WO2021192478A1 - 走行支援装置、走行支援方法、及び走行支援プログラム - Google Patents
走行支援装置、走行支援方法、及び走行支援プログラム Download PDFInfo
- Publication number
- WO2021192478A1 WO2021192478A1 PCT/JP2020/049250 JP2020049250W WO2021192478A1 WO 2021192478 A1 WO2021192478 A1 WO 2021192478A1 JP 2020049250 W JP2020049250 W JP 2020049250W WO 2021192478 A1 WO2021192478 A1 WO 2021192478A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- area
- vehicle
- obstacle
- demand
- frequency
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/26—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
- G01C21/34—Route searching; Route guidance
- G01C21/3407—Route searching; Route guidance specially adapted for specific applications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/26—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
- G01C21/34—Route searching; Route guidance
- G01C21/3453—Special cost functions, i.e. other than distance or default speed limit of road segments
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/09—Arrangements for giving variable traffic instructions
- G08G1/0962—Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
- G08G1/0967—Systems involving transmission of highway information, e.g. weather, speed limits
- G08G1/096708—Systems involving transmission of highway information, e.g. weather, speed limits where the received information might be used to generate an automatic action on the vehicle control
- G08G1/096725—Systems involving transmission of highway information, e.g. weather, speed limits where the received information might be used to generate an automatic action on the vehicle control where the received information generates an automatic action on the vehicle control
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/09—Arrangements for giving variable traffic instructions
- G08G1/0962—Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
- G08G1/0967—Systems involving transmission of highway information, e.g. weather, speed limits
- G08G1/096766—Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission
- G08G1/096775—Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission where the origin of the information is a central station
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/09—Arrangements for giving variable traffic instructions
- G08G1/0962—Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
- G08G1/0968—Systems involving transmission of navigation instructions to the vehicle
- G08G1/096805—Systems involving transmission of navigation instructions to the vehicle where the transmitted instructions are used to compute a route
- G08G1/096811—Systems involving transmission of navigation instructions to the vehicle where the transmitted instructions are used to compute a route where the route is computed offboard
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/09—Arrangements for giving variable traffic instructions
- G08G1/0962—Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
- G08G1/0968—Systems involving transmission of navigation instructions to the vehicle
- G08G1/096833—Systems involving transmission of navigation instructions to the vehicle where different aspects are considered when computing the route
- G08G1/096844—Systems involving transmission of navigation instructions to the vehicle where different aspects are considered when computing the route where the complete route is dynamically recomputed based on new data
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/09—Arrangements for giving variable traffic instructions
- G08G1/0962—Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
- G08G1/0968—Systems involving transmission of navigation instructions to the vehicle
- G08G1/096877—Systems involving transmission of navigation instructions to the vehicle where the input to the navigation device is provided by a suitable I/O arrangement
- G08G1/096883—Systems involving transmission of navigation instructions to the vehicle where the input to the navigation device is provided by a suitable I/O arrangement where input information is obtained using a mobile device, e.g. a mobile phone, a PDA
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/20—Monitoring the location of vehicles belonging to a group, e.g. fleet of vehicles, countable or determined number of vehicles
- G08G1/202—Dispatching vehicles on the basis of a location, e.g. taxi dispatching
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/20—Monitoring the location of vehicles belonging to a group, e.g. fleet of vehicles, countable or determined number of vehicles
- G08G1/207—Monitoring the location of vehicles belonging to a group, e.g. fleet of vehicles, countable or determined number of vehicles with respect to certain areas, e.g. forbidden or allowed areas with possible alerting when inside or outside boundaries
Definitions
- This disclosure relates to a driving support device, a driving support method, and a driving support program.
- JP-A-2019-91274 is premised on a vehicle in which a driver exists, and there is a problem that an autonomous vehicle is unable to drive due to an obstacle on the road. The issue was found that it was not considered. Therefore, if there is an obstacle on the road, it may not be possible to continue the service in the area. Inventors also vary in how long the service lasts, depending on the type of obstacle. Thus, the inventor has also found the problem that information about non-travelable routes is not taken into account.
- the inventor has proposed dynamic obstacle monitoring based on information obtained from a vehicle having a sensor, but the movement of the vehicle is indispensable for monitoring obstacles. I also found the problem of becoming. Therefore, when moving for monitoring, the problem is how efficient the operating cost of the service can be.
- An object of the present disclosure is to provide a driving support device, a driving support method, and a driving support program that provide driving support in consideration of the situation of demand and obstacles.
- the travel support device is divided into a demand forecasting unit for forecasting demand for each area and the area based on a demand forecasting model for forecasting vehicle demand for each area including a travel route. Based on the frequency model for predicting the occurrence frequency of obstacles for each area, the frequency prediction unit for predicting the occurrence frequency of obstacles for each area, the predicted demand for each area, and the obstacles. It includes a travel route generation unit that generates a travel route of the vehicle based on the frequency of occurrence.
- the traveling support method predicts the demand for each area based on the demand forecasting model for predicting the demand for vehicles for each area including the traveling route, and the obstacles for each area divided by the area. Based on a frequency model for predicting the frequency of occurrence of objects, the frequency of occurrence of obstacles for each area is predicted, and the vehicle is based on the predicted demand for each area and the frequency of occurrence of the obstacles. Let the computer execute the process to generate the driving route of.
- the travel support program predicts the demand for each area based on the demand forecast model for forecasting the demand for vehicles for each area including the travel route, and the obstacles for each area divided by the area. Based on a frequency model for predicting the frequency of occurrence of objects, the frequency of occurrence of obstacles for each area is predicted, and the vehicle is based on the predicted demand for each area and the frequency of occurrence of the obstacles. Let the computer execute the process to generate the driving route of.
- the driving support device According to the driving support device, the driving support method, and the driving support program of the present disclosure, it is possible to provide driving support in consideration of the demand and the situation of obstacles.
- the driving support of the autonomous driving vehicle is provided.
- a vehicle allocation plan for a forwarding vehicle is formulated so as to maximize sales based on a demand forecast model and operating conditions.
- the demand forecast was made based on the operation results and various external data (for example, weather, operation information, events, etc.).
- the non-travelable route is not considered.
- the frequency of occurrence of obstacles is predicted based on a frequency model that models the passability state of the road, the type of obstacles, and the cost of obstacles that affect sales. ..
- the travel route of the vehicle is generated based on the profit forecast of the area by the demand forecast model, the loss of profit opportunity due to the occurrence frequency of obstacles predicted by the frequency model, the cost at the time of monitoring, and the like.
- FIG. 1 is a diagram showing a demand forecast model, a frequency model, and a list of cost considerations during monitoring.
- the demand forecast model the degree of demand for each area in each time zone can be obtained.
- the frequency model the probability of occurrence of obstacles can be obtained for each area of the area in each time zone.
- the area on the map is divided based on the road data.
- the area is an arbitrary area, for example, a unit of a grid, which is divided into various units such as a section of a road and a traveling lane.
- a list of cost considerations during monitoring includes vehicle type, road passability status, and monitoring method.
- Vehicle types include “autonomous driving vehicle”, “autonomous driving vehicle + remote assistance”, “vehicle with driver (with obstacle detection sensor)", and “vehicle with driver (without obstacle detection sensor)”. Take as an example.
- In the road passability state “normal”, “cannot drive in a specific lane”, “cannot drive an autonomous vehicle”, “cannot pass through a section”, etc. are examples of considerations.
- monitoring from another lane in the direction of travel "monitoring from the lane in the opposite direction”, “monitoring from the lane in the crossing direction”, and “driving in the lane with obstacles manually / remotely” are considered. It is given as an example of the matter.
- FIG. 2 is a diagram showing an example of a high-precision map.
- the travelable area is determined based on the high-precision map as shown in FIG.
- the traffic rules stipulated on the road itself and other traveling vehicles, pedestrians, obstacles, signs, signals, etc. on the actual road are measured in real time by the sensor of the vehicle 110. Detect and drive.
- the driving of autonomous vehicles (1) the route is set according to the destination (long-term prediction), and (2) the traveling area is based on the actual surrounding vehicles, obstacles, and traffic regulation information. (3) Three points of driving are taken into consideration while monitoring the surroundings.
- FIG. 3 is an image diagram relating to the demand forecast for each area by the demand forecast model.
- various data such as driving data and external data are used for learning the demand forecast model.
- the driving data includes the operation results of taxis and the like operated as autonomous vehicles. Data on demand differences and recent demand increases depending on the day of the week will be extracted from past operation record data and used to capture periodic and short-term demand trends.
- examples of external data include weather information, transportation service operation information, event information, vital statistics, and the like.
- Meteorological information is weather forecast data such as temperature and rainfall. The weather forecast data makes it possible to predict the effects of changes in demand due to the presence or absence of temperature and rain.
- breaking news data of the operation status such as train delay and suspension is used. It is possible to reflect changes in taxi demand due to various influences such as suspension of operation.
- Event information is event schedule data such as concerts and sports. It can be predicted that there will be an increase in taxi demand by those who attend the event.
- Vital dynamics is vital forecast data that takes into account movements of people such as movement and stay. It is used to capture changes in taxi demand due to actual human movements that cannot be obtained from other external data.
- the frequency model will be described.
- the service may not be provided to the relevant area immediately before due to the avoidance of obstacles around the vehicle dispatch destination.
- the waiting time will be significantly increased and the service provision to the user will be cancelled.
- the presence or absence of obstacles in the relevant section is predicted in advance by creating a frequency model that predicts the occurrence of obstacles ahead of the vehicle.
- the frequency model is learned using obstacle occurrence information and external data. By predicting the occurrence of obstacles, it is decided whether to dispatch an autonomous vehicle or a general vehicle by a driver, and the opportunity loss of service is minimized.
- the high-precision map is only static information such as road structure, and it is not possible to drive at the lane level due to obstacles such as parked vehicles on the lane, and the passable section due to construction work and accidents that need to be considered in actual operation. Not considered.
- As a proposal to solve this problem it is possible to use the management of obstacle occurrence information on the road utilizing the sensor of the connected car described in Reference 1.
- Reference 1 object detection and feature extraction are performed as information from each vehicle, information obtained from vehicles traveling in the same area is registered in a database on the center side, acquisition of nearby objects, similarity determination, and so on. Register obstacles and non-travelable areas.
- FIG. 4 is a diagram showing an example of a case where an area where the vehicle cannot travel is generated due to an obstacle.
- the left side of FIG. 4 shows a case where there is an obstacle in front of the lane where the vehicle is prohibited from protruding, and it is necessary to stop the traveling in consideration of the risk of collision with an oncoming vehicle.
- the right side of FIG. 4 shows a case where there is an obstacle in front of the lane where the vehicle is prohibited from protruding, and it is necessary to stop the traveling in consideration of the risk of collision with an oncoming vehicle.
