WO2020116078A1 - Laser radar - Google Patents

Laser radar Download PDF

Info

Publication number
WO2020116078A1
WO2020116078A1 PCT/JP2019/043478 JP2019043478W WO2020116078A1 WO 2020116078 A1 WO2020116078 A1 WO 2020116078A1 JP 2019043478 W JP2019043478 W JP 2019043478W WO 2020116078 A1 WO2020116078 A1 WO 2020116078A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
laser light
laser radar
mirror
lens
Prior art date
Application number
PCT/JP2019/043478
Other languages
French (fr)
Japanese (ja)
Inventor
英治 武田
野口 仁志
公博 村上
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2020559818A priority Critical patent/JPWO2020116078A1/en
Publication of WO2020116078A1 publication Critical patent/WO2020116078A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems

Definitions

  • the present invention relates to a laser radar that detects an object using laser light, and is suitable for being mounted on a moving body such as a passenger car, for example.
  • laser radars that detect objects using laser light have been developed in various fields. For example, in a vehicle-mounted laser radar, laser light is projected from the front of the vehicle, and it is determined whether or not an object such as a vehicle is present in front of the vehicle based on the presence or absence of reflected light. Further, the distance to the object is measured based on the projection timing of the laser light and the reception timing of the reflected light.
  • Patent Documents 1 and 2 disclose a device that scans a linear beam to detect an obstacle in front of the vehicle.
  • the laser radar with the above configuration when detecting an object at a longer distance and a wider angle, it is necessary to increase the light emission power of the light source.
  • a method for this a method of arranging a plurality of laser light sources side by side can be used.
  • the beam size of the entire laser light incident on the mirror for scanning the beam becomes large, which causes a problem that the mirror becomes large. If the size of the mirror is increased, the response of the mirror is deteriorated and the scanning performance is deteriorated. There is also a problem that the device becomes larger as the mirror becomes larger.
  • an object of the present invention is to provide a laser radar capable of increasing the irradiation light amount of laser light while suppressing an increase in the size of a mirror for scanning laser light.
  • a laser radar according to a main aspect of the present invention, a plurality of laser light sources arranged side by side in one direction, arranged corresponding to each of the laser light sources, the laser light emitted from each laser light source in the one direction.
  • a plurality of collimator lenses that make parallel light in corresponding directions and laser beams that have passed through the collimator lenses are incident side by side in a direction corresponding to the one direction, and a condensing action is performed at least in a direction corresponding to the one direction.
  • a light deflector for deflecting the laser light by changing the direction of the mirror. ..
  • the arrangement interval of the laser light sources is P1
  • the width of the light emitting region of the laser light source in the direction parallel to the one direction is S1
  • the divergence angle of the laser light in the direction parallel to the one direction is ⁇ 1
  • the focus of the collimator lens is
  • the plurality of laser light sources are arranged so as to satisfy the condition of P1 ⁇ S1+2f ⁇ tan ( ⁇ 1/2).
  • the laser radar of this aspect since a plurality of laser light sources are used, it is possible to increase the irradiation light amount of the laser light on the target area. Moreover, since the laser light emitted from each laser light source is condensed on the mirror of the optical deflector by the condenser lens, the mirror of the optical deflector can be made small. Further, since the laser light source is arranged so as to satisfy the above condition, the laser light emitted from the laser light source can be properly incident on the corresponding collimator lens without protruding. Thus, the collimator lens can accurately collimate each laser beam, and as a result, the beam condensing size in the mirror can be narrowed to an extremely small size. Therefore, the mirror of the optical deflector can be significantly reduced.
  • a laser radar capable of increasing the irradiation light amount of laser light while suppressing an increase in the size of a mirror for scanning laser light.
  • FIG. 1 is a diagram showing a configuration of an optical system and a circuit unit of the laser radar according to the embodiment.
  • 2A and 2B are perspective views showing the configuration of the laser light source according to the embodiment
  • FIG. 2C is a perspective view showing the configuration of the light source unit of the laser radar according to the embodiment.
  • FIG. 3A is a perspective view schematically showing the configuration of a collimator lens that collimates laser light in the fast axis direction according to the embodiment.
  • FIG. 3B is a perspective view schematically showing the configuration of the collimator lens array that collimates the laser light in the slow axis direction according to the embodiment.
  • FIG. 4 is a diagram schematically showing a laser beam emission state of a laser radar and a line beam state in a target area according to the embodiment.
  • FIG. 5A is a diagram schematically showing a condensed state of reflected light on the light receiving surface when the image sensor is used as the light receiving element according to the first embodiment.
  • FIG. 5B is a diagram schematically showing the condensed state of the reflected light on the light receiving surface when the line sensor is used as the light receiving element according to the first embodiment.
  • FIG. 6A is a diagram illustrating the relationship between the laser light source and the collimator lens that collimates the laser light in the slow axis direction according to the embodiment.
  • FIG. 6B is a diagram illustrating the relationship between the condenser lens and the mirror of the optical deflector according to the embodiment.
  • FIG. 7A is a diagram showing the configuration of the optical system of the laser radar according to the first modification.
  • FIG. 7B is a diagram showing the configuration of the optical system of the laser radar according to the second modification.
  • FIG. 8A is a diagram showing the configuration of the optical system of the laser radar according to the third modification.
  • FIG. 8B is a diagram showing the configuration of the optical system of the laser radar according to the fourth modification.
  • the X, Y, and Z axes that are orthogonal to each other are appropriately added to each drawing.
  • the X-axis direction and the Y-axis direction are the long side direction and the short side direction of the line beam, respectively, and the Z-axis positive direction is the line beam projection direction.
  • FIG. 1 is a diagram showing a configuration of an optical system and a circuit unit of the laser radar 10.
  • the laser radar 10 includes a light source unit 11, a collimator lens 12, a collimator lens array 13, a condenser lens 14, an optical deflector 15, a light receiving lens 16, and a light receiving element 17 as an optical system configuration.
  • Prepare An optical system on the outward path from the light source unit 11 to the optical deflector 15 generates a line beam B10 that is long in the Y-axis direction from the laser light emitted from the light source unit 11.
  • the light source unit 11 is configured by integrating a plurality of laser light sources 11a.
  • the laser light 11a emits laser light having a predetermined wavelength.
  • the laser light source 11a is a laser diode.
  • the emission wavelength of each laser light source 11a is set to the infrared wavelength band (for example, 905 nm).
  • the emission wavelength of the laser light source 11a can be appropriately changed according to the usage mode of the laser radar 10.
  • FIG. 2A and 2B are perspective views showing the configuration of the laser light source 11a
  • FIG. 2C is a perspective view showing the configuration of the light source unit 11.
  • the laser light source 11a has a structure in which an active layer 111 is sandwiched between an N-type clad layer 112 and a P-type clad layer 113.
  • the N-type clad layer 112 is laminated on the N-type substrate 114.
  • the contact layer 115 is laminated on the P-type cladding layer 113.
  • the axis in the short side direction of the light emitting region 117 that is, the axis in the direction perpendicular to the active layer 111 (Y-axis direction) is called the fast axis
  • the axis in the long side direction of the light emitting region 117 that is, the active layer 111.
  • the axis in the parallel direction (Z-axis direction) is called the slow axis.
  • 118a indicates a fast axis
  • 118b indicates a slow axis.
  • the laser beam emitted from the light emitting region 117 has a larger spread angle in the fast axis direction than in the slow axis direction. Therefore, the shape of the beam B20 is an elliptical shape that is long in the fast axis direction, as shown in FIG.
  • a laser diode whose emission intensity distribution is a single mode on both the fast axis and the slow axis is used as the laser light source 11a.
  • each laser light source 11a is installed on the base 119 so as to be lined up along the slow axis to configure the light source unit 11. Therefore, the light emitting regions 117 of each laser light source 11a are arranged in one line in the slow axis direction.
  • each laser light source 11a is arranged such that the fast axis 118a of the light emitting region 117 is parallel to the direction (Y-axis direction) corresponding to the short side direction of the line beam B10 shown in FIG.
  • the plurality of laser light sources 11a forming the light source unit 11 all have the same emission characteristics.
  • the light source unit 11 is configured by installing a plurality of laser light sources 11a adjacent to each other on the base 119, but a plurality of light emitting regions 117 are arranged in the slow axis direction.
  • One formed semiconductor light emitting device may be installed on the base 119.
  • the structural portion that emits the laser light from each light emitting region 117 corresponds to the laser light source 11a.
  • the collimator lens 12 converges the laser light emitted from each laser light source 11a of the light source unit 11 in the fast axis direction and adjusts the spread of the laser light in the fast axis direction to be substantially parallel. .. That is, the collimator lens 12 has a function of collimating the laser light emitted from each laser light source 11 a of the light source unit 11 only in the fast axis direction.
  • the collimator lens array 13 converges the laser light emitted from each laser light source 11a of the light source unit 11 in the slow axis direction and sets the spread of the laser light in the slow axis direction to be substantially parallel. That is, the collimator lens array 13 has a function of collimating the laser light emitted from each of the laser light sources 11a of the light source unit 11 only in the slow axis direction.
  • FIG. 3A is a perspective view schematically showing the configuration of the collimator lens 12, and FIG. 3B is a perspective view schematically showing the configuration of the collimator lens array 13.
  • the collimator lens 12 has a lens surface 12a that is curved only in a direction parallel to the XY plane.
  • the collimator lens 12 is, for example, a cylindrical lens.
  • the generatrix of the lens surface 12a is parallel to the Z axis.
  • the fast axis of each laser beam incident on the collimator lens 12 is perpendicular to the generatrix of the lens surface 12a.
  • the respective laser lights enter the collimator lens 12 side by side in the Z-axis direction.
  • Each laser beam is converged by the lens surface 12a in the fast axis direction (Y axis direction), and is collimated in the fast axis direction.
  • the collimator lens array 13 has a plurality of collimator lenses 13a that are curved only in a direction parallel to the XZ plane. That is, on the emission surface of the collimator lens array 13, a plurality of collimator lenses 13a are integrally formed side by side in the Z-axis direction.
  • the generatrix of each collimator lens 13a is parallel to the Y axis.
  • the slow axis of each laser beam incident on the collimator lens array 13 is perpendicular to the generatrix of the collimator lens 13a.
  • Each laser beam is incident on one collimator lens 13a.
  • Each laser light source 11a is arranged such that the emission optical axis of each laser light source 11a passes through the center of the collimator lens 13a in front of each laser light source 11a.
  • Each laser beam is converged by the collimator lens 13a in the slow axis direction (Z axis direction), and is collimated in the slow axis direction.
  • each laser light source 11a of the light source unit 11 is adjusted by the collimator lens 12 and the collimator lens array 13 to have a substantially parallel spread over the entire circumference.
  • the condenser lens 14 has an optical function of converging only in the direction in which the laser light sources 11a are arranged, that is, in the slow axis direction.
  • the condenser lens 14 is, for example, a cylindrical lens.
  • the generatrix of the lens surface of the condenser lens 14 is parallel to the Y-axis direction. Therefore, the beam formed by each laser beam after passing through the condenser lens 14 is converged only in the slow axis direction (Z axis direction). Therefore, the shape of the beam at the focal position of the condenser lens 14 is a linear shape that is long in the fast axis direction. The length of this linear shape is approximately the same as the width in the fast axis direction of each laser beam that is collimated by the collimator lens 12.
  • the beam condensed by the condenser lens 14 enters the mirror 15 a of the optical deflector 15.
  • the optical deflector 15 is, for example, a MEMS (Micro Electro Mechanical Systems) mirror using a piezoelectric actuator, an electrostatic actuator, or the like.
  • the mirror 15a is arranged at the position of the focal length of the condenser lens 14.
  • the beam is condensed only in the Z-axis direction by the condenser lens 14, so the beam after being reflected by the mirror 15a spreads only in the X-axis direction.
  • the line beam B10 that spreads in the X-axis direction is generated.
  • the optical deflector 15 drives the mirror 15a by the drive signal from the mirror drive circuit 33, and scans the beam reflected from the mirror 15a in the Y-axis direction. As a result, the line beam B10 is scanned in the lateral direction (Y-axis direction).
  • FIG. 4 is a diagram schematically showing the emission state of the laser beam of the laser radar 10 and the state of the line beam B10 in the target area.
  • the cross-sectional shape of the line beam B10 when viewed in the projection direction (Z-axis positive direction) is schematically shown.
  • the laser radar 10 is mounted on the front side of the vehicle 200, and the line beam B10 is projected in front of the vehicle 200.
  • the divergence angle ⁇ 11 in the long side direction of the line beam B10 is 120°, for example.
  • the upper limit of the distance D11 at which the object can be detected is, for example, about 200 m.
  • the spread angle ⁇ 11 is expressed smaller than it actually is.
  • the laser light emitted from each laser light source 11a is projected so as to be arranged along the line L1 in FIG. It In this way, the laser beams emitted from the respective laser light sources 11a are combined to form the line beam B10.
  • the reflected light of the line beam B10 reflected from the target area is condensed by the light receiving lens 16 on the light receiving surface of the light receiving element 17.
  • the light receiving element 17 is, for example, an image sensor.
  • the light receiving element 17 has, for example, a rectangular light receiving surface, and is arranged such that the long side of the light receiving surface is parallel to the X axis.
  • the long side direction of the light receiving surface of the light receiving element 17 corresponds to the long side direction of the line beam B10 in the target region.
  • the reflected light of the line beam B10 is imaged on the light receiving surface of the light receiving element 17 by the light receiving lens 16 so as to extend along the long side direction of the light receiving surface.
  • the pixel position in the X-axis direction on the light-receiving surface corresponds to the position in the X-axis direction in the target area. Therefore, it is possible to detect at which position in the X-axis direction of the target area the object is present based on the position of the pixel where the light reception signal is generated.
  • a line sensor in which pixels are arranged in the X-axis direction may be used.
  • FIG. 5A is a diagram schematically showing a condensed state of the reflected light R10 on the light receiving surface 171a when the image sensor 171 is used as the light receiving element 17. Note that FIG. 5A shows a light receiving state of the reflected light R10 when all of the line beam B10 is reflected in the target area. Further, FIG. 5A schematically shows the arrangement of the pixels 171b, and actually, the pixels 171b, which are significantly larger than those in FIG. 5A, are arranged with high precision.
  • each pixel 171b outputs a detection signal when light enters during the exposure period.
  • the line beam B10 is scanned in the Y axis direction (short side direction of the line beam B10)
  • the reflected light R10 scans the light receiving surface 171a in the Y axis direction.
