region of the line beam B10 on the diffusing surface 15a of the diffusing optical element 15 is an eye-safe determination target. It becomes an effective light source of.
  • the distance D1 distance between intensity centers
  • two or more lasers are in the range of this maximum width. Since light (a range of 1 / e 2 or more of the peak intensity) is not included, the radiant energy of each laser beam may meet the eye safe standard. That is, when the distance D1 between the laser beams is 10 mm or more in the maximum width shown in FIG. 6 (b), the emission intensity (radiant energy) of each laser light source 11a can be increased to near the standard of eye safe.
  • the maximum width includes a plurality of laser beams ( range of 1 / e 2 or more of the peak intensity) and the radiant energy is increased. It will be accumulated. Therefore, in this case, it is necessary to reduce the emission intensity of each laser light source 11a so that the integrated radiant energy satisfies the eye safe standard. As a result, the amount of light of the entire line beam B10 is reduced as compared with the case where the distance D1 between the laser beams is 10 mm or more in the maximum width shown in FIG. 6B.
  • each laser light source 11a can be increased to near the standard of eye safe, and the amount of light of the line beam B10 can be increased more effectively.
  • the range-finding range of the laser radar 1 can be expanded more remarkably while ensuring eye safety.
  • the light emitting region of the line beam B10 on the diffusing surface 15a of the diffusing optical element 15 becomes an effective light source for eye safe determination.
  • the diffusing optical element 15 is not used, a minute region where the laser beams overlap on the mirror 14a of the optical deflector 14 becomes an appropriate light source for eye safe determination. Therefore, according to the present embodiment, the light emitting area of the exclusive light source can be remarkably expanded and the influence of the line beam B10 on the human eye can be remarkably suppressed as compared with the case where the diffusion optical element 15 is not used.
  • the diffusion optical element 15 can appropriately beam-shape each laser beam into a predetermined diffusion state.
  • the distance (distance D1) between the intensity centers of the plurality of laser beams in the diffusion optical element 15 is preferably 10 mm or more.
  • the diffusion surface 15a for diffusing the laser beam is centered on the mirror 14a and is aligned with the rotation axis R1 of the mirror 14a. It is curved in an arc shape in the parallel direction. As a result, the laser beams reflected by the mirror 14a can be incident on the diffusion surface 15a in the same incident state. Therefore, the design of the diffusion optical element 15 can be facilitated, and each laser beam can be appropriately beam-shaped to a predetermined diffusion state.
  • the lens unit 40 includes a fast-axis cylindrical lens 12 (first lens) that collimates the laser light emitted from the plurality of laser light sources 11a in the fast-axis direction (first direction).
  • the plurality of laser beams parallelized in the fast axis direction by the fast axis cylindrical lens 12 are collimated in the slow axis direction (second direction) perpendicular to the fast axis direction, and parallelized in the slow axis direction.
  • a slow-axis cylindrical lens 13 (second lens) that concentrates a plurality of laser beams on the mirror 14a is provided.
  • the parallel lightening in each direction can be finely adjusted. It is possible to make each parallel light accurately.
  • the mirror 14a has an action of condensing the optical axes of each laser light. This makes it possible to reduce the number of parts and simplify the configuration.
  • the plurality of laser light sources 11a are end face emitting semiconductor lasers and are arranged side by side along the slow axis direction, and the fast axis cylindrical lens 12 transmits the plurality of laser lights to the fast axis.
  • the slow-axis cylindrical lens 13 parallelizes the light in the direction, and the plurality of laser beams are parallel-lighted in the slow-axis direction and focused on the mirror 14a.
  • the fast-axis cylindrical lens 12 can be miniaturized and the width in the short side direction of the line beam B10 can be reduced by making the fast-axis cylindrical lens 12 into parallel light first in the fast-axis direction having a large divergence angle. can.
  • the diffusion surface 15a of the diffusion optical element 15 is curved in an arc shape, but the diffusion surface 15a of the diffusion optical element 15 may be flat.
  • FIG. 7A is a diagram showing a configuration example in this case.
  • the flat plate-shaped diffusion optical element 15 is arranged after the mirror 14a.
  • the diffusion optical element 15 is arranged so that the entrance surface and the exit surface are perpendicular to the Z axis.
  • a large number of semi-cylindrical microlenses are formed on the diffusing surface 15a (exiting surface) of the diffusing optical element 15.
  • the generatrix is parallel to the Y-axis direction and is arranged without a gap in the X-axis direction. The laser beams diffused by the microlens overlap each other to generate the line beam B10.
  • the light emitting region of the line beam B10 on the diffusing surface 15a of the diffusing optical element 15 becomes the apparent light source to be determined by the eye safe, so that the light emitting area of the apparent light source is remarkably expanded.
  • the effect of the line beam B10 on the human eye can be remarkably suppressed. Therefore, it is possible to suppress the influence of the line beam B10 on the human eye while effectively increasing the amount of light of the line beam B10 by arranging a plurality of laser light sources 11a.
  • the appearance shape of the diffusion optical element 15 is simpler than that of the above embodiment.
  • the diffusing surface 15a (microlens) of the diffusing optical element 15 is provided for each incident region of the laser beam so that each laser beam is properly beam-shaped. The design needs to be adjusted. Therefore, the design of the diffusion surface 15a becomes slightly complicated as compared with the above embodiment.
  • the diffusion optical element 15 is arranged so that the distance D1 is 10 mm or more, as in the above embodiment.
  • the emission intensity of each laser light source 11a can be increased to near the standard of eye safe, and the amount of light of the line beam B10 can be increased more effectively.
  • the slow axis cylindrical lens 13 may be configured so that the distance D1 between the laser beams on the incident surface of the diffusion optical element 15 is constant. Also in this case, it is preferable that the diffusion optical element 15 is arranged so that the distance D1 is 10 mm or more. As a result, the emission intensity of each laser light source 11a can be increased to near the standard of eye safe, and the amount of light of the line beam B10 can be increased more effectively.
  • the lens surface 13a of the slow axis cylindrical lens 13 is configured so that the angular pitch of the laser beam is constant, but also in the configuration of FIG. 6A, the projection surface P1 is formed.
  • the slow axis cylindrical lens 13 may be configured so that the distance D1 between the laser beams is constant. Also in this case, it is preferable that the diffusion optical element 15 is arranged so that the distance D1 is 10 mm or more.
  • the diffusion surface 15a of the diffusion optical element 15 is curved in an arc shape in the X-axis direction, but the diffusion surface 15a of the diffusion optical element 15 may be curved in an arc shape in the Y-axis direction.
  • 8 (a) and 8 (b) are diagrams showing a configuration example in this case.
  • a plate-shaped diffusion optical element 15 curved in an arc shape in the Y-axis direction is arranged after the mirror 14a.
  • the diffusion optical element 15 has a shape obtained by cutting out a part of a cylinder along a generatrix.
  • the diffusion optical element 15 is arranged so that the generatrix of the cylinder is parallel to the X-axis.
  • the central bus in the circumferential direction is aligned with the rotation axis R1 of the mirror 14a in the Z-axis direction.
  • the diffusion optical element 15 is arranged at a position where the center of the circle including the arc is positioned on a straight line parallel to the X axis passing through the center of the mirror 14a.
  • a large number of microlenses having a semicircular cross section are formed on the diffusion surface 15a (exit surface) of the diffusion optical element 15.
  • the ridges of the microlenses extend in the direction along the arc (circumferential direction of the diffusion optical element 15), and are arranged without gaps in the X-axis direction. Also in this case, the laser beams diffused by the microlens overlap each other to generate the line beam B10.
  • the light emitting region of the line beam B10 on the diffusing surface 15a of the diffusing optical element 15 becomes the apparent light source to be determined by the eye safe, so that the light emitting area of the apparent light source is remarkably expanded.
  • the effect of the line beam B10 on the human eye can be remarkably suppressed. Therefore, it is possible to suppress the influence of the line beam B10 on the human eye while effectively increasing the amount of light of the line beam B10 by arranging a plurality of laser light sources 11a.
  • the design of the diffusion surface 15a can be simplified in the scanning direction of the line beam B10, and each laser beam can be appropriately beam-shaped at each scanning position of the line beam B10.
  • the diffused optical element 15 is provided for each incident region of the laser beam so that each laser beam is properly beam-shaped. It is necessary to adjust the design of the diffusion surface 15a (microlens).
  • the diffusion optical element 15 is arranged so that the distance D1 between the laser beams on the incident surface of the diffusion optical element 15 is 10 mm or more, as in the above embodiment.
  • the emission intensity of each laser light source 11a can be increased to near the standard of eye safe, and the amount of light of the line beam B10 can be increased more effectively.
  • the slow axis cylindrical lens 13 may be configured so that the distance D1 between the laser beams on the incident surface of the diffusion optical element 15 is constant. Also in this case, it is preferable that the diffusion optical element 15 is arranged so that the distance D1 is 10 mm or more.
  • the diffusion surface 15a may be curved in an arc shape around the center of the mirror 14a in both the X-axis direction and the Y-axis direction.
  • each laser light source 11a has one light emitting region 117, but each laser light source 11a has a plurality of light emitting regions 117 in the fast axis direction. You may prepare.
  • 9 (a) to 9 (c) are diagrams showing a configuration example in this case.
  • a plurality of light emitting regions 117 are formed so as to be arranged in the fast axis direction (Z axis direction) in one laser light source 11a.
  • a pair of the active layer 111, the N-type clad layer 112, and the P-type clad layer 113 are laminated via the tunnel junction layer 119 between the N-type substrate 114 and the contact layer 115. As a result, three light emitting regions 117 are formed.
  • the width W1 in the direction parallel to the active layer 111 is wider than the width W2 in the direction perpendicular to the active layer 111.
  • the beam B20 has a divergence angle in the direction parallel to the fast axis 118a larger than that in the direction parallel to the slow axis 118b. Therefore, the beam B20 has an elliptical shape that is long in the fast axis direction.
  • a plurality of laser light sources 11a are arranged so as to be arranged in the slow axis direction to form the light source array 11.
  • the plurality of light emitting regions 117 are arranged so as to line up not only in the slow axis direction but also in the fast axis direction.
  • one semiconductor light emitting element formed so that the plurality of light emitting regions 117 are arranged in the slow axis direction and the fast axis direction may be installed on the base 120.
  • the number of light emitting regions 117 is increased as compared with the configuration of FIG. 3C, so that the amount of light of the line beam B10 can be increased.
  • the positions of the upper and lower light emitting regions 117 are displaced with respect to the optical axis of the fast axis cylindrical lens 12, so that the laser light emitted from these light emitting regions 117
  • the central axis is tilted by the fast axis cylindrical lens 12.
  • the tilt angle ⁇ 1 of the central axis of the laser beam emitted from the light emitting region 117 can be specified by the following equation.
  • the laser light emitted from the upper and lower light emitting regions 117 travels in a direction inclined in the fast axis direction with respect to the laser light emitted from the central light emitting region 117, so that the line beam is compared with the above embodiment.
  • the short side direction of B10 is widened.
  • the interval (displacement amount d1) of the light emitting regions 117 arranged in the fast axis direction is made as narrow as possible based on the above equation (1).
  • the distance between the light emitting regions 117 arranged in the fast axis direction is at least smaller than the distance between the laser light sources 11a.
  • the focal length of the fast-axis cylindrical lens 12 is preferably as long as possible. As a result, the inclination angle ⁇ 1 can be reduced, and the spread of the line beam B10 in the short side direction can be suppressed.
  • the fast axis is made parallel light by the fast axis cylindrical lens 12 with respect to the light source array 11 in which the light emitting regions are arranged in the fast axis direction as described above, the number of line beams corresponding to the number of light emitting regions arranged in the fast axis is formed. Will be done. In this case, it is possible to detect a plurality of lines at the same time. If there is not one line and there is a problem in system processing, the spread angle in the short side direction of the line is sacrificed, but by slightly shifting the arrangement position of the light source array 11 from the focal position of the fast axis cylindrical lens 12. , It is also possible to widen the divergence angle of the line beams and stack each line beam into one.
  • the laser light emitted from the light emitting region 117 is fast-axis by the fast-axis cylindrical lens 12. It can be made into substantially parallel light in the direction. Therefore, the spread can be suppressed in the short side direction of the line beam B10, and the object can be efficiently detected farther.
  • a circular mirror can be used as the mirror 14a arranged in the light deflector 14.
  • the light deflector 14 is configured by a MEMS mirror.
  • the optical deflector 14 has a square support portion 14b in a plan view, a frame portion 14c surrounding the support portion 14b, and a support portion 14b and a frame portion 14c at an intermediate position between the opposite sides of the support portion 14b. It is provided with a beam portion 14d for connecting the above.
  • a mirror 14a is installed on the upper surface of the support portion 14b.
  • the support portion 14b is rotated around the two beam portions 14d by a drive portion (not shown).
  • the axis connecting the two beam portions 14d is the rotation axis R1 of the support portion 14b and the mirror 14a.
  • the beam is incident on the mirror 14a in the direction of the dashed arrow.
  • FIG. 11B is a plan view of the vicinity of the mirror 14a.
  • the laser light sources 11a are aligned in the slow axis direction, and the light emitted from the laser light source 11a is collimated by the fast-axis cylindrical lens 12 arranged in the immediate vicinity of the laser light source 11a, so that the light is incident on the mirror 14a.
  • the shape of the beam spot BS1 of the beam is long in the slow axis direction. Therefore, when the shape of the mirror 14a is circular, an extra region in which the beam does not enter is widely generated in the mirror 14a.
  • a mirror 14e having a long shape in one direction is installed in the optical deflector 14. That is, the elliptical mirror 14e is installed on the support portion 14b so that the longitudinal direction is parallel to the direction corresponding to the slow axis direction (arrangement direction of the laser light sources 11a).
  • the region of the extra mirror 14e where the beam does not enter can be reduced, and the weight of the mirror 14e can be reduced.
  • the stress generated in the support portion 14b of the mirror 14e can be reduced, a larger deflection angle can be realized, or a MEMS mirror with high robustness can be realized. Further, the dynamic deflection (distortion or deformation of the mirror 14e) generated when the mirror 14e is driven can be reduced. Therefore, the line beam B10 can be scanned more stably.
  • the shape of the mirror 14e does not necessarily have to be an ellipse, and may be a shape that is long in one direction.
  • the shape of the mirror 14e may be an oval, a track shape, a rectangle, or the like.
  • the shape of the mirror 14a is not limited to a circle, and may be another shape such as a square.
  • the diffusion surface 15a is arranged on the exit surface of the diffusion optical element 15, but the diffusion surface 15a may be arranged on the incident surface of the diffusion optical element 15.
  • the diffusion optical element 15 is not limited to the microlens array, and other optical elements such as a diffraction optical element may be used as long as the laser beam can be diffused in the long side direction of the line beam B10. ..
  • the diffusion optical element 15 has a plate-like shape, but the shape of the diffusion optical element 15 is not limited to this.
  • the shape of the diffusion optical element 15 when viewed in the Y-axis direction may be a semi-cylindrical shape.
  • the diffusion optical element 15 is made of a member whose incident surface is a flat surface and whose exit surface is an arcuate curved surface, and a diffusion surface 15a similar to that of the above embodiment is formed on the emission surface.
  • the diffusion optical element 15 shown in FIGS. 8A and 8B may have a semi-cylindrical shape.
  • an end face emitting laser diode is used as the laser light source 11a, but a light source array 11 in which surface emitting laser light sources such as VCSEL (Vertical Cavity Surface Emitting Laser) are arranged in a linear or matrix shape is used. May be done.
  • VCSEL Vertical Cavity Surface Emitting Laser
  • the horizontally long line beam B10 is scanned in the vertical direction, but the vertically long line beam may be scanned in the horizontal direction.
  • the spread angle of the line beam B10 in the long side direction is small, but the swing angle of the line beam B10 in the horizontal direction is large.
  • the MEMS mirror is used as the light deflector 14, but another light deflector such as a magnetically movable mirror or a galvano mirror may be used as the light deflector 14.
  • the line beam scanning optical system 10 is configured such that the light source array 11, the fast axis cylindrical lens 12, the slow axis cylindrical lens 13, and the optical deflector 14 are arranged in one direction.
  • the layout of the system 10 is not limited to this.
  • the line beam scanning optical system 10 may be configured so as to arrange a mirror in the middle of the optical path and bend the optical path.
  • the first cylindrical lens may be arranged on the rear side of the second cylindrical.
  • the number of laser light sources 11a arranged in the light source array 11 is not limited to the number illustrated in the above embodiment. Further, the plurality of laser light sources 11a do not necessarily have to be unitized, and the plurality of laser light sources may be individually arranged.
  • the laser radar 1 is mounted on the vehicle 200, but the laser radar 1 may be mounted on another moving body. Further, the laser radar 1 may be mounted on a device or equipment other than the mobile body. Further, the laser radar 1 may have only the function of detecting an object.
  • first cylindrical lens and the second cylindrical lens may be integrated and configured as aspherical toroidal lenses having different slow and fast axes.
  • the configuration of the lens unit 40 can be variously changed.
  • Laser radar 10 Line beam scanning optical system 11a ... Laser light source 12 ... Fast axis cylindrical lens (1st lens or 2nd lens) 13 ... Slow axis cylindrical lens (second lens or first lens) 14 ... Optical deflectors 14a, 14e ... Mirror 15 ... Diffusing optical element 15a ... Diffusing surface 20 ... Light receiving optical system 40 ... Lens unit 117 ... Light emitting area 118a ... Fast axis 118b ... Slow axis