- the center manages the obstacle information and detects the non-travelable area of the travel destination in advance. By selecting the non-travelable area at the route and lane levels in this way, it is possible to set a route that avoids obstacles in advance.
- FIG. 5 is an image diagram of a temporal transition when a non-travelable area occurs in the traveling section.
- a non-travelable area is generated on the road in order to avoid the obstacle and drive safely.
- the center manages the relevant area so that the autonomous driving vehicle does not run in the first place, the service is not provided in that area during that period.
- the obstacle information in order to return the area once disabled to the normal area, it is necessary to update the obstacle information based on the driving information of the connected car.
- the autonomous driving vehicle most utilized as a connected car cannot run, there arises a problem that the return to the normal area of the relevant area is not performed for a long time even if the obstacle in the relevant area is cleared.
- it is possible to determine the confirmation method of the relevant area such as generating a monitoring route based on the demand forecast model, and reduce the loss of service provision opportunities. The specific monitoring method for obstacles will be described later.
- FIG. 6 is a block diagram showing the configuration of the driving support system 100 according to the embodiment of the present disclosure. As shown in FIG. 6, in the travel support system 100, the vehicle 110, the user terminal 120, and the travel support device 130 are connected via the network N.
- the vehicle 110 is an autonomous driving vehicle that is managed by the traveling support system 100.
- the configuration of the vehicle 110 includes a transmission / reception unit 111, various sensors 112, an in-vehicle camera 113, a failure detection unit 114, and a route management unit 115.
- the user terminal 120 has a display and input / output interface (not shown).
- the user terminal 120 receives a vehicle allocation request by an input operation from the user and transmits the vehicle allocation request to the traveling support device 130.
- the vehicle allocation request includes information necessary for various vehicle allocations of the desired vehicle allocation time, the current location, and the destination. Further, the user terminal 120 receives the user vehicle allocation information from the travel support device 130, and presents the user vehicle allocation information to the user through the display interface.
- the user vehicle allocation information is information indicating the scheduled vehicle allocation time, the vehicle allocation position, and the like.
- the travel support device 130 includes a transmission / reception unit 131, a vehicle information update unit 132, a learning unit 133, a vehicle allocation control unit 135, a forwarding control unit 136, and a monitoring control unit 137. Further, the travel support device 130 includes a demand forecast unit 138, a frequency forecast unit 139, a travel route generation unit 140, and a storage unit 150.
- the storage unit 150 is a travel data storage unit 151, an obstacle information storage unit 152, a road data storage unit 153, an external data storage unit 154, a demand forecast model storage unit 155, a frequency model storage unit 156, and a stay. Includes a prediction model storage unit 157.
- the transmission / reception unit 111 transmits / receives various data to / from the travel support device 130.
- the transmission / reception unit 111 receives vehicle allocation information, forwarding information, or monitoring information.
- the vehicle allocation information is information including a travel route to a destination specified by the user in the vehicle allocation request, and is associated with the user.
- the forwarding information is information including a traveling route to a destination to be a forwarding destination designated by the traveling support device 130.
- the monitoring information is information including a traveling route for monitoring the obstacle to be monitored and the position of the obstacle to be monitored.
- the transmission / reception unit 111 transmits the travel data including the position information, the obstacle information, and the difference between the obstacles to be monitored in the monitoring information to the travel support device 130.
- Various sensors 112 are in-vehicle sensors such as millimeter wave sensors, raindrop sensors, and collision sensors.
- various sensors 112 have measurement sensors that acquire driving conditions such as position information, time information, traveling routes, and driving behavior.
- the driving behavior includes a state indicating whether or not the vehicle is in automatic driving, as well as vehicle speed, acceleration, steering, accelerator, and depressing of the brake.
- the driving status is periodically transmitted to the traveling support device 130.
- the in-vehicle camera 113 is a camera that captures a moving image of the vehicle.
- the camera image (or camera image) taken by the in-vehicle camera 113 is transmitted to the traveling support device 130 at the timing of transmitting the failure information.
- the camera image may be transmitted periodically.
- the obstacle detection unit 114 monitors the state of various sensors 112 and the image of the vehicle-mounted camera 113, and detects obstacles existing on the traveling path.
- the obstacle detection unit 114 detects the presence or absence of an obstacle by using an object detection method.
- the fault detection unit 114 transmits the detected fault information to the traveling support device 130.
- the obstacle may be estimated by performing image analysis in the obstacle detection unit 114. Further, the obstacle detection unit 114 detects the difference between the obstacles to be monitored in the monitoring information, includes the difference in the obstacle information, and transmits the difference to the traveling support device 130.
- the route management unit 115 sets a travel route to the destination based on the received vehicle allocation information, forwarding information, or monitoring information.
- the traveling route is set on the vehicle 110 side.
- the transmission / reception unit 131 receives travel data and failure information from the vehicle 110.
- the transmission / reception unit 131 receives a vehicle allocation request from the user terminal 120.
- the transmission / reception unit 131 transmits the user vehicle allocation information to the user terminal 120.
- the transmission / reception unit 131 transmits vehicle allocation information, forwarding information, or monitoring information to the vehicle 110.
- the traveling support device 130 may acquire failure information not only from the vehicle 110 but also from an external sensor arranged in the area.
- the vehicle information updating unit 132 stores the traveling data received from the vehicle 110 in the traveling data storage unit 151.
- the vehicle information updating unit 132 estimates an obstacle existing in a traveling section in the area based on the obstacle information received from the vehicle 110, and obtains the obstacle and the non-travelable area due to the obstacle as the obstacle occurrence information. It is stored in the obstacle information storage unit 152.
- the obstacle occurrence information is updated by receiving the difference between the obstacles to be monitored from the vehicle 110.
- the obstacle generation information includes information on the type of obstacle and the residence time. Depending on the type of obstacle, it can be determined whether the obstacle is a temporary obstacle or a stationary obstacle.
- a temporary obstacle is, for example, a case where the vehicle is simply stopped, and a stationary obstacle is a case where an obstacle such as a fallen tree is difficult to move. Further, since the obstacle occurrence information is also updated by the obstacle information obtained from the vehicle 110 to which the monitoring route is assigned by the monitoring control, the presence / absence of the obstacle is updated according to the predicted staying time. Obstacle occurrence information is an example of information on an area that cannot be driven by an obstacle that has occurred in the past.
- the travel data storage unit 151 stores travel data received from the vehicle 110.
- the travel data stored here includes the current position of each of the vehicles 110, the cost unit price of the vehicle itself, the travel condition, and the operation record when the vehicle is a taxi or the like.
- the traveling state is information such as a vehicle allocation compatible state, a patrol state (forwarding or monitoring), and an instruction waiting state.
- the traveling states may be duplicated in one example, and the states are duplicated, for example, by adding an instruction waiting state when entering an area where the patrol ends in a patrol state by forwarding.
- the traveling data is used, the description is omitted because it is read from the traveling data storage unit 151. The same applies to other storage units.
- the obstacle information storage unit 152 stores the obstacle occurrence information obtained by the vehicle information update unit 132.
- the road data storage unit 153 stores road data of road structure information indicating the structure of the road in each area.
- the external data storage unit 154 stores external data such as the above-mentioned weather information, transportation service operation information, event information, and vital statistics. External data is received and updated as appropriate.
- the demand forecast model storage unit 155 stores the demand forecast model learned or updated by the demand forecast model learning unit 133A.
- the demand forecast model is a model for forecasting the demand for vehicles in each area in each time zone.
- the frequency model storage unit 156 stores the frequency model learned or updated by the frequency model learning unit 133B.
- the frequency model is a model for predicting the occurrence frequency of obstacles for each area included in the area in each time zone.
- the stay prediction model storage unit 157 stores the stay prediction model learned or updated by the stay prediction model learning unit 133C.
- the stay prediction model is a model for predicting the staying time of an existing obstacle in the obstacle occurrence information.
- the learning unit 133 includes a demand forecast model learning unit 133A, a frequency model learning unit 133B, and a stay prediction model learning unit 133C.
- the demand forecast model learning unit 133A learns the demand forecast model and updates it as appropriate, as required by the travel support device 130.
- the demand forecast model is learned by using a method such as deep learning using a neural network and using past running data stored in each corresponding part of the storage unit 150 and external data as learning data. ..
- the demand forecast model learns to output the forecast result of the demand for each area in each time zone.
- the frequency model learning unit 133B learns the frequency model and updates it as appropriate as required by the driving support device 130.
- the frequency model learning uses a method such as deep learning using a neural network to learn past obstacle occurrence information, external data, and road data stored in each corresponding part of the storage unit 150. To learn by using as.
- the frequency model learns to output the prediction result of the occurrence frequency of obstacles for each area of the area in each time zone. In the learning here, the learning is performed including the attribute information such as the road structure, the signal, and the sign of the road data.
- the stay prediction model learning unit 133C learns the stay prediction model and updates it as appropriate every time the obstacle occurrence information is updated.
- the learning of the stay prediction model uses a method such as deep learning using a neural network, and uses obstacle generation information, external data, and road data stored in each corresponding part of the storage unit 150 as learning data. Learn using.
- the stay prediction model learns to output the prediction result of the staying time that the obstacle being generated stays in the area in the obstacle occurrence information.
- the vehicle allocation control unit 135 predicts the frequency based on the vehicle allocation request from the user terminal 120, obtains a travel route capable of traveling according to the frequency prediction, and arranges the vehicle allocation according to the travel route.
- the frequency prediction is executed by the frequency prediction unit 139, and the travel route is generated by the travel route generation unit 140.
- the vehicle allocation arrangement is, for example, a process of assigning a vehicle allocation to the vehicle 110, transmitting vehicle allocation information, and transmitting user vehicle allocation information to the user terminal 120.
- the forwarding control unit 136 performs demand forecasting and frequency forecasting as necessary in the traveling support device 130, and is a traveling route in which there is demand according to the demand forecast and the vehicle can travel according to the frequency forecasting. Is obtained, and forwarding control is performed according to the traveling route.
- the demand forecast is executed by the demand forecast unit 138.
- the frequency prediction and the generation of the traveling route are the same as those of the vehicle allocation control unit 135.
- the forwarding control is, for example, a process of assigning a forwarding destination to the vehicle 110 and transmitting forwarding information.
- the monitoring control unit 137 predicts the staying time of the target obstacle using the stay prediction model for the target obstacle existing in the traveling route, and generates a monitoring route according to the prediction result.
- the target obstacle existing in the traveling route is an obstacle newly added by updating the obstacle occurrence information.
- the monitoring control unit 137 transmits the monitoring information including the monitoring route to the vehicle 110.
- the monitoring information may include information for difference detection.
- the type of obstacle may be referred to to identify whether it is a temporary obstacle or a stationary obstacle.
