WO2021192391A1 - Production method for adhesive layer-equipped optical layered body having through-hole - Google Patents

Production method for adhesive layer-equipped optical layered body having through-hole Download PDF

Info

Publication number
WO2021192391A1
WO2021192391A1 PCT/JP2020/041297 JP2020041297W WO2021192391A1 WO 2021192391 A1 WO2021192391 A1 WO 2021192391A1 JP 2020041297 W JP2020041297 W JP 2020041297W WO 2021192391 A1 WO2021192391 A1 WO 2021192391A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
end mill
adhesive layer
cutting
forming
Prior art date
Application number
PCT/JP2020/041297
Other languages
French (fr)
Japanese (ja)
Inventor
誠 中市
優樹 山本
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN202080098920.5A priority Critical patent/CN115315332A/en
Priority to KR1020227031111A priority patent/KR20220156536A/en
Priority to JP2022509239A priority patent/JPWO2021192391A1/ja
Publication of WO2021192391A1 publication Critical patent/WO2021192391A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C3/00Milling particular work; Special milling operations; Machines therefor
    • B23C3/007Milling end surfaces of nuts or tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C3/00Milling particular work; Special milling operations; Machines therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/10Shank-type cutters, i.e. with an integral shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/10Shank-type cutters, i.e. with an integral shaft
    • B23C5/1009Ball nose end mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a general shape other than plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/29Laminated material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to a method for manufacturing an optical laminate with an adhesive layer having through holes.
  • optical laminates for example, polarizing plates
  • image display devices such as mobile phones and notebook personal computers in order to realize image display and / or enhance the performance of the image display.
  • the optical laminate is typically configured as an optical laminate with an adhesive layer provided with an adhesive layer, and can be bonded to an image display cell.
  • image display devices equipped with cameras have come to be widely used.
  • an optical laminate with an adhesive layer having a through hole at a position corresponding to the camera portion has also been widely used.
  • Such through holes can be formed, for example, by drilling with an end mill.
  • the present invention has been made to solve such a problem, and its main purpose is to provide an optical laminate with an adhesive layer having through holes in which glue chipping and floating of a surface protective film and a separator are suppressed. It is an object of the present invention to provide a method which can be manufactured easily and inexpensively.
  • the method for manufacturing an optical laminate with an adhesive layer having through holes is to form a work by stacking a plurality of optical laminates with an adhesive layer and cutting the work using an end mill. Includes forming through holes in place of.
  • the optical laminate with the pressure-sensitive adhesive layer includes an optical film, a pressure-sensitive adhesive layer arranged on one side of the optical film, a separator temporarily attached to the pressure-sensitive adhesive layer so as to be peelable, and the optical film. Includes a surface protective film that is temporarily attached to one side so that it can be peeled off.
  • the formation of the through hole includes cutting by moving the end mill either upward or downward while pressing the end mill against the end face of the hole and cutting.
  • the formation of the through hole is to form a pilot hole; while cutting by pressing the end mill against the end face of the pilot hole, the end mill is placed along the end face of the pilot hole. , The end mill is made to go around while moving from a predetermined position at the start of cutting to either the upper side or the lower side to form the next hole having a diameter larger than the diameter of the prepared hole by a predetermined amount; Returning to a predetermined position, the end mill is pressed against the end face of the next hole to cut, and the end mill is moved along the end face of the next hole and the end mill is moved upward or downward from the predetermined position.
  • the formation of the through hole includes forming the pilot hole with a cantilevered end mill and forming a hole after the next hole with a double-sided end mill.
  • the end mill has a torsion blade, and the vertical movement direction of the end mill in forming the through hole is a cutting chip discharge direction.
  • the end mill forming the prepared hole and the end mill forming the hole after the next hole are the same end mill, and the end mill moves up and down in the formation of the hole after the next hole.
  • the direction is upward.
  • the thickness of the work is 10 mm or more.
  • the optical film comprises a polarizer or a polarizing plate.
  • the end mill in the formation of a through hole in the production of an optical laminate with an adhesive layer having a through hole, is cut while moving either upward or downward to cause glue chipping and It is possible to suppress the floating of the surface protective film and the separator.
  • FIG. 1 It is a schematic diagram explaining the relationship between the typical example of the structure of the end mill having a torsion blade which can be used in the manufacturing method by Embodiment of this invention, and the discharge direction and the rotation direction of cutting waste. It is a schematic plan view explaining the details of the formation of the through hole in the manufacturing method according to the embodiment of this invention.
  • (A) is a schematic cross-sectional view for explaining the formation of a pilot hole in the formation of a through hole
  • (b) is a schematic cross-sectional view for explaining the formation of holes after the next hole.
  • FIG. 1 is a schematic plan view explaining the trajectory in the plane of the end mill in the formation of the through hole;
  • (b) is a schematic view explaining the upward movement accompanying the movement of the end mill in the plane;
  • (C) is a schematic view explaining the downward movement accompanying the movement of the end mill in a plane. It is the schematic explaining the vertical movement with the movement in the plane of the end mill in the comparative example 4.
  • the method for manufacturing an optical laminate with an adhesive layer having through holes is to form a work by stacking a plurality of optical laminates with an adhesive layer and cutting the work by cutting with an end mill. Includes forming through holes in place.
  • the optical laminate with the pressure-sensitive adhesive layer is formed on the optical film, the pressure-sensitive adhesive layer arranged on one side of the optical film, the separator temporarily attached to the pressure-sensitive adhesive layer so as to be peelable, and the other side of the optical film.
  • the formation of through holes involves cutting while moving the end mill either upwards or downwards.
  • FIG. 1 is a schematic cross-sectional view illustrating an example of an optical laminate with an adhesive layer that can be used in the manufacturing method according to the embodiment of the present invention.
  • the optical laminate 100 with an adhesive layer of the illustrated example includes an optical film 10, an adhesive layer 20 arranged on one side of the optical film 10, and a separator 30 temporarily attached to the adhesive layer 20 so as to be peelable.
  • a surface protective film 40 that is temporarily attached to the other side of the optical film 10 so as to be peelable.
  • the separator 30 is typically arranged on the image display cell side.
  • the separator 30 is peeled off and removed, and the pressure-sensitive adhesive layer 20 is used to bond the optical laminate with the pressure-sensitive adhesive layer to an image display device (substantially, an image display cell).
  • the surface protective film 40 typically has a base material 41 and an adhesive layer 42. In order to distinguish it from the pressure-sensitive adhesive layer 20, the pressure-sensitive adhesive layer 42 of the surface protective film may be referred to as a "PF pressure-sensitive adhesive layer".
  • the surface protective film 40 is also peeled off during actual use of the optical laminate with an adhesive layer.
  • the optical laminate with the pressure-sensitive adhesive layer has a through hole 50 at a predetermined position.
  • One through hole 50 may be formed as shown in FIG. 2A, two may be formed as shown in FIG. 2B, or three or more through holes 50 may be formed (not shown).
  • two through holes may be formed side by side in the short side direction, may be formed side by side in the long side direction, or may be formed randomly as shown in FIG. 2B.
  • the formation position of the through hole can be appropriately set according to the purpose.
  • the through hole is typically formed at or near the end of the optical laminate with an adhesive layer, and is preferably formed at a corner as shown in the illustrated example.
  • the through hole may be formed at a position corresponding to the camera portion of the image display device.
  • the plan view shape of the through hole any suitable shape may be adopted depending on the purpose and the desired configuration of the image display device.
  • a typical example is a substantially circular shape as shown in the illustrated example.
  • the size of the through hole (diameter in the illustrated example) is, for example, 5 mm or less, preferably 1 mm to 5 mm, and more preferably 2 mm to 4 mm. The description of the through hole is omitted in FIG.
  • optical film 10 examples include any suitable optical film that can be used in applications that require through holes.
  • the optical film may be a film composed of a single layer or a laminated body.
  • Specific examples of the optical film composed of a single layer include a polarizer and a retardation film.
  • Specific examples of the optical film configured as a laminate include a polarizing plate (typically, a laminate of a polarizing element and a protective film), a conductive film for a touch panel, a surface treatment film, and a single layer thereof.
  • Examples thereof include a laminated body (for example, a circular polarizing plate for antireflection, a polarizing plate with a conductive layer for a touch panel) in which an optical film formed as an optical film and / or an optical film formed as a laminated body is appropriately laminated according to a purpose.
  • a laminated body for example, a circular polarizing plate for antireflection, a polarizing plate with a conductive layer for a touch panel
  • an optical film formed as an optical film and / or an optical film formed as a laminated body is appropriately laminated according to a purpose.
  • any suitable configuration can be adopted as the pressure-sensitive adhesive layer 20.
  • Specific examples of the adhesives constituting the adhesive layer include acrylic adhesives, rubber adhesives, silicone adhesives, polyester adhesives, urethane adhesives, epoxy adhesives, and polyether adhesives. Can be mentioned. By adjusting the type, number, combination and blending ratio of the monomers forming the base resin of the pressure-sensitive adhesive, the blending amount of the cross-linking agent, the reaction temperature, the reaction time, etc., the pressure-sensitive adhesive having desired characteristics according to the purpose. Can be prepared.
  • the base resin of the pressure-sensitive adhesive may be used alone or in combination of two or more.
  • An acrylic adhesive is preferable from the viewpoint of transparency, processability, durability and the like.
  • the thickness of the pressure-sensitive adhesive layer 20 can be, for example, 10 ⁇ m to 100 ⁇ m.
  • the pressure-sensitive adhesive layer 20 has a creep value at 85 ° C. of, for example, 500 ⁇ m or less, preferably 5 ⁇ m to 500 ⁇ m.
  • the creep value is preferably 200 ⁇ m to 450 ⁇ m, more preferably 220 ⁇ m to 420 ⁇ m.
  • the creep value is preferably 5 ⁇ m to 300 ⁇ m, more preferably 5 ⁇ m to 200 ⁇ m, and even more preferably 10 ⁇ m to 100 ⁇ m.
  • the composition of the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer for example, the type of base polymer (polarity, Tg, softness), molecular weight), It is presumed that adhesive chipping can be suppressed by controlling the cross-linked structure (for example, the type of the cross-linking agent, the distance between the cross-linking points (molecular weight between the cross-linking points), the cross-linking density, and the uncross-linked component (sol content)).
  • the creep value can be measured, for example, by the following procedure: a test sample cut out from an optical laminate with an adhesive layer is attached to a support plate at a joint surface of 10 mm ⁇ 10 mm.
  • the pressure-sensitive adhesive layer 20 has a storage elastic modulus at 85 ° C. of preferably 1.0 ⁇ 10 4 Pa or more, preferably 2.0 ⁇ 10 4 Pa or more, and more preferably 5.0 ⁇ 10 4 Pa or more. or more, further preferably 1.0 ⁇ 10 5 Pa or more.
  • the storage elastic modulus is in such a range, it becomes easy to realize the desired creep value.
  • the storage modulus is less for example 3.0 ⁇ 10 6 Pa.
  • the storage elastic modulus can be obtained from, for example, dynamic viscoelasticity measurement.
  • any suitable separator can be adopted.
  • Specific examples include plastic films, non-woven fabrics or paper surface-coated with a release agent.
  • Specific examples of the release material include a silicone-based release agent, a fluorine-based release agent, and a long-chain alkyl acrylate-based release agent.
  • Specific examples of the plastic film include polyethylene terephthalate (PET) film, polyethylene film, and polypropylene film.
  • PET polyethylene terephthalate
  • the thickness of the separator can be, for example, 10 ⁇ m to 100 ⁇ m.
  • the surface protective film 40 typically has a base material 41 and an adhesive layer 42.
  • the material for forming the base material 41 include ester resins such as polyethylene terephthalate resins, cycloolefin resins such as norbornene resins, olefin resins such as polypropylene, polyamide resins, polycarbonate resins, and their common weights. Combined resin can be mentioned.
  • An ester resin (particularly, a polyethylene terephthalate resin) is preferable.
  • Such a material has an advantage that the elastic modulus is sufficiently high and deformation is unlikely to occur even if tension is applied during transportation and / or bonding.
  • the elastic modulus of the base material 41 can be, for example, 2.2 kN / mm 2 to 4.8 kN / mm 2 .
  • the elastic modulus is measured according to JIS K 6781.
  • the thickness of the base material 41 can be, for example, 30 ⁇ m to 70 ⁇ m.
  • any suitable configuration can be adopted as the pressure-sensitive adhesive layer (PF pressure-sensitive adhesive layer) 42.
  • Specific examples include acrylic adhesives, rubber adhesives, silicone adhesives, polyester adhesives, urethane adhesives, epoxy adhesives, and polyether adhesives.
  • the base resin of the pressure-sensitive adhesive may be used alone or in combination of two or more.
  • the pressure-sensitive adhesive constituting the PF pressure-sensitive adhesive layer is characterized in that the base resin contains a polymer having an active hydrogen-containing functional group.
  • a PF pressure-sensitive adhesive layer having a desired storage elastic modulus can be obtained. Details of the pressure-sensitive adhesive constituting the PF pressure-sensitive adhesive layer are described in, for example, JP-A-2018-123281, and the description of the publication is incorporated herein by reference.
  • the thickness of the PF pressure-sensitive adhesive layer 42 can be, for example, 10 ⁇ m to 100 ⁇ m.
  • the storage elastic modulus G'of the PF pressure-sensitive adhesive layer 42 at 25 ° C. can be, for example, 0.5 ⁇ 10 6 (Pa) to 3.0 ⁇ 10 6 (Pa). When the storage elastic modulus is in such a range, an adhesive layer (as a result, a surface protective film) having an excellent balance between adhesiveness and peelability can be obtained.
  • the thickness of the surface protective film 40 can be, for example, 40 ⁇ m to 120 ⁇ m.
  • the thickness of the surface protective film means the total thickness of the base material and the PF adhesive layer.
  • FIG. 3 is a schematic perspective view illustrating the outline of formation of a through hole in the manufacturing method according to the embodiment of the present invention, and the work W is shown in this figure.
  • a work W in which a plurality of optical laminates with an adhesive layer are laminated is formed.
  • the optical laminate with the pressure-sensitive adhesive layer is typically cut into an arbitrary suitable shape when the work is formed.
  • the optical laminate with the adhesive layer may be cut into a rectangular shape, may be cut into a shape similar to the rectangular shape, and may be cut into an appropriate shape (for example, a circle) according to the purpose. It may be disconnected.
  • the work W has outer peripheral surfaces (cutting surfaces) 1a and 1b facing each other and outer peripheral surfaces (cutting surfaces) 1c and 1d orthogonal to them.
  • the work W is preferably clamped from above and below by clamping means (not shown).
  • the total thickness of the work is preferably 3 mm or more, more preferably 5 mm to 40 mm, and further preferably 10 mm to 30 mm.
  • the total thickness of the work is preferably 10 mm to 25 mm.
  • the total thickness of the work in forming a through hole, the total thickness of the work can be increased by cutting while moving the end mill either upward or downward.
  • the optical laminate with the pressure-sensitive adhesive layer is laminated so that the workpieces have such a total thickness.
  • the number of optical laminates with an adhesive layer constituting the work can vary depending on the thickness of the optical laminate with an adhesive layer.
  • the number of optical laminates with an adhesive layer is preferably 50 or more, more preferably 50 to 200, and even more preferably 75 to 150.
  • a work can be formed by stacking a significantly larger number of optical laminates with an adhesive layer than usual, and as a result, the optical laminate with an adhesive layer having through holes can be formed. The production efficiency can be remarkably improved.
  • the clamping means (for example, a jig) may be made of a soft material or a hard material. When composed of a soft material, its hardness (JIS A) is preferably 60 ° to 80 °. If the hardness is too high, imprints may remain due to the clamping means. If the hardness is too low, the jig may be deformed and misaligned, resulting in insufficient cutting accuracy.
  • JIS A hardness
  • through holes are formed in the work (substantially, an optical laminate with an adhesive layer).
  • the through hole can be formed by cutting with an end mill as shown in FIG.
  • the pilot hole formed first and the through hole finally formed are schematically shown.
  • the end mill that can be used for forming the through hole will be described first, and then the specific procedure for forming the through hole will be described.
  • the end mill 60 may have a twisted blade (may have a predetermined blade angle) or may have a blade angle of 0 °.
  • the end mill 60 typically has a torsion blade as shown in FIGS. 3 and 4.
  • the effect of cutting while moving the end mill either upward or downward (described later) becomes remarkable. This is because it is easy to match the direction of cutting chips with the direction of movement of the end mill.
  • the end mill 60 having a torsion blade has a rotating shaft 61 extending in the stacking direction (vertical direction) of the work W and a cutting blade configured as the outermost diameter of a main body rotating around the rotating shaft 61. 62 and.
  • the cutting blade 62 is configured as the outermost diameter twisted along the rotating shaft 61, and shows a right-handed right-handed twist.
  • the cutting blade 62 includes a cutting edge 62a, a rake surface 62b, and a relief surface 62c.
  • the number of cutting blades 62 can be appropriately set according to the purpose.
  • the cutting blade in the illustrated example has a configuration of three blades, but the number of blades may be one continuous blade, two blades, four blades, or five or more blades. good.
  • the blade angle of the end mill (the helix angle ⁇ of the cutting blade in the illustrated example) is preferably 10 ° to 40 °, more preferably 20 ° to 30 °.
  • the rake angle is preferably 15 ° to 25 °, and the clearance angle is preferably 25 ° to 35 °.
  • the relief surface of the cutting blade is preferably roughened.
  • any appropriate treatment can be adopted. A typical example is blasting. By applying the roughening treatment to the relief surface, the adhesion of the adhesive to the cutting blade can be suppressed, and as a result, blocking can be suppressed.
  • the outer diameter of the end mill is preferably 0.5 mm to 10 mm, more preferably 0.8 mm to 5 mm, and even more preferably 1 mm to 3 mm.
  • the effective length of the cutting blade of the end mill is preferably 10 mm to 50 mm, more preferably 20 mm to 40 mm.
  • blocking refers to a phenomenon in which optical laminates with an adhesive layer adhere to each other with an adhesive on the end face, and the shavings of the adhesive adhering to the end face are the optical laminate with the adhesive layer. It will contribute to the adhesion between the bodies. Further, the "outer diameter of the end mill” means that the distance from the rotating shaft 61 to the cutting edge 62a is doubled.
  • FIG. 5 is a schematic view illustrating a typical example of the configuration of an end mill having a torsion blade that can be used in the manufacturing method according to the embodiment of the present invention.
  • the configuration of an end mill having a twisted blade is roughly classified into a right-handed right-handed twist, a right-handed left-handed twist, a left-handed right-handed twist, and a left-handed left-handed twist.
  • the right blade means a configuration that can be cut when rotated clockwise when viewed from the upper side (shank side); and the left blade means a counterclockwise direction when viewed from the upper side (shank side).
  • right-handed twist refers to a configuration in which the cutting edge extends diagonally upward to the right when viewed from the side
  • left-handed twist refers to a configuration in which the cutting edge extends diagonally upward to the left when viewed from the side.
  • Right-blade right-handed and left-blade left-handed twists have a cutting chip discharge direction upward
  • right-blade left-handed twist and left-blade right-handed twist have a cutting waste discharge direction downward.
  • a pilot hole 51 is formed.
  • the term "prepared hole” refers to a hole that serves as a clue for forming a through hole at a correct position.
  • the pilot hole 51 can be typically formed by an end mill 60 in a cantilever state (a state in which only one end is held), as shown in FIG. 7A.
  • the end mill 60 holding the upper end is moved from the upper side to the lower side to form the pilot hole 51, but the end mill 60 holding the lower end may be moved from the lower side to the upper side to form the pilot hole 51. ..
  • the diameter of the prepared hole 51 is substantially the same as the outer diameter of the end mill 60.
  • the end mill 60 is pressed against the end face of the prepared hole 51 to cut, and the end mill 60 is made to go around along the end face of the prepared hole 51.
  • the next hole 52 having a diameter P larger than the diameter of the prepared hole 51 by a predetermined amount P is formed.
  • the end mill 60 is moved around the end face of the prepared hole 51 while moving from a predetermined position A at the start of cutting to either the upper side or the lower side to form the next hole 52.
  • FIG. 9 (a) starting from the cutting starting position A S of the prepared hole 51 will be described the case of forming the next hole 52.
  • the end mill 60 is outermost (cutting edge) is while cutting the end surface of the prepared hole 51, moves A S ⁇ A 1 ⁇ A 2 ⁇ A 3 ⁇ A 4 ⁇ A 1 ⁇ A S.
  • a S ⁇ A 1 starts cutting a predetermined pitch and moves along the orbit clockwise when viewed from above end mill, then, the end mill along the end face of the prepared hole 51 A 1 ⁇ A 2 ⁇ A 3 ⁇ A 4 ⁇ A 1 goes around.
  • the end mill returns to As while cutting in a clockwise trajectory when viewed from above.
  • the end mill 60 (e.g., the midpoint M of the cutting edge as a positioning indicator) when is in a predetermined position T in the thickness direction of the work (the vertical direction), end mill A S ⁇ A 1 ⁇ A 2 ⁇ A 3 ⁇ as it moves with a 4 ⁇ a 1 ⁇ a S , the position of the end mill, the figure in the case when moving the end mill upward changes as in FIG. 9 (b), to move the end mill downward It changes as in 9 (c).
  • the predetermined amount P may be referred to as a cutting pitch.
  • the following procedure is similar to the cutting of the pilot hole (formation of the next hole 52), and the end mill 60 is moved to either the upper side or the lower side to make a circuit along the end face of the next hole 52, and then the next hole is formed. Cut the end face of 52.
  • a further next hole 53 having a diameter P larger than the diameter of the next hole 52 by a predetermined amount P is formed. More specifically, as shown in FIG.
  • the amount of movement of the end mill upward or downward in the formation of the through hole is preferably 1 mm to 8 mm, more preferably 2 mm to 7 mm. More preferably, it is 3 mm to 5 mm. If the amount of movement is too small, chipping of glue or floating of the surface protective film or separator may not be sufficiently suppressed.
  • the larger the amount of movement, the more preferable, and the upper limit can be limited by the effective length of the cutting blade of the end mill.
  • the amount of movement can be, for example, 6% to 15% with respect to the effective length of the cutting blade of the end mill.
  • the moving direction of the end mill is preferably the direction of discharging cutting chips. That is, if the end mill is right-blade right-handed or left-blade left-handed, the direction of movement is upward; if the end mill is right-blade left-handed or left-blade right-handed, the direction of movement is downward. With such a configuration, the accumulation of cutting chips on the cutting edge of the rake face is remarkably suppressed, and the cutting chips are discharged extremely well. Alternatively, the pushing into the separator is remarkably suppressed, and as a result, the adhesive chipping and the floating of the surface protective film and the separator can be remarkably suppressed.
  • the blowing pressure is, for example, 0.05Mpa to 1Mpa
  • the wind speed is, for example, 1,500 m / min to 15,000 m / min
  • the air volume is, for example, 5 L / min to 1,000 L / min.
  • the holes after the next hole 52 can be typically formed by an end mill 60 in a double-sided state (a state in which both ends are held), as shown in FIG. 7 (b).
  • the end mill used for forming the next hole 52 and subsequent holes may be the same as or different from the end mill used for forming the prepared hole 51.
  • the vertical movement direction of the end mill in the orbital cutting is preferably upward.
  • the pilot hole can be formed by moving the end mill in the cantilever state (holding the upper end) downward, as described above.
  • the direction of discharging cutting chips is preferably upward from the viewpoint of suppressing adhesive chipping and floating of the surface protective film and the separator. Therefore, it is preferable that the vertical movement direction of the end mill in cutting by orbit is upward, which is the discharge direction of cutting chips.
  • the vertical movement direction of the end mill during orbital cutting is upward corresponding to the end mill configuration (cutting waste discharge direction). It may be lower or lower.
  • the cutting pitch P can change according to the size of the through hole, the outer diameter of the end mill, and the number of turns of the end mill.
  • the number of turns of the end mill can change depending on the size of the through hole, the outer diameter of the end mill, and the cutting pitch P.
  • the cutting pitch is, for example, 5 ⁇ m to 20 ⁇ m, preferably 5 ⁇ m to 10 ⁇ m.
  • the size of the through hole is 3 mm
  • the outer diameter of the end mill is 2 mm
  • the cutting pitch P is 10 ⁇ m
  • the number of laps of the end mill is 50 times.
  • the cutting conditions for forming the through hole can be appropriately set according to the size of the through hole, the outer diameter of the end mill, the number of laps of the end mill, and the like.
  • the rotation speed of the end mill is preferably 1000 rpm to 10000 rpm, and more preferably 1500 rpm to 4000 rpm.
  • the feed rate of the end mill is preferably 50 mm / min to 2000 mm / min, more preferably 70 mm / min to 1000 mm / min, and even more preferably 70 mm / min to 400 mm / min.
  • a through hole 50 having a predetermined diameter is formed. If necessary, the end face of the through hole may be subjected to finish cutting.
  • an optical laminate with an adhesive layer having through holes can be obtained.
  • adhesive chipping and floating of the surface protective film and the separator are suppressed.
  • the ratio (%) of the "no glue chipping" sample out of 10 was used as the evaluation standard.
  • Example 5 and Comparative Example 3 50 sets of workpieces were prepared and a total of 500 samples were evaluated.
  • Floating surface protection film or separator In the same manner as in (1), the floating of the surface protective film or separator in the through hole portion was observed, and if no floating of 50 ⁇ m or more was observed, the optical laminate with the adhesive layer was counted as a “no floating” sample. The ratio (%) of the "no float" sample out of 10 was used as the evaluation standard.
  • Example 5 and Comparative Example 3 50 sets of workpieces were prepared and a total of 500 samples were evaluated.
  • 50 sets of workpieces were prepared and a total of 500 samples were evaluated.
  • HC-TAC protective film is a film in which a hard coat (HC) layer (7 ⁇ m) is formed on a triacetyl cellulose (TAC) film (25 ⁇ m), and the TAC film is laminated so as to be on the polarizer side.
  • a surface protective film having a composition of PET base material (38 ⁇ m) / PF pressure-sensitive adhesive layer (20 ⁇ m) was used as the surface protective film.
  • the creep value of the pressure-sensitive adhesive layer was 73 ⁇ m.
  • the obtained polarizing plate with an adhesive layer was punched to a size of 5.7 inches (length 140 mm and width 65 mm), and 120 punched polarizing plates were stacked to form a work (total thickness about 18 mm). With the obtained work sandwiched between clamps (jigs), a through hole having a diameter of 3 mm was formed at a corner by end milling. More details were as follows.
  • the end mill used to form the through hole has an outer diameter of 2.0 mm, an effective length of the cutting blade of 30 mm, a blade angle of 25 °, a rake angle of 20 °, a clearance angle of 30 °, and a right-handed twist of the cutting blade (cutting waste discharge direction is Above).
  • a pilot hole (diameter 2 ⁇ m) was formed by moving it downward from the surface protective film side (upper side) in a cantilevered state.
  • the end mill was held in a double-sided state, and as shown in FIG. 9A, the end mill was pressed against the end face of the pilot hole to cut the end mill, and the end mill was made to go around along the end face of the pilot hole.
  • the cutting pitch was 10 ⁇ m.
  • the end mill was rotated once and moved upward by 4 mm. After circulation, after returning the end mill A S position, by 4mm moved downward (i.e., by 4mm moved downward in a state that does not cut) was returned to the original position in the vertical direction. Then, the end mill is moved from A S to B S, it was cut by next lap of the end mill. By repeating such cutting by orbiting the end mill, a through hole having a diameter of 3 mm was formed. The horizontal movement speed of the end mill in the orbit was 250 mm / min, and the rotation speed was 2500 rpm.
  • Table 1 The obtained polarizing plates with an adhesive layer having through holes were evaluated in (1) to (3) above. The results are shown in Table 1.
  • Example 2 A polarizing plate with an adhesive layer having a through hole was produced in the same manner as in Example 1 except that the cutting process was performed by orbiting the end mill in a cantilevered state.
  • the obtained polarizing plate with an adhesive layer having through holes was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
  • Both the first retardation layer and the second retardation layer are orientation-solidified layers of liquid crystal compounds, the in-plane retardation of the first retardation layer is 240 nm, and the in-plane retardation of the second retardation layer is in-plane.
  • the phase difference was 120 nm.
  • the angle formed by the slow axis of the first retardation layer and the absorption axis of the polarizer is 15 °, and the angle formed by the slow axis of the second retardation layer and the absorption axis of the polarizer is 75 °. It was °.
  • the creep value of the pressure-sensitive adhesive layer was 73 ⁇ m.
  • the obtained polarizing plate with an adhesive layer was punched to a size of 5.7 inches (length 140 mm and width 65 mm), and 90 punched polarizing plates were stacked to form a work (total thickness about 18 mm).
  • a circularly polarizing plate with an adhesive layer having a through hole was produced in the same manner as in Example 1 except that the moving speed in the horizontal direction in the circumference of the end mill was 70 mm / min.
  • the obtained circularly polarizing plate with an adhesive layer having through holes was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
  • Example 4 A circularly polarizing plate with an adhesive layer having a through hole was produced in the same manner as in Example 3 except that the horizontal moving speed in the circumference of the end mill was 125 mm / min. The obtained circularly polarizing plate with an adhesive layer having through holes was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
  • Example 5 A circularly polarizing plate with an adhesive layer having a through hole was produced in the same manner as in Example 3 except that the horizontal moving speed in the circumference of the end mill was 250 mm / min. The obtained circularly polarizing plate with an adhesive layer having through holes was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
  • the manufacturing method of the present invention can be suitably used for manufacturing an optical laminate with an adhesive layer that requires a through hole.
  • the optical laminate with an adhesive layer obtained by the manufacturing method of the present invention is suitably used for an image display unit having a through hole represented by an automobile instrument panel, a smart watch, and an image display device having a camera unit. obtain.