Abstract

This laser radar is provided with a line beam scanning optical system (10), and a light receiving optical system. The line beam scanning optical system (10) is provided with: a plurality of laser light sources (11a) arranged side-by-side in a direction corresponding to the long side of a line beam (B10); an optical deflector (14) including a mirror (14a) which deflects the line beam (B10) in the short-side direction; a lens portion (40) which collimates laser beams emitted from each of the plurality of laser light sources (11a), and condenses each collimated laser beam onto the mirror (14a); and a diffusing optical element (15) which causes each of the plurality of laser beams reflected by the mirror (14a) to diffuse in the long-side direction. Each of the plurality of laser beams is incident on the diffusing optical element (15) while remaining in the state of having been collimated by the lens portion (40).

Description

ラインビーム走査光学系およびレーザレーダLine beam scanning optics and laser radar
 本発明は、一方向に長いラインビームを生成してその短辺方向に前記ラインビームを走査させるラインビーム走査光学系、および、当該ラインビーム走査光学系を用いて物体を検出するレーザレーダに関する。 The present invention relates to a line beam scanning optical system that generates a long line beam in one direction and scans the line beam in the short side direction thereof, and a laser radar that detects an object using the line beam scanning optical system.
 従来、レーザ光を用いて物体を検出するレーザレーダが種々の分野で開発されている。たとえば、車載用のレーザレーダでは、車両前方からレーザ光が投射され、その反射光の有無に基づいて、車両前方に車両等の物体が存在するか否かが判別される。また、レーザ光の投射タイミングと反射光の受光タイミングとに基づいて、物体までの距離が計測される。 Conventionally, laser radars that detect objects using laser light have been developed in various fields. For example, in an in-vehicle laser radar, laser light is projected from the front of the vehicle, and it is determined whether or not an object such as a vehicle exists in front of the vehicle based on the presence or absence of the reflected light. Further, the distance to the object is measured based on the projection timing of the laser beam and the reception timing of the reflected light.
 以下の特許文献1、2には、ライン状のビームをスキャンさせて車両前方の障害物を検出する装置が開示されている。 The following Patent Documents 1 and 2 disclose a device that scans a linear beam to detect an obstacle in front of a vehicle.
特開平5-205199号公報Japanese Unexamined Patent Publication No. 5-205199 特開2017-150990号公報JP-A-2017-150990
 上記構成のレーザレーダでは、より長距離かつ広角で物体を検出するために、ラインビームの光量を高める必要がある。そのための方法として、複数のレーザ光源を並べて配置する方法が用いられ得る。 In the laser radar with the above configuration, it is necessary to increase the amount of light of the line beam in order to detect an object at a longer distance and a wider angle. As a method for that, a method of arranging a plurality of laser light sources side by side can be used.
 その一方で、レーザレーダが屋外で使用される場合、ラインビームが人の目に入射することが起こり得る。このため、ラインビームは、人の目に入射しても、目に影響を及ぼさない程度に安全な光量であることが要求される。 On the other hand, when the laser radar is used outdoors, it is possible that the line beam will enter the human eye. Therefore, the line beam is required to have a safe amount of light so as not to affect the eyes even if it is incident on the human eye.
 かかる課題に鑑み、本発明は、人の目に対する影響を抑制しつつ、ラインビームの光量を効果的に高めることが可能なラインビーム走査光学系およびレーザレーダを提供することを目的とする。 In view of such a problem, an object of the present invention is to provide a line beam scanning optical system and a laser radar capable of effectively increasing the amount of light of a line beam while suppressing the influence on the human eye.
 本発明の第1の態様は、一方向に長いラインビームを生成してその短辺方向に前記ラインビームを走査させるラインビーム走査光学系に関する。この態様に係るラインビーム走査光学系は、前記ラインビームの長辺に対応する方向に並べて配置された複数のレーザ光源と、前記ラインビームを前記短辺方向に偏向させるミラーを有する光偏向器と、前記複数のレーザ光源から出射されるレーザ光をそれぞれ平行光化するとともに、平行光化された前記レーザ光をそれぞれ前記ミラーに集光するレンズ部と、前記ミラーにより反射された前記複数のレーザ光をそれぞれ前記長辺方向に拡散させる拡散光学素子と、を備える。前記複数のレーザ光は、それぞれ、前記レンズ部により平行光化された状態のまま前記拡散光学素子に入射する。 The first aspect of the present invention relates to a line beam scanning optical system that generates a long line beam in one direction and scans the line beam in the short side direction thereof. The line beam scanning optical system according to this aspect includes a plurality of laser light sources arranged side by side in a direction corresponding to the long side of the line beam, and an optical deflector having a mirror for deflecting the line beam in the short side direction. The laser light emitted from the plurality of laser light sources is converted into parallel light, and the parallelized laser light is focused on the mirror, respectively, and the plurality of lasers reflected by the mirror. A diffusion optical element that diffuses light in the long side direction is provided. Each of the plurality of laser beams is incident on the diffusion optical element in a state of being collimated by the lens portion.
 本態様に係るラインビーム走査光学系によれば、拡散光学素子によってレーザ光が拡散されてラインビームが生成されるため、拡散光学素子の拡散面上のラインビームの発光領域が、アイセーフ判定対象のアパーレント光源となる。他方、拡散光学素子を用いない場合、光偏向器のミラー上で各レーザ光が重なる微小な領域が、アイセーフ判定対象のアパーレント光源となる。したがって、本態様では、拡散光学素子を用いない場合に比べて、アパーレント光源の発光面積を顕著に広げることができ、人の目に対するラインビームの影響を顕著に抑制できる。よって、複数のレーザ光源を配置してラインビームの光量を効果的に高めつつ、人の目に対するラインビームの影響を抑制することができる。 According to the line beam scanning optical system according to this aspect, the laser beam is diffused by the diffusing optical element to generate a line beam, so that the light emitting region of the line beam on the diffusing surface of the diffusing optical element is the target of eye-safe determination. It becomes an effective light source. On the other hand, when the diffusing optical element is not used, a minute region where the laser beams overlap on the mirror of the optical deflector becomes an appropriate light source for eye safe determination. Therefore, in this embodiment, the light emitting area of the pearl light source can be remarkably expanded and the influence of the line beam on the human eye can be remarkably suppressed as compared with the case where the diffusion optical element is not used. Therefore, it is possible to suppress the influence of the line beam on the human eye while effectively increasing the amount of light of the line beam by arranging a plurality of laser light sources.
 加えて、本態様に係るラインビーム走査光学系では、複数のレーザ光が、それぞれ、平行光化された状態のまま拡散光学素子に入射するため、各レーザ光の光線は、拡散光学素子に対して略同じ入射角で入射する。よって、拡散光学素子により、各レーザ光を、所定の拡散状態に適切にビーム整形できる。 In addition, in the line beam scanning optical system according to this embodiment, since a plurality of laser beams are incident on the diffused optical element in a state of being collimated, the light rays of each laser beam are directed to the diffused optical element. It is incident at almost the same angle of incidence. Therefore, each laser beam can be appropriately beam-shaped into a predetermined diffusion state by the diffusion optical element.
 本発明の第2の態様は、レーザレーダに関する。この態様に係るレーザレーダは、上記第1の態様に係るラインビーム走査光学系と、前記ラインビーム走査光学系から投射されたレーザ光の物体からの反射光を受光する受光光学系と、を備える。 The second aspect of the present invention relates to a laser radar. The laser radar according to this aspect includes a line beam scanning optical system according to the first aspect and a light receiving optical system that receives reflected light from an object of laser light projected from the line beam scanning optical system. ..
 本態様に係るレーザレーダによれば、第1の態様に係るラインビーム走査光学系を備えるため、複数のレーザ光源を配置してラインビームの光量を効果的に高めつつ、人の目に対するラインビームの影響を抑制できる。よって、物体検出が可能な距離範囲を広げつつ、レーザレーダの安全性を高めることができる。 According to the laser radar according to the present aspect, since the line beam scanning optical system according to the first aspect is provided, a plurality of laser light sources are arranged to effectively increase the amount of light of the line beam, and the line beam with respect to the human eye. The influence of can be suppressed. Therefore, it is possible to improve the safety of the laser radar while expanding the distance range in which the object can be detected.
 以上のとおり、本発明によれば、人の目に対する影響を抑制しつつ、ラインビームの光量を効果的に高めることが可能なラインビーム走査光学系およびレーザレーダを提供することができる。 As described above, according to the present invention, it is possible to provide a line beam scanning optical system and a laser radar capable of effectively increasing the amount of light of a line beam while suppressing the influence on the human eye.
 本発明の効果ないし意義は、以下に示す実施形態の説明により更に明らかとなろう。ただし、以下に示す実施形態は、あくまでも、本発明を実施化する際の一つの例示であって、本発明は、以下の実施形態に記載されたものに何ら制限されるものではない。 The effect or significance of the present invention will be further clarified by the description of the embodiments shown below. However, the embodiments shown below are merely examples when the present invention is put into practice, and the present invention is not limited to those described in the following embodiments.
図1は、実施形態に係る、レーザレーダの光学系および回路部の構成を示す図である。FIG. 1 is a diagram showing a configuration of an optical system and a circuit unit of a laser radar according to an embodiment. 図2は、実施形態に係る、ラインビーム走査光学系の構成を示す斜視図である。FIG. 2 is a perspective view showing the configuration of the line beam scanning optical system according to the embodiment. 図3(a)、(b)は、それぞれ、実施形態に係る、レーザ光源の構成を示す斜視図、図3(c)は、実施形態に係る、レーザレーダの光源アレイの構成を示す斜視図である。3A and 3B are perspective views showing the configuration of the laser light source according to the embodiment, respectively, and FIG. 3C is a perspective view showing the configuration of the light source array of the laser radar according to the embodiment. Is. 図4(a)、(b)は、それぞれ、実施形態に係る、拡散光学素子の構成を模式的に示す上面図および正面図である。図4(c)は、実施形態に係る、拡散光学素子の光学作用を示す図である。4 (a) and 4 (b) are a top view and a front view schematically showing the configuration of the diffusion optical element according to the embodiment, respectively. FIG. 4C is a diagram showing the optical action of the diffusion optical element according to the embodiment. 図5は、実施形態に係る、レーザレーダのレーザ光の出射状態と、目標領域におけるラインビームの状態とを模式的に示す図である。FIG. 5 is a diagram schematically showing a state in which a laser beam of a laser radar is emitted and a state of a line beam in a target region according to an embodiment. 図6(a)は、実施形態に係る、ラインビーム走査光学系における各部材の配置を模式的に示す図である。図6(b)は、実施形態に係る、「レーザ製品の安全基準」(JISC 6802:2014)に基づく、人の目(裸眼)のアパーレント光源の受入れ角を示す図である。FIG. 6A is a diagram schematically showing the arrangement of each member in the line beam scanning optical system according to the embodiment. FIG. 6B is a diagram showing an acceptance angle of an apparent light source of the human eye (naked eye) based on the "Safety Standards for Laser Products" (JISC 6802: 2014) according to the embodiment. 図7(a)は、変更例1に係る、ラインビーム走査光学系の構成を示す斜視図である。図7(b)は、変更例1に係る、ラインビーム走査光学系における各部材の配置を模式的に示す図である。FIG. 7A is a perspective view showing the configuration of the line beam scanning optical system according to the first modification. FIG. 7B is a diagram schematically showing the arrangement of each member in the line beam scanning optical system according to the first modification. 図8(a)、(b)は、それぞれ、変更例2に係る、ラインビーム走査光学系の構成を示す側面図および斜視図である。8 (a) and 8 (b) are side views and perspective views showing the configuration of the line beam scanning optical system according to the second modification, respectively. 図9(a)、(b)は、それぞれ、変更例3に係るレーザ光源の構成を示す斜視図、図9(c)は、変更例3に係るレーザレーダの光源アレイの構成を示す斜視図である。9 (a) and 9 (b) are perspective views showing the configuration of the laser light source according to the modified example 3, respectively, and FIG. 9 (c) is a perspective view showing the configuration of the light source array of the laser radar according to the modified example 3. Is. 図10(a)は、変更例3に係る、上下に並ぶ3つのレーザ光源からそれぞれ出射されたレーザ光の進行方向を模式的に示す図である。図10(b)は、実施形態に係る、レーザ光源から出射されたレーザ光のファスト軸方向の広がりを模式的に示す図である。FIG. 10A is a diagram schematically showing the traveling direction of the laser light emitted from each of the three laser light sources arranged vertically according to the third modification. FIG. 10B is a diagram schematically showing the spread of the laser light emitted from the laser light source in the fast axis direction according to the embodiment. 図11(a)は、実施形態に係る、光偏向器の構成を示す斜視図である。図11(b)は、実施形態に係る、ミラーに入射するビームとミラーの関係を模式的に示す図である。FIG. 11A is a perspective view showing the configuration of the optical deflector according to the embodiment. FIG. 11B is a diagram schematically showing the relationship between the beam incident on the mirror and the mirror according to the embodiment. 図12(a)は、変更例4に係る、光偏向器の構成を示す斜視図である。図12(b)は、変更例4に係る、ミラーに入射するビームとミラーの関係を模式的に示す図である。FIG. 12A is a perspective view showing the configuration of the optical deflector according to the fourth modification. FIG. 12B is a diagram schematically showing the relationship between the beam incident on the mirror and the mirror according to the fourth modification.
 ただし、図面はもっぱら説明のためのものであって、この発明の範囲を限定するものではない。 However, the drawings are for illustration purposes only and do not limit the scope of the present invention.
 以下、本発明の実施形態について図を参照して説明する。便宜上、各図には、互いに直交するX、Y、Z軸が付記されている。X軸方向およびY軸方向は、それぞれ、ラインビームの長辺方向および短辺方向であり、Z軸正方向は、ラインビームの投射方向である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. For convenience, the X, Y, and Z axes that are orthogonal to each other are added to each figure. The X-axis direction and the Y-axis direction are the long side direction and the short side direction of the line beam, respectively, and the Z-axis positive direction is the projection direction of the line beam.