- the monitoring route may be generated only for temporary obstacles.
- the monitoring route may not be generated, or the time interval for generating the monitoring route may be longer than that of the temporary obstacle.
- the demand forecasting unit 138 forecasts the demand for each area in each time zone based on the demand forecasting model in response to the request of the forwarding control unit 136.
- the demand forecast result required here is the degree of indicating the expected demand for boarding. It should be noted that the demand forecast result may be obtained in advance as a periodic process, and the demand forecast result may be returned in response to the request of the forwarding control unit 136. As the periodic processing, for example, the forecast result of the demand for one day is obtained every day, or it is obtained in units of several hours.
- the frequency prediction unit 139 predicts the occurrence frequency of obstacles in each area of each time zone based on the frequency model in response to the request of the vehicle allocation control unit 135 or the forwarding control unit 136. It should be noted that the prediction result of the occurrence frequency of obstacles may be obtained in advance as a periodic process, and the prediction result of demand may be returned in response to the request of the forwarding control unit 136. As the periodic processing, for example, the forecast result of the demand for one day is obtained every day, or it is obtained in units of several hours.
- the travel route generation unit 140 generates a vehicle travel route in response to a request from the vehicle allocation control unit 135 or the forwarding control unit 136.
- the processing is divided into the case of vehicle allocation and the case of forwarding.
- a travel route for vehicle allocation is generated for each vehicle that is a candidate for vehicle allocation among the vehicles 110, based on the prediction result of the occurrence frequency of obstacles by the frequency model.
- the road candidate up to the vehicle allocation destination of the vehicle allocation request is extracted based on the road data.
- a road candidate is a candidate for a road area that can be used as a travel route.
- an obstacle prediction coefficient representing the risk of driving by an obstacle according to the occurrence frequency of the obstacle obtained by using the frequency model is calculated.
- the obstacle impact coefficient for the obstacle that is actually occurring currently recorded in the obstacle occurrence information is calculated.
- the obstacle prediction coefficient may be set so that, for example, there are obstacles in a region where the frequency of occurrence is higher than a certain level, and the cost of traveling is high.
- the obstacle impact coefficient may be determined according to, for example, acquisition of obstacle occurrence information, whether or not there is an obstacle in the area, what kind of obstacle it is, and the like.
- a travel route is generated for each vehicle of the vehicle allocation candidate based on the road candidate, the obstacle prediction coefficient, and the obstacle influence coefficient.
- the vehicle allocation cost is calculated based on the travel cost (travel time) related to the travel route and the cost unit price assigned to the vehicle of the vehicle allocation candidate.
- the vehicle to be dispatched is determined according to the vehicle allocation cost for each vehicle of the vehicle allocation candidate.
- the traveling route related to the dispatching of the vehicle to be dispatched is determined, and the vehicle and the traveling route of the vehicle are set as the vehicle allocation information.
- the obstacle prediction coefficient is an example of the first coefficient
- the obstacle influence coefficient is an example of the second coefficient.
- a travel route is generated to the forwarding destination for each of the vehicles 110 to be forwarded, based on the demand forecast result by the demand forecast model and the prediction result of the obstacle occurrence frequency by the frequency model. do.
- the region k of the forwarding candidate as the forwarding destination candidate (k ⁇ K: K is a set of the forwarding candidate regions) is set.
- each of the road candidates up to the area k is extracted based on the road data.
- the obstacle prediction coefficient of the road candidate and the obstacle impact coefficient are calculated.
- a traveling route is generated for each region k of the forwarding candidate based on the road candidate, the obstacle prediction coefficient, and the obstacle influence coefficient.
- the forwarding sales forecast in the region k is calculated. calculate.
- the forwarding sales forecast in the region k may be obtained by, for example, calculating the sales forecast per vehicle in the region k ⁇ the obstacle prediction coefficient ⁇ the obstacle impact coefficient-the movement cost.
- the forwarding destination is determined as the forwarding destination of the vehicle to be forwarded, with the region k'where the forwarding sales forecast is maximized as the forwarding destination among the regions k.
- a traveling route to the region to be forwarded is generated for each vehicle to be forwarded.
- the traveling route is set as the forwarding information.
- the deadhead sales forecast is an example of the outcome forecast.
- FIG. 7 is a block diagram showing the hardware configuration of the traveling support device 130.
- the traveling support device 130 includes a CPU (Central Processing Unit) 11, a ROM (Read Only Memory) 12, a RAM (Random Access Memory) 13, a storage 14, an input unit 15, a display unit 16, and a communication interface. It has (I / F) 17.
- the configurations are connected to each other via the bus 19 so as to be communicable with each other.
- the CPU 11 is a central arithmetic processing unit that executes various programs including a driving support program and controls each part. That is, the CPU 11 reads the program from the ROM 12 or the storage 14, and executes the program using the RAM 13 as a work area. The CPU 11 controls each of the above configurations and performs various arithmetic processes according to the program stored in the ROM 12 or the storage 14. In the present embodiment, the support management processing program is stored in the ROM 12 or the storage 14.
- the ROM 12 stores various programs and various data.
- the RAM 13 temporarily stores a program or data as a work area.
- the storage 14 is composed of a storage device such as an HDD (Hard Disk Drive) or an SSD (Solid State Drive), and stores various programs including an operating system and various data.
- the input unit 15 includes a pointing device such as a mouse and a keyboard, and is used for performing various inputs.
- the display unit 16 is, for example, a liquid crystal display and displays various types of information.
- the display unit 16 may adopt a touch panel method and function as an input unit 15.
- the communication interface 17 is an interface for communicating with other devices such as terminals, and for example, standards such as Ethernet (registered trademark), FDDI, and Wi-Fi (registered trademark) are used.
- Ethernet registered trademark
- FDDI FDDI
- Wi-Fi registered trademark
- the travel support process of the travel support device 130 is mainly divided into a vehicle allocation control process, a forwarding control process, and a monitoring control process. It is assumed that various learning processes of the learning unit 133 have been performed in advance and various models have been learned. Further, the obstacle occurrence information used in the following processing is updated at any time every time the obstacle information is received from the vehicle 110. The difference in obstacles associated with the monitoring control process is also updated as needed by the failure information.
- FIG. 8 is a diagram showing an example of a vehicle allocation control processing routine.
- the CPU 11 executes the following steps as the vehicle allocation control unit 135, the demand forecasting unit 138, the frequency forecasting unit 139, the traveling route generation unit 140, etc. requested by the vehicle allocation control unit 135.
- step S100 the CPU 11 acquires the frequency model and obstacle occurrence information.
- step S102 the CPU 11 acquires the vehicles 110 around the vehicle allocation destination area related to the vehicle allocation request from the travel data, and selects vehicles that are candidates for vehicle allocation.
- step S104 the CPU 11 extracts each of the road candidates to the vehicle allocation destination area based on the road data for the vehicle of the vehicle allocation candidate. Road candidates are obtained as each area of the area.
- step S106 the CPU 11 calculates the obstacle prediction coefficient for the road candidate of the vehicle dispatch candidate using the frequency model.
- the obstacle prediction coefficient may be obtained for each of the road candidate regions as an input to the frequency model and as the occurrence frequency of each obstacle in the region.
- the CPU 11 calculates the obstacle impact coefficient for the road candidate of the vehicle dispatch candidate using the obstacle occurrence information.
- the obstacle impact coefficient may be obtained for each of the road candidate areas based on the presence or absence of obstacles existing in the area recorded in the obstacle occurrence information.
- the obstacle influence coefficient may be changed according to the type of obstacle, the residence time, and the like. For example, if the type of obstacle is recorded as a bus, it may be calculated to lower the obstacle impact coefficient because it is likely to move. On the contrary, when the type of obstacle is a collapsed object such as a tree, it is unlikely to be moved, so the calculation may be made so as to increase the obstacle influence coefficient.
- the residence time is long, it is highly likely that the vehicle will move, and the obstacle influence coefficient may be calculated to be low.
- the residence time is short, it is considered that the possibility of movement is low, and the obstacle influence coefficient may be calculated to be high.
- step S110 the CPU 11 uses an existing algorithm to determine a travel route that minimizes the cost of movement based on the road candidate, the obstacle prediction coefficient, and the obstacle impact coefficient for the vehicle of the vehicle allocation candidate. Generate.
- the travel cost (travel time) related to the travel route is also calculated.
- it is assumed that a travel route with a long travel time is generated.
- step S112 the CPU 11 determines whether or not the vehicle can be dispatched on the travel route generated in step S110, proceeds to step S114 if the vehicle can be dispatched, and returns to step S102 if the vehicle cannot be dispatched to the next step.
- Select vehicles that are candidates for dispatch. Whether or not the determination is possible may be determined according to the non-travelable area on the travel route.
- step S114 the CPU 11 calculates the vehicle allocation cost for the vehicle allocation candidate vehicle based on the travel cost (travel time) related to the travel route and the cost unit price assigned to the vehicle allocation candidate vehicle.
- step S116 the CPU 11 determines whether or not the calculation of the vehicle allocation cost has been completed for all the vehicle allocation candidate vehicles. If it is completed, the process proceeds to step S118, and if it is not completed, the process returns to step S102 to select the next vehicle allocation candidate vehicle and repeat the process.
- step S118 the CPU 11 determines a vehicle to be dispatched from the vehicle dispatch candidate vehicles according to the vehicle allocation cost for each vehicle dispatch candidate vehicle. It should be noted that the process may be performed before step S116, and the process may be sequentially performed so as to select the most suitable vehicle for vehicle allocation in response to the vehicle allocation request.
- step S120 vehicle allocation information is transmitted to the vehicle 110 to be allocated, and user vehicle allocation information is transmitted to the user terminal 120.
- FIG. 9 is a diagram showing an example of a forwarding control processing routine.
- the CPU 11 executes the processing of each of the following steps as the forwarding control unit 136.
- step S200 the CPU 11 acquires a vehicle to be forwarded in each area based on the traveling state included in the current traveling data.
- a vehicle whose traveling state is waiting for an instruction is acquired as a vehicle to be forwarded, and the processing of each of the following steps is performed for each vehicle to be forwarded.
- a common processing result may be used for the overlapping processing in steps S202, S204, S206, and the like.
- step S202 the CPU 11 acquires the demand forecast model, the frequency model, and the obstacle occurrence information.
- step S204 the CPU 11 predicts the demand for each area in each time zone based on the demand forecast model.
- the demand in the vicinity of the time zone including the current time may be predicted.
- step S206 the CPU 11 determines the forwarding candidate region k (k ⁇ K: K is a set of forwarding candidate regions:) based on the demand for each region of the area based on the demand forecast result in step S204.
- Set k 1, 2, 3 ..., K).
- step S208 the CPU 11 extracts each of the road candidates up to the area k based on the road data for the set area k.