Abstract

Provided is a method with which can be produced simply and inexpensively, an adhesive layer-equipped optical layered body having a through-hole and for which the loss of glue and the lifting of a separator and of a surface protection film have been suppressed. According to an embodiment of the present invention, the production method for the adhesive layer-equipped optical layered body having a through-hole comprises stacking a plurality of adhesive layer-equipped optical layered bodies to form a workpiece and forming the through-hole at a predetermined position on the workpiece by cutting using an end mill. The adhesive layer-equipped optical layered body comprises an optical film, an adhesive layer disposed on one side of the optical film, a separator adhered temporarily onto the adhesive layer in a releasable manner, and a surface protection film adhered temporarily onto the other side of the optical film in a releasable manner. The formation of the through-hole comprises pressing the end mill against an end surface of the hole and cutting while moving the end mill in either an upward or downward direction to perform the cutting.

Description

貫通穴を有する粘着剤層付光学積層体の製造方法Method for manufacturing an optical laminate with an adhesive layer having through holes
 本発明は、貫通穴を有する粘着剤層付光学積層体の製造方法に関する。 The present invention relates to a method for manufacturing an optical laminate with an adhesive layer having through holes.
 携帯電話、ノート型パーソナルコンピューター等の画像表示装置には、画像表示を実現し、および/または当該画像表示の性能を高めるために、種々の光学積層体(例えば、偏光板)が使用されている。光学積層体は、代表的には粘着剤層が設けられて粘着剤層付光学積層体として構成され、画像表示セルに貼り合わせ可能とされている。近年、スマートフォン、タッチパネル式の情報処理装置の急速な普及により、カメラが搭載された画像表示装置が広く利用されるようになっている。これに対応して、カメラ部に対応する位置に貫通穴を有する粘着剤層付光学積層体もまた広く利用されるようになっている。このような貫通穴は、例えば、エンドミルを用いた穴あけ加工により形成され得る。 Various optical laminates (for example, polarizing plates) are used in image display devices such as mobile phones and notebook personal computers in order to realize image display and / or enhance the performance of the image display. .. The optical laminate is typically configured as an optical laminate with an adhesive layer provided with an adhesive layer, and can be bonded to an image display cell. In recent years, with the rapid spread of smartphones and touch panel type information processing devices, image display devices equipped with cameras have come to be widely used. Correspondingly, an optical laminate with an adhesive layer having a through hole at a position corresponding to the camera portion has also been widely used. Such through holes can be formed, for example, by drilling with an end mill.
国際公開第2017/047510号International Publication No. 2017/047510
 しかし、粘着剤層付光学積層体の穴あけ加工においては、いわゆる糊欠け(粘着剤層の端部が欠落する現象)、ならびに/あるいは、製造工程において用いられる表面保護フィルムおよび/またはセパレーターの浮きが生じる場合がある。本発明はこのような課題を解決するためになされたものであり、その主たる目的は、糊欠けならびに表面保護フィルムおよびセパレーターの浮きが抑制された、貫通穴を有する粘着剤層付光学積層体を簡便安価に製造し得る方法を提供することにある。 However, in the drilling process of the optical laminate with the adhesive layer, so-called glue chipping (a phenomenon in which the edge of the adhesive layer is missing) and / or the floating of the surface protective film and / or the separator used in the manufacturing process occurs. May occur. The present invention has been made to solve such a problem, and its main purpose is to provide an optical laminate with an adhesive layer having through holes in which glue chipping and floating of a surface protective film and a separator are suppressed. It is an object of the present invention to provide a method which can be manufactured easily and inexpensively.
 本発明の実施形態による貫通穴を有する粘着剤層付光学積層体の製造方法は、粘着剤層付光学積層体を複数枚重ねてワークを形成すること、および、エンドミルを用いた切削により該ワークの所定の位置に貫通穴を形成すること、を含む。該粘着剤層付光学積層体は、光学フィルムと、該光学フィルムの一方の側に配置された粘着剤層と、該粘着剤層に剥離可能に仮着されたセパレーターと、該光学フィルムのもう一方の側に剥離可能に仮着された表面保護フィルムと、を含む。該貫通穴の形成は、穴の端面に該エンドミルを押し当てて切削しながら該エンドミルを上方または下方のいずれか一方に移動させて切削することを含む。
 1つの実施形態においては、上記貫通穴の形成は、下穴を形成すること;該下穴の端面に上記エンドミルを押し当てて切削しながら、該エンドミルを該下穴の端面に沿って、かつ、該エンドミルを切削開始時の所定の位置から上方または下方のいずれか一方に移動させながら一周させ、該下穴の径より所定量大きい径を有する次の穴を形成すること;該エンドミルを該所定の位置に戻し、該次の穴の端面に該エンドミルを押し当てて切削しながら、該エンドミルを該次の穴の端面に沿って、かつ、該エンドミルを該所定の位置から上方または下方のいずれか一方に移動させながら一周させ、該次の穴の径より所定量大きい径を有するさらに次の穴を形成すること;および、エンドミルの周回による穴の端面に沿った切削を所定回数繰り返し、所定の径を有する貫通穴を形成すること;を含む。
 1つの実施形態においては、上記貫通穴の形成は、片持ち状態のエンドミルで上記下穴を形成すること、および、両持ち状態のエンドミルで上記次の穴以降の穴を形成することを含む。
 1つの実施形態においては、上記エンドミルはねじれ刃を有し、上記貫通穴の形成における該エンドミルの上下の移動方向は切削くずの排出方向である。
 1つの実施形態においては、上記下穴を形成するエンドミルと上記次の穴以降の穴を形成するエンドミルとは同一のエンドミルであり、該次の穴以降の穴の形成における該エンドミルの上下の移動方向は上方である。
 1つの実施形態においては、上記ワークの厚みは10mm以上である。
 1つの実施形態においては、上記光学フィルムは偏光子または偏光板を含む。
The method for manufacturing an optical laminate with an adhesive layer having through holes according to an embodiment of the present invention is to form a work by stacking a plurality of optical laminates with an adhesive layer and cutting the work using an end mill. Includes forming through holes in place of. The optical laminate with the pressure-sensitive adhesive layer includes an optical film, a pressure-sensitive adhesive layer arranged on one side of the optical film, a separator temporarily attached to the pressure-sensitive adhesive layer so as to be peelable, and the optical film. Includes a surface protective film that is temporarily attached to one side so that it can be peeled off. The formation of the through hole includes cutting by moving the end mill either upward or downward while pressing the end mill against the end face of the hole and cutting.
In one embodiment, the formation of the through hole is to form a pilot hole; while cutting by pressing the end mill against the end face of the pilot hole, the end mill is placed along the end face of the pilot hole. , The end mill is made to go around while moving from a predetermined position at the start of cutting to either the upper side or the lower side to form the next hole having a diameter larger than the diameter of the prepared hole by a predetermined amount; Returning to a predetermined position, the end mill is pressed against the end face of the next hole to cut, and the end mill is moved along the end face of the next hole and the end mill is moved upward or downward from the predetermined position. Making a round while moving to either one to form a further next hole having a diameter larger than the diameter of the next hole by a predetermined amount; and cutting along the end face of the hole by the circumference of the end mill is repeated a predetermined number of times. To form a through hole having a predetermined diameter;
In one embodiment, the formation of the through hole includes forming the pilot hole with a cantilevered end mill and forming a hole after the next hole with a double-sided end mill.
In one embodiment, the end mill has a torsion blade, and the vertical movement direction of the end mill in forming the through hole is a cutting chip discharge direction.
In one embodiment, the end mill forming the prepared hole and the end mill forming the hole after the next hole are the same end mill, and the end mill moves up and down in the formation of the hole after the next hole. The direction is upward.
In one embodiment, the thickness of the work is 10 mm or more.
In one embodiment, the optical film comprises a polarizer or a polarizing plate.
 本発明の実施形態によれば、貫通穴を有する粘着剤層付光学積層体の製造における貫通穴の形成において、エンドミルを上方または下方のいずれか一方に移動させながら切削することにより、糊欠けならびに表面保護フィルムおよびセパレーターの浮きを抑制することができる。 According to an embodiment of the present invention, in the formation of a through hole in the production of an optical laminate with an adhesive layer having a through hole, the end mill is cut while moving either upward or downward to cause glue chipping and It is possible to suppress the floating of the surface protective film and the separator.
本発明の実施形態による製造方法に用いられ得る粘着剤層付光学積層体の一例を説明する概略断面図である。It is schematic cross-sectional view explaining an example of the optical laminate with an adhesive layer which can be used in the manufacturing method by Embodiment of this invention. 本発明の実施形態による製造方法に用いられ得る粘着剤層付光学積層体における貫通穴の一例を説明する概略断面図である。It is schematic cross-sectional view explaining an example of the through hole in the optical laminate with an adhesive layer which can be used in the manufacturing method by Embodiment of this invention. 本発明の実施形態による製造方法に用いられ得る粘着剤層付光学積層体における貫通穴の別の例を説明する概略断面図である。It is schematic cross-sectional view explaining another example of the through hole in the optical laminate with an adhesive layer which can be used in the manufacturing method by Embodiment of this invention. 本発明の実施形態による製造方法における貫通穴の形成の概略を説明する概略斜視図である。It is a schematic perspective view explaining the outline of the formation of the through hole in the manufacturing method according to the embodiment of this invention. 本発明の実施形態による製造方法における貫通穴の形成に用いられ得るねじれ刃を有するエンドミルの構造を説明するための概略図である。It is a schematic diagram for demonstrating the structure of the end mill which has a torsion blade which can be used for forming a through hole in the manufacturing method by Embodiment of this invention. 本発明の実施形態による製造方法に用いられ得るねじれ刃を有するエンドミルの構成の代表例と切削くずの排出方向および回転方向との関係を説明する概略図である。It is a schematic diagram explaining the relationship between the typical example of the structure of the end mill having a torsion blade which can be used in the manufacturing method by Embodiment of this invention, and the discharge direction and the rotation direction of cutting waste. 本発明の実施形態による製造方法における貫通穴の形成の詳細を説明する概略平面図である。It is a schematic plan view explaining the details of the formation of the through hole in the manufacturing method according to the embodiment of this invention. (a)は貫通穴の形成における下穴の形成を説明する概略断面図であり、(b)は次の穴以降の穴の形成を説明する概略断面図である。(A) is a schematic cross-sectional view for explaining the formation of a pilot hole in the formation of a through hole, and (b) is a schematic cross-sectional view for explaining the formation of holes after the next hole. 貫通穴の形成におけるエンドミルによる切削を説明するための概略平面図である。It is a schematic plan view for demonstrating the cutting by an end mill in the formation of a through hole. (a)は、貫通穴の形成におけるエンドミルの平面内の軌道を説明する概略平面図であり;(b)は、エンドミルの平面内の移動に伴う上方向の移動を説明する概略図であり;(c)は、エンドミルの平面内の移動に伴う下方向の移動を説明する概略図である。(A) is a schematic plan view explaining the trajectory in the plane of the end mill in the formation of the through hole; (b) is a schematic view explaining the upward movement accompanying the movement of the end mill in the plane; (C) is a schematic view explaining the downward movement accompanying the movement of the end mill in a plane. 比較例4におけるエンドミルの平面内の移動に伴う上下方向の移動を説明する概略図である。It is the schematic explaining the vertical movement with the movement in the plane of the end mill in the comparative example 4. FIG.
 以下、図面を参照して本発明の具体的な実施形態について説明するが、本発明はこれらの実施形態には限定されない。なお、見やすくするために図面は模式的に表されており、さらに、図面における長さ、幅、厚み等の比率、ならびに角度等は、実際とは異なっている。 Hereinafter, specific embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to these embodiments. The drawings are schematically shown for easy viewing, and the ratios of length, width, thickness, etc., angles, etc. in the drawings are different from the actual ones.
 本発明の実施形態による貫通穴を有する粘着剤層付光学積層体の製造方法は、粘着剤層付光学積層体を複数枚重ねてワークを形成すること、および、エンドミルを用いた切削によりワークの所定の位置に貫通穴を形成すること、を含む。粘着剤層付光学積層体は、光学フィルムと、光学フィルムの一方の側に配置された粘着剤層と、粘着剤層に剥離可能に仮着されたセパレーターと、光学フィルムのもう一方の側に剥離可能に仮着された表面保護フィルムと、を含む。本発明の実施形態においては、貫通穴の形成は、エンドミルを上方または下方のいずれか一方に移動させながら切削することを含む。便宜上、まず、本発明の実施形態による製造方法に用いられ得る粘着剤層付光学積層体の具体的な構成を説明し、次いで、本発明の実施形態による貫通穴を有する粘着剤層付光学積層体の製造方法について説明する。 The method for manufacturing an optical laminate with an adhesive layer having through holes according to an embodiment of the present invention is to form a work by stacking a plurality of optical laminates with an adhesive layer and cutting the work by cutting with an end mill. Includes forming through holes in place. The optical laminate with the pressure-sensitive adhesive layer is formed on the optical film, the pressure-sensitive adhesive layer arranged on one side of the optical film, the separator temporarily attached to the pressure-sensitive adhesive layer so as to be peelable, and the other side of the optical film. Includes a surface protective film that is temporarily attached so that it can be peeled off. In embodiments of the present invention, the formation of through holes involves cutting while moving the end mill either upwards or downwards. For convenience, first, a specific configuration of an optical laminate with an adhesive layer that can be used in the manufacturing method according to the embodiment of the present invention will be described, and then an optical laminate with an adhesive layer having a through hole according to the embodiment of the present invention will be described. The method of manufacturing the body will be described.
A.粘着剤層付光学積層体
 図1は、本発明の実施形態による製造方法に用いられ得る粘着剤層付光学積層体の一例を説明する概略断面図である。図示例の粘着剤層付光学積層体100は、光学フィルム10と、光学フィルム10の一方の側に配置された粘着剤層20と、粘着剤層20に剥離可能に仮着されたセパレーター30と、光学フィルム10のもう一方の側に剥離可能に仮着された表面保護フィルム40と、を含む。粘着剤層付光学積層体が画像表示装置に適用された場合、代表的には、セパレーター30が画像表示セル側に配置される。粘着剤層付光学積層体の実際の使用時にはセパレーター30は剥離除去され、粘着剤層20は、粘着剤層付光学積層体を画像表示装置(実質的には、画像表示セル)に貼り合わせるために用いられ得る。表面保護フィルム40は、代表的には、基材41と粘着剤層42とを有する。なお、粘着剤層20と区別するために、表面保護フィルムの粘着剤層42を「PF粘着剤層」と称する場合がある。表面保護フィルム40もまた、粘着剤層付光学積層体の実際の使用時には剥離除去される。