 図1は、レーザレーダ1の光学系および回路部の構成を示す図である。図2は、ラインビーム走査光学系10の構成を示す斜視図である。 FIG. 1 is a diagram showing a configuration of an optical system and a circuit unit of the laser radar 1. FIG. 2 is a perspective view showing the configuration of the line beam scanning optical system 10.
 図1に示すように、レーザレーダ1は、光学系の構成として、ラインビーム走査光学系10と、受光光学系20とを備える。ラインビーム走査光学系10は、一方向(X軸方向)に長いラインビームB10を生成してその短辺方向(Y軸方向)にラインビームB10を走査させる。受光光学系20は、ラインビーム走査光学系10から投射されたレーザ光の物体からの反射光を受光する。 As shown in FIG. 1, the laser radar 1 includes a line beam scanning optical system 10 and a light receiving optical system 20 as an optical system configuration. The line beam scanning optical system 10 generates a long line beam B10 in one direction (X-axis direction) and scans the line beam B10 in the short side direction (Y-axis direction) thereof. The light receiving optical system 20 receives the reflected light from the object of the laser light projected from the line beam scanning optical system 10.
 ラインビーム走査光学系10は、光源アレイ11と、ファスト軸シリンドリカルレンズ12と、スロー軸シリンドリカルレンズ13と、光偏向器14と、拡散光学素子15とを備える。また、受光光学系20は、受光レンズ21と、受光素子22と、を備える。 The line beam scanning optical system 10 includes a light source array 11, a fast-axis cylindrical lens 12, a slow-axis cylindrical lens 13, an optical deflector 14, and a diffusion optical element 15. Further, the light receiving optical system 20 includes a light receiving lens 21 and a light receiving element 22.
 光源アレイ11は、複数のレーザ光源11aが集積されて構成される。レーザ光源11aは、所定波長のレーザ光を出射する。レーザ光源11aは、端面発光型のレーザダイオードである。レーザ光源11aが、面発光型のレーザ光源であってもよい。本実施形態では、レーザレーダ1が車両に搭載されることが想定されている。このため、各レーザ光源11aの出射波長は、赤外の波長帯域(たとえば905nm)に設定される。レーザレーダ1の使用態様に応じて、レーザ光源11aの出射波長は、適宜変更され得る。 The light source array 11 is configured by integrating a plurality of laser light sources 11a. The laser light source 11a emits a laser beam having a predetermined wavelength. The laser light source 11a is an end face emitting type laser diode. The laser light source 11a may be a surface emitting type laser light source. In this embodiment, it is assumed that the laser radar 1 is mounted on the vehicle. Therefore, the emission wavelength of each laser light source 11a is set in the infrared wavelength band (for example, 905 nm). The emission wavelength of the laser light source 11a can be appropriately changed depending on the usage mode of the laser radar 1.
 図3(a)、(b)は、それぞれ、レーザ光源11aの構成を示す斜視図、図3(c)は、光源アレイ11の構成を示す斜視図である。 3 (a) and 3 (b) are perspective views showing the configuration of the laser light source 11a, respectively, and FIG. 3 (c) is a perspective view showing the configuration of the light source array 11.
 図3(a)に示すように、レーザ光源11aは、活性層111がN型クラッド層112とP型クラッド層113に挟まれた構造となっている。N型クラッド層112は、N型基板114に積層される。また、P型クラッド層113にコンタクト層115が積層される。電極116に電流が印加されることにより、発光領域117からレーザ光がY軸正方向に出射される。一般に、発光領域117は、活性層111に並行な方向の幅W1が、活性層111に垂直な方向の幅W2よりも広くなっている。 As shown in FIG. 3A, the laser light source 11a has a structure in which the active layer 111 is sandwiched between the N-type clad layer 112 and the P-type clad layer 113. The N-type clad layer 112 is laminated on the N-type substrate 114. Further, the contact layer 115 is laminated on the P-type clad layer 113. When a current is applied to the electrode 116, the laser beam is emitted from the light emitting region 117 in the positive direction of the Y-axis. Generally, in the light emitting region 117, the width W1 in the direction parallel to the active layer 111 is wider than the width W2 in the direction perpendicular to the active layer 111.
 発光領域117の短辺方向の軸、すなわち、活性層111に垂直な方向(Z軸方向)の軸は、ファスト軸と称され、発光領域117の長辺方向の軸、すなわち、活性層111に平行な方向(X軸方向)の軸は、スロー軸と称される。図3(b)において、118aはファスト軸を示し、118bはスロー軸を示している。発光領域117から出射されたレーザ光は、スロー軸方向よりもファスト軸方向の広がり角が大きい。このため、ビームB20の形状は、図3(b)に示すように、ファスト軸方向に長い楕円形状となる。 The axis in the short side direction of the light emitting region 117, that is, the axis in the direction perpendicular to the active layer 111 (Z axis direction) is called the fast axis, and the axis in the long side direction of the light emitting region 117, that is, the active layer 111. An axis in the parallel direction (X-axis direction) is called a slow axis. In FIG. 3B, 118a indicates a fast axis and 118b indicates a slow axis. The laser beam emitted from the light emitting region 117 has a larger spread angle in the fast axis direction than in the slow axis direction. Therefore, as shown in FIG. 3B, the shape of the beam B20 is an elliptical shape that is long in the fast axis direction.
 図3(c)に示すように、複数のレーザ光源11aがスロー軸に沿って並ぶようにベース120に設置されて、光源アレイ11が構成されている。したがって、各レーザ光源11aの発光領域117は、スロー軸方向に1列に並んでいる。ここで、各レーザ光源11aは、発光領域117のファスト軸118aが、図2に示したラインビームB10の短辺方向に対応する方向に平行となるように配置されている。光源アレイ11を構成する複数のレーザ光源11aは、個体差はあるものの、全てが仕様書で示される一定範囲内に分布する出射特性を有する。 As shown in FIG. 3C, a plurality of laser light sources 11a are installed on the base 120 so as to be arranged along the slow axis, and the light source array 11 is configured. Therefore, the light emitting regions 117 of each laser light source 11a are arranged in a row in the slow axis direction. Here, each laser light source 11a is arranged so that the fast axis 118a of the light emitting region 117 is parallel to the direction corresponding to the short side direction of the line beam B10 shown in FIG. Although there are individual differences, the plurality of laser light sources 11a constituting the light source array 11 all have emission characteristics that are distributed within a certain range indicated in the specifications.
 なお、図3(c)では、複数のレーザ光源11aが互いに隣接してベース120に設置されることにより光源アレイ11が構成されているが、複数の発光領域117がスロー軸方向に並ぶように形成された1つの半導体発光素子がベース120に設置されてもよい。この場合、当該半導体発光素子のうち、各発光領域117からレーザ光を出射させる構造部分が、それぞれ、レーザ光源11aに対応する。 In FIG. 3C, the light source array 11 is configured by installing the plurality of laser light sources 11a adjacent to each other on the base 120, but the plurality of light emitting regions 117 are arranged in the slow axis direction. One formed semiconductor light source may be installed on the base 120. In this case, in the semiconductor light emitting device, the structural portion that emits the laser light from each light emitting region 117 corresponds to the laser light source 11a, respectively.
 図1および図2を参照して、ファスト軸シリンドリカルレンズ12は、光源アレイ11の各レーザ光源11aから出射されたレーザ光をファスト軸方向に収束させて、ファスト軸方向のレーザ光の広がりを略平行な状態に調整する。すなわち、ファスト軸シリンドリカルレンズ12は、光源アレイ11の各レーザ光源11aから出射されたレーザ光を、ファスト軸方向のみに平行光化する作用を有する。 With reference to FIGS. 1 and 2, the fast-axis cylindrical lens 12 converges the laser light emitted from each laser light source 11a of the light source array 11 in the fast-axis direction, and substantially spreads the laser light in the fast-axis direction. Adjust to a parallel state. That is, the fast-axis cylindrical lens 12 has an action of parallelizing the laser light emitted from each laser light source 11a of the light source array 11 only in the fast-axis direction.
 スロー軸シリンドリカルレンズ13は、光源アレイ11の複数のレーザ光源11aから出射されたレーザ光をそれぞれスロー軸方向に平行光化するとともに、平行光化された複数のレーザ光をスロー軸方向に集光させる。スロー軸シリンドリカルレンズ13を透過した各レーザ光は、平行光化された状態のままミラー14aに向かう。このとき、各レーザ光は、ミラー14aに近づくにつれて互いに接近し、ミラー14aのほぼ同じ位置に入射する。 The slow-axis cylindrical lens 13 parallelizes the laser light emitted from the plurality of laser light sources 11a of the light source array 11 in the slow-axis direction, and collects the plurality of parallel-lighted laser light in the slow-axis direction. Let me. Each laser beam transmitted through the slow-axis cylindrical lens 13 heads toward the mirror 14a in a state of being parallelized. At this time, the laser beams approach each other as they approach the mirror 14a, and are incident on the mirror 14a at substantially the same position.
 ファスト軸シリンドリカルレンズ12は、Y-Z平面に平行な方向のみに湾曲するレンズ面12aを有する。レンズ面12aの母線は、X軸に平行である。ファスト軸シリンドリカルレンズ12に入射する各レーザ光のファスト軸は、レンズ面12aの母線に垂直である。各レーザ光は、X軸方向に並んでファスト軸シリンドリカルレンズ12に入射する。各レーザ光は、レンズ面12aでファスト軸方向(Z軸方向)に収束作用を受けて、ファスト軸方向に平行光化される。 The fast-axis cylindrical lens 12 has a lens surface 12a that is curved only in a direction parallel to the YY plane. The generatrix of the lens surface 12a is parallel to the X axis. Fast Axis The fast axis of each laser beam incident on the cylindrical lens 12 is perpendicular to the generatrix of the lens surface 12a. The laser beams are aligned in the X-axis direction and incident on the fast-axis cylindrical lens 12. Each laser beam receives a convergence action in the fast axis direction (Z axis direction) on the lens surface 12a and becomes parallel light in the fast axis direction.
 スロー軸シリンドリカルレンズ13は、X-Y平面に平行な方向のみに湾曲するレンズ面13aを有する。レンズ面13aの母線は、Z軸に平行である。レンズ面12a、13aの各母線は、互いに垂直である。 The slow axis cylindrical lens 13 has a lens surface 13a that curves only in a direction parallel to the XY plane. The generatrix of the lens surface 13a is parallel to the Z axis. The bus lines of the lens surfaces 12a and 13a are perpendicular to each other.
 本実施形態では、ファスト軸シリンドリカルレンズ12およびスロー軸シリンドリカルレンズ13によって、複数のレーザ光源11aから出射されるレーザ光をそれぞれ平行光化するとともに、平行光化されたレーザ光をそれぞれミラー14aに集光するレンズ部40が構成される。ただし、レンズ部40の構成はこれに限られるものではなく、たとえば、スロー軸方向の平行光化と、ミラー14aに対する集光とが、それぞれ、異なるレンズによって実現されてもよい。 In the present embodiment, the fast-axis cylindrical lens 12 and the slow-axis cylindrical lens 13 parallelize the laser beams emitted from the plurality of laser light sources 11a, and collect the parallelized laser beams on the mirror 14a, respectively. A shining lens unit 40 is configured. However, the configuration of the lens unit 40 is not limited to this, and for example, parallel lightening in the slow axis direction and focusing on the mirror 14a may be realized by different lenses.
 光偏向器14は、たとえば、圧電アクチュエータや静電アクチュエータ等を用いたMEMS(Micro Electro Mechanical Systems)ミラーである。ミラー14aは、誘電体多層膜や金属膜等によって反射率が高められている。ミラー14aは、スロー軸シリンドリカルレンズ13のY軸正側の焦点距離付近の位置に配置されている。ミラー14aは、X軸に平行な回動軸R1について回動するように駆動される。ミラー14aは、たとえば、直径3mm程度の円形の形状を有する。 The optical deflector 14 is, for example, a MEMS (Micro Electro Mechanical Systems) mirror using a piezoelectric actuator, an electrostatic actuator, or the like. The reflectance of the mirror 14a is increased by a dielectric multilayer film, a metal film, or the like. The mirror 14a is arranged at a position near the focal length on the positive side of the Y-axis of the slow-axis cylindrical lens 13. The mirror 14a is driven so as to rotate about a rotation axis R1 parallel to the X axis. The mirror 14a has, for example, a circular shape having a diameter of about 3 mm.
 拡散光学素子15は、ミラー14a側から入射した各レーザ光源11aからのレーザ光を、X軸方向に拡散させる。拡散光学素子15は、ミラー14aの略中央を中心として、ミラー14aの回動軸R1に平行な方向に円弧状に湾曲した板状の形状を有する。すなわち、拡散光学素子15は、入射面と出射面とが互いに平行な平板を円弧状に湾曲させた形状である。拡散光学素子15は、入射面および出射面の何れか一方が、レーザ光を拡散させる拡散面となっている。ここでは、出射面が拡散面15aとなっている。 The diffusion optical element 15 diffuses the laser light from each laser light source 11a incident from the mirror 14a side in the X-axis direction. The diffusion optical element 15 has a plate-like shape curved in an arc shape in a direction parallel to the rotation axis R1 of the mirror 14a with the mirror 14a substantially in the center as the center. That is, the diffusion optical element 15 has a shape in which a flat plate whose incident surface and exit surface are parallel to each other is curved in an arc shape. In the diffusing optical element 15, either the incident surface or the exit surface is a diffusing surface that diffuses the laser beam. Here, the exit surface is the diffusion surface 15a.
 図4(a)、(b)は、それぞれ、拡散光学素子15の構成を模式的に示す上面図および正面図である。 4 (a) and 4 (b) are a top view and a front view schematically showing the configuration of the diffusion optical element 15, respectively.
 図4(a)、(b)に示すように、拡散光学素子15の拡散面15aには、半円筒形状の多数のマイクロレンズ15bが互いに隣接して一体形成されている。マイクロレンズ15bの母線はY軸に平行である。マイクロレンズ15bは、拡散面15aの円弧形状に沿って隙間無く並んでいる。図4(a)、(b)の構成例では、マイクロレンズ15bが突レンズであるが、マイクロレンズ15bが凹レンズであってもよい。 As shown in FIGS. 4A and 4B, a large number of semi-cylindrical microlenses 15b are integrally formed adjacent to each other on the diffusion surface 15a of the diffusion optical element 15. The generatrix of the microlens 15b is parallel to the Y axis. The microlenses 15b are arranged without gaps along the arc shape of the diffusion surface 15a. In the configuration examples of FIGS. 4A and 4B, the microlens 15b is a protruding lens, but the microlens 15b may be a concave lens.
 図4(c)は、拡散光学素子15の光学作用を示す図である。便宜上、図4(c)では、光源アレイ11から拡散光学素子15までの光学系が1平面に展開された状態が示されている。また、図4(c)では、便宜上、レーザ光源11aの数が5つとされている。 FIG. 4C is a diagram showing the optical action of the diffusion optical element 15. For convenience, FIG. 4C shows a state in which the optical system from the light source array 11 to the diffusion optical element 15 is developed in one plane. Further, in FIG. 4C, the number of laser light sources 11a is set to 5 for convenience.
 スロー軸シリンドリカルレンズ13により平行光化された複数のレーザ光LB10は、それぞれ、ミラー14aで反射された後、平行光化された状態のまま、拡散光学素子15に入射する。このとき、拡散光学素子15に入射する各レーザ光LB10は、所定距離だけ、隣のレーザ光LB10から離れる。拡散光学素子15におけるレーザ光LB10の隣り合う入射領域15cの強度中心間ピッチは、レーザ光源11a間のピッチ、スロー軸シリンドリカルレンズ13のレンズ面設計(曲率)、およびミラー14aと拡散光学素子15との間の距離により決まる。 The plurality of laser beams LB10 parallelized by the slow-axis cylindrical lens 13 are reflected by the mirror 14a and then incident on the diffused optical element 15 in the collimated state. At this time, each laser beam LB10 incident on the diffusion optical element 15 is separated from the adjacent laser beam LB10 by a predetermined distance. The pitch between the intensity centers of the adjacent incident regions 15c of the laser beam LB10 in the diffusion optical element 15 is the pitch between the laser light sources 11a, the lens surface design (curvature) of the slow axis cylindrical lens 13, and the mirror 14a and the diffusion optical element 15. It depends on the distance between them.