- step S210 the CPU 11 calculates the obstacle prediction coefficient for each of the road candidates related to the area k using the frequency model.
- step S212 the CPU 11 calculates the obstacle impact coefficient for each of the road candidates related to the area k by using the obstacle occurrence information.
- step S214 the CPU 11 uses an existing algorithm to generate a travel route to the region k based on the road candidate, the obstacle prediction coefficient, and the obstacle influence coefficient.
- the travel cost (travel time) related to the travel route is also calculated.
- step S216 the CPU 11 determines the area k based on the obstacle prediction coefficient, the obstacle influence coefficient, the travel cost (travel time) related to the travel route, and the sales forecast per vehicle in the area k. Calculate the forward sales forecast.
- step S222 the CPU 11 determines the forwarding destination as the forwarding destination of the vehicle to be forwarded, with the region k'with the region k where the expected forwarding sales is maximized as the forwarding destination. It should be noted that the process may be performed before step S218, and the area k that maximizes the expected forwarding sales may be sequentially selected.
- step S224 the CPU 11 transmits the forwarding information to the vehicle 110 to be forwarded.
- FIG. 10 is a diagram showing an example of a monitoring control processing routine.
- the CPU 11 executes the processing of each of the following steps as the forwarding control unit 136.
- the monitoring control process executes the following processing for each obstacle when an obstacle is added to the area of the area in the obstacle occurrence information.
- the monitoring control process is performed using the data used in the forwarding control process, if necessary.
- step S300 the CPU 11 selects vehicles capable of monitoring patrol around the area including obstacles based on the traveling state included in the current traveling data.
- a vehicle whose traveling state is waiting for an instruction and which exists in a predetermined range around an area including an obstacle is selected as a vehicle capable of monitoring and patrol.
- the processing of each of the following steps shall be performed for each vehicle capable of surveillance patrol.
- step S302 the CPU 11 acquires the demand forecast model, the frequency model, and the obstacle occurrence information.
- step S304 the CPU 11 predicts the demand for each area in each time zone based on the demand forecast model.
- the vehicle capable of the monitoring patrol is forwarded to the vicinity of the obstacle to be monitored, and the demand in the vicinity of the time zone including the current time may be predicted for the surrounding area.
- step S306 the CPU 11 extracts each of the road candidates to the dispatch destination area based on the road data for the vehicle capable of monitoring and patrol.
- the extraction target is each of the monitoring target area and the surrounding area.
- step S308 the CPU 11 calculates an obstacle prediction coefficient for road candidates of vehicles capable of surveillance patrol using a frequency model.
- step S310 the CPU 11 calculates the obstacle impact coefficient for the road candidate of the vehicle capable of monitoring and patrol using the obstacle occurrence information.
- step S312 the CPU 11 uses an existing algorithm for the vehicle capable of monitoring and patrol, and based on the road candidate, the obstacle prediction coefficient, and the obstacle impact coefficient, the monitored area and the surrounding area. Generate a driving route for each of.
- step S314 the CPU 11 determines whether or not it is possible to patrol the monitoring route to the monitoring target based on the non-travelable area of the obstacle occurrence information. If possible, the process proceeds to step S316, and if not possible, the process returns to step S300 to select the next vehicle.
- step S316 the CPU 11 calculates the forwarding sales forecast in the forwarding destination area for each of the monitoring target area and the surrounding area at the time of forwarding the vehicle capable of the monitoring patrol.
- the same processing as in steps S206 to S222 may be performed, the description will be simplified.
- step S3108 the CPU 11 determines whether or not the forwarding sales forecast (C1) of the monitored area exceeds the forwarding sales forecast (C2) to which the vehicle allocation cost of the surrounding area is added. If it exceeds, it shifts to step S320 and is set to execute obstacle monitoring for the vehicle capable of the monitoring patrol, and if it does not exceed, it returns to step S300 without performing obstacle monitoring and the next vehicle is started. Sort.
- the forwarding sales forecast including the vehicle allocation cost in the surrounding area is an example, and the forwarding sales forecast in the surrounding area may be merely used. When the vehicle allocation cost of the surrounding area is taken into consideration, the monitoring is performed only when the monitored area has a higher sales prospect than the surrounding area.
- step S322 the CPU 11 transmits the monitoring information including the monitoring route to the vehicle 110 capable of the monitoring patrol.
- the driving support system according to the embodiment of the present disclosure, it is possible to provide driving support in consideration of the demand and the situation of obstacles.
- each of the vehicle allocation control process, the forwarding control process, and the monitoring control process is performed as the running support process
- the present invention is not limited to this.
- only the forwarding control processing may be performed, or the forwarding control processing and the vehicle allocation control processing may be performed, and the monitoring control processing may be performed by a separate device.
- various processors other than the CPU may execute the running support process executed by the CPU reading the software (program) in the above embodiment.
- the processors include PLD (Programmable Logic Device) whose circuit configuration can be changed after manufacturing FPGA (Field-Programmable Gate Array), and ASIC (Application Specific Integrated Circuit) for executing ASIC (Application Special Integrated Circuit).