  • the scanning range of the line beam B10 in the Y-axis direction corresponds to the scanning range of the reflected light R10 on the light receiving surface 171a.
  • the scanning range of the reflected light R10 is set to be substantially equal to the width of the light receiving surface 171a in the Y axis direction.
  • the position of the pixel 171b in the Y-axis direction corresponds to the scanning position of the line beam B10 in the Y-axis direction
  • the position of the pixel 171b in the X-axis direction corresponds to the position of the line beam B10 in the X-axis direction. Therefore, it is possible to detect at which position in the X-axis direction of the target area the object is present based on the position of the pixel where the light reception signal is generated.
  • the image sensor 171 may be a CMOS image sensor or a CCD image sensor, or may be an APD array in which an avalanche photodiode is arranged in each pixel 171b.
  • the avalanche photodiode has a function of multiplying electrons generated by photoelectric conversion. Therefore, the detection sensitivity of each pixel 171b can be increased, and the weak reflected light R10 from a long distance can be detected more accurately.
  • the avalanche photodiode may be used in Geiger mode. Accordingly, when photons are incident on the avalanche photodiode of each pixel 171b, the amount of charge generated in the avalanche photodiode can be increased to the saturated charge amount and output. Therefore, the weak reflected light R10 can be detected with higher accuracy.
  • FIG. 5B is a diagram schematically showing a condensed state of the reflected light R10 on the light receiving surface 172a when the line sensor 172 is used as the light receiving element 17. Note that FIG. 5B also shows the light reception state of the reflected light R10 when the entire line beam B10 is reflected in the target area.
  • a plurality of rectangular optical sensors 172b extending in the Y-axis direction are arranged side by side in the X-axis direction.
  • Each optical sensor 172b outputs a signal having a magnitude corresponding to the amount of received light.
  • the reflected light R10 scans the light receiving surface 172a in the Y axis direction.
  • the scanning range of the line beam B10 in the Y-axis direction corresponds to the scanning range of the reflected light R10 on the light receiving surface 172a.
  • the scanning range of the reflected light R10 is set to be substantially equal to the width of the light receiving surface 172a in the Y axis direction.
  • each optical sensor 172b in the X-axis direction corresponds to the position of the line beam B10 in the X-axis direction. Therefore, the position of the object in the X-axis direction in the target area can be detected from the position of the optical sensor 172b where the received light signal is generated.
  • the scanning position of the line beam B10 in the Y-axis direction can be grasped from the swing position of the mirror 15a in the optical deflector 15, for example. That is, when a light receiving signal is output from each optical sensor 172b at the timing when the mirror 15a is at each swing position, the light receiving signal can be associated with the scanning position of the line beam B10 corresponding to the swing angle. Therefore, by making this correspondence on the circuit unit side, it is possible to detect at which position in the Y-axis direction of the target area the object is present.
  • the number, length, and width of the optical sensors 172b are not limited to those shown in FIG. 5(b).
  • the width of the optical sensors 172b is preferably as narrow as possible, and the number of optical sensors 172b is preferably as large as possible.
  • the laser radar 10 includes a controller 31, a laser drive circuit 32, a mirror drive circuit 33, and a signal processing circuit 34 as a circuit configuration.
  • the controller 31 includes an arithmetic processing circuit such as a CPU (Central Processing Unit) and a storage medium such as a ROM (Read Only Memory) and a RAM (Random Access Memory), and controls each unit according to a preset program.
  • the laser drive circuit 32 causes each of the laser light sources 11a of the light source unit 11 to emit a pulse under the control of the controller 31.
  • the mirror drive circuit 33 drives the optical deflector 15 under the control of the controller 31.
  • the controller 31 controls the optical deflector 15 so that the line beam B10 is scanned in the short side direction of the line beam B10 in the target area.
  • the signal processing circuit 34 outputs the light receiving signal of each pixel of the light receiving element 17 to the controller 31.
  • the controller 31 can detect at which position in the X-axis direction of the target area the object exists, based on the position of the pixel where the light reception signal has occurred. Further, the controller 31 uses the time difference between the timing at which the light source unit 11 emits pulsed light and the timing at which the light receiving element 17 receives the reflected light from the target area, that is, the timing at which the light receiving signal is received from the light receiving element 17. The distance to the object existing in the area is calculated.
  • the controller 31 detects the presence or absence of an object in the target area by causing the light deflector 15 to scan the line beam B10 while causing the light source unit 11 to emit light in pulses, and further detects the position of the object in the Y-axis direction and the object. Measure the distance to. These measurement results are transmitted to the control unit on the vehicle side at any time.
  • FIG. 6A is a diagram for explaining the relationship between the laser light source 11a and the collimator lens 13a that collimates the laser light in the slow axis direction.
  • the collimator lens 12 is omitted in FIG.
  • P1 is the arrangement interval of the laser light sources 11a
  • S1 is the width of the light emitting region 117 of the laser light sources 11a in the arrangement direction of the laser light sources 11a (here, the slow axis direction)
  • ⁇ 1 is the arrangement of the laser light sources 11a.
  • Direction here, slow axis direction
  • f1 is the focal length of the collimator lens 13a.
  • the laser light source 11a is arranged so as to satisfy the following equation.
  • the total divergence angle ⁇ 1 of the laser light is the total divergence angle of the laser light included in the region of 1/e 2 or more of the peak intensity.
  • the full divergence angle ⁇ 1 of the laser light may be the full divergence angle of the laser light included in the half-value width of the peak intensity.
  • each laser light source 11a When the laser light sources 11a are arranged in this way, the laser light emitted from each laser light source 11a properly enters the front collimator lens 13a without being caught by the adjacent collimator lens 13a. As a result, each laser beam is accurately collimated by the corresponding collimator lens 13a. As a result, the beam formed by integrating the laser beams can be converged by the condenser lens 14 into a substantially focused state. Therefore, the size of the beam condensed by the condenser lens 14 can be made extremely small.
  • FIG. 6B is a diagram illustrating the relationship between the condenser lens 14 and the mirror 15 a of the optical deflector 15.
  • D2 is the effective diameter of the condenser lens 14
  • f2 is the focal length of the condenser lens 14
  • ⁇ 2 is the total angle of convergence of the beam with respect to the mirror 15a.
  • the condenser lens 14 and the mirror 15a are arranged so as to satisfy the following equation.
  • the condenser lens 14 and the mirror 15a By arranging the condenser lens 14 and the mirror 15a in this way, the beam formed by integrating the laser beams is converged by the condenser lens 14 on the mirror 15a in a substantially focal line state. Therefore, the size of the mirror 15a can be made extremely small.
  • the laser light source 11a Since a plurality of laser light sources 11a are used, it is possible to increase the irradiation light amount of the laser light to the target area. Further, since the laser light emitted from each laser light source 11a is condensed on the mirror 15a of the optical deflector 15 by the condenser lens 14, the mirror 15a of the optical deflector 15 can be made small. Further, since the laser light source 11a is arranged so as to satisfy the condition of the above expression (1), the laser light emitted from the laser light source 11a is properly incident on the corresponding collimator lens 13a without protruding.
  • the collimator lens 13a can accurately collimate each laser beam, and as a result, the beam converging size at the mirror 15a can be narrowed to an extremely small size. Therefore, the mirror 15a of the optical deflector 15 can be significantly reduced.
  • the plurality of laser light sources 11a are arranged such that the slow axis of each laser light source 11a is parallel to the arrangement direction of the laser light sources 11a, and each collimator lens 13a formed in the collimator lens array 13 has each laser light source 11a.
  • the laser light from is collimated in the slow axis direction.
  • the condenser lens 14 and the mirror 15a are arranged so as to satisfy the condition of the above expression (2), the beam formed by integrating the laser light emitted from each laser light source 11a is a condenser lens.
  • the light beam is focused on the mirror 15a by 14 in a substantially focused state. Therefore, the size of the mirror 15a of the optical deflector 15 can be made extremely small.
  • the optical system and the laser radar 10 can be downsized and the response performance of the mirror 15a can be improved. Therefore, the line beam B10 can be smoothly and accurately scanned in the target area.
  • the laser light source 11a has a single-mode emission intensity distribution on both the fast axis 118a and the slow axis 118b.
  • the laser light emitted from each laser light source 11a can be accurately collimated in the fast axis direction and the slow axis direction by the fast axis collimator lens 12 and the slow axis collimator lens 13a. Since the laser light can be collimated in the fast axis direction with high accuracy, the beam spread in the short side direction of the line beam B10 can be suppressed, and the line beam B10 can be irradiated further. Therefore, the detectable distance of the laser radar 10 can be widened. Further, since the laser light can be made parallel to the slow axis with high accuracy, the shape of the beam focused on the mirror 15a can be made closer to a linear shape. Therefore, the mirror 15a can be made smaller.
  • a diffusing plate 18 to which the laser beams emitted from the plurality of laser light sources 11a respectively enter may be further arranged.
  • FIG. 7A shows only the optical system of the laser radar 10.
  • the line beam B10 is configured by arranging the laser light from each laser light source 11a in the long side direction. Therefore, the intensity distribution of the line beam B10 repeats high and low in the long side direction.
  • the intensity distribution of the line beam B10 in the long side direction is made uniform by the diffuser plate 18.
  • the detectable distances of the object at the respective positions in the long side direction of the line beam B10 can be equal to each other. Therefore, at each position in the long side direction of the line beam B10, it is possible to uniformly and accurately measure the distance to the object.
  • the diffusion plate 18 may be arranged in the emission window of the laser radar 10, or the emission window itself may be the diffusion plate 18.
  • ⁇ Modification 2> a magnifying lens 19 for further widening the divergence angle of the line beam B10 in the long side direction may be provided.
  • FIG. 7B only the optical system of the laser radar 10 is shown.
  • the magnifying lens 19 has a concave lens surface 19a curved only in a direction parallel to the XZ plane.
  • the generatrix of the lens surface 19a is parallel to the Y axis.
  • the concave lens surface 19a may be provided on the entrance surface of the magnifying lens 19 or may be provided on both the entrance surface and the exit surface.
  • the magnifying lens 19 By providing the magnifying lens 19 in this way, the range in which the distance measurement can be performed by the laser radar 10 can be expanded in the X-axis direction. Therefore, it is possible to measure the distance for an object existing in a wider range.
  • the condenser lens 14 has a converging action only in the direction in which the laser light sources 11a are arranged.
  • the condensing lens 14 has a converging action to uniformly converge the light over the entire circumference. May be.
  • FIG. 8A is a diagram showing the configuration of the optical system in this case.
  • the condenser lens 14 has an optical function of converging parallel light incident in the optical axis direction into one point.
  • the beam composed of the laser light emitted from each laser light source 11a is condensed by the condenser lens 14 on the mirror 15a of the optical deflector 15 as a substantially circular beam spot. After that, the beam spreads not only in the X-axis direction but also in the Y-axis direction.
  • the collimator lens 20 for collimating the beam in the Y-axis direction is provided on the rear side of the optical deflector 15.
  • the collimator lens 20 is, for example, a cylindrical lens.
  • the exit surface of the collimator lens 20 is a lens surface 20a which is convexly curved only in the direction parallel to the YZ plane.
  • the generatrix of the lens surface 20a is parallel to the X axis.
  • the collimator lens 13a is further required as compared with the above embodiment.
  • the beam can be condensed into a substantially circular beam spot on the mirror 15a of the optical deflector 15. Therefore, the size of the beam on the mirror 15a can be further reduced as compared with the above embodiment. Therefore, the size of the mirror 15a can be further reduced.
  • the laser light sources 11a are arranged in the slow axis direction, but the laser light sources 11a may be arranged in the fast axis direction.
  • FIG. 8B is a diagram showing the configuration of the optical system in this case.
  • a collimator lens array 21 that collimates the laser light emitted from each laser light source 11a in the fast axis direction and a collimator lens 22 that collimates the laser light emitted from each laser light source 11a in the slow axis direction. And are provided.
  • the collimator lens 21a On the emission surface of the collimator lens array 21, a plurality of collimator lenses 21a on which the laser beams from the laser light sources 11a respectively enter are formed, as in FIG. 3B.
  • the collimator lens 21a has a convex lens surface curved only in a direction parallel to the XZ plane.
  • the generatrix of the collimator lens 21a is parallel to the Y-axis direction.
  • the exit surface of the collimator lens 22 is formed with a lens surface 22a on which the laser light from each laser light source 11a enters, as in FIG. 3A.
  • the lens surface 22a has a convex shape curved only in a direction parallel to the XZ plane.
  • the generatrix of the lens surface 22a is parallel to the Z-axis direction.
  • the collimator lens 22 is, for example, a cylindrical lens.
  • the collimator lens 21a and the laser light source 11a are arranged so as to satisfy the condition of the above expression (1).
  • P1 in the above formula (1) is the arrangement interval of the laser light sources 11a
  • S1 is the width of the light emitting region 117 of the laser light sources 11a in the arrangement direction of the laser light sources 11a (fast axis direction)
  • ⁇ 1 is the laser light source.
  • f1 is the focal length of the collimator lens 21a.
  • each laser beam can be accurately parallelized in the fast axis direction.
  • the mirror The beam can be linearly focused on 15a. Therefore, the mirror 15a can be downsized and the response performance of the mirror 15a can be improved.
  • the fast axis collimator lens 12 and the slow axis collimator lens array 13 are separate bodies, but they may be integrated.
  • an optical element in which one collimator lens (lens surface) for the fast axis is formed on the entrance surface and a plurality of collimator lenses for the slow axis is formed on the exit surface is formed by the light source unit 11 and the condenser lens 14. It may be arranged in between.
  • the slow axis collimator lens 13a is arrayed, but a plurality of collimator lenses corresponding to the laser light sources 11a may be arranged side by side. The same applies to the collimator lens 21a shown in the fourth modification.
  • the optical system is configured such that the light source unit 11, the collimator lens 12, the collimator lens array 13, the condenser lens 14, and the optical deflector 15 are arranged in one direction, but the layout of the optical system is this. It is not limited to.
  • the optical system may be configured such that a mirror is arranged in the middle of the optical path and the optical path is bent.
  • the number of laser light sources 11a may be another number as long as it is plural.
  • the plurality of laser light sources 11a may not necessarily be unitized, and the plurality of laser light sources may be individually arranged.
  • the laser light source 11a does not necessarily have to be a single mode in both the fast axis and the slow axis.
  • the laser radar 10 is mounted on the vehicle 200, but the laser radar 10 may be mounted on another moving body. Further, the laser radar 10 may be mounted on equipment or equipment other than the moving body. Further, the laser radar 10 may have only the function of detecting an object.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