A. Optical Laminate with Adhesive Layer FIG. 1 is a schematic cross-sectional view illustrating an example of an optical laminate with an adhesive layer that can be used in the manufacturing method according to the embodiment of the present invention. The optical laminate 100 with an adhesive layer of the illustrated example includes an optical film 10, an adhesive layer 20 arranged on one side of the optical film 10, and a separator 30 temporarily attached to the adhesive layer 20 so as to be peelable. , A surface protective film 40 that is temporarily attached to the other side of the optical film 10 so as to be peelable. When the optical laminate with an adhesive layer is applied to an image display device, the separator 30 is typically arranged on the image display cell side. In the actual use of the optical laminate with the pressure-sensitive adhesive layer, the separator 30 is peeled off and removed, and the pressure-sensitive adhesive layer 20 is used to bond the optical laminate with the pressure-sensitive adhesive layer to an image display device (substantially, an image display cell). Can be used for. The surface protective film 40 typically has a base material 41 and an adhesive layer 42. In order to distinguish it from the pressure-sensitive adhesive layer 20, the pressure-sensitive adhesive layer 42 of the surface protective film may be referred to as a "PF pressure-sensitive adhesive layer". The surface protective film 40 is also peeled off during actual use of the optical laminate with an adhesive layer.
 本発明の実施形態においては、粘着剤層付光学積層体は、所定の位置に貫通穴50を有する。貫通穴50は、図2Aに示すように1つ形成されていてもよく、図2Bに示すように2つ形成されていてもよく、3つ以上形成されていてもよい(図示せず)。例えば2つの貫通穴が形成される場合、図2Bに示すように短辺方向に並んで形成されてもよく、長辺方向に並んで形成されてもよく、ランダムに形成されてもよい。貫通穴の形成位置は、目的に応じて適切に設定され得る。貫通穴は、代表的には粘着剤層付光学積層体の端部またはその近傍に形成され、好ましくは図示例のように隅部に形成されている。貫通穴を粘着剤層付光学積層体の端部またはその近傍に形成することにより、粘着剤層付光学積層体が画像表示装置に適用された場合に、画像表示に対する影響を最小限とすることができる。貫通穴は、1つの実施形態においては、画像表示装置のカメラ部に対応する位置に形成され得る。貫通穴の平面視形状は、目的および画像表示装置の所望の構成に応じて任意の適切な形状が採用され得る。代表例としては、図示例のような略円形が挙げられる。貫通穴のサイズ(図示例においては直径)は、例えば5mm以下であり、好ましくは1mm~5mmであり、より好ましくは2mm~4mmである。なお、図1においては貫通穴の描写は省略されている。本発明の実施形態によれば、後述するように、貫通穴の形成において、エンドミルを上方または下方のいずれか一方に移動させながら切削することにより、糊欠けならびに表面保護フィルムおよびセパレーターの浮きを抑制することができる。すなわち、本発明の実施形態によれば、粘着剤層とセパレーターと表面保護フィルムとを含む粘着剤層付光学積層体の製造方法における特有の課題を解決することができる。 In the embodiment of the present invention, the optical laminate with the pressure-sensitive adhesive layer has a through hole 50 at a predetermined position. One through hole 50 may be formed as shown in FIG. 2A, two may be formed as shown in FIG. 2B, or three or more through holes 50 may be formed (not shown). For example, when two through holes are formed, they may be formed side by side in the short side direction, may be formed side by side in the long side direction, or may be formed randomly as shown in FIG. 2B. The formation position of the through hole can be appropriately set according to the purpose. The through hole is typically formed at or near the end of the optical laminate with an adhesive layer, and is preferably formed at a corner as shown in the illustrated example. By forming a through hole at or near the end of the optical laminate with an adhesive layer, the influence on the image display when the optical laminate with an adhesive layer is applied to an image display device is minimized. Can be done. In one embodiment, the through hole may be formed at a position corresponding to the camera portion of the image display device. As the plan view shape of the through hole, any suitable shape may be adopted depending on the purpose and the desired configuration of the image display device. A typical example is a substantially circular shape as shown in the illustrated example. The size of the through hole (diameter in the illustrated example) is, for example, 5 mm or less, preferably 1 mm to 5 mm, and more preferably 2 mm to 4 mm. The description of the through hole is omitted in FIG. According to an embodiment of the present invention, in forming a through hole, by cutting while moving the end mill either upward or downward, glue chipping and floating of the surface protective film and the separator are suppressed. can do. That is, according to the embodiment of the present invention, it is possible to solve a peculiar problem in a method for manufacturing an optical laminate with an adhesive layer including an adhesive layer, a separator, and a surface protective film.
 光学フィルム10としては、貫通穴が必要とされる用途に用いられ得る任意の適切な光学フィルムが挙げられる。光学フィルムは、単一層で構成されるフィルムであってもよく、積層体であってもよい。単一層で構成される光学フィルムの具体例としては、偏光子、位相差フィルムが挙げられる。積層体として構成される光学フィルムの具体例としては、偏光板(代表的には、偏光子と保護フィルムとの積層体)、タッチパネル用導電性フィルム、表面処理フィルム、ならびに、これらの単一層で構成される光学フィルムおよび/または積層体として構成される光学フィルムを目的に応じて適切に積層した積層体(例えば、反射防止用円偏光板、タッチパネル用導電層付偏光板)が挙げられる。 Examples of the optical film 10 include any suitable optical film that can be used in applications that require through holes. The optical film may be a film composed of a single layer or a laminated body. Specific examples of the optical film composed of a single layer include a polarizer and a retardation film. Specific examples of the optical film configured as a laminate include a polarizing plate (typically, a laminate of a polarizing element and a protective film), a conductive film for a touch panel, a surface treatment film, and a single layer thereof. Examples thereof include a laminated body (for example, a circular polarizing plate for antireflection, a polarizing plate with a conductive layer for a touch panel) in which an optical film formed as an optical film and / or an optical film formed as a laminated body is appropriately laminated according to a purpose.
 粘着剤層20としては、任意の適切な構成が採用され得る。粘着剤層を構成する粘着剤の具体例としては、アクリル系粘着剤、ゴム系粘着剤、シリコーン系粘着剤、ポリエステル系粘着剤、ウレタン系粘着剤、エポキシ系粘着剤、およびポリエーテル系粘着剤が挙げられる。粘着剤のベース樹脂を形成するモノマーの種類、数、組み合わせおよび配合比、ならびに、架橋剤の配合量、反応温度、反応時間等を調整することにより、目的に応じた所望の特性を有する粘着剤を調製することができる。粘着剤のベース樹脂は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。透明性、加工性および耐久性などの観点から、アクリル系粘着剤が好ましい。粘着剤層を構成する粘着剤の詳細は、例えば、特開2014-115468号公報に記載されており、当該公報の記載は本明細書に参考として援用されている。粘着剤層20の厚みは、例えば10μm~100μmであり得る。 Any suitable configuration can be adopted as the pressure-sensitive adhesive layer 20. Specific examples of the adhesives constituting the adhesive layer include acrylic adhesives, rubber adhesives, silicone adhesives, polyester adhesives, urethane adhesives, epoxy adhesives, and polyether adhesives. Can be mentioned. By adjusting the type, number, combination and blending ratio of the monomers forming the base resin of the pressure-sensitive adhesive, the blending amount of the cross-linking agent, the reaction temperature, the reaction time, etc., the pressure-sensitive adhesive having desired characteristics according to the purpose. Can be prepared. The base resin of the pressure-sensitive adhesive may be used alone or in combination of two or more. An acrylic adhesive is preferable from the viewpoint of transparency, processability, durability and the like. Details of the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer are described in, for example, Japanese Patent Application Laid-Open No. 2014-115468, and the description of the publication is incorporated herein by reference. The thickness of the pressure-sensitive adhesive layer 20 can be, for example, 10 μm to 100 μm.
 粘着剤層20は、85℃におけるクリープ値が例えば500μm以下であり、好ましくは5μm~500μmである。1つの実施形態においては、クリープ値は、好ましくは200μm~450μmであり、より好ましくは220μm~420μmである。別の実施形態においては、クリープ値は、好ましくは5μm~300μmであり、より好ましくは5μm~200μmであり、さらに好ましくは10μm~100μmである。クリープ値がこのような範囲であれば、貫通穴形成時の糊欠けを顕著に抑制し、かつ、高温高湿環境下における剥がれを顕著に抑制することができる。クリープ値が相対的に大きい(例えば、200μm以上である)場合であっても、粘着剤層を構成する粘着剤の組成(例えば、ベースポリマーの種類(極性、Tg、柔らかさ)、分子量)、架橋構造(例えば、架橋剤の種類、架橋点間距離(架橋点間分子量)、架橋密度、未架橋成分(ゾル分))を制御することにより、糊欠けを抑制できると推定される。なお、クリープ値は、例えば以下の手順で測定され得る:粘着剤層付光学積層体から切り出した試験サンプルを10mm×10mmの接合面にて支持板に貼着する。試験サンプルを貼り付けた支持板を固定した状態で、500gfの荷重を鉛直下方に加える。荷重を加えて1秒後および3600秒後の支持板からのずれ量を測定し、それぞれCrおよびCr3600とする。CrおよびCr3600から下記式により求められるΔCrをクリープ値とする。
     ΔCr=Cr3600-Cr
The pressure-sensitive adhesive layer 20 has a creep value at 85 ° C. of, for example, 500 μm or less, preferably 5 μm to 500 μm. In one embodiment, the creep value is preferably 200 μm to 450 μm, more preferably 220 μm to 420 μm. In another embodiment, the creep value is preferably 5 μm to 300 μm, more preferably 5 μm to 200 μm, and even more preferably 10 μm to 100 μm. When the creep value is in such a range, the glue chipping at the time of forming the through hole can be remarkably suppressed, and the peeling in a high temperature and high humidity environment can be remarkably suppressed. Even when the creep value is relatively large (for example, 200 μm or more), the composition of the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer (for example, the type of base polymer (polarity, Tg, softness), molecular weight), It is presumed that adhesive chipping can be suppressed by controlling the cross-linked structure (for example, the type of the cross-linking agent, the distance between the cross-linking points (molecular weight between the cross-linking points), the cross-linking density, and the uncross-linked component (sol content)). The creep value can be measured, for example, by the following procedure: a test sample cut out from an optical laminate with an adhesive layer is attached to a support plate at a joint surface of 10 mm × 10 mm. With the support plate to which the test sample is attached fixed, a load of 500 gf is applied vertically downward. The amount of deviation from the support plate after 1 second and 3600 seconds after applying the load is measured and designated as Cr 1 and Cr 3600 , respectively. Let ΔCr obtained from Cr 1 and Cr 3600 by the following formula be the creep value.
ΔCr = Cr 3600- Cr 1
 粘着剤層20は、85℃における貯蔵弾性率が、好ましくは1.0×10Pa以上であり、好ましくは2.0×10Pa以上であり、より好ましくは5.0×10Pa以上であり、さらに好ましくは1.0×10Pa以上である。貯蔵弾性率がこのような範囲であれば、上記所望のクリープ値の実現が容易となる。一方で、貯蔵弾性率は、例えば3.0×10Pa以下である。なお、貯蔵弾性率は、例えば、動的粘弾性測定から求められ得る。 The pressure-sensitive adhesive layer 20 has a storage elastic modulus at 85 ° C. of preferably 1.0 × 10 4 Pa or more, preferably 2.0 × 10 4 Pa or more, and more preferably 5.0 × 10 4 Pa or more. or more, further preferably 1.0 × 10 5 Pa or more. When the storage elastic modulus is in such a range, it becomes easy to realize the desired creep value. On the other hand, the storage modulus is less for example 3.0 × 10 6 Pa. The storage elastic modulus can be obtained from, for example, dynamic viscoelasticity measurement.
 セパレーター30としては、任意の適切なセパレーターが採用され得る。具体例としては、剥離剤により表面コートされたプラスチックフィルム、不織布または紙が挙げられる。剥離材の具体例としては、シリコーン系剥離剤、フッ素系剥離剤、長鎖アルキルアクリレート系剥離剤が挙げられる。プラスチックフィルムの具体例としては、ポリエチレンテレフタレート(PET)フィルム、ポリエチレンフィルム、ポリプロピレンフィルムが挙げられる。セパレーターの厚みは、例えば10μm~100μmであり得る。 As the separator 30, any suitable separator can be adopted. Specific examples include plastic films, non-woven fabrics or paper surface-coated with a release agent. Specific examples of the release material include a silicone-based release agent, a fluorine-based release agent, and a long-chain alkyl acrylate-based release agent. Specific examples of the plastic film include polyethylene terephthalate (PET) film, polyethylene film, and polypropylene film. The thickness of the separator can be, for example, 10 μm to 100 μm.
 表面保護フィルム40は、上記のとおり、代表的には基材41と粘着剤層42とを有する。基材41の形成材料としては、例えば、ポリエチレンテレフタレート系樹脂等のエステル系樹脂、ノルボルネン系樹脂等のシクロオレフィン系樹脂、ポリプロピレン等のオレフィン系樹脂、ポリアミド系樹脂、ポリカーボネート系樹脂、これらの共重合体樹脂が挙げられる。好ましくは、エステル系樹脂(特に、ポリエチレンテレフタレート系樹脂)である。このような材料であれば、弾性率が十分に高く、搬送および/または貼り合わせ時に張力をかけても変形が生じにくいという利点がある。 As described above, the surface protective film 40 typically has a base material 41 and an adhesive layer 42. Examples of the material for forming the base material 41 include ester resins such as polyethylene terephthalate resins, cycloolefin resins such as norbornene resins, olefin resins such as polypropylene, polyamide resins, polycarbonate resins, and their common weights. Combined resin can be mentioned. An ester resin (particularly, a polyethylene terephthalate resin) is preferable. Such a material has an advantage that the elastic modulus is sufficiently high and deformation is unlikely to occur even if tension is applied during transportation and / or bonding.
 基材41の弾性率は、例えば2.2kN/mm~4.8kN/mmであり得る。基材の弾性率がこのような範囲であれば、搬送および/または貼り合わせ時に張力をかけても変形が生じにくいという利点を有する。なお、弾性率は、JIS  K  6781に準拠して測定される。 The elastic modulus of the base material 41 can be, for example, 2.2 kN / mm 2 to 4.8 kN / mm 2 . When the elastic modulus of the base material is within such a range, there is an advantage that deformation is unlikely to occur even if tension is applied during transportation and / or bonding. The elastic modulus is measured according to JIS K 6781.
 基材41の厚みは、例えば30μm~70μmであり得る。 The thickness of the base material 41 can be, for example, 30 μm to 70 μm.