- PLD Programmable Logic Device
- FPGA Field-Programmable Gate Array
- ASIC Application Specific Integrated Circuit
- An example is a dedicated electric circuit or the like, which is a processor having a circuit configuration designed exclusively for the purpose.
- the driving support process may be executed by one of these various processors, or a combination of two or more processors of the same type or different types (for example, a plurality of FPGAs and a combination of a CPU and an FPGA). Etc.).
- the hardware structure of these various processors is, more specifically, an electric circuit in which circuit elements such as semiconductor elements are combined.
- the program may be provided in a form stored in a non-transitional substantive storage medium (non-transition tangible storage medium) such as a CD-ROM, a DVD-ROM, or a USB memory. Further, the program may be downloaded from an external device via a network.
- a non-transitional substantive storage medium non-transition tangible storage medium
- the program may be downloaded from an external device via a network.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mathematical Physics (AREA)
- Atmospheric Sciences (AREA)
- Theoretical Computer Science (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Artificial Intelligence (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Traffic Control Systems (AREA)
- Navigation (AREA)
Abstract
走行支援装置は、走行ルートを含むエリアごとの車両の需要を予測するための需要予測モデルに基づいて、エリアごとの需要を予測する。また、走行支援装置は、前記エリアを分割した領域ごとの障害物の発生頻度を予測するための頻度モデルに基づいて、領域ごとの障害物の発生頻度を予測し、予測された、前記エリアごとの需要と、前記障害物の発生頻度とに基づいて、車両の走行ルートを生成する。
Description
本開示は、走行支援装置、走行支援方法、及び走行支援プログラムに関する。
本出願は、2020年3月26日に出願された特許出願番号2020-056784号に基づくものであって、その優先権の利益を主張するものであり、その特許出願のすべての内容が、参照により本明細書に組み入れられる。
自動運転の進展に伴い、需要等に基づいて適切な場所に車両を配車又は回送するための技術が検討されている。
例えば、予測されたタクシー利用者の需要予測情報に基づいてタクシーの車両を適切に配車する技術がある(特開2019-91274号公報)。
もっとも、発明者の詳細な検討の結果、特開2019-91274号公報の手法では、ドライバーが存在する車両を前提としており、自動運転車両における道路上の障害物による走行不能状態の発生という問題が考慮されていない、という課題が見出された。そのため、道路上に障害物が存在する場合、該当エリアのサービスの継続ができなくなる場合がある。また、発明者は、サービスの継続がいつまで続くのかも、障害物の種類によって様々である。このように、また、発明者は、走行不能な経路についての情報が考慮されていない、という課題も見出した。
また、発明者は、このような問題の解決策として、センサを持つ車両から得られた情報に基づく動的な障害物監視が提案されているが、障害物の監視には車両の移動が必須となる、という課題も見出した。そのため、監視のための移動を行う場合、サービスにおける運用コストをどれだけ効率化できるかが問題となる。
本開示の目的は、需要及び障害物の状況を考慮した走行支援を行う走行支援装置、走行支援方法、及び走行支援プログラムを提供することを目的とする。
本開示の一態様による走行支援装置は、走行ルートを含むエリアごとの車両の需要を予測するための需要予測モデルに基づいて、エリアごとの需要を予測する需要予測部と、前記エリアを分割した領域ごとの障害物の発生頻度を予測するための頻度モデルに基づいて、領域ごとの障害物の発生頻度を予測する頻度予測部と、予測された、前記エリアごとの需要と、前記障害物の発生頻度とに基づいて、車両の走行ルートを生成する走行ルート生成部と、を含む。
本開示の一態様による走行支援方法は、走行ルートを含むエリアごとの車両の需要を予測するための需要予測モデルに基づいて、エリアごとの需要を予測し、前記エリアを分割した領域ごとの障害物の発生頻度を予測するための頻度モデルに基づいて、領域ごとの障害物の発生頻度を予測し、予測された、前記エリアごとの需要と、前記障害物の発生頻度とに基づいて、車両の走行ルートを生成する、処理をコンピュータに実行させる。
本開示の一態様による走行支援プログラムは、走行ルートを含むエリアごとの車両の需要を予測するための需要予測モデルに基づいて、エリアごとの需要を予測し、前記エリアを分割した領域ごとの障害物の発生頻度を予測するための頻度モデルに基づいて、領域ごとの障害物の発生頻度を予測し、予測された、前記エリアごとの需要と、前記障害物の発生頻度とに基づいて、車両の走行ルートを生成する、処理をコンピュータに実行させる。
本開示の走行支援装置、走行支援方法、及び走行支援プログラムによれば、需要及び障害物の状況を考慮した走行支援を行うことができる。
以下、本開示の実施形態について図面を用いて説明する。
まず、本実施形態の概要を説明する。
本実施形態では、自動運転車両の走行支援を行うことを想定する。従来の自動運転の走行支援では、需要予測モデルと運行状況から売上を最大化するように回送車両の配車計画を策定することが行われている。ここでは、運行実績、及び種々の外部データ(例えば、天候、運行情報、及びイベント等)をもとにした需要予測を行っていた。一方で、上述した課題において挙げたように、走行不能な経路が考慮されていない。
そこで、本実施形態の走行支援システムでは、道路の通行可否状態、障害物の種類、及び売上に影響を及ぼす障害物のコストをモデル化した頻度モデルに基づいて、障害物の発生頻度を予測する。そして、需要予測モデルによるエリアの収益予測、頻度モデルで予測される障害物の発生頻度による収益機会の損失、及び監視時のコスト等に基づいて、車両の走行ルートを生成する。図1は、需要予測モデル、頻度モデル、及び監視時のコストの考慮事項一覧を示した図である。需要予測モデルにおいては、各時間帯におけるエリアごとの需要の度合いが求まる。頻度モデルにおいては、各時間帯におけるエリアの領域ごとに障害物の発生確率が求まる。地図上のエリアを道路データに基づいて分割したのが領域である。領域は、道路の一区画、走行レーン等様々な単位で分割された、例えばグリッドの単位の任意の領域である。監視時のコストの考慮事項の一覧は、車両種類、道路の通行可否状態、及び監視方法が挙げられる。車両種類は、「自動運転車両」、「自動運転車両+遠隔支援」、「ドライバー付き車両(障害物検出センサー有り)」、及び「ドライバー付き車両(障害物検出センサー無し)」等が考慮事項の例として挙げられる。道路の通行可否状態では、「正常」、「特定レーンの走行不可」、「自動運転車両走行不可」、及び「区間通行不可」等が考慮事項の例として挙げられる。監視方法では、「進行方向の別レーンから監視」、「対向方向の車線から監視」、「交差方向の車線から監視」、及び「障害物のあるレーンを手動/遠隔支援で走行」等が考慮事項の例として挙げられる。
次に、自動運転車両の運用に係る前提となる技術について説明する。自動運転車両の運用には、既存の道路データが利用される。自動運転車両の運用では、高精度地図と呼ばれる道路をレーンレベルで管理する地図情報をもとに走行が行われる。図2は、高精度地図の一例を示す図である。自動運転車両の運行では、まず、図2に示したような高精度地図をもとに走行可能領域が決定される。自動運転車両の実際の走行においては、道路自体に規定される交通ルールと、実際の路上にある他の走行車両、歩行者、障害物、標識、信号等を、車両110が持つセンサによりリアルタイムに検知して、走行を行う。つまり、自動運転車両の走行については、(1)行先に応じたルートの設定を行う(長期の予測)、(2)実際の周囲の車両や障害物・交通規制情報をもとに、走行領域を決定、(3)周囲を監視しながら走行の3点が考慮される。
需要予測モデルは、走行データ、及び外部データを用いて学習及び更新が行われる。図3は、需要予測モデルによるエリアごとの需要予測に係るイメージ図である。図3に示したように、需要予測モデルの学習には走行データ、及び外部データの各種データを用いる。走行データとしては、自動運転車両として運行されるタクシー等の運行実績が含まれる。過去の運行実績のデータから曜日による需要差異及び直近の需要増加のデータを抽出し、周期的及び短期的な需要傾向を捉えるために活用する。また、外部データとしては、気象情報、交通サービスの運行情報、イベント情報、人口動態等が挙げられる。気象情報は、気温、及び雨量といった気象予報データである。気象予報データにより寒暖及び雨の有無による需要の変化の影響が予測可能となる。交通サービスの運行情報は、電車の遅延、及び運休といった運行状況の速報データを用いる。運行見合わせなど種々の影響によるタクシー需要の変化を反映できる。イベント情報は、コンサート及びスポーツ等のイベント開催予定データである。イベントに参加する人によるタクシー需要の増加が発生すると予測できる。人口動態は、移動や滞在などの人の動きを加味した人口動態予報データである。他の外部データからは得られない実際の人の動きによるタクシー需要の変化を捉えるために利用される。
次に、頻度モデルについて説明する。配車サービスの予約に応じて該当領域への自動運転車両の配車を実施した際、配車先の周囲の障害物の回避に伴い、該当区域へのサービスの提供が直前で行えなくなる場合がある。その場合、自動運転車両以外による配車することも考えられるが、その場合は待ち時間の大幅な増加に繋がり、ユーザへのサービス提供のキャンセルが発生する。本問題について、車両先の障害物の発生を予測する頻度モデルを作ることで、該当区間での障害物の有無を事前に予測する。頻度モデルは、障害物発生情報と外部データとを用いて学習する。障害物の発生を予測することにより、自動運転車両とドライバーによる一般車両のどちらを配車するかを決定し、サービスの機会損失を最小化する。
次に、障害物発生情報の検出手法について説明する。高精度地図は道路構造といった静的情報のみであり、実際の運用で考慮する必要がある工事及び事故などによる通行可否区間、及びレーン上の駐車車両等の障害物によるレーンレベルの走行不可などは考慮されていない。この問題を解決する提案として、参考文献1に記載のコネクテッドカーが持つセンサを活用した道路上の障害物発生情報の管理を利用できる。参考文献1では、例えば、各車両からの情報として、物体検出及び特徴抽出を行い、センター側で、同じエリアを走行した車両から得られた情報をデータベース登録し、近接物体の取得、類似判定、障害物及び走行不可領域の登録を行う。
[参考文献1]特開2019-185756号公報
[参考文献1]特開2019-185756号公報
ここで、障害物と走行不可レーンとの対応について説明する。例えば、自動運転車両は、自動運転を行うシステムのスペックにより走行可能領域が決定される。これにより、道路上の障害物によって走行ができない領域が発生する。図4は、障害物によって走行できない領域が発生するケースの例を示す図である。図4の左は、はみ出し禁止レーンでの前方障害物がある場合であり、対向車両との衝突リスクを踏まえて走行の停止が必要である。図4の右は、交差点手前の駐車車両が障害物としてある場合であり、侵入禁止領域でのレーン変更が禁止されている場合、左折をせずに直進して迂回する必要が生じる。このような障害物がある場合については、センター側で障害物情報を管理し、走行先の走行不可領域を事前に検知する。このようにして走行不可領域をルート及びレーンレベルで選択することで、障害物を事前に回避したルート設定が行える。
また、例えば、一般車両のドライバーによる運転の場合、仮に障害物が周囲にあった場合でも、路上での一時的な停止をしてから乗降する。一方で、自動運転車両の場合、次のような交通ルールに違反する場合は停止が行えず、結果として該当区間でのサービス提供が行えないことがある。例えば、道路側に十分なスペースがない場合、自動運転車両は停止ができない。上述した図4のような事例の場合に先を需要のある回送先、走行リスクを考慮した結果、障害物をはみ出して避けるのではなく、事前にレーン変更をして、安全に避けることが優先されることがある。その場合、障害物を安全に避けるためにレーン変更を実施する。その後にレーン変更不可区間がある場合、該当区間でのサービス提供ができなくなる。そのため、以降の区間における乗客へのサービス提供ができなくなり、本来の需要予測で想定された売上がたたなくなってしまうことが想定される。