A laser radar (10) comprising: a plurality of laser light sources (11a) arranged lined up in one direction; a plurality of collimator lenses (13a) that are arranged corresponding to each laser light source (11a) and collimate laser light emitted from each laser light source (11a) in a direction corresponding to the one direction; a condensing lens (14) having a condensing action in at least a direction corresponding to the one direction; and an optical deflector (15) having a mirror (15a) to which each laser light condensed by the condensing lens (14) is incident. The plurality of laser light sources (11a) are arranged so as to fulfil the condition P1 ≥ S1 + 2f1 × tan (θ1/2), when the arrangement interval between the laser light sources (11a) is P1, the width of the light-emission region for the laser light sources (11a) is S1, the full width of the laser light dispersion is θ1, and the focal distance for the collimator lenses (13a) is f1.

Description

レーザレーダLaser radar
 本発明は、レーザ光を用いて物体を検出するレーザレーダに関し、たとえば、乗用車等の移動体に搭載して好適なものである。 The present invention relates to a laser radar that detects an object using laser light, and is suitable for being mounted on a moving body such as a passenger car, for example.
 従来、レーザ光を用いて物体を検出するレーザレーダが種々の分野で開発されている。たとえば、車載用のレーザレーダでは、車両前方からレーザ光が投射され、その反射光の有無に基づいて、車両前方に車両等の物体が存在するか否かが判別される。また、レーザ光の投射タイミングと反射光の受光タイミングとに基づいて、物体までの距離が計測される。 Conventionally, laser radars that detect objects using laser light have been developed in various fields. For example, in a vehicle-mounted laser radar, laser light is projected from the front of the vehicle, and it is determined whether or not an object such as a vehicle is present in front of the vehicle based on the presence or absence of reflected light. Further, the distance to the object is measured based on the projection timing of the laser light and the reception timing of the reflected light.
 以下の特許文献1、2には、ライン状のビームをスキャンさせて車両前方の障害物を検出する装置が開示されている。 The following Patent Documents 1 and 2 disclose a device that scans a linear beam to detect an obstacle in front of the vehicle.
特開平5-205199号公報JP-A-5-205199 特開2017-150990号公報JP, 2017-150990, A
 上記構成のレーザレーダにおいて、より長距離および広角で物体を検出する場合、光源の発光パワーを高める必要がある。このための方法として、複数のレーザ光源を並べて配置する方法が用いられ得る。しかしながら、この方法では、ビームをスキャンさせるためのミラーに入射するレーザ光全体のビームサイズが大きくなり、これに伴い、ミラーが大型化するとの問題が生じる。ミラーが大型化すると、ミラーの応答性が低下し、スキャン性能の低下を招く。また、ミラーの大型化に伴い、装置が大型化するとの問題もある。 In the laser radar with the above configuration, when detecting an object at a longer distance and a wider angle, it is necessary to increase the light emission power of the light source. As a method for this, a method of arranging a plurality of laser light sources side by side can be used. However, according to this method, the beam size of the entire laser light incident on the mirror for scanning the beam becomes large, which causes a problem that the mirror becomes large. If the size of the mirror is increased, the response of the mirror is deteriorated and the scanning performance is deteriorated. There is also a problem that the device becomes larger as the mirror becomes larger.
 かかる課題に鑑み、本発明は、レーザ光を走査させるためのミラーの大型化を抑制しつつ、レーザ光の照射光量を高めることが可能なレーザレーダを提供することを目的とする。 In view of such a problem, an object of the present invention is to provide a laser radar capable of increasing the irradiation light amount of laser light while suppressing an increase in the size of a mirror for scanning laser light.
 本発明の主たる態様に係るレーザレーダは、一方向に並べて配置された複数のレーザ光源と、前記各レーザ光源に対応して配置され、前記各レーザ光源から出射されたレーザ光を前記一方向に対応する方向に平行光化する複数のコリメータレンズと、前記各コリメータレンズを経由した各レーザ光が前記一方向に対応する方向に並んで入射し、少なくとも前記一方向に対応する方向に集光作用を有する集光レンズと、前記集光レンズにより集光された前記各レーザ光が入射するミラーを有し、前記ミラーの向きを変化させることにより前記レーザ光を偏向させる光偏向器と、を備える。前記レーザ光源の配置間隔をP1、前記一方向に平行な方向における前記レーザ光源の発光領域の幅をS1、前記一方向に平行な方向における前記レーザ光の発散全角をθ1、前記コリメータレンズの焦点距離をf1としたとき、P1≧S1+2f×tan(θ1/2)の条件を満たすように、前記複数のレーザ光源が配置されている。 A laser radar according to a main aspect of the present invention, a plurality of laser light sources arranged side by side in one direction, arranged corresponding to each of the laser light sources, the laser light emitted from each laser light source in the one direction. A plurality of collimator lenses that make parallel light in corresponding directions and laser beams that have passed through the collimator lenses are incident side by side in a direction corresponding to the one direction, and a condensing action is performed at least in a direction corresponding to the one direction. And a light deflector for deflecting the laser light by changing the direction of the mirror. .. The arrangement interval of the laser light sources is P1, the width of the light emitting region of the laser light source in the direction parallel to the one direction is S1, the divergence angle of the laser light in the direction parallel to the one direction is θ1, and the focus of the collimator lens is When the distance is f1, the plurality of laser light sources are arranged so as to satisfy the condition of P1≧S1+2f×tan (θ1/2).
 本態様に係るレーザレーダによれば、複数のレーザ光源が用いられるため、目標領域に対するレーザ光の照射光量を高めることができる。また、各レーザ光源から出射されたレーザ光が集光レンズによって光偏向器のミラーに集光されるため、光偏向器のミラーを小さくすることができる。さらに、上記条件を満たすようにレーザ光源が配置されるため、レーザ光源から出射されたレーザ光を、対応するコリメータレンズに対して、はみ出すことなく適正に入射させることができる。これにより、コリメータレンズによって各レーザ光を精度良く平行光化でき、結果、ミラーにおけるビームの集光サイズを極めて小さく絞ることができる。よって、光偏向器のミラーを顕著に小さくすることができる。 According to the laser radar of this aspect, since a plurality of laser light sources are used, it is possible to increase the irradiation light amount of the laser light on the target area. Moreover, since the laser light emitted from each laser light source is condensed on the mirror of the optical deflector by the condenser lens, the mirror of the optical deflector can be made small. Further, since the laser light source is arranged so as to satisfy the above condition, the laser light emitted from the laser light source can be properly incident on the corresponding collimator lens without protruding. Thus, the collimator lens can accurately collimate each laser beam, and as a result, the beam condensing size in the mirror can be narrowed to an extremely small size. Therefore, the mirror of the optical deflector can be significantly reduced.
 以上のとおり、本発明によれば、レーザ光を走査させるためのミラーの大型化を抑制しつつ、レーザ光の照射光量を高めることが可能なレーザレーダを提供することができる。 As described above, according to the present invention, it is possible to provide a laser radar capable of increasing the irradiation light amount of laser light while suppressing an increase in the size of a mirror for scanning laser light.
 本発明の効果ないし意義は、以下に示す実施形態の説明により更に明らかとなろう。ただし、以下に示す実施形態は、あくまでも、本発明を実施化する際の一つの例示であって、本発明は、以下の実施形態に記載されたものに何ら制限されるものではない。 The effect or significance of the present invention will be further clarified by the description of the embodiments below. However, the embodiment described below is merely an example for embodying the present invention, and the present invention is not limited to what is described in the embodiment below.
図1は、実施形態に係るレーザレーダの光学系および回路部の構成を示す図である。FIG. 1 is a diagram showing a configuration of an optical system and a circuit unit of the laser radar according to the embodiment. 図2(a)、(b)は、それぞれ、実施形態に係るレーザ光源の構成を示す斜視図、図2(c)は、実施形態に係るレーザレーダの光源ユニットの構成を示す斜視図である。2A and 2B are perspective views showing the configuration of the laser light source according to the embodiment, and FIG. 2C is a perspective view showing the configuration of the light source unit of the laser radar according to the embodiment. .. 図3(a)は、実施形態に係る、ファスト軸方向にレーザ光を平行光化するコリメータレンズの構成を模式的に示す斜視図である。図3(b)は、実施形態に係る、スロー軸方向にレーザ光を平行光化するコリメータレンズアレイの構成を模式的に示す斜視図である。FIG. 3A is a perspective view schematically showing the configuration of a collimator lens that collimates laser light in the fast axis direction according to the embodiment. FIG. 3B is a perspective view schematically showing the configuration of the collimator lens array that collimates the laser light in the slow axis direction according to the embodiment. 図4は、実施形態に係る、レーザレーダのレーザ光の出射状態と、目標領域におけるラインビームの状態とを模式的に示す図である。FIG. 4 is a diagram schematically showing a laser beam emission state of a laser radar and a line beam state in a target area according to the embodiment. 図5(a)は、実施形態1に係る、受光素子としてイメージセンサが用いられる場合の、受光面上における反射光の集光状態を模式的に示す図である。図5(b)は、実施形態1に係る、受光素子としてラインセンサが用いられる場合の、受光面上における反射光の集光状態を模式的に示す図である。FIG. 5A is a diagram schematically showing a condensed state of reflected light on the light receiving surface when the image sensor is used as the light receiving element according to the first embodiment. FIG. 5B is a diagram schematically showing the condensed state of the reflected light on the light receiving surface when the line sensor is used as the light receiving element according to the first embodiment. 図6(a)は、実施形態に係る、レーザ光源とスロー軸方向にレーザ光を平行光化するコリメータレンズとの関係を説明する図である。図6(b)は、実施形態に係る、集光レンズと光偏向器のミラーとの関係を説明する図である。FIG. 6A is a diagram illustrating the relationship between the laser light source and the collimator lens that collimates the laser light in the slow axis direction according to the embodiment. FIG. 6B is a diagram illustrating the relationship between the condenser lens and the mirror of the optical deflector according to the embodiment. 図7(a)は、変更例1に係る、レーザレーダの光学系の構成を示す図である。図7(b)は、変更例2に係る、レーザレーダの光学系の構成を示す図である。FIG. 7A is a diagram showing the configuration of the optical system of the laser radar according to the first modification. FIG. 7B is a diagram showing the configuration of the optical system of the laser radar according to the second modification. 図8(a)は、変更例3に係る、レーザレーダの光学系の構成を示す図である。図8(b)は、変更例4に係る、レーザレーダの光学系の構成を示す図である。FIG. 8A is a diagram showing the configuration of the optical system of the laser radar according to the third modification. FIG. 8B is a diagram showing the configuration of the optical system of the laser radar according to the fourth modification.
 ただし、図面はもっぱら説明のためのものであって、この発明の範囲を限定するものではない。 However, the drawings are for explanation only and do not limit the scope of the present invention.
 以下、本発明の実施形態について図を参照して説明する。便宜上、各図には、適宜、互いに直交するX、Y、Z軸が付記されている。X軸方向およびY軸方向は、それぞれ、ラインビームの長辺方向および短辺方向であり、Z軸正方向は、ラインビームの投射方向である。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. For the sake of convenience, the X, Y, and Z axes that are orthogonal to each other are appropriately added to each drawing. The X-axis direction and the Y-axis direction are the long side direction and the short side direction of the line beam, respectively, and the Z-axis positive direction is the line beam projection direction.
 図1は、レーザレーダ10の光学系および回路部の構成を示す図である。 FIG. 1 is a diagram showing a configuration of an optical system and a circuit unit of the laser radar 10.
 レーザレーダ10は、光学系の構成として、光源ユニット11と、コリメータレンズ12と、コリメータレンズアレイ13と、集光レンズ14と、光偏向器15と、受光レンズ16と、受光素子17と、を備える。光源ユニット11から光偏向器15までの往路の光学系により、光源ユニット11から出射されたレーザ光から、Y軸方向に長いラインビームB10に生成される。 The laser radar 10 includes a light source unit 11, a collimator lens 12, a collimator lens array 13, a condenser lens 14, an optical deflector 15, a light receiving lens 16, and a light receiving element 17 as an optical system configuration. Prepare An optical system on the outward path from the light source unit 11 to the optical deflector 15 generates a line beam B10 that is long in the Y-axis direction from the laser light emitted from the light source unit 11.