 粘着剤層(PF粘着剤層)42としては、任意の適切な構成が採用され得る。具体例としては、アクリル系粘着剤、ゴム系粘着剤、シリコーン系粘着剤、ポリエステル系粘着剤、ウレタン系粘着剤、エポキシ系粘着剤、およびポリエーテル系粘着剤が挙げられる。粘着剤のベース樹脂を形成するモノマーの種類、数、組み合わせおよび配合比、ならびに、架橋剤の配合量、反応温度、反応時間等を調整することにより、目的に応じた所望の特性を有する粘着剤を調製することができる。粘着剤のベース樹脂は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。PF粘着剤層を構成する粘着剤は、ベース樹脂が活性水素含有官能基を有するポリマーを含むという特徴を有する。このようなベース樹脂であれば、所望の貯蔵弾性率を有するPF粘着剤層が得られ得る。PF粘着剤層を構成する粘着剤の詳細は、例えば、特開2018-123281号公報に記載されており、当該公報の記載は本明細書に参考として援用されている。PF粘着剤層42の厚みは、例えば10μm~100μmであり得る。PF粘着剤層42の25℃における貯蔵弾性率G’は、例えば0.5×10(Pa)~3.0×10(Pa)であり得る。貯蔵弾性率がこのような範囲であれば、粘着性と剥離性とのバランスに優れた粘着剤層(結果として、表面保護フィルム)を得ることができる。 Any suitable configuration can be adopted as the pressure-sensitive adhesive layer (PF pressure-sensitive adhesive layer) 42. Specific examples include acrylic adhesives, rubber adhesives, silicone adhesives, polyester adhesives, urethane adhesives, epoxy adhesives, and polyether adhesives. By adjusting the type, number, combination and blending ratio of the monomers forming the base resin of the pressure-sensitive adhesive, the blending amount of the cross-linking agent, the reaction temperature, the reaction time, etc., the pressure-sensitive adhesive having desired characteristics according to the purpose. Can be prepared. The base resin of the pressure-sensitive adhesive may be used alone or in combination of two or more. The pressure-sensitive adhesive constituting the PF pressure-sensitive adhesive layer is characterized in that the base resin contains a polymer having an active hydrogen-containing functional group. With such a base resin, a PF pressure-sensitive adhesive layer having a desired storage elastic modulus can be obtained. Details of the pressure-sensitive adhesive constituting the PF pressure-sensitive adhesive layer are described in, for example, JP-A-2018-123281, and the description of the publication is incorporated herein by reference. The thickness of the PF pressure-sensitive adhesive layer 42 can be, for example, 10 μm to 100 μm. The storage elastic modulus G'of the PF pressure-sensitive adhesive layer 42 at 25 ° C. can be, for example, 0.5 × 10 6 (Pa) to 3.0 × 10 6 (Pa). When the storage elastic modulus is in such a range, an adhesive layer (as a result, a surface protective film) having an excellent balance between adhesiveness and peelability can be obtained.
 表面保護フィルム40の厚みは、例えば40μm~120μmであり得る。なお、表面保護フィルムの厚みとは、基材とPF粘着剤層の合計厚みをいう。 The thickness of the surface protective film 40 can be, for example, 40 μm to 120 μm. The thickness of the surface protective film means the total thickness of the base material and the PF adhesive layer.
B.粘着剤層付光学積層体の製造方法
 以下、粘着剤層付光学積層体の製造方法の代表例を説明する。
B. Method for Manufacturing Optical Laminate with Adhesive Layer Hereinafter, a typical example of the method for manufacturing an optical laminate with a pressure-sensitive adhesive layer will be described.
B-1.ワークの形成
 まず、ワークを形成する。図3は、本発明の実施形態による製造方法における貫通穴の形成の概略を説明する概略斜視図であり、本図にワークWが示されている。図3に示すように、粘着剤層付光学積層体を複数枚重ねたワークWが形成される。粘着剤層付光学積層体は、ワーク形成に際し、代表的には任意の適切な形状に切断されている。具体的には、粘着剤層付光学積層体は矩形形状に切断されていてもよく、矩形形状に類似する形状に切断されていてもよく、目的に応じた適切な形状(例えば、円形)に切断されていてもよい。ワークWは、1つの実施形態においては、互いに対向する外周面(切削面)1a、1bおよびそれらと直交する外周面(切削面)1c、1dを有している。ワークWは、好ましくは、クランプ手段(図示せず)により上下からクランプされている。ワークの総厚みは、好ましくは3mm以上であり、より好ましくは5mm~40mmであり、さらに好ましくは10mm~30mmである。例えば貫通穴の直径が2mm~3mmである場合には、ワークの総厚みは、好ましくは10mm~25mmである。本発明の実施形態によれば、後述するように、貫通穴の形成において、エンドミルを上方または下方のいずれか一方に移動させながら切削することにより、ワークの総厚みを大きくすることができる。その結果、貫通穴を有する粘着剤層付光学積層体の製造効率を顕著に向上させることができる。粘着剤層付光学積層体は、ワークがこのような総厚みとなるように重ねられる。ワークを構成する粘着剤層付光学積層体の枚数は、粘着剤層付光学積層体の厚みによって変化し得る。粘着剤層付光学積層体の枚数は、好ましくは50枚以上であり、より好ましくは50枚~200枚であり、さらに好ましくは75枚~150枚である。本発明の実施形態によれば、通常よりも顕著に多い枚数の粘着剤層付光学積層体を重ねてワークを形成することができ、その結果、貫通穴を有する粘着剤層付光学積層体の製造効率を顕著に向上させることができる。クランプ手段(例えば、治具)は、軟質材料で構成されてもよく硬質材料で構成されてもよい。軟質材料で構成される場合、その硬度(JIS  A)は、好ましくは60°~80°である。硬度が高すぎると、クランプ手段による押し跡が残る場合がある。硬度が低すぎると、治具の変形により位置ずれが生じ、切削精度が不十分となる場合がある。
B-1. Work formation First, the work is formed. FIG. 3 is a schematic perspective view illustrating the outline of formation of a through hole in the manufacturing method according to the embodiment of the present invention, and the work W is shown in this figure. As shown in FIG. 3, a work W in which a plurality of optical laminates with an adhesive layer are laminated is formed. The optical laminate with the pressure-sensitive adhesive layer is typically cut into an arbitrary suitable shape when the work is formed. Specifically, the optical laminate with the adhesive layer may be cut into a rectangular shape, may be cut into a shape similar to the rectangular shape, and may be cut into an appropriate shape (for example, a circle) according to the purpose. It may be disconnected. In one embodiment, the work W has outer peripheral surfaces (cutting surfaces) 1a and 1b facing each other and outer peripheral surfaces (cutting surfaces) 1c and 1d orthogonal to them. The work W is preferably clamped from above and below by clamping means (not shown). The total thickness of the work is preferably 3 mm or more, more preferably 5 mm to 40 mm, and further preferably 10 mm to 30 mm. For example, when the diameter of the through hole is 2 mm to 3 mm, the total thickness of the work is preferably 10 mm to 25 mm. According to the embodiment of the present invention, in forming a through hole, the total thickness of the work can be increased by cutting while moving the end mill either upward or downward. As a result, the manufacturing efficiency of the optical laminate with the pressure-sensitive adhesive layer having through holes can be remarkably improved. The optical laminate with the pressure-sensitive adhesive layer is laminated so that the workpieces have such a total thickness. The number of optical laminates with an adhesive layer constituting the work can vary depending on the thickness of the optical laminate with an adhesive layer. The number of optical laminates with an adhesive layer is preferably 50 or more, more preferably 50 to 200, and even more preferably 75 to 150. According to the embodiment of the present invention, a work can be formed by stacking a significantly larger number of optical laminates with an adhesive layer than usual, and as a result, the optical laminate with an adhesive layer having through holes can be formed. The production efficiency can be remarkably improved. The clamping means (for example, a jig) may be made of a soft material or a hard material. When composed of a soft material, its hardness (JIS A) is preferably 60 ° to 80 °. If the hardness is too high, imprints may remain due to the clamping means. If the hardness is too low, the jig may be deformed and misaligned, resulting in insufficient cutting accuracy.
B-2.貫通穴の形成
 次に、ワーク(実質的には、粘着剤層付光学積層体)に貫通穴を形成する。貫通穴は、図3に示すようにエンドミルを用いた切削により形成され得る。なお、図3においては、最初に形成される下穴と最終的に形成される貫通穴が模式的に示されている。以下、貫通穴の形成に用いられ得るエンドミルについて最初に説明し、次いで、貫通穴の形成の具体的な手順について説明する。
B-2. Formation of through holes Next, through holes are formed in the work (substantially, an optical laminate with an adhesive layer). The through hole can be formed by cutting with an end mill as shown in FIG. In addition, in FIG. 3, the pilot hole formed first and the through hole finally formed are schematically shown. Hereinafter, the end mill that can be used for forming the through hole will be described first, and then the specific procedure for forming the through hole will be described.
B-2-1.エンドミルの構成
 エンドミル60は、ねじれ刃を有していてもよく(所定の刃角度を有していてもよく)、刃角度0°であってもよい。エンドミル60は、代表的には、図3および図4に示すようにねじれ刃を有する。ねじれ刃を有するエンドミルを用いることにより、エンドミルを上方または下方のいずれか一方に移動させながら切削すること(後述)による効果が顕著になる。切削くずの排出方向とエンドミルの移動方向とを合わせることが容易だからである。ねじれ刃を有するエンドミル60は、図4に示すように、ワークWの積層方向(鉛直方向)に延びる回転軸61と、回転軸61を中心として回転する本体の最外径として構成される切削刃62と、を有する。図示例では、切削刃62は、回転軸61に沿ってねじれた最外径として構成されており、右刃右ねじれを示している。切削刃62は、刃先62aと、すくい面62bと、逃がし面62cと、を含む。切削刃62の刃数は、目的に応じて適切に設定され得る。図示例における切削刃は3枚の構成であるが、刃数は連続した1枚であってもよく、2枚であってもよく、4枚であってもよく、5枚以上であってもよい。エンドミルの刃角度(図示例における切削刃のねじれ角θ)は、好ましくは10°~40°であり、より好ましくは20°~30°である。すくい角は、好ましくは15°~25°であり、逃げ角は、好ましくは25°~35°である。切削刃の逃がし面は、好ましくは、粗面化処理されている。粗面化処理としては、任意の適切な処理が採用され得る。代表例としては、ブラスト処理が挙げられる。逃がし面に粗面化処理を施すことにより、切削刃への粘着剤の付着が抑制され、結果として、ブロッキングが抑制され得る。エンドミルの外径は、好ましくは0.5mm~10mmであり、より好ましくは0.8mm~5mmであり、さらに好ましくは1mm~3mmである。エンドミルの切削刃の有効長さは、好ましくは10mm~50mmであり、より好ましくは20mm~40mmである。なお、本明細書において「ブロッキング」とは、ワークにおける粘着剤層付光学積層体同士が端面の粘着剤で接着する現象をいい、端面に付着する粘着剤の削りカスが粘着剤層付光学積層体同士の接着に寄与することとなる。また、「エンドミルの外径」とは、回転軸61から刃先62aまでの距離を2倍したものをいう。
B-2-1. Configuration of End Mill The end mill 60 may have a twisted blade (may have a predetermined blade angle) or may have a blade angle of 0 °. The end mill 60 typically has a torsion blade as shown in FIGS. 3 and 4. By using an end mill having a twisted blade, the effect of cutting while moving the end mill either upward or downward (described later) becomes remarkable. This is because it is easy to match the direction of cutting chips with the direction of movement of the end mill. As shown in FIG. 4, the end mill 60 having a torsion blade has a rotating shaft 61 extending in the stacking direction (vertical direction) of the work W and a cutting blade configured as the outermost diameter of a main body rotating around the rotating shaft 61. 62 and. In the illustrated example, the cutting blade 62 is configured as the outermost diameter twisted along the rotating shaft 61, and shows a right-handed right-handed twist. The cutting blade 62 includes a cutting edge 62a, a rake surface 62b, and a relief surface 62c. The number of cutting blades 62 can be appropriately set according to the purpose. The cutting blade in the illustrated example has a configuration of three blades, but the number of blades may be one continuous blade, two blades, four blades, or five or more blades. good. The blade angle of the end mill (the helix angle θ of the cutting blade in the illustrated example) is preferably 10 ° to 40 °, more preferably 20 ° to 30 °. The rake angle is preferably 15 ° to 25 °, and the clearance angle is preferably 25 ° to 35 °. The relief surface of the cutting blade is preferably roughened. As the roughening treatment, any appropriate treatment can be adopted. A typical example is blasting. By applying the roughening treatment to the relief surface, the adhesion of the adhesive to the cutting blade can be suppressed, and as a result, blocking can be suppressed. The outer diameter of the end mill is preferably 0.5 mm to 10 mm, more preferably 0.8 mm to 5 mm, and even more preferably 1 mm to 3 mm. The effective length of the cutting blade of the end mill is preferably 10 mm to 50 mm, more preferably 20 mm to 40 mm. In the present specification, "blocking" refers to a phenomenon in which optical laminates with an adhesive layer adhere to each other with an adhesive on the end face, and the shavings of the adhesive adhering to the end face are the optical laminate with the adhesive layer. It will contribute to the adhesion between the bodies. Further, the "outer diameter of the end mill" means that the distance from the rotating shaft 61 to the cutting edge 62a is doubled.
 次に、エンドミルの構成と切削くずの排出方向および回転方向との関係を説明する。図5は、本発明の実施形態による製造方法に用いられ得るねじれ刃を有するエンドミルの構成の代表例を説明する概略図である。図5に示すとおり、ねじれ刃を有するエンドミルの構成は、右刃右ねじれ、右刃左ねじれ、左刃右ねじれ、左刃左ねじれに大別される。図5に示すように、右刃とは、上側(シャンク側)から見て時計回りに回転したときに切削可能な構成をいい;左刃とは、上側(シャンク側)から見て反時計回りに回転したときに切削可能な構成をいう。図5にさらに示すように、右ねじれとは、刃先が側方からみて右斜め上方向に延びる構成をいい;左ねじれとは、刃先が側方からみて左斜め上方向に延びる構成をいう。右刃右ねじれおよび左刃左ねじれは、切削くずの排出方向が上方であり;右刃左ねじれおよび左刃右ねじれは、切削くずの排出方向が下方である。 Next, the relationship between the configuration of the end mill and the direction of discharge and rotation of cutting chips will be explained. FIG. 5 is a schematic view illustrating a typical example of the configuration of an end mill having a torsion blade that can be used in the manufacturing method according to the embodiment of the present invention. As shown in FIG. 5, the configuration of an end mill having a twisted blade is roughly classified into a right-handed right-handed twist, a right-handed left-handed twist, a left-handed right-handed twist, and a left-handed left-handed twist. As shown in FIG. 5, the right blade means a configuration that can be cut when rotated clockwise when viewed from the upper side (shank side); and the left blade means a counterclockwise direction when viewed from the upper side (shank side). A configuration that can be cut when rotated to. As further shown in FIG. 5, right-handed twist refers to a configuration in which the cutting edge extends diagonally upward to the right when viewed from the side; and left-handed twist refers to a configuration in which the cutting edge extends diagonally upward to the left when viewed from the side. Right-blade right-handed and left-blade left-handed twists have a cutting chip discharge direction upward; right-blade left-handed twist and left-blade right-handed twist have a cutting waste discharge direction downward.
B-2-2.貫通穴の形成
 以下、上記のようなエンドミルを用いた貫通穴の形成の代表例について、図6~図9を参照して説明する。
B-2-2. Formation of Through Holes Hereinafter, typical examples of formation of through holes using the above-mentioned end mill will be described with reference to FIGS. 6 to 9.
 まず、図6に示すように、下穴51を形成する。本明細書において「下穴」とは、正しい位置に貫通穴を形成するための手がかりとなる穴をいう。下穴51は、代表的には図7(a)に示すように、片持ち状態(一端のみを保持した状態)のエンドミル60で形成され得る。図示例では上端を保持したエンドミル60を上方から下方に移動させて下穴51を形成しているが、下端を保持したエンドミル60を下方から上方に移動させて下穴51を形成してもよい。下穴51の直径は、エンドミル60の外径と実質的に同一である。 First, as shown in FIG. 6, a pilot hole 51 is formed. As used herein, the term "prepared hole" refers to a hole that serves as a clue for forming a through hole at a correct position. The pilot hole 51 can be typically formed by an end mill 60 in a cantilever state (a state in which only one end is held), as shown in FIG. 7A. In the illustrated example, the end mill 60 holding the upper end is moved from the upper side to the lower side to form the pilot hole 51, but the end mill 60 holding the lower end may be moved from the lower side to the upper side to form the pilot hole 51. .. The diameter of the prepared hole 51 is substantially the same as the outer diameter of the end mill 60.