図5は、走行区画において走行不可領域が生じた場合の時間的な推移のイメージ図である。図5に示すように、障害物が発生した場合、障害物を避けて安全に走行するため、道路上に走行不可領域が発生する。その場合、該当領域についてはそもそも自動運転車両の走行が行われないようにセンター側で管理されるため、その間はそのエリアでのサービス提供が行われない。また、一度走行不可となった領域を正常領域に戻すには、コネクテッドカーの走行情報による障害物情報の更新が必要となる。しかし、コネクテッドカーとして最も活用される自動運転車両が走行できないため、該当領域の障害がクリアされたとしても、該当領域の正常領域への復帰が長時間行われないという問題が発生する。本問題を解決するため、需要予測モデルをもとにした監視ルートを生成する等、該当領域の確認方法を決定し、サービスの提供機会の損失を減らすことを実現する。障害物の具体的な監視方法については後述する。
以上が本実施形態の手法に係る概要である。以下、本実施形態の構成及び作用について説明する。
図6は、本開示の実施形態に係る走行支援システム100の構成を示すブロック図である。図6に示すように、走行支援システム100は、車両110と、ユーザ端末120と、走行支援装置130とがネットワークNを介して接続されている。
車両110は、走行支援システム100の管理対象である自動運転車両である。車両110の構成としては、送受信部111と、各種センサ112と、車載カメラ113と、障害検出部114と、ルート管理部115とを含む。
ユーザ端末120は、表示及び入出力のインタフェースを備えている(図示省略)。ユーザ端末120は、ユーザからの入力操作により配車リクエストを受け付けて、配車リクエストを走行支援装置130に送信する。配車リクエストは配車希望時間、現在地、及び目的地の各種配車に必要な情報を含む。また、ユーザ端末120は、走行支援装置130からユーザ配車情報を受信し、表示インタフェースによりユーザにユーザ配車情報を提示する。ユーザ配車情報は、配車予定時間、配車位置等を示す情報である。
走行支援装置130は、送受信部131と、車両情報更新部132と、学習部133と、配車制御部135と、回送制御部136と、監視制御部137と、を含む。また、走行支援装置130は、需要予測部138と、頻度予測部139と、走行ルート生成部140と、記憶部150とを含む。記憶部150は、走行データ記憶部151と、障害物情報記憶部152と、道路データ記憶部153と、外部データ記憶部154と、需要予測モデル記憶部155と、頻度モデル記憶部156と、滞在予測モデル記憶部157とを含む。
車両110の各部について説明する。送受信部111は、走行支援装置130と各種データを送受信する。本実施形態では、送受信部111では、配車情報、回送情報、又は監視情報の受信が行われる。配車情報は、ユーザが配車リクエストにより指定した目的地までの走行ルートを含む情報であり、ユーザが対応付けられている。回送情報は、走行支援装置130によって指定された回送先となる目的地までの走行ルートを含む情報である。監視情報は、監視対象の障害物を監視するための走行ルート、及び監視対象の障害物の位置を含む情報である。また、送受信部111では、走行支援装置130に対して、位置情報を含む走行データの送信、障害情報の送信、及び監視情報における監視対象の障害物の差分の送信を行う。
各種センサ112は、ミリ波センサ、雨滴センサ、及び衝突センサ等の車載センサである。また、各種センサ112は、位置情報、時間情報、走行ルート、及び運転挙動等の運転状況を取得する計測センサを有する。運転挙動には、自動運転中か否かを示す状態のほか、車速、加速度、ステアリング、アクセル、及びブレーキの踏み込みなどが含まれる。運転状況は定期的に走行支援装置130に送信する。
車載カメラ113は、車両の走行中の映像を撮影するカメラである。車載カメラ113に撮影したカメラ画像(又はカメラ映像)を、障害情報を送信するタイミングで走行支援装置130に送信する。なお、カメラ画像は定期的に送信してもよい。
障害検出部114は、各種センサ112の状態、及び車載カメラ113の画像を監視し、走行経路上に存在する障害物を検出する。障害検出部114は、物体検出手法を用いて障害物の有無を検出する。障害検出部114は、検出した障害情報を走行支援装置130に送信する。なお、障害物の推定は、障害検出部114において、画像解析を行い障害物の推定を行ってもよい。また、障害検出部114は、監視情報における監視対象の障害物の差分を検出し、障害情報に含めて走行支援装置130に送信する。
ルート管理部115は、受信した配車情報、回送情報、又は監視情報に基づく目的地までの走行ルートを設定する。このように走行支援装置130から配車情報、回送情報、又は監視情報が送信されてきた場合には、車両110側で走行ルートの設定を行う。
走行支援装置130の各部について説明する。送受信部131は、車両110から走行データ、及び障害情報を受信する。送受信部131は、ユーザ端末120から配車リクエストの受信を行う。送受信部131は、ユーザ端末120にユーザ配車情報を送信する。送受信部131は、車両110に配車情報、回送情報、又は監視情報を送信する。なお、走行支援装置130は、車両110からだけでなく、エリアに配置された外部センサから障害情報を取得してもよい。
車両情報更新部132は、車両110から受信した走行データを走行データ記憶部151に格納する。車両情報更新部132は、車両110から受信した障害情報に基づいて、エリア内の走行区画に存在する障害物を推定し、障害物及び当該障害物による走行不可領域を求めた障害物発生情報として障害物情報記憶部152に格納する。また、車両110から監視対象の障害物の差分を受信して障害物発生情報を更新する。ここで、障害物発生情報には、障害物の種類、及び滞留時間の情報を含む。障害物の種類によって、その障害物が一時的な障害物であるか、又は定常的に存在する障害物であるかを判別できる。一時的な障害物とは例えば単に車両が停止している場合であり、定常的な障害物とは倒木等の移動が困難な障害物の場合である。また、障害物発生情報は、監視制御によって監視ルートが割り当てられた車両110から得られる障害物情報によっても更新されるため、予測した滞在時間に応じて障害物の有無が更新されていく。障害物発生情報が、過去に発生した障害物による走行できない領域に関する情報の一例である。
ここで、記憶部150の各部について説明する。走行データ記憶部151には、車両110から受信した走行データが格納される。また、ここで格納される走行データは、車両110の各々の現在位置、車両自体の費用単価、走行状態、及び車両をタクシー等とした場合の運行実績を含む。ここで走行状態とは、配車対応状態、巡回状態(回送又は監視)、及び指示待ち状態等の情報である。走行状態は一例において重複してもよく、例えば回送による巡回状態で巡回が終了するエリアに入った際に指示待ち状態も追加されること等により、状態が重複する。以下、走行データを用いる場合には走行データ記憶部151から読み出すとして記載を省略する。他の記憶部についても同様とする。
障害物情報記憶部152には、車両情報更新部132で求めた障害物発生情報が格納される。道路データ記憶部153には、各エリアの道路の構造を示す道路構造情報の道路データが格納される。外部データ記憶部154には、上述した気象情報、交通サービスの運行情報、イベント情報、人口動態等の外部データが格納される。外部データは適宜受信して更新される。
需要予測モデル記憶部155には、需要予測モデル学習部133Aで学習又は更新された需要予測モデルが格納される。需要予測モデルは上述したように各時間帯におけるエリアごとの車両の需要を予測するためのモデルである。
頻度モデル記憶部156には、頻度モデル学習部133Bで学習又は更新された頻度モデルが格納される。頻度モデルは上述したように各時間帯におけるエリアに含まれる領域ごとの障害物の発生頻度を予測するためのモデルである。
滞在予測モデル記憶部157には、滞在予測モデル学習部133Cで学習又は更新された滞在予測モデルが格納される。滞在予測モデルは、障害物発生情報において存在する障害物の滞在時間を予測するためのモデルである。
学習部133は、需要予測モデル学習部133Aと、頻度モデル学習部133Bと、滞在予測モデル学習部133Cとを含む。需要予測モデル学習部133Aは、走行支援装置130において定めた必要に応じて、需要予測モデルを学習し、適宜更新する。需要予測モデルの学習は、ニューラルネットワークを用いた深層学習等の手法を用いて、記憶部150の対応する各部に格納されている過去の走行データと、外部データとを学習データとして用いて学習する。需要予測モデルは、各時間帯におけるエリアごとの需要の予測結果を出力するように学習する。
頻度モデル学習部133Bは、走行支援装置130において定めた必要に応じて、頻度モデルを学習し、適宜更新する。頻度モデルの学習は、ニューラルネットワークを用いた深層学習等の手法を用いて、記憶部150の対応する各部に格納されている過去の障害物発生情報と、外部データと、道路データとを学習データとして用いて学習する。頻度モデルは、各時間帯におけるエリアの領域ごとの障害物の発生頻度の予測結果を出力するように学習する。ここでの学習においては道路データの道路構造、信号、及び標識等の属性情報を含めて学習を行う。
滞在予測モデル学習部133Cは、障害物発生情報の更新があるごとに、滞在予測モデルを学習し、適宜更新する。滞在予測モデルの学習は、ニューラルネットワークを用いた深層学習等の手法を用いて、記憶部150の対応する各部に格納されている障害物発生情報と、外部データと、道路データとを学習データとして用いて学習する。滞在予測モデルは、障害物発生情報において発生中の障害物が領域に滞在する滞在時間の予測結果を出力するように学習する。
配車制御部135は、ユーザ端末120からの配車リクエストに基づいて、頻度予測を行って、頻度予測に応じて走行が可能な走行ルートを求め、走行ルートに応じた配車手配を行う。頻度予測は頻度予測部139に実行させ、走行ルートは走行ルート生成部140により生成する。配車手配は、例えば、車両110に対する配車の割り当て及び配車情報の送信、及びユーザ端末120へのユーザ配車情報を送信する処理等である。
回送制御部136は、走行支援装置130において定めた必要に応じて、需要予測、及び頻度予測を行って、需要予測に応じて需要があり、かつ、頻度予測に応じて走行が可能な走行ルートを求め、走行ルートに応じた回送制御を行う。需要予測は需要予測部138に実行させる。頻度予測及び走行ルートの生成は配車制御部135と同様である。回送制御は、例えば、車両110に対する回送先の割り当て及び回送情報を送信する処理等である。
監視制御部137は、走行ルートに存在する対象の障害物について、滞在予測モデルを用いて、対象の障害物の滞在時間を予測し、予測結果に応じた監視ルートを生成する。ここで走行ルートに存在する対象の障害物とは、障害物発生情報の更新で新たに追加された障害物である。監視制御部137は、監視ルートを含む監視情報を、車両110に送信する。ここで、監視情報には差分検出のための情報を含んでいてもよい。なお、ここで、障害物の種類を参照して、一時的な障害物、又は定常的に存在する障害物かを識別してもよい。この場合、一時的な障害物についてのみ監視ルートを生成するようにしてもよい。また、定常的な障害物については、監視ルートを生成しないようにするか、又は監視ルートを生成する時間間隔を一時的な障害物よりも長くするようにしてもよい。
需要予測部138は、回送制御部136の要求に応じて、需要予測モデルに基づいて、各時間帯におけるエリアごとの需要を予測する。ここで求められる需要の予測結果とは、乗車の見込み需要を示す度合いである。なお、予め定期処理として需要の予測結果を求めておき、回送制御部136の要求に応じて需要の予測結果を返却するようにしてもよい。定期処理としては、例えば、一日ごとに一日分の需要の予測結果を求めておく、数時間単位で求めておく等である。
頻度予測部139は、配車制御部135、又は回送制御部136の要求に応じて、頻度モデルに基づいて、各時間帯のエリアの領域ごとの障害物の発生頻度を予測する。なお、予め定期処理として障害物の発生頻度の予測結果を求めておき、回送制御部136の要求に応じて需要の予測結果を返却するようにしてもよい。定期処理としては、例えば、一日ごとに一日分の需要の予測結果を求めておく、数時間単位で求めておく等である。
走行ルート生成部140は、配車制御部135、又は回送制御部136の要求に応じて、車両の走行ルートを生成する。ここでは配車の場合と、回送の場合とで処理が分けられる。
配車の場合には、車両110のうちの配車候補の車両ごとに、頻度モデルによる障害物の発生頻度の予測結果に基づいて、配車の走行ルートを生成する。ここでは、当該配車候補の車両ごとに、配車リクエストの配車先までの道路候補を道路データを元に抽出する。道路候補とは、走行ルートに用い得る道路の領域の候補である。また、走行ルートについて、頻度モデルを用いて得られる障害物の発生頻度に応じた障害物による走行可否のリスクを表す障害物予測係数を計算する。また、障害物発生情報に記録されている現在実際に発生している障害物についての障害物影響係数を計算する。障害物予測係数は、例えば、発生頻度の一定以上に高い領域には障害物があり、走行する場合のコストが高くなるように定めればよい。障害物影響係数は、例えば、障害物発生情報を取得して、領域に障害物が存在するか否か、どのような障害物であるか、等に応じて定めればよい。当該配車候補の車両ごとに、道路候補と、障害物予測係数と、障害物影響係数とに基づいて走行ルートを生成する。走行ルートに係る移動コスト(移動時間)と、当該配車候補の車両に割り当てられた費用単価とに基づいて配車コストを計算する。当該配車候補の車両ごとの配車コストに応じて、配車対象とする車両を決定する。これにより、配車対象とする車両について、配車に係る走行ルートが定まり、車両及び当該車両の走行ルートが配車情報として設定される。障害物予測係数が第1係数の一例であり、障害物影響係数が第2係数の一例である。