 光源ユニット11は、複数のレーザ光源11aが集積されて構成される。レーザ光11aは、所定波長のレーザ光を出射する。レーザ光源11aは、レーザダイオードである。本実施形態では、レーザレーダ10が車両に搭載されることが想定されている。このため、各レーザ光源11aの出射波長は、赤外の波長帯域(たとえば905nm)に設定される。レーザレーダ10の使用態様に応じて、レーザ光源11aの出射波長は、適宜変更され得る。 The light source unit 11 is configured by integrating a plurality of laser light sources 11a. The laser light 11a emits laser light having a predetermined wavelength. The laser light source 11a is a laser diode. In this embodiment, it is assumed that the laser radar 10 is mounted on a vehicle. Therefore, the emission wavelength of each laser light source 11a is set to the infrared wavelength band (for example, 905 nm). The emission wavelength of the laser light source 11a can be appropriately changed according to the usage mode of the laser radar 10.
 図2(a)、(b)は、それぞれ、レーザ光源11aの構成を示す斜視図、図2(c)は、光源ユニット11の構成を示す斜視図である。 2A and 2B are perspective views showing the configuration of the laser light source 11a, and FIG. 2C is a perspective view showing the configuration of the light source unit 11.
 図2(a)に示すように、レーザ光源11aは、活性層111がN型クラッド層112とP型クラッド層113に挟まれた構造となっている。N型クラッド層112は、N型基板114に積層される。また、P型クラッド層113にコンタクト層115が積層される。電極116に電流が印加されることにより、発光領域117からレーザ光がZ軸正方向に出射される。一般に、発光領域117は、活性層111に並行な方向の幅W1が、活性層111に垂直な方向の幅W2よりも広くなっている。 As shown in FIG. 2A, the laser light source 11a has a structure in which an active layer 111 is sandwiched between an N-type clad layer 112 and a P-type clad layer 113. The N-type clad layer 112 is laminated on the N-type substrate 114. Further, the contact layer 115 is laminated on the P-type cladding layer 113. By applying a current to the electrode 116, laser light is emitted from the light emitting region 117 in the Z axis positive direction. Generally, in the light emitting region 117, the width W1 in the direction parallel to the active layer 111 is larger than the width W2 in the direction perpendicular to the active layer 111.
 発光領域117の短辺方向の軸、すなわち、活性層111に垂直な方向(Y軸方向)の軸は、ファスト軸と称され、発光領域117の長辺方向の軸、すなわち、活性層111に平行な方向(Z軸方向)の軸は、スロー軸と称される。図2(b)において、118aはファスト軸を示し、118bはスロー軸を示している。発光領域117から出射されたレーザ光は、スロー軸方向よりもファスト軸方向の広がり角が大きい。このため、ビームB20の形状は、図2(b)に示すように、ファスト軸方向に長い楕円形状となる。 The axis in the short side direction of the light emitting region 117, that is, the axis in the direction perpendicular to the active layer 111 (Y-axis direction) is called the fast axis, and the axis in the long side direction of the light emitting region 117, that is, the active layer 111. The axis in the parallel direction (Z-axis direction) is called the slow axis. In FIG. 2B, 118a indicates a fast axis and 118b indicates a slow axis. The laser beam emitted from the light emitting region 117 has a larger spread angle in the fast axis direction than in the slow axis direction. Therefore, the shape of the beam B20 is an elliptical shape that is long in the fast axis direction, as shown in FIG.
 本実施形態では、ファスト軸およびスロー軸の両方において、出射強度の分布がシングルモードとなるレーザダイオードがレーザ光源11aとして用いられる。 In this embodiment, a laser diode whose emission intensity distribution is a single mode on both the fast axis and the slow axis is used as the laser light source 11a.
 図2(c)に示すように、複数のレーザ光源11aがスロー軸に沿って並ぶようにベース119に設置されて、光源ユニット11が構成されている。したがって、各レーザ光源11aの発光領域117は、スロー軸方向に1列に並んでいる。ここで、各レーザ光源11aは、発光領域117のファスト軸118aが、図1に示したラインビームB10の短辺方向に対応する方向(Y軸方向)に平行となるように配置されている。光源ユニット11を構成する複数のレーザ光源11aは、全て同じ出射特性を有する。 As shown in FIG. 2C, a plurality of laser light sources 11a are installed on the base 119 so as to be lined up along the slow axis to configure the light source unit 11. Therefore, the light emitting regions 117 of each laser light source 11a are arranged in one line in the slow axis direction. Here, each laser light source 11a is arranged such that the fast axis 118a of the light emitting region 117 is parallel to the direction (Y-axis direction) corresponding to the short side direction of the line beam B10 shown in FIG. The plurality of laser light sources 11a forming the light source unit 11 all have the same emission characteristics.
 なお、図2(c)では、複数のレーザ光源11aが互いに隣接してベース119に設置されることにより光源ユニット11が構成されているが、複数の発光領域117がスロー軸方向に並ぶように形成された1つの半導体発光素子がベース119に設置されてもよい。この場合、当該半導体発光素子のうち、各発光領域117からレーザ光を出射させる構造部分が、それぞれ、レーザ光源11aに対応する。 Note that, in FIG. 2C, the light source unit 11 is configured by installing a plurality of laser light sources 11a adjacent to each other on the base 119, but a plurality of light emitting regions 117 are arranged in the slow axis direction. One formed semiconductor light emitting device may be installed on the base 119. In this case, in the semiconductor light emitting element, the structural portion that emits the laser light from each light emitting region 117 corresponds to the laser light source 11a.
 図1に戻って、コリメータレンズ12は、光源ユニット11の各レーザ光源11aから出射されたレーザ光をファスト軸方向に収束させて、ファスト軸方向のレーザ光の広がりを略平行な状態に調整する。すなわち、コリメータレンズ12は、光源ユニット11の各レーザ光源11aから出射されたレーザ光を、ファスト軸方向のみに平行光化する作用を有する。 Returning to FIG. 1, the collimator lens 12 converges the laser light emitted from each laser light source 11a of the light source unit 11 in the fast axis direction and adjusts the spread of the laser light in the fast axis direction to be substantially parallel. .. That is, the collimator lens 12 has a function of collimating the laser light emitted from each laser light source 11 a of the light source unit 11 only in the fast axis direction.
 コリメータレンズアレイ13は、光源ユニット11の各レーザ光源11aから出射されたレーザ光をスロー軸方向に収束させて、スロー軸方向のレーザ光の広がりを略平行な状態に設定する。すなわち、コリメータレンズアレイ13は、光源ユニット11の各レーザ光源11aから出射されたレーザ光を、それぞれ、スロー軸方向のみに平行光化する作用を有する。 The collimator lens array 13 converges the laser light emitted from each laser light source 11a of the light source unit 11 in the slow axis direction and sets the spread of the laser light in the slow axis direction to be substantially parallel. That is, the collimator lens array 13 has a function of collimating the laser light emitted from each of the laser light sources 11a of the light source unit 11 only in the slow axis direction.
 図3(a)は、コリメータレンズ12の構成を模式的に示す斜視図、図3(b)は、コリメータレンズアレイ13の構成を模式的に示す斜視図である。 FIG. 3A is a perspective view schematically showing the configuration of the collimator lens 12, and FIG. 3B is a perspective view schematically showing the configuration of the collimator lens array 13.
 図3(a)に示すように、コリメータレンズ12は、X-Y平面に平行な方向のみに湾曲するレンズ面12aを有する。コリメータレンズ12は、たとえば、シリンドリカルレンズである。レンズ面12aの母線は、Z軸に平行である。コリメータレンズ12に入射する各レーザ光のファスト軸は、レンズ面12aの母線に垂直である。各レーザ光は、Z軸方向に並んでコリメータレンズ12に入射する。各レーザ光は、レンズ面12aでファスト軸方向(Y軸方向)に収束作用を受けて、ファスト軸方向に平行光化される。 As shown in FIG. 3A, the collimator lens 12 has a lens surface 12a that is curved only in a direction parallel to the XY plane. The collimator lens 12 is, for example, a cylindrical lens. The generatrix of the lens surface 12a is parallel to the Z axis. The fast axis of each laser beam incident on the collimator lens 12 is perpendicular to the generatrix of the lens surface 12a. The respective laser lights enter the collimator lens 12 side by side in the Z-axis direction. Each laser beam is converged by the lens surface 12a in the fast axis direction (Y axis direction), and is collimated in the fast axis direction.
 図3(b)に示すように、コリメータレンズアレイ13は、X-Z平面に平行な方向のみに湾曲する複数のコリメータレンズ13aを有する。すなわち、コリメータレンズアレイ13の出射面に、複数のコリメータレンズ13aがZ軸方向に並んで一体形成されている。各コリメータレンズ13aの母線はY軸に平行である。コリメータレンズアレイ13に入射する各レーザ光のスロー軸は、コリメータレンズ13aの母線に垂直である。 As shown in FIG. 3B, the collimator lens array 13 has a plurality of collimator lenses 13a that are curved only in a direction parallel to the XZ plane. That is, on the emission surface of the collimator lens array 13, a plurality of collimator lenses 13a are integrally formed side by side in the Z-axis direction. The generatrix of each collimator lens 13a is parallel to the Y axis. The slow axis of each laser beam incident on the collimator lens array 13 is perpendicular to the generatrix of the collimator lens 13a.
 各レーザ光は、それぞれ、1つのコリメータレンズ13aに入射する。各レーザ光源11aの出射光軸が、各レーザ光源11aの正面のコリメータレンズ13aの中心を貫くように、各レーザ光源11aが配置されている。各レーザ光は、コリメータレンズ13aでスロー軸方向(Z軸方向)に収束作用を受けて、スロー軸方向に平行光化される。 Each laser beam is incident on one collimator lens 13a. Each laser light source 11a is arranged such that the emission optical axis of each laser light source 11a passes through the center of the collimator lens 13a in front of each laser light source 11a. Each laser beam is converged by the collimator lens 13a in the slow axis direction (Z axis direction), and is collimated in the slow axis direction.
 こうして、光源ユニット11の各レーザ光源11aから出射されたレーザ光は、コリメータレンズ12およびコリメータレンズアレイ13によって、全周において略平行な広がりに調整される。 In this way, the laser light emitted from each laser light source 11a of the light source unit 11 is adjusted by the collimator lens 12 and the collimator lens array 13 to have a substantially parallel spread over the entire circumference.
 図1に戻り、集光レンズ14は、レーザ光源11aの並び方向、すなわち、スロー軸方向のみに収束させる光学作用を有する。集光レンズ14は、たとえばシリンドリカルレンズである。集光レンズ14のレンズ面の母線は、Y軸方向に平行である。したがって、集光レンズ14を透過した後の各レーザ光で形成されるビームは、スロー軸方向(Z軸方向)のみに収束される。したがって、集光レンズ14の焦点位置におけるビームの形状は、ファスト軸方向に長い線状の形状となる。この線状形状の長さは、コリメータレンズ12により平行光化された各レーザ光のファスト軸方向の幅と略同じである。 Returning to FIG. 1, the condenser lens 14 has an optical function of converging only in the direction in which the laser light sources 11a are arranged, that is, in the slow axis direction. The condenser lens 14 is, for example, a cylindrical lens. The generatrix of the lens surface of the condenser lens 14 is parallel to the Y-axis direction. Therefore, the beam formed by each laser beam after passing through the condenser lens 14 is converged only in the slow axis direction (Z axis direction). Therefore, the shape of the beam at the focal position of the condenser lens 14 is a linear shape that is long in the fast axis direction. The length of this linear shape is approximately the same as the width in the fast axis direction of each laser beam that is collimated by the collimator lens 12.
 集光レンズ14で集光されたビームは、光偏向器15のミラー15aに入射する。光偏向器15は、たとえば、圧電アクチュエータや静電アクチュエータ等を用いたMEMS(Micro Electro Mechanical Systems)ミラーである。ミラー15aは、集光レンズ14の焦点距離の位置に配置されている。 The beam condensed by the condenser lens 14 enters the mirror 15 a of the optical deflector 15. The optical deflector 15 is, for example, a MEMS (Micro Electro Mechanical Systems) mirror using a piezoelectric actuator, an electrostatic actuator, or the like. The mirror 15a is arranged at the position of the focal length of the condenser lens 14.
 ビームは、集光レンズ14によってZ軸方向のみに集光されるため、ミラー15aで反射された後のビームは、X軸方向のみに広がる。こうして、X軸方向に広がるラインビームB10が生成される。 The beam is condensed only in the Z-axis direction by the condenser lens 14, so the beam after being reflected by the mirror 15a spreads only in the X-axis direction. Thus, the line beam B10 that spreads in the X-axis direction is generated.
 光偏向器15は、ミラー駆動回路33からの駆動信号によりミラー15aを駆動して、ミラー15aから反射したビームをY軸方向に走査させる。これにより、ラインビームB10が短手方向(Y軸方向)に走査される。 The optical deflector 15 drives the mirror 15a by the drive signal from the mirror drive circuit 33, and scans the beam reflected from the mirror 15a in the Y-axis direction. As a result, the line beam B10 is scanned in the lateral direction (Y-axis direction).