 各レーザ光LB10は、それぞれ、拡散面15aのマイクロレンズ15bによってX-Z平面に平行な方向に拡散される。このとき、各レーザ光LB10は、複数のマイクロレンズ15bを透過するように拡散面15aに入射する。これにより、各レーザ光LB10は、複数のマイクロレンズ15bにより、全角θ10の広がり角で拡散される。拡散後の各レーザ光LB10は、ミラー14aを起点として、互いに異なる方向に進む。また、拡散後の各レーザ光LB10は、拡散により他のレーザ光LB10と互いに重なり合う。こうして、全てのレーザ光LB10が拡散しつつ互いに重なり合うことで、X軸方向に広がるラインビームB10が生成される。 Each laser beam LB10 is diffused in a direction parallel to the XX plane by the microlens 15b on the diffusion surface 15a. At this time, each laser beam LB10 is incident on the diffusion surface 15a so as to pass through the plurality of microlenses 15b. As a result, each laser beam LB10 is diffused by the plurality of microlenses 15b at a spread angle of full-width θ10. The diffused laser light LB10 travels in different directions from the mirror 14a as a starting point. Further, each laser beam LB10 after diffusion overlaps with other laser beam LB10 due to diffusion. In this way, all the laser beams LB10 are diffused and overlapped with each other to generate a line beam B10 that spreads in the X-axis direction.
 レーザレーダ1が車載用である場合、ラインビームB10は、たとえば、長辺方向の広がり角が全角60°以上に設定され、短辺方向の広がり角が全角1°以下に設定される。 When the laser radar 1 is for in-vehicle use, for example, the line beam B10 is set to have a spread angle in the long side direction of 60 ° or more and a spread angle in the short side direction of 1 ° or less.
 図1に戻り、光偏向器14は、ミラー駆動回路33からの駆動信号によりミラー14aを駆動して、ミラー14aから反射したビームをY軸方向に走査させる。これにより、ラインビームB10が短手方向(Y軸方向)に走査される。図1の構成では、ミラー14aが中立位置にある状態において、ミラー14aが、レーザ光源11aの出射光軸に対して45°傾いているが、レーザ光源11aの出射光軸に対するミラー14aの傾き角は、これに限られるものではない。ミラー14aの傾き角は、ラインビーム走査光学系10のレイアウトに応じて適宜変更され得る。 Returning to FIG. 1, the optical deflector 14 drives the mirror 14a by the drive signal from the mirror drive circuit 33, and scans the beam reflected from the mirror 14a in the Y-axis direction. As a result, the line beam B10 is scanned in the lateral direction (Y-axis direction). In the configuration of FIG. 1, in the state where the mirror 14a is in the neutral position, the mirror 14a is tilted by 45 ° with respect to the emission light axis of the laser light source 11a, but the tilt angle of the mirror 14a with respect to the emission light axis of the laser light source 11a. Is not limited to this. The tilt angle of the mirror 14a can be appropriately changed according to the layout of the line beam scanning optical system 10.
 図5は、レーザレーダ1のレーザ光の出射状態と、目標領域におけるラインビームB10の状態とを模式的に示す図である。図5の上段には、投射方向(Z軸正方向)に見たときのラインビームB10の断面形状が模式的に示されている。 FIG. 5 is a diagram schematically showing the emission state of the laser beam of the laser radar 1 and the state of the line beam B10 in the target region. In the upper part of FIG. 5, the cross-sectional shape of the line beam B10 when viewed in the projection direction (Z-axis positive direction) is schematically shown.
 図5に示すように、本実施形態では、レーザレーダ1が車両200の前側に搭載され、車両200の前方にラインビームB10が投射される。ラインビームB10の長辺方向の広がり角θ11は、たとえば90°である。また、物体検出が可能な距離D11の上限は、たとえば、250m程度である。図5では、便宜上、広がり角θ11が実際よりも小さく表現されている。 As shown in FIG. 5, in the present embodiment, the laser radar 1 is mounted on the front side of the vehicle 200, and the line beam B10 is projected in front of the vehicle 200. The spread angle θ11 in the long side direction of the line beam B10 is, for example, 90 °. Further, the upper limit of the distance D11 capable of detecting an object is, for example, about 250 m. In FIG. 5, for convenience, the spread angle θ11 is expressed smaller than it actually is.
 図1に戻り、目標領域から反射したラインビームB10の反射光は、受光レンズ21によって、受光素子22の受光面に集光される。受光レンズ21は、たとえば、複数のレンズから構成される撮像用のカメラレンズユニットであり、受光素子22は、たとえば、縦横に画素がマトリクス状に配置されたイメージセンサやセンサアレイである。この内、センサアレイの例では、各画素の位置に、アバランシェフォトダイオードセンサが配置されてもよい。この場合、アバランシェフォトダイオードは、たとえば、ガイガーモード(ガイガー増倍モード)で使用される。ガイガーモードでは、アバランシェフォトダイオードに光子が入射すると、アバランシェ増倍により、アバランシェフォトダイオードのカソードに集電される電荷が飽和電荷量まで増倍される。したがって、画素に対する光の入射の有無が高感度で検出され、より遠距離の測距が可能となる。 Returning to FIG. 1, the reflected light of the line beam B10 reflected from the target region is collected by the light receiving lens 21 on the light receiving surface of the light receiving element 22. The light receiving lens 21 is, for example, a camera lens unit for imaging composed of a plurality of lenses, and the light receiving element 22 is, for example, an image sensor or a sensor array in which pixels are arranged in a matrix in the vertical and horizontal directions. Among these, in the example of the sensor array, an avalanche photodiode sensor may be arranged at the position of each pixel. In this case, the avalanche photodiode is used, for example, in Geiger mode (Geiger multiplication mode). In Geiger mode, when a photomultiplier is incident on an avalanche photodiode, the avalanche multiplier causes the charge collected on the cathode of the avalanche photodiode to be multiplied to the saturated charge amount. Therefore, the presence or absence of light incident on the pixel is detected with high sensitivity, and distance measurement at a longer distance becomes possible.
 受光素子22は、たとえば、長方形の受光面を有し、受光面の長辺がX軸に平行となるように配置される。受光素子22の受光面の長辺方向は、目標領域におけるラインビームB10の長辺方向に対応する。ラインビームB10の反射光は、受光面の長辺方向に沿って延びるように、受光レンズ21によって、受光素子22の受光面に結像される。 The light receiving element 22 has, for example, a rectangular light receiving surface, and is arranged so that the long side of the light receiving surface is parallel to the X axis. The long side direction of the light receiving surface of the light receiving element 22 corresponds to the long side direction of the line beam B10 in the target region. The reflected light of the line beam B10 is imaged on the light receiving surface of the light receiving element 22 by the light receiving lens 21 so as to extend along the long side direction of the light receiving surface.
 ここで、受光面のX軸方向の画素位置は、目標領域におけるX軸方向の位置に対応する。また、受光面のY軸方向の画素位置は、目標領域におけるY軸方向の位置に対応する。ラインビームB10がY軸方向に走査されると、ラインビームB10の反射光は、受光素子22の受光面上をY軸方向に移動する。したがって、受光信号が生じた画素の位置により、目標領域のX軸方向およびY軸方向のどの位置に物体が存在するかを検出できる。 Here, the pixel position in the X-axis direction of the light receiving surface corresponds to the position in the X-axis direction in the target region. Further, the pixel position of the light receiving surface in the Y-axis direction corresponds to the position in the Y-axis direction in the target region. When the line beam B10 is scanned in the Y-axis direction, the reflected light of the line beam B10 moves in the Y-axis direction on the light receiving surface of the light receiving element 22. Therefore, it is possible to detect at which position in the X-axis direction and the Y-axis direction of the target region the object exists, depending on the position of the pixel in which the received light signal is generated.
 受光素子22としてX軸方向に画素が並ぶライセンサが用いられてもよい。この場合は、ラインビームB10の動きに同期して、検出対象となる物体のY位置が特定される。 A licensor in which pixels are arranged in the X-axis direction may be used as the light receiving element 22. In this case, the Y position of the object to be detected is specified in synchronization with the movement of the line beam B10.
 レーザレーダ1は、回路部の構成として、コントローラ31と、レーザ駆動回路32と、ミラー駆動回路33と、信号処理回路34と、を備える。 The laser radar 1 includes a controller 31, a laser drive circuit 32, a mirror drive circuit 33, and a signal processing circuit 34 as a circuit unit configuration.
 コントローラ31は、CPU(CentralProcessing Unit)等の演算処理回路や、ROM(Read Only Memory)、RAM(Random Access Memory)等の記憶媒体を備え、予め設定されたプログラムに従って各部を制御する。レーザ駆動回路32は、コントローラ31からの制御に応じて光源アレイ11の各レーザ光源11aをパルス発光させる。コントローラ31は、ラインビームB10の反射光の移動位置が受光素子22の各画素行に含まれるタイミングで、各レーザ光源11aを複数回繰り返しパルス発光させる。パルス発光時、レーザ駆動回路32は、各レーザ光源11aを同時にパルス発光させる。あるいは、所定の時間差をもって順番に各レーザ光源11aをパルス発光させてもよい。 The controller 31 includes an arithmetic processing circuit such as a CPU (CentralProcessingUnit) and a storage medium such as a ROM (ReadOnlyMemory) and a RAM (RandomAccessMemory), and controls each part according to a preset program. The laser drive circuit 32 causes each laser light source 11a of the light source array 11 to emit pulses in response to control from the controller 31. The controller 31 causes each laser light source 11a to repeatedly emit a pulse a plurality of times at a timing when the moving position of the reflected light of the line beam B10 is included in each pixel row of the light receiving element 22. At the time of pulse emission, the laser drive circuit 32 causes each laser light source 11a to emit a pulse at the same time. Alternatively, each laser light source 11a may be made to emit pulses in order with a predetermined time difference.
 ミラー駆動回路33は、コントローラ31からの制御に応じて光偏向器14を駆動する。光偏向器14は、ミラー14aを回動軸R1について回動させて、ラインビームB10の短辺方向にラインビームB10を走査させる。 The mirror drive circuit 33 drives the optical deflector 14 according to the control from the controller 31. The optical deflector 14 rotates the mirror 14a with respect to the rotation axis R1 to scan the line beam B10 in the short side direction of the line beam B10.
 信号処理回路34は、受光素子22の各画素の受光信号をコントローラ31に出力する。上記のように、コントローラ31は、受光信号が生じた画素の位置により、目標領域のX軸方向のどの位置に物体が存在するかを検出できる。また、コントローラ31は、光源アレイ11をパルス発光させたタイミングと、受光素子22が目標領域からの反射光を受光したタイミング、すなわち、受光素子22から受光信号を受信したタイミングとの時間差に基づいて、目標領域に存在する物体までの距離を取得する。 The signal processing circuit 34 outputs the light receiving signal of each pixel of the light receiving element 22 to the controller 31. As described above, the controller 31 can detect the position of the object in the X-axis direction of the target region based on the position of the pixel in which the received light signal is generated. Further, the controller 31 is based on the time difference between the timing at which the light source array 11 is pulsed and the timing at which the light receiving element 22 receives the reflected light from the target region, that is, the timing at which the light receiving signal is received from the light receiving element 22. , Get the distance to the object in the target area.
 こうして、コントローラ31は、光源アレイ11をパルス発光させつつ、光偏向器14によりラインビームB10を走査させることにより、目標領域における物体の有無を検出し、さらに、物体の位置および物体までの距離を計測する。これらの測定結果は、随時、車両側の制御部に送信される。 In this way, the controller 31 detects the presence or absence of an object in the target region by scanning the line beam B10 with the light deflector 14 while causing the light source array 11 to emit light in pulses, and further determines the position of the object and the distance to the object. measure. These measurement results are transmitted to the control unit on the vehicle side at any time.
 次に、ラインビーム走査光学系10の設定方法を説明する。 Next, the setting method of the line beam scanning optical system 10 will be described.
 図6(a)は、ラインビーム走査光学系10における各部材の配置を模式的に示す図である。便宜上、図6(a)についても、図4(c)と同様、光源アレイ11から拡散光学素子15までの光学系が1平面に展開された状態が示されている。 FIG. 6A is a diagram schematically showing the arrangement of each member in the line beam scanning optical system 10. For convenience, FIG. 6A also shows a state in which the optical system from the light source array 11 to the diffusion optical element 15 is developed in one plane, as in FIG. 4C.
 図6(a)において、Fp1は、スロー軸シリンドリカルレンズ13のレーザ光源11a側の焦点位置(以下、「前側焦点位置」という)であり、Fp2は、スロー軸シリンドリカルレンズ13の光偏向器14側の焦点位置(以下、「後側焦点位置」という)である。図6(a)において、各レーザ光源11aから延びる直線は、各レーザ光源11aから出射されたレーザ光の光軸を示している。 In FIG. 6A, Fp1 is the focal position of the slow-axis cylindrical lens 13 on the laser light source 11a side (hereinafter, referred to as “front focal position”), and Fp2 is the optical deflector 14 side of the slow-axis cylindrical lens 13. Focus position (hereinafter referred to as "rear focal position"). In FIG. 6A, the straight line extending from each laser light source 11a indicates the optical axis of the laser light emitted from each laser light source 11a.
 図6(a)に示すように、光源アレイ11は、レーザ光源11aの出射端面が前側焦点位置Fp1に一致するように配置される。これにより、各レーザ光源11aから出射された各レーザ光は、発散しながらスロー軸シリンドリカルレンズ13に入射し、その屈折作用によって平行光に変換される。その際、各レーザ光の光軸は、光源アレイまでの距離に関係なくスロー軸シリンドリカルレンズの光軸に対して平行に入射する位置関係にあることから、後側焦点位置Fp2付近に集光される。この各レーザ光の光軸の集光位置、すなわち、後側焦点位置Fp2付近に、ミラー14aが配置される。 As shown in FIG. 6A, the light source array 11 is arranged so that the emission end surface of the laser light source 11a coincides with the front focal position Fp1. As a result, each laser beam emitted from each laser light source 11a is incident on the slow-axis cylindrical lens 13 while diverging, and is converted into parallel light by the refraction action thereof. At that time, since the optical axis of each laser beam is in a positional relationship of incident parallel to the optical axis of the slow axis cylindrical lens regardless of the distance to the light source array, the light is focused near the rear focal position Fp2. NS. The mirror 14a is arranged near the focusing position of the optical axis of each laser beam, that is, near the rear focal position Fp2.