回送の場合は、車両110のうちの回送対象の車両ごとに、需要予測モデルによる需要の予測結果と、頻度モデルによる障害物の発生頻度の予測結果とに基づいて、回送先まで走行ルートを生成する。まず、需要の予測結果によりエリアの領域ごとの需要を元に、回送先の候補とする回送候補の領域k(k∈K:Kは回送候補の領域の集合)を設定する。そして、設定した回送候補の領域kごとに、領域kまでの道路候補の各々を道路データを元に抽出する。また、道路候補の障害物予測係数、及び障害物影響係数を計算する。そして、回送候補の領域kごとに、道路候補と、障害物予測係数と、障害物影響係数とに基づいて走行ルートを生成する。次に、障害物予測係数と、障害物影響係数と、走行ルートに係る移動コスト(移動時間)と、当該領域kの車両一台あたりの売上見込みとに基づいて、領域kにおける回送売上見込みを計算する。領域kにおける回送売上見込みは、例えば、領域kの車両一台あたりの売上見込み×障害物予測係数×障害物影響係数-移動コスト、等の計算により求めればよい。そして、領域kのうち回送売上見込みが最大になる領域kを回送先とする領域k’として、当該回送先を当該回送対象の車両の回送先に決定する。これにより、回送対象の車両ごとに、回送先とする領域までの走行ルートが生成される。また、走行ルートが回送情報として設定される。回送売上見込みが、成果見込みの一例である。
図7は、走行支援装置130のハードウェア構成を示すブロック図である。図7に示すように、走行支援装置130は、CPU(Central Processing Unit)11、ROM(Read Only Memory)12、RAM(Random Access Memory)13、ストレージ14、入力部15、表示部16及び通信インタフェース(I/F)17を有する。各構成は、バス19を介して相互に通信可能に接続されている。
CPU11は、中央演算処理ユニットであり、走行支援プログラムを含む各種プログラムを実行したり、各部を制御したりする。すなわち、CPU11は、ROM12又はストレージ14からプログラムを読み出し、RAM13を作業領域としてプログラムを実行する。CPU11は、ROM12又はストレージ14に記憶されているプログラムに従って、上記各構成の制御及び各種の演算処理を行う。本実施形態では、ROM12又はストレージ14には、支援管理処理プログラムが格納されている。
ROM12は、各種プログラム及び各種データを格納する。RAM13は、作業領域として一時的にプログラム又はデータを記憶する。ストレージ14は、HDD(Hard Disk Drive)又はSSD(Solid State Drive)等の記憶装置により構成され、オペレーティングシステムを含む各種プログラム、及び各種データを格納する。
入力部15は、マウス等のポインティングデバイス、及びキーボードを含み、各種の入力を行うために使用される。
表示部16は、例えば、液晶ディスプレイであり、各種の情報を表示する。表示部16は、タッチパネル方式を採用して、入力部15として機能してもよい。
通信インタフェース17は、端末等の他の機器と通信するためのインタフェースであり、例えば、イーサネット(登録商標)、FDDI、Wi-Fi(登録商標)等の規格が用いられる。
以上が走行支援装置130のハードウェア構成の一例の説明である。
図8~図10は、本開示の実施形態に係る走行支援システム100の走行支援装置130に係る処理ルーチンを示すフローチャートである。走行支援装置130の走行支援処理は、主に配車制御処理、回送制御処理、及び監視制御処理の各々に分けられる。なお、学習部133の各種学習処理は予め行っておき各種モデルは学習済みとする。また、以下の処理で用いる障害物発生情報は車両110から障害情報を受信するごとに随時更新される。監視制御処理に伴う障害物の差分についても障害情報により随時更新される。
まず、配車制御処理について説明する。図8は配車制御処理ルーチンの一例を示す図である。配車制御処理は、CPU11が配車制御部135、又は配車制御部135により要求を受けた需要予測部138、頻度予測部139、又は走行ルート生成部140等として以下の各ステップの処理を実行する。
ステップS100では、CPU11は、頻度モデル、及び障害物発生情報を取得する。
ステップS102では、CPU11は、配車リクエストに係る配車先のエリアの周囲の車両110を走行データから取得し、配車候補の車両を選別する。
ステップS104では、CPU11は、配車候補の車両について、道路データを元に、配車先のエリアまでの道路候補の各々を抽出する。道路候補は、エリアの各領域として求まる。
ステップS106では、CPU11は、配車候補の車両の道路候補について、頻度モデルを用いて、障害物予測係数を計算する。障害物予測係数は、道路候補の領域の各々を、頻度モデルへの入力として、当該領域の各々の障害物の発生頻度として求めればよい。
ステップS108では、CPU11は、配車候補の車両の道路候補について、障害物発生情報を用いて、障害物影響係数を計算する。障害物影響係数は、道路候補の領域の各々について、障害物発生情報に記録された領域に存在する障害物の有無により求めればよい。ここで、例えば、障害物の種類、滞留時間等に応じて障害物影響係数を変化させてもよい。例えば、障害物の種類がバスであると記録されている場合には、移動する可能性が高いため障害物影響係数を低くするように計算してもよい。逆に障害物の種類が、樹木等の倒壊物である場合には移動される可能性が低いため障害物影響係数を高くするように計算してもよい。また、滞留時間が長い場合には移動する可能性が高いとして、障害物影響係数を低くするように計算してもよい。逆に滞留時間が短い場合には移動する可能性が低いとして、障害物影響係数を高くするように計算してもよい。
ステップS110では、CPU11は、配車候補の車両について、既存のアルゴリズムを用いて、道路候補と、障害物予測係数と、障害物影響係数とに基づいて、移動に係るコストを最小化する走行ルートを生成する。また、走行ルートに係る移動コスト(移動時間)も併せて計算する。ここで、障害物予測係数により障害物が発生する可能性が高い領域がある場合、又は障害物影響係数により障害物が存在する領域がある場合には、それらの領域を迂回する必要があるため、移動時間が長い走行ルートが生成されると想定される。
ステップS112では、CPU11は、ステップS110で生成した走行ルートにおいて配車可能であるか否かを判定し、配車可能であればステップS114へ移行し、配車不可能であればステップS102に戻って次の配車候補の車両を選別する。判定の可否は、走行ルートにおける走行不可領域に応じて判定すればよい。
ステップS114では、CPU11は、配車候補の車両について、走行ルートに係る移動コスト(移動時間)と、当該配車候補の車両に割り当てられた費用単価とに基づいて配車コストを計算する。
ステップS116では、CPU11は、全ての配車候補の車両について配車コストの計算を終了したか否かを判定する。終了した場合にはステップS118へ移行し、終了していない場合にはステップS102に戻って次の配車候補車両を選別して処理を繰り返す。
ステップS118では、CPU11は、配車候補の車両ごとの配車コストに応じて、配車候補の車両の中から、配車対象とする車両を決定する。なお、当該処理をステップS116の前に行い、逐次、配車リクエストに対して最適な配車対象の車両を選別するように処理してもよい。
ステップS120では、配車対象とする車両110に配車情報、ユーザ端末120にユーザ配車情報を送信する。
次に、回送制御処理について説明する。図9は回送制御処理ルーチンの一例を示す図である。回送制御処理は、CPU11が回送制御部136として以下の各ステップの処理を実行する。
ステップS200では、CPU11は、現在の走行データに含まれる走行状態を元に、各エリアの回送対象の車両を取得する。ここでは、例えば、走行状態が指示待ち状態である車両を回送対象の車両として取得し、以下の各ステップの処理は、回送対象の車両ごとに行うこととする。なお、ステップS202、S204、及びS206等で重複する処理については共通の処理結果を用いるようにしてよい。
ステップS202では、CPU11は、需要予測モデル、頻度モデル、及び障害物発生情報を取得する。
ステップS204では、CPU11は、需要予測モデルに基づいて、各時間帯におけるエリアごとの需要を予測する。ここでは、現在時刻を含む時間帯付近の需要を予測すればよい。
ステップS206では、CPU11は、ステップS204の需要の予測結果によるエリアの領域ごとの需要を元に、回送先の候補とする回送候補の領域k(k∈K:Kは回送候補の領域の集合:k=1,2,3...,K)を設定する。初期値はk=1とする。例えば、エリアに含まれる各領域の需要の度合いの合計が一定以上の場合に回送先の候補の対象とするエリアとして、当該エリアの中で更に需要が一定以上領域を回送先候補の領域kとして設定すればよい。
ステップS208では、CPU11は、設定した領域kについて、道路データを元に、領域kまでの道路候補の各々を抽出する。
ステップS210では、CPU11は、領域kに係る道路候補の各々について、頻度モデルを用いて、障害物予測係数を計算する。
ステップS212では、CPU11は、領域kに係る道路候補の各々について、障害物発生情報を用いて、障害物影響係数を計算する。
ステップS214では、CPU11は、既存のアルゴリズムを用いて、道路候補と、障害物予測係数と、障害物影響係数とに基づいて、領域kまでの走行ルートを生成する。また、走行ルートに係る移動コスト(移動時間)も併せて計算する。
ステップS216では、CPU11は、障害物予測係数と、障害物影響係数と、走行ルートに係る移動コスト(移動時間)と、当該領域kの車両一台あたりの売上見込みとに基づいて、領域kにおける回送売上見込みを計算する。
ステップS218では、CPU11は、全ての領域kについて回送売上見込みの計算を終了したか否かを判定する。判定はk<Kであるか否かにより行う。終了した場合にはステップS222へ移行し、終了していない場合にはステップS220においてk=k+1と加算しステップ206に戻って次の領域kを設定して処理を繰り返す。
ステップS222では、CPU11は、領域kのうち回送売上見込みが最大になる領域kを回送先とする領域k’として、当該回送先を当該回送対象の車両の回送先に決定する。なお、当該処理をステップS218の前に行い、逐次、回送売上見込みを最大とする領域kを選別するように処理してもよい。
ステップS224では、CPU11は、回送情報を回送対象の車両110に送信する。
次に、監視制御処理について説明する。図10は監視制御処理ルーチンの一例を示す図である。監視制御処理は、CPU11が回送制御部136として以下の各ステップの処理を実行する。監視制御処理は、障害物発生情報においてエリアの領域に障害物が追加された場合に、以下の処理を障害物ごとに実行する。なお、監視制御処理は、必要に応じて、回送制御処理で用いたデータを用いて行うようにする。
ステップS300では、CPU11は、現在の走行データに含まれる走行状態を元に、障害物を含む領域の周囲にいる監視巡回が可能な車両を選別する。ここでは、例えば、走行状態が指示待ち状態である車両で、かつ、障害物を含む領域の周囲の所定の範囲に存在する車両を、監視巡回が可能な車両として選別する。以下の各ステップの処理は、監視巡回が可能な車両ごとに行うこととする。
ステップS302では、CPU11は、需要予測モデル、頻度モデル、及び障害物発生情報を取得する。
ステップS304では、CPU11は、需要予測モデルに基づいて、各時間帯におけるエリアごとの需要を予測する。ここでは、当該監視巡回が可能な車両について、監視対象の障害物の周囲に回送した場合を想定し、周囲のエリアについて現在時刻を含む時間帯付近の需要を予測すればよい。
ステップS306では、CPU11は、当該監視巡回が可能な車両について、道路データを元に、配車先のエリアまでの道路候補の各々を抽出する。抽出対象は、監視対象領域、及び周囲の領域の各々とする。
ステップS308では、CPU11は、監視巡回が可能な車両の道路候補について、頻度モデルを用いて、障害物予測係数を計算する。
ステップS310では、CPU11は、監視巡回が可能な車両の道路候補について、障害物発生情報を用いて、障害物影響係数を計算する。
ステップS312では、CPU11は、当該監視巡回が可能な車両について、既存のアルゴリズムを用いて、道路候補と、障害物予測係数と、障害物影響係数とに基づいて、監視対象領域、及び周囲の領域のそれぞれについての走行ルートを生成する。
ステップS314では、CPU11は、障害物発生情報の走行不可領域に基づいて、監視対象までの監視ルートを巡回可能であるか否かを判定する。可能である場合にはステップS316へ移行し、可能でない場合にはステップS300に戻って次の車両を選別する。
ステップS316では、CPU11は、当該監視巡回が可能な車両について、監視対象領域、及び周囲の領域の回送時のそれぞれについて、回送先の領域における回送売上見込みを計算する。ここでは、ステップS206からS222と同様の処理を行えばよいため説明を簡略化する。
ステップS318では、CPU11は、監視対象領域の回送売上見込み(C1)が、周囲の領域の配車コストを加算した回送売上見込み(C2)を超えるか否かを判定する。超える場合にはステップS320へ移行して当該監視巡回が可能な車両について障害物監視を実行するように設定し、超えない場合には障害物監視を行わずにステップS300に戻って次の車両を選別する。ここで、周囲の領域の配車コストを加算した回送売上見込みは一例であり、単に周辺の領域の回送売上見込みだけでもよい。周囲の領域の配車コストを加味する場合には、監視対象領域が周囲の領域よりさらに売上見込みがある場合にのみ監視が行われることになる。
ステップS322では、CPU11は、監視ルートを含む監視情報を当該監視巡回が可能な車両110に送信する。
以上説明したように、本開示の実施形態に係る走行支援システムによれば、需要及び障害物の状況を考慮した走行支援を行うことができる。