 図4は、レーザレーダ10のレーザ光の出射状態と、目標領域におけるラインビームB10の状態とを模式的に示す図である。図4の上段には、投射方向(Z軸正方向)に見たときのラインビームB10の断面形状が模式的に示されている。 FIG. 4 is a diagram schematically showing the emission state of the laser beam of the laser radar 10 and the state of the line beam B10 in the target area. In the upper part of FIG. 4, the cross-sectional shape of the line beam B10 when viewed in the projection direction (Z-axis positive direction) is schematically shown.
 図4に示すように、本実施形態では、レーザレーダ10が車両200の前側に搭載され、車両200の前方にラインビームB10が投射される。ラインビームB10の長辺方向の広がり角θ11は、たとえば120°である。また、物体検出が可能な距離D11の上限は、たとえば、200m程度である。図4では、便宜上、広がり角θ11が実際よりも小さく表現されている。 As shown in FIG. 4, in this embodiment, the laser radar 10 is mounted on the front side of the vehicle 200, and the line beam B10 is projected in front of the vehicle 200. The divergence angle θ11 in the long side direction of the line beam B10 is 120°, for example. The upper limit of the distance D11 at which the object can be detected is, for example, about 200 m. In FIG. 4, for the sake of convenience, the spread angle θ11 is expressed smaller than it actually is.
 図1に示したように、複数のレーザ光源11aが一方向に並んで配置されているため、各レーザ光源11aから出射されたレーザ光は、図4のラインL1に沿って並ぶように投射される。このように、各レーザ光源11aから出射されたレーザ光が合成されることにより、ラインビームB10が構成される。 As shown in FIG. 1, since the plurality of laser light sources 11a are arranged side by side in one direction, the laser light emitted from each laser light source 11a is projected so as to be arranged along the line L1 in FIG. It In this way, the laser beams emitted from the respective laser light sources 11a are combined to form the line beam B10.
 図1に戻り、目標領域から反射したラインビームB10の反射光は、受光レンズ16によって、受光素子17の受光面に集光される。受光素子17は、たとえば、イメージセンサである。受光素子17は、たとえば、長方形の受光面を有し、受光面の長辺がX軸に平行となるように配置される。受光素子17の受光面の長辺方向は、目標領域におけるラインビームB10の長辺方向に対応する。ラインビームB10の反射光は、受光面の長辺方向に沿って延びるように、受光レンズ16によって、受光素子17の受光面に結像される。 Returning to FIG. 1, the reflected light of the line beam B10 reflected from the target area is condensed by the light receiving lens 16 on the light receiving surface of the light receiving element 17. The light receiving element 17 is, for example, an image sensor. The light receiving element 17 has, for example, a rectangular light receiving surface, and is arranged such that the long side of the light receiving surface is parallel to the X axis. The long side direction of the light receiving surface of the light receiving element 17 corresponds to the long side direction of the line beam B10 in the target region. The reflected light of the line beam B10 is imaged on the light receiving surface of the light receiving element 17 by the light receiving lens 16 so as to extend along the long side direction of the light receiving surface.
 ここで、受光面のX軸方向の画素位置は、目標領域におけるX軸方向の位置に対応する。したがって、受光信号が生じた画素の位置により、目標領域のX軸方向のどの位置に物体が存在するかを検出できる。受光素子17としてX軸方向に画素が並ぶラインセンサが用いられてもよい。 Here, the pixel position in the X-axis direction on the light-receiving surface corresponds to the position in the X-axis direction in the target area. Therefore, it is possible to detect at which position in the X-axis direction of the target area the object is present based on the position of the pixel where the light reception signal is generated. As the light receiving element 17, a line sensor in which pixels are arranged in the X-axis direction may be used.
 図5(a)は、受光素子17としてイメージセンサ171が用いられる場合の、受光面171a上における反射光R10の集光状態を模式的に示す図である。なお、図5(a)には、目標領域においてラインビームB10の全てが反射された場合の反射光R10の受光状態が示されている。また、図5(a)は、画素171bの配列を模式的に示すものであり、実際には、図5(a)よりも顕著に多い画素171bが高精細に配置されている。 FIG. 5A is a diagram schematically showing a condensed state of the reflected light R10 on the light receiving surface 171a when the image sensor 171 is used as the light receiving element 17. Note that FIG. 5A shows a light receiving state of the reflected light R10 when all of the line beam B10 is reflected in the target area. Further, FIG. 5A schematically shows the arrangement of the pixels 171b, and actually, the pixels 171b, which are significantly larger than those in FIG. 5A, are arranged with high precision.
 イメージセンサ171の受光面171aには、縦横に並ぶ多数の画素171bが配置されている。各画素171bは、露光期間において光が入射することにより検出信号を出力する。図4においてラインビームB10がY軸方向(ラインビームB10の短辺方向)に走査されると、反射光R10は、受光面171a上をY軸方向に走査する。ラインビームB10のY軸方向の走査範囲は、受光面171aにおける反射光R10の走査範囲に対応する。反射光R10の走査範囲は、受光面171aのY軸方向の幅に略等しく設定される。これにより、画素171bのY軸方向の位置は、ラインビームB10のY軸方向の走査位置に対応し、画素171bのX軸方向の位置は、ラインビームB10のX軸方向の位置に対応する。したがって、受光信号が生じた画素の位置により、目標領域のX軸方向のどの位置に物体が存在するかを検出できる。 On the light receiving surface 171a of the image sensor 171, a large number of pixels 171b arranged vertically and horizontally are arranged. Each pixel 171b outputs a detection signal when light enters during the exposure period. In FIG. 4, when the line beam B10 is scanned in the Y axis direction (short side direction of the line beam B10), the reflected light R10 scans the light receiving surface 171a in the Y axis direction. The scanning range of the line beam B10 in the Y-axis direction corresponds to the scanning range of the reflected light R10 on the light receiving surface 171a. The scanning range of the reflected light R10 is set to be substantially equal to the width of the light receiving surface 171a in the Y axis direction. Accordingly, the position of the pixel 171b in the Y-axis direction corresponds to the scanning position of the line beam B10 in the Y-axis direction, and the position of the pixel 171b in the X-axis direction corresponds to the position of the line beam B10 in the X-axis direction. Therefore, it is possible to detect at which position in the X-axis direction of the target area the object is present based on the position of the pixel where the light reception signal is generated.
 なお、イメージセンサ171は、CMOSイメージセンサやCCDイメージセンサの他、各画素171bにアバランシェフォトダイオードが配置されたAPDアレイであってもよい。アバランシェフォトダイオードは、光電変換により発生した電子を増倍させる機能を有する。このため、各画素171bの検出感度を高めることができ、遠距離からの微弱な反射光R10をより精度良く検出できる。この場合、アバランシェフォトダイオードは、ガイガーモードで用いられてもよい。これにより、各画素171bのアバランシェフォトダイオードにフォトンが入射した場合に、アバランシェフォトダイオードで発生する電荷量を飽和電荷量まで高めて出力させることができる。よって、微弱な反射光R10をさらに精度良く検出できる。 The image sensor 171 may be a CMOS image sensor or a CCD image sensor, or may be an APD array in which an avalanche photodiode is arranged in each pixel 171b. The avalanche photodiode has a function of multiplying electrons generated by photoelectric conversion. Therefore, the detection sensitivity of each pixel 171b can be increased, and the weak reflected light R10 from a long distance can be detected more accurately. In this case, the avalanche photodiode may be used in Geiger mode. Accordingly, when photons are incident on the avalanche photodiode of each pixel 171b, the amount of charge generated in the avalanche photodiode can be increased to the saturated charge amount and output. Therefore, the weak reflected light R10 can be detected with higher accuracy.
 図5(b)は、受光素子17としてラインセンサ172が用いられる場合の、受光面172a上における反射光R10の集光状態を模式的に示す図である。なお、図5(b)においても、目標領域においてラインビームB10の全てが反射された場合の反射光R10の受光状態が示されている。 FIG. 5B is a diagram schematically showing a condensed state of the reflected light R10 on the light receiving surface 172a when the line sensor 172 is used as the light receiving element 17. Note that FIG. 5B also shows the light reception state of the reflected light R10 when the entire line beam B10 is reflected in the target area.
 ラインセンサ172の受光面172aには、Y軸方向に延びる長方形の光センサ172bが、X軸方向に並んで複数配置されている。各光センサ172bは、受光光量に応じた大きさの信号を出力する。図4においてラインビームB10がY軸方向(ラインビームB10の短辺方向)に走査されると、反射光R10は、受光面172a上をY軸方向に走査する。ラインビームB10のY軸方向の走査範囲は、受光面172aにおける反射光R10の走査範囲に対応する。反射光R10の走査範囲は、受光面172aのY軸方向の幅に略等しく設定される。 On the light receiving surface 172a of the line sensor 172, a plurality of rectangular optical sensors 172b extending in the Y-axis direction are arranged side by side in the X-axis direction. Each optical sensor 172b outputs a signal having a magnitude corresponding to the amount of received light. In FIG. 4, when the line beam B10 is scanned in the Y axis direction (short side direction of the line beam B10), the reflected light R10 scans the light receiving surface 172a in the Y axis direction. The scanning range of the line beam B10 in the Y-axis direction corresponds to the scanning range of the reflected light R10 on the light receiving surface 172a. The scanning range of the reflected light R10 is set to be substantially equal to the width of the light receiving surface 172a in the Y axis direction.
 各光センサ172bのX軸方向の位置は、ラインビームB10のX軸方向の位置に対応する。したがって、受光信号が生じた光センサ172bの位置により、目標領域のX軸方向のどの位置に物体が存在するかを検出できる。また、Y軸方向におけるラインビームB10の走査位置は、たとえば、光偏向器15におけるミラー15aの振り位置から把握できる。すなわち、ミラー15aが各振り位置にあるタイミングにおいて各光センサ172bから受光信号が出力された場合、その受光信号を、当該振り角に対応するラインビームB10の走査位置に対応付けることができる。したがって、回路部側でこの対応付けを行うことにより、目標領域のY軸方向のどの位置に物体が存在するかを検出できる。 The position of each optical sensor 172b in the X-axis direction corresponds to the position of the line beam B10 in the X-axis direction. Therefore, the position of the object in the X-axis direction in the target area can be detected from the position of the optical sensor 172b where the received light signal is generated. The scanning position of the line beam B10 in the Y-axis direction can be grasped from the swing position of the mirror 15a in the optical deflector 15, for example. That is, when a light receiving signal is output from each optical sensor 172b at the timing when the mirror 15a is at each swing position, the light receiving signal can be associated with the scanning position of the line beam B10 corresponding to the swing angle. Therefore, by making this correspondence on the circuit unit side, it is possible to detect at which position in the Y-axis direction of the target area the object is present.
 なお、光センサ172bの数および長さ、幅は、図5(b)に示したものに限られるものではない。X軸方向における分解能を高めるためには、光センサ172bの幅はなるべく狭い方がよく、光センサ172bの数はなるべく多い方が好ましい。 The number, length, and width of the optical sensors 172b are not limited to those shown in FIG. 5(b). In order to improve the resolution in the X-axis direction, the width of the optical sensors 172b is preferably as narrow as possible, and the number of optical sensors 172b is preferably as large as possible.
 図1に戻り、レーザレーダ10は、回路部の構成として、コントローラ31と、レーザ駆動回路32と、ミラー駆動回路33と、信号処理回路34と、を備える。 Returning to FIG. 1, the laser radar 10 includes a controller 31, a laser drive circuit 32, a mirror drive circuit 33, and a signal processing circuit 34 as a circuit configuration.
 コントローラ31は、CPU(CentralProcessing Unit)等の演算処理回路や、ROM(Read Only Memory)、RAM(Random Access Memory)等の記憶媒体を備え、予め設定されたプログラムに従って各部を制御する。レーザ駆動回路32は、コントローラ31からの制御に応じて光源ユニット11の各レーザ光源11aをパルス発光させる。 The controller 31 includes an arithmetic processing circuit such as a CPU (Central Processing Unit) and a storage medium such as a ROM (Read Only Memory) and a RAM (Random Access Memory), and controls each unit according to a preset program. The laser drive circuit 32 causes each of the laser light sources 11a of the light source unit 11 to emit a pulse under the control of the controller 31.
 ミラー駆動回路33は、コントローラ31からの制御に応じて光偏向器15を駆動する。コントローラ31は、目標領域において、ラインビームB10の短辺方向に、ラインビームB10が走査されるように、光偏向器15を制御する。 The mirror drive circuit 33 drives the optical deflector 15 under the control of the controller 31. The controller 31 controls the optical deflector 15 so that the line beam B10 is scanned in the short side direction of the line beam B10 in the target area.