 ミラー14aの配置位置は、必ずしも、後側焦点位置Fp2に一致せずともよく、スロー軸シリンドリカルレンズ13によって集光されたビーム(全レーザ光の束)を受けることが可能な範囲W10に、ミラー14aが配置されればよい。各レーザ光は、ミラー14aで反射された後、互いに離れる方向に進む。このとき、各レーザ光は、上記のように、スロー軸シリンドリカルレンズ13によって平行光化されているため、各レーザ光は、互いに分離して、拡散光学素子15に入射する。 The arrangement position of the mirror 14a does not necessarily have to coincide with the rear focal position Fp2, and the mirror is within the range W10 capable of receiving the beam (bundle of all laser light) focused by the slow axis cylindrical lens 13. 14a may be arranged. After being reflected by the mirror 14a, the laser beams travel in directions away from each other. At this time, since each laser beam is collimated by the slow axis cylindrical lens 13 as described above, each laser beam is separated from each other and incident on the diffuse optical element 15.
 ここで、Z軸に垂直な投影面P1を拡散光学素子15の後段側に設定した場合、拡散光学素子15上におけるレーザ光の強度中心間距離、すなわち、拡散面15aに対するレーザ光の入射位置を投影面P1に投影したときの入射位置間の距離は、以下に説明するように、アイセーフを確保する観点から、10mm以上に設定されることが好ましい。 Here, when the projection surface P1 perpendicular to the Z axis is set on the rear side of the diffusion optical element 15, the distance between the intensity centers of the laser light on the diffusion optical element 15, that is, the incident position of the laser light with respect to the diffusion surface 15a is set. The distance between the incident positions when projected onto the projection surface P1 is preferably set to 10 mm or more from the viewpoint of ensuring eye safety, as described below.
 図6(b)は、「レーザ製品の安全基準」(JIS C 6802:2014)に基づき、パルスレーザの被ばく放出量を測定する際の、人の目(裸眼)に対するアパーレント光源の受入れ角を示す図である。 FIG. 6B shows the acceptance angle of the special light source with respect to the human eye (naked eye) when measuring the exposure emission amount of the pulse laser based on the “Safety Standards for Laser Products” (JIS C 6802: 2014). It is a figure.
 ここでは、アパーレント光源の視角αが最小値1.5mradより大きい場合(アパーレント光源が分散光源の場合)が想定されている。レーザ光の波長が600nmより大きく、1400nm以下である場合、パルス発光を繰り返す走査ビームが裸眼に入射するときの、被ばく放出量の決定に適用される測定条件は、以下のとおりである。 Here, it is assumed that the viewing angle α of the pearl light source is larger than the minimum value of 1.5 mrad (when the pearl light source is a distributed light source). When the wavelength of the laser beam is larger than 600 nm and 1400 nm or less, the measurement conditions applied to determine the exposure dose when the scanning beam that repeats pulse emission is incident on the naked eye are as follows.
  測定距離 … 100mm
  開口の直径 … 7mm(人の瞳孔径に相当)
  最大視角αmax … 5~100mrad(レーザ光のパルス持続時間に依存)
Measurement distance ... 100 mm
Aperture diameter: 7 mm (equivalent to human pupil diameter)
Maximum viewing angle α max … 5 to 100 mrad (depending on the pulse duration of the laser beam)
 この観察条件で測定が行われる場合のアパーレント光源の最大幅は、最大視角αmaxが100mradの時であり、直径10mmの領域となる。この領域は、アパーレント光源上の全ての位置に適用する必要があるが、どの場所にあろうとも、それぞれの位置に対する最大視角αmaxより外側の視角αの範囲W20から放出されるエネルギーは、アイセーフの基準エネルギーと比較する被ばく放出量には寄与しない。すなわち、最大幅10mmの範囲のアパーレント光源からの被ばく放出量が、クラス1の被ばく放出限界(AEL:accessible emission limit)以下であることを満たせば、アイセーフを確保することが可能となる。 When the measurement is performed under these observation conditions, the maximum width of the apparent light source is when the maximum viewing angle α max is 100 mrad, and is a region having a diameter of 10 mm. This region needs to be applied to all positions on the appropriate light source, but no matter where it is, the energy emitted from the range W20 of the viewing angle α outside the maximum viewing angle α max for each position is eye safe. It does not contribute to the amount of exposure compared to the reference energy of. That is, eye safety can be ensured if the amount of exposure emission from the appropriate light source in the range of the maximum width of 10 mm is equal to or less than the class 1 accessible emission limit (AEL).
 図6(a)の構成では、拡散光学素子15によってレーザ光が拡散されてラインビームB10が生成されるため、拡散光学素子15の拡散面15a上のラインビームB10の発光領域が、アイセーフ判定対象のアパーレント光源となる。この場合、投影面P1に投影された各レーザ光間の距離D1(強度中心間距離)が、図6(b)の最大幅10mm以上である場合、この最大幅の範囲に2つ以上のレーザ光(ピーク強度の1/e以上の範囲)が含まれないため、個々のレーザ光の放射エネルギーがアイセーフの基準を満たせばよい。すなわち、レーザ光間の距離D1が図6(b)の最大幅10mm以上である場合、個々のレーザ光源11aの発光強度(放射エネルギー)をアイセーフの基準近くまで高めることができる。 In the configuration of FIG. 6A, since the laser beam is diffused by the diffusing optical element 15 to generate the line beam B10, the light emitting region of the line beam B10 on the diffusing surface 15a of the diffusing optical element 15 is an eye-safe determination target. It becomes an effective light source of. In this case, when the distance D1 (distance between intensity centers) between the laser beams projected on the projection surface P1 is 10 mm or more in the maximum width of FIG. 6B, two or more lasers are in the range of this maximum width. Since light (a range of 1 / e 2 or more of the peak intensity) is not included, the radiant energy of each laser beam may meet the eye safe standard. That is, when the distance D1 between the laser beams is 10 mm or more in the maximum width shown in FIG. 6 (b), the emission intensity (radiant energy) of each laser light source 11a can be increased to near the standard of eye safe.
 他方、レーザ光間の距離D1が図6(b)の最大幅10mm未満である場合、この最大幅に複数のレーザ光(ピーク強度の1/e以上の範囲)が含まれて放射エネルギーが積算される。このため、この場合は、積算後の放射エネルギーがアイセーフの基準を満たすように、各レーザ光源11aの発光強度を低下させる必要がある。その結果、レーザ光間の距離D1が図6(b)の最大幅10mm以上である場合に比べて、ラインビームB10全体の光量が低下する。 On the other hand, when the distance D1 between the laser beams is less than the maximum width of 10 mm in FIG. 6 (b), the maximum width includes a plurality of laser beams ( range of 1 / e 2 or more of the peak intensity) and the radiant energy is increased. It will be accumulated. Therefore, in this case, it is necessary to reduce the emission intensity of each laser light source 11a so that the integrated radiant energy satisfies the eye safe standard. As a result, the amount of light of the entire line beam B10 is reduced as compared with the case where the distance D1 between the laser beams is 10 mm or more in the maximum width shown in FIG. 6B.
 以上から、投影面P1上におけるレーザ光間の距離D1の全てが、最大視角αmax(100mrad)により規定される最大幅10mm以上となるように、拡散光学素子15の配置を調整することにより、各レーザ光源11aの発光強度をアイセーフの基準近くまで高めることができ、ラインビームB10の光量をより効果的に高めることができる。これにより、レーザレーダ1における測距範囲を、アイセーフを確保しながらより顕著に広げることができる。 From the above, by adjusting the arrangement of the diffusion optical elements 15 so that all the distances D1 between the laser beams on the projection surface P1 are 10 mm or more in the maximum width defined by the maximum viewing angle α max (100 mrad). The emission intensity of each laser light source 11a can be increased to near the standard of eye safe, and the amount of light of the line beam B10 can be increased more effectively. As a result, the range-finding range of the laser radar 1 can be expanded more remarkably while ensuring eye safety.
 <実施形態の効果>
 本実施形態によれば、以下の効果が奏される。
<Effect of embodiment>
According to this embodiment, the following effects are achieved.
 拡散光学素子15によってレーザ光が拡散されてラインビームB10が生成されるため、拡散光学素子15の拡散面15a上のラインビームB10の発光領域が、アイセーフ判定対象のアパーレント光源となる。拡散光学素子15を用いない場合、光偏向器14のミラー14a上で各レーザ光が重なる微小な領域が、アイセーフ判定対象のアパーレント光源となる。したがって、本実施形態によれば、拡散光学素子15を用いない場合に比べて、アパーレント光源の発光面積を顕著に広げることができ、人の目に対するラインビームB10の影響を顕著に抑制できる。よって、複数のレーザ光源11aを配置してラインビームB10の光量を効果的に高めつつ、ラインビームB10の人の目に対する影響を抑制することができる。よって、物体検出が可能な距離範囲を広げつつ、レーザレーダ1の安全性を高めることができる。 Since the laser beam is diffused by the diffusing optical element 15 to generate the line beam B10, the light emitting region of the line beam B10 on the diffusing surface 15a of the diffusing optical element 15 becomes an effective light source for eye safe determination. When the diffusing optical element 15 is not used, a minute region where the laser beams overlap on the mirror 14a of the optical deflector 14 becomes an appropriate light source for eye safe determination. Therefore, according to the present embodiment, the light emitting area of the exclusive light source can be remarkably expanded and the influence of the line beam B10 on the human eye can be remarkably suppressed as compared with the case where the diffusion optical element 15 is not used. Therefore, it is possible to suppress the influence of the line beam B10 on the human eye while effectively increasing the amount of light of the line beam B10 by arranging a plurality of laser light sources 11a. Therefore, it is possible to improve the safety of the laser radar 1 while expanding the distance range in which the object can be detected.
 また、複数のレーザ光が、それぞれ、平行光化された状態のまま拡散光学素子15に入射するため、各レーザ光の光線は、拡散光学素子15に対して略同じ入射角で入射する。よって、拡散光学素子15により、各レーザ光を、所定の拡散状態に適切にビーム整形できる。 Further, since the plurality of laser beams are incident on the diffused optical element 15 in a state of being collimated, the light rays of each laser beam are incident on the diffused optical element 15 at substantially the same incident angle. Therefore, the diffusion optical element 15 can appropriately beam-shape each laser beam into a predetermined diffusion state.
 図6(a)、(b)を参照して説明したように、拡散光学素子15における複数のレーザ光の強度中心間距離(距離D1)は10mm以上であることが好ましい。これにより、上記のように、各レーザ光源11aの発光強度をアイセーフの基準近くまで高めることができ、ラインビームB10の光量をより効果的に高めることができる。これにより、レーザレーダ1における測距範囲をより顕著に広げることができる。 As described with reference to FIGS. 6 (a) and 6 (b), the distance (distance D1) between the intensity centers of the plurality of laser beams in the diffusion optical element 15 is preferably 10 mm or more. As a result, as described above, the emission intensity of each laser light source 11a can be increased to near the standard of eye safe, and the amount of light of the line beam B10 can be increased more effectively. As a result, the ranging range of the laser radar 1 can be expanded more remarkably.
 図2、図4(a)および図6(a)に示したように、拡散光学素子15は、レーザ光を拡散させる拡散面15aが、ミラー14aを中心として、ミラー14aの回動軸R1に平行な方向に円弧状に湾曲している。これにより、ミラー14aで反射された各レーザ光を、互いに同じ入射状態で拡散面15aに入射させることができる。よって、拡散光学素子15の設計を容易にでき、且つ、各レーザ光を所定の拡散状態に適切にビーム整形できる。 As shown in FIGS. 2, 4 (a) and 6 (a), in the diffusion optical element 15, the diffusion surface 15a for diffusing the laser beam is centered on the mirror 14a and is aligned with the rotation axis R1 of the mirror 14a. It is curved in an arc shape in the parallel direction. As a result, the laser beams reflected by the mirror 14a can be incident on the diffusion surface 15a in the same incident state. Therefore, the design of the diffusion optical element 15 can be facilitated, and each laser beam can be appropriately beam-shaped to a predetermined diffusion state.
 図2に示したように、レンズ部40は、複数のレーザ光源11aから出射されたレーザ光をそれぞれファスト軸方向(第1方向)に平行光化するファスト軸シリンドリカルレンズ12(第1レンズ)と、ファスト軸シリンドリカルレンズ12によりファスト軸方向に平行光化された複数のレーザ光をそれぞれファスト軸方向に垂直なスロー軸方向(第2方向)に平行化するとともに、スロー軸方向に平行光化された複数のレーザ光をミラー14aに集光するスロー軸シリンドリカルレンズ13(第2レンズ)と、を備える。このように、ファスト軸方向の平行光化とスロー軸方向の平行光化を、ファスト軸シリンドリカルレンズ12とスロー軸シリンドリカルレンズ13とで個別に行うことにより、各方向の平行光化を微細に調整でき、各平行光化を正確に行うことができる。また、スロー軸シリンドリカルレンズ13に複数のレーザ光源の発光領域がスロー軸方向に1列に並んだ光源アレイ11を組み合わせることで、各レーザ光の光軸をミラー14aに集光させる作用を持たせることが可能となり、部品点数の削減と構成の簡素化を図ることができる。 As shown in FIG. 2, the lens unit 40 includes a fast-axis cylindrical lens 12 (first lens) that collimates the laser light emitted from the plurality of laser light sources 11a in the fast-axis direction (first direction). , The plurality of laser beams parallelized in the fast axis direction by the fast axis cylindrical lens 12 are collimated in the slow axis direction (second direction) perpendicular to the fast axis direction, and parallelized in the slow axis direction. A slow-axis cylindrical lens 13 (second lens) that concentrates a plurality of laser beams on the mirror 14a is provided. In this way, by individually performing parallel lightening in the fast axis direction and parallel lighting in the slow axis direction with the fast axis cylindrical lens 12 and the slow axis cylindrical lens 13, the parallel lightening in each direction can be finely adjusted. It is possible to make each parallel light accurately. Further, by combining the slow-axis cylindrical lens 13 with a light source array 11 in which light emitting regions of a plurality of laser light sources are arranged in a row in the slow-axis direction, the mirror 14a has an action of condensing the optical axes of each laser light. This makes it possible to reduce the number of parts and simplify the configuration.
 図2に示したように、複数のレーザ光源11aは、端面発光型の半導体レーザであって、スロー軸方向に沿って並んで配置され、ファスト軸シリンドリカルレンズ12は、複数のレーザ光をファスト軸方向に平行光化し、スロー軸シリンドリカルレンズ13は、複数のレーザ光をスロー軸方向に平行光化してミラー14aに集光する。このように、広がり角が大きいファスト軸方向を先にファスト軸シリンドリカルレンズ12で平行光化することにより、ファスト軸シリンドリカルレンズ12を小型化でき、且つ、ラインビームB10の短辺方向の幅を小さくできる。 As shown in FIG. 2, the plurality of laser light sources 11a are end face emitting semiconductor lasers and are arranged side by side along the slow axis direction, and the fast axis cylindrical lens 12 transmits the plurality of laser lights to the fast axis. The slow-axis cylindrical lens 13 parallelizes the light in the direction, and the plurality of laser beams are parallel-lighted in the slow-axis direction and focused on the mirror 14a. In this way, the fast-axis cylindrical lens 12 can be miniaturized and the width in the short side direction of the line beam B10 can be reduced by making the fast-axis cylindrical lens 12 into parallel light first in the fast-axis direction having a large divergence angle. can.
 <変更例1>
 上記実施形態では、拡散光学素子15の拡散面15aが円弧状に湾曲していたが、拡散光学素子15の拡散面15aが平坦であってもよい。
<Change example 1>
In the above embodiment, the diffusion surface 15a of the diffusion optical element 15 is curved in an arc shape, but the diffusion surface 15a of the diffusion optical element 15 may be flat.
 図7(a)は、この場合の構成例を示す図である。 FIG. 7A is a diagram showing a configuration example in this case.