なお、本開示は、上述した実施の形態に限定されるものではなく、この発明の要旨を逸脱しない範囲内で様々な変形や応用が可能である。
上述した実施形態では、走行支援処理として、配車制御処理、回送制御処理、監視制御処理のそれぞれを行う場合について説明したが、これに限定されない。例えば、回送制御処理のみを行う、又は回送制御処理及び配車制御処理を行い、監視制御処理は別装置で行う等組み合わせて実施してもよい。
また、本願明細書中において、プログラムが予めインストールされている実施形態として説明したが、当該プログラムを、コンピュータ読み取り可能な記録媒体に格納して提供することも可能である。
なお、上記実施形態でCPUがソフトウェア(プログラム)を読み込んで実行した走行支援処理を、CPU以外の各種のプロセッサが実行してもよい。この場合のプロセッサとしては、FPGA(Field-Programmable Gate Array)等の製造後に回路構成を変更可能なPLD(Programmable Logic Device)、及びASIC(Application Specific Integrated Circuit)等の特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路等が例示される。また、走行支援処理を、これらの各種のプロセッサのうちの1つで実行してもよいし、同種又は異種の2つ以上のプロセッサの組み合わせ(例えば、複数のFPGA、及びCPUとFPGAとの組み合わせ等)で実行してもよい。また、これらの各種のプロセッサのハードウェア的な構造は、より具体的には、半導体素子等の回路素子を組み合わせた電気回路である。
また、上記実施形態では、走行支援プログラムが記憶部に予め記憶(インストール)されている態様を説明したが、これに限定されない。プログラムは、CD-ROM、DVD-ROM、USBメモリ等の非遷移的実体的記憶媒体(non-transitory tangible storage medium)に記憶された形態で提供されてもよい。また、プログラムは、ネットワークを介して外部装置からダウンロードされる形態としてもよい。
Claims (8)
- 走行ルートを含むエリアごとの車両の需要を予測するための需要予測モデルに基づいて、エリアごとの需要を予測する需要予測部と、
前記エリアを分割した領域ごとの障害物の発生頻度を予測するための頻度モデルに基づいて、領域ごとの障害物の発生頻度を予測する頻度予測部と、
予測された、前記エリアごとの需要と、前記障害物の発生頻度とに基づいて、車両の走行ルートを生成する走行ルート生成部と、
を含む走行支援装置。 - 前記頻度モデルは、過去に発生した障害物による走行できない領域に関する情報と、所定の外部データと、前記領域の道路構造とに基づいて予め学習したモデルとする請求項1に記載の走行支援装置。
- 前記走行ルートは回送先までのルートとし、前記需要に基づく回送候補の領域ごとに行うこととし、
前記回送候補の領域ごとの成果見込みを、前記障害物の発生頻度に応じた障害物による走行可否のリスクを表す第1係数と、前記走行ルートに存在する障害物の影響を表す第2係数と、車両一台当たりの需要とを用いて計算し、
前記回送候補の領域ごとに計算した成果見込みに基づいて、回送先とする領域を決定し、当該回送先とする領域までの走行ルートを生成する請求項1又は請求項2に記載の走行支援装置。 - 前記走行ルートに存在する対象の障害物について、障害物の滞在時間を予測するための滞在予測モデルを用いて、前記対象の障害物の滞在時間を予測し、予測結果に応じた監視ルートを生成する監視制御部を更に含む請求項1~請求項3の何れか1項に記載の走行支援装置。
- 前記対象の障害物は、前記滞在予測モデルにおいて、一時的な障害物、又は定常的に存在する障害物として反映して前記滞在時間を予測する請求項4に記載の走行支援装置。
- 前記走行ルート生成部は、ユーザからの配車リクエストと、予測された前記障害物の発生頻度とに基づいて、配車対象の車両、及び当該車両の走行ルートを生成する請求項1~請求項5の何れか1項に記載の走行支援装置。
- 走行ルートを含むエリアごとの車両の需要を予測するための需要予測モデルに基づいて、エリアごとの需要を予測し、
前記エリアを分割した領域ごとの障害物の発生頻度を予測するための頻度モデルに基づいて、領域ごとの障害物の発生頻度を予測し、
予測された、前記エリアごとの需要と、前記障害物の発生頻度とに基づいて、車両の走行ルートを生成する、
処理をコンピュータに実行させる走行支援方法。 - 走行ルートを含むエリアごとの車両の需要を予測するための需要予測モデルに基づいて、エリアごとの需要を予測し、
前記エリアを分割した領域ごとの障害物の発生頻度を予測するための頻度モデルに基づいて、領域ごとの障害物の発生頻度を予測し、
予測された、前記エリアごとの需要と、前記障害物の発生頻度とに基づいて、車両の走行ルートを生成する、
処理をコンピュータに実行させる走行支援プログラム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/934,507 US20230020267A1 (en) | 2020-03-26 | 2022-09-22 | Drive assistance apparatus, drive assistance method, and drive assistance program |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-056784 | 2020-03-26 | ||
JP2020056784A JP7167958B2 (ja) | 2020-03-26 | 2020-03-26 | 走行支援装置、走行支援方法、及び走行支援プログラム |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/934,507 Continuation US20230020267A1 (en) | 2020-03-26 | 2022-09-22 | Drive assistance apparatus, drive assistance method, and drive assistance program |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021192478A1 true WO2021192478A1 (ja) | 2021-09-30 |
Family
ID=77891241
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/049250 WO2021192478A1 (ja) | 2020-03-26 | 2020-12-28 | 走行支援装置、走行支援方法、及び走行支援プログラム |
Country Status (3)
Country | Link |
---|---|
US (1) | US20230020267A1 (ja) |
JP (1) | JP7167958B2 (ja) |
WO (1) | WO2021192478A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113498391B (zh) * | 2019-03-08 | 2023-05-16 | 马自达汽车株式会社 | 汽车用运算装置 |
WO2024069844A1 (ja) * | 2022-09-29 | 2024-04-04 | 日立Astemo株式会社 | 情報処理装置、運転支援システム、および情報処理方法 |
WO2024201780A1 (ja) * | 2023-03-29 | 2024-10-03 | 日本電気株式会社 | 経路生成システム、経路生成方法、及び経路生成装置 |
CN116125996B (zh) * | 2023-04-04 | 2023-06-27 | 北京千种幻影科技有限公司 | 一种无人驾驶车辆的安全监控方法及系统 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09297898A (ja) * | 1996-04-30 | 1997-11-18 | Matsushita Electric Ind Co Ltd | 交通渋滞通知装置 |
WO2018179415A1 (ja) * | 2017-03-31 | 2018-10-04 | 日産自動車株式会社 | 運転制御方法及び運転制御装置 |
JP2020030726A (ja) * | 2018-08-24 | 2020-02-27 | 株式会社東芝 | 乗合車両用需要予測装置、乗合車両用需要予測方法及びプログラム |
-
2020
- 2020-03-26 JP JP2020056784A patent/JP7167958B2/ja active Active
- 2020-12-28 WO PCT/JP2020/049250 patent/WO2021192478A1/ja active Application Filing
-
2022
- 2022-09-22 US US17/934,507 patent/US20230020267A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09297898A (ja) * | 1996-04-30 | 1997-11-18 | Matsushita Electric Ind Co Ltd | 交通渋滞通知装置 |
WO2018179415A1 (ja) * | 2017-03-31 | 2018-10-04 | 日産自動車株式会社 | 運転制御方法及び運転制御装置 |
JP2020030726A (ja) * | 2018-08-24 | 2020-02-27 | 株式会社東芝 | 乗合車両用需要予測装置、乗合車両用需要予測方法及びプログラム |
Also Published As
Publication number | Publication date |
---|---|
JP7167958B2 (ja) | 2022-11-09 |
JP2021156717A (ja) | 2021-10-07 |
US20230020267A1 (en) | 2023-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021192478A1 (ja) | 走行支援装置、走行支援方法、及び走行支援プログラム | |
US11402225B2 (en) | Managing service requirements and ride request fulfillment across a fleet of collectively managed vehicles | |
US10540895B2 (en) | Management of mobile objects | |
US11024161B2 (en) | Management of mobile objects | |
US10339810B2 (en) | Management of mobile objects | |
CN104572065A (zh) | 远程车辆监控系统和方法 | |
US20240085193A1 (en) | Automated dynamic routing unit and method thereof | |
WO2019065696A1 (ja) | 地物データ構造 | |
RU2674129C2 (ru) | Способ и система для определения, визуализации и прогнозирования транспортной доступности районов населённого пункта | |
US20230062923A1 (en) | Automatic entry-exit system, automatic entry-exit method, and storage medium | |
JP7474667B2 (ja) | プログラム、情報処理方法、道路インフラ整備方法および情報処理装置 | |
JP7460494B2 (ja) | プログラム、情報処理方法および情報処理装置 | |
JP7471184B2 (ja) | プログラム、情報処理方法および情報処理装置 | |
Belcher et al. | Autoguide-electronic route guidance for London and the UK | |
JP7571751B2 (ja) | 配車システム、配車管理方法 | |
JP7254988B1 (ja) | 運行管理システム、運行管理装置、運行管理装置の制御方法、及び運行管理装置の制御プログラム | |
US20230281528A1 (en) | Vehicle dispatch system and vehicle dispatch management method | |
JP7496447B2 (ja) | 監視支援システム、監視支援装置の制御方法、及び監視支援装置の制御プログラム | |
JP7471185B2 (ja) | プログラム、情報処理方法および情報処理装置 | |
US20240001954A1 (en) | Methods for preventing service disruption through chokepoint monitoring | |
CN117409561A (zh) | 运营天气管理 | |
US20230408276A1 (en) | Methods and apparatuses for late lane change prediction and mitigation | |
CN117419735A (zh) | 为车辆分配资源的系统、方法及计算装置 | |
CN117275272A (zh) | 用参与者行为流程图验证原车道 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20926846 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20926846 Country of ref document: EP Kind code of ref document: A1 |