 信号処理回路34は、受光素子17の各画素の受光信号をコントローラ31に出力する。上記のように、コントローラ31は、受光信号が生じた画素の位置により、目標領域のX軸方向のどの位置に物体が存在するかを検出できる。また、コントローラ31は、光源ユニット11をパルス発光させたタイミングと、受光素子17が目標領域からの反射光を受光したタイミング、すなわち、受光素子17から受光信号を受信したタイミングとの時間差によって、目標領域に存在する物体までの距離を算出する。 The signal processing circuit 34 outputs the light receiving signal of each pixel of the light receiving element 17 to the controller 31. As described above, the controller 31 can detect at which position in the X-axis direction of the target area the object exists, based on the position of the pixel where the light reception signal has occurred. Further, the controller 31 uses the time difference between the timing at which the light source unit 11 emits pulsed light and the timing at which the light receiving element 17 receives the reflected light from the target area, that is, the timing at which the light receiving signal is received from the light receiving element 17. The distance to the object existing in the area is calculated.
 こうして、コントローラ31は、光源ユニット11をパルス発光させつつ、光偏向器15によりラインビームB10を走査させることにより、目標領域における物体の有無を検出し、さらに、物体のY軸方向の位置および物体までの距離を計測する。これらの測定結果は、随時、車両側の制御部に送信される。 In this way, the controller 31 detects the presence or absence of an object in the target area by causing the light deflector 15 to scan the line beam B10 while causing the light source unit 11 to emit light in pulses, and further detects the position of the object in the Y-axis direction and the object. Measure the distance to. These measurement results are transmitted to the control unit on the vehicle side at any time.
 次に、レーザレーダ10の光学系の設定方法を説明する。 Next, a method of setting the optical system of the laser radar 10 will be described.
 図6(a)は、レーザ光源11aとスロー軸方向にレーザ光を平行光化するコリメータレンズ13aとの関係を説明する図である。便宜上、図6(a)では、コリメータレンズ12が省略されている。 FIG. 6A is a diagram for explaining the relationship between the laser light source 11a and the collimator lens 13a that collimates the laser light in the slow axis direction. For convenience, the collimator lens 12 is omitted in FIG.
 図6(a)において、P1はレーザ光源11aの配置間隔、S1はレーザ光源11aの並び方向(ここでは、スロー軸方向)におけるレーザ光源11aの発光領域117の幅、θ1はレーザ光源11aの並び方向(ここでは、スロー軸方向)におけるレーザ光の発散全角、f1はコリメータレンズ13aの焦点距離である。この場合、レーザ光源11aは、次式を満たすように配置される。 In FIG. 6A, P1 is the arrangement interval of the laser light sources 11a, S1 is the width of the light emitting region 117 of the laser light sources 11a in the arrangement direction of the laser light sources 11a (here, the slow axis direction), and θ1 is the arrangement of the laser light sources 11a. Direction (here, slow axis direction), the total divergence angle of the laser light, and f1 is the focal length of the collimator lens 13a. In this case, the laser light source 11a is arranged so as to satisfy the following equation.
  P1≧S1+2f1×tan(θ1/2) …(1) P1≧S1+2f1×tan (θ1/2)…(1)
 ここで、レーザ光の発散全角θ1は、ピーク強度の1/e以上の領域に含まれるレーザ光の発散全角である。レーザ光の発散全角θ1は、ピーク強度の半値幅に含まれるレーザ光の発散全角であってもよい。 Here, the total divergence angle θ1 of the laser light is the total divergence angle of the laser light included in the region of 1/e 2 or more of the peak intensity. The full divergence angle θ1 of the laser light may be the full divergence angle of the laser light included in the half-value width of the peak intensity.
 このように、レーザ光源11aが配置されると、各レーザ光源11aから出射されたレーザ光が、隣のコリメータレンズ13aに掛かることなく正面のコリメータレンズ13aに適正に入射する。これにより、各レーザ光が、それぞれ、対応するコリメータレンズ13aによって精度良く平行光化される。その結果、各レーザ光を統合して形成されるビームを、集光レンズ14によって、略焦線の状態に収束させることができる。よって、集光レンズ14によって集光されるビームのサイズを、極めて小さくすることができる。 When the laser light sources 11a are arranged in this way, the laser light emitted from each laser light source 11a properly enters the front collimator lens 13a without being caught by the adjacent collimator lens 13a. As a result, each laser beam is accurately collimated by the corresponding collimator lens 13a. As a result, the beam formed by integrating the laser beams can be converged by the condenser lens 14 into a substantially focused state. Therefore, the size of the beam condensed by the condenser lens 14 can be made extremely small.
 図6(b)は、集光レンズ14と光偏向器15のミラー15aとの関係を説明する図である。 FIG. 6B is a diagram illustrating the relationship between the condenser lens 14 and the mirror 15 a of the optical deflector 15.
 図6(b)において、D2は集光レンズ14の有効径、f2は集光レンズ14の焦点距離、θ2はミラー15aに対するビームの集光全角である。この場合、集光レンズ14とミラー15aは、次式を満たすように配置されている。 In FIG. 6(b), D2 is the effective diameter of the condenser lens 14, f2 is the focal length of the condenser lens 14, and θ2 is the total angle of convergence of the beam with respect to the mirror 15a. In this case, the condenser lens 14 and the mirror 15a are arranged so as to satisfy the following equation.
  θ2=2tan-1(D2/2f2) …(2) θ2=2 tan −1 (D2/2f2) (2)
 このように集光レンズ14とミラー15aが配置されることにより、各レーザ光を統合して形成されるビームが、集光レンズ14によって、略焦線の状態でミラー15aに収束される。よって、ミラー15aのサイズを極めて小さくすることができる。 By arranging the condenser lens 14 and the mirror 15a in this way, the beam formed by integrating the laser beams is converged by the condenser lens 14 on the mirror 15a in a substantially focal line state. Therefore, the size of the mirror 15a can be made extremely small.
 <実施形態の効果>
 本実施形態によれば、以下の効果が奏される。
<Effects of the embodiment>
According to this embodiment, the following effects are exhibited.
 複数のレーザ光源11aが用いられるため、目標領域に対するレーザ光の照射光量を高めることができる。また、各レーザ光源11aから出射されたレーザ光が集光レンズ14によって光偏向器15のミラー15aに集光されるため、光偏向器15のミラー15aを小さくできる。さらに、上記式(1)の条件を満たすようにレーザ光源11aが配置されるため、レーザ光源11aから出射されたレーザ光を、対応するコリメータレンズ13aに対して、はみ出すことなく適正に入射させることができる。これにより、コリメータレンズ13aによって各レーザ光を精度良く平行光化でき、結果、ミラー15aにおけるビームの集光サイズを極めて小さく絞ることができる。よって、光偏向器15のミラー15aを顕著に小さくすることができる。 Since a plurality of laser light sources 11a are used, it is possible to increase the irradiation light amount of the laser light to the target area. Further, since the laser light emitted from each laser light source 11a is condensed on the mirror 15a of the optical deflector 15 by the condenser lens 14, the mirror 15a of the optical deflector 15 can be made small. Further, since the laser light source 11a is arranged so as to satisfy the condition of the above expression (1), the laser light emitted from the laser light source 11a is properly incident on the corresponding collimator lens 13a without protruding. You can As a result, the collimator lens 13a can accurately collimate each laser beam, and as a result, the beam converging size at the mirror 15a can be narrowed to an extremely small size. Therefore, the mirror 15a of the optical deflector 15 can be significantly reduced.
 また、各レーザ光源11aのスロー軸がレーザ光源11aの並び方向に平行となるように、複数のレーザ光源11aが配置され、コリメータレンズアレイ13に形成された各コリメータレンズ13aは、各レーザ光源11aからのレーザ光をスロー軸方向において平行光化する。これにより、小さな広がり角で各コリメータレンズ13aにレーザ光が入射するため、コリメータレンズ13aがレーザ光の進行方向に僅かに位置ずれしたとしても、レーザ光が隣のコリメータレンズ13aに掛かりにくくなる。よって、各レーザ光をより精度良く平行光化できる。 Further, the plurality of laser light sources 11a are arranged such that the slow axis of each laser light source 11a is parallel to the arrangement direction of the laser light sources 11a, and each collimator lens 13a formed in the collimator lens array 13 has each laser light source 11a. The laser light from is collimated in the slow axis direction. As a result, since the laser light is incident on each collimator lens 13a with a small divergence angle, even if the collimator lens 13a is slightly displaced in the traveling direction of the laser light, it is difficult for the laser light to impinge on the adjacent collimator lens 13a. Therefore, each laser beam can be made into a parallel beam more accurately.
 また、集光レンズ14とミラー15aが上記式(2)の条件を満たすように配置されているため、各レーザ光源11aから出射されるレーザ光を統合して形成されるビームが、集光レンズ14によって、略焦線の状態でミラー15aに収束される。よって、光偏向器15のミラー15aのサイズを極めて小さくすることができる。 Further, since the condenser lens 14 and the mirror 15a are arranged so as to satisfy the condition of the above expression (2), the beam formed by integrating the laser light emitted from each laser light source 11a is a condenser lens. The light beam is focused on the mirror 15a by 14 in a substantially focused state. Therefore, the size of the mirror 15a of the optical deflector 15 can be made extremely small.
 なお、上記のように、光偏向器15のミラー15aを極めて小さくできることにより、光学系およびレーザレーダ10の小型化が図られるとともに、ミラー15aのレスポンス性能を高めることができる。よって、目標領域においてラインビームB10を円滑かつ精度良く走査させることができる。 As described above, by making the mirror 15a of the optical deflector 15 extremely small, the optical system and the laser radar 10 can be downsized and the response performance of the mirror 15a can be improved. Therefore, the line beam B10 can be smoothly and accurately scanned in the target area.
 また、レーザ光源11aは、ファスト軸118aおよびスロー軸118bの両方において、出射強度の分布がシングルモードとなっている。これにより、各レーザ光源11aから出射されたレーザ光を、ファスト軸用のコリメータレンズ12およびスロー軸用のコリメータレンズ13aによって、ファスト軸方向およびスロー軸方向に、精度良く平行光化できる。レーザ光をファスト軸方向に精度良く平行光化できることにより、ラインビームB10の短辺方向におけるビームの広がりを抑制でき、ラインビームB10をより遠くまで照射できる。よって、レーザレーダ10の検出可能距離を広げることができる。また、レーザ光をスロー軸方向に精度良く平行光化できることにより、ミラー15aに収束されるビームの形状をより線状に近づけることができる。よって、ミラー15aをより小さくすることができる。 Further, the laser light source 11a has a single-mode emission intensity distribution on both the fast axis 118a and the slow axis 118b. As a result, the laser light emitted from each laser light source 11a can be accurately collimated in the fast axis direction and the slow axis direction by the fast axis collimator lens 12 and the slow axis collimator lens 13a. Since the laser light can be collimated in the fast axis direction with high accuracy, the beam spread in the short side direction of the line beam B10 can be suppressed, and the line beam B10 can be irradiated further. Therefore, the detectable distance of the laser radar 10 can be widened. Further, since the laser light can be made parallel to the slow axis with high accuracy, the shape of the beam focused on the mirror 15a can be made closer to a linear shape. Therefore, the mirror 15a can be made smaller.
 以上、本発明の実施形態について説明したが、本発明は、上記実施形態に限定されるものではなく、他に種々の変更が可能である。 The embodiments of the present invention have been described above, but the present invention is not limited to the above embodiments, and various modifications can be made.
 <変更例1>
 たとえば、図7(a)に示すように、複数のレーザ光源11aから出射されたレーザ光がそれぞれ入射する拡散板18がさらに配置されてもよい。図7(a)には、レーザレーダ10の光学系のみが示されている。
<Modification 1>
For example, as shown in FIG. 7A, a diffusing plate 18 to which the laser beams emitted from the plurality of laser light sources 11a respectively enter may be further arranged. FIG. 7A shows only the optical system of the laser radar 10.
 上記実施形態では、レーザ光源11aが直線状に並べて配置されているため、ラインビームB10は、各レーザ光源11aからのレーザ光が長辺方向に並ぶことにより構成される。このため、ラインビームB10の強度分布は、長辺方向に、高低を繰り返すようになる。 In the above-described embodiment, since the laser light sources 11a are arranged side by side in a straight line, the line beam B10 is configured by arranging the laser light from each laser light source 11a in the long side direction. Therefore, the intensity distribution of the line beam B10 repeats high and low in the long side direction.