 この構成例では、図7(a)に示すように、平板状の拡散光学素子15がミラー14aの後段に配置される。拡散光学素子15は、入射面と出射面がZ軸に垂直となるように配置される。拡散光学素子15の拡散面15a(出射面)には、上記実施形態と同様、半円筒形状の多数のマイクロレンズが形成されている。マイクロレンズは、母線がY軸方向に平行で、X軸方向に隙間無く並んでいる。マイクロレンズで拡散された各レーザ光が重なり合って、ラインビームB10が生成される。 In this configuration example, as shown in FIG. 7A, the flat plate-shaped diffusion optical element 15 is arranged after the mirror 14a. The diffusion optical element 15 is arranged so that the entrance surface and the exit surface are perpendicular to the Z axis. Similar to the above embodiment, a large number of semi-cylindrical microlenses are formed on the diffusing surface 15a (exiting surface) of the diffusing optical element 15. In the microlens, the generatrix is parallel to the Y-axis direction and is arranged without a gap in the X-axis direction. The laser beams diffused by the microlens overlap each other to generate the line beam B10.
 この構成例によっても、上記実施形態と同様、拡散光学素子15の拡散面15a上のラインビームB10の発光領域が、アイセーフ判定対象のアパーレント光源となるため、アパーレント光源の発光面積を顕著に広げることができ、人の目に対するラインビームB10の影響を顕著に抑制できる。よって、複数のレーザ光源11aを配置してラインビームB10の光量を効果的に高めつつ、人の目に対するラインビームB10の影響を抑制することができる。 Also in this configuration example, as in the above embodiment, the light emitting region of the line beam B10 on the diffusing surface 15a of the diffusing optical element 15 becomes the apparent light source to be determined by the eye safe, so that the light emitting area of the apparent light source is remarkably expanded. The effect of the line beam B10 on the human eye can be remarkably suppressed. Therefore, it is possible to suppress the influence of the line beam B10 on the human eye while effectively increasing the amount of light of the line beam B10 by arranging a plurality of laser light sources 11a.
 図7(a)の構成例では、上記実施形態に比べて、拡散光学素子15の外観形状がシンプルである。しかし、レーザ光ごとに拡散光学素子15に対する入射角が異なるため、各レーザ光が適正にビーム整形されるように、レーザ光の入射領域ごとに、拡散光学素子15の拡散面15a(マイクロレンズ)の設計を調整する必要がある。したがって、上記実施形態に比べて、拡散面15aの設計がやや複雑になる。 In the configuration example of FIG. 7A, the appearance shape of the diffusion optical element 15 is simpler than that of the above embodiment. However, since the incident angle with respect to the diffusing optical element 15 is different for each laser beam, the diffusing surface 15a (microlens) of the diffusing optical element 15 is provided for each incident region of the laser beam so that each laser beam is properly beam-shaped. The design needs to be adjusted. Therefore, the design of the diffusion surface 15a becomes slightly complicated as compared with the above embodiment.
 この構成例においても、上記実施形態と同様、距離D1が10mm以上となるように、拡散光学素子15が配置されることが好ましい。これにより、各レーザ光源11aの発光強度をアイセーフの基準近くまで高めることができ、ラインビームB10の光量をより効果的に高めることができる。 Also in this configuration example, it is preferable that the diffusion optical element 15 is arranged so that the distance D1 is 10 mm or more, as in the above embodiment. As a result, the emission intensity of each laser light source 11a can be increased to near the standard of eye safe, and the amount of light of the line beam B10 can be increased more effectively.
 また、図7(b)に示すように、拡散光学素子15の入射面におけるレーザ光間の距離D1が一定となるように、スロー軸シリンドリカルレンズ13が構成されてもよい。この場合も、距離D1が10mm以上となるように、拡散光学素子15が配置されることが好ましい。これにより、各レーザ光源11aの発光強度をアイセーフの基準近くまで高めることができ、ラインビームB10の光量をより効果的に高めることができる。 Further, as shown in FIG. 7B, the slow axis cylindrical lens 13 may be configured so that the distance D1 between the laser beams on the incident surface of the diffusion optical element 15 is constant. Also in this case, it is preferable that the diffusion optical element 15 is arranged so that the distance D1 is 10 mm or more. As a result, the emission intensity of each laser light source 11a can be increased to near the standard of eye safe, and the amount of light of the line beam B10 can be increased more effectively.
 なお、図6(a)では、レーザ光の角度ピッチが一定となるように、スロー軸シリンドリカルレンズ13のレンズ面13aが構成されたが、図6(a)の構成においても、投影面P1におけるレーザ光間の距離D1が一定となるように、スロー軸シリンドリカルレンズ13が構成されてもよい。この場合も、距離D1が10mm以上となるように、拡散光学素子15が配置されることが好ましい。 In FIG. 6A, the lens surface 13a of the slow axis cylindrical lens 13 is configured so that the angular pitch of the laser beam is constant, but also in the configuration of FIG. 6A, the projection surface P1 is formed. The slow axis cylindrical lens 13 may be configured so that the distance D1 between the laser beams is constant. Also in this case, it is preferable that the diffusion optical element 15 is arranged so that the distance D1 is 10 mm or more.
 <変更例2>
 上記実施形態では、拡散光学素子15の拡散面15aがX軸方向に円弧状に湾曲していたが、拡散光学素子15の拡散面15aがY軸方向に円弧状に湾曲していてもよい。
<Change example 2>
In the above embodiment, the diffusion surface 15a of the diffusion optical element 15 is curved in an arc shape in the X-axis direction, but the diffusion surface 15a of the diffusion optical element 15 may be curved in an arc shape in the Y-axis direction.
 図8(a)、(b)は、この場合の構成例を示す図である。 8 (a) and 8 (b) are diagrams showing a configuration example in this case.
 この構成例では、Y軸方向に円弧状に湾曲した板状の拡散光学素子15がミラー14aの後段に配置される。拡散光学素子15は、円筒の一部を母線に沿って切り出した形状である。円筒の母線がX軸に平行となるように、拡散光学素子15が配置される。周方向の中央の母線が、ミラー14aの回動軸R1と、Z軸方向に並ぶ。拡散光学素子15は、円弧を含む円の中心がミラー14aの中心を通るX軸に平行な直線上に位置付けられる位置に配置される。 In this configuration example, a plate-shaped diffusion optical element 15 curved in an arc shape in the Y-axis direction is arranged after the mirror 14a. The diffusion optical element 15 has a shape obtained by cutting out a part of a cylinder along a generatrix. The diffusion optical element 15 is arranged so that the generatrix of the cylinder is parallel to the X-axis. The central bus in the circumferential direction is aligned with the rotation axis R1 of the mirror 14a in the Z-axis direction. The diffusion optical element 15 is arranged at a position where the center of the circle including the arc is positioned on a straight line parallel to the X axis passing through the center of the mirror 14a.
 拡散光学素子15の拡散面15a(出射面)には、断面が半円形状の多数のマイクロレンズが形成されている。マイクロレンズは、稜線が円弧に沿う方向(拡散光学素子15の周方向)に延びており、X軸方向に隙間無く並んでいる。この場合も、マイクロレンズで拡散された各レーザ光が重なり合って、ラインビームB10が生成される。 A large number of microlenses having a semicircular cross section are formed on the diffusion surface 15a (exit surface) of the diffusion optical element 15. The ridges of the microlenses extend in the direction along the arc (circumferential direction of the diffusion optical element 15), and are arranged without gaps in the X-axis direction. Also in this case, the laser beams diffused by the microlens overlap each other to generate the line beam B10.
 この構成例によっても、上記実施形態と同様、拡散光学素子15の拡散面15a上のラインビームB10の発光領域が、アイセーフ判定対象のアパーレント光源となるため、アパーレント光源の発光面積を顕著に広げることができ、人の目に対するラインビームB10の影響を顕著に抑制できる。よって、複数のレーザ光源11aを配置してラインビームB10の光量を効果的に高めつつ、人の目に対するラインビームB10の影響を抑制することができる。 Also in this configuration example, as in the above embodiment, the light emitting region of the line beam B10 on the diffusing surface 15a of the diffusing optical element 15 becomes the apparent light source to be determined by the eye safe, so that the light emitting area of the apparent light source is remarkably expanded. The effect of the line beam B10 on the human eye can be remarkably suppressed. Therefore, it is possible to suppress the influence of the line beam B10 on the human eye while effectively increasing the amount of light of the line beam B10 by arranging a plurality of laser light sources 11a.
 また、この構成例では、ミラー14aが回動して各レーザ光が走査されても、拡散光学素子15の拡散面15aに対する各レーザ光の入射角が略変化しない。このため、ラインビームB10の走査方向において拡散面15aの設計を簡易化でき、ラインビームB10の各走査位置において各レーザ光を適正にビーム整形できる。反面、上記変更例1と同様、レーザ光ごとに拡散光学素子15に対する入射角が異なるため、各レーザ光が適正にビーム整形されるように、レーザ光の入射領域ごとに、拡散光学素子15の拡散面15a(マイクロレンズ)の設計を調整する必要がある。 Further, in this configuration example, even if the mirror 14a rotates and each laser beam is scanned, the incident angle of each laser beam with respect to the diffusion surface 15a of the diffusion optical element 15 does not substantially change. Therefore, the design of the diffusion surface 15a can be simplified in the scanning direction of the line beam B10, and each laser beam can be appropriately beam-shaped at each scanning position of the line beam B10. On the other hand, as in the above modification 1, since the incident angle with respect to the diffused optical element 15 is different for each laser beam, the diffused optical element 15 is provided for each incident region of the laser beam so that each laser beam is properly beam-shaped. It is necessary to adjust the design of the diffusion surface 15a (microlens).
 この構成例においても、上記実施形態と同様、拡散光学素子15の入射面上におけるレーザ光間の距離D1が10mm以上となるように、拡散光学素子15が配置されることが好ましい。これにより、各レーザ光源11aの発光強度をアイセーフの基準近くまで高めることができ、ラインビームB10の光量をより効果的に高めることができる。 In this configuration example as well, it is preferable that the diffusion optical element 15 is arranged so that the distance D1 between the laser beams on the incident surface of the diffusion optical element 15 is 10 mm or more, as in the above embodiment. As a result, the emission intensity of each laser light source 11a can be increased to near the standard of eye safe, and the amount of light of the line beam B10 can be increased more effectively.
 また、図7(b)と同様、拡散光学素子15の入射面におけるレーザ光間の距離D1が一定となるように、スロー軸シリンドリカルレンズ13が構成されてもよい。この場合も、距離D1が10mm以上となるように、拡散光学素子15が配置されることが好ましい。 Further, as in FIG. 7B, the slow axis cylindrical lens 13 may be configured so that the distance D1 between the laser beams on the incident surface of the diffusion optical element 15 is constant. Also in this case, it is preferable that the diffusion optical element 15 is arranged so that the distance D1 is 10 mm or more.
 また、X軸方向とY軸方向の両方において、ミラー14aの中央を中心に、拡散面15aが円弧状に湾曲していてもよい。 Further, the diffusion surface 15a may be curved in an arc shape around the center of the mirror 14a in both the X-axis direction and the Y-axis direction.
 <変更例3>
 上記実施形態では、図3(a)~(c)に示したように、各レーザ光源11aが1つの発光領域117を有したが、各レーザ光源11aがファスト軸方向に複数の発光領域117を備えてもよい。
<Change example 3>
In the above embodiment, as shown in FIGS. 3A to 3C, each laser light source 11a has one light emitting region 117, but each laser light source 11a has a plurality of light emitting regions 117 in the fast axis direction. You may prepare.
 図9(a)~(c)は、この場合の構成例を示す図である。 9 (a) to 9 (c) are diagrams showing a configuration example in this case.
 図9(a)に示すように、この構成例では、1つのレーザ光源11aに複数の発光領域117がファスト軸方向(Z軸方向)に並ぶように形成されている。N型基板114とコンタクト層115との間に、活性層111、N型クラッド層112およびP型クラッド層113の組が、トンネル接合層119を介して積層されている。これにより、3つの発光領域117が形成されている。 As shown in FIG. 9A, in this configuration example, a plurality of light emitting regions 117 are formed so as to be arranged in the fast axis direction (Z axis direction) in one laser light source 11a. A pair of the active layer 111, the N-type clad layer 112, and the P-type clad layer 113 are laminated via the tunnel junction layer 119 between the N-type substrate 114 and the contact layer 115. As a result, three light emitting regions 117 are formed.
 図3(a)の場合と同様、発光領域117は、活性層111に並行な方向の幅W1が、活性層111に垂直な方向の幅W2よりも広くなっている。電極116に駆動電流を印加することで、図9(b)に示すように、3つの発光領域117からそれぞれレーザ光が出射される。ビームB20は、ファスト軸118aに平行な方向の広がり角がスロー軸118bに平行な方向よりも大きくなる。このため、ビームB20は、ファスト軸方向に長い楕円形状となる。 Similar to the case of FIG. 3A, in the light emitting region 117, the width W1 in the direction parallel to the active layer 111 is wider than the width W2 in the direction perpendicular to the active layer 111. By applying a drive current to the electrode 116, laser light is emitted from each of the three light emitting regions 117, as shown in FIG. 9B. The beam B20 has a divergence angle in the direction parallel to the fast axis 118a larger than that in the direction parallel to the slow axis 118b. Therefore, the beam B20 has an elliptical shape that is long in the fast axis direction.
 この構成例では、図9(c)に示すように、複数のレーザ光源11aがスロー軸方向に並ぶように配置されて光源アレイ11が構成される。これにより、複数の発光領域117が、スロー軸方向のみならずファスト軸方向にも並ぶように配置される。この場合も複数の発光領域117がスロー軸方向およびファスト軸方向に並ぶように形成された1つの半導体発光素子がベース120に設置されてもよい。 In this configuration example, as shown in FIG. 9C, a plurality of laser light sources 11a are arranged so as to be arranged in the slow axis direction to form the light source array 11. As a result, the plurality of light emitting regions 117 are arranged so as to line up not only in the slow axis direction but also in the fast axis direction. In this case as well, one semiconductor light emitting element formed so that the plurality of light emitting regions 117 are arranged in the slow axis direction and the fast axis direction may be installed on the base 120.
 この構成例では、図3(c)の構成に比べて発光領域117の数が増えるため、ラインビームB10の光量を高めることができる。ただし、この構成では、図10(a)に示すように、ファスト軸シリンドリカルレンズ12の光軸に対して、上下の発光領域117の位置がずれるため、これら発光領域117から出射されたレーザ光の中心軸が、ファスト軸シリンドリカルレンズ12によって傾けられる。 In this configuration example, the number of light emitting regions 117 is increased as compared with the configuration of FIG. 3C, so that the amount of light of the line beam B10 can be increased. However, in this configuration, as shown in FIG. 10A, the positions of the upper and lower light emitting regions 117 are displaced with respect to the optical axis of the fast axis cylindrical lens 12, so that the laser light emitted from these light emitting regions 117 The central axis is tilted by the fast axis cylindrical lens 12.