 次に、図8に示すように、下穴51の端面にエンドミル60を押し当てて切削しながら、エンドミル60を下穴51の端面に沿って一周させる。その結果、図6および図8に示すように、下穴51の径より所定量P大きい径を有する次の穴52を形成する。本発明の実施形態においては、エンドミル60を切削開始時の所定の位置Aから上方または下方のいずれか一方に移動させながら下穴51の端面に沿って一周させ、次の穴52を形成する。一例として、図9(a)に示すように、下穴51の切削開始位置Aからスタートして次の穴52を形成する場合について説明する。この場合、エンドミル60は、最外部(刃先)が下穴51の端面を切削しながら、A→A→A→A→A→A→Aと移動する。具体的には、A→Aはエンドミルが上から見て時計回りの軌道を描いて移動して所定ピッチの切削を開始し、次いで、エンドミルは下穴51の端面に沿ってA→A→A→A→Aと一周する。1周してAに到達すると、エンドミルは上から見て時計回りの軌道を描いて切削しながらAsに戻る。ここで、エンドミル60(例えば、位置決め指標としての切削刃の中間点M)がワークの厚み方向(鉛直方向)の所定の位置Tにあるとき、エンドミルがA→A→A→A→A→A→Aと移動するにしたがって、エンドミルの位置は、エンドミルを上方に移動させる場合には図9(b)のように変化し、エンドミルを下方に移動させる場合には図9(c)のように変化する。1周切削して次の穴52が形成されると、位置Aにおいて、エンドミル60は位置Tに戻される(このとき、切削は行われない)。なお、本明細書においては、所定量Pを切削ピッチと称する場合がある。 Next, as shown in FIG. 8, the end mill 60 is pressed against the end face of the prepared hole 51 to cut, and the end mill 60 is made to go around along the end face of the prepared hole 51. As a result, as shown in FIGS. 6 and 8, the next hole 52 having a diameter P larger than the diameter of the prepared hole 51 by a predetermined amount P is formed. In the embodiment of the present invention, the end mill 60 is moved around the end face of the prepared hole 51 while moving from a predetermined position A at the start of cutting to either the upper side or the lower side to form the next hole 52. As an example, as shown in FIG. 9 (a), starting from the cutting starting position A S of the prepared hole 51 will be described the case of forming the next hole 52. In this case, the end mill 60 is outermost (cutting edge) is while cutting the end surface of the prepared hole 51, moves A S → A 1 → A 2 → A 3 → A 4 → A 1 → A S. Specifically, A S → A 1 starts cutting a predetermined pitch and moves along the orbit clockwise when viewed from above end mill, then, the end mill along the end face of the prepared hole 51 A 1 → A 2 → A 3 → A 4 → A 1 goes around. When it reaches A 1 after making one lap, the end mill returns to As while cutting in a clockwise trajectory when viewed from above. Here, the end mill 60 (e.g., the midpoint M of the cutting edge as a positioning indicator) when is in a predetermined position T in the thickness direction of the work (the vertical direction), end mill A S → A 1 → A 2 → A 3 → as it moves with a 4 → a 1 → a S , the position of the end mill, the figure in the case when moving the end mill upward changes as in FIG. 9 (b), to move the end mill downward It changes as in 9 (c). When one round cutting to the next hole 52 is formed at the position A S, the end mill 60 is returned to the position T (this time, the cutting is not performed). In this specification, the predetermined amount P may be referred to as a cutting pitch.
 次いで、エンドミル60を位置Aから、さらに次の穴53の切削開始位置Bに水平方向に移動させる(当該移動の間には切削は行われない)。以下の手順は下穴の切削(次の穴52の形成)と同様にして、エンドミル60を上方または下方のいずれか一方に移動させながら次の穴52の端面に沿って一周させ、次の穴52の端面を切削する。その結果、図6に示すように、次の穴52の径より所定量P大きい径を有するさらに次の穴53が形成される。より詳細には、図9(a)に示すように、エンドミル60は、最外部(刃先)が次の穴52の端面を切削しながら、B→B→B→B→B→B→Bと移動する。エンドミルがB→B→B→B→B→B→Bと移動するにしたがって、エンドミルの位置は、エンドミルを上方に移動させる場合には図9(b)のように変化し、エンドミルを下方に移動させる場合には図9(c)のように変化する。1周切削してさらに次の穴53が形成されると、位置Bにおいて、エンドミル60は位置Tに戻される。次いで、エンドミル60を位置Bから、さらに次の穴の切削開始位置Cに水平方向に移動させ、同様の手順を繰り返すことにより、所望の直径を有する貫通穴を形成する。 Then, the end mill 60 from the position A S, (no cutting between the mobile is performed) to further moved to the horizontal direction to the cutting start position B S of the next hole 53. The following procedure is similar to the cutting of the pilot hole (formation of the next hole 52), and the end mill 60 is moved to either the upper side or the lower side to make a circuit along the end face of the next hole 52, and then the next hole is formed. Cut the end face of 52. As a result, as shown in FIG. 6, a further next hole 53 having a diameter P larger than the diameter of the next hole 52 by a predetermined amount P is formed. More specifically, as shown in FIG. 9 (a), the end mill 60, while the outermost (cutting edge) of cutting the end face of the next hole 52, B S → B 1 → B 2 → B 3 → B 4 → B 1 → B S. Accordance end mill is moved B S → B 1 → B 2 → B 3 → B 4 → B 1 → B S, the position of the end mill, in the case of moving the end mill upward as shown in FIG. 9 (b) When it changes and the end mill is moved downward, it changes as shown in FIG. 9 (c). Further next hole 53 by one round cutting is formed at a position B S, the end mill 60 is returned to the position T. Then, the end mill 60 from the position B S, further moved in the horizontal direction to the cutting start position C S of the next hole, by repeating the same procedure, to form a through-hole having a desired diameter.
 貫通穴の形成におけるエンドミルの上方または下方への移動量(図9(b)のUまたは図9(c)のD)は、好ましくは1mm~8mmであり、より好ましくは2mm~7mmであり、さらに好ましくは3mm~5mmである。当該移動量が小さすぎると、糊欠けあるいは表面保護フィルムまたはセパレーターの浮きが十分に抑制されない場合がある。当該移動量は大きいほど好ましく、上限はエンドミルの切削刃の有効長さによって制限され得る。当該移動量は、エンドミルの切削刃の有効長さに対して、例えば6%~15%であり得る。 The amount of movement of the end mill upward or downward in the formation of the through hole (U in FIG. 9B or D in FIG. 9C) is preferably 1 mm to 8 mm, more preferably 2 mm to 7 mm. More preferably, it is 3 mm to 5 mm. If the amount of movement is too small, chipping of glue or floating of the surface protective film or separator may not be sufficiently suppressed. The larger the amount of movement, the more preferable, and the upper limit can be limited by the effective length of the cutting blade of the end mill. The amount of movement can be, for example, 6% to 15% with respect to the effective length of the cutting blade of the end mill.
 エンドミルの移動方向は、好ましくは、切削くずの排出方向である。すなわち、エンドミルが右刃右ねじれまたは左刃左ねじれである場合には、移動方向は上方であり;エンドミルが右刃左ねじれまたは左刃右ねじれである場合には、移動方向は下方である。このような構成であれば、すくい面の刃先に切削くずがたまることが顕著に抑制され、切削くずが極めて良好に排出されるので、当該切削くずによる粘着剤層ならびに/あるいは表面保護フィルムおよび/またはセパレーターへの押し込みが顕著に抑制され、その結果、糊欠けならびに表面保護フィルムおよびセパレーターの浮きを顕著に抑制することができる。 The moving direction of the end mill is preferably the direction of discharging cutting chips. That is, if the end mill is right-blade right-handed or left-blade left-handed, the direction of movement is upward; if the end mill is right-blade left-handed or left-blade right-handed, the direction of movement is downward. With such a configuration, the accumulation of cutting chips on the cutting edge of the rake face is remarkably suppressed, and the cutting chips are discharged extremely well. Alternatively, the pushing into the separator is remarkably suppressed, and as a result, the adhesive chipping and the floating of the surface protective film and the separator can be remarkably suppressed.
 1つの実施形態においては、貫通穴の形成(切削加工)において切削くずの排出側と逆側から排出方向に向かって送風することが好ましい。このような構成であれば、切削くずがさらに良好に排出されるので、糊欠けならびに表面保護フィルムおよびセパレーターの浮きをさらに良好に抑制することができる。送風圧力は例えば0.05Mpa~1Mpaであり、風速は例えば1,500m/分~15,000m/分であり、風量は例えば5L/分~1,000L/分である。 In one embodiment, it is preferable to blow air from the side opposite to the discharge side of the cutting chips in the discharge direction in the formation of the through hole (cutting process). With such a configuration, cutting chips are discharged more satisfactorily, so that glue chipping and floating of the surface protective film and separator can be further suppressed. The blowing pressure is, for example, 0.05Mpa to 1Mpa, the wind speed is, for example, 1,500 m / min to 15,000 m / min, and the air volume is, for example, 5 L / min to 1,000 L / min.
 次の穴52以降の穴は、代表的には図7(b)に示すように、両持ち状態(両端を保持した状態)のエンドミル60で形成され得る。 The holes after the next hole 52 can be typically formed by an end mill 60 in a double-sided state (a state in which both ends are held), as shown in FIG. 7 (b).
 次の穴52以降の穴の形成(以下、周回による切削と称する場合がある)に用いられるエンドミルは、下穴51の形成に用いられるエンドミルと同一であってもよく、異なっていてもよい。周回による切削に用いられるエンドミルが下穴の形成に用いられるエンドミルと同一である場合、周回による切削における当該エンドミルの上下の移動方向は、好ましくは上方である。より詳細には、下穴は、代表的には上記のとおり、片持ち状態(上端を保持した状態)のエンドミルを下方に移動させることにより形成され得る。この場合、糊欠けならびに表面保護フィルムおよびセパレーターの浮きの抑制の観点から、切削くずの排出方向は好ましくは上方である。したがって、周回による切削における当該エンドミルの上下の移動方向は、切削くずの排出方向である上方が好ましい。周回による切削に用いられるエンドミルが下穴の形成に用いられるエンドミルと異なる場合には、周回による切削における当該エンドミルの上下の移動方向は、エンドミルの構成(切削くずの排出方向)に対応して上方であってもよく下方であってもよい。 The end mill used for forming the next hole 52 and subsequent holes (hereinafter, may be referred to as cutting by orbit) may be the same as or different from the end mill used for forming the prepared hole 51. When the end mill used for the orbital cutting is the same as the end mill used for forming the pilot hole, the vertical movement direction of the end mill in the orbital cutting is preferably upward. More specifically, the pilot hole can be formed by moving the end mill in the cantilever state (holding the upper end) downward, as described above. In this case, the direction of discharging cutting chips is preferably upward from the viewpoint of suppressing adhesive chipping and floating of the surface protective film and the separator. Therefore, it is preferable that the vertical movement direction of the end mill in cutting by orbit is upward, which is the discharge direction of cutting chips. If the end mill used for orbital cutting is different from the end mill used for forming pilot holes, the vertical movement direction of the end mill during orbital cutting is upward corresponding to the end mill configuration (cutting waste discharge direction). It may be lower or lower.
 切削ピッチPは、貫通穴のサイズ、エンドミルの外径、エンドミルの周回数に応じて変化し得る。エンドミルの周回数は、貫通穴のサイズ、エンドミルの外径、切削ピッチPに応じて変化し得る。切削ピッチは、例えば5μm~20μmであり、好ましくは5μm~10μmである。例えば、貫通穴のサイズが3mmであり、エンドミルの外径が2mmであり、切削ピッチPが10μmである場合、エンドミルの周回数は50回となる。 The cutting pitch P can change according to the size of the through hole, the outer diameter of the end mill, and the number of turns of the end mill. The number of turns of the end mill can change depending on the size of the through hole, the outer diameter of the end mill, and the cutting pitch P. The cutting pitch is, for example, 5 μm to 20 μm, preferably 5 μm to 10 μm. For example, when the size of the through hole is 3 mm, the outer diameter of the end mill is 2 mm, and the cutting pitch P is 10 μm, the number of laps of the end mill is 50 times.
 貫通穴の形成における切削条件は、貫通穴のサイズ、エンドミルの外径、エンドミルの周回数等に応じて適切に設定され得る。エンドミルの回転数は、好ましくは1000rpm~10000rpmであり、より好ましくは1500rpm~4000rpmである。エンドミルの送り速度は、好ましくは50mm/分~2000mm/分であり、より好ましくは70mm/分~1000mm/分であり、さらに好ましくは70mm/分~400mm/分である。 The cutting conditions for forming the through hole can be appropriately set according to the size of the through hole, the outer diameter of the end mill, the number of laps of the end mill, and the like. The rotation speed of the end mill is preferably 1000 rpm to 10000 rpm, and more preferably 1500 rpm to 4000 rpm. The feed rate of the end mill is preferably 50 mm / min to 2000 mm / min, more preferably 70 mm / min to 1000 mm / min, and even more preferably 70 mm / min to 400 mm / min.
 上記のようなエンドミルによる穴の端面に沿った切削を所定回数繰り返すことにより(すなわち、エンドミルによる切削を所定の周回数行うことにより)、所定の径を有する貫通穴50が形成される。必要に応じて、貫通穴の端面を仕上げ削りに供してもよい。 By repeating the cutting along the end face of the hole by the end mill as described above (that is, by performing the cutting by the end mill a predetermined number of times), a through hole 50 having a predetermined diameter is formed. If necessary, the end face of the through hole may be subjected to finish cutting.
 以上のようにして、貫通穴を有する粘着剤層付光学積層体が得られ得る。本発明の実施形態による製造方法により得られ得る粘着剤層付光学積層体は、糊欠けならびに表面保護フィルムおよびセパレーターの浮きが抑制されている。 As described above, an optical laminate with an adhesive layer having through holes can be obtained. In the optical laminate with an adhesive layer that can be obtained by the production method according to the embodiment of the present invention, adhesive chipping and floating of the surface protective film and the separator are suppressed.
 以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例には限定されない。実施例における評価項目は以下のとおりである。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples. The evaluation items in the examples are as follows.
(1)糊欠け
 実施例および比較例で得られた貫通穴を有する粘着剤層付光学積層体のワークから、10枚の粘着剤層付光学積層体を抜き出した。当該10枚の粘着剤層付光学積層体は、ワークの一番上および一番下の粘着剤層付光学積層体、ならびに、ワークを厚み方向に5分割したうちの上部および下部からそれぞれ1つ、および、中央部の3つの部分からそれぞれ2つランダムに抜き出した粘着剤層付光学積層体である。当該10枚の粘着剤層付光学積層体について、ルーペもしくは顕微鏡を用いて、貫通穴部分の糊欠けを観察し、50μm以上の糊欠けが観測されなければ、その粘着剤層付光学積層体は「糊欠け無し」サンプルとカウントした。10枚中の「糊欠け無し」サンプルの割合(%)を評価基準とした。実施例5および比較例3については、ワークを50セット用意し、合計500枚のサンプルを評価した。
     A:「糊欠け無し」サンプルが90%以上
     B:「糊欠け無し」サンプルが60%以上90%未満
     C:「糊欠け無し」サンプルが60%未満
(2)表面保護フィルムまたはセパレーターの浮き
 上記(1)と同様にして貫通穴部分の表面保護フィルムまたはセパレーターの浮きを観察し、50μm以上の浮きが観測されなければ、その粘着剤層付光学積層体は「浮き無し」サンプルとカウントした。10枚中の「浮き無し」サンプルの割合(%)を評価基準とした。実施例5および比較例3については、ワークを50セット用意し、合計500枚のサンプルを評価した。
     A:「浮き無し」サンプルが98%以上
     B:「浮き無し」サンプルが60%以上98%未満
     C:「浮き無し」サンプルが60%未満
(3)クラック
 上記(1)と同様にして貫通穴部分のクラックを観察し、50μm以上のクラックが観測されなければ、その粘着剤層付光学積層体は「クラック無し」サンプルとカウントした。10枚中の「クラック無し」サンプルの割合(%)を評価基準とした。実施例5および比較例3については、ワークを50セット用意し、合計500枚のサンプルを評価した。
     A:「クラック無し」サンプルが98%以上
     B:「クラック無し」サンプルが60%以上98%未満
     C:「クラック無し」サンプルが60%未満