 これに対し、変更例1では、拡散板18によって、長辺方向におけるラインビームB10の強度分布が均一化される。これにより、ラインビームB10の長辺方向の各位置における物体の検出可能距離を互いに等しくできる。よって、ラインビームB10の長辺方向の各位置において、物体までの距離を一律に精度良く計測することができる。なお、拡散板18は、たとえば、レーザレーダ10の出射窓に配置されてもよく、出射窓自体が拡散板18であってもよい。 On the other hand, in Modification 1, the intensity distribution of the line beam B10 in the long side direction is made uniform by the diffuser plate 18. Thereby, the detectable distances of the object at the respective positions in the long side direction of the line beam B10 can be equal to each other. Therefore, at each position in the long side direction of the line beam B10, it is possible to uniformly and accurately measure the distance to the object. Note that the diffusion plate 18 may be arranged in the emission window of the laser radar 10, or the emission window itself may be the diffusion plate 18.
 <変更例2>
 また、図7(b)に示すように、ラインビームB10の長辺方向の広がり角をさらに広げるための拡大レンズ19が設けられてもよい。図7(b)には、レーザレーダ10の光学系のみが示されている。
<Modification 2>
Further, as shown in FIG. 7B, a magnifying lens 19 for further widening the divergence angle of the line beam B10 in the long side direction may be provided. In FIG. 7B, only the optical system of the laser radar 10 is shown.
 拡大レンズ19は、X-Z平面に平行な方向のみに湾曲した凹状のレンズ面19aを有する。レンズ面19aの母線は、Y軸に平行である。凹状のレンズ面19aが、拡大レンズ19の入射面に設けられてもよく、入射面と出射面の両方に設けられてもよい。 The magnifying lens 19 has a concave lens surface 19a curved only in a direction parallel to the XZ plane. The generatrix of the lens surface 19a is parallel to the Y axis. The concave lens surface 19a may be provided on the entrance surface of the magnifying lens 19 or may be provided on both the entrance surface and the exit surface.
 このように拡大レンズ19が設けられることにより、レーザレーダ10によって距離測定が可能な範囲をX軸方向に広げることができる。よって、より広い範囲に存在する物体について、距離を計測することができる。 By providing the magnifying lens 19 in this way, the range in which the distance measurement can be performed by the laser radar 10 can be expanded in the X-axis direction. Therefore, it is possible to measure the distance for an object existing in a wider range.
 <変更例3>
 上記実施形態において、集光レンズ14は、レーザ光源11aの並び方向のみに収束作用を有していたが、集光レンズ14が全周に亘って一様に光を収束させる収束作用を有していてもよい。
<Modification 3>
In the above embodiment, the condenser lens 14 has a converging action only in the direction in which the laser light sources 11a are arranged. However, the condensing lens 14 has a converging action to uniformly converge the light over the entire circumference. May be.
 図8(a)は、この場合の光学系の構成を示す図である。 FIG. 8A is a diagram showing the configuration of the optical system in this case.
 集光レンズ14は、光軸方向に入射した平行光を一点に収束させる光学作用を有している。この場合、各レーザ光源11aから出射されたレーザ光により構成されるビームは、集光レンズ14によって、光偏向器15のミラー15aに略円形のビームスポットとして集光される。その後、ビームは、X軸方向のみならず、Y軸方向にも広がる。 The condenser lens 14 has an optical function of converging parallel light incident in the optical axis direction into one point. In this case, the beam composed of the laser light emitted from each laser light source 11a is condensed by the condenser lens 14 on the mirror 15a of the optical deflector 15 as a substantially circular beam spot. After that, the beam spreads not only in the X-axis direction but also in the Y-axis direction.
 このため、この変更例では、光偏向器15の後段側に、ビームをY軸方向に平行光化するためのコリメータレンズ20が設けられる。コリメータレンズ20は、たとえば、シリンドリカルレンズである。コリメータレンズ20の出射面は、Y-Z平面に平行な方向のみに凸状に湾曲したレンズ面20aとなっている。レンズ面20aの母線はX軸に平行である。コリメータレンズ20によってビームがY軸方向に平行光化されることにより、X軸方向に広がるラインビームB10が生成される。 Therefore, in this modified example, the collimator lens 20 for collimating the beam in the Y-axis direction is provided on the rear side of the optical deflector 15. The collimator lens 20 is, for example, a cylindrical lens. The exit surface of the collimator lens 20 is a lens surface 20a which is convexly curved only in the direction parallel to the YZ plane. The generatrix of the lens surface 20a is parallel to the X axis. By collimating the beam in the Y-axis direction by the collimator lens 20, a line beam B10 that spreads in the X-axis direction is generated.
 変更例3の構成によれば、上記実施形態に比べ、コリメータレンズ13aがさらに必要となる。しかし、変更例3の構成によれば、光偏向器15のミラー15a上において、ビームを略円形のビームスポットに集光できる。このため、上記実施形態に比べて、さらに、ミラー15a上におけるビームのサイズを小さくできる。よって、ミラー15aのサイズをさらに小さくできる。 According to the configuration of Modification 3, the collimator lens 13a is further required as compared with the above embodiment. However, according to the configuration of the third modification, the beam can be condensed into a substantially circular beam spot on the mirror 15a of the optical deflector 15. Therefore, the size of the beam on the mirror 15a can be further reduced as compared with the above embodiment. Therefore, the size of the mirror 15a can be further reduced.
 <変更例4>
 上記実施形態では、レーザ光源11aがスロー軸方向に並べられたが、レーザ光源11aがファスト軸方向に並べられてもよい。
<Modification 4>
In the above embodiment, the laser light sources 11a are arranged in the slow axis direction, but the laser light sources 11a may be arranged in the fast axis direction.
 図8(b)は、この場合の光学系の構成を示す図である。 FIG. 8B is a diagram showing the configuration of the optical system in this case.
 ここでは、各レーザ光源11aから出射されたレーザ光をファスト軸方向に平行光化するコリメータレンズアレイ21と、各レーザ光源11aから出射されたレーザ光をスロー軸方向に平行光化するコリメータレンズ22とが設けられている。 Here, a collimator lens array 21 that collimates the laser light emitted from each laser light source 11a in the fast axis direction and a collimator lens 22 that collimates the laser light emitted from each laser light source 11a in the slow axis direction. And are provided.
 コリメータレンズアレイ21の出射面には、図3(b)と同様、各レーザ光源11aからのレーザ光がそれぞれ入射する複数のコリメータレンズ21aが形成されている。コリメータレンズ21aは、X-Z平面に平行な方向のみに湾曲した凸状のレンズ面を有する。コリメータレンズ21aの母線は、Y軸方向に平行である。 On the emission surface of the collimator lens array 21, a plurality of collimator lenses 21a on which the laser beams from the laser light sources 11a respectively enter are formed, as in FIG. 3B. The collimator lens 21a has a convex lens surface curved only in a direction parallel to the XZ plane. The generatrix of the collimator lens 21a is parallel to the Y-axis direction.
 また、コリメータレンズ22の出射面には、図3(a)と同様、各レーザ光源11aからのレーザ光がそれぞれ入射するレンズ面22aが形成されている。レンズ面22aは、X-Z平面に平行な方向のみに湾曲した凸状の形状である。レンズ面22aの母線は、Z軸方向に平行である。コリメータレンズ22は、たとえば、シリンドリカルレンズである。 Further, the exit surface of the collimator lens 22 is formed with a lens surface 22a on which the laser light from each laser light source 11a enters, as in FIG. 3A. The lens surface 22a has a convex shape curved only in a direction parallel to the XZ plane. The generatrix of the lens surface 22a is parallel to the Z-axis direction. The collimator lens 22 is, for example, a cylindrical lens.
 変更例4においても、上記式(1)の条件を満たすように、コリメータレンズ21aとレーザ光源11aとが配置される。変更例4の構成において、上記式(1)のP1はレーザ光源11aの配置間隔、S1はレーザ光源11aの並び方向(ファスト軸方向)におけるレーザ光源11aの発光領域117の幅、θ1はレーザ光源11aの並び方向(ファスト軸方向)におけるレーザ光の発散全角、f1はコリメータレンズ21aの焦点距離である。 Also in the modification 4, the collimator lens 21a and the laser light source 11a are arranged so as to satisfy the condition of the above expression (1). In the configuration of Modification 4, P1 in the above formula (1) is the arrangement interval of the laser light sources 11a, S1 is the width of the light emitting region 117 of the laser light sources 11a in the arrangement direction of the laser light sources 11a (fast axis direction), and θ1 is the laser light source. The divergence full angle of the laser light in the arrangement direction of 11a (fast axis direction), and f1 is the focal length of the collimator lens 21a.
 変更例4において、上記式(1)の条件を満たすように、コリメータレンズ21aとレーザ光源11aとが配置されることにより、ファスト軸方向において各レーザ光を精度良く平行光化でき、結果、ミラー15a上において、ビームを線状に収束させることができる。よって、ミラー15aを小型化でき、ミラー15aのレスポンス性能を高めることができる。 In the modified example 4, by arranging the collimator lens 21a and the laser light source 11a so as to satisfy the condition of the above formula (1), each laser beam can be accurately parallelized in the fast axis direction. As a result, the mirror The beam can be linearly focused on 15a. Therefore, the mirror 15a can be downsized and the response performance of the mirror 15a can be improved.
 <他の変更例>
 上記実施形態では、ファスト軸用のコリメータレンズ12とスロー軸用のコリメータレンズアレイ13が互いに別体であったが、これらが一体化されてもよい。たとえば、入射面にファスト軸用の1つのコリメータレンズ(レンズ面)が形成され、出射面にスロー軸用の複数のコリメータレンズが形成された光学素子が、光源ユニット11と集光レンズ14との間に配置されてもよい。
<Other changes>
In the above-described embodiment, the fast axis collimator lens 12 and the slow axis collimator lens array 13 are separate bodies, but they may be integrated. For example, an optical element in which one collimator lens (lens surface) for the fast axis is formed on the entrance surface and a plurality of collimator lenses for the slow axis is formed on the exit surface is formed by the light source unit 11 and the condenser lens 14. It may be arranged in between.
 また、上記実施形態では、スロー軸用のコリメータレンズ13aがアレイ化されていたが、各レーザ光源11aに対応する複数のコリメータレンズを並べて配置する構成であってもよい。変更例4に示したコリメータレンズ21aについても同様である。 In the above embodiment, the slow axis collimator lens 13a is arrayed, but a plurality of collimator lenses corresponding to the laser light sources 11a may be arranged side by side. The same applies to the collimator lens 21a shown in the fourth modification.
 また、上記実施形態では、光源ユニット11、コリメータレンズ12、コリメータレンズアレイ13、集光レンズ14および光偏向器15が一方向に並ぶように光学系が構成されたが、光学系のレイアウトはこれに限られるものではない。たとえば、光路の途中にミラーを配置して光路を折り曲げるように光学系が構成されてもよい。 Further, in the above embodiment, the optical system is configured such that the light source unit 11, the collimator lens 12, the collimator lens array 13, the condenser lens 14, and the optical deflector 15 are arranged in one direction, but the layout of the optical system is this. It is not limited to. For example, the optical system may be configured such that a mirror is arranged in the middle of the optical path and the optical path is bent.
 また、上記実施形態では、6つのレーザ光源11aが配置されたが、レーザ光源11aの数は、複数である限りにおいて、他の数であってもよい。また、必ずしも複数のレーザ光源11aがユニット化されなくてもよく、複数のレーザ光源が個別に配置されてもよい。レーザ光源11aは、必ずしも、ファスト軸およびスロー軸の両方においてシングルモードでなくてもよい。 Further, in the above embodiment, six laser light sources 11a are arranged, but the number of laser light sources 11a may be another number as long as it is plural. Further, the plurality of laser light sources 11a may not necessarily be unitized, and the plurality of laser light sources may be individually arranged. The laser light source 11a does not necessarily have to be a single mode in both the fast axis and the slow axis.
 また、上記実施形態では、レーザレーダ10が車両200に搭載されたが、他の移動体にレーザレーダ10が搭載されてもよい。また、レーザレーダ10が移動体以外の器機や設備に搭載されてもよい。また、レーザレーダ10が物体検出の機能のみを備えていてもよい。 Further, in the above embodiment, the laser radar 10 is mounted on the vehicle 200, but the laser radar 10 may be mounted on another moving body. Further, the laser radar 10 may be mounted on equipment or equipment other than the moving body. Further, the laser radar 10 may have only the function of detecting an object.
 この他、本発明の実施形態は、特許請求の範囲に示された技術的思想の範囲内において、適宜、種々の変更が可能である。 In addition to the above, the embodiment of the present invention can be appropriately modified in various ways within the scope of the technical idea shown in the claims.
  10 … レーザレーダ
  11a … レーザ光源
  12、13a、21a、22 … コリメータレンズ
  14 … 集光レンズ
  15 … 光偏向器
  15a … ミラー
  16 … 受光レンズ
  17 … 受光素子
  18 … 拡散板
  117 … 発光領域
  118a … ファスト軸
  118b … スロー軸
  171 … イメージセンサ
  172 … ラインセンサ
10... Laser radar 11a... Laser light source 12, 13a, 21a, 22... Collimator lens 14... Condensing lens 15... Optical deflector 15a... Mirror 16... Light receiving lens 17... Light receiving element 18... Diffusion plate 117... Light emitting area 118a Axis 118b... Slow axis 171... Image sensor 172... Line sensor