 ここで、ファスト軸シリンドリカルレンズ12の光軸に対する発光領域117の変位量をd1、ファスト軸シリンドリカルレンズ12の焦点距離をf1とすると、発光領域117から出射されたレーザ光の中心軸の傾き角θ1は、次式で規定され得る。 Here, assuming that the displacement amount of the light emitting region 117 with respect to the optical axis of the fast axis cylindrical lens 12 is d1 and the focal length of the fast axis cylindrical lens 12 is f1, the tilt angle θ1 of the central axis of the laser beam emitted from the light emitting region 117. Can be specified by the following equation.
  θ1=tan-1(d1/f1) …(1) θ1 = tan -1 (d1 / f1) ... (1)
 このように、上下の発光領域117から出射されたレーザ光は、中央の発光領域117から出射されたレーザ光に対してファスト軸方向に傾く方向に進むため、上記実施形態に比べて、ラインビームB10の短辺方向が広がってしまう。ここで、ラインビームB10の短辺方向の広がりを抑制するためには、上記式(1)に基づき、ファスト軸方向に並ぶ発光領域117の間隔(変位量d1)をなるべく狭くすることが好ましい。ファスト軸方向に並ぶ発光領域117の間隔は、少なくとも、レーザ光源11a間の間隔よりも小さいことが好ましい。また、ファスト軸シリンドリカルレンズ12の焦点距離は、なるべく長い方が好ましい。これにより、傾き角θ1を小さくでき、ラインビームB10の短辺方向に広がりを抑制できる。 As described above, the laser light emitted from the upper and lower light emitting regions 117 travels in a direction inclined in the fast axis direction with respect to the laser light emitted from the central light emitting region 117, so that the line beam is compared with the above embodiment. The short side direction of B10 is widened. Here, in order to suppress the spread of the line beam B10 in the short side direction, it is preferable to make the interval (displacement amount d1) of the light emitting regions 117 arranged in the fast axis direction as narrow as possible based on the above equation (1). It is preferable that the distance between the light emitting regions 117 arranged in the fast axis direction is at least smaller than the distance between the laser light sources 11a. Further, the focal length of the fast-axis cylindrical lens 12 is preferably as long as possible. As a result, the inclination angle θ1 can be reduced, and the spread of the line beam B10 in the short side direction can be suppressed.
 上記のように発光領域がファスト軸方向に並ぶ光源アレイ11に対し、ファスト軸シリンドリカルレンズ12でファスト軸を平行光にした場合、ファスト軸に並んだ発光領域数に応じた本数のラインビームが形成される。この場合は、複数のラインを同時に検出することが可能である。ラインが1本でなければシステム処理上問題となる場合は、ラインの短辺方向の広がり角が犠牲となるが、光源アレイ11の配置位置をファスト軸シリンドリカルレンズ12の焦点位置から少しずらすことで、ラインビームの発散角を広げ、各ラインビームを重ねて一本とすることも可能である。 When the fast axis is made parallel light by the fast axis cylindrical lens 12 with respect to the light source array 11 in which the light emitting regions are arranged in the fast axis direction as described above, the number of line beams corresponding to the number of light emitting regions arranged in the fast axis is formed. Will be done. In this case, it is possible to detect a plurality of lines at the same time. If there is not one line and there is a problem in system processing, the spread angle in the short side direction of the line is sacrificed, but by slightly shifting the arrangement position of the light source array 11 from the focal position of the fast axis cylindrical lens 12. , It is also possible to widen the divergence angle of the line beams and stack each line beam into one.
 なお、上記実施形態では、複数のレーザ光源11aが1列のみ配置されているため、図10(b)に示すように、発光領域117から出射されたレーザ光をファスト軸シリンドリカルレンズ12によりファスト軸方向に略平行光化することができる。このため、ラインビームB10の短辺方向が広がりを抑制でき、より遠方まで物体を効率的に検出することができる。 In the above embodiment, since the plurality of laser light sources 11a are arranged in only one row, as shown in FIG. 10B, the laser light emitted from the light emitting region 117 is fast-axis by the fast-axis cylindrical lens 12. It can be made into substantially parallel light in the direction. Therefore, the spread can be suppressed in the short side direction of the line beam B10, and the object can be efficiently detected farther.
 <変更例4>
 上記実施形態では、図11(a)に示すように、光偏向器14に配置されるミラー14aとして、円形のミラーが用いられ得る。ここでは、光偏向器14がMEMSミラーにより構成されている。この場合、光偏向器14は、平面視において正方形の支持部14bと、支持部14bの周囲を囲む枠部14cと、支持部14bの対向する辺の中間位置において支持部14bと枠部14cとを連結する梁部14dとを備える。支持部14bの上面に、ミラー14aが設置される。支持部14bは、図示しない駆動部によって、2つの梁部14dを軸として回動する。2つの梁部14dを結ぶ軸が、支持部14bおよびミラー14aの回動軸R1となる。ビームは、破線矢印の方向にミラー14aに入射する。
<Change example 4>
In the above embodiment, as shown in FIG. 11A, a circular mirror can be used as the mirror 14a arranged in the light deflector 14. Here, the light deflector 14 is configured by a MEMS mirror. In this case, the optical deflector 14 has a square support portion 14b in a plan view, a frame portion 14c surrounding the support portion 14b, and a support portion 14b and a frame portion 14c at an intermediate position between the opposite sides of the support portion 14b. It is provided with a beam portion 14d for connecting the above. A mirror 14a is installed on the upper surface of the support portion 14b. The support portion 14b is rotated around the two beam portions 14d by a drive portion (not shown). The axis connecting the two beam portions 14d is the rotation axis R1 of the support portion 14b and the mirror 14a. The beam is incident on the mirror 14a in the direction of the dashed arrow.
 図11(b)は、ミラー14a付近を平面視した図である。上記のように、レーザ光源11aはスロー軸方向に並び、レーザ光源11aからの出射光をレーザ光源11aの直近に配置したファスト軸シリンドリカルレンズ12で平行光化していることから、ミラー14aに入射するビームのビームスポットBS1の形状は、図11(b)に示すように、スロー軸方向に長い形状となる。このため、ミラー14aの形状が円形である場合、ミラー14aには、ビームが入射しない余分な領域が広く生じることになる。 FIG. 11B is a plan view of the vicinity of the mirror 14a. As described above, the laser light sources 11a are aligned in the slow axis direction, and the light emitted from the laser light source 11a is collimated by the fast-axis cylindrical lens 12 arranged in the immediate vicinity of the laser light source 11a, so that the light is incident on the mirror 14a. As shown in FIG. 11B, the shape of the beam spot BS1 of the beam is long in the slow axis direction. Therefore, when the shape of the mirror 14a is circular, an extra region in which the beam does not enter is widely generated in the mirror 14a.
 これに対し、本変更例4では、図12(a)、(b)に示すように、一方向に長い形状を有するミラー14eが光偏向器14に設置される。すなわち、長手方向がスロー軸方向(レーザ光源11aの並び方向)に対応する方向に平行となるように、楕円形状のミラー14eが支持部14bに設置される。これにより、図10(a)に示した円形のミラー14aに比べて、ビームが入射しない余分なミラー14eの領域が削減され、且つ、ミラー14eの重量を低減できる。その結果、ミラー14eを一定角度で駆動する際に、ミラー14eの支持部14bで発生する応力を低減でき、より大きな振れ角が実現でき、もしくは、ロバスト性の高いMEMSミラーを実現できる。また、ミラー14eの駆動時に発生する動的撓み(ミラー14eの歪や変形)を小さくすることができる。よって、より安定的に、ラインビームB10を走査させることができる。 On the other hand, in the present modification 4, as shown in FIGS. 12A and 12B, a mirror 14e having a long shape in one direction is installed in the optical deflector 14. That is, the elliptical mirror 14e is installed on the support portion 14b so that the longitudinal direction is parallel to the direction corresponding to the slow axis direction (arrangement direction of the laser light sources 11a). As a result, as compared with the circular mirror 14a shown in FIG. 10A, the region of the extra mirror 14e where the beam does not enter can be reduced, and the weight of the mirror 14e can be reduced. As a result, when the mirror 14e is driven at a constant angle, the stress generated in the support portion 14b of the mirror 14e can be reduced, a larger deflection angle can be realized, or a MEMS mirror with high robustness can be realized. Further, the dynamic deflection (distortion or deformation of the mirror 14e) generated when the mirror 14e is driven can be reduced. Therefore, the line beam B10 can be scanned more stably.
 なお、ミラー14eの形状は、必ずしも楕円でなくてもよく、一方向に長い形状であればよい。たとえば、ミラー14eの形状が、長円やトラック形状、長方形等であってもよい。上記実施形態においても、ミラー14aの形状は、円形に限らず、正方形等の他の形状であってもよい。 The shape of the mirror 14e does not necessarily have to be an ellipse, and may be a shape that is long in one direction. For example, the shape of the mirror 14e may be an oval, a track shape, a rectangle, or the like. Also in the above embodiment, the shape of the mirror 14a is not limited to a circle, and may be another shape such as a square.
 <他の変更例>
 上記実施形態および各変更例では、拡散光学素子15の出射面に拡散面15aが配置されたが、拡散光学素子15の入射面に拡散面15aが配置されてもよい。また、拡散光学素子15は、マイクロレンズアレイに限られるものではなく、回折光学素子等、ラインビームB10の長辺方向にレーザ光を拡散させ得る限りにおいて、他の光学素子が用いられてもよい。
<Other changes>
In the above embodiment and each modification, the diffusion surface 15a is arranged on the exit surface of the diffusion optical element 15, but the diffusion surface 15a may be arranged on the incident surface of the diffusion optical element 15. Further, the diffusion optical element 15 is not limited to the microlens array, and other optical elements such as a diffraction optical element may be used as long as the laser beam can be diffused in the long side direction of the line beam B10. ..
 また、上記実施形態では、拡散光学素子15は板状の形状であったが、拡散光学素子15の形状はこの限りでない。たとえば、図2において、Y軸方向に見たときの拡散光学素子15の形状が、半円筒形状であってもよい。この場合、拡散光学素子15は、入射面が平面で出射面が円弧状の曲面である部材からなり、出射面に、上記実施形態と同様の拡散面15aが形成される。図8(a)、(b)に示した拡散光学素子15についても、同様に、半円筒形状であってもよい。 Further, in the above embodiment, the diffusion optical element 15 has a plate-like shape, but the shape of the diffusion optical element 15 is not limited to this. For example, in FIG. 2, the shape of the diffusion optical element 15 when viewed in the Y-axis direction may be a semi-cylindrical shape. In this case, the diffusion optical element 15 is made of a member whose incident surface is a flat surface and whose exit surface is an arcuate curved surface, and a diffusion surface 15a similar to that of the above embodiment is formed on the emission surface. Similarly, the diffusion optical element 15 shown in FIGS. 8A and 8B may have a semi-cylindrical shape.
 上記実施形態では、レーザ光源11aとして端面発光型のレーザダイオードが用いられたが、VCSEL(Vertical Cavity Surface Emitting Laser)等の面発光型のレーザ光源が直線状またはマトリクス状に並ぶ光源アレイ11が用いられてもよい。 In the above embodiment, an end face emitting laser diode is used as the laser light source 11a, but a light source array 11 in which surface emitting laser light sources such as VCSEL (Vertical Cavity Surface Emitting Laser) are arranged in a linear or matrix shape is used. May be done.
 また、上記実施形態では、図5に示したように、水平方向に長いラインビームB10が鉛直方向に走査されたが、鉛直方向に長いラインビームが水平方向に走査されてもよい。この構成では、ラインビームB10の長辺方向の広がり角が小さくて済むが、ラインビームB10の水平方向の振り角が大きくなる。 Further, in the above embodiment, as shown in FIG. 5, the horizontally long line beam B10 is scanned in the vertical direction, but the vertically long line beam may be scanned in the horizontal direction. In this configuration, the spread angle of the line beam B10 in the long side direction is small, but the swing angle of the line beam B10 in the horizontal direction is large.
 また、上記実施形態では、光偏向器14としてMEMSミラーを用いたが、光偏向器14として磁気可動ミラーやガルバノミラー等の他の光偏向器を用いてもよい。 Further, in the above embodiment, the MEMS mirror is used as the light deflector 14, but another light deflector such as a magnetically movable mirror or a galvano mirror may be used as the light deflector 14.
 また、上記実施形態では、光源アレイ11、ファスト軸シリンドリカルレンズ12、スロー軸シリンドリカルレンズ13および光偏向器14が一方向に並ぶようにラインビーム走査光学系10が構成されたが、ラインビーム走査光学系10のレイアウトはこれに限られるものではない。たとえば、光路の途中にミラーを配置して光路を折り曲げるようにラインビーム走査光学系10が構成されてもよい。また、第1のシリンドリカルレンズが、第2のシリンドリカルの後段側に配置されてもよい。 Further, in the above embodiment, the line beam scanning optical system 10 is configured such that the light source array 11, the fast axis cylindrical lens 12, the slow axis cylindrical lens 13, and the optical deflector 14 are arranged in one direction. The layout of the system 10 is not limited to this. For example, the line beam scanning optical system 10 may be configured so as to arrange a mirror in the middle of the optical path and bend the optical path. Further, the first cylindrical lens may be arranged on the rear side of the second cylindrical.
 また、光源アレイ11に配置されるレーザ光源11aの数は、上記実施形態に例示した数に限られるものではない。また、必ずしも複数のレーザ光源11aがユニット化されなくてもよく、複数のレーザ光源が個別に配置されてもよい。 Further, the number of laser light sources 11a arranged in the light source array 11 is not limited to the number illustrated in the above embodiment. Further, the plurality of laser light sources 11a do not necessarily have to be unitized, and the plurality of laser light sources may be individually arranged.
 また、上記実施形態では、レーザレーダ1が車両200に搭載されたが、他の移動体にレーザレーダ1が搭載されてもよい。また、レーザレーダ1が移動体以外の器機や設備に搭載されてもよい。また、レーザレーダ1が物体検出の機能のみを備えていてもよい。 Further, in the above embodiment, the laser radar 1 is mounted on the vehicle 200, but the laser radar 1 may be mounted on another moving body. Further, the laser radar 1 may be mounted on a device or equipment other than the mobile body. Further, the laser radar 1 may have only the function of detecting an object.
 また、第1のシリンドリカルレンズと第2のシリンドリカルレンズは一体とし、スロー軸とファスト軸にそれぞれ異なる非球面のトロイダルレンズとして構成してもよい。レンズ部40の構成は、種々変更可能である。 Further, the first cylindrical lens and the second cylindrical lens may be integrated and configured as aspherical toroidal lenses having different slow and fast axes. The configuration of the lens unit 40 can be variously changed.
 この他、本発明の実施形態は、特許請求の範囲に示された技術的思想の範囲内において、適宜、種々の変更が可能である。 In addition, various modifications of the embodiment of the present invention can be made as appropriate within the scope of the technical idea shown in the claims.
  1 … レーザレーダ
  10 … ラインビーム走査光学系
  11a … レーザ光源
  12 … ファスト軸シリンドリカルレンズ(第1レンズまたは第2レンズ)
  13 … スロー軸シリンドリカルレンズ(第2レンズまたは第1レンズ)
  14 … 光偏向器
  14a、14e … ミラー
  15 … 拡散光学素子
  15a … 拡散面
  20 … 受光光学系
  40 … レンズ部
  117 … 発光領域
  118a … ファスト軸
  118b … スロー軸
1 ... Laser radar 10 ... Line beam scanning optical system 11a ... Laser light source 12 ... Fast axis cylindrical lens (1st lens or 2nd lens)
13 ... Slow axis cylindrical lens (second lens or first lens)
14 ... Optical deflectors 14a, 14e ... Mirror 15 ... Diffusing optical element 15a ... Diffusing surface 20 ... Light receiving optical system 40 ... Lens unit 117 ... Light emitting area 118a ... Fast axis 118b ... Slow axis