(1) Adhesive chipping Ten optical laminates with an adhesive layer were extracted from the work of the optical laminate with an adhesive layer having through holes obtained in Examples and Comparative Examples. The 10 optical laminates with an adhesive layer are one from the top and bottom optical laminates of the work, and one from the upper part and the lower part of the work divided into five in the thickness direction. , And two optical laminates with an adhesive layer randomly extracted from each of the three central portions. For the 10 optical laminates with an adhesive layer, observe the glue chipping in the through-hole portion using a loupe or a microscope, and if no adhesive chipping of 50 μm or more is observed, the optical laminate with an adhesive layer is It was counted as a "no glue chipping" sample. The ratio (%) of the "no glue chipping" sample out of 10 was used as the evaluation standard. For Example 5 and Comparative Example 3, 50 sets of workpieces were prepared and a total of 500 samples were evaluated.
A: "No glue chipping" sample is 90% or more B: "No adhesive chipping" sample is 60% or more and less than 90% C: "No adhesive chipping" sample is less than 60% (2) Floating surface protection film or separator In the same manner as in (1), the floating of the surface protective film or separator in the through hole portion was observed, and if no floating of 50 μm or more was observed, the optical laminate with the adhesive layer was counted as a “no floating” sample. The ratio (%) of the "no float" sample out of 10 was used as the evaluation standard. For Example 5 and Comparative Example 3, 50 sets of workpieces were prepared and a total of 500 samples were evaluated.
A: "No float" sample is 98% or more B: "No float" sample is 60% or more and less than 98% C: "No float" sample is less than 60% (3) Crack Similar to (1) above The cracks in the portion were observed, and if no cracks of 50 μm or more were observed, the optical laminate with the adhesive layer was counted as a “crack-free” sample. The ratio (%) of "no crack" samples out of 10 was used as the evaluation standard. For Example 5 and Comparative Example 3, 50 sets of workpieces were prepared and a total of 500 samples were evaluated.
A: "No crack" sample is 98% or more B: "No crack" sample is 60% or more and less than 98% C: "No crack" sample is less than 60%
<実施例1>
 常法により、視認側から順に表面保護フィルム(58μm)/HC-TAC保護フィルム(32μm)/偏光子(5μm)/粘着剤層(15μm)/セパレーター(38μm)の構成を有する粘着剤層付偏光板を作製した。なお、HC-TAC保護フィルムは、トリアセチルセルロース(TAC)フィルム(25μm)にハードコート(HC)層(7μm)が形成されたフィルムであり、TACフィルムが偏光子側となるように積層した。また、表面保護フィルムとしては、PET基材(38μm)/PF粘着剤層(20μm)の構成を有する表面保護フィルムを用いた。粘着剤層のクリープ値は73μmであった。得られた粘着剤層付偏光板を5.7インチサイズ(縦140mmおよび横65mm程度)に打ち抜き、打ち抜いた偏光板を120枚重ねてワーク(総厚み約18mm)とした。得られたワークをクランプ(治具)で挟んだ状態で、エンドミル加工により、隅部に直径3mmの貫通穴を形成した。より詳細には以下のとおりであった。貫通穴の形成に用いたエンドミルは、外径2.0mm、切削刃の有効長さ30mm、刃角度25°、すくい角20°、逃げ角30°、右刃右ねじれ(切削くずの排出方向が上方)であった。このエンドミルを用いて、まず、片持ち状態で表面保護フィルム側(上方)から下方に移動させて下穴(直径2μm)を形成した。次いで、エンドミルを両持ち状態とし、図9(a)のようにして、エンドミルを下穴の端面に押し当てて切削しながら下穴の端面に沿って一周させた。切削ピッチは10μmであった。本実施例においては、エンドミルを1周させるとともに上方に4mm移動させた。周回後、エンドミルをA位置に戻した後、下方に4mm移動させて(つまり、切削しない状態で下方に4mm移動させて)上下方向において元の位置に戻した。次いで、エンドミルをAからBに移動させ、上記のエンドミルの次の周回による切削を行った。このようなエンドミルの周回による切削を繰り返し、直径3mmの貫通穴を形成した。周回におけるエンドミルの水平方向の移動速度は250mm/分、回転数は2500rpmであった。得られた貫通穴を有する粘着剤層付偏光板について、上記(1)~(3)の評価を行った。結果を表1に示す。
<Example 1>
Polarized light with an adhesive layer having a structure of a surface protective film (58 μm) / HC-TAC protective film (32 μm) / polarizer (5 μm) / adhesive layer (15 μm) / separator (38 μm) in order from the visual side by a conventional method. A plate was made. The HC-TAC protective film is a film in which a hard coat (HC) layer (7 μm) is formed on a triacetyl cellulose (TAC) film (25 μm), and the TAC film is laminated so as to be on the polarizer side. As the surface protective film, a surface protective film having a composition of PET base material (38 μm) / PF pressure-sensitive adhesive layer (20 μm) was used. The creep value of the pressure-sensitive adhesive layer was 73 μm. The obtained polarizing plate with an adhesive layer was punched to a size of 5.7 inches (length 140 mm and width 65 mm), and 120 punched polarizing plates were stacked to form a work (total thickness about 18 mm). With the obtained work sandwiched between clamps (jigs), a through hole having a diameter of 3 mm was formed at a corner by end milling. More details were as follows. The end mill used to form the through hole has an outer diameter of 2.0 mm, an effective length of the cutting blade of 30 mm, a blade angle of 25 °, a rake angle of 20 °, a clearance angle of 30 °, and a right-handed twist of the cutting blade (cutting waste discharge direction is Above). Using this end mill, first, a pilot hole (diameter 2 μm) was formed by moving it downward from the surface protective film side (upper side) in a cantilevered state. Next, the end mill was held in a double-sided state, and as shown in FIG. 9A, the end mill was pressed against the end face of the pilot hole to cut the end mill, and the end mill was made to go around along the end face of the pilot hole. The cutting pitch was 10 μm. In this embodiment, the end mill was rotated once and moved upward by 4 mm. After circulation, after returning the end mill A S position, by 4mm moved downward (i.e., by 4mm moved downward in a state that does not cut) was returned to the original position in the vertical direction. Then, the end mill is moved from A S to B S, it was cut by next lap of the end mill. By repeating such cutting by orbiting the end mill, a through hole having a diameter of 3 mm was formed. The horizontal movement speed of the end mill in the orbit was 250 mm / min, and the rotation speed was 2500 rpm. The obtained polarizing plates with an adhesive layer having through holes were evaluated in (1) to (3) above. The results are shown in Table 1.
<実施例2>
 エンドミルの周回による切削加工を片持ち状態で行ったこと以外は実施例1と同様にして貫通穴を有する粘着剤層付偏光板を作製した。得られた貫通穴を有する粘着剤層付偏光板を実施例1と同様の評価に供した。結果を表1に示す。
<Example 2>
A polarizing plate with an adhesive layer having a through hole was produced in the same manner as in Example 1 except that the cutting process was performed by orbiting the end mill in a cantilevered state. The obtained polarizing plate with an adhesive layer having through holes was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
<比較例1>
 エンドミルの周回による切削加工においてエンドミルを上方に移動させなかったこと(水平方向のみに移動させたこと)以外は実施例1と同様にして貫通穴を有する粘着剤層付偏光板を作製した。得られた貫通穴を有する粘着剤層付偏光板を実施例1と同様の評価に供した。結果を表1に示す。
<Comparative example 1>
A polarizing plate with an adhesive layer having through holes was produced in the same manner as in Example 1 except that the end mill was not moved upward (moved only in the horizontal direction) in the cutting process by rotating the end mill. The obtained polarizing plate with an adhesive layer having through holes was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
<比較例2>
 エンドミルの周回による切削加工においてエンドミルを上方に移動させなかったこと(水平方向のみに移動させたこと)以外は実施例2と同様にして貫通穴を有する粘着剤層付偏光板を作製した。得られた貫通穴を有する粘着剤層付偏光板を実施例1と同様の評価に供した。結果を表1に示す。
<Comparative example 2>
A polarizing plate with an adhesive layer having a through hole was produced in the same manner as in Example 2 except that the end mill was not moved upward (moved only in the horizontal direction) in the cutting process by rotating the end mill. The obtained polarizing plate with an adhesive layer having through holes was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
<実施例3>
 常法により、視認側から順に表面保護フィルム(58μm)/HC-TAC保護フィルム(32μm)/偏光子(12μm)/TAC保護フィルム(25μm)/接着剤層(1μm)/第1の位相差層(厚み2.5μm)/粘着剤層(5μm)/第2の位相差層(厚み1.5μm)/粘着剤層(20μm)/セパレーター(38μm)の構成を有する粘着剤層付円偏光板を作製した。なお、第1の位相差層および第2の位相差層はいずれも液晶化合物の配向固化層であり、第1の位相差層の面内位相差は240nm、第2の位相差層の面内位相差は120nmであった。さらに、第1の位相差層の遅相軸と偏光子の吸収軸とのなす角度は15°であり、第2の位相差層の遅相軸と偏光子の吸収軸とのなす角度は75°であった。粘着剤層のクリープ値は73μmであった。得られた粘着剤層付偏光板を5.7インチサイズ(縦140mmおよび横65mm程度)に打ち抜き、打ち抜いた偏光板を90枚重ねてワーク(総厚み約18mm)とした。以下、エンドミルの周回における水平方向の移動速度を70mm/分としたこと以外は実施例1と同様にして、貫通穴を有する粘着剤層付円偏光板を作製した。得られた貫通穴を有する粘着剤層付円偏光板を実施例1と同様の評価に供した。結果を表1に示す。
<Example 3>
By the conventional method, the surface protective film (58 μm) / HC-TAC protective film (32 μm) / polarizer (12 μm) / TAC protective film (25 μm) / adhesive layer (1 μm) / first retardation layer in order from the visual side. A circularly polarizing plate with an adhesive layer having a structure of (thickness 2.5 μm) / adhesive layer (5 μm) / second retardation layer (thickness 1.5 μm) / adhesive layer (20 μm) / separator (38 μm). Made. Both the first retardation layer and the second retardation layer are orientation-solidified layers of liquid crystal compounds, the in-plane retardation of the first retardation layer is 240 nm, and the in-plane retardation of the second retardation layer is in-plane. The phase difference was 120 nm. Further, the angle formed by the slow axis of the first retardation layer and the absorption axis of the polarizer is 15 °, and the angle formed by the slow axis of the second retardation layer and the absorption axis of the polarizer is 75 °. It was °. The creep value of the pressure-sensitive adhesive layer was 73 μm. The obtained polarizing plate with an adhesive layer was punched to a size of 5.7 inches (length 140 mm and width 65 mm), and 90 punched polarizing plates were stacked to form a work (total thickness about 18 mm). Hereinafter, a circularly polarizing plate with an adhesive layer having a through hole was produced in the same manner as in Example 1 except that the moving speed in the horizontal direction in the circumference of the end mill was 70 mm / min. The obtained circularly polarizing plate with an adhesive layer having through holes was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
<実施例4>
 エンドミルの周回における水平方向の移動速度を125mm/分としたこと以外は実施例3と同様にして、貫通穴を有する粘着剤層付円偏光板を作製した。得られた貫通穴を有する粘着剤層付円偏光板を実施例1と同様の評価に供した。結果を表1に示す。
<Example 4>
A circularly polarizing plate with an adhesive layer having a through hole was produced in the same manner as in Example 3 except that the horizontal moving speed in the circumference of the end mill was 125 mm / min. The obtained circularly polarizing plate with an adhesive layer having through holes was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
<実施例5>
 エンドミルの周回における水平方向の移動速度を250mm/分としたこと以外は実施例3と同様にして、貫通穴を有する粘着剤層付円偏光板を作製した。得られた貫通穴を有する粘着剤層付円偏光板を実施例1と同様の評価に供した。結果を表1に示す。
<Example 5>
A circularly polarizing plate with an adhesive layer having a through hole was produced in the same manner as in Example 3 except that the horizontal moving speed in the circumference of the end mill was 250 mm / min. The obtained circularly polarizing plate with an adhesive layer having through holes was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
<比較例3>
エンドミルの周回による切削加工においてエンドミルを上方に移動させなかったこと(水平方向のみに移動させたこと)、および、エンドミルの周回による切削加工を片持ち状態で行ったこと以外は実施例5と同様にして、貫通穴を有する粘着剤層付円偏光板を作製した。得られた貫通穴を有する粘着剤層付円偏光板を実施例1と同様の評価に供した。結果を表1に示す。
<Comparative example 3>
Same as in Example 5 except that the end mill was not moved upward (moved only in the horizontal direction) in the cutting process by the circuit of the end mill and the cutting process by the circuit of the end mill was performed in a cantilever state. A circularly polarizing plate with an adhesive layer having a through hole was produced. The obtained circularly polarizing plate with an adhesive layer having through holes was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
<比較例4>
エンドミルの周回による切削加工において、図10に示すようにエンドミルをサインカーブのように上下方向に移動させた。具体的には、エンドミルを1周させる間に上下方向にそれぞれ2mm動かした。このこと以外は比較例3と同様にして、貫通穴を有する粘着剤層付円偏光板を作製した。得られた貫通穴を有する粘着剤層付円偏光板を実施例1と同様の評価に供した。結果を表1に示す。
<Comparative example 4>
In the cutting process by rotating the end mill, the end mill was moved in the vertical direction like a sine curve as shown in FIG. Specifically, the end mill was moved by 2 mm in the vertical direction while making one round. Except for this, a circularly polarizing plate with an adhesive layer having through holes was produced in the same manner as in Comparative Example 3. The obtained circularly polarizing plate with an adhesive layer having through holes was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<評価>
 表1から明らかなように、本発明の実施例によれば、粘着剤層付光学積層体の貫通穴の形成においてエンドミルの周回の際にエンドミルを上方または下方のいずれか一方に移動させることにより、糊欠けならびに表面保護フィルムまたはセパレーターの浮きを顕著に抑制することができる。
<Evaluation>
As is clear from Table 1, according to the embodiment of the present invention, by moving the end mill either upward or downward during the orbiting of the end mill in the formation of the through hole of the optical laminate with the adhesive layer. , Glue chipping and floating of the surface protective film or separator can be remarkably suppressed.
 本発明の製造方法は、貫通穴が必要とされる粘着剤層付光学積層体の製造に好適に用いられ得る。本発明の製造方法により得られる粘着剤層付光学積層体は、自動車のインストゥルメントパネル、スマートウォッチ、カメラ部を有する画像表示装置に代表される貫通穴を有する画像表示部に好適に用いられ得る。 The manufacturing method of the present invention can be suitably used for manufacturing an optical laminate with an adhesive layer that requires a through hole. The optical laminate with an adhesive layer obtained by the manufacturing method of the present invention is suitably used for an image display unit having a through hole represented by an automobile instrument panel, a smart watch, and an image display device having a camera unit. obtain.
  W   ワーク
 10   光学フィルム
 20   粘着剤層
 30   セパレーター
 40   表面保護フィルム
 60   エンドミル
100   粘着剤層付光学積層体
W work 10 Optical film 20 Adhesive layer 30 Separator 40 Surface protection film 60 End mill 100 Optical laminate with adhesive layer

Claims (7)

  1.  粘着剤層付光学積層体を複数枚重ねてワークを形成すること、および
     エンドミルを用いた切削により該ワークの所定の位置に貫通穴を形成すること、
     を含み、
     該粘着剤層付光学積層体が、光学フィルムと、該光学フィルムの一方の側に配置された粘着剤層と、該粘着剤層に剥離可能に仮着されたセパレーターと、該光学フィルムのもう一方の側に剥離可能に仮着された表面保護フィルムと、を含み、
     該貫通穴の形成が、穴の端面に該エンドミルを押し当てて切削しながら該エンドミルを上方または下方のいずれか一方に移動させて切削することを含む、
     貫通穴を有する粘着剤層付光学積層体の製造方法。
    Forming a work by stacking a plurality of optical laminates with an adhesive layer, and forming a through hole at a predetermined position of the work by cutting with an end mill.
    Including
    The optical laminate with the pressure-sensitive adhesive layer includes an optical film, a pressure-sensitive adhesive layer arranged on one side of the optical film, a separator temporarily attached to the pressure-sensitive adhesive layer so as to be peelable, and the optical film. Includes a peelable surface protective film on one side,
    The formation of the through hole involves moving the end mill either upward or downward while cutting by pressing the end mill against the end face of the hole.
    A method for manufacturing an optical laminate with an adhesive layer having through holes.
  2.  前記貫通穴の形成が、
     下穴を形成すること;
     該下穴の端面に前記エンドミルを押し当てて切削しながら、該エンドミルを該下穴の端面に沿って、かつ、該エンドミルを切削開始時の所定の位置から上方または下方のいずれか一方に移動させながら一周させ、該下穴の径より所定量大きい径を有する次の穴を形成すること;
     該エンドミルを該所定の位置に戻し、該次の穴の端面に該エンドミルを押し当てて切削しながら、該エンドミルを該次の穴の端面に沿って、かつ、該エンドミルを該所定の位置から上方または下方のいずれか一方に移動させながら一周させ、該次の穴の径より所定量大きい径を有するさらに次の穴を形成すること;および、
     エンドミルの周回による穴の端面に沿った切削を所定回数繰り返し、所定の径を有する貫通穴を形成すること;
    を含む、請求項1に記載の製造方法。
    The formation of the through hole
    Forming a pilot hole;
    While cutting by pressing the end mill against the end face of the prepared hole, move the end mill along the end face of the prepared hole and move the end mill either upward or downward from a predetermined position at the start of cutting. To form the next hole having a diameter larger than the diameter of the prepared hole by a predetermined amount;
    While returning the end mill to the predetermined position and pressing the end mill against the end face of the next hole for cutting, the end mill is moved along the end face of the next hole and the end mill is moved from the predetermined position. Making a round while moving it either upward or downward to form a further hole having a diameter that is a predetermined amount larger than the diameter of the next hole;
    Cutting along the end face of the hole by orbiting the end mill is repeated a predetermined number of times to form a through hole having a predetermined diameter;
    The manufacturing method according to claim 1.
  3.  前記貫通穴の形成が、片持ち状態のエンドミルで前記下穴を形成すること、および、両持ち状態のエンドミルで前記次の穴以降の穴を形成することを含む、請求項2に記載の製造方法。 The production according to claim 2, wherein the formation of the through hole includes forming the pilot hole with a cantilevered end mill and forming a hole after the next hole with a double-sided end mill. Method.
  4.  前記エンドミルがねじれ刃を有し、前記貫通穴の形成における該エンドミルの上下の移動方向が切削くずの排出方向である、請求項1から3のいずれかに記載の製造方法。 The manufacturing method according to any one of claims 1 to 3, wherein the end mill has a torsion blade, and the vertical movement direction of the end mill in forming the through hole is a cutting waste discharge direction.
  5.  前記下穴を形成するエンドミルと前記次の穴以降の穴を形成するエンドミルとが同一のエンドミルであり、該次の穴以降の穴の形成における該エンドミルの上下の移動方向が上方である、請求項2から4のいずれかに記載の製造方法。 A claim that the end mill forming the prepared hole and the end mill forming the hole after the next hole are the same end mill, and the vertical movement direction of the end mill in forming the hole after the next hole is upward. Item 8. The production method according to any one of Items 2 to 4.
  6.  前記ワークの厚みが10mm以上である、請求項1から5のいずれかに記載の製造方法。 The manufacturing method according to any one of claims 1 to 5, wherein the thickness of the work is 10 mm or more.
  7.  前記光学フィルムが偏光子または偏光板を含む、請求項1から6のいずれかに記載の製造方法。
     
    The production method according to any one of claims 1 to 6, wherein the optical film includes a polarizer or a polarizing plate.
PCT/JP2020/041297 2020-03-25 2020-11-05 Production method for adhesive layer-equipped optical layered body having through-hole WO2021192391A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080098920.5A CN115315332A (en) 2020-03-25 2020-11-05 Method for producing optical laminate with adhesive layer having through-hole
KR1020227031111A KR20220156536A (en) 2020-03-25 2020-11-05 Manufacturing method of an optical laminate with a pressure-sensitive adhesive layer having a through hole
JP2022509239A JPWO2021192391A1 (en) 2020-03-25 2020-11-05

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020054110 2020-03-25
JP2020-054110 2020-03-25
JP2020-090150 2020-05-23
JP2020090150 2020-05-23

Publications (1)

Publication Number Publication Date
WO2021192391A1 true WO2021192391A1 (en) 2021-09-30

Family

ID=77891117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/041297 WO2021192391A1 (en) 2020-03-25 2020-11-05 Production method for adhesive layer-equipped optical layered body having through-hole

Country Status (5)

Country Link
JP (1) JPWO2021192391A1 (en)
KR (1) KR20220156536A (en)
CN (1) CN115315332A (en)
TW (1) TW202135957A (en)
WO (1) WO2021192391A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7220764B1 (en) 2021-11-02 2023-02-10 住友化学株式会社 METHOD FOR MANUFACTURING FILM WITH THROUGH HOLE, AND CIRCULAR POLARIZER

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS591512U (en) * 1982-06-28 1984-01-07 日野自動車株式会社 Internal diameter processing equipment
JPH11197928A (en) * 1998-01-05 1999-07-27 Sony Corp Cutting method and device thereof
JP2010076069A (en) * 2008-09-29 2010-04-08 Precision Hasegawa:Kk Machining method and apparatus therefor
DE102010029445A1 (en) * 2010-05-28 2011-12-01 Airbus Operations Gmbh Method for producing holes in work-piece to manufacture aircraft components, involves moving longitudinal axis of tool with respect to middle axis of holes, where distance between longitudinal and middle axes is calculated as eccentricity
JP2012096339A (en) * 2010-11-05 2012-05-24 Hitachi Via Mechanics Ltd Method and device of machining workpiece, and program
JP2016515716A (en) * 2013-03-22 2016-05-30 エシロル アンテルナショナル(コンパーニュ ジェネラル ドプテーク) Method for perforating spectacle lenses in a spiral path and associated perforation apparatus
WO2016203521A1 (en) * 2015-06-15 2016-12-22 オーエスジー株式会社 Reamer
WO2018016285A1 (en) * 2016-07-22 2018-01-25 日東電工株式会社 Method for manufacturing polarization plate and manufacturing device therefor
JP6622439B1 (en) * 2019-03-06 2019-12-18 住友化学株式会社 Manufacturing method of cut laminated film

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180236569A1 (en) 2015-09-16 2018-08-23 Sharp Kabushiki Kaisha Method for producing differently shaped polarizing plate

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS591512U (en) * 1982-06-28 1984-01-07 日野自動車株式会社 Internal diameter processing equipment
JPH11197928A (en) * 1998-01-05 1999-07-27 Sony Corp Cutting method and device thereof
JP2010076069A (en) * 2008-09-29 2010-04-08 Precision Hasegawa:Kk Machining method and apparatus therefor
DE102010029445A1 (en) * 2010-05-28 2011-12-01 Airbus Operations Gmbh Method for producing holes in work-piece to manufacture aircraft components, involves moving longitudinal axis of tool with respect to middle axis of holes, where distance between longitudinal and middle axes is calculated as eccentricity
JP2012096339A (en) * 2010-11-05 2012-05-24 Hitachi Via Mechanics Ltd Method and device of machining workpiece, and program
JP2016515716A (en) * 2013-03-22 2016-05-30 エシロル アンテルナショナル(コンパーニュ ジェネラル ドプテーク) Method for perforating spectacle lenses in a spiral path and associated perforation apparatus
WO2016203521A1 (en) * 2015-06-15 2016-12-22 オーエスジー株式会社 Reamer
WO2018016285A1 (en) * 2016-07-22 2018-01-25 日東電工株式会社 Method for manufacturing polarization plate and manufacturing device therefor
JP6622439B1 (en) * 2019-03-06 2019-12-18 住友化学株式会社 Manufacturing method of cut laminated film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7220764B1 (en) 2021-11-02 2023-02-10 住友化学株式会社 METHOD FOR MANUFACTURING FILM WITH THROUGH HOLE, AND CIRCULAR POLARIZER
JP2023068440A (en) * 2021-11-02 2023-05-17 住友化学株式会社 Method of manufacturing film with through-hole, and circularly polarizing plate

Also Published As

Publication number Publication date
JPWO2021192391A1 (en) 2021-09-30
TW202135957A (en) 2021-10-01
KR20220156536A (en) 2022-11-25
CN115315332A (en) 2022-11-08

Similar Documents

Publication Publication Date Title
JP7378653B2 (en) Manufacturing method of cut optical laminate with adhesive layer
JP7018349B2 (en) Manufacturing method of machined optical laminate with adhesive layer
WO2021192391A1 (en) Production method for adhesive layer-equipped optical layered body having through-hole
JP7378654B2 (en) Manufacturing method of cut optical laminate with adhesive layer
WO2021192443A1 (en) Production method for adhesive layer-equipped optical laminate having through-hole, and through-hole forming device used in said production method
JP6795651B2 (en) Optical laminate with cover glass and image display device with cover glass
CN112005143B (en) Optical laminate, optical laminate with protective glass, method for producing optical laminate with protective glass, and image display device with protective glass
JP7018348B2 (en) Manufacturing method of machined optical laminate with hardcourt layer
JP7312221B2 (en) Method for producing optical laminate with pressure-sensitive adhesive layer
TWI834766B (en) Method for manufacturing optical laminate with adhesive layer processed by cutting
TWI835703B (en) Method for manufacturing optical laminate with adhesive layer processed by cutting
CN117980099A (en) Method for producing optical laminate with adhesive layer
WO2020079875A1 (en) Optical laminate with cover glass and image display device with cover glass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20926442

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022509239

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20926442

Country of ref document: EP

Kind code of ref document: A1