Claims (11)

  1.  一方向に並べて配置された複数のレーザ光源と、
     前記各レーザ光源に対応して配置され、前記各レーザ光源から出射されたレーザ光を前記一方向に対応する方向に平行光化する複数のコリメータレンズと、
     前記各コリメータレンズを経由した各レーザ光が前記一方向に対応する方向に並んで入射し、少なくとも前記一方向に対応する方向に集光作用を有する集光レンズと、
     前記集光レンズにより集光された前記各レーザ光が入射するミラーを有し、前記ミラーの向きを変化させることにより前記レーザ光を偏向させる光偏向器と、を備え、
     前記レーザ光源の配置間隔をP1、前記一方向に平行な方向における前記レーザ光源の発光領域の幅をS1、前記一方向に平行な方向における前記レーザ光の発散全角をθ1、前記コリメータレンズの焦点距離をf1としたとき、
     P1≧S1+2f1×tan(θ1/2)
    の条件を満たすように、前記複数のレーザ光源が配置されている、
    ことを特徴とするレーザレーダ。
     
    A plurality of laser light sources arranged side by side in one direction,
    A plurality of collimator lenses arranged corresponding to each of the laser light sources, for collimating the laser light emitted from each of the laser light sources in a direction corresponding to the one direction,
    Condensing lenses having respective laser beams passing through the collimator lenses incident side by side in a direction corresponding to the one direction, and having a condensing function in at least a direction corresponding to the one direction,
    An optical deflector that has a mirror to which each of the laser beams condensed by the condenser lens is incident, and that deflects the laser beam by changing the direction of the mirror;
    The arrangement interval of the laser light sources is P1, the width of the light emitting region of the laser light source in the direction parallel to the one direction is S1, the divergence full angle of the laser light in the direction parallel to the one direction is θ1, and the focus of the collimator lens is When the distance is f1,
    P1≧S1+2f1×tan (θ1/2)
    The plurality of laser light sources are arranged so as to satisfy the condition of
    A laser radar characterized in that.
  2.  請求項1に記載のレーザレーダにおいて、
     前記各レーザ光源のスロー軸が前記一方向に対して平行となるように、前記複数のレーザ光源が配置され、
     前記各コリメータレンズは、前記各レーザ光源からのレーザ光を前記スロー軸方向において平行光化する、
    ことを特徴とするレーザレーダ。
     
    The laser radar according to claim 1,
    The plurality of laser light sources are arranged so that the slow axis of each of the laser light sources is parallel to the one direction.
    Each of the collimator lenses collimates the laser light from each of the laser light sources in the slow axis direction,
    A laser radar characterized in that.
  3.  請求項1または2に記載のレーザレーダにおいて、
     前記集光レンズの有効径をD2、前記集光レンズの焦点距離をf2、前記ミラーに対する集光全角をθ2としたとき、
     θ2=2tan-1(D2/2f2)
    の条件を満たすように、前記集光レンズと前記ミラーが配置されている、
    ことを特徴とするレーザレーダ。
     
    The laser radar according to claim 1 or 2,
    When the effective diameter of the condensing lens is D2, the focal length of the condensing lens is f2, and the total condensing angle with respect to the mirror is θ2,
    θ2=2 tan −1 (D2/2f2)
    The condenser lens and the mirror are arranged so as to satisfy the condition of
    A laser radar characterized in that.
  4.  請求項1ないし3の何れか一項に記載のレーザレーダにおいて、
     前記一方向に垂直な方向において前記各光源からのレーザ光を平行光化する他のコリメータレンズを備え、
     前記コリメータレンズおよび前記他のコリメータレンズを経由した各レーザ光が前記集光レンズに入射する、
    ことを特徴とするレーザレーダ。
     
    The laser radar according to any one of claims 1 to 3,
    A collimator lens for collimating the laser light from each light source in a direction perpendicular to the one direction,
    Each laser beam that has passed through the collimator lens and the other collimator lens is incident on the condenser lens,
    A laser radar characterized in that.
  5.  請求項1ないし4の何れか一項に記載のレーザレーダにおいて、
     前記レーザ光源は、ファスト軸およびスロー軸の両方において、出射強度の分布がシングルモードとなっている、
    ことを特徴とするレーザレーダ。
     
    The laser radar according to any one of claims 1 to 4,
    The laser light source has a single-mode emission intensity distribution on both the fast axis and the slow axis,
    A laser radar characterized in that.
  6.  請求項1ないし5の何れか一項に記載のレーザレーダにおいて、
     前記光偏向器は、MEMSミラーである、
    ことを特徴とするレーザレーダ。
     
    The laser radar according to any one of claims 1 to 5,
    The optical deflector is a MEMS mirror,
    A laser radar characterized in that.
  7.  請求項1ないし6の何れか一項に記載のレーザレーダにおいて、
     前記複数のレーザ光源から出射された前記レーザ光がそれぞれ入射する拡散板を備える、
    ことを特徴とするレーザレーダ。
     
    The laser radar according to any one of claims 1 to 6,
    The laser light emitted from the plurality of laser light sources is provided with a diffuser plate, respectively.
    A laser radar characterized in that.
  8.  請求項1ないし7の何れか一項に記載のレーザレーダにおいて、
     前記ミラーで反射された前記レーザ光は、前記一方向に対応する方向に広がるラインビームを形成し、
     前記ラインビームの目標領域からの反射光を受光する受光素子と、
     前記反射光を前記受光素子に集光させる受光レンズと、を備える、
    ことを特徴とするレーザレーダ。
     
    The laser radar according to any one of claims 1 to 7,
    The laser light reflected by the mirror forms a line beam that spreads in a direction corresponding to the one direction,
    A light receiving element for receiving the reflected light from the target area of the line beam,
    A light receiving lens for condensing the reflected light on the light receiving element,
    A laser radar characterized in that.
  9.  請求項8に記載のレーザレーダにおいて、
     前記受光素子は、イメージセンサである、
    ことを特徴とするレーザレーダ。
     
    The laser radar according to claim 8,
    The light receiving element is an image sensor,
    A laser radar characterized in that.
  10.  請求項9に記載のレーザレーダにおいて、
     前記イメージセンサは、各画素にアバランシェフォトダイオードが配置されたAPDアレイである、
    ことを特徴とするレーザレーダ。
     
    The laser radar according to claim 9,
    The image sensor is an APD array in which an avalanche photodiode is arranged in each pixel,
    A laser radar characterized in that.
  11.  請求項8に記載のレーザレーダにおいて、
     前記受光素子は、ラインセンサである、
    ことを特徴とするレーザレーダ。
    The laser radar according to claim 8,
    The light receiving element is a line sensor,
    A laser radar characterized in that.
PCT/JP2019/043478 2018-12-03 2019-11-06 Laser radar WO2020116078A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020559818A JPWO2020116078A1 (en) 2018-12-03 2019-11-06 Laser radar

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018226854 2018-12-03
JP2018-226854 2018-12-03

Publications (1)

Publication Number Publication Date
WO2020116078A1 true WO2020116078A1 (en) 2020-06-11

Family

ID=70973600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/043478 WO2020116078A1 (en) 2018-12-03 2019-11-06 Laser radar

Country Status (2)

Country Link
JP (1) JPWO2020116078A1 (en)
WO (1) WO2020116078A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022097467A1 (en) * 2020-11-03 2022-05-12 株式会社デンソー Light detecting device
WO2022196313A1 (en) * 2021-03-17 2022-09-22 パナソニックIpマネジメント株式会社 Optical multiplexer
WO2023116918A3 (en) * 2021-12-24 2023-08-03 武汉万集光电技术有限公司 Laser radar transmitting system and laser radar apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0815412A (en) * 1994-06-28 1996-01-19 Nikon Corp Light-beam projecting optical system
JP2003158332A (en) * 2001-09-10 2003-05-30 Fuji Photo Film Co Ltd Laser diode array, laser apparatus, synthesized wave laser light source, and light exposure apparatus
JP2016180624A (en) * 2015-03-23 2016-10-13 三菱重工業株式会社 Laser radar apparatus and travel body
WO2017042097A1 (en) * 2015-09-08 2017-03-16 Valeo Schalter Und Sensoren Gmbh Laser scanner for motor vehicles
JP2018059898A (en) * 2016-08-04 2018-04-12 ジック アーゲー Photoelectronic sensor and object detection method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0815412A (en) * 1994-06-28 1996-01-19 Nikon Corp Light-beam projecting optical system
JP2003158332A (en) * 2001-09-10 2003-05-30 Fuji Photo Film Co Ltd Laser diode array, laser apparatus, synthesized wave laser light source, and light exposure apparatus
JP2016180624A (en) * 2015-03-23 2016-10-13 三菱重工業株式会社 Laser radar apparatus and travel body
WO2017042097A1 (en) * 2015-09-08 2017-03-16 Valeo Schalter Und Sensoren Gmbh Laser scanner for motor vehicles
JP2018059898A (en) * 2016-08-04 2018-04-12 ジック アーゲー Photoelectronic sensor and object detection method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022097467A1 (en) * 2020-11-03 2022-05-12 株式会社デンソー Light detecting device
JP2022074194A (en) * 2020-11-03 2022-05-18 株式会社デンソー Light detection device
JP7367655B2 (en) 2020-11-03 2023-10-24 株式会社デンソー light detection device
WO2022196313A1 (en) * 2021-03-17 2022-09-22 パナソニックIpマネジメント株式会社 Optical multiplexer
WO2023116918A3 (en) * 2021-12-24 2023-08-03 武汉万集光电技术有限公司 Laser radar transmitting system and laser radar apparatus

Also Published As

Publication number Publication date
JPWO2020116078A1 (en) 2021-10-21

Similar Documents

Publication Publication Date Title
US9285266B2 (en) Object detector including a light source with light emitting region of a first size in a first direction and a second size in a second direction
CN110412600B (en) Optical radar device
JP6103179B2 (en) Distance measuring device
US9568358B2 (en) Optical measurement device and vehicle
US11585902B2 (en) Optical designs using cylindrical lenses for improved resolution in lidar systems
WO2020116078A1 (en) Laser radar
JP7355171B2 (en) Optical device, distance measuring device using the same, and moving object
WO2020137079A1 (en) Line beam scanning optical system and laser radar
US10802115B2 (en) Light projecting and receiving device, and laser radar device provided with same
CN110140060B (en) Optical component for a lidar system, lidar system and working device
US11486967B2 (en) Module for a lidar sensor and lidar sensor
US11909169B2 (en) Apparatus for projecting linear laser beams
WO2021192601A1 (en) Line beam scanning optical system, and laser radar
WO2021240978A1 (en) Beam scanning optical system and laser radar
CN112684464B (en) Apparatus and method for projecting laser line and light detection ranging apparatus
RU2618787C1 (en) Laser longitudiner with combined laser radiator
WO2022153849A1 (en) Line beam scanning optical system and laser radar
US20230258780A1 (en) Light detection device
JP2020008363A (en) Optical distance measuring device
US20240128707A1 (en) Apparatus for projecting linear laser beams
US11493606B1 (en) Multi-beam scanning system
CN118068292A (en) Lidar system and vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19892969

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020559818

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19892969

Country of ref document: EP

Kind code of ref document: A1