Claims (10)

  1.  一方向に長いラインビームを生成してその短辺方向に前記ラインビームを走査させるラインビーム走査光学系であって、
     前記ラインビームの長辺に対応する方向に並べて配置された複数のレーザ光源と、
     前記ラインビームを前記短辺方向に偏向させるミラーを有する光偏向器と、
     前記複数のレーザ光源から出射されるレーザ光をそれぞれ平行光化するとともに、平行光化された前記レーザ光をそれぞれ前記ミラーに集光するレンズ部と、
     前記ミラーにより反射された前記複数のレーザ光をそれぞれ前記長辺方向に拡散させる拡散光学素子と、を備え、
     前記複数のレーザ光は、それぞれ、前記レンズ部により平行光化された状態のまま前記拡散光学素子に入射する、
    ことを特徴とするラインビーム走査光学系。
     
    A line beam scanning optical system that generates a long line beam in one direction and scans the line beam in the short side direction thereof.
    A plurality of laser light sources arranged side by side in the direction corresponding to the long side of the line beam,
    An optical deflector having a mirror that deflects the line beam in the short side direction, and
    A lens unit that collimates the laser beams emitted from the plurality of laser light sources and concentrates the parallelized laser beams on the mirror.
    A diffusion optical element that diffuses the plurality of laser beams reflected by the mirror in the long side direction, respectively, is provided.
    Each of the plurality of laser beams is incident on the diffusion optical element in a state of being collimated by the lens portion.
    A line beam scanning optical system characterized by this.
  2.  請求項1に記載のラインビーム走査光学系において、
     前記拡散光学素子における前記複数のレーザ光の強度中心間距離が10mm以上である、
    ことを特徴とするラインビーム走査光学系。
     
    In the line beam scanning optical system according to claim 1,
    The distance between the intensity centers of the plurality of laser beams in the diffusion optical element is 10 mm or more.
    A line beam scanning optical system characterized by this.
  3.  請求項1または2に記載のラインビーム走査光学系において、
     前記拡散光学素子は、前記レーザ光を拡散させる拡散面が、前記ミラーを中心として、前記ミラーの回動軸に平行な方向に円弧状に湾曲している、
    ことを特徴とするラインビーム走査光学系。
     
    In the line beam scanning optical system according to claim 1 or 2.
    In the diffusion optical element, the diffusion surface for diffusing the laser beam is curved in an arc shape in a direction parallel to the rotation axis of the mirror with the mirror as the center.
    A line beam scanning optical system characterized by this.
  4.  請求項1ないし3の何れか一項に記載のラインビーム走査光学系において、
     前記拡散光学素子は、前記レーザ光を拡散させる拡散面が、前記ミラーを中心として、前記ミラーの回動軸に垂直な方向に円弧状に湾曲している、
    ことを特徴とするラインビーム走査光学系。
     
    In the line beam scanning optical system according to any one of claims 1 to 3.
    In the diffusion optical element, the diffusion surface for diffusing the laser beam is curved in an arc shape in a direction perpendicular to the rotation axis of the mirror with the mirror as the center.
    A line beam scanning optical system characterized by this.
  5.  請求項1または2に記載のラインビーム走査光学系において、
     前記拡散光学素子は、前記レーザ光を拡散させる拡散面が、平坦である、
    ことを特徴とするラインビーム走査光学系。
     
    In the line beam scanning optical system according to claim 1 or 2.
    The diffusion optical element has a flat diffusion surface for diffusing the laser beam.
    A line beam scanning optical system characterized by this.
  6.  請求項1ないし5の何れか一項に記載のラインビーム走査光学系において、
     前記レンズ部は、
      前記複数のレーザ光源から出射された前記レーザ光をそれぞれ第1方向に平行光化する第1レンズと、
      前記第1レンズにより前記第1方向に平行光化された前記複数のレーザ光をそれぞれ前記第1方向に垂直な第2方向に平行化するとともに、前記第2方向に平行光化された前記複数のレーザ光を前記ミラーに集光する第2レンズと、を備える、
    ことを特徴とするラインビーム走査光学系。
     
    In the line beam scanning optical system according to any one of claims 1 to 5.
    The lens unit
    A first lens that collimates the laser light emitted from the plurality of laser light sources in the first direction, and
    The plurality of laser beams collimated in the first direction by the first lens are collimated in a second direction perpendicular to the first direction, and the plurality of laser beams collimated in the second direction. A second lens that collects the laser light of the above on the mirror.
    A line beam scanning optical system characterized by this.
  7.  請求項6に記載のラインビーム走査光学系において、
     前記複数のレーザ光源は、端面発光型の半導体レーザであって、スロー軸方向に沿って並んで配置され、
     前記第1レンズは、前記複数のレーザ光をファスト軸方向に平行光化し、
     前記第2レンズは、前記複数のレーザ光をスロー軸方向に平行光化して前記ミラーに集光する、
    ことを特徴とするラインビーム走査光学系。
     
    In the line beam scanning optical system according to claim 6,
    The plurality of laser light sources are end face emitting semiconductor lasers, which are arranged side by side along the slow axis direction.
    The first lens collimates the plurality of laser beams in the fast axis direction.
    The second lens parallelizes the plurality of laser beams in the slow axis direction and collects them on the mirror.
    A line beam scanning optical system characterized by this.
  8.  請求項1ないし7の何れか一項に記載のラインビーム走査光学系において、
     前記各レーザ光源は、前記並び方向に垂直な方向に複数の発光領域を備え、前記発光領域間の間隔が、前記レーザ光源間の間隔より小さい、
    ことを特徴とするラインビーム走査光学系。
     
    In the line beam scanning optical system according to any one of claims 1 to 7.
    Each of the laser light sources includes a plurality of light emitting regions in a direction perpendicular to the alignment direction, and the distance between the light emitting regions is smaller than the distance between the laser light sources.
    A line beam scanning optical system characterized by this.
  9.  請求項1ないし8の何れか一項に記載のラインビーム走査光学系において、
     前記ミラーは、一方向に長い形状を有し、前記形状の長手方向が前記並び方向に対応する方向に平行となるように配置されている、
    ことを特徴とするラインビーム走査光学系。
     
    In the line beam scanning optical system according to any one of claims 1 to 8.
    The mirror has a long shape in one direction, and is arranged so that the longitudinal direction of the shape is parallel to the direction corresponding to the alignment direction.
    A line beam scanning optical system characterized by this.
  10.  請求項1ないし9の何れか一項に記載のラインビーム走査光学系と、
     前記ラインビーム走査光学系から投射されたレーザ光の物体からの反射光を受光する受光光学系と、を備える、
    ことを特徴とするレーザレーダ。
    The line beam scanning optical system according to any one of claims 1 to 9.
    A light receiving optical system that receives reflected light from an object of laser light projected from the line beam scanning optical system is provided.
    A laser radar characterized by that.
PCT/JP2021/003109 2020-03-26 2021-01-28 Line beam scanning optical system, and laser radar WO2021192601A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020056278 2020-03-26
JP2020-056278 2020-03-26

Publications (1)

Publication Number Publication Date
WO2021192601A1 true WO2021192601A1 (en) 2021-09-30

Family

ID=77890223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003109 WO2021192601A1 (en) 2020-03-26 2021-01-28 Line beam scanning optical system, and laser radar

Country Status (1)

Country Link
WO (1) WO2021192601A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009037172A (en) * 2007-08-03 2009-02-19 Sony Corp Optical scanner
JP2010091378A (en) * 2008-10-07 2010-04-22 Toyota Motor Corp Image acquisition device and method of acquiring image
JP2016180624A (en) * 2015-03-23 2016-10-13 三菱重工業株式会社 Laser radar apparatus and travel body
WO2018146889A1 (en) * 2017-02-13 2018-08-16 オムロン株式会社 Laser illumination device and peripheral monitoring sensor provided with same
WO2019171726A1 (en) * 2018-03-08 2019-09-12 パナソニックIpマネジメント株式会社 Laser radar
US20190293948A1 (en) * 2018-03-26 2019-09-26 Simmonds Precision Products, Inc. Scanned linear illumination of distant objects

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009037172A (en) * 2007-08-03 2009-02-19 Sony Corp Optical scanner
JP2010091378A (en) * 2008-10-07 2010-04-22 Toyota Motor Corp Image acquisition device and method of acquiring image
JP2016180624A (en) * 2015-03-23 2016-10-13 三菱重工業株式会社 Laser radar apparatus and travel body
WO2018146889A1 (en) * 2017-02-13 2018-08-16 オムロン株式会社 Laser illumination device and peripheral monitoring sensor provided with same
WO2019171726A1 (en) * 2018-03-08 2019-09-12 パナソニックIpマネジメント株式会社 Laser radar
US20190293948A1 (en) * 2018-03-26 2019-09-26 Simmonds Precision Products, Inc. Scanned linear illumination of distant objects

Similar Documents

Publication Publication Date Title
JP7422313B2 (en) Line beam scanning optics and laser radar
US8988664B2 (en) Distance measuring device
US11585902B2 (en) Optical designs using cylindrical lenses for improved resolution in lidar systems
US9285266B2 (en) Object detector including a light source with light emitting region of a first size in a first direction and a second size in a second direction
JP7355171B2 (en) Optical device, distance measuring device using the same, and moving object
TWI551952B (en) Euv lithography system
US20190137611A1 (en) Scanning optical beam source
WO2020116078A1 (en) Laser radar
US9354379B2 (en) Light guide based optical system for laser line generator
CN111164450A (en) Optical device for a distance measuring device according to the lidar principle
WO2021192601A1 (en) Line beam scanning optical system, and laser radar
JPH05280943A (en) Light source device for measuring shape
US20230003843A1 (en) Transmission unit and lidar device with optical homogenizer
WO2021240978A1 (en) Beam scanning optical system and laser radar
CN114488080A (en) Light homogenizing sheet, light emitting unit for laser radar and laser radar
WO2022153849A1 (en) Line beam scanning optical system and laser radar
US6845119B2 (en) Laser illuminating apparatus for illuminating a strip-shaped or linear area
JP2021067895A (en) Laser scanning device
WO2022044317A1 (en) Distance measurement device
WO2024075599A1 (en) Light irradiation device, optical ranging device, and vehicle
US20230258780A1 (en) Light detection device
US11762066B2 (en) Multi-beam scanning system
WO2024048242A1 (en) Ranging device
JP2024055307A (en) Light irradiation device, light distance measuring device and vehicle
JPWO2021043851A5 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21774821

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21774821